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Abstract

Motivated by accurate average-case analysis, MOdular Quantitative

Analysis (MOQA) is developed at the Centre for Efficiency Oriented

Languages (CEOL). In essence, MOQA allows the programmer to

determine the average running time of a broad class of programmes

directly from the code in a (semi-)automated way. TheMOQA ap-

proach has the property of randomness preservation which means that

applying any operation to a random structure, results in an output

isomorphic to one or more random structures, which is key to system-

atic timing.

Based on originalMOQA research, we discuss the design and imple-

mentation of a new domain specific scripting language based on ran-

domness preserving operations and random structures. It is designed

to facilitate compositional timing by systematically tracking the dis-

tributions of inputs and outputs. The notion of a labelled partial

order (LPO) is the basic data type in the language. The program-

mer uses built-inMOQA operations together with restricted control

flow statements to designMOQA programs. ThisMOQA language

is formally specified both syntactically and semantically in this the-

sis. A practical language interpreter implementation is provided and

discussed.

By analysing new algorithms and data restructuring operations, we

demonstrate the wide applicability of theMOQA approach. Also we

extendMOQA theory to a number of other domains besides average-

case analysis. We show the strong connection between MOQA and

parallel computing, reversible computing and data entropy analysis.
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“It is convenient to have a measure of the amount of work involved

in a computing process, even though it be a very crude one. We may

count up the number of times that various elementary operations are

applied in the whole process and then given them various weights.

We might, for instance, count the number of additions, subtractions,

multiplications, divisions, recording of numbers, and extractions of

figures from tables. In the case of computing with matrices most of

the work consists of multiplications and writing down numbers, and

we shall therefore only attempt to count the number of multiplications

and recordings. [108]” – Alan Turing

1.1 Introduction

Since the outset of computing, people are interested in studying the performance

of programs. In 1947 Turing suggested a convenient way to measure the amount

of work or performance of a program, by studying the most expensive basic

operation(s) involved in a computation, and realistically that’s what we do nowa-

days. Rather than taking account of every little detail, we focus on the most

expensive basic operation(s) and use the estimation result as a proxy for the real

running time, essentially, making the hypothesis that the running time will grow

as a constant times this estimation result. The work presented in this thesis is

based on this idea. MOQA [85, 87], developed by Prof M. Schellekens, is a

theory and tool to study the average cost of a program by analysing the average

number of comparisons involved in a computation. In our research we focus on

comparison-based algorithms. This type of analysis can form the basis for a fine-

tuned analysis, taking into account other primitive operations such as swaps and

assignments [32].

A fundamental problem in computer science is that of writing efficient algo-

rithms and studying their performance. Algorithm analysis is a core computer

science area which provides insights in the design of new algorithm and applica-

tions. Technological revolution normally comes along with new algorithm design

and performance speed up. For example, the Discrete Fourier Transform [104] is

used to decompose waveform of N samples into periodic components, the design
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of a Fast Fourier transform algorithm improved brute force algorithm, from N2

steps to Nlog(N) steps. As a consequence, it enables new technologies such as

DVD, JPEG, MRI, etc [95].

There are three classical types of algorithm analysis: best-case, average-case,

and worst-case analysis. In our context, we will focus on average-case execution

time (ACET) analysis, and the time we refer to is the average number of compar-

isons made during the execution of an operation. Currently, worst-case analysis

is the most widely used methodology to analyse algorithms [94].

However, when the worst case is extremely rare, a worst-case view can be prob-

lematic. An algorithm might have acceptable performance on typical inputs while

exhibiting poor worst-case time complexity. There are a number of algorithms

which are widely used in practice in spite of a very poor worst-case time com-

plexity, notably including Quicksort and the Simplex method [26, 63, 95]. Thus

average-case analysis is an important complement to worst-case analysis. Such

complementary information can potentially aid better budgeting of resources in

a Real-Time context [67]. Smoothed analysis provides an alternative to measure

complexity [100]. It is a hybrid of worst-case and average-case analyses, measur-

ing the tipping point at which average-case turns to worst-case behaviour in terms

of perturbations of inputs. This in turn enables one to quantify the unlikelihood

of worst-case behaviour. We will return to it in Section 7.4.

To get a better sense of a ‘typical’ running time, the average running time over

all instances of a problem is often considered. Average-case analysis is particularly

relevant in applications with a high degree of randomization in the input data [64].

Average-case time analysis is a notoriously difficult area of Computer Science,

not to say measuring average-case execution timing (ACET) automatically. There

are a variety of techniques to carry out average-case analysis, but typically they

do not allow for automation [34, 53]. Currently algorithms will be analysed on a

case-by-case basis and various bottle-neck problems have been highlighted in the

literature and some well-known algorithms escape analysis, such as Heapsort and

Shellsort [26, 57]. In view of the status of the field, the ultimate aim to provide a

unified foundation for average-case analysis motivated the work of many authors

including [57, 77, 94, 110].

There are some analysis techniques already developed to tackle automatic
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average-case analysis, e.g. [35], but these tend to be quite complex involving

many difficult mathematical techniques. MOQA [85, 87] is a new method used

to obtain average-case timing information, where the underlying mathematical

techniques are less complicated than previous approaches. The crucial property

of MOQA is that operations in this model are randomness preserving, which

was captured by the notions of random structures and random bags. This en-

sures that the data structures in MOQA method are traceable, meaning that

the probability of each structure occurring at any step during program execu-

tion is predictable. Random bags contribute a visual way to represent data and

their distributions, which in turn facilitates the modular derivation of ACETs of

algorithms.

1.2 Research topics

In this thesis we examine and extend different aspects ofMOQA from both a

practical and a theoretical point of view.

1.2.1 MOQA language design and interpreter implemen-

tation

TheMOQA approach consists of designing a new domain specific scripting lan-

guage based on randomness preserving operations and random structures. It is

designed to facilitate compositional timing by systematically tracking the dis-

tributions of inputs and outputs. The basic data type in the language is a la-

belled partial order and the programmer designs an algorithm by applying built-in

MOQA operations to this partial order, combined with restricted control flow

statements. The syntax and semantics of the language are defined in this thesis.

This follows closely the first introducedMOQA (modular quantitative analysis)

language, a so-called efficiency-oriented language defined in the book [85] using

mathematical notations.

In this thesis we will study and implement an interpreter for MOQA lan-

guage. Comparing with original MOQA language defined in the book [85] the

syntax of current MOQA language is more similar to an interpreted language
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and close to practical applications.

When we evaluate a program using the MOQA interpreter, there are two

modes built into the interpreter: execution mode and analysis mode. If execution

mode is invoked, the designedMOQA interpreter will interpret the program by

applyingMOQA operations to the labelled partial order and keep tracking the

changes of structure in the execution environment. The result of this type of

evaluation is to apply the algorithm to one instance of the problem.

In contrast, analysis mode requires the user to provide an initial partial order

size. The interpreter will first build the abstract syntax tree (AST), then will

interpret the AST. Using the results fromMOQA theory research, it will keep

track of applying operations over the random structure and of the probability for

each structure. By using random structures as representations of output data,

it tracks all possible instances of the problem, thus enabling us to derive the

average-case execution time (ACET) of the algorithm. The cost of eachMOQA

operation, the resulting random structures and probabilities is a central topic in

MOQA research. We will discuss this aspect in detail in later chapters. The

ACET of one algorithm is derived by accumulating the cost for each operation

and the probabilities of the data-occurrences. Finally the interpreter will report

back the number of comparisons needed to execute the algorithm. MOQA is the

first language of its scope to allow for (semi-)automated average-case analysis.

1.2.2 Parallel Extension of MOQA

The second topic of this thesis is to extend the usage ofMOQA to the parallel

field.

With the advancement of multi-core processors, parallel algorithms and espe-

cially multi-threaded algorithms are of increasing importance to developers. The

requirement for parallel algorithm analysis also has increased. In this thesis, we

present a new way to analyse fork-join multi-threaded algorithms. These results

were reported in [39]. Our approach is based on MOQA operations, where we

extend the theory to a parallel field and use the traceability of theMOQA data

structures. We show that multi-threaded algorithms which satisfyMOQA the-

ory can be easily analysed. Parallel Quicksort is shown as an example for which
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we derived equations for its work and span, something that cannot be achieved

by current tools. In this thesis, we also validate our claims by running the par-

allel program and by comparing the bound predicted by our analysis with real

speedup from the experiments. We show that our method is much more accurate

than asymptotic analysis [39].

1.2.3 Exploring MOQA applications

To show the applicability of theMOQA method, we investigate several applica-

tions.

The usage of random bags and random bag preservation plays a key role in the

research of MOQA. Each MOQA operation has the property of randomness

preservation, which means that applying any operation to a random structure

results in an output isomorphic to one or more random structures, which is the

key to systematic timing. The notation of a random bag serves as a unifying model

to represent data structures and their data distribution. To constructively track

the distribution during computations we need to ensure random bag preservation,

but this property is not available to all data structuring operations.

Several data constructing operations have been analysed with respect to ran-

dom bag preservation, such as the construction of binary heaps and binary trees.

In this thesis we will study several new type of heap data structures, for instance

skew heap, min-max heap, and we will check their random bag preservation prop-

erties.

Next, we introduce a new operation: treap insertion. The average-case run-

ning time of the operation is discussed 1.

Because of the usage of random structures to represent MOQA operations’

inputs and outputs, the analysis of other data structure properties becomes easier.

We present some other interesting properties that are not directly related to the

running time.

For example, D. Early examined in his thesis the usage ofMOQA to track

second moments [32]. In this thesis we add the capacity to track entropy.

The entropy function is used as a measurement of randomness [69]. It is

1Joint work with Dr. P. Chebolu
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widely applied in information retrieval, machine learning etc [25, 52]. We adapt

the definition of entropy and redefine it over a random bag. MOQA provides

the ability to track the data distribution during computations. We extend this

capability by tracking entropy changes during the computation and illustrate this

with sorting algorithms such as Insertionsort, Treapsort etc.

We recall that randomness preservation is key to ensuringMOQA ’s modu-

lar timing derivation. A degree of reversibility in turn is a key aspect to ensure

randomness preservation. All operations of the MOQA language can be made

reversible with minimal additional bookkeeping. A challenge in achieving this en-

coding in a frugal way is to ensure subsets of data can be stored without excessive

overheads. This thesis focuses on the joint work [33] to illustrate such an encoding

for the case of the Quicksort algorithm. D. Early provided an efficient encoding

to reverse the split of a list into two sublists. We study the code for reversible

Quicksort and provide a simplified explanation and an example illustrating the

algorithm’s reverse execution.

The last topic of this thesis is to present how to integrate ‘smoothed com-

plexity’ in the MOQA interpreter. Smoothed analysis is a recent approach to

measure how unusual the worst-case running time is [100]. Smoothed analysis

considers inputs that are subject to some random perturbation.

The average running time of the algorithm over the perturbations of one input

instance is called the smoothed measure of the algorithm over that input instance.

The smoothed complexity of the algorithm is the worst smoothed measure of the

algorithm on any input instance [100].

The parameter σ is used to measure the degree of perturbation. When σ be-

comes large, the perturbations on the input become significant, and the smoothed

complexity tends towards the average-case running time. On the other hand, as

σ becomes small, the perturbations become insignificant on the original instance,

and the smoothed complexity tends towards the worst-case running time. Thus,

the smoothed complexity is a function of σ which interpolates between the worst-

case and average-case running times. The dependence on σ gives a sense of how

unusual an occurrence of the worst-case input actually is, thus it can be used

to explain why the Simplex method is so efficient [101]. Prior work from M.

Schellekens and D. Early [88] has shown the fruitful links between MOQA and
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smoothed complexity analysis.

In this thesis, we use a smoothed complexity result for Quicksort based on

MOQA research by M. Schellekens and A. Hennessy [89], and present how to in-

tegrate this theoretical result intoMOQA interpreter and experimentally derive

smoothed complexity results using our interpreter analyzer, for different magni-

tudes of input perturbations.

1.3 Research contributions

This thesis presents a number of contributions involving the development of the

MOQA language; the interpreter and the theory extension. The most important

of these are as follows:

• TheMOQA scripting language/interpreter is the first practical language/in-

terpreter that provides tracking data structures and probability throughout

computations. It is the first language of its scope to allow for (semi-) auto-

mated average-case analysis.

• The MOQA language syntax and semantics illustrates that MOQA re-

search not only provides valuable theoretical results, but also exhibits po-

tential to explore practical implications.

• The interpreter has the ability to show MOQA structure status during

execution. It might be used as a learning tool for beginners to introduce

MOQA operations.

• The design and implementation of aMOQA interpreter combines a num-

ber of Python language tricks, interpreter implementation methods and

program analysis techniques.

• We analyse randomness preserving properties of several Heap-algorithms,

expandingMOQA research to new data structures.

• We present a new way to analyse a multi-threaded fork-join program based

on the MOQA theory. We expand the MOQA modularity theory to
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a fork-join model, and show that multi-threaded algorithms which satisfy

MOQA theory can be easily analysed.

• We investigate the average-case running time of a new operation on the

MOQA treap data structure, namely, the treap insertion.

• We explore the first automated approach to carry out entropy analysis of

various sorting algorithms, potentially linking to other research areas.

• We examine the frugal encoding underpinning the reversible MOQA op-

erations, where the encoding can be achieved through the bookkeeping of a

single number. The applicability of the encoding has been demonstrated via

reversible Quicksort. We provide a simplified explanation and an example

illustrates the algorithm’s reverse execution.

• We explore the smoothed complexity analysis in theMOQA context and

integrate the theoretical result with theMOQA interpreter.

1.4 Dissertation structure

We provide a brief overview of the structure of this thesis.

Chapter 2. Introduces theMOQA theory in some detail, covering the data

structures, the means of tracking distributions, details of theMOQA operations

and their costs, and introduces a modular derivation of ACETs of algorithms.

Chapter 3. Focuses on formally designing the MOQA language. The lan-

guage syntax and operational semantics are presented. The capacity and limita-

tions of the language are also discussed.

Chapter 4. Briefly presents our practical implementation of the MOQA

language interpreter in Python, especially highlighting methods and tricks we

used to program the interpreter.

Chapter 5. Lists several common algorithms implemented in the MOQA

language. For each algorithm, a theoretical analysis is derived and the interpreter

analyzer output is evaluated.

Chapter 6. Expands the MOQA modularity theory to a fork-join model,

analysing multithreaded fork-join programs based onMOQA .
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Chapter 7. Discusses several applications related to MOQA research, in-

cluding: exploring new data structures and their randomness preserving prop-

erty, investigating average-case complexity of treap insertion, tracking entropy

changes during sorting algorithms’ execution, designing reversibleMOQA oper-

ations and algorithms, giving a brief overview of smoothed analysis in MOQA

and incorporates it in the interpreter.

Chapter 8. Summarises the results presented in this thesis and discusses the

benefits and challenges ofMOQA research. It also examines directions for future

work.
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2.1 Introduction

In this chapter we present the necessary background information on related re-

search topics. We start with a brief discussion on static average-case analysis,

after that some importantMOQA concepts are introduced. Details ofMOQA

operations’ timing functions are recalled.

In Section 2.2 some existing static program analysis techniques are presented

and challenges involved in the static average-case analysis of algorithms are dis-

cussed. Next, in Section 2.3, we give a review ofMOQA research, including the

definition of a random structure, a random bag, the concept of the randomness

preservation property and the MOQA modularity theory. Then we introduce

some basic MOQA operations and their timing functions. Finally we give a

short discussion on theMOQA language and a chapter summary.

2.2 Static Average Case Analysis of Algorithms

The main applications of computer program analysis are program optimization

and program correctness. Computer program analysis is the process of analysing

the behaviour and properties of a program. It has two main approaches: static

program analysis and dynamic program analysis. In this thesis we focus on static

program analysis, that is to analyse the program without executing it in order

to derive useful information. Presently, static program analysis is a thoroughly

studied area, yet still there are a number of open questions in the field and lots

of researchers are involved in tackling them [50, 71, 82, 84].

2.2.1 Static Program Analysis

There are several techniques that are widely used to carry out static program

analysis.

2.2.1.1 Data Flow Analysis

Data flow analysis is a technique for gathering information about the possible set

of values for variables and expressions which are calculated at various points in
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a computer program. It is used for program transformations such as dead-code

elimination, common sub-expression elimination and register allocation [61, 71,

103].

In any data flow analysis, the control flow graph [71] plays a key role. It

is used to determine how far an assignment to a variable could propagate in a

program. The compiler often uses this information to do program optimization.

A canonical example of a data flow analysis is the live variable analysis for register

allocation [13, 15].

Data flow analysis is a very efficient and feasible technique. It is mainly used

in compilers to create optimised code. Because it does not use the semantic of the

programming language’s operators, many interesting program properties cannot

be gathered.

2.2.1.2 Abstract Interpretation

Abstract Interpretation is a theory of semantic approximation. It gains seman-

tic information about a program and can be viewed as a partial execution of

computer programs [27]. Each programming language has an associated concrete

semantics, which defines the effect of each statement and expression as a program

is being evaluated. The idea of abstract interpretation is to create a new seman-

tics of the programming language, called abstract semantics, which must be a safe

approximation of a concrete semantics and normally is defined to consider only

the behaviour relevant to the particular analysis being undertaken. For example,

using abstract semantics one can detect some possible semantic errors, such as

division by zero [27, 71, 114]. In some sense, our approach toMOQA’ language

analyzer adapts this method. We define two semantics for theMOQA language,

the execution semantics for the execution mode, and the analysis semantics used

in the interpreter analysis mode. The execution semantics can be viewed as con-

crete semantics, and the analysis semantics plays the role of abstract semantics.

The execution semantics is based on labelled partial orders, while the analysis

semantics is grounded in random structures and bags.
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2.2.1.3 Symbolic Analysis

Symbolic analysis is another technique to achieve static program analysis. It can

be viewed as a compiler that translates a program into a different language that

consists of symbolic expressions and symbolic recurrences. The symbolic expres-

sions are used to denote the values of a program’s computations and variables.

It is a technique to derive a precise mathematical characterisation of program

properties, and computer algebra systems (such as Mathematica, Maple) play an

important role in this technique. Some applications of this type of analysis can

be found in [51, 80, 97, 114].

2.2.2 Time Analysis of Programs

There are various approaches to obtain the time complexity of programs. [112]

provides a good overview of the techniques used and challenges involved in the

timing analysis of programs.

The first and simplest approach is to empirically analyse the time complexity

of programs. By choosing a set of sample inputs and executing the program

on a specific platform, one estimates the time complexity of the program based

on their performance. However this approach has a number of drawbacks. The

most obvious one is that the results are platform dependent. For example, one

algorithm might perform better than another algorithm only because it used an

operation which is optimized for this particular platform. There is no guarantee

that this algorithm will outperform the other algorithms on a new platform.

In terms of ACET (average-case execution times), empirical analysis normally

requires generating a large sample of inputs. It thus might take a significant

amount of time to obtain a reasonable approximation of the time complexity. Still

there are a number of profilers for the empirical analysis of applications [5, 7].

Another interesting approach is to execute a program in a simulation envi-

ronment that models the architecture of a particular system. This overcomes the

platform dependency problem. An example of using modelling and simulation

for WCET (worst-case execution times) analysis can be found in [56].

Instead of relying on these dynamic analysis approaches, static analysis is an

alternative method to derive the timing behaviour of a program. Static worst-
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case timing techniques have been successfully developed and there are a variety of

results ranging from academic approaches [55, 58, 96] to commercial applications

such as AbsInt’s WCET analyzers [1]. As discussed in [85], the key principle which

lies at the heart of the current development of static worst-case timing tools is a

partial compositionality principle. We will review this principle in Section 2.3.1.

In this thesis we are concerned with the automatic derivation of the ACETs of

programs. As will be shown, there are lots of challenges involved, some of which

are well known [34, 57] and are encountered in existing WCET and ACET tools,

and others which are specific to applying our approach to calculating ACETs

automatically.

2.2.3 MOQA Approach to Static Average Case Analysis

At this stage there are no widely used static average-case analysis tools available.

Industry relies on simulation (empirical analysis of programs on large sample in-

put sets) to derive information about the average-case behaviour of their products.

The drawbacks are obvious. First of all, this approach suffers from imprecision

as sample spaces are not necessarily representative of the whole possible input

space. A second issue is that simulation steps take a long time because of the

size of the sample space. Normally we need to invest more time and hence higher

cost to gain a higher precision.

This approach affects both software and hardware analysis. MOQA provides

a basis for novel modular static analysis to address this issue. The MOQA

approach is based on average-case timing compositionality, which means that the

average-case timing of a program is simply the sum of the times of the parts. This

is a very helpful advantage for static analysis, something which is not available

in current languages. But this average-case summation property does not “come

for free”. We need to be able to track data and their distribution throughout

computations. In a nutshell, this tracking is achieved through a representation

of the distribution combined with a data structure representation, referred to as

a random bag (a multiset). Through a careful design of the basic operations one

ensures that such representations are preserved throughout the computations.

This property is referred to as random bag preservation.
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2.3 A Review of MOQA Theory

In this section, we give a brief overview ofMOQA theory, the background pre-

sented in this section is based on [32, 85].

MOQA is a data-structuring language and purposely designed to enable a

(semi-)automated derivation of the average-case execution time. Average-case

timing compositionality lies at the heart of this approach. It can rightfully be

referred to as the “golden key” to static analysis, witnessed by its central role in

static worst-case time analysis. We begin by introducing this concept.

2.3.1 Timing Compositionality

Recall that in this thesis we are focusing on comparison-based algorithms. Static

timing in our context reflects the number of comparisons during the execution of

comparison-based algorithms. For a comparison-based algorithm P , TP (I) refers

to the timing (number of comparisons) of algorithm P executed on input instance

I. P (I) denotes the output for this algorithm with input I. Considering an input

set I, P (I) is the multiset (inMOQA we refer to it as a bag) of outputs produced

by P , acting on each element of I.

Definition 2.1. The worst-case time of P for inputs from I, denoted by TW
P (I)

is defined by:

TW
P (I) = max{TP (I)| I ∈ I}.

The average-case time of P for inputs from I, denoted by T P (I) is defined

by:

T P (I) =

∑

I∈I TP (I)

|I|
.

Definition 2.2. Assume that we have two algorithms, P1 and P2, for which the

sequential execution P1;P2 is carried out.

Given a timing complexity T (which may be of worst-case, average-case), for

input set I. We say that T is IO-compositional if we have:

TP1;P2(I) = TP1(I) + TP2(P1(I))

16



We say that T is lower (upper) IO-compositional if in the equation above

TP1;P2(I) is less (greater) than or equal to the right-hand side.

2.3.1.1 Worst-Case

Clearly the worst-case timing measure TW is lower IO-compositional, because the

time taken to sequentially execute P1;P2 cannot take longer than worst case time

for P1 plus the worst case time for P2. However we will use the following counter

example to show that worst-case is not IO-compositional.

Remark 2.1. A function or algorithm P with domain (input) X and codomain

(output) Y is denoted by P : X → Y .

Example 2.1. Suppose algorithm P1 : X → V , P2 : Y → Z, where V ⊆ Y .

In the table below we list input/output pairs for both algorithms and for the

composed algorithm with their time costs.

input output time
a γ 1
b α 6
c β 3
d γ 1

(a) Algorithm P1

input time
α 2
β 8
γ 9
δ 10

(b) Algorithm P2

input time
a 10
b 8
c 11
d 10

(c) Algorithm P1;P2

Table 2.1: worst-case IO-compositionality counter example

In our example, X = {a, b, c, d} and Y = {α, β, γ, δ}. Clearly it can be

seen from the example that TW
P1
(X) = 6, TW

P2
(Y ) = 10, TW

P1;P2
(X) = 11, thus

TW
P1;P2

(X) < TW
P1
(X) + TW

P2
(Y ). If we restrict P2 to outputs from P1, we get

TW
P2
(P1(X)) = 9, which still gives TW

P1;P2
(X) < TW

P1
(X)+ TW

P2
(P1(X)). The reason

for this is because when P1 reaches a worst-case time (on input b), P2 will execute

quite fast on the output generated by P1. In fact, the input which gives the worst-

case running time for P1;P2 (on input c) is not a worst-case input for P1, nor is

P1(c) = β a worst-case input for P2 (even among the set of outputs from P1).

In order to make the equality hold in the equation, we need that when P1

reaches a worst-case on a particular input, say x, then P2 also reaches its worst-

case on the output P1(x). As illustrated by the example, this is not the case in

general.
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Remark 2.2. Notice that the work by Burns and Puschner [76] does explore a

compositional approach to worst-case time in a real-time context. Their work

forces the time to be constant by forcing conditional statements to execute on

both branches. As a result, they establish a restricted real-time language with

respect to which the worst-case time is IO-compositional. However, as the authors

of [76] point out, this approach can suffer from a drastic increase in execution

time.

2.3.1.2 Average-Case

Theorem 2.1. The average case timing measure is IO-compositional.

We refer the reader to [85] for the proof of this theorem. Here we illustrate

this theorem building on Example 2.1.

Example 2.2. The outputs for P1 are P1(X) = {γ, α, β, γ}, the average run-

ning time for P1 is T P1(X) = 1+6+3+1
4

= 11
4
. Restricting P2 to outputs of P1,

the average running time is T P2(P1(X)) = 9+2+8+9
4

= 28
4
. The average running

time for sequentially executing P1 and P2 is T P1;P2(X) = 10+8+11+10
4

= 39
4
, thus

T P1;P2(X) = T P1(X) + T P2(P1(X)) = 39
4
.

The property of IO-compositionality may seem to make average-case analysis

even easier than worst-case analysis. However it is not immediately helpful in

practice, because the average time for the second algorithm P2 depends on the

outputs and the distributions of outputs of the first algorithm P1. Generally,

without execution, we do not have knowledge of the outputs from P1, not to say

the associated probability distribution. MOQA addresses this issue by intro-

ducing random bags and the randomness preservation property. We will examine

these concepts in the coming sections.

