

Title	Norgestrel, a progesterone analogue, promotes significant long- term neuroprotection of cone photoreceptors in a mouse model of retinal disease				
Authors	Roche, Sarah L.;Kutsyr, Oksana;Cuenca, Nicolás;Cotter, Thomas G.				
Publication date	2019-07-25				
Original Citation	Roche, S. L., Kutsyr, O., Cuenca, N. and Cotter, T. G. (2019) 'Norgestrel, a Progesterone Analogue, Promotes Significant Long-Term Neuroprotection of Cone Photoreceptors in a Mouse Model of Retinal Disease', Investigative Ophthalmology & Visual Science, 60(8), pp. 3221-3235. (14pp.) DOI: 10.1167/iovs.19-27246				
Type of publication	Article (peer-reviewed)				
Link to publisher's version	https://iovs.arvojournals.org/article.aspx?articleid=2739389 - 10.1167/iovs.19-27246				
Rights	©The Authors This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License http://creativecommons.org/licenses/by-nc-nd/4.0				
Download date	2025-07-01 18:11:07				
Item downloaded from	https://hdl.handle.net/10468/8588				

Coordinate	Receptor Family	RTK	Coordinate	Receptor Family	RTK	Coordinate	Receptor Family	RTK
A1, A2	Ref. Spots		C5, C6	PDGF R	PDGF R α	D11, D12	Eph R	EphA1
A23, A24	Ref. Spots	-	C7, C8		PDGF R β	D13, D14		EphA2
B1, B2	EGF R	EGF R	C9, C10		SCF R	D15, D16	1	EphA3
B3, B4		ErbB2	C11, C12		Flt-3	D17, D18		EphA6
B5, B6		ErbB3	C13, C14		M-CSF R	D19, D20		EphA7
B7, B8		ErbB4	C15, C16	RET	c-Ret	D21, D22		EphA8
B9, B10	FGF R	FGF R2	C17, C18	Tie	Tie-1	D23, D24		EphB1
B11, B12		FGF R3	C19, C20		Tie-2	E1, E2		EphB2
B13, B14		FGF R4	C21, C22	NGF R	TrkA	E3, E4		EphB4
B15, B16	Insulin R	Insulin R	C23, C24		TrkB	E5, E6		EphB6
B17, B18		IGF-1 R	D1, D2		TrkC	E7, E8	Control (-)	PBS
B19, B20	Axl	AxI	D3, D4	VEGF R	VEGF R1	F1, F2	Ref. Spots	-
B21, B22		Dtk	D5, D6		VEGF R2			
B23, B24		Mer	D7, D8		VEGF R3			
C1, C2	HGF R	HGF R	D9, D10	MuSK	MuSK			
C3, C4		MSP R						

Supplementary Figure S1. ErbB2 activity was highest out of 39 receptor tyrosine kinases assessed in the rd10 retina. (A) Use of a receptor tyrosine kinase activity array with P50 retinal

lysates from untreated and Norgestrel-treated rd10 mice revealed the highest level of immunoreactivity for ErbB2. Each antibody is spotted in duplicate. An increase in ErbB2 activity was observed with Norgestrel (coordinates B3, B4). (**B**) A detailed description of the antibodies present on the array and their coordinates.