2.3.2 MOQA Data Structures

As mentioned earlier, MOQA is a data-structuring language designed to facili-

tate compositional timing by systematically tracking the distributions of inputs

and outputs. This means that the average running time of anyMOQA program
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can be expressed as a linear combination of the average running times of a hand-

ful of basic operations. With the help of this modularity feature,MOQA allows

for the automated extraction of expected running times (in terms of number of

comparisons) directly from the source code. In Chapter 3 and Chapter 4, we

will discuss the design and implementation details of theMOQA language and

interpreter.

MOQA operations act on objects known as labelled partial orders. MOQA

operations transfer each labelled partial order to a new labelled partial order.

2.3.2.1 Partial Orders and Labelled Partial Orders

Definition 2.3. A partially ordered set (or poset) is a pair (X,⊑) consisting of

a set X1 and a binary relation ⊑ between elements of X . If (a, b) ∈⊑, we write

a ⊑ b, and we refer to a as a descendant of b, and b as a ancestor of a. Such that

the relation is:

• Reflexive: ∀x ∈ X, x ⊑ x

• Transitive: if a ⊑ b and b ⊑ c then a ⊑ c

• Anti-symmetric: if a ⊑ b and b ⊑ a then a = b

The elements of X are called the nodes of the partial order [29, 85]. For

example if we have a three elements set X = {a, b, c}, and a binary relation

⊑ = {(a, a), (b, b), (c, c), (a, c), (b, c)}, then we can say (X,⊑) is a partial order.

A partially ordered set is generally represented by a Hasse diagram. A Hasse

diagram is a directed graph whose nodes are the nodes of the poset. We draw a

line segment that goes upward from x to y whenever x ⊑ y and there is no z such

that x ⊑ z ⊑ y (in this thesis we omit arrows in the line). In short, the Hasse

diagram of a partial order is a digraph representation of its transitive reduction

which discards all reflexive pairs and pairs that can be inferred by transitivity

from ⊑. Later, we will use this diagram to represent labelled partial orders.

Example 2.3. We give an example of partially ordered set (X,⊑) where X =

{a, b, c, d, e} and⊑= {(a, a), (b, b), (c, c), (d, d), (e, e), (b, a), (c, a), (d, a), (e, a), (d, c),

(e, c)}. And we show its Hasse diagram in Figure 2.1.

1In our context we assume that all the sets are finite
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a

cb

d e

Figure 2.1: An example of a Hasse diagram with node set X = {a, b, c, d, e}

Currently, all the partial orders involved in MOQA research are Series-

Parallel Partial Orders (or SP-orders). Even though MOQA operations have

been defined over general partial orders [85], we focus on SP-orders because

MOQA operations’ timing functions are recursively defined over SP-orders [85].

SP-orders form a well-known class of computationally tractable data structures [70]

and include normal data structures such as Tree, Heap, List, etc. A series-parallel

partial order (SP-order) is a partial order that can be recursively constructed by

applying the functions “series” and “parallel” starting with a single node [102].

We introduce these operations below.

Definition 2.4. Given two disjoint SP-orders (A,⊑1) and (B,⊑2).

The series operation produces the partial order A ⊗ B on A ∪ B such that

x ⊑ y in A⊗ B ⇔ [x, y ∈ A and x ⊑1 y] or [x, y ∈ B and x ⊑2 y], or [x ∈ A and

y ∈ B]

The parallel operation produces the partial order A||B on A ∪ B such that

x ⊑ y in A||B ⇔ [x, y ∈ A and x ⊑1 y] or [x, y ∈ B and x ⊑2 y].

Note: A⊗B is the result of applying the series operation to (A,B), which is

the same as the partial order created by applying theMOQA Product operation

to (A,B) [85, 86]. This operation places A below B and will be introduced in

Section 2.3.3.2.

Example 2.4. The SP-order (b||(f ⊗ (d||e)⊗ c))⊗ a is shown in Figure 2.2.
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Figure 2.2: An example of SP-order

Theorem 2.2. SP-order preservation [32, 85]: all the current MOQA oper-

ations are SP-preserving; that is, if a MOQA operation acts on inputs whose

underlying posets are in SP-order then the outputs will also have underlying posets

in SP-order.

This result holds since we generally assume that anyMOQA program starts

from a discrete partial order where no two distinct nodes have a relation (referred

by ∆, which is in SP-order), and all MOQA programs rely on basic MOQA

operations to build up a data structure from the initial discrete partial order.

Thus while programming in MOQA, all data structures must be in SP-order.

So, it is sufficient to determine the running times based on inputs from SP-orders,

and we can specify the running times of MOQA operations in terms of series

and parallel recursion over the SP-orders.

Definition 2.5. A Labelled Partial Order (or LPO) is a triple (X,⊑,F), where

(X,⊑) is a poset and F is an increasing function from X to some totally ordered

set L (referred as the label set). For any node x ∈ X , F(x) is called the label on

the node x. F is called the labelling of the poset [32, 85].

Remark 2.3. As usual in the analysis of algorithms, to simplify the analysis, we

assume that there are no repeated labels in the label set. The techniques for

dealing with repeated labels inMOQA are discussed in [32, 85].
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Labelling

A Hasse Diagram

X = {a,b,c,d,e}

L = {1,2,3,4,5}
5

3 4

2 1

Figure 2.3: An example of LPO with labelling function F = {a 7→ 5, b 7→ 3, c 7→
4, d 7→ 2, e 7→ 1}

Remark 2.4. MOQA computations transform LPOs to new LPOs.

The LPOs inMOQA are represented by Hasse diagrams, the value appearing

in each node is the label assigned to it according to the labelling function F . A

LPO is simply an assignment of a finite number of values to each node of a partial

order (data structure).

The requirement that the labelling function increases is equivalent to requiring

that any directed links of the data structure are respected, i.e. if there is a directed

link from a node x to a node y, then the label assigned to x must be less than the

label assigned to y (place x below y). These labels can be any value, e.g. natural

or real numbers, words, other data structures containing data such as trees, etc.

Any two labels need to be comparable with respect to a given order on labels.

For instance, the order on natural number labels typically is the usual order on

natural numbers.

There is an example of a data labelling in Figure 2.3. The partial order

is represented by a Hasse diagram, where the label set L = {1, 2, 3, 4, 5}, the

labelling function F = {a 7→ 5, b 7→ 3, c 7→ 4, d 7→ 2, e 7→ 1}

2.3.2.2 Random Structure/Random Bag

A partial order (data structure) may have infinitely many labellings because the

label set is infinite. For example, consider a discrete partial order with 3 nodes,

where no two distinct nodes have a relation. We represent it using ∆3. Even

though there can be infinitely many data-labellings, ∆3 has finitely many states.
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A Hasse Diagram The two possible states

Figure 2.4: An example of order-isomorphic data-labellings with the label set
L = {1, 2, 3}

Definition 2.6. A state is a representative from a collection of order-isomorphic

data-labellings, i.e. data-labellings whose labels are arranged in the same relative

order within the partial order (data structure).

Example 2.5. We illustrate this further with the data-labellings for the 3 element

wedge-shaped partial order (∧) in Figure 2.4. If we use three distinct values, say

1, 2, 3 to represent the states then we have only two possible states as displayed

in the figure.

To aid the analysis of average-case complexity, generally we fix the label set.

In our ∆3 example, if we fix the label set L = {1, 2, 3}, ∆3 will have 3! possible

labellings: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). And we refer to this

set of all possible LPOs as a Random Structure.

Definition 2.7. Given a partial order (X,⊑), the random structure over a given

label set L is RL(X) which is the set of all possible LPOs (X,⊑,F) with respect

to the order-isomorphic data-labellings.

Remark 2.5. For simplicity, sometimes we refer to a partial order as a random

structure without specifying a labelling set. In that case, the labelling default set

is L = {1, 2, 3, ..., n} where n is the number of nodes in the partial order.

Example 2.6. The random structure over ∆3 is presented as:

RL(∆3) = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

where L = {1, 2, 3}. Sometimes we simply write R(∆3).
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For the partial order shown in Figure 2.3, the random structure with the label

set L = {1, 2, 3, 4, 5} is shown in Figure 2.5.

Notice the result of one data restructuring operation may result in multiple

random structures, thus a Random Bag is used.

A Hasse Diagram

5

1 4

2 3

5

1 4

3 2

5

3 4

1 2

5

2 4

3 1

5

2 4

1 3

5

4 3

1 2

5

4 3

2 1

5

3 4

2 1

Figure 2.5: An example of random structure with the label set L = {1, 2, 3, 4, 5}

Definition 2.8. A random bag is a multiset of random structures, it generally

represents by {(R1, K1), . . . , (Rn, Kn)}. It consists of finitely many random struc-

tures, R1, . . . , Rn, each of which has a multiplicity Ki, where i ∈ 1, . . . , n.

Remark 2.6. The multiplicity is a natural number used in the calculation of the

probabilities involved in the distribution.

With the help of random bags, we can calculate the probability of each LPO

in the bag. This information enables us to derive the average-case complexity of

a program.

Theorem 2.3. A LPO F in bag Ri, where R = {(R1, K1), . . . , (Rn, Kn)} has the

following probability:

Prob[F ∈ Ri] =
Ki|Ri|

∑n
i=1Ki|Ri|

=
Ki|Ri|

|R|

24

Chapter1/Chapter1Figs/EPS/randomstructure.eps


where F ∈ Ri indicates a specific LPO in the bag belonging to the random struc-

ture Ri, and |Ri| is the number of LPOs in Ri. |R| is the number of all LPOs in

the bag.

2.3.2.3 Randomness Preserving

MOQA focuses on a special kind of operation, that is Randomness Preserving

(or random bag preserving).

Definition 2.9. An operation is random bag preserving if and only if the oper-

ation maps input random bags to output random bags.

We refer the reader for a more formal definition in [85]. Operations which are

random bag preserving enable the tracking of data structures and their distribu-

tions, which in turn is directly linked with the capacity to generate recurrence

equations expressing the average-case number of basic operations. The multiplic-

ities of the random bags are the key to the calculation of the ACETs. Notice

that not every data restructuring operation is random bag preservation, e.g. the

delete operation in Heapsort.

Example 2.7. Here we show that not all data restructuring operations are ran-

dom bag preserving. We use the heap delete operation as an example. Say we

have a four nodes heap as shown in Figure 2.6. The left most structure rep-

resents the partial order of the four node heap, the other three LPOs together

form a random structure R(H4) with label set L = {1, 2, 3, 4}. We apply the

standard Heapsort delete maximum operation to these LPOs, that is we swap

the maximum element with the last element, after which the last element will be

at the top, and the maximum element will be placed last. Then we remove the

maximum element and call a push down at the top of the heap.

The resulting three-nodes LPO is shown in Figure 2.7. The first structure

is the resulting partial order, and the remaining three are LPOs. As one can

see, the first two LPOs form a three nodes heap random structure, however

the remaining LPO on its own does not form a random structure. Thus the

output of this operation cannot form a valid random bag. The delete operation

is not random bag preserving. In [91] an algorithm called percolating heapsort is
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Figure 2.6: A size four heap random structure with label set L = {1, 2, 3, 4}
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Figure 2.7: Resulting size three heap random structure

presented which has a specially designed delete operation, which has the random

bag preserving property.

We also note that random bag structures are preserved on certain substruc-

tures. We refer to these substructures as Isolated subsets.

Definition 2.10. With technical omission, an informal definition of an Isolated

subset I of X , for a given random structure R(X,⊑), is that, a nonempty subset

I of X is isolated iff ∀x ∈ X − I exactly one of three conditions holds:

• x is below (⊑) every element of I.

• x is above (⊒) every element of I.

• x is independent (not ⊒ or ⊒) of every element in I.

Remark 2.7. This is a simpler but exact definition of Isolated subsets. We refer

the reader to [32, 85] for the formal definition.

It has been proven in [85] that the restriction of all data-labelings of a random

structure to an isolated subset forms a new random structure.
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Figure 2.8: Isolated subsets example

Example 2.8. In Figure 2.8, I1 is an example of an isolated subset, whereas I2

is not an isolated subset. For the set I2, the elements c, d, e are all below b, but

none of these are below the other I2 element g.

The backbone theorem in MOQA research is the Linear-Compositionality

Theorem [85]. We outline it in the following theorem. It states two facts. Firstly,

the average time of the sequential composition of two random bag preserving pro-

grams can be expressed as the sum of the individual parts. Secondly, the average

time of a random bag preserving program on a random bag is the summation of

the average times over the random structures in the random bag. The cardinality

and multiplicity of a random structure together determines its probability. We

will extend this theorem to the parallel field in Chapter 6.

Theorem 2.4. Consider random bag preserving programs/operations P and Q,

such that we execute P on a random bag R, producing random bag R′.

• The ACET of executing P following by Q is:

T P ;Q(R) = TP (R) + TQ(R
′)

• Consider random bag R = {(R1, K1), . . . , (Rn, Kn)}, then:

T P (R) =

n
∑

i=1

Probi × T P (Ri)
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where Probi = Prob[F ∈ Ri] which is defined in Theorem 2.3.

• For the particular case where R = {(R1, K1)}, the previous equality reduces

to:

T P (R) = TP (R1).

2.3.3 MOQA Basic Operations

In the following section, we give a brief overview of basic MOQA operations.

For the details and theoretical proofs for the randomness preservation and timing

functions we refer the reader to [32, 85].

The operations we present in this thesis are enough to cover most of the al-

gorithms in the currentMOQA research. All these operations will be discussed

again in later chapters to explore their application in algorithms and implemen-

tations in theMOQA language/interpreter. For each operation, we will consider

both application on a single LPO and on a random structure. The first case is

used in interpreter execution mode, to get results for one particular input in-

stance. The second case is used by the interpreter analyzer to derive the ACET.

Notice that there are otherMOQA operations, such as Projection, Del and Del.

They are currently not available to the MOQA interpreter, thus we will not

cover them in this thesis.

2.3.3.1 MOQA Split

Firstly, we focus on a simple ‘randomness preserving’ operation: Split. The clas-

sical algorithms Quicksort and Quickselect are both based on a Split operation,

which takes a list and a pivot (which is an element of the list) as arguments. We

use a simpler version to reduce technicalities. The pivot for split is chosen to be

the first element of the list. This choice is irrelevant. Other choices will result in

similar random structures with minor technical modifications.

Split proceeds on a list of size n by comparing, in left to right order and

starting at the second element, each label of the ith element, i ∈ {2 . . . n}, with

the pivot label. In cases where the label of the ith element is greater than the

pivot label, these elements and their labels are placed above the pivot. Otherwise
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Figure 2.9: MOQA Split over a LPO.

they are placed below the pivot. In fact, the classical Split puts the ith element

to the left or the right of the pivot. TheMOQA Split however puts it below or

above the pivot, a minor technical difference. Due to the explicit representation

of the order via a Hasse diagram.

Example 2.9. For example, if we have a random list a, b, c, d, one possible LPO

for this list is shown in Figure 2.9. In this example a > b, a > d and a < c.

Remark 2.8. In the following context, we will call the upper part Y1 (consisting of

the elements above the pivot), the middle pivot Y2 and bottom part Y3 (consisting

of the elements below the pivot).

1 32
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Split

Split 3

21

2 31
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3

1

2

3
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3
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Split

Split

1

23

Figure 2.10: MOQA Split over a discrete random structure R(∆3) with label
set L = {1, 2, 3}
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Example 2.10. A more complete example is shown in Figure 2.10. It applies

Split over a discrete random structure R(△3), where we use the label set L =

{1, 2, 3} to simplify the example.

It is clear from the above example that when Split is executed on the random

structure over the discrete partial order of size 3, i.e. R(∆3), where Split is exe-

cuted over the 3! = 6 random lists, the result is a random bag consisting of three

new random structures: the 3 element V-shaped partial order, denoted by ∨3;

the linear order of size 3, denoted by S3 and the 3 element wedge-shaped partial

order, denoted by ∧3. Thus Split transforms a labelling over ∆3 into a labelling

over ∨3,S3 or ∧3. We conclude that:

R(∆3) 7→ {(R(∨3), 1), (R(S3), 2), (R(∧3), 1)}

Hence Split is a random bag preserving operation over the random structure

R(∆3).

Remark 2.9. We remark at this stage that there is a clear visual nature to the

partial orders (data structures) associated with the random bag. Indeed, “star-

like” objects are being created with the pivot as the central element, and for each

case a collection of elements above the pivot and below the pivot.

The result of the operation can be generalized to n elements as follows. The

partial order P [i, j] over i + j + 1 elements is defined to be the structure which

has one central pivot element, i elements below the pivot and j elements above

the pivot, as shown in Figure 2.11.

Theorem 2.5.

Split : R(△n) 7→ {(R(P [0, n− 1]), Kn−1), . . . , (R(P [n− 1, 0]), K0)}

and where Ki =
(

n−1
i

)

for i ∈ {0, . . . , n− 1}

T split(R(∆n)) = n− 1

For the details of the proof we refer the reader to the Springer book [85].
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Figure 2.11: Split on list of size n

2.3.3.2 MOQA Product

The Product operation has two operands. If one of the operands is a single

element, it plays the role of an insertion of a single element into a data structure.

This operation also plays a crucial role to merge two data structures into a larger

structure.

Given two LPOs, the binary Product operation places the first data structure

below a second. By using Push-Up and Push-Down it makes all elements of the

first order strictly below all elements of the second. The operation proceeds as

follows [85]

• create a new partial order consisting of the union of the elements of the

original two orders

• create all possible directed links from the maximal elements of the first

order to the minimal elements of the second order.

• respect the new order by reorganizing labels via traditional Push-Downs

and Push-Ups.

The Push-Up operation repeatedly swaps a label with the smallest label on

the nodes immediately above it until all the nodes above the current node have a

label larger than the current node. The formal definition of this operation can be

found in [85]. Push-Down is the dual of Push-Up, which swaps a label with the

largest label on the nodes immediately below it until all the labels on the nodes

immediately below the current node are smaller.
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Figure 2.12: Product of two partial orders

Firstly, we define the Product of two finite partial orders and provide an

example.

Definition 2.11. Given two finite disjoint partial orders (X1,⊑1) and (X2,⊑2),

i.e. partial orders for which X1 ∩X2 = ∅.

The set X1

⊗

X2 is defined to be the union of the disjoint sets X1 and X2. The

relation ⊑1

⊗

⊑2 is defined to be the least partial order on X1

⊗

X2 containing

⊑1 and ⊑2 and X1 ×X2 [85].

Example 2.11. If we consider the sets X1 = {a, b, c} and X2 = {d, e, f, g} then

X1

⊗

X2 = {a, b, c, d, e, f, g}. We use dashed lines to indicate the new pairs of

relations added in the Hasse diagram via the operation
⊗

, and the example is

shown in Figure 2.12.

Next, we introduce the Product of two LPOs as an introduction towards the

definition of the random product of two random structures.

Let F1,F2 be LPOs on finite partial orders (X1,⊑1) and (X2,⊑2) respectively.

We present the result of Product F1,F2 by F1

⊗

F2.

The details of this operation and the proof of the following lemma follows via

technical verification from theMOQA Product operation. We omit the details

and again refer the reader to [85]
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Lemma 2.6. If F1 and F2 are disjoint LPOs then F1

⊗

F2 is a LPO.

Example 2.12. Figure 2.13, taken from [85], illustrates the product of two LPOs

F1 and F2. Their partial orders are displayed at the top of the figure. This

example illustrates the steps involved in executing theMOQA Product operation

over two LPOs.

x1 x4

x4 x5

x1

x3

x5

x2

x6 x6x3

x2

(X1,⊑1) (X2,⊑2)

(X1
⊗

X2,⊑1
⊗

⊑2)
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25
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F2

F1

F2F1

4 5

3

4

F1
⊗

F2

Figure 2.13: Illustration of steps involved in executing theMOQA Product op-
eration

Finally, with omission of detail of theMOQA theory of extending theMOQA

labelling Product to a product over random structures, we introduce the following

definition,
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Definition 2.12. Let RL1(X1,⊑1) andRL2(X2,⊑2) be two disjoint random struc-

tures. We define the binary MOQA Product, RL1(X1,⊑1)
⊗

RL2(X2,⊑2), by

RL1∪L2(X1

⊗

X2,⊑1

⊗

⊑2).

Before we exit this section, we want to explore the ACET timing function

for the MOQA Product operation, and we will use these formulas in our code

analyzer to derive the ACET ofMOQA codes. The work presented here report

research results from D. Early and M. Schellekens. We refer the reader to [32, 85]

for technical details.

Theorem 2.7. The average running time of the MOQA Product operation on

the partial orders A and B is

T [A⊗ B] =
|A||B|

|A|+ |B|
(τdown(A)+τup(B))+

(

|A||B|

|A|+ |B|
+ 1

)

(|Amax|+|Bmin|−1).

Proof. Here we adapt the original proof and give an intuitive proof on why this

formula works. The details of original proof can be found in [85]. There are two

helper functions in the formula : τdown(A) and τup(B). We will introduce them

in the following context. Recall that the Product operation makes all elements

of the first order (A) strictly below (or smaller than) all elements of the second

(B).

The operation is executed as follows: first it compares the minimal label in

B with the maximum label in A. If the minimal label in B is greater than

the maximum label in A, then the operation finishes. Otherwise, we swap the

minimum label in B with the maximum label in A, and, following the swap

operation, we execute Push-Up on the minimal node in B and Push-Down on the

maximal node in A to move the swapped new label to the proper location. And

we repeat this step until all elements of the first order (A) are strictly below (or

smaller than) all elements of the second (B).

τdown(A) is the average number of comparisons to Push-Down from the node

with minimum label after swapping a new label (randomly). And τup(B) is the

dual of τdown(A) , which calculates the average number of comparisons to Push-

Up from the node with maximum label after swapping a new label (randomly).
|A||B|
|A|+|B| in the formula defines the average number of this minimum-maximum
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label swap which occurs, thus |A||B|
|A|+|B|(τdown(A) + τup(B)) is the average number

of comparisons made by Push-Up and Push-Down in Product operation. Note

that there are an extra (|Amax| + |Bmin| − 1) comparisons each time we do a

swap, because we need to find the maximum and minimum label in both partial

orders. Amax means the set of maximal elements in A, Bmin means the set of

minimal elements in B. |Amax|, |Bmin| calculate their cardinality respectively.

Thus
(

|A||B|
|A|+|B|

+ 1
)

(|Amax|+ |Bmin|−1) is the total number of comparisons made

by comparing the maximal label in A with the minimal label in B, where |A||B|
|A|+|B|

is the average occurrence of swaps. To confirm the operation is complete, one

more minimum-maximum label comparison is needed.

After combining these two parts we get the desired formula.

We recall that an introduction to series-parallel orders (SP-orders) is included

in Section 2.3.2.1. The timing function for τ is defined in terms of SP-orders [85].

Theorem 2.8. Series-Parallel Composition Laws for the τ function:

The trivial composition laws for |A|, |Amin| and |Amax| are as follows:

1. |(A⊗ B)| = |(A‖B)| = |A|+ |B|

2. |(A⊗ B)min| = |Amin|

3. |(A⊗ B)max| = |Bmax|

4. |(A‖B)min| = |Amin|+ |Bmin|

5. |(A‖B)max| = |Amax|+ |Bmax|

Using only the values of these functions applied to A and B, τ functions for

a SP-order can be calculated in terms of its values for the constituent parts as

follows, where κ and σ are helper functions [85].

1. τup(A⊗ B) =
|A|τup(A) + κup(A)|Bmin|+ |B|(τup(B) + |Bmin|+ σup(A))

|A|+ |B|

2. σup(A⊗ B) = σup(A) + σup(B) + |Bmin|

3. κup(A⊗ B) = κup(B)
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4. τ(A||B) =
|A|τ(A) + |B|τ(B)

|A|+ |B|

5. σ(A||B) =
|A|σ(A) + |B|σ(B)

|A|+ |B|

6. κ(A||B) = κ(A) + κ(B)

The first three rules are stated only for the ‘up’ cases, but the ‘down’ ones are

similarly obtained. The last three rules are symmetrical for the ‘up’ and ‘down’

versions, and the subscripts have been omitted.

Using these rules, it is possible to determine the τ function for a SP-order using

only its series-parallel composition. The base case values for these functions are

listed below:

1. τup(•) = τdown(•) = 0

2. σup(•) = σdown(•) = 0

3. κup(•) = κdown(•) = 1

4. | • | = | •min | = | •max | = 1

Example 2.13. To illustrate how all these timing functions work together, we

compute T [A⊗B], where A = •, B = (•||•) ⊗ •. A is a single element, B

is a ∧ shape random structure. τdown(A) = τdown(•) = 0. Because τup(•||•) =
|•|τup(•)+|•|τup(•)

|•|+|•| = 0, κup(•||•) = κup(•)+κup(•) = 2, σup(•||•) =
|•|σup(•)+|•|σup(•)

|•|+|•| =

0 thus τup((•||•)⊗•) =
|(•||•)|τup(•||•)+κup(•||•)|•min|+|•|(τup(•)+|•min|+σup(•||•))

|(•||•)|+|•| = 0+2+1
3

=

1. According to Theorem 2.7:

T [A⊗B] = |A||B|
|A|+|B|

(τdown(A) + τup(B)) +
(

|A||B|
|A|+|B|

+ 1
)

(|Amax|+ |Bmin| − 1)

= 3
1+3

(0 + 1) +
(

3
1+3

+ 1
)

(1 + 2− 1) = 17
4

2.3.3.3 MOQA Top/Bot

Besides Split and Product operation, MOQA incorporates a number of other

operations, such as Top and Bot to determine the minimum and maximum labels

in a discrete order, all of which are random bag preserving.
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Figure 2.14: An example of theMOQA Top operation

Motivated by the desire to create max/min treaps, the MOQA Top/Bot

operation is introduced. A brief introduction to theMOQA treap is presented

in Section 5.5.

Top/Bot takes a single LPO as an argument and turns the node with largest/s-

mallest label into a maximum/minimum node. Like the Split operation, the

average-case times for these two operations are n−1 if the input structure is ∆n.

To aid the creation of treaps, Top/Bot also keeps track of the node order

where the maximum/minimum label occurs. For a discrete order of size n, it

puts the node i containing the maximum/minimum label above/below all other

nodes, and the rest of the nodes are put into two components in parallel: one

containing the nodes 1...(i−1) (left component) and the other contains (i+1)...n

(right component).

We will discuss the usage of this operation in Chapter 5, especially how to

use it to create treaps in theMOQA language. Here we use the Top operation

as an example in Figure 2.14 to illustrate the usage of these two operations in

practice. The two parallel components are coloured differently.

2.3.3.4 MOQA Percolation

The lastMOQA operation we will introduce is called Percolation. During this

thesis we will only focus on the PercM operation. It acts on the maximum label

in an LPO. We refer the reader to [85] for the symmetry operation; Percm which

acts on the minimum label.

The PercM operation is executed as follows:

• Find the maximum label in an LPO, flag that label as minimum label over

the label set. (eg: add a ‘-’ sign)
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Figure 2.15: An example of theMOQA PercM operation

• Call push-down on this node, which will move it to a minimal node.

• Remove the flagged node (eg: has a ‘-’ sign).

• Reinsert the node with the original maximum label, placing the rest of the

nodes below it.

Theorem 2.9. The average number of comparisons Ω(A, k) required in deleting

a k-th smallest label from one LPO, by percolating it to a minimum node and

then removing this node (corresponding to Del in [85]) is defined over SP-orders

(in [85] Ω is denoted as ∆):

1. Ω(A⊗ B, k) =

{

Ω(A, k) for k ≤ |A|

Ω(B, k − |A|) + |Amax ⊢ 1 + Ω(A, |A|) for k > |A|
.

2. Ω(A⊗ B) = |A|Ω(A)+|B|(Ω(B)+|Amax⊢1+Ω(A,|A|))
|A|+|B| .

3. Ω(A‖B, k) =
∑

i (
k−1
i−1)(

|A|+|B⊢k

|A⊢i )Ω(A,i)+
∑

i (
k−1
i−1)(

|A|+|B⊢k

|B⊢i )Ω(B,i)

(|A|+|B|
|A| )

.

4. Ω(A‖B) = |A|Ω(A)+|B|Ω(B)
|A|+|B| .

5. Ω(•) = 0.
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Remark 2.10. The average number of comparisons made by PercM is the same

as the number of comparisons made by Del in deleting the largest label. In that

case k is equal to the size of LPO (since the two operations are identical except

PercM has re-insertion at the end).

Theorem 2.10. The average number of comparisons needed to perform PercM

in a size nMOQA treap data structure is:

h(n) = h(n− 1) +
2

n
= 2Hn − 2

where Hn is the nth Harmonic number [85].

Theorem 2.11. TheMOQA PercM operation, when executed on all treaps from

a n element random treap T REAP(n), returns n copies of the random structure

T REAP(n− 1)⊗ • [85].

In this section we introduced all the MOQA operations we will use later

in our MOQA language. Other issues related to language structures, such as

control flow, data types etc will be discussed in detail in Chapter 3 and Chapter 4.

2.4 Related work

In this section, we provide a brief overview and discussion of various prior ap-

proaches to automated complexity analysis, and a short discussion on motivation

for a stand aloneMOQA language.

Automated program complexity analysis has undergone active research. Sev-

eral approaches have been proposed to tackle this problem. In the functional

programming languages area, a good number of complexity analysis frameworks

have been devised, the main ones of which we discuss below.

ACE (automatic complexity evaluator) proposed in [65], uses a set of rewrite

rules to transform functional language FP programs in order to derive the com-

plexity function. A library of known recursions is used to derive closed forms for

some recursion equations.

Abstract interpretation and program transformation techniques are used in

[83], which proposes a system to derive a time bound function (or worst-case
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complexity) in a first-order subset of Lisp programs.

An algorithm is introduced in [45] to extract cost recurrences from Dependent

ML (DML) programs. A cost recurrence describes an upper bound for the running

time of a program in terms of the size of its input. DML is an extension of ML,

that provides dependent types. With DML types, data can be associated with

size information, thus describing a possible abstraction.

In [81], dynamic parallelization decisions of a program are made with guidance

from the inferred cost estimates. It uses an effect type system for automatically

inferring cost estimates of functional programs. The system mainly focuses on

the programs written with combinators such as map and fold. The cost system

produces symbolic cost expressions that contain free variables describing the size

and cost of the program’s input. At run-time, the system dynamically computes

a cost estimate from the statically determined cost expression combined with

run-time cost and size information.

Besides these solutions, several other good approaches are also reported in [18,

76, 111] to cover imperative languages automated analysis field.

[76] provides a “compositional” approach to worst-case time in the real-time

context. They remove non-determinism by forcing a single-path programming

style, that is, by forcing conditional statements to execute on both branches. As

a result, they establish a restricted real-time language with respect to which the

worst-case time is IO-compositional. However, as the authors of [76] point out,

predictability is achieved at the cost of performance.

A framework for providing portable WCET analysis for the Java platform

is given in [18]. The portable WCET analysis is achieved by analysing Java

Byte Code, not high-level Java source code. Thus other JVM languages could

be analysed in this framework. The WCET analysis is separated into a machine

independent part and a machine dependent part and they are staged in three

steps: a Java virtual machine platform dependent (low-level) analysis, a software

dependent (high-level) analysis and an on-line integration step.

The paper [111] uses integer linear programming techniques to estimate the

WCET for programs by determining their worst-case path. The abstract interpre-

tation is also used to predict the system’s behaviour on the underlying processor’s

components.
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Most of the work we have discussed so far focused on WCET. Comparing with

WCET tools, there are fewer frameworks/tools for the automated ACET analysis

of programs. Generally, this is because ACET analysis is even more complicated

than WCET and partly as a result, the demand for ACET is not as high as to

determine upper bounds for hard real-time systems.

The system Lambda-Upsilon-Omega(LUO) [35, 109] obtains average-case com-

plexity functions for functional programs. Their approach involves generating

functions [43]. It enables the automatic derivation of the average-case complexity

of large classes of algorithms by producing generating functions while skipping

the intermediate step of generating recurrences. LUO code is programmed in

a restricted programming language called the Algorithm Description Language

(ADL). The system can produce generating functions or calculate a final result

with the help of the Maple system [3]. A related and generalized approach in-

volves the use of attribute grammars [66]. This approach generalized univariate

generating functions produced by LUO to multivariate generating functions.

The Performance Compiler tool developed in [49] demonstrates the work on

semantics of probabilistic programs in [59] and correctness of performance anno-

tated programs in [78] which can be used to automate the average-case analysis

of simple programs. The programs that this system could analyse contain lan-

guage construct such as assignments, conditionals, and loops. Their work could

handle recursion and complex data structures, and the distributions on complex

data structures are captured by using attributed probabilistic grammars (APGs).

TheMOQA approach to automated average-case analysis differs from these

prior work in that MOQA provides a novel compositionality for the average-

case analysis. It also provides the ability to handle dynamic data structuring

unlike LUO [35, 109]. The usage of random structure and random bag preserving

operations in MOQA simplifies the average-case time analysis. The program

data structure distributions are tracked throughout the computations.

We discuss the existing work in our research group that is closely related to

this thesis. The first approach to aMOQA language implementation as a Java

library was discussed in [107] . The package implements most of the MOQA

data structures and basic operations that are specified in [85].

A static automated average-case analysis tool Distritrack has been developed
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in [48], based on the Soot package. It statically analyses the MOQA codes

written in those packages. It allows for sophisticated tracking of data structures

over programs. With the help of Mathematica this tool can automatically derive

average running times for a variety ofMOQA programs.

And the pure theoretical work from [85] and [32] lays out a solid foundation

for theMOQA research. They provide a detailed analysis ofMOQA operations

and their timing functions.

This thesis consists of three main parts. In Chapters 3 − 5, we will present

a prototype of theMOQA language with new syntax and design purpose. The

language relies on MOQA theory and supports (semi-)automated average-case

analysis.

Chapter 6 focuses on an extension ofMOQA in the parallel computing field

and presents a new way to analyze fork-join multithreaded algorithms.

We explore several applications related toMOQA research in Chapter 7. The

chapter starts with several new types of heap creation algorithms and focuses on

their randomness preservation. The new MOQA treap insert operation is also

discussed and the timing function is derived. Besides these, and building upon

random bag preserving operations and random structures, reversible computing

and entropy analysis are discussed. Finally, we briefly mention recent research

on smoothed complexity and how it links withMOQA and can be incorporated

in our language interpreter.

The design of a new syntax and making MOQA a stand alone language is

not simply an integration work of language package [107] and analyzer [48]. We

approach the work from a different angle and take advantage of the fact that we

have the full control of the interpreter and language syntax, which, as a result,

makes automated average-case analysis more straightforward.

The eagerness for the design of a stand aloneMOQA language can be seen

from the following two quotes in [48] and [32]:

“...more accuracy would be guaranteed for all programs and a sim-

pler analysis would be possible if MOQA had its own dedicated lan-

guage. [48]”

“Ideally, we can imagine a situation where a MOQA compiler
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would read a piece of code, analyse the running times of the opera-

tions,.... [32]”

2.5 Summary

In this chapter we discussed several concepts related to this thesis and provided

a brief overview of MOQA theory. We started with a general introduction to

static average case analysis and some commonly used technologies. Then we

briefly discussed how the MOQA approach provides a means for automating

average-case analysis.

After that we presented an introduction toMOQA theory, mainly focusing on

key ideas such as: random structure, random bag, randomness preservation and

the MOQA modularity theory. We also discuss the basic MOQA operations

that we implemented in our language.

Finally, several related work that provide automated WCET and ACET anal-

ysis were discussed. The MOQA approach, based on tracking random struc-

tures, is quite different from prior approaches. In later chapters we will show how

MOQA works. Besides these, we briefly talked about other work that has been

done in our research group and the motivation for the new work contained in this

thesis.
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MOQA Language Design

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 MOQA Language Overview . . . . . . . . . . . . . . . 46

3.2.1 Motivations and Design Goals . . . . . . . . . . . . . . 47

3.2.2 Domain Specific Language . . . . . . . . . . . . . . . . 48

3.2.3 Why Python . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.4 RunningMOQA . . . . . . . . . . . . . . . . . . . . . 50

3.3 MOQA Language Syntax . . . . . . . . . . . . . . . . . 54

3.3.1 Lexical Conventions . . . . . . . . . . . . . . . . . . . 55

3.3.2 Labelled Partial Order . . . . . . . . . . . . . . . . . . 56

3.3.3 MOQA Language Grammar . . . . . . . . . . . . . . 57

3.3.4 Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.5 MOQA Language Syntax Specification . . . . . . . . 67

3.4 MOQA Language Type System . . . . . . . . . . . . . 69

3.4.1 Type Environments . . . . . . . . . . . . . . . . . . . 69

3.4.2 Type Checking Rules . . . . . . . . . . . . . . . . . . . 71

3.5 MOQA Language Semantics . . . . . . . . . . . . . . . 78

3.5.1 MOQA Execution Semantics . . . . . . . . . . . . . . 79

44



3.5.2 MOQA Analysis Semantics . . . . . . . . . . . . . . . 88

3.6 MOQA Programming Restrictions . . . . . . . . . . . 97

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 97

45



3.1 Introduction

In this chapter we discuss the design of the domain specific languageMOQA. We

provide the specification for theMOQA language in a formal way. In Chapter 4,

based on this specification, a Python implementation is discussed.

We start with a general introduction to theMOQA language in Section 3.2.

In this section, we first discuss the motivation and design goals of our language,

then introduce basic concepts of domain specific languages and of our implemen-

tation language Python. Then a short overview on the capability of the current

MOQA interpreter is presented. The purpose of this section is to give the reader

a general idea on theMOQA language and its syntax.

Section 3.3 focuses on syntax aspects of the language, such as lexical con-

ventions and language constructs etc. We discuss the language grammar in this

section and how a LPO is represented in our language.

Next, in Section 3.4, we show the design of the type system in our language

and provide typing rules as the basis for implementing a type checker.

Then in Section 3.5, we focus on two semantics of theMOQA language, one

for execution mode, and one for analysis mode. In this section we also present

how timing functions are integrated into our analyzer.

In Section 3.6, we discuss some general restrictions on our language to enable

automated average-case analysis, e.g. discard while statement, restricted control

flow etc. Finally we give a short summary of our language design.

3.2 MOQA Language Overview

MOQA is a static type-checked, imperative programming language, which sup-

ports automated average-case analysis. It can be viewed as a domain specific

language, specially designed for (semi-)automated average-case analysis.

In this section, we give an overview of our design of the domain specific

MOQA language. Practical examples will demonstrate the capability and usage

of this language.
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3.2.1 Motivations and Design Goals

Prior projects within CEOL group showed the running time of any MOQA

programs can be determined in a static way in terms of the running times of

basicMOQA operations.

[107] implementsMOQA structures and basic operations as a Java library,

and [48] provides a static automated average-case analysis tool Distritrack that

analyses theMOQA codes written in those packages. These two projects work

well together, but there are several problems:

• TheMOQA library provides programmers with a suite of data structures

and operations, but there is no way to prevent arbitrary control flow or

if-expressions that do not obeyMOQA restrictions.

• Distritrack relies on the design of aMOQA Java library. Adding features

to any part needs updating of the other components. It makes the tools

hard to extend, e.g. adding new data structure representations.

• Distritrack can only analyse algorithms that involve recursive data struc-

tures, e.g. Heapify is not analysable in Distritrack.

• The time is output as a function to a Mathematica package by Distritrack.

It is a double-edge sword. Users could obtain a general timing equation,

but it makes low interactivity between users and the tools. Users don not

get instant feedback. Also some timing equations are hard to read and

in practice, future algorithms might produce an equation that is hard to

express in Distritrack or for which there is no solution for the recursion.

• The original code analysis phase is complex and there is no formal descrip-

tion.

Attempting to overcome these problems, we develop a new domain specific

language. The aim to designMOQA as a domain specific language for automated

average-case analysis, based on MOQA randomness preserving operations and

structures. We summarize a set of core language design goals for the MOQA

language:
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• MOQA theory abstraction

– TheMOQA language provides a toolbox to manipulating LPOs using

built-inMOQA basic operations together with restricted control flow

constructs.

– The back-endMOQA analysis is hidden from the programmer.

– The usage of theMOQA programming language minimizes the time

needed fromMOQA concept to concrete working programs.

• Automated average-case analysis

– Based on the usage of randomness preserving operations over abstract

data types (labelled partial orders), and the tracking of data distribu-

tions throughout computation.

– The language supports automated average-case analysis for a wide

range of algorithms, such as sorting or searching.

• High level of readability

– The MOQA language aims to be a clear and concise programming

language.

– Its syntax is inspired by modern dynamic languages, e.g.: Python,

Rugy, JavaScript etc.

• User friendly

– It is designed to be picked up easily by a programmer who knows basic

imperative languages such as Java, Python etc.

– It can be used as a tool for programmers to practice and learnMOQA

theory.

3.2.2 Domain Specific Language

A Domain Specific Language (DSL) is a small but expressive programming lan-

guage that is custom designed for a specific task [37]. In our case, theMOQA
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language is a domain specific language that is specially designed for automated

average-case analysis.

Like other DSLs,MOQA does not aim to be as powerful as a general-purpose

language like C or Java. It is limited in scope and capabilities. A DSL is generally

simple and concise, as its name suggest. It is designed to focus on a certain type

of problem or domain. MOQA, based on randomness preserving operations,

is aimed to facilitating average-case analysis. The MOQA language can be

interpreted as a suite of data restructuring operations operating on labelled partial

orders together with specifically designed control flow language constructs.

The key feature that makes MOQA distinct from its predecessor [35, 49,

66, 109], is thatMOQA provides a novel timing compositionality, rooted in the

notion of random bag preservation. The foundation for the new approach are

abstract data types (labelled partial orders) and their associated random bag

preserving operations. MOQA also provides the ability to handle traditional

data structures, such as lists, binary trees and heaps, while other approaches

generally do not support these high level structures. As a result,MOQA solution

to automated average-case analysis stays more closely to traditional programming

practice.

As we will also show in the later sections, the usage of random structures

and random bag preserving operations inMOQA simplifies the way to approach

average-case time analysis. By walking over the abstract syntax tree and track-

ing data structure distributions throughout the computations, the ACET for a

program is derived in a more straightforward manner.

3.2.3 Why Python

In our interpreter implementation we choose the Python programming language.

Python is an object oriented, imperative, dynamically-typed language. It was

originally developed by Guido van Rossum at CWI in the Netherlands in the

1980s. It is widely used in different computing areas, such as dynamic web ap-

plications, natural language processing tasks, or scientific computing etc [12].

In this language, we do not have to deal with the overhead of static typing,

while in a statically-typed language eg. in Java, we have to pay special attention
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to the type system. As a result, Python is a proper choice for system prototyping.

Besides this, Python has a powerful and wide range of built-in data types such

as: lists, tuples, sets and dictionary etc. Also Python is famous for its clear and

expressive syntax. Here we use Python list comprehensions to illustrate these

features.

Listing 3.1: Python List Comprehensions

1 even = [x for x in range (10) if x % 2 == 0]

2 # even = [0 , 2, 4, 6, 8]

List comprehensions are used in Python to construct lists. As can be seen

from Listing 3.1, the first line builds a list containing even numbers from 0 to

9 inclusive, in a very natural and easy way. The syntax is like mathematical

notation, while in other languages, such as Java, we have to write a for loop to

iterate and accumulate the result.

Similarly with other programming languages, Python is not perfect and it has

drawbacks. It is said to be slow, especially in a parallel field due to the global

interpreter lock [11]. In our context, we are only concerned with CPython, a

Python language implemented in C. JVM-based Python, such as Jython, does

not have this problem. Since we do not use parallel features in Python, this

problem does not affect our implementation.

In our project, because we are more concerned with productivity i.e. the ca-

pacity to write concise code and short development cycle than efficiency at the

current stage, we choose Python as our implementation language for rapid pro-

totyping. We also use Python features to build our interpreter, but the concepts

and methods are compatible with other languages and can be converted to Java

or C/C++ if needed.

3.2.4 Running MOQA

As mentioned earlier, there are two modes in theMOQA interpreter. The first

mode is called execution mode. It behaves like a normal interpreter, evaluates

source code and produces a value or performs side effect (print or showing LPO)
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for one particular instance of a problem. The second mode is called analysis mode.

This mode first extracts all the functions defined in the source code, then invokes

the built-in analyzer to do automated average-case analysis for these functions.

With augmented initial partial order size supplied by the user, the interpreter

produces a summary of ACETs for functions defined in the source code.

The program you write should be placed in a plain text file. By convention,

the .moqa suffix is used to denote programs written in valid MOQA syntax.

Let’s start with execution mode.

3.2.4.1 Execution Mode

This section only provides a glimpse ofMOQA programming, the language spec-

ification is given in Section 3.3, which will explain in sufficient detail along with

the main concepts of the language. After that, more practical examples are given

in Chapter 5, including examples of well-known algorithms for sorting, searching,

data structures and their average-case analysis by the interpreter analyzer.

InMOQA programming, the basic building block is the LPO. In a LPO, each

node has an associated label. Currently, we support string, integer and floating

point as label type.

Listing 3.2: SimpleMOQA Code: sample.moqa

1 let lpo = {2,1,3,5,0,7,6} /* create initial LPO */

2

3 def fun1(X) /* define a dummy function */

4 let pivot = X[0] /* store first element in pivot */

5 X >< pivot /* split X using variable pivot */

6 show(X) /* visualize LPO */

7 return X /* return resulting LPO */

8 end

9

10 show(lpo)

11 fun1 (lpo) /* function call */

12 print(lpo) /* textual presentation of a LPO */
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In Listing 3.2 we give a simple MOQA program, called sample.moqa. It

involves function definition, LPO creation, function call etc.

In this example, the first line creates a discrete partial order LPO labelled

with {2, 1, 3, 5, 0, 7, 6}. The following lines 3 − 8 define a function called fun1.

This function applies the Split operation to the input LPO, with the first element

as pivot, then shows the resulting LPO. The next three lines, 10 − 12, execute

function calls to show, fun1, and print respectively.

Consider the following command:

1 -$ python moqa.py sample.moqa

It invokes the MOQA interpreter execution mode on sample.moqa. The

script file moqa.py is our interpreter entry point. In a Unix/Linux system, if we

set moqa.py executable, we can even simplify our command to:

1 -$ ./moqa.py sample.moqa

Once the command is executed, the interpreter first builds an abstract syntax

tree (AST) from the source code, then it walks over the type-checked AST. The

output for program sample.moqa has three parts, illustrated in Figure 3.1 and

Figure 3.2, and one textual output:

[[[3.0], [5.0], [7.0], [6.0]], [2.0], [[1.0], [0.0]]]

Two visual representations of the LPO are created: one before execute fun1,

and one after. The function call to print generates a textual representation of

the final LPO.

Figure 3.1: sample.moqa output 1

3.2.4.2 Analysis Mode

The second mode in the MOQA interpreter is called analysis mode. This is

where theMOQA language differs most from other languages. Based on built-

in MOQA random bag preservation operations, the interpreter keeps track of

52

Chapter2/Chapter2Figs/EPS/lpo1.eps


Figure 3.2: sample.moqa output 2

random bags for each variable. Because of the linear compositionality ofMOQA

programs, the ACET for a program is simply the sum of the ACET of individual

parts.

To calculate the ACET for a particular algorithm, the interpreter does need to

walk over the abstract syntax tree (AST). But the semantics for each operation is

different compared with the execution mode. Instead of a single LPO as the input

for each operation, in analysis mode, the input for each operation is a random

bag, and the output is also a random bag. And, MOQA timing functions for

each operation are used to calculate the time cost for the transformation. In

contrast, in execution mode, the output is a single LPO, and there is no timing

information. The details of both semantics are presented in Section 3.3.

Consider the following command:

1 $ python moqa.py -T20 sample.moqa

It invokes theMOQA interpreter analysis mode on sample.moqa. Since we

generally assume that anyMOQA program starts from a discrete partial order,

-T20 tells the interpreter to use analysis mode (-T) with initial partial order size

20. The analyzer then analyses the code in sample.moqa, one function is found

and named fun1. The analyzer uses the provided initial partial order size (20)

and derives the number of comparisons for this function, which for this case is 19.

This result can be verified according to Theorem 2.5, where T split(R(∆n)) = n−1,

and where in this example n = 20. Figure 3.3 is a screen-shot from theMOQA
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interpreter output.

Figure 3.3: sample.moqa ACET output

Besides -T, there are two extra parameters that the user can provide to the

MOQA interpreter.

• -S is used to switch interpreter analysis mode from automated average-case

analysis to smoothed analysis. We will cover how to integrate smoothed

analysis in Chapter 7.

• -D is a helper feature, it produces a visual representation for an abstract

syntax tree. It can help debug theMOQA program and is especially useful

for future interpreter extensions. We will discuss MOQA code abstract

syntax tree in Section 4.4.

Remark 3.1. The analyzer analyses code at the level of function definitions. It

is a general practice in MOQA programming to define an algorithm inside a

function definition. With this method, syntactically, we force the algorithm to

take a discrete partial order as its input, since the form of a function definition

inMOQA programming is restricted. We will return to this restriction in later

sections. The statements written outside a function definition are not evaluated

or analysed by the analyzer.

3.3 MOQA Language Syntax

In this section we give the specification for theMOQA language. This section

mainly focuses on defining the language formally. In Chapter 4 we present a

practical implementation for these formal concepts.

At the current stage, MOQA is a static type-checked, imperative program-

ming language. A program is static type-checked before being interpreted. The
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designed type system can prevent simple type mismatches, such as to invoke the

MOQA Split operation on a series data structure. We provide a specification

of theMOQA language syntax in Section 3.3.3. Before we dive into the details,

we start with lexical conventions first.

3.3.1 Lexical Conventions

AMOQA program consists of a single file. At global scope (outside any function

definition, i.e. at the “top-level” of your program), a programmer could create

an initial LPO, define functions or invoke function calls. Execution begins with

the statements at global scope, line by line.

3.3.1.1 Comments

Block comments are introduced with /* and terminated with */. Like the C

family of languages, nesting comments is not permitted. Comments are in general

ignored by the interpreter.

3.3.1.2 Identifiers

An identifier is a string that starts with an alphabetic letter followed by a sequence

of letters, digits and underscore. Identifiers are case-sensitive in the MOQA

language. The regular expression for an identifier is: [A-Za-z][0-9A-Za-z_]*

3.3.1.3 Keywords

The following identifiers are reserved for use as keywords, and may not be used

otherwise:

def if let return for

else true false print show

end do and or to

xor Merge downto PercM
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3.3.1.4 Primitive Types

There are three primitive types in MOQA. These are generally used as label

values in a LPO node.

• Numeric: A numeric type must be in the form of an optional minus sign

followed by either an integer, i.e. one or more digits, or a floating-point

number, i.e. one or more digits followed by a period followed by zero or

more digits. For example:

123 162.6 -6.7 -81 57.

A regular expression for numeric type is: -?[0-9]+(\.[0-9]*)?

• String : A string is a sequence of double quotes characters, that also allows

escaped sequences. For example:

"cork" "a\"bc" A regular expression for string type is: "([^"\\]|(\\.))*"

• Boolean: Boolean type can take either true or false.

3.3.2 Labelled Partial Order

Besides primitive data types, the second category of types in the MOQA lan-

guage is the labelled partial order type. Based on the structure of the underling

partial order, it can be divided into three types:

• parallel labelled partial order (PLPO): a data structure built with parallel

composition.

• series labelled partial order (SLPO): a data structure built with series com-

position.

• discrete parallel labelled partial order (DLPO): a sub-type of parallel la-

belled partial order, where each parallel component is a single node.

From a programmer’s point of view these data types are invisible. The pro-

grammer only deals with LPO objects, where these types can be thought of as

states or structures of a LPO. It is the programmer’s responsibility to know how

the shape of a data structure is evolved. The interpreter also tracks data types

in order to support type checking and timing calculation.
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All MOQA programs take discrete labelled partial orders as inputs. The

programmer does not need to declare a data type in the program. The job

is to use MOQA built-in operations plus control-flow constructs to guide the

transformation of this initial LPO. The transformations are defined byMOQA

operations and the details are presented in Section 2.3.3.

Here we present a list of operations applied to the LPO type in Table 3.1.

Notice that some operations are restricted to a particular LPO subtype (structure

shape).

MOQA language operator symbol Operation name Restriction
>< Split operation DLPO
<> Product operation LPO
^ Top operation DLPO
~ Bot operation DLPO
PercM Percolation operation (PercM) SLPO

Table 3.1: MOQA language LPO operations

Similar to commonly used programming languages, such as Java, Python, all

the types in our language inherit from a basic type object. The type system in

MOQA language can be seen in Figure 3.4. Notice that the type Object is not

directly used by a programmer. It is only used as return type of control-flow

constructs to help type checking. The formal definitions for allMOQA language

types and typing rules are presented in Section 3.4.

3.3.3 MOQA Language Grammar

In this section, we do not use pure Backus-Naur Form (BNF) [13, 15] to specify

theMOQA language syntax. For convenience, some regular expression notations

are also used.

Specifically, A? means A is optional; A∗ means zero or more As in succession;

A+ means one or more As. Double brackets [[ ]] are used to show association

of grammar symbols and they are not part of MOQA ; they are used in the

grammar as a meta-symbol (e.g. a[[bcd]]+ means a followed by one or more bcd

triples).
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Object

LPOBool Numeric String

SLPO

DLPO

PLPO

Figure 3.4: MOQA Language Type System

In the following section, for each BNF rule, non-terminals are in italics, while

terminals use all-capitals. Commonly used symbols are: (, - [ etc.

3.3.3.1 Structure of a MOQA Program

EveryMOQA program is a sequence of elements. An element can be a function

definition or an expression or a LPO builder. By placing LPO creation at the

same level as function definition, syntactically, we can prevent the user from

defining a new LPO inside a function definition. The job for a user defined

function in MOQA programming, is to only manipulate an input LPO and to

return the processed LPO or a component of it.

Grammar in Backus-Naur form

program → element +

element → expr | defFun | lpoBuilder

3.3.3.2 Variable Declarations

Variables are introduced by the let expression. Generally, inMOQA program-

ming, this expression is used to bind a variable to an initially discrete labelled
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partial order (DLPO), or to bind the result of an expression to a named variable.

lpoBuilder can be viewed as a fixed form let expression. It encloses all node

labels in curly braces.

Listing 3.3: SimpleMOQA Code: variable declarations

1 let var1 = {2,1,3,5,0,7,6} /* LPO variable var1 */

2 let var2 = 10 /* Numeric variable var2 , value 10 */

The first line builds a 7 nodes discrete labelled partial order (DLPO) called

var1. The second line declares a numeric variable var2 with value 10, but in

currentMOQA programming we seldom declare numeric or string type variables

directly. This type of data is commonly used as a LPO label.

Grammar in Backus-Naur form

lpoBuilder → let IDENTIFIER = { nodelist }

nodelist → node [[, node ]] *

node → NUM | STRING

expr → let IDENTIFIER = expr

3.3.3.3 Function Definition

Function definitions inMOQA are similar to those found in other programming

languages, such as Java or C/C++,

Function definitions begin with the keyword def followed by a valid identifier

(see Section 3.3.1.2), a possible empty list of formal parameters.

Currently, any number of formal parameters are syntactically correct, while,

because of limitations onMOQA’s theory, the analyzer only processes functions

with inputs of one LPO and one optional integer 1.

The return type of aMOQA function is also fixed to be a LPO type. This

decision makes type checking and code analysis easier. Recall that MOQA

1As a theory simplification, MOQA deals only with single LPO input, with a necessary
extension, the theory should also be applicable to multiple input LPOs.
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operations are all SP-order preserving (see Section 2.3.2.1), thus the user defined

functions inMOQA programming are always a mapping from a discrete partial

order, with an optional integer, to a SP-order.

Grammar in Backus-Naur form

defFun → def IDENTIFIER ( optparams ) expr+ end

optparams → IDENTIFIER [[, IDENTIFIER ]] *

3.3.3.4 Expression

Expressions are the largest syntactic category inMOQA language.

Constants

The simplest expressions are constants. There are three types of constants. These

were first introduced in Section 3.3.1.4.

• The boolean constants are true and false.

• Numeric constants are integer or real numbers.

• String constants are sequences of characters enclosed in double quotes.

Grammar in Backus-Naur form

expr → NUM | BOOL | STRING

Built-in Functions

We provide two helper built-in functions: print and show. They take the follow-

ing forms:

Grammar in Backus-Naur form

expr → print ( expr )

| show ( expr )
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Both functions use side-effects to print or visualize data structures or values.

The return type of built-in functions is Object.

print function provides printing to the standard output. It can be applied

to primitive types or LPO types. The show function visualises LPOs using

Graphviz’s Dot language [9]. It is restricted to LPO types only. An example

is shown in Section 3.2.4.1 (page 51).

Variable Assignment

In MOQA programming, there are two types of variable assignments, used to

update the value associated with a variable. They take the following forms:

Grammar in Backus-Naur form

expr → IDENTIFIER indexes? = expr

indexes → [ expr ] | [ expr? : expr? ]

The indexes are optional. When there are no indexes, this expression updates

the value associated to an identifier. And the identifier must be declared before

hand by the let expression. The identifier also must have type LPO.

If the indexes exist, syntactically, both forms of indexes are valid, but in the

typing rule we enforce only the first form. That is, variable assignment only works

with a single numeric index. Also, the target identifier must be a variable with

type PLPO or its subtype DLPO. This form is used to update a component of a

indexable LPO. We discuss the types of LPO objects that are indexable in the

next paragraph.

LPO Index and Slice

Slice and index application take the following forms:

Grammar in Backus-Naur form

expr → IDENTIFIER indexes?

indexes → [ expr ] | [ expr? : expr? ]
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These two operations have similar semantics to operations in Python. Indices

are 0 indexed and slice operations takes two integers separated by a colon. If the

first integer is not specified, the system use 0 as default. If the second integer is

missing, the number of components is used.

We extend these operations to LPO type and include a new restriction, used

to extract components of a LPO type variable. The indices must have type

numeric.

Because in our language we do not separate integer and floating numbers, the

system always casts numeric type to integer by default.

Index operations are applied to DLPO variables or to the result of the split,

top, bot or PercM operation, while slice operation only works on DLPO type

variables.

Example 3.1. If a variable X binds to a DLPO shown in Figure 3.1 (page 52):

• X[5] means a DLPO with only one node labelled 7.0.

• X[2:5] means a DLPO with sliced labels {3.0, 5.0, 0.0}.

• X[3:] means a DLPO with sliced labels {5.0, 0.0, 7.0, 6.0}.

Index operations not only work on DLPO type variables, they are also applied

to the result of split, top, bot or PercM operations. For these cases, index values

are restricted to {0, 1, 2}. In particular, the result of PercM operation is restricted

to {0, 1}.

Example 3.2. If a variable X binds to a SLPO, shown in Figure 3.2 (page 53),

this SLPO is the result of applying the split operation.

• X[0] means a DLPO with labels greater than the pivot, that is {3.0, 5.0, 7.0,

6.0}.

• X[1] means a DLPO with only one node labelled with pivot 2.0.

• X[2] means a DLPO with labels less than pivot, that is {1.0, 0.0}.

If a variable X binds to a SLPO shown in Figure 2.14 (page 37), this SLPO

is the result of applying the top operation.
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• X[0] means a DLPO with labels occurs before maximum label, that is {1}.

• X[1] means a DLPO with only one node labelled with maximum label {4}.

• X[2] means a DLPO with labels occurs after maximum label, that is {3, 2}.

If a variable X binds to a SLPO shown in Figure 2.15 (page 38), this SLPO

is the result of applying the PercM operation.

• X[0] means a DLPO with only one node labelled with maximum label 5.

• X[1] means a SLPO with four elements {4, 3, 2, 1}. It is also marked as the

result of applying a PercM operation.

Return Expression and Function Call

Like other programming languages, theMOQA language has return expressions

and function calls, as follows:

Grammar in Backus-Naur form

expr → return expr | functionCall

functionCall → IDENTIFIER ( optargs? )

optargs → expr [[, expr ]] *

In order to support automated average-case analysis, the MOQA language

differs from other languages in the following ways:

• return expressions only return LPO type values.

• User defined functions are restricted (see Section 3.3.3.3), thus a function

call either inputs a DLPO or a DLPO plus an integer.

Arithmetical Expressions

Like other languages,MOQA provides commonly used arithmetic operations, it

has the following forms:
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Grammar in Backus-Naur form

expr → arithExpr

arithExpr → expr + expr

| expr - expr

| expr * expr

| expr / expr

| expr % expr

To evaluate an arithmetical expression, the first expr is evaluated, then the

second expr. The result of the expression is to apply the arithmetic operator to

both sub-expressions.

Notice that sub-expressions in arithmetical expressions must have numeric

type. While syntactically it doesn’t matter, the typing rule we present later will

enforce this. The return type for an arithmetic expression is numeric type.

Logic Expressions

Due to branching and loops, static time analysis is complicated. Both types of

expressions are complicated to analyse because of their dependence on boolean

expressions. Even worse, while-loops are not analysable in full generality due

to non-decidability of termination, i.e. the halting problem [98]. To derive the

average-case cost of an if expression, it is necessary to determine the probability

of executing the then branch and the probability of executing the else branch.

Grammar in Backus-Naur form

expr → logicExpr

logicExpr → moqaCond and moqaCond

| moqaCond or moqaCond

| moqaCond xor moqaCond

| not moqaCond

| moqaCond

lpoSize → | IDENTIFIER |
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moqaCond → lpoSize > expr

| lpoSize >= expr

| lpoSize < expr

| lpoSize <= expr

In MOQA programming we are interested in the determination of specific

classes of boolean expressions for which it can be guaranteed that the probabil-

ity can be statically derived. In BNF, we call this kind of boolean expression

moqaCond, which only allows comparing the size of a LPO to a numeric value.

Like other programming languages, logic expressions are composed by moqa-

Cond using logic operators, such as and, or etc. The type of a logic expression

is boolean.

If Statement

An if statement in theMOQA language has the following form; where the pred-

icate is aMOQA logic expression to support automated average-case analysis:

Grammar in Backus-Naur form

expr → ifStatement

ifStatement → ifStat elseStat? end

ifStat → if logicExpr do expr+

elseStat → else do expr+

The semantics of conditionals in the MOQA language are standard. The

predicate (logicExpr) is evaluated first. If the predicate is true, the then branch

is evaluated. If the predicate is false, then the else branch is evaluated. The

else branch is optional.

The beginning and ending of conditionals are marked by keywords do, end,

where Java uses curly braces, Python uses indentation. The value of the condi-

tional is the value of the evaluated branch. Also the predicate must have type

bool.
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For Statement

InMOQA programming, a for statement basically has two flavours: loops from

a numeric type variable from a smaller value to a larger value, or loops from a

larger value down to a smaller value. These take the following form:

Grammar in Backus-Naur form

expr → forStatement

forStatement → for IDENTIFIER = expr [[to | downto]] expr do expr+ end

In both cases, the loops guarantee to terminate and make deriving the average-

case cost easier. When the loops starts, it introduces a new binding. It binds the

variable name that the user specifies with the initial value. In each iteration, this

variable either increases or decreases by one depending on the loop’s type. Notice

that to coordinate 0 indexing in LPO type, we follow the convention of other

programming languages. The loop is stopped one value before the termination

value. e.g. for i = 1 to 6 do print(i) end will only print values from 1 to

5.

MOQA Expressions

The last expression type is called MOQA expression, the most distinct feature

of theMOQA language. It is not available in other programming languages and

has the following forms:

Grammar in Backus-Naur form

expr → moqaExpr

moqaExpr → expr <> expr

| expr >< expr

| ^ expr

| ~ expr

| Merge (expr , expr )

| PercM (expr )
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They include all the basic MOQA operations provided in the current lan-

guage. These operations were introduced in Section 2.3.3. For convenience, in our

language we use symbols to present some basicMOQA operations, such as <>,

meaning the Product operation inMOQA. The details for these operations are

discussed in Section 3.3.2, and we also discuss type restriction on each operation

in Table 3.1.

3.3.4 Scopes

The topic of scope is important in any programming language. It defines how to

match identifiers declarations with their usage. A variable x might have multiple

definitions in the program. We need to know which definition we are talking

about in any place of the program. The scope of an identifier defines the portion

of a program in which the identifier is accessible.

There are generally two types of scoping rules, one named static scope, the

other dynamic scope [13, 15]. Few languages are dynamically scoped such as the

old version of Lisp [41], or SNOBOL [44], while most languages are statically

scoped. Like C/C++, Java, Python etc, MOQA is statically scoped, that is,

scope depends on program text not run-time behaviour. Generally speaking,

most identifiers follow the most-closely nested rule. That is a variable binds to

the definition most closely enclosing it. This should be familiar to most C/C++,

Java or Python programmers.

3.3.5 MOQA Language Syntax Specification

In this section we present the full MOQA language syntax specification. More

readily understood syntax diagrams are presented in Appendix A1.

program → element +

element → expr | defFun | lpoBuilder

lpoBuilder → let IDENTIFIER = { nodelist }

nodelist → node [[, node ]] *
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node → NUM | STRING

expr → let IDENTIFIER = expr

| IDENTIFIER indexes? = expr

| print ( expr ) | show ( expr ) | return expr | ( expr )

| IDENTIFIER indexes?

| functionCall | ifStatement | forStatement

| arithExpr | logicExpr | moqaExpr | lpoSize

| NUM | BOOL | STRING

lpoSize → | IDENTIFIER |

indexes → [ expr ] | [ expr? : expr? ]

moqaExpr → expr <> expr | expr >< expr

| ^ expr | ~ expr | Merge (expr , expr ) | PercM (expr )

arithExpr → expr [[+ | - | * | / | % ]] expr

logicExpr → moqaCond [[and| or | xor]] moqaCond | not moqaCond | moqaCond

moqaCond → lpoSize [[> | >= | < | <=]] expr

functionCall → IDENTIFIER ( optargs? )

optargs → expr [[, expr ]] *

ifStatement → ifStat elseStat? end

ifStat → if logicExpr do expr+

elseStat → else do expr+

forStatement → for IDENTIFIER = expr [[to | downto]] expr do expr+ end

defFun → def IDENTIFIER ( optparams ) expr+ end

optparams → IDENTIFIER [[, IDENTIFIER ]] *

IDENTIFIER ::= [A-Za-z][0-9A-Za-z_]*

NUM ::= -?[0-9]+(\.[0-9]*)?

BOOL::= true | false

STRING ::= "([^"\\]|(\\.))*"
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3.4 MOQA Language Type System

Currently the type system inMOQA programming is restricted and simple, but

sufficient to support all the operations defined in MOQA theory. As shown

earlier in Figure 3.4, all the types in MOQA programming are inherited form

the type Object. Because the language does not support user defined types at

the moment, the typing rule we illustrate here is used to prevent common type

mismatch, such as to apply the Product operation between a LPO object and an

integer.

InMOQA programming, the programmer does not need to declare the type

of a variable. The type system will infer the type. There are two categories of

types in theMOQA language: the primitive type and the LPO types.

For the primitive type, the inference rules are easy, based on the literal value

we can infer the variable type directly, eg. variable assigned to number 5 has

type Numeric. In terms of LPO types, because the input and output types for

each MOQA operation are well defined, we use typing rules to track the type

for each variable. Furthermore, restrictions on function definitions in MOQA

programming (see Section 3.3.3.3), make our type inference even simpler, since

we can assume the functions must have one of the following signatures:

• DLPO 7→ LPO

• DLPO × Num 7→ LPO

Thus in our language, we do not apply the Hindley-Milner type inference

algorithm [13]. Instead we employ typing rules to directly infer types.

3.4.1 Type Environments

The typing rules define the type of everyMOQA expression in a given context.

The context is the type environment, which assigns types to the free identifiers

appearing in an expression. A variable is free in an expression if it is not de-

fined within the expression. To type check an expression, we need extra type

information on identifiers that is not defined within the current expression. This

information is provided by the type environment.
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During type checking, we apply recursive descent to an abstract syntax tree

(AST). The type environment is passed down the AST from the root towards the

leaves. In order to compute the type of an expression, say e, we first compute the

types for e’s sub-expressions, then, based on these types, compute the type of e.

Before we dive into theMOQA language type checking rules, we introduce

the relevant notations.

The type environment Γ is a function from identifiers to types. It has the

following features:

• Γ(x) = T means variable identifier x has type T in type environment Γ.

• Γ(f) = T1 7→ T2 means function identifier f maps type T1 to type T2 in

type environment Γ.

• Every expression e is type checked in a type environment. Because some

expressions might introduce a new identifier, their sub-expressions need to

be type checked in a modified environment, e.g. for, def expression.

– Γ(T/y): A modified environment Γ, and identifier y has type T.

– Γ(T/y)(y) = T

– Γ(T/y)(x) = Γ(x) if x 6= y.

As introduced earlier (see Figure 3.4, page 58), there is a type hierarchy in

MOQA types, similar to other programming languages. In a function call or

expression, if a value of type T is expected, then any value of subtype U may be

used instead. In other words, if type U inherits from type T, either directly or

indirectly, whenever a value of T is needed, we could substitute it with a value

of type U.

In programming languages this is called U conforms to T, and represented by

U ≤ T (U is a subtype of T ). We give the formal definition below.

Definition 3.1. Assume three types A, B, C.

• A ≤ A for all types A

• if B inherits from A, then B ≤ A.
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• if C ≤ B and B ≤ A, then C ≤ A.

It can be seen in our type hierarchy in Figure 3.4 (page 58), for all types X

we have X ≤ Object.

To statically type check all MOQA expressions, we need to introduce one

more operator: ⊔. This operator applies to two types, say X and Y. It obtains

the least common ancestor for X and Y in the type hierarchy.

Example 3.3. For example, theMOQA type hierarchy in Figure 3.4 (page 58)

• DLPO ⊔ SLPO = LPO

• DLPO ⊔ PLPO = PLPO

• SLPO ⊔ Numeric = Object

This operator is introduced to deal with the return type of conditional expres-

sions. For example, let T and F be the types of the branches for a conditional

expression, then the type for this conditional expression is T ⊔ F.

3.4.2 Type Checking Rules

In this section we present type checking rules for the MOQA programming

language. A type checking rule has the general form:

Γ ⊢ h1 · · ·Γ ⊢ hn

Γ ⊢ e:T

The statements above the horizontal bar represents hypotheses, the statement

below the bar is the conclusion. If the hypotheses are satisfied, then the conclusion

is true. This rule can be read as follows: in the type environment Γ, given

hypotheses h1 · · ·h2 are all true, then it is provable that the expression e has type

T.

Sometimes, an expression may not only evaluate to a type but also have a side-

effect on the type environment, such as to introduce a new identifier-type binding.

We write such a rule as: Γ ⊢ e:T, set Γ(id) = T. It means that expression e

has type T, but it also modifies the type environment by introducing identifier

id with type T. The let expression is one such example.
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The typing rules for constants are the easiest.

Γ ⊢ true : Bool
[True]

Γ ⊢ false : Bool
[False]

n is a number literal
Γ ⊢ n : Numeric

[Numeric]

s is a string literal

Γ ⊢ s : String
[String]

The rule for identifiers simply returns the type associated with the identifier

in type environment.
id is identifier literal

Γ(id) = T

Γ ⊢ id: T
[Var]

From the syntax specification (see Section 3.3.5) we can see that MOQA

programs can be thought of as a list of expressions, where the type for this

sequencing is the type of the last expression.

Γ ⊢ e1 : T1
Γ ⊢ e2 : T2

...
Γ ⊢ en : TN

Γ ⊢ e1e2...en : TN
[Sequence]

The LpoBuilder rule introduces a DLPO type variable. Syntax rules guarantee

that nodelist sub-expression e has a proper format, that is, all elements are a

constant label type value, either Numeric or String. Thus we skip type checking

for it, and just modify the type environment to make sure id has type DLPO.

In the execution runtime, once the interpreter matches this node, it creates the

DLPO object to hold all labels contained in nodelist sub-expression e.

Γ ⊢ let id = { e } : Object, set Γ(id) = DLPO
[LpoBuilder]

Let expression binds a variable to a type checked expression e with type T.
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Γ ⊢ e : T
Γ ⊢ let id = e : Object, set Γ(id) = T

[Let]

MOQA expressions are the most interesting part of the typing rules. Differ-

ent operations have different restrictions, and the types that are applicable are

different. Some operations might also change the type of the original variable

because ofMOQA data structure transformations.

For the Product operation, the two operands e1 and e2 must have type LPO

or one of its subtypes. 1

Γ ⊢ e1: T1 Γ ⊢ e2: T2
T1 ≤ LPO T2 ≤ LPO

Γ ⊢ e1 <> e2: SLPO
[Product]

For the Split operation, the typing rule is a bit complicated, because we want

to tag the identifier as the result of split operation. This will help future type

checking of the index or slice operation.

Operand e1 must be an identifier and have type DLPO, e2 must be a single

node DLPO. During runtime, the system will also check to make sure e2 is an

element of e1.

If all hypothesises are satisfied, we update the type environment to set e1 with

type SLPO and tag e1 as the result of a split operation by setting Γ( e1) =><.

Because e1(append ‘ ’ before e1) is not a valid identifier, it is safe to do so.

e1 is identifier literal
Γ(e1) = DLPO

Γ ⊢ e1: DLPO
Γ ⊢ e2: DLPO Γ ⊢ |e2| = 1

Γ ⊢ e1 >< e2 : SLPO, set Γ(e1) = SLPO, set Γ( e1) =><
[Split]

Similar to the Split operation, Top and Bot operations only apply to variables

with DLPO type, and we need to tag these variables to support type checking

on index operations.

1The two operands for the Product operation also need to be two disjoint random structures
or two isolated subsets of the same random structure. In our language, only one LPO object
is manipulated and because of the restriction on accessing structure components (through the
Index or Slice operation), the components obtained are guaranteed to be isolated.
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id is identifier literal
Γ(id) = DLPO

Γ ⊢ id: DLPO
Γ ⊢ ^ id: SLPO, set Γ(id) = SLPO, set Γ( id) =^

[Top]

id is identifier literal
Γ(id) = DLPO

Γ ⊢ id: DLPO
Γ ⊢ ~ id: SLPO, set Γ(id) = SLPO, set Γ( id) =~

[Bot]

The PercM operation only applies to SLPO type variables. This operation

has no side-effect to change the original variable type, but to support the index

operation, we tag the target variable as well.

id is identifier literal
Γ(id) = SLPO

Γ ⊢ id: SLPO
Γ ⊢ PercM(id):SLPO, set Γ( id) =PercM

[PercM]

To help implement merge sort (see Section 5.4), the Merge operation is intro-

duced. It is not a standard MOQA operation but the average-case cost of this

operation is known [73]. The two operands for the Merge operation must both

have type SLPO and must be in sorted order. The sorted order is not checkable

statically, thus we need to employ runtime checking for this operation as well.

e1 is identifier literal
Γ(e1) = SLPO

Γ ⊢ e1: SLPO

e2 is identifier literal
Γ(e2) = SLPO

Γ ⊢ e2: SLPO
Γ ⊢ Merge(e1 , e2 ) : SLPO

[Merge]

Index operations only apply to values of type PLPO, DLPO or the special

SLPO type, i.e. the result of a Split, Top/Bot or PercM operation. The type of

expression e must have type Numeric and will be cast to an integer.
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Γ ⊢ e : Numeric

(
T ∈ {PLPO,DLPO}

Γ ⊢ Γ(id) : T
∨

Γ ⊢ Γ( id) : ⊕ ⊕ ∈ {<>,><,^,~, PercM}

Γ ⊢ Γ(id) : SLPO
)

Γ ⊢ id[e]: DLPO
[Index]

The Slice operation is used to obtain part of elements from a DLPO type

variable. Both indices e1 and e2 are optional and have type Numeric. During

runtime the indices will be cast to integers. Example 3.1 (page 62) illustrates this

operation.

id is identifier literal
Γ(id) = DLPO

Γ ⊢ id: DLPO
e1 exists

Γ ⊢ e1 : Numeric
e2 exists

Γ ⊢ e2 : Numeric
Γ ⊢ id[e1 : e2]: DLPO

[Slice]

The assignment operation is only applicable to LPO type variables, and is

used to update the associated value to an identifier. The type of the identifier is

updated to the type derived for the right hand side expression.

Γ ⊢ id: T1 Γ ⊢ e : T2
T1 ≤ LPO T2 ≤ LPO

Γ ⊢ id = e : Object, setΓ(id) = T2
[Assign]

The indexed assignment is a special assignment operation, currently only de-

signed for the Heapify algorithm to build a binary heap out of a DLPO type

variable. The usage details of this operation is discussed in Section 5.7. The type

of id is restricted to DLPO and PLPO. This operation will transform a DLPO

type variable to a PLPO one. Also, if the resulting PLPO variable size is 1, the

type of variable will change to SLPO.

T ∈ {DLPO,PLPO}

Γ ⊢ Γ(id) : T
Γ ⊢ e1 : Numeric Γ ⊢ e2 : SLPO

Γ ⊢ id[e1] = e2: Object, set Γ(id) = SLPO if |id| = 1 else Γ(id) = PLPO
[IndexedAssign]

The for expression iterates an integer variable from value e1 to e2 with step
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size 1 or iterates reversely in a downto-for loop with step size −1. The type of

the entire for loop is always Object, the type checker recursively type checks loop

body es in new type environment Γ[Numeric/id].

Γ ⊢ e1 : Numeric Γ ⊢ e2 : Numeric Γ[Numeric/id] ⊢ es: T T ≤ Object

Γ ⊢ for id = e1 [[ to|downto ]] e2 do es end : Object
[For]

MOQA condition compares the size of a LPO type variable with numeric

type expression e.

⊕ ∈ {>,>=, <,⇐} Γ ⊢ Γ(id): T T ≤ LPO Γ ⊢ e: Numeric

Γ ⊢ |id| ⊕ e : Bool
[MoqaCond]

The type checking rules for arithmetic and logic expressions are standard,

similar to other programming languages.

Γ ⊢ e1: Numeric
Γ ⊢ e2: Numeric
⊕ ∈ {+,−, ∗, /,%}

Γ ⊢ e1⊕ e2 : Numeric
[ArithExpr]

Γ ⊢ e1: Bool
Γ ⊢ e2: Bool

⊕ ∈ {and, or, xor}

Γ ⊢ e1 ⊕ e2 : Bool
[LogicExpr]

Γ ⊢ e: Bool
Γ ⊢ not e : Bool

[Not]

The if expression rules are straightforward. It depends on whether the ex-

pression has an else branch or not, so we present it by two rules. One for

if-then, the other for if-then-else. The predicate must have type Bool. The

return type uses operators we introduced earlier (see Section 3.4.1).

Γ ⊢ e: Bool
Γ ⊢ es: T
T ≤ Object

Γ ⊢ if e do es end : T
[If-then]
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Γ ⊢ e: Bool
Γ ⊢ es1: T1
Γ ⊢ es2: T2

T1 ≤ Object T2 ≤ Object

Γ ⊢ if e do es1 else do es2 end : T1 ⊔ T2
[If-then-else]

InMOQA programming, to facilitate automated average-case analysis, cur-

rently only two types of function definition are allowed: the single input function

or the double inputs function (see Section 3.3.3.3). The first type of function has

one DLPO variable as input, the other type of function has two input variables:

one DLPO and one Num variable. In both cases, the typing rule checks the body

of the function in an environment Γ, where Γ is extended with new bindings of

formal parameters to their types. The return type of a user defined function is

always a LPO type.

Γ[DLPO/p] ⊢ es: T
T ≤ LPO

Γ ⊢ def id ( p ) es end : LPO, set Γ(id) = DLPO 7→ LPO
[DefFun]

Γ[DLPO/p1,Numeric/p2] ⊢ es: T
T ≤ LPO

Γ ⊢ def id ( p1 , p2 ) es end : LPO, set Γ(id) = (DLPO,Numeric) 7→ LPO
[DefFun]

The rules for function calls in MOQA programming is not complicated be-

cause of the restriction on function definitions. Once the signature for the target

function is retrieved, the number of actual parameters is verified to make sure

the function signature has the same number of formal parameters. Then, each

actual parameter is type checked, to make sure it conforms to the corresponding

formal parameter.

Γ ⊢ Γ(id) = DLPO 7→ LPO
Γ ⊢ Γ(a) = DLPO

Γ ⊢ id ( a ) : LPO
[FunctionCall-One]
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Γ ⊢ Γ(id) = (DLPO,Numeric) 7→ LPO
Γ ⊢ Γ(a1) = DLPO
Γ ⊢ Γ(a2) = Numeric

Γ ⊢ id ( a1 , a2 ) : LPO
[FunctionCall-Two]

Because return expressions are only used inside the definition of a function

the returned expression must have type LPO.

Γ ⊢ e : LPO
Γ ⊢ return e : LPO

[Return]

The print built-in function is used to print either primitive type variables

or LPO type variables to standard output, thus it is applicable to all types in

MOQA. The return type for this expression is always type Object. The function

uses side-effect to print out values.

Γ ⊢ e : T
T ≤ Object

Γ ⊢ print( e ) : Object
[Print]

Unlike print built-in function, the show function is only applicable to a LPO

type variable. It is used to visualize a LPO data structure.

Γ ⊢ e : T
T ≤ LPO

Γ ⊢ show( e ) : Object
[Show]

3.5 MOQA Language Semantics

Defining a computer language consists of two main parts: syntax and semantics.

Syntax describes the actual structure of a program, while semantics describes the

meaning of programs. In this section, we define howMOQA programs execute

by giving a formal semantics for it.

Currently, there are three main approaches for describing formal semantics [113],

and some more suitable to various tasks than others.

• Axiomatic semantics: also called Floyd-Hoare Logic, based on formal logic.

It studies how logical properties of the program state change as a program is

executed. It is generally used to formally prove a property of the state after
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execution of a program by assuming another pre-condition. For example, if

we know a > b and c > d (pre-condition) then after executing the statement

x = a+ b, we also know that x > b+ d.

• Denotational semantics: constructs a mapping from programs into equiva-

lent mathematical functions. It is useful for proving properties of programs.

• Operational semantics: it can be essentially thought of as an interpreter

written out in mathematical notations, and is by far the most common way

to describe programming language semantics. Similar to type derivation it

is a rule based method. It describes how a program evaluates via execution

rules on an abstract machine. Operational semantics are classified into

big-step semantics (natural semantics) and small-step semantics (structural

operational semantics). Big-step semantics focus on how the overall result is

obtained while small-step semantics concern individual step computation.

In this thesis we focus on big-step semantics, because it is closer to our

recursive descent interpreter implementation.

Unlike other programming languages, a MOQA program has two types of

interpretation, an execution semantics and an analysis semantics. These are used

in different modes, and they are both based on big-step operational semantics.

3.5.1 MOQA Execution Semantics

Execution semantics is used in the interpreter execution mode. It deals with

normalMOQA program execution, at the level of a single LPO.

Evaluation rules in execution semantics also use logic rules of inference, similar

to type checking. In type judgement, we give a context to determine the type

of an expression. Similarly, in evaluation rules, we give a context to evaluate an

expression for its value. Evaluation rules have the following general form:

c1 ⇓ v1 · · · cn ⇓ vn
c ⇓ v

The statements above the horizontal bar present hypotheses, the statement

below the bar is the conclusion. If the hypotheses are satisfied, then the conclusion
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is true. c, c1, · · · , cn are configurations holding program fragments together with

an execution environment σ.

Different from typing rules, execution environments map identifiers to their

values, e.g. σ = {x = 1, y = 0}, σ(x) = 1. In particular, the environment also

maps a function name identifier to a function definition.

(e, σ) ⇓ v can be read as: in the execution environment σ, expression e eval-

uates to a value v. Sometimes, expressions do not compute to a value. Instead

they change the environment. In this case the form of rule is:

(e, σ) ⇓ σ′

We write σ[val/x] for updating environment σ with a new binding from x to

val. For example, the Let expression binds a variable to an expression e with

value v.

(e, σ) ⇓ v

(let id = e, σ) ⇓ σ[v/id]

There are three configuration types for the value returned.

• (e, σ) ⇓ v: expression e evaluated to a value v in environment σ.

• (e, σ) ⇓ σ[val/id] : evaluating expression e in σ causes a side-effect and

changes environment to σ[val/id].

• (e, σ) ⇓ (v, σ[val/id]): evaluating expression e in environment σ produces a

value v and causes a side-effect and changes environment to σ[val/id].

In the following, we give a formal operational semantics for evaluatingMOQA

programs in execution mode. This describes how pieces of a program can be eval-

uated and it is closely related to real interpreter implementation. Generally, each

evaluation rule will be mapped to a corresponding abstract syntax tree node pro-

cessing method. We refer the reader to Section 4.7 for details of implementation

for these rules.

When we introduce a new helper function, we will follow the form: TY PEname

where TY PE is the type of an object, and name is the operation name associated

to that type, e.g. LPOproduct. In theMOQA interpreter implementation, we have
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a runtime object library which implements a LPO object and all the necessary

operations associated to it. We use these helper functions to calculate values for

MOQA expressions.

Like typing rules, evaluating rules for constants are the easiest.

b ∈ {true, false}

(b, σ) ⇓ b
[Bool]

n is a number literal
(n, σ) ⇓ n

[Num]

s is a string literal

(s, σ) ⇓ s
[String]

These rules say that a Boolean true/false, string or an integer evaluate to the

expected value in any execution environment σ.

The rule for identifiers simply returns the value associated with the identifier

in the execution environment. If id is not bound in the environment, then this

rule doesn’t apply and the interpreter should issue an error.

id is identifier literal
id ∈ σ

(id, σ) ⇓ σ(id)
[Var]

MOQA programs can be thought as a list of expressions (e1, e2, ...en), where

we evaluate expressions in order. We evaluate first expression e1 with initial

environment σ, then e2 with resulting environment σ1, until we reach the last

expression en. The value returned is the value of the last expression.

(e1, σ) ⇓ (v1, σ1)
(e2, σ1) ⇓ (v2, σ2)

...
(en, σn−1) ⇓ (vn, σn)

(e1e2...en, σ) ⇓ (vn, σn)
[Sequence]

The LpoBuilder rule builds object of type DLPO. Here we introduce a helper

function DLPOFromLabels. It takes a list of labels (e1, e2, . . . en) and creates a

DLPO object. In the interpreter implementation this directly maps to a function
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call in our runtime library.

(let id = { e1, e2 . . . en }, σ) ⇓ σ(DLPOFromLabels(e1, e2 . . . en)/id)
[LpoBuilder]

As stated earlier, the Let expression evaluates expression e to a value v, then

binds a variable id to the current environment σ.

(e, σ) ⇓ v

(let id = e, σ) ⇓ σ[v/id]
[Let]

For the Product operation, the two operands e1 and e2 are evaluated first.

After their values v1 and v2 are obtained, the LPOproduct function is applied to

get the final result.

(e1, σ) ⇓ (v1, σ1) (e2, σ1) ⇓ (v2, σ2)

(e1 <> e2, σ) ⇓ (LPOproduct(v1, v2), σ2)
[Product]

For the Split operation, similar to the Product operation, two operands are

evaluated, the objects v1 and v2 are obtained, where v2 is the pivot. Then the

environment is updated with e1, which binds to the result of the Split operation

(invoke DLPOsplit function).

Remark 3.2. In the originalMOQA language, we generally assume the pivot is

the first element of the discrete partial order. In our language, the user can specify

any element in the partial order as the pivot. Theoretically, this generalization

does not affect the output random bags and the timing function. The MOQA

runtime system will also check whether v2 is an element of v1. Otherwise the

system will raise an error.

e1 is identifier literal
(e1, σ) ⇓ v1

(e2, σ) ⇓ v2 v2 ∈ v1

(e1 >< e2, σ) ⇓ σ[DLPOsplit(v1, v2)/e1]
[Split]

Similar to the Split operation, the Top and Bot operations are operations

associated to a DLPO type object, and they all update environment bindings for

the target identifier id.
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id is identifier literal
(id, σ) ⇓ v1

(^id, σ) ⇓ σ[DLPOtop(v1)/id]
[Top]

id is identifier literal
(id, σ) ⇓ v1

(~id, σ) ⇓ σ[DLPObot(v1)/id]
[Bot]

The PercM operation can be applied to SLPO type objects. It also updates

the environment binding for the target identifier id.

id is identifier literal
(id, σ) ⇓ v1

(PercM(id), σ) ⇓ σ[SLPOPercM(v1)/id]
[PercM]

As stated earlier,the merge operation is not a standard MOQA operation

but it is introduced here to help implementing Mergesort. It has the following

semantics. The runtime system will check the operands to make sure they are all

in sorted order.

e1 is identifier literal
(e1, σ) ⇓ v1

e2 is identifier literal
(e2, σ) ⇓ v2

(Merge(e1 , e2 ), σ) ⇓ merge(v1, v2)
[Merge]

Depending on the type of the target object, the index operation gets an el-

ement or a component of a LPO. id is evaluated first to get the target object.

Then expression e is evaluated to get the index value v2, and the system will

automatically cast it to an integer. The returned value for this expression is an

element or a component which is placed at position v2 in target object v1.

id is identifier literal
(id, σ) ⇓ v1

(e, σ) ⇓ v2

(id[e], σ) ⇓ v1[v2]
[Index]

Next, the slice operation is an operation associated to DLPO objects. Both

indices e1 and e2 are optional and are evaluated first. The value returned by this

expression is a new DLPO object constructed by slicing the original object v.
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if e1 exists (e1, σ) ⇓ i1 if e2 exists (e1, σ) ⇓ i2 id is identifier literal
(id, σ) ⇓ v

(id[e1 : e2], σ) ⇓ v[i1 : i2]
[Slice]

The assignment rule first validates identifier id existing in the environment,

then it evaluates the right hand side expression e to a value v with possible

modified environment σ2. Finally, the environment is updated with a new binding

from id to value v.

id is identifier literal id ∈ σ (e, σ) ⇓ (v, σ2)

(id = e, σ) ⇓ σ2[v/id]
[Assign]

The indexed assignment rule first evaluates identifier id to get the target

object from the execution environment, then expression e1 is evaluated to get

the index value. Next, the right hand side expression e2 is evaluated and might

change the execution environment to σ2. Finally, the modified environment σ2

is returned.

id is identifier literal
(id, σ) ⇓ v1

(e1, σ) ⇓ i (e2, σ) ⇓ (v2, σ2)

(id[e1] = e2, σ) ⇓ σ2[v1[i] = v2/id]
[IndexedAssign]

There are two types of for loops in MOQA programming. One loops an

integer variable from a smaller value to a bigger value, the other loops from a

bigger value to a smaller value. Informally, the for loops work as follows. When

entering the loop: for id = e1 to/downto e2 do es end, the expression e1 is

evaluated to an integer n1 and the expression e2 is evaluated to an integer n2.

If n1 ≥ n2 (n1 ≤ n2 in downto loop), the loop is terminated and the loop body

is not evaluated. If n1 < n2 (n1 > n2 in downto loop), the body es is executed

n2− n1 (n1− n2 in downto loop) times with id which binds the value n1 + i− 1

(n1− i+ 1 in downto loop) at the ith loop iteration.

Remark 3.3. To enable automated average-case analysis, updates to id inside the

loops are not allowed, and this is generally achieved by our typing rule that only

allows an update assignment to a LPO type object.
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(e1, σ) ⇓ n1
(e2, σ) ⇓ n2
n1 < n2

(es, σ[n1/id]) ⇓ σ2
(for id = n1+1 to e2 do es end, σ2) ⇓ σ3

(for id = e1 to e2 do es end, σ) ⇓ σ3
[For]

(e1, σ) ⇓ n1
(e2, σ) ⇓ n2
n1 > n2

(es, σ[n1/id]) ⇓ σ2
(for id = n1-1 downto e2 do es end, σ2) ⇓ σ3

(for id = e1 downto e2 do es end, σ) ⇓ σ3
[DowntoFor]

The MOQA condition rule first evaluates id to target LPO object, then

evaluates the numeric expression e. Finally it invokes LPO built-in function size

to compare the size of a LPO object with a numeric value. The boolean result is

returned.

⊕ ∈ {>,>=, <,⇐} id is identifier literal
(id, σ) ⇓ v

(e, σ) ⇓ n

( |id| ⊕ e, σ) ⇓ LPOsize(v)⊕ n
[MoqaCond]

The evaluation rules for arithmetic and logic expressions are standard and

similar to other programming languages.

(e1, σ) ⇓ v1
(e2, σ) ⇓ v2

⊕ ∈ {+,−, ∗, /,%}

( e1⊕ e2 , σ) ⇓ v1⊕ v2
[ArithExpr]

(e1, σ) ⇓ v1
(e2, σ) ⇓ v2

⊕ ∈ {and, or, xor}

( e1⊕ e2 , σ) ⇓ v1⊕ v2
[LogicExpr]

(e, σ) ⇓ false

( not e, σ) ⇓ true

(e, σ) ⇓ true

( not e, σ) ⇓ false
[Not]
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The if expression evaluation rules are straightforward. The predicate is eval-

uated first, and depending on its boolean value, the then branch or the optional

else branch is executed.

(e, σ) ⇓ true (es, σ) ⇓ (v, σ1)

(if e do es end, σ) ⇓ (v, σ1)

(e, σ) ⇓ false

(if e do es end, σ) ⇓ σ
[If-then]

(e, σ) ⇓ true (e1, σ) ⇓ (v, σ1)

(if e do e1 else do e2 end, σ) ⇓ (v, σ1)

(e, σ) ⇓ false (e2, σ) ⇓ (v, σ1)

(if e do e1 else do e2 end, σ) ⇓ (v, σ1)
[If-then-else]

Function definitions are not evaluated. They are stored as a closure in execu-

tion environment, which associates to the function name. The function body is

evaluated when the function is invoked with actual parameters.

Definition 3.2. A closure consists of a mapping from a sequence of variables

(the input variables) to an expression (the function body) and an environment

where the function is defined. We write a closure in our execution environment

as follows:

< (p1, · · · , pn) 7→ exp, σ >

So, we define a function in environment σ, its input formal parameters are

p1, · · · , pn and its function body is exp. We can associate a closure to a function

name in the execution environment.

Example 3.4. σ[< (p) 7→ exp, σ > /qsort] means we have a function named

qsort in environment σ. qsort is also defined in environment σ, it has one input

variable p, and the function body is exp.

(def id ( p1, · · · , pn ) es end, σ) ⇓ σ[< (p1, · · · , pn) 7→ es, σ > /id]
[DefFun]

Remark 3.4. In our execution environment we treat functions as first-class values,

similar to other dynamic programming languages, such as Python or JavaScript.
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As a result, we should be able to define higher-order functions (functions taking

other functions as input or output) [46], but in the current status of MOQA

research, those functions are not allowed. Also nested function definitions are

not allowed in our context.

To facilitate automated average-case analysis, currently only two types of

function definition are allowed (see Section 3.3.3.3 for details).

The rule for function call is also similar to other programming languages. We

begin by evaluating the receiver id to get the associated function definition closure

from environment. After making sure the number of actual parameters are equal

to the number of formal parameters, we then evaluate the actual parameters a1

through to an in order to get their values. Finally, we evaluate the function body

with possible modified environment σ2, that has bindings from formal parameters

to actual parameters. Whatever is returned is the value of the function call.

id is identifier literal
(id, σ) ⇓< (p1, · · · , pn) 7→ body, σ2 >

k = n

(e1, σ) ⇓ a1 · · · (ek, σ) ⇓ ak
(body, σ2[a1/p1, · · · , an/pn]) ⇓ v

(id ( e1, · · · , ek ), σ) ⇓ v
[FunctionCall]

The remaining three expressions are straightforward, we list them below:

(e, σ) ⇓ v

(return e, σ) ⇓ stop(v)
[Return]

(e, σ) ⇓ v

(print( e ), σ) ⇓ print(v)
[Print]

(e, σ) ⇓ v

(show( e ), σ) ⇓ LPOshow(v)
[Show]

Remark 3.5. In the return expression, there is a special function stop. Remember

that after a return statement we do not want to continue executing the statements

that come after it. We want to jump back to the caller. We use this helper func-

tion to indicate that. In a real implementation, it is implemented with exceptions

(see Section 4.7).
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The show expression, invokes a LPO built-in method show, while the print

expression uses Python’s built-in method print.

3.5.2 MOQA Analysis Semantics

As stated earlier, there are two semantics for MOQA programs, one used in

execution mode, the other used in analysis mode. In the following, we discuss

the MOQA analysis semantics. When the MOQA interpreter analyses the

average-case complexity of a user defined function, it can be viewed as an abstract

evaluation of the function using our analysis semantics.

The main differences between analysis semantics and execution semantics are

as follows:

• Execution semantics is applied to the whole program, while analysis mode

is only applied to expressions or statements that are inside a function defini-

tion. That is to say, analysis semantics are used to automatically calculate

average cost for a user defined function in aMOQA program.

• Execution semantics uses MOQA operations at the level of a single LPO

object, while analysis semantics uses operations at the level of random bags.

• Environment in execution mode maps identifiers to their values, where the

value type could be a primitive type, a LPO type or a function closure. In

analysis mode, environment maps identifiers to objects of a primitive type

or of a random bag type. Random bag objects are used to help calculate

cost for a particularMOQA operation (using Theorem 2.4).

• Besides the environment, analysis semantics also keeps track of how much

cost has been made and the value is stored in a special variable ǫ.

• Because the input parameters for a user defined function are always a dis-

crete partial order together with an optional number, we specify the size

of discrete partial order using N and an optional number, denoting for

instance the rank of an element, using K.

Remark 3.6. The parameter N and K are provided by the user to the interpreter

analyzer at command line.
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Analysis rules in analysis semantics also use logic rules of inference, quite

similar to execution semantics’ rules. We also use σ to represent our environment,

and configurations are changed from a pair to a triple, e.g. (e, σ, ǫ).

(e, σ, ǫ) ⇓ (v, σ[val/id], ǫ′) can be read as: in the analysis environment σ

with accumulated ǫ number of comparisons, expression e evaluates to a value

v, and has a side-effect that changes the environment to σ[val/id]. The number

of comparisons made so far after evaluation is ǫ′. Notice that in the configuration

returned, the first two parts are both optional, but the last one, ǫ′, is required.

In the following, we give formal operational semantics for the analysis of

MOQA programs in analysis mode. This describes how the interpreter analyzer

analysis average-case cost for a user defined function. We refer the reader to

Section 4.8 for details of the implementation for these rules.

As before, we use TY PEname to represent helper functions. Analysis mode

uses a different runtime library. This time, the input and output for the functions

are both random bags, e.g.

DLPOsplit(R(∆3)) 7→ {(R(∨3), 1), (R(S3), 2), (R(∧3), 1)}

Recall from Theorem 2.4, given a random bag: R = {(R1, K1), . . . , (Rn, Kn)},

we use following equation to derive the average-case cost for an operation P :

T P (R) =
n

∑

i=1

Probi × T P (Ri)

where Probi = Prob[F ∈ Ri] =
Ki|Ri|∑n
i=1 Ki|Ri|

= Ki|Ri|
|R| . And Probi can be viewed as

the probability associated to the ith random structure.

In our implementation, this probability is not calculated on the fly. To

reduce overhead, once a random bag is created. Each random structure will

be tagged with its probability. Thus the random bag is extended to : R =

{(R1, K1, P1), . . . , (Rn, Kn, Pn)} where Pi is ith random structure’s probability.

We then use the same equation to derive the average-cost of an operation over a

random bag.

Let’s start with the rule for defining a function. It is the entry point to analyse

the average-cost of a user defined function.
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Remark 3.7. DLPOcreate is a library function used to create a random bag with

a single random structure R(∆N ).

set ǫ = 0 (es, σ[DLPOcreate(N )/p], ǫ) ⇓ (v, ǫ′)

(def id ( p ) es end, σ, ǫ) ⇓ (v, ǫ′)
[DefFun-One]

set ǫ = 0 (es, σ[DLPOcreate(N )/p1,K/p2], ǫ) ⇓ (v, ǫ′)

(def id ( p1, p2 ) es end, σ, ǫ) ⇓ (v, ǫ′)
[DefFun-Two]

In both type of function definitions, we first reset ǫ before evaluating the

average-case cost for this function. Then the function body es is evaluated under

a new environment, where formal parameter p1 binds to random structure R(∆N )

and p2 binds to number K if p2 exists. Finally, the function body es is evaluated

to a value v with total number of comparisons ǫ′.

Most rules in analysis semantics are quite close to execution semantics rules,

but with additional parameter ǫ. We first list all the rules that do not change

this additional parameter, that is to say, the language constructs that do not

contribute to the number of comparisons.

b ∈ {true, false}

(b, σ, ǫ) ⇓ (b, ǫ)
[Bool]

n is a number literal
(n, σ, ǫ) ⇓ (n, ǫ)

[Num]

s is a string literal

(s, σ, ǫ) ⇓ (s, ǫ)
[String]

id is identifier literal
id ∈ σ

(id, σ, ǫ) ⇓ (σ(id), ǫ)
[Var]

The rules for constants and identifiers are not making additional comparisons,

thus ǫ is not changed in these rules.

The expression list simply passes environment σ and accumulates average-case
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cost ǫ from the first expression to the last one.

(e1, σ, ǫ) ⇓ (v1, σ1, ǫ1)
(e2, σ1, ǫ1) ⇓ (v2, σ2, ǫ2)

...
(en, σn−1, ǫn−1) ⇓ (vn, σn, ǫn)

(e1e2...en, σ, ǫ) ⇓ (vn, σn, ǫn)
[Sequence]

Most rules do not directly contribute to the number of comparisons. In-

stead, they are dependent on evaluating their sub-expressions and keeping track

of changes on ǫ. In comparison with execution semantics, these rules simply add

an additional parameter ǫ to their configurations and recursively update their

values.

(e, σ, ǫ) ⇓ (v, ǫ′)

(let id = e, σ, ǫ) ⇓ (σ[v/id], ǫ′)
[Let]

(e, σ, ǫ1) ⇓ (v2, ǫ2)
id is identifier literal
(id, σ, ǫ) ⇓ (v1, ǫ1)

(id[e], σ, ǫ) ⇓ (v1[v2], ǫ2)
[Index]

if e1 exists
(e1, σ, ǫ) ⇓ (i1, ǫ1)

if e2 exists
(e1, σ, ǫ1) ⇓ (i2, ǫ2)

id is identifier literal
(id, σ, ǫ2) ⇓ (v, ǫ3)

(id[e1 : e2], σ, ǫ) ⇓ (v[i1 : i2], ǫ3)
[Slice]

id is identifier literal id ∈ σ (e, σ, ǫ) ⇓ (v, σ2, ǫ1)

(id = e, σ, ǫ) ⇓ (σ2[v/id], ǫ1)
[Assign]

id is identifier literal
(id, σ, ǫ) ⇓ (v1, ǫ1)

(e1, σ, ǫ1) ⇓ (i, ǫ2) (e2, σ, ǫ2) ⇓ (v2, σ2, ǫ3)

(id[e1] = e2, σ, ǫ) ⇓ (σ2[v1[i] = v2/id], ǫ3)
[IndexedAssign]
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(e1, σ, ǫ) ⇓ (v1, ǫ)
(e2, σ, ǫ) ⇓ (v2, ǫ)
⊕ ∈ {+,−, ∗, /,%}

( e1⊕ e2 , σ, ǫ) ⇓ (v1⊕ v2, ǫ)
[ArithExpr]

(e1, σ, ǫ) ⇓ (v1, ǫ1)
(e2, σ, ǫ1) ⇓ (v2, ǫ2)
⊕ ∈ {and, or, xor}

( e1⊕ e2 , σ, ǫ) ⇓ (v1⊕ v2, ǫ2)
[LogicExpr]

(e, σ, ǫ) ⇓ (false, ǫ1)

( not e, σ, ǫ) ⇓ (true, ǫ1)

(e, σ, ǫ) ⇓ true, ǫ1

( not e, σ, ǫ) ⇓ (false, ǫ1)
[Not]

(e, σ, ǫ) ⇓ (v, ǫ1)

(return e, σ, ǫ) ⇓ (stop(v), ǫ1)
[Return]

(e, σ, ǫ) ⇓ (v, ǫ1)

(print( e ), σ, ǫ) ⇓ (print(v), ǫ1)
[Print]

(e, σ, ǫ) ⇓ (v, ǫ1)

(show( e ), σ, ǫ) ⇓ (LPOshow(v), ǫ1)
[Show]

In theMOQA condition rule, besides comparisons from sub-expressions, the

expression itself also contributes one comparison. Thus the final result is the

accumulated comparisons (ǫ2) plus one.

⊕ ∈ {>,>=, <,⇐} id is identifier literal
(id, σ, ǫ) ⇓ (v, ǫ1)

(e, σ, ǫ1) ⇓ (n, ǫ2)

( |id| ⊕ e, σ, ǫ) ⇓ (LPOsize(v)⊕ n, ǫ2 + 1)
[MoqaCond]

The comparisons contributed by MOQA expressions are defined by timing

functions associated to eachMOQA basic operations (see Chapter 2). We refer

to these timing functions as T name, where name is the operation name. All

timing functions take a random bag as input and produce the average number of

comparisons needed after applying the operation to the input random bag. e.g.

T split(R(∆N )) = N − 1.
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(e1, σ, ǫ) ⇓ (v1, σ1, ǫ1) (e2, σ1, ǫ1) ⇓ (v2, σ2, ǫ2)

(e1 <> e2, σ, ǫ) ⇓ (LPOproduct(v1, v2), σ2, ǫ2 + T product(v1, v2))
[Product]

e1 is identifier literal
(e1, σ, ǫ) ⇓ (v1, ǫ1)

(e2, σ, ǫ1) ⇓ (v2, ǫ2)

(e1 >< e2, σ, ǫ) ⇓ (σ[DLPOsplit(v1, v2)/e1], ǫ2 + T split(v1))
[Split]

id is identifier literal
(id, σ, ǫ) ⇓ (v1, ǫ1)

(^id, σ, ǫ) ⇓ (σ[DLPOtop(v1)/id], ǫ1 + T top(v1))
[Top]

id is identifier literal
(id, σ, ǫ) ⇓ (v1, ǫ1)

(~id, σ, ǫ) ⇓ (σ[DLPObot(v1)/id], ǫ1 + T bot(v1))
[Bot]

id is identifier literal
(id, σ, ǫ) ⇓ (v1, ǫ1)

(PercM(id), σ, ǫ) ⇓ (σ[SLPOPercM(v1)/id], ǫ1 + T PercM(v1))
[PercM]

To analyse for-loops inMOQA programs, we accumulate the average-case

cost in the loop body for each iteration. Notice that we do not count loop

conditional checking for consistency with the originalMOQA theory.

(e1, σ, ǫ) ⇓ (n1, ǫ1)
(e2, σ, ǫ1) ⇓ (n2, ǫ2)

n1 < n2
(es, σ[n1/id], ǫ2) ⇓ (σ2, ǫ3)

(for id = n1+1 to e2 do es end, σ2, ǫ3) ⇓ (σ3, ǫ4)

(for id = e1 to e2 do es end, σ, ǫ) ⇓ (σ3, ǫ4)
[For]
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(e1, σ, ǫ) ⇓ (n1, ǫ1)
(e2, σ, ǫ1) ⇓ (n2, ǫ2)

n1 > n2
(es, σ[n1/id], ǫ2) ⇓ (σ2, ǫ3)

(for id = n1-1 downto e2 do es end, σ2, ǫ3) ⇓ (σ3, ǫ4)

(for id = e1 downto e2 do es end, σ, ǫ) ⇓ (σ3, ǫ4)
[DowntoFor]

The if-expression rule is the most complicated rule in our analysis seman-

tics. To calculate the average-case cost, for a random bag used in an if expression

we need to know the probability that the predicate evaluates to true. In other

words, how many random structures fall into the then branch, and how many

belongs to the else branch.

InMOQA programming, the sub-expression e must be aMOQA conditional

expression. In analysis mode, it involves comparing the size of a random structure

with a numeric number. Here we introduce a helper function filter. It takes a

MOQA conditional expression e and a environment σ. The helper function is

used to separate the random structures in the random bag into two groups, where

one group contains random structures that satisfy predicate e, the other group

contains structures that do not satisfy predicate e.

Consider a random bag R = {(R1, K1, P1), . . . , (Rn, Kn, Pn)} involved in ex-

pression e. After filter(e, σ), the result will be (X,Rt, Rf) where X is the identi-

fier which binds to the random bag R, Rt is a random bag containing all random

structures satisfying predicate e, Rf consists of random structures that do not

satisfy predicate e.

Example 3.5. Given a random bag: R = {(∅, 1, 1
3
), (•, 2, 1

3
), (••, 1, 1

3
)} bound to

variable X .

The first random structure is an empty structure, the second structure is a

single node, the last structure is a two node discrete random structure R(∆2).

Every random structure has a probability 1
3
.

If boolean condition e is if |X| <= 1 do, then filter(e, σ) = (X,Rt, Rf ),

where Rt = {(∅, 1, 1
3
), (•, 2, 1

3
)}, Rf = {(••, 1, 1

3
)}. In this example, we can see

that the probability to execute the then-branch is 1
3
+ 1

3
= 2

3
, probability to

execute the else-branch is 1
3
.
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To derive the average-case cost for an if-expression, we need to combine

the cost both in then-branch and else-branch, together with their probabilities.

We accomplish this by the following steps:

• Rebind X to Rt, evaluating the then-branch in the new environment.

• In case then-branch modifies Rt, bind X to current Rt (similar tricks are

used in type checking), rebind X to Rf , evaluating the else-branch in the

new environment.

• Rebind X to the union of current Rt and Rf .

• The final returned random bag should unite the random bags produced by

both branches, and the returned final cost is the accumulate cost ǫ plus one

(in order to count in the comparison made by the if-predicate ).

Each random structure has a probability associated with it. By limiting ran-

dom structures involved in evaluating both branches, we derive the cost for each

branch separately. After evaluating both branches, we restore random structures

(random bag) by rebinding it to X , and continue with the other evaluation steps.

Remark 3.8. If there is no else-branch, just skip the second step.

The formal semantics rules for if-expressions are shown below. We present

an application of this expression in the Quickselect algorithm (see Section 5.3).

filter(e, σ) = (X,Rt, Rf) (es, σ[Rt/X ], ǫ) ⇓ (v, σ1, ǫ1)

(if e do es end, σ, ǫ) ⇓ (v, σ1[σ1[X ] ∪Rf/X ], ǫ1 + 1)
[If-then]

filter(e, σ) = (X,Rt, Rf )
(e1, σ[R

t/X ], ǫ) ⇓ (v1, σ1, ǫ1)
(e2, σ1[R

f/X,Rt/ X ], ǫ1) ⇓ (v2, σ2, ǫ2) [If-then-else]

(if e do e1 else do e2 end, σ, ǫ) ⇓ (v1 ∪ v2, σ2[σ2[X ] ∪ σ2[ X ]/X ], ǫ2 + 1)

The last rule is a function call. Recall that the entry point to time analysis is

a function definition rule. The user needs to provide N , the size for the initial

discrete partial order, and an optional number K.

95



In our implementation, the analyzer is implemented by a procedure called

MOQAprocess, then MOQAprocess(fun,N ,K) produces average-case cost for a

function fun with numbers N and K.

Theorem 3.1. Given a function call fun(X, k), where X is a random bag R =

{(R1, K1, P1), . . . , (Rn, Kn, Pn)}. The average-case cost for this function call is:

T (fun(X, k)) =

n
∑

i=1

Pi ×MOQAprocess(fun, |Ri|, k)

where |Ri| is the size of random stricture Ri.

Remark 3.9. When the function only has one input, just ignore the second pa-

rameter k.

To help present our semantics rule, we introduce a helper function def which

maps function name to its definition. In our interpreter, it is implemented by

first walking over the abstract syntax tree to obtain all the mappings from the

function name to the function definition.

(e, σ, ǫ) ⇓ (a, ǫ1)
a = {(R1, K1, P1), . . . , (Rn, Kn, Pn)}

MOQAprocess(def(a),N = |R1|) ⇓ (v1, ǫ2)
ǫ1+ = P1 ∗ ǫ2

...
MOQAprocess(def(a),N = |Rn|) ⇓ (vn, ǫn+1)

ǫ1+ = Pn ∗ ǫn+1

(id ( e ), σ, ǫ) ⇓ (∪ni=1vi, ǫ1)
[FunctionCall-One]

(e1, σ, ǫ) ⇓ (a, ǫ1)
(e2, σ, ǫ1) ⇓ (b, ǫ2)

a = {(R1, K1, P1), . . . , (Rn, Kn, Pn)}
MOQAprocess(def(a),N = |R1|,K = b) ⇓ (v1, ǫ3)

ǫ2+ = P1 ∗ ǫ3
...

MOQAprocess(def(a),N = |Rn|,K = b) ⇓ (vn, ǫn+2)
ǫ2+ = Pn ∗ ǫn+2

(id ( e1, e2 ), σ, ǫ) ⇓ (∪ni=1vi, ǫ2)
[FunctionCall-Two]
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3.6 MOQA Programming Restrictions

As stated earlier, there are several restrictions toMOQA programming. We list

these below:

• Only two types of function definitions are allowed.

• Inside a function definition, LPO builder is not available, that is to say,

there is only one partial order. The programmer uses MOQA basic op-

erations together with restricted control flows to define an algorithm that

manipulates the initial partial order.

• No nested function definitions are allowed.

• Higher order functions are not supported.

• User defined type is not available.

• Programming with restricted for loops and if expression.

• No while construct.

• Because no new partial order is created inside a function, recursive call is

over parallel or series components of the initial partial order. Formally this

is called parallel-recursion or series-recursion, and is defined in [85].

It may seem like a lot of restrictions, but we will show later that most of

the sorting and searching algorithms can be implemented by our language. Fur-

thermore, it supports accurate automated average-case analysis. We would like

to continue expanding the usability and application domain for our language in

future research.

3.7 Summary

In this chapter we presented theMOQA language specification in a formal way.

The design of the language stays close in spirit to the normal imperative lan-

guage. In addition, by adapting clear and expressive syntax, our language is
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more concise and elegant compared with the originalMOQA library implemen-

tation [107]. Based on the design of two semantics, we propose a new approach

to automated average-case analysis differing from our old approach [48]. The

analysis is effective and easier. All the formal work we presented here lays out

a solid foundation for practical implementation, and makes it possible to be im-

plemented in any programming language. In Chapter 4 we provide a sample

prototype implementation using Python.
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In this chapter, we look at the MOQA language from a practical point of

view, and its associated interpreter implementation details and architecture are

discussed. In particular, we focus on how it is implemented in the Python Lex-

Yacc framework. The work presented in this section depends on Python language

features, but implementing theMOQA language with other programming lan-

guages should be similar. All the implementations should follow the formal spec-

ification we gave in Chapter 3.

At the beginning, in Section 4.1, we give a brief introduction on Python

Lex-Yacc and general parsing techniques. Next, in Section 4.2, theMOQA in-

terpreter architecture is discussed and the role of each component is explained.

In the following two sections, we present how the front-end of the interpreter is

implemented. The focus for these two sections is to convert a source code to an

internal abstract syntax tree (AST) representation. After that, the environment

implementation is discussed in Section 4.5. Based on the environment implemen-

tation, the remaining three components are discussed in the following sections.

They are mainly focused on converting the formal rules we defined in Chapter 3

to real code and on how automated time analysis is achieved with the help of

dynamic programming. Finally, we present a short summary in Section 4.9.

4.1 Python Lex-Yacc

To implement an interpreter, the parser is one of the most important components

in the overall structure. The job of a parser is to check for syntax correctness in

the input program, and to build an abstract syntax tree out of the input tokens.

Given a language grammar specification to the parser, it needs to determine if

and how the input tokens will be derived from the start symbol of the language.

Based on the ways to parse input tokens, there are generally two major parsing

approaches [13, 15]:

• Top-down parsing: begin with the start symbol and apply BNF rules by

replacing left-hand side non-terminal to right-hand side strings until one

arrives at the input string. Generally, it generates a leftmost derivation.

• Bottom-up parsing: starts with the input string, and tries to reduce the in-
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put string back to the start symbol. It uses BNF rules in reverse order, that

is it replaces right-hand side strings to their left-hand side non-terminal.

Generally, it generates a rightmost derivation (usually in reverse).

LL parsers and recursive-descent parsers are both examples of top-down parsers,

while LR, LALR parsers and CYK parsers are examples of bottom-up parsers.

For efficiency and maintenance, sometimes these parsers are hand written, e.g.

GCC [2], but there are parser generators. These could generate a parser if we

provided grammar specifications to them. Most of time, these generated parsers

are good enough (Ruby uses a parser generator [6]).

ANTLR [75] is one example of parser generator. It can be used in several

languages (such as C, Python, Java etc). It uses a modified LL parsing algorithm

called LL(*). Because of the drawbacks with LL parsing, the user has to rewrite

their grammar to eliminate left recursion in the BNF rules.

Besides ANTLR, there are traditional C languages with Lex-Yacc tool com-

bination to implement the interpreter or compiler. Lex is used to generate Lexer,

while Yacc is used to generate the LALR parser. In our project, we use Python

Lex-Yacc or in short PLY. It is an implementation of Lex and Yacc parsing tools

for Python [4]. Unlike the original C version, it doesn’t need a separate explicit

parser generation step. By heavily relying on reflection, it allows on-the-fly parser

generation, thus enabling a shorter implementation to testing cycles and suits our

prototype creation demands.

4.2 MOQA Interpreter Architecture

In Figure 4.1, we show the architecture of the MOQA interpreter. Similar

with other interpreters, it consists of several standard components: a lexer, a

parser, and a typechecker. Different from others, instead of a single evaluator,

the MOQA interpreter has two engines, which implement the two execution

modes for aMOQA program.

The first three components, lexer, parser and typechecker are generally called

front-end in a compiler or interpreter system. The main job for this part is to

produce a verified and concise tree based representation of the input program,
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and it is usually called Abstract Syntax Tree (AST).

In a general compiler architecture, there is also a part called back-end. The

back-end is used to perform several code analyses and optimizations before finally

generating code int the target language. For a common interpreter, the back-end

is used to directly execute the program by recursive descent interpreting the AST

generated by the front-end. Our interpreter not only provides direct program

execution, it also provides an automated average-case analysis mode by abstract

interpreting aMOQA program based onMOQA theory.

Source Code

Lexer

Parser

TypeChecker

Execution Engine Analysis Engine

Tokens

Abstract Syntax Tree

Type Checked AST

2

34

1

5

LPO

T qsort(△100) = 781.516

T isort(△100) = 2664.62

Analysis library

(moqa_sppo.py)

AST Module

(moqa_ast.py)

Runtime library

(moqa_runtime.py)

Figure 4.1: MOQA Interpreter Architecture

In our implementation, we adapt the method suggested by Matthieu at the
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Python Conference 2010 (PyCon 2010) [14]. The decomposition of an interpreter

is achieved by the Python decorator feature. As a result, our implementation has

a clear separation between different interpreter components. Each component in

the architecture is implemented by a related Python module (simply a .py file).

Here we list the role for each component in our interpreter architecture and

their corresponding Python module implementations.

• Lexer takes a MOQA source code and transforms the sequence of char-

acters into a sequence of tokens, where a token is specified using a regular

expression. The corresponding Python module is moqa_tokens.py.

• Parser performs context-free syntax analysis to the input sequence of tokens.

It identifies the grammatical structure of an input program by building an

abstract syntax tree. All the related tree classes are defined in the AST

module (moqa_ast.py). The corresponding Python module for the parser

is moqa_grammar.py.

• Typechecker performs type checking to the input program by a recursive

descent type check of the AST. Using the typing rules we defined earlier, it

prevents common type errors, such as to apply theMOQA operations on

a non-LPO object. The output after this step is a type checked abstract

syntax tree. The corresponding Python module is moqa_typecheck.py.

• The execution engine behaves similar to an evaluator, relying on theMOQA

runtime library (moqa_runtime.py), it executes statements and expressions

in a program directly. The corresponding Python module is moqa_interp.py.

• The analysis engine is a special component in the MOQA interpreter.

Based on theMOQA analysis library (moqa_sppo.py), it abstractly inter-

pretsMOQA programs in terms of basicMOQA operations and random

bags. It keeps tracking data structures and their associated probabilities.

Timing functions defined in basicMOQA operations are used to help the

automated average-case analysis of input programs. The corresponding

Python module is moqa_analyzer.py.
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4.3 Lexer

In the following, we define four tokens in the MOQA language. These are

discussed in the code fragment below. As expected, tokens are specified using

regular expressions. Following naming conventions in PLY, function names start

with t, followed by the token name. For example, token NUMBER is defined by

function t_NUMBER. For simple tokens, we can even write one line of code by just

providing their regular expressions (see Listing 4.1 lines 11−12). Other tokens are

recognized by functions and the token values can be manipulated before returning

to the caller, for example getting rid of " for a string.

Listing 4.1: MOQA Language Lexer Fragment

1 def t_NUMBER (t):

2 r’ -?[0 -9]+(\.[0 -9]*)? ’

3 t.value = float(t.value)

4 return t

5

6 def t_STRING (t):

7 r’"([^"\\]|(\\.))*" ’

8 t.value = t.value [1:-1] # strip off "

9 return t

10

11 t_GT = r’>’

12 t_GE = r’>=’

Here we only list a small fraction of the MOQA lexer. We refer the reader

to Appendix A Listing A.1 for full details.

4.4 Parser

In module moqa grammar.py, each grammar rule we defined in Section 3.3.5 is

implemented by one or several corresponding functions. The job for the parser is

to produce an abstract syntax tree for a validMOQA program or to reject it if
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there are any syntax errors.

makegraphicaltree

ID
children

Node

AssignExprNode

IdentifierNode

NumNode SliceNodeIfNode

LetExprNode ReturnExprNodeOpNode ForNode

ProgramNodeIndexNodeLPONode DownForNode

ElementNode FuncUseNodeBoolNodeFuncDefNode

MoqaOpNode

Figure 4.2: MOQA abstract syntax tree class hierarchy

In Figure 4.2, we show the class hierarchy of the abstract syntax tree module.

All the classes are implemented in module moqa_ast.py. The core class of AST

module is the Node class. It is simply a container for a list of children nodes with

a unique ID for each object. The remaining classes are specialized node classes.

They all extend the base class Node. Different subclasses represent different types

of code fragments.

The abstract syntax tree module provides a graphical representation of an

AST by employing Graphviz [9] software. We access Graphviz by using its python

binding pydot [10].

Recall from Section 3.2.4.2, that the user can provide a -D argument to our
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Figure 4.3: Abstract syntax tree forMOQA Quicksort

interpreter. In this situation, the interpreter will output an AST for the input

program without evaluating it. This mode is helpful when we debug ourMOQA

program for syntax errors or it can be used to help us identify bugs resident in our

interpreter. In Figure 4.3, we show an example abstract syntax tree forMOQA

Quicksort.

It can be seen in Figure 4.3, that the source code contains only one function

definition. Thus the program is made by one element node, which is a function

definition. In the Quicksort function definition, its formal parameter is X. The

function consists of six expressions: one base case conditional checking, one let

pivot binding, one MOQA Split function call, followed by two recursive calls

and one return expression.

We use several examples to show how to translate our grammar rules defined

in Section 3.3.5 to real PLY Python codes. Recall the let expression grammar

rule:

expr → let IDENTIFIER = expr
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Listing 4.2: Let expression grammar rule in PLY

1 # expr -> let Identifier = expr ;

2 def p_expr_let (p):

3 ’expr : LET IDENTIFIER ASSIGN expr ’

4 idf = moqa_ast .IdentifierNode(p[2])

5 p[0] = moqa_ast .LetExprNode ([idf , p[4]])

Here we define a function p_expr_let for the let expression rule (see List-

ing 4.2). We follow the general naming convention in PLY: a function name is

made with a list of words and joined by the separator . Function names start-

ing with p, indicates that is a parse function. Next, followed by the left-hand

side non-terminal, in our example is the word expr. Finally, one or more words

represent the right-hand side strings or their meaning. In our example this is the

word let.

In a parsing function (see e.g. lines 2-5), the first line is always a docstring

showing which grammar rule this function is implemented for. In the body of

the function, a list-like parameter p is used to help construct the abstract syntax

tree. p[0] corresponds to the value of the left-hand side nonterminal (e.g. expr),

that is the returned parse tree. p[1] is the next symbol in the rule, etc.

For our example, a let-expression node consists of two components: one

identifier node, one sub-expression node. We construct the LetExprNode by first

building an IdentifierNode with value in p[2], then combining it with whatever

structure the sub-tree p[4] has, to construct the returned parse tree. Notice that

useless terminals are discarded, e.g. LET, ASSIGN.

As a second example, theMOQA binary operation rule, is shown below. The

MoqaOpNode constructor needs two arguments. The first one is aMOQA function

name, the second argument is a list of operands for thatMOQA function.

moqaExpr → expr <> expr | expr >< expr

Listing 4.3: MOQA binary operation rule in PLY

1 # moqaExpr -> expr op expr
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2 def p_moqa_expr_binop(p):

3 ’’’

4 moqaExpr : expr PRODUCT expr

5 | expr SPLIT expr

6 ’’’

7 p[0] = moqa_ast .MoqaOpNode (p[2], [p[1], p[3]])

During parsing, simple shift-reduce conflicts might occur [13]. We solved these

problems by precedence rules. Here we only scratch the surface of our parser. The

details of the implementation are shown in Appendix A Listing A.2.

4.5 Environment Implementation

In our implementation, the environment is implemented as chained environments.

Each environment is a tuple: (parent-pointer, {name:value}). The first part

is a reference to the parent environment. The second part is a dictionary that

maps each variable name to its value in the current scope. The outer-most envi-

ronment in our source code is called “global environment”. It has no parent envi-

ronment, thus parent-pointer=None. Upon a function call, a new environment

is created. Its parent is the current environment. The created new environment

will bind each formal parameter with its corresponding actual parameter value.

The function body will be evaluated in the new environment.

For our implementation, there are three specific environments. The exact

meaning for their dictionary values are different:

• Type environment: used by the type checker, maps an identifier to its

associated type.

• Execution environment: employed by the execution engine, keeps track of

object values for a specific identifier.

• Analysis environment: maps an identifier to its random bag. It helps the

analysis engine to keep track of random bags, thus enabling automated

average-case analysis.
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Remark 4.1. In our implementation, all these environments share the same im-

plementation, because of dynamic features of Python.

Setting a name-value binding in our environment is simple. Say we have a

environment env, then (env[1])[x]=v binds identifier x with value v, env[1]

references the current scope’s name-value dictionary.

Besides the set operation, the environment implementation also supports two

other basic operations: “look up a value for a particular variable name”, “up-

date a binding to a particular variable”. Both functions try to first look up the

identifier in the current scope. If the function cannot find the target name, it

recursively searches for the target name in the parent environment. The details

of environment implementation can be found in Appendix A Listing A.3.

4.6 Type Checker

As stated earlier, we implemented our interpreter in a decomposition approach.

Each component is resident in a separate module file. This approach is achieved

by using Python decorator. Recall in a classical C++ or Java interpreter, the

codes for semantics analysis and evaluation will be scattered over different node

types of AST classes. All the logic for either evaluating or type checking a tree

node will be in the same AST module file. We separate codes for evaluation and

type checking into different modules with a decorator-based solution.

Listing 4.4: Python decorator used for code decomposition

1 # To add a method to a given class ( taken from Matthieu )

2 def addToClass (cls):

3 ’’’

4 Reference : AST . py v0 .2 , 2008 -2009 , Matthieu Amiguet

5 ’’’

6 def decorator (func ):

7 setattr (cls ,func.__name__ ,func)

8 return func

9 return decorator

109



This solution was first proposed by Matthieu at Python Conference 2010

(PyCon 2010) [14]. It is very simple but quite powerful. A simple decorator is

suggested and shown in Listing 4.4.

A decorator is based on the fact that functions in Python can be passed

around similarly to any other object. This decorator allows us to easily add a

new method to a class from outside the class definition, e.g. from another module.

Thus it enables us to put different semantic and evaluation logics into different

modules.

To show how the decorator works, we present the implementation of two type

checking rules in Listing 4.5, which is extracted from the moqa_typecheck.py

module. The codes implement type checking for the let expression and the LPO

builder expression. The environment in this setting is a type environment.

Remark 4.2. In our AST implementation, both the LPO builder expression and

the let-expression are presented by LetExprNode. They differ by their right-

hand side value. In a LPO builder expression, the right-hand side is a LPONode.

Listing 4.5: MOQA type checker: Let expression rule

1 # LPONode #

2 @addToClass (moqa_ast .LPONode )

3 def typecheck (self , env):

4 return Types.DLPO

5

6 # LetExprNode #

7 @addToClass (moqa_ast .LetExprNode )

8 def typecheck (self , env):

9 vname = self.children [0]

10 rhs = self.children [1]

11 (env [1])[ vname.tok] = rhs.typecheck (env)

12 return Types.Object

Notice that there is an extra line before each function definition. All these

functions are called “decorated functions”. They all decorated by the addToClass

decorator. The name inside parentheses is a class name. It specifies which class
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the decorated method is attached to. In our case, we add a typecheck method

to both moqa_ast.LPONode class and moqa_ast.LetExprNode class.

The code we present here exactly maps the typing rules defined in Sec-

tion 3.4.2. The remaining typing rules can be implemented in a similar manner.

Most of them are simple and straight forward. By recursive descent type check-

ing an AST, we can have a valid and type checked AST. Because our focus is

automated average-case analysis, we won’t cover them in full details.

4.7 Execution Engine

The execution engine evaluates a MOQA program and executes the program

directly based on a runtime library (moqa_runtime.py). This component imple-

ments the execution semantics we defined in Section 3.5.1.

The core of this component implementation lies in the runtime library. This

library implements all basic MOQA operations and LPO data structures. We

start by describing the design and implementation of this runtime library.

There are three classes in ourMOQA runtime library implementation:

• Node: A class that represents the most basic component stored in a NodeSet.

Each Node has a label, which is the user-supplied information about this

Node. It also stores the sets of nodes above and below it.

• NodeSet: A class that represents a collection of Node objects with an order-

ing between these nodes. Each NodeSet is a partial order. No duplicates

are allowed in a NodeSet, which follows MOQA theory. A NodeSet is

implemented by an OrderedSet.

• LPO: A class that represents a labelled partial order, which contains a

NodeSet that stores all Nodes in this LPO and a components list that stores

all LPO components (only works for DLPO and SLPOs that are the result

of split, product, top, bot, PercM).

Remark 4.3. We do not have separate classes for DLPO, SLPO or PLPO types.

They all shares the same implementation class LPO. To identify a specific LPO

type, we have a type attribute in the LPO class to tag the type for an LPO object.
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During the execution of aMOQA program, the type attribute for one LPO object

might change, e.g. after a split, the object should change its type attribute from

DLPO to SLPO.

AllMOQA operations are defined as a function outside any class definition.

These operations are attached to a LPO object dynamically based on LPO type

attribute, e.g. DLPO object should have split, top, bot and product opera-

tions.

In the code fragment in Listing 4.6, we show a simplified LPO class to illustrate

the idea of dynamic method attachment.

Listing 4.6: Simplified LPO class Code Fragment

1 class LPO:

2 def __init__ (self ):

3 self.nodes = NodeSet ()

4 self.type = LPO_Type .Empty

5

6 def toDLPO(self ):

7 # Once this LPO changed to DLPO , add DLPO methods to it

8 self.split = types.MethodType (split , self)

9 self.top = types.MethodType (top , self)

10 self.bot = types.MethodType (bot , self)

11 self.product = types.MethodType (product , self)

12

13 def toSLPO(self ):

14 # Once this LPO changed to SLPO , add SLPO methods to it

15 self.split=None;del self.split

16 self.top=None;del self.top

17 self.bot=None;del self.bot

18 self.product = types.MethodType (product , self)

19 self.percM = types.MethodType (percM , self)

20

21 def fromLabels (self , labels ):
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22 # LPO from a set of labels , resulting a DLPO

23 assert self.type == LPO_Type .Empty

24 self.type = LPO_Type .DLPO

25 self.toDLPO ()

26 for label in labels:

27 node = Node(label)

28 self.nodes.add(node)

The constructor __init__ makes an empty NodeSet(), and tags the new LPO

object as empty. The method fromLabels is used to make a DLPO from a set of

labels. It only applies to an empty LPO object. Once fromLabels is invoked, a LPO

object is attached to DLPO methods by calling toDLPO. Another method toSLPO

is useful when a LPO object changes to a SLPO type, e.g. after applying split

to a DLPO variable. For implementation details of all basicMOQA operations

we refer the reader to the interpreter source code, and for the algorithm to [85].

We implement the execution engine by translatingMOQA language execu-

tion semantics to real code, that is to attach the execute method to each AST

node.

Recall that LPONode objects store labels for a LPO builder expression (e.g.

1,2,3). After evaluation, a DLPO object is created based on the label set stored

in the self.lpo attribute. We give the code fragment for this evaluation rule in

Listing 4.7.

Listing 4.7: Code for evaluating LPONode

1 # LPONode #

2 @addToClass (moqa_ast .LPONode )

3 def execute (self , env):

4 dlpo = moqa_runtime .LPO()

5 dlpo.fromLabels (self.lpo)

6 return dlpo

In Listing 4.8 the return expression is implemented by first evaluating target

expr (see lines 4-5) and then raising a MOQAReturn exception (attached with

return value, see line 6).
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Because return is used inside a user defined function, the evaluation for the

FuncUseNode will catch the exception and stop evaluating the rest of the state-

ments (see lines 25−30). The lines 13−23 show how to make a new environment

with formal parameters bound to actual parameter values for a function call.

Listing 4.8: Code for evaluating ReturnExprNode and FuncUseNode

1 # ReturnExprNode #

2 @addToClass (moqa_ast .ReturnExprNode)

3 def execute (self , env):

4 expr = self.children [0]

5 retval = expr.execute (env)

6 raise MOQAReturn (retval)

7

8 # FuncUseNode #

9 @addToClass (moqa_ast .FuncUseNode )

10 def execute (self , env):

11 # omit other details ...

12 else:

13 fparams = fvalue [1]

14 fbody = fvalue [2]

15 fenv = fvalue [3]

16 if len(fparams) <> len(args ):

17 print "ERROR: wrong number arguments to " + fname

18 else:

19 # Make a new environment frame

20 newenv = (fenv , {})

21 for i in range(len(args )):

22 argval = args[i]. execute (env)

23 (newenv [1])[ fparams [i]] = argval

24 # evaluate the body in the new frame

25 try:

26 for stmt in fbody:

27 stmt.execute (newenv)
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28 return None

29 except MOQAReturn as r:

30 return r.retval

By supplying an execute method for each AST node, our execution engine

can recursively evaluate the whole program and produce a valid answer. Other

execution semantics can be implemented in a similar manner.

4.8 Analysis Engine

The core feature for our interpreter is implemented by the analysis engine. The

flowchart for this component is shown in Figure 4.4. The entry point for the

analysis engine is a method called staticAnalysis. Two helper sub-procedures

are invoked inside staticAnalysis to automate average-case analysis. The main

role for each method is listed below.

• staticAnalysis: entry point of analysis engine. This method takes an

AST as input and consists of two phases: the pre-process and analysis

phase. Pre-process traverses an AST to extract all function definitions and

stores them in a dictionary. The stored dictionary maps a function name to

the function definition. The analysis phase takes functions in a dictionary

one by one, automatically analysing their average-case complexities in terms

of the initial DLPO size N given by the user. Finally, the gathered average-

case times for each function are printed to standard output.

• doAnalysis: pre-process method, added to each type of AST node, used

to recursively traverse an AST. When traversing an AST, most nodes do

nothing but transfer environment (dictionary stores mappings from function

name to function definition). One exception is FuncDefNode. It stores

function information into environment.

• ACETAnalysis: the key method in the analysis engine. It is responsible for

the analysis phase. It analyses the average number of comparisons needed

for a function with initial DLPO size N . This method is still implemented

115



AST
doAnalysis ACETAnalysis

more functions 

to analyse

fun1 -> def fun1(X) ….

fun2 -> def fun2(X) ….

fun3 -> def fun3(X) ….

...

Input N

T(fun1,N) = n1

T(fun2, N) = n2

T(fun3, N) = n3

…

Yes

Display

No

staticAnalysis

analysis phrasepre-process phrase

Figure 4.4: Interpreter analysis engine Flowchart

by the interpreter pattern, by attaching analysis methods to each type of

AST node. With the help of theMOQA timing function and by keeping

track of random bags throughout computation, it abstractly interprets the

target function and automates average-case analysis.

Let’s start with staticAnalysis, the entry point function (see Listing 4.9).

This function takes three inputs: the abstract syntax tree, the user’s input to the

interpreter (e.g. size of initial DLPO size) and the source code file name.

Listing 4.9: Entry point of analysis engine

1 def staticAnalysis(ast , arg , filename ):

2 global_env = (None , {})

3 ast.doAnalysis (global_env )

4 ACET = {}

5 for funName in global_env [1]. keys ():

6 ACET[funName ] = ACETAnalysis (global_env , funName , arg )[1]

7 # omit output codes

It first makes a global_env in order to hold all mappings from the function

name to the function definition (line 2). The doAnalysis is invoked on AST
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object, by recursively walking over the AST, all user defined functions and related

information are stored in global_env. Next, lines 4 − 6 are the analysis phase.

Each function is analysed by the method ACETAnalysis. The results are gathered

into the dictionary ACET. Notice that each function is analysed under global_env.

It contains all user defined functions. As a result, without building a call graph,

ACETAnalysis can handle invoking a user defined function inside the function

definition. Finally the analyzer produces a report (in the console) for the user.

We omit the code here.

In order to implement the pre-process phase, most of the doAnalysis meth-

ods attached to AST nodes are passing environments and recursively invoke chil-

dren’s doAnalysis methods. One exception is when the method is executed over

a FuncDefNode (see Listing 4.10). In that case, it first extracts necessary infor-

mation from the FuncDefNode object (see lines from 4 − 7), then the function

information is stored in the environment and keyed with a function name (line

8).

Listing 4.10: doAnalysis Implementation on FuncDefNode

1 # FuncDefNode #

2 @addToClass (moqa_ast .FuncDefNode )

3 def doAnalysis (self , env):

4 fname = self.funcName

5 fparams = self.funcParams

6 fbody = self.children

7 fvalue = ("function ", fparams , fbody)

8 env [1][ fname] = fvalue

4.8.1 Dynamic programming in ACETAnalysis

In order to obtain the average timing for a function, we keep calling ACETAnalysis

by providing all function definitions (global env), target function names (funName),

and user interpreter parameters (arg). But in some situations, e.g. Quicksort, in

order to know its average-case time, there are lots of repeated computations.
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Example 4.1. If we want to know T qsort(R(∆3)), recall the result of split oper-

ation: DLPOsplit(R(∆3)) 7→ {(R(∨3), 1), (R(S3), 2), (R(∧3), 1)}.

Thus T qsort(R(∆3)) = 2 + T qsort({(R(∨3), 1), (R(S3), 2).(R(∧3), 1)}) In or-

der to know T qsort(R(∨3)), we need to compute the timing for two recursive

calls, which sort upper component and lower component: T qsort(R(∆2)) and

T qsort(R(∆0)).

Similarly, T qsort(R(S3)) and T qsort(R(∧3)) require repeated computations on

T qsort(R(∆2)) , T qsort(R(∆1)) and T qsort(R(∆0)).

Listing 4.11: Python memorising decorator

1 def memo(f):

2 """ Decorator that enables dynamic programming.

3 For each call to f( args [1:]) it caches the

4 returned value . When f called again with

5 same args [1:] , cached value is returned

6 """

7 cache = {}

8 def wrap (* args ):

9 try:

10 return cache[args [1:]]

11 except KeyError :

12 cache[args [1:]] = result = f(*args)

13 return result

14 except TypeError :

15 # some element of args can ’t be a dict key ( mutable )

16 return f(*args)

17 return wrap

In our analysis engine, ACETAnalysis behaves like a mathematical function

T . To make our analysis efficient, we introduce a memorising decorator (see List-

ing 4.11). It decorates the function with a cache property, to help the function

remember old computed results. If a repeated computation occurs, the cached

value is returned without recomputation (the way dynamic programming be-
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haves).

With memorising decorator our ACETAnalysis function is defined in List-

ing 4.12.

Listing 4.12: ACETAnalysis implementation

1 @memo

2 def ACETAnalysis (global_env , funcName , arg):

3 funcDef = global_env [1][ funcName ]

4 newenv = (global_env , {})

5 fbody = funcDef [2]

6 LPO_name = funcDef [1][0]

7 if len(funcDef [1]) > 1:

8 opt_arg = funcDef [1][1]

9 newenv [1][ opt_arg ] = arg[1]

10 rds = CreateDiscreteRandomStructure (arg [0])

11 else:

12 rds = CreateDiscreteRandomStructure (arg)

13 newenv [1][ LPO_name ] = rds

14 comparation = 0

15 try:

16 for stmt in fbody:

17 val , c = stmt.moqaProcess (newenv)

18 comparation += c

19 except MOQAReturn as e:

20 comparation += e.retval [1]

21 return e.retval [0], comparation

22 return None , comparation

The first line decorates ACETAnalysis with the memorization feature. Notice

that in our memo implementation, the same function call is defined in terms of the

same funcName and arg, because global env is not changed. Line 3 retrieves

function information from the environment, based on function name. Line 4

prepares the new environment for the analysis of the function body. The function
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body is extracted at line 5. Next, line 6 gets a first formal parameter. InMOQA

programming this parameter always binds to the DLPO object. From lines 7 −

12, depending on the number of user parameters, an initial random structure

is created with the user specified size. An optional second parameter is also

bound to its formal parameter, if it exists. Next, line 13 binds the initial DLPO

object to its formal parameter in the analysis environment. Finally, lines 15− 22

interpret the function body line by line and accumulate their time cost in the

variable comparison. They also catches MOQAReturn in case function execution

stops earlier.

Notice that each AST node has an associated function moqaProcess. It re-

flects the analysis semantics we defined in Section 3.5.2. Each call to moqaProcess

produces a value and a number of comparisons needed to evaluate the node. The

side-effects (e.g. update environment) are implemented inside the moqaProcess

method.

Listing 4.13: Code Fragment: simplified moqaProcess method on FuncUseNode

1 @addToClass (moqa_ast .FuncUseNode )

2 def moqaProcess (self , env):

3 fname = self.funcName

4 args = self.children

5 fvalue = env_lookup (fname , env)

6 fparams = fvalue [1]

7 fbody = fvalue [2]

8 # omit codes ...

9 funarg , comparison = args [0]. moqaProcess (env)

10 retval = moqa_analyzer_sppo.RandomBag ()

11 for i in range(len(funarg.randomstructures )):

12 rds = funarg.randomstructures[i]

13 prob = funarg.probs[i]

14 val , c = ACETAnalysis (env[0], fname , rds.size)

15 retval.add(val , prob)

16 comparison += prob * c

17 return retval , comparison

120



To illustrate how to map those semantics rules to real code, we show the code

fragment in Listing 4.13 as an example.

In our implementation, both built-in function call and invoke user defined

functions share the same AST node type. To illustrate the general idea, we

provide a simplified code. The original code is complex (about 70 lines), because

it has to deal with built-in function calls (print, show etc), and calls user defined

functions with two parameters etc. We omit those details.

In FuncUseNode, the callee function name (the function that is being invoked)

and the argument list are stored in an AST node. First we retrieve these values

back at line 3−4. Next, the callee function definition is retrieved from the current

environment at line 5. Then, the formal parameters and the function body are

extracted. To prepare the function call, moqaProcess is recursively invoked on

actual arguments. The returned value and number of comparisons are stored

(see line 9). Finally, following the semantics we defined, each random structure is

timed separately, and combining their associated probabilities, the time cost for

a random structure is computed. The final resulting random bag together with

the accumulated comparisons are returned to the caller.

Notice that to compute the time cost for a random structure (see line 14),

we use ACETAnalysis with the size of a random structure as input to avail of

a dynamic programming feature. This works in current MOQA programming,

because all user defined functions are defined to only take a DLPO as their input,

and giving the size of a DLPO is enough to reconstruct the structure.

Before leaving this section, we would like to briefly discuss the design and

implementation of theMOQA analysis library (moqa_sppo.py). Different from

the execution library, it implements random bags andMOQA basic operations

over random bag structures. To derive average-case timing information, instead

of executing the target function on all possible test cases , we rely on theMOQA

random bag structure to abstractly interpret programs and accumulate operation

costs based onMOQA timing functions. As a result, the average-case timing is

computed automatically. The class diagram for this library is shown in Figure 4.5.

There are six classes in the module. Recall theMOQA timing functions are

defined in terms of SP-orders (series parallel partial orders). The designed imple-

mentation is aimed to encapsulate SP-order structures. TheMOQA operations
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ComposedRandomStructure

SeriesRandomStructure

EmptyNode

SingleNode

ParallelRandomStructure

RandomBag* 1

*

1

1..* 1

Figure 4.5: MOQA analysis library class diagram

are implemented to manipulate the shape of a structure.

The role for each class is listed below:

• EmptyNode: place holder for an empty node, it can be used for padding in

order to ensure different SP-orders have the same shape, e.g. to ensure the

result of a split operation has both components above and below.

• SingleNode: used as basic building block for a random structure.

• ComposedRandomStructure: an abstract class. Stores a list of compo-

nents, where a component can be an EmptyNode, SingleNode, SeriesRan-

domStructure or a ParallelRandomStructure.

• SeriesRandomStructure: subclass of ComposedRandomStructure, presents

a SP-order built up from a list of components with series composition.

• ParallelRandomStructure: subclass of ComposedRandomStructure, presents

a SP-order built up from a list of components with parallel composition.

• RandomBag: presents a multiset of random structures. It is implemented

as a list of random structures together with their multiplicities and proba-

bilities.

Remark 4.4. Notice that in our implementation, for efficiency, the size n discrete

random structure is not made with n SingleNode objects. Instead ParallelRan-

domStructure only has one SingleNode component but has a repeat property set

to n.
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In our implementation CreateDiscreteRandomStructure is used to make a

n elements discrete random structure. The code snippet is shown in Listing 4.14.

Given input argument n, CreateDiscreteRandomStructure makes a discrete

random structure with n nodes. Lines 2 − 4 deal with cases where n == 0 or 1.

For n >= 2, line 6 builds a n elements ParallelRandomStructure. The first ar-

gument isAtomic=True indicates this object is made with parallel composition of

list of SingleNode objects. No complex structure is involved. The last argument

repeated indicates the number of times a list of components is repeated. In our

case a n elements discrete random structure is made by n-repeating SingleNode.

Listing 4.14: Create Discrete Random Structure in Analysis mode

1 def CreateDiscreteRandomStructure (n):

2 if n == 0: return EmptyNode ()

3 if n == 1: return SingleNode ()

4 components = [SingleNode ()]

5 # Discrete Random Structure

6 DRDS = ParallelRandomStructure (True , components , n)

7 return DRDS

8

9 class ParallelRandomStructure (ComposedRandomStructure ):

10 def __init__ (self , isAtomic , components , repeated ):

11 ComposedRandomStructure .__init__ (self , components ,

12 repeated )

13 self.isAtomic = isAtomic

14 if isAtomic :

15 self.size = repeated

16 else :

17 self.size = repeated *

18 sum(c.size for c in self.components )

19 ...

Example 4.2. In Figure 4.6, we give a series SP-order. It is series composed

by three components: Y1, Y2, Y3. To build this object, we use a constructor for
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Y1

Y2

Y3

Figure 4.6: Series SPPO creation example

class SeriesRandomStructure. It has the same signature as the parallel version.

SeriesRandomStructure(False, [Y1,Y2,Y3],1), where Y2 = SingleNode(),

Y1 = CreateDiscreteRandomStructure(3), Y3 =CreateDiscreteRandomStructure(2).

Notice this time repeated=1 and isAtomic=False.

Remark 4.5. The components for a series SP-order are stored from highest to

lowest, e.g. the first component in component list is the top component.

With this structure representation,MOQA basic operations can be expressed

directly without label value comparison, complex push-down etc. The responsi-

bility for most operations is to build SP-order structures with our representation.

For example, to implement theMOQA Product operation (see Listing 4.15),

say we have two structures rdsA and rdsB, depending on types for rdsA and rdsB,

we need to create the structure differently. There are several conditions that

need to be designed carefully, especially when the operation involves a structure

with repeated component. Currently we expand the structure with all nodes,

then do the operation (as shown in lines 4 − 8, it calls a method expand()

implemented by ComposedRandomStructure). Here we omit details that deal

with special conditions in the Product operation, i.e. to product a sorted list with

a single element. In such conditions, we can have an economic way to capture the

repetition in the structure via an object attribute called repeated. We separate

these special conditions to make our code run faster and data structures more

compact.

Remark 4.6. A repeated structure currently only occurs in discrete partial orders

or sorted orders. We would like to investigate this area in the future to explore a
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more efficient way to present SP-orders and operations.

Generally, if two series structures product together, we make a new structure

with components containing both parts. If we product one parallel and one

series structure, we make a new structure by adding the parallel structure as

a component to the series structure’s component list. Finally, if two parallel

structures product together, we make a new series structure with both parallel

structures as components.

Listing 4.15: MOQA product operation in analysis mode

1 def product (rdsA , rdsB ):

2 ....

3 components = []

4 # expand repeated components

5 if isinstance (rdsA , ComposedRandomStructure ):

6 rdsA.expand ()

7 if isinstance (rdsB , ComposedRandomStructure ):

8 rdsB.expand ()

9 # make new structure

10 if isinstance (rdsB , SeriesRandomStructure ):

11 components += rdsB.components

12 else:

13 components .append(rdsB)

14 if isinstance (rdsA , SeriesRandomStructure ):

15 components += rdsA.components

16 else:

17 components .append(rdsA)

18

19 randomstructure = SeriesRandomStructure (False , components , 1)

20 return randomstructure , t_product (rdsA , rdsB)

In our implementation, we first make a component list for the final structure

(see line 3), In this list the order is the same as when you read components from

top to bottom. Recall the Product definition in Section 2.3.3.2. The first operand
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is placed below. Thus, after expanding structures, based on the type of the second

operand, we add either itself or its components to the final component list (lines

10-13). The first operand is considered using the same logic.

With this order of consideration, we make sure the components of the second

operand are added earlier than the first operand’s components, which reflects in

the final structure where components of the second operand are placed above

all components of the first operand. Finally a new SeriesRandomStructure is

made with a new component list. Notice that while we build a new structure,

each operation timing cost is also derived byMOQA’s timing function. For the

Product operation we implemented this in t_product.

The function shown in Listing 4.16 is theMOQA Product timing function,

implemented by our module. It exactly follows the mathematical definition of the

Product timing function (see Section 2.3.3.2). There are some helper functions,

such as t_tauDown and t_tauUp etc. These are all implemented as suggested by

the theory. We recursively calculate those values based on SP-order structures.

Listing 4.16: MOQA product timing function implementation

1 def t_product (rdsA , rdsB ):

2 sizeA = rdsA.size

3 sizeB = rdsB.size

4 tauDown_A = t_tauDown (rdsA)

5 tauUp_B = t_tauUp(rdsB)

6 aMax = rdsA.getMax ()

7 bMin = rdsB.getMin ()

8 prob = float(sizeA*sizeB) / (sizeA + sizeB)

9 time = prob * (tauDown_A + tauUp_B ) +

10 (prob +1) * (aMax + bMin - 1)

11 return time
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4.9 Summary

In this chapter we presented the current implementation of theMOQA language

interpreter. Because we have full control of the internal representation, the code

analysis phase is easier compared with the original approach [48]. But, as one

would expect, implementing a programming language is not an easy job. This

chapter only provided the reader an overview of how the interpreter has been

implemented, while it is not possible to demonstrate all technical measures that

have been used. Of course, our implementation is never perfect. We provide some

discussion and possible future enhancements in Chapter 8.
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In this chapter, we present several MOQA algorithms and their implemen-

tation written in theMOQA language.

We will focus on sorting, searching and heap creation algorithms. The main

focus for this chapter is to show the capability of the current language design and

to evaluate the correctness of the automated average-case analysis performed by

our interpreter analyzer.

For each algorithm, we first give a brief explanation of the algorithm and

how we implement it in theMOQA language. Then, following a general math-

ematical analysis based onMOQA theory, we will compare the result from the

interpreter analysis mode with the theoretical result to demonstrate correctness

of the interpreter analysis mode.

5.1 Insertionsort

Insertionsort is probably the most basic sorting algorithm to implement inMOQA.

The final sorted list is built by repeatedly inserting a single element into a sorted

sublist [26, 57]. InMOQA programming the insertion is performed via the Prod-

uct operation. The source code is shown in Listing 5.1, where variable Z builds

the final sorted list.

Listing 5.1: MOQA Insertionsort

1 def isort(X)

2 let Z = X[0]

3 for i = 1 to |X| do

4 Z = Z <> X[i]

5 end

6 return Z

7 end

The timing for this function is only contributed by the for loop. At any step

i, it computes the product of a sorted list Z (length i) and a single element X[i].
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Theorem 5.1. The average running time of MOQA Insertionsort on the size

n random list is
n−1
∑

i=1

2i
i+1

+ i
2
.

Proof. It is easy to see from the code that the running time of the algorithm is

T isort(R(∆n)) =
n−1
∑

i=1

T [Si ⊗ •] ,

where Si presents a linear order of size i, • denotes a single element, i ranges

from 1 (single element) to n− 1 (last step before insertion).

Recall the timing function defined in Section 2.3.3.2:

T [A⊗ B] =
|A||B|

|A|+ |B|
(τdown(A)+τup(B))+

(

|A||B|

|A|+ |B|
+ 1

)

(|Amax|+|Bmin|−1).

In this context, A is a linear order of size i, and B is a singleton element.

Using the product timing function, we get:

T [Si ⊗ •] =
i

i+ 1
(τdown(Si) + τup(•)) +

(

i

i+ 1
+ 1

)

(1 + 1− 1).

According to [32, 85], τdown(Si) =
i+1
2
− 1

i
, thus

T [Si ⊗ •] =
i

i+ 1
(
i+ 1

2
−

1

i
) +

(

i

i+ 1
+ 1

)

=
2i

i+ 1
+

i

2

We conclude that the timing for this algorithm is:

T isort(R(∆n)) =
n−1
∑

i=1

2i

i+ 1
+

i

2

Next we compare this theoretical result with the result we get from the inter-

preter analyzer. Table 5.1 shows for different initial list lengths that the results of

the interpreter and our formal analysis are exactly same, because the interpreter

relies on the same timing function as in the theoretical analysis. It also confirms

that our analyzer behaves correctly and produces precise results.
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List size Theoretical result Interpreter result
32 303.883009609 303.883009609
64 1126.51221819 1126.51221819
128 4309.13370581 4309.13370581
256 16819.7513101 16819.7513101
512 66418.3669669 66418.3669669
1024 263920.981649 263920.981649

Table 5.1: Insertionsort: comparing the theoretical result with the interpreter
result

5.2 Quicksort

Quicksort is a classical sorting algorithm and widely used in practice. Traditional

Quicksort sorts a list by first selecting a pivot element, then partitioning the list

into elements larger and smaller than the pivot. It recursively call the sort routine

on the smaller and larger group of elements [26, 57]. InMOQA this algorithm

can be implemented using the Split operation (for this operation’s details, see

Section 2.3.3.1, page 28).

Listing 5.2: MOQA Quicksort

1 def qsort(X)

2 if |X| <= 1 do

3 return X

4 end

5 let pivot = X[0]

6 X >< pivot

7 qsort(X[0])

8 qsort(X[2])

9 return X

10 end

In Listing 5.2, we give a sample Quicksort implementation in the MOQA

language. According to the size of input list X, the algorithm first determines
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the base case, then invokes theMOQA Split, followed by two recursive calls on

elements above: X[0] and elements below: X[2] (see Section 3.3.3.4, page 60 for

the meaning of the index expressions). Finally the sorted list X is returned.

Theorem 5.2. The average running time of MOQA Quicksort on the size n

random list is:

T qsort(R(∆n)) =











1, if n ≤ 1

n+ 2
n

n−1
∑

i=0

T qsort(R(∆i)), if n > 1

Proof. The base case only has one comparison to carry out a conditional check.

For input list sizes greater than 2, according to the result from MOQA Split

operation (see Section 2.3.3.1, page 28), we derive the following recursion:

T qsort(R(∆n)) = 1 + n− 1 +

n−1
∑

i=0

αi(T qsort(R(∆i)) + T qsort(R(∆n−i−1)))

where 1+n−1 means one conditional check plus n−1 comparisons required by

the Split operation. Recursion also uses the random bag preservation result where

αi = ki×|R(P [i−1,n−1])|∑n
i=1 ki×|R(P [i−1.n−1])| = 1

n
. This is the probability that the corresponding

structure happens to occur. We refer the reader to [85] and [87] for further details.

Thus we can simplify the equation to n+ 2
n

∑n−1
i=0 T qsort(R(∆i)) as required.

Remark 5.1. The original MOQA result in [32, 85] did not count base case

checking. These results are similar equations with minor technical modifications.

Asymptotically the result is identical to our result.

As is clear from Table 5.2, with different initial list lengths, the theoretical

results confirm our analyzer result and the theoretical result is identical with the

interpreter result.
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List size Theoretical result Interpreter result
32 182.860682899 182.860682899
64 446.372484148 446.372484148
128 1060.75194989 1060.75194989
256 2465.57997755 2465.57997755
512 5628.74596445 5628.74596445
1024 12663.4767948 12663.4767948

Table 5.2: Quicksort: comparing the theoretical result with the interpreter result

5.3 Quickselect

Quickselect finds a kth smallest/largest element in a list with linear complexity.

This algorithm is also based on the Split operation. By splitting the list accord-

ing to a pivot, the algorithm either stops (already found the target element) or

recursively finds the target kth ranked element in a proper sublist.

In Listing 5.3 we provide an implementation for this algorithm in theMOQA

language. Our algorithm finds the kth smallest element in a list. If the input list

is empty or a single element, we simply do nothing. Otherwise, we split the list

to a three layer structure using the Split operation. Based on the number of

elements below the pivot, three possible answers are returned.

• return pivot, there are k − 1 elements less than the pivot.

• return qselect(bottom, k), there are more than k elements less than

the pivot. Recursively find the rank k element in the bottom group.

• return qselect(upper, k - |bottom| - 1), there are less than k ele-

ments that are less than the pivot. Recursively find the target element in

the upper group with updated rank value.

Listing 5.3: MOQA Quickselect

1 def qselect (X, k)

2 if |X| <= 1 do

3 return X
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4 end

5 let pivot = X[0]

6 X >< pivot

7 let upper = X[0]

8 let bottom = X[2]

9

10 if |bottom| == k - 1 do

11 return pivot

12 end

13 if |bottom| >= k do

14 return qselect (bottom , k)

15 else

16 return qselect (upper , k - |bottom| - 1)

17 end

18 end

Theorem 5.3. The average running time of MOQA Quickselect to find the

element of rank k in a discrete random structure of size n is given by

T qselect(R(∆n), k) = n+1+
1

n
(
n−1
∑

i=k

T qselect(R(∆i), k)+
k−2
∑

i=0

T qselect(R(∆n−1−i), k−i−1))

where for n ≤ 1, T qselect(R(∆n), k) = 1.

Proof. When n ≤ 1 the first condition is satisfied, i.e. only one comparison is

counted.

If n > 1 the rest of the code is executed. The timing involves several branches.

After a pass through the first conditional expression, the next Split operation

takes an extra n− 1 comparisons.

Now, let B1 be the part of the codes starting from the condition |bottom|

== k - 1 to its end (lines 10− 12). Let B2 be the part of code starting from the

next condition to its body (lines 13 − 14). Finally let B3 be the code from lines

15− 17.
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Next, let p1 be the probability that condition at line 10 is true, p2 be the

probability that the condition at line 13 is true. Then the timing recursion for

this algorithm can be expressed as:

T qselect(R(△n), k) = 1 + n− 1 + p1TB1 + (1− p1)p2TB2 + (1− p1)(1− p2)TB3

It is easy to see that p1 = Prob(|bottom| = k−1) = 1
n
, because each structure

in the output random bag of a Split operation has the same probability (see

Section 5.2 for value of αi). By examining the result of the Split operation on n

elements (see Section 2.3.3.1), Prob(|bottom| ≥ k) = n−1−k+1
n

. We can evaluate

p2 in a similar manner, as a conditional probability: p2 = Prob(|bottom| ≥

k|¬p1) =
Prob(|bottom|≥k)

Prob(¬p1)
= n−1−k+1

n
× n

n−1
= n−k

n−1
. Thus our timing recursion can

be simplified to

T qselect(R(∆n), k) = n+
1

n
TB1 +

n− k

n
TB2 +

k − 1

n
TB3

The probabilities associated to each branch sum up to 1, and they can be

computed by summing the probabilities attached to the structures that fall into

a specific branch (each has probability 1
n
, count how many structures), this is

indeed how our analyzer is implemented.

The time cost for branches, TB1 , TB2 , TB3 , are simply the average cost for

the expressions inside each branch.

• TB1 = 1, only one conditional check

• TB2 =

n−1∑

i=k

1+T qselect(R(∆i),k)

n−k
, n− k structures fall into this branch.

• TB3 =

k−2∑

i=0
1+T qselect(R(∆n−1−i),k−i−1)

k−1
, k − 1 structures fall into this branch.

Once we replace TB1, TB2 , TB3 with their values and tidy up our recursions,

we get the desired result:

T qselect(R(∆n), k) = n+1+
1

n
(

n−1
∑

i=k

T qselect(R(∆i), k)+

k−2
∑

i=0

T qselect(R(∆n−1−i), k−i−1))
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Remark 5.2. Our equation is again slightly different from the original MOQA

formula for Quickselect [32, 85] because we count the extra conditional check. But

this analysis reflects how the interpreter works, and it is asymptotically equivalent

with our past research result.

As you can see from Table 5.3, with different initial list sizes and a k value,

the theoretical results are equal to our analyzer result.

List size K Theoretical result Interpreter result
32 16 96.7586729806 96.7586729806
32 32 63.5 63.5
64 16 185.507164546 185.507164546
64 32 202.473521899 202.473521899
128 16 336.01687493 336.01687493
128 32 382.771738178 382.771738178

Table 5.3: Quickselect: comparing the theoretical result with the interpreter
result

5.4 Mergesort

Similar to Quicksort, Mergesort is also a divide and conquer algorithm. By diving

a list into two sublists it recursively calls the same method to sort sublists and

finally merges pairs of sorted lists together.

Listing 5.4: MOQA Mergesort

1 def mergesort (X)

2 if |X| == 1 do

3 return X

4 end

5 let n = |X|

6 let first_half = X[:n/2]

7 let second_half = X[n/2:]

8 first_half = mergesort (first_half )
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9 second_half = mergesort (second_half )

10 return Merge(first_half , second_half )

11 end

A Mergesort implementation in theMOQA language is given in Listing 5.4.

Notice that it uses the non-standardMOQA operation Merge.

Theorem 5.4. The average running time of MOQA Mergesort on the size n

random list is:

Tmergesort(R(∆n)) = 1 + Tmergesort(R(∆⌊n
2
⌋)) + Tmergesort(R(∆n−⌊n

2
⌋+1))

+ TMerge(R(∆⌊n
2
⌋), R(∆n−⌊n

2
⌋+1))

where Tmergesort(R(∆1)) = 1.

Proof. It is easy to see that the base case only needs one conditional check. For

an input list size greater than 1, the timing recursion for this algorithm is the sum

of each recursive call plus the time to merge two sorted lists and one conditional

check.

Remark 5.3. As proven in [73], TMerge(R(∆n), R(∆n)) =
2n2

n+1
. But there is no gen-

eral solution to express the average time to merge two lists with different lengths

(length n with n + 1). Instead, we use TMerge(R(∆n), R(∆n+1)) =
2n(n+1)

(n+(n+1))/2+1
.

This equation mimics the original merge timing function. The numerator is twice

the product of two lists’ length, the denominator is the average length of two lists

plus one. We justify this equation in Appendix B1

Again, the theoretical results confirm our analyzer result, as shown in Ta-

ble 5.4.

5.5 TreapGen

MOQA Treaps are the basis for a sorting algorithm inMOQA known as Treap-

sort, which repeatedly calls PercM on the largest label in a treap. We shall look

at Treapsort in more detail in Section 5.6.
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List size Theoretical result Interpreter result
32 184.495424837 184.495424837
64 432.051455734 432.051455734
128 991.133680698 991.133680698
256 2237.28286527 2237.28286527
512 4985.57351265 4985.57351265
1024 10994.1509239 10994.1509239

Table 5.4: Mergesort: comparing the theoretical result with the interpreter result

Given a list of elements (DLPO structure), we can convert this object to a

treap with an algorithm called treapgen. The max-treap generation algorithm

is shown in Listing 5.5. treapgen behaves similar to Quicksort. Instead of the

Split operation, this algorithm depends on the Top operation (present by ^ in

theMOQA language).

Listing 5.5: MOQA Treapgen

1 def treapgen (X)

2 if |X| <= 1 do

3 return X

4 end

5 ^X

6 treapgen (X[0])

7 treapgen (X[2])

8 return X

9 end

As stated in Section 2.3.3.3, the Top operation creates a series partial order.

To aid treap creation, the operation also keeps track of the node where the max-

imum label occurs. InMOQA programming, for the resulting object of the Top

operation, we can select the components by their index (see Section 3.3.3.4). In

our implementation, X[0] means a DLPO with labels occurring before the max-

imum label, X[1] refers to a single element containing the maximum label, X[2]

is a DLPO with all labels occurring after the maximum label.
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Here we illustrate this algorithm using an example shown in Figure 5.1. Ini-

tially, variable X binds to a DLPO with labels {3, 1, 5, 2, 4}. Once applied, the

Top operation creates a series structure. We can refer to its components using

the indices 0, 1 or 2. Recursively, we make a treap in the left component X[0]

and in the right component X[2]. The final structure is shown in Figure 5.1.

3 5 2 4 3

5

2 4

2

4

1

3

5

4

2

1 1

3

1

X[0]

X[1]

X[2]

top

treapgen treapgen

Figure 5.1: MOQA Treap creation example

Theorem 5.5. The Treapgen algorithm produces a random bag T REAP(n),

where each random structure has multiplicity one and forms a collection of treaps

over a fixed tree. Treapgen determines a bijection from R(∆n) to T REAP(n).

We refer the reader to [32, 85] for details of this proof. We present an example

in Figure 5.2 to illustrate this result. In this example, the algorithm has input

R(∆3) and as output, a random bag T REAP(3), where each random structure

is separated by different color.

Theorem 5.6. The average running time of MOQA Treapgen on the size n

random list is:

T treapgen(R(∆n)) =











1, if n ≤ 1

n+ 2
n

n−1
∑

i=0

T treapgen(R(∆i)), if n > 1

Proof. The code shown in Listing 5.5 is nearly the same as forMOQA Quicksort.

Actually these algorithms also share the same time complexity.

The base case again has one comparison to perform a conditional check.
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Figure 5.2: Treapgen algorithm maps R(∆3) to random bag T REAP(3)

Depending on where the maximum label is located in the original input list,

the output of the Top operation might result in different structures. E.g, if the

maximum label is located at the first place, Top will output a series structure

with left component R(∆0) and right component R(∆n−1). Generally we refer to

this result by T [i, j], which has i elements in the left component, and j elements

in the right component. Notice that, rotated by 90◦, this is exactly the result for

the Split operation, for input list size greater than 2, according to the result for

theMOQA Top operation, we can derive following recursion:

T treapgen(R(∆n)) = 1 + n− 1 +

n−1
∑

i=0

αi(T treapgen(R(∆i)) + T treapgen(R(∆n−i−1)))

where 1+ n− 1 means one conditional check plus n− 1 comparisons required

by the Top operation. αi is the probability that the corresponding structure

happens to occur with. It reflects the probability that the maximum label occurs

at place i+ 1, thus it simplifies to 1
n
for each structure. And we can simplify the

equation to n+ 2
n

∑n−1
i=0 T treapgen(R(∆i)) as required.
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Remark 5.4. Again our equation counts base case checking, while the original

MOQA result in [32, 85] did not count it. Asymptotically they are the same.

Since this algorithm and complexity is nearly the same as Quicksort, we omit

rechecking it in our interpreter. This algorithm is used by Treapsort, the proof

from Treapsort will also confirm the result from our interpreter analyzer.

5.6 Treapsort

Treapsort is a new sorting algorithm discovered within MOQA research [85].

Based on the MOQA treap structure, it repeatedly calls PercM on the largest

label in a treap. This algorithm shares a similar complexity behaviour with

Quicksort. Its worst-case time, like Quicksort, is O(n2) while its average-case

time is O(nlogn) [32, 85].

PercM is a standard MOQA operation and it acts on the maximum label

in a SLPO (see Section 2.3.3.4). Basically this operation first percolates the

maximum label to a bottom place, then brings it back to the top place with only

one element directly below it.

Listing 5.6: MOQA Treapsort

1 def treapsort (X)

2 X = treapGen (X)

3 let treap = X

4 for i = 1 to |X| do

5 PercM(treap)

6 treap = treap[1]

7 end

8 return X

9 end

In Listing 5.6, we provide the Treapsort algorithm implementation in the

MOQA language. Firstly, at line 2, a treap object is created. Next we make a
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Figure 5.3: Treapsort example on a four element treap.

variable treap to track the treap structure where the operation percM is applied

to. In the for loops, each time percM is performed on a treap structure, variable

treap updates its binding to point to the new candidate treap structure (see

Section 3.3.3.4 for treap structure indexing, page 60).

To illustrate how the algorithm works, in Figure 5.3, we visualize the execution

and highlight the binding to variable treap with a block box.

Theorem 5.7. The average running time of MOQA Treapsort on the size n

random list is:

T treapsort(R(∆n)) = T treapGen(R(∆n)) +
n

∑

i=2

2Hi − 2

.

Proof. This algorithm is mainly based on two operations, PercM and treapGen.

The timing recursion for treapGen is defined in Section 5.5 and the timing func-

tion for PercM is 2Hi − 2 for treap size i. Here we directly use the result from

MOQA research on PercM operation (See Theorem 2.10). We refer the reader

to [32, 85] for the formal proof. At each time, the treap variable points to a

new treap with size reduced by one. Thus the timing for the for loop simply

sums the time cost for PercM performed on these treaps. And the final timing

for the algorithm needs to add the cost for creating the initial treap structure as

well.

Again, theoretical results confirm our analyzer result, as shown in Table 5.5.
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List size Theoretical result Interpreter result
32 322.721365798 322.721365798
64 807.07830163 807.07830163
128 1950.50389978 1950.50389978
256 4589.49328844 4589.49328844
512 10574.4919289 10574.4919289
1024 23961.286923 23961.286923

Table 5.5: Treapsort: comparing the theoretical result with the interpreter result

5.7 Heapify

Our last example is a binary heap creation algorithm: Heapify. This algorithm

treats the input DLPO as a binary tree, where for n > 1 the nth node is a child

of the node at index ⌊n
2
⌋, and where each node might have a left child at index

2 ∗ n and right child at index 2 ∗ n+ 1 if they are within the index range.

InMOQA programming, our language is 0 indexed. To follow this convention

in the Heapify algorithm, we design our algorithm by placing a dummy node in

the first place.

The algorithm builds a heap by constructing smaller heaps bottom up and

the final heap is stored at index 1. At each step, a smaller sub-heap is created by

producting a single element with its two sub-children (if they both exist) or by

producting a single element with its only child.

Listing 5.7: MOQA Code: Heapify

1 def heapify (X)

2 for i = (|X| - 1) / 2 downto 0 do

3 X[i] = X[2 * i : 2 * i+2] <> X[i]

4 end

5 return X[1]

6 end

We present our implementation for this algorithm in Listing 5.7. Notice that

for a node, say at index i, we refer to its two children by X[2 * i : 2 * i+2].
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x[2] = x[4:6] <> x[2] x[1] = x[2:4] <> x[2]

Figure 5.4: Heapify example to create a four node heap.

This is a slice operation. It gets elements from index 2 ∗ i to 2 ∗ i + 2 but not

including 2 ∗ i+2. Thus it simply obtains two children at X[2*i] and X[2*i+1],

but it also is clever enough to ignore X[2*i+1] if it does not exist.

We show a running example in Figure 5.4. It creates a four nodes heap.

The first node is a dummy node and is not invoked in the computation. On

each iteration, a node value is overridden with a MOQA Product result, and

gradually the final heap structure is created and stored at index 1.

Remark 5.5. In the following analysis of Heapify, we focus only on heaps of size

2k − 1, where k is a natural number such that k ≥ 1. It presents the number of

layers for a heap. This suffices and is standard practice in algorithmic analysis.

For a formal justification of this approach we refer the reader to [63].

Lemma 5.8. Given a complete binary tree Bk, with k layers, the average number

of comparisons made in pushing a label down is given by

τdown(Bk) =
k2k+1 − 3× 2k + 2

2k − 1

Proof. Recall the SP-order definition for a complete binary tree with k layers. We

have Bk = (Bk−1||Bk−1)⊗ •. It is easy to see that |B|k = 2k − 1, |(Bk)min| = 2k−1

and |(Bk)max| = 1. Applying the series and parallel composition laws for τ (see

Theorem 2.8) to Bk, in this case, A = (Bk−1||Bk−1) and B = •. We get

τdown(A⊗B) =
|B|τdown(B) + κdown(B)|Amax|+ |A|(τdown(A) + Amax + σdown(B))

|A|+ |B|
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τdown((Bk−1||Bk−1)⊗ •) =
2 + (2k − 2)(τdown(Bk−1||Bk−1) + 2)

2k − 1

=
2 + (2k − 2)(τdown(Bk−1) + 2)

2k − 1

Notice that we simplify τdown(Bk−1||Bk−1) to τdown(Bk−1) because of parallel

composition laws for τ . Let g(k) = (1 − 2−k)τdown(Bk) with base case g(1) = 0.

We get

g(k) =
2k − 1

2k
×

2 + (2k − 2)(τdown(Bk−1) + 2)

2k − 1

= g(k − 1) + 2− 21−k

= ✟✟✟g(1) + 2(k − 1)−
k−1
∑

i=1

2−i = 2k − 2− (1− 21−k)

Finally, we divide 1− 2−k on both sides to get the desired result:

τdown(Bk) = 2k − 2− (1− 21−k)×
2k

2k − 1
=

k2k+1 − 3× 2k + 2

2k − 1

Remark 5.6. A similar result for τup(Bk) has been shown in [85].

Theorem 5.9. The average number of comparisons made in building a k −

layered complete binary tree Bk by Product operation (Bk−1||Bk−1)⊗ • is:

T [(Bk−1||Bk−1)⊗ •] =
k2k+1 − 2k − 2

2k − 1

.

Proof. Recall that the timing function for the Product operation defined in The-

orem 2.7. In this case, A = (Bk−1||Bk−1) and B = •. Clearly, |B|k = 2k − 1,

|(Bk)min| = 2k−1 and |(Bk)max| = 1. We get
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T [(Bk−1||Bk−1)⊗ •] =
2k − 2

2k − 1
(τdown(Bk−1||Bk−1) +✟✟✟✟τup(•)) +

(

2k − 2

2k − 1
+ 1

)

(2 + 1− 1)

=
2k − 2

2k − 1
(τdown(Bk−1)) +

(

2k − 2

2k − 1
+ 1

)

× 2

Applying Lemma 5.8, and replacing τdown(Bk−1) with (k−1)2k−3×2k−1+2
2k−1−1

, after

simplification, the desired result is achieved.

Theorem 5.10. The average running time of MOQA Heapify on the size n

random list is:

T heapify(R(△n)) = 2× T heapify(R(△n−1
2
)) +

k2k+1 − 2k − 2

2k − 1

where n = 2k − 1 and T heapify(R(△1)) = 0.

Proof. As stated earlier in Remark 5.5, we only focus on heaps that have a com-

plete binary tree structure. Thus we can construct our timing function for Heapify

using a simple recursion. The times to build a heap with 2k − 1 nodes, consist of

the total times to build two sub-heaps with size n−1
2
, and the time to complete

the product of two sub-heaps and the top element. With the help of the timing

function we derived in Theorem 5.9, we obtain our desired result.

Finally, we compare our automated timing results from the interpreter ana-

lyzer with the theoretical values. Table 5.6 shows that, the theoretical results are

equal to results computed by our analyzer.

List size Theoretical result Interpreter result
64 155.689708141 155.689708141
127 324.466030456 324.466030456
255 663.983041304 663.983041304
511 1344.99543682 1344.99543682
1023 2709.00749142 2709.00749142

Table 5.6: Heapify: comparing the theoretical result with the interpreter result
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Remark 5.7. Notice that our interpreter analyzer can handle any heap size, be-

cause it abstractly simulates the process of heap creation and keeps track of the

changes of the data structures and their time costs.

5.8 Summary

In this chapter we evaluated the capabilities of the MOQA language and the

correctness of the interpreter analyzer has been demonstrated. Several common

sorting, searching and data structure creation algorithms have been discussed.

Their MOQA language implementations have been presented. Comparing the

theoretical result with the result obtained from the automated analyzer, the cor-

rectness of the analyzer has been checked. There are limitations on the algorithms

that can be implemented with theMOQA language. With the development of

MOQA theory, it would be interesting to see other types of algorithms intro-

duced toMOQA and implemented in theMOQA language. Also it would be

a nice project to extend our language with extra features and remove some re-

strictions if possible. The detailed discussion of our future work is presented in

Chapter 8.
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With this chapter, we start our second main topic of this thesis. We present

a new way to analyse multithreaded fork-join programs under theMOQA the-

ory, which is published in [39]. We demonstrate that MOQA theory can be

competently applied to the core principles of parallel algorithms.

We start with a general introduction and a related work discussion in Sec-

tion 6.1 and Section 6.2. Then, a short overview of multithreaded program

analysis is presented in Section 6.3. We expand the MOQA modularity the-

ory to a fork-join model (Section 6.4), and show that multithreaded algorithms

which satisfy MOQA theory allow for easy analysis. Parallel Quicksort serves

as an example and is presented in Section 6.5. Finally, a summary is provided in

Section 6.6.

6.1 Introduction

With the advance of parallel architecture design, parallel programming has evolved

in the past few years. There are various parallel hardware architectures, including

multicore processors, large clusters of interconnected machines and recent parallel

GPUs. Consequently, different programming languages exist for the architectures

mentioned above. The requirement for parallel algorithm analysis also increased.

Our research focuses on performance analysis for fork-join programming on

multicore processor machines. The fork-join parallelism is the simplest and most

effective design technique for obtaining good parallel performance [62]. The per-

formance analysis of the program in this model is closely related to the program

code [21], as the code captures the notation of parallelism, which leaves the po-

tential for it to be statically analysed. The model is suitable and efficient for

divide and conquer algorithms, which underpins many kinds of problems, such as

sorting (e.g. Quicksort, Mergesort) [26].

MOQA is a new method used to obtain average-case timing information of

randomness preserving programs [85]. The data structure in theMOQA model

is traceable, meaning that the probability of each structure occurring at any step

during program execution is predictable. In the later sections, we will show a

new approach to statically obtain the work and span for a fork-join program with

MOQA theory. The work and span obtained will be represented by a recursive
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equation in terms of input size. Because our method studies the properties of a

parallel algorithm, by exploiting their internal dependence and critical path, our

results can be applied to any fork-join programming platform.

There are several fork-join platforms available for programmers with different

backgrounds. Cilk [38] is the first published framework that offered a fork-join

solution, which provided simple linguistic extensions for multithreading to ANSI

C. JCilk [28] is a Java version of Cilk. In our experiment we utilize the Java 7

Fork-Join framework(jsr166) [62], which is included in the new release of Java

7 [74]. By comparing with experimental results, we show that our approach is

useful to bound the program performance and speedup in terms of problem size

and that it’s more accurate than asymptotic analysis.

6.2 Related Work

The performance of a serial application program can be measured by its execution

time, while a multithreaded application program employs two more criteria, one

named work, the other named span [21]. The tools to analyse serial programs are

widely available, while few tools can perform an analysis of multithread programs

in terms of their work and span.

Based on a monitored uni-processor execution and simulation, the VPPB

(Visualization of Parallel Program Behaviour) [24] system can predict behaviour

of a multithreaded Solaris program using any number of processors. It is a great

tool to tune parallel programs and to find a critical path, but it is limited on C

or C++ to Solaris systems and it does not provide information on work criteria.

Cilkview [47] uses dynamic instrumentation to collect metrics directly on op-

timized binary codes. It can provide a similar boundary as ours, but it is only

available on the Cilk platform and needs a performance-collection run.

HPCToolkit [105] is a profiling tool for multithreaded programming but the

metrics it provides are parallel idleness and overhead. These are good metrics for

tuning but not for scalability prediction as work and span offer.

Currently none of the tools can provide an equation for work and span and

most of them need a performance-collection run like Cilkview. This process will

collect necessary information or make bookmarks in the source code. Because
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our approach is based on MOQA’s traceable structures, the first recorded run

is not necessary and our approach can provide a recursive equation as output.

6.3 Overview of Multithreaded Program Anal-

ysis

The dag (directed acyclic graph) model is a widely used model when analysing

multithreaded programs. The theory behind the dag model was developed by

many researchers [22, 23, 31, 42]. A precise and useful tutorial on the dag model

can be found in [26].

The dag model of multithreading views the parallel program execution as a

set of instructions with dependencies between them [26]. The vertices of the

dag represent the sequential instructions with no parallel execution, and this

set of serially executed instructions are also called strands in the model. The

dependencies between strands (set of instructions) in the model is represented by

dag edges. If strand x points to strand y it means that strand y cannot start

until strand x has completed, when there is no edge between strand x and strand

y we say that they are in parallel.

In Figure 6.1, for example, strand 4 has to wait until strand 1 and strand 2

are completed before it can start, strand 3 is in parallel with strand 4.

The fork-join program can be modelled using a computing dag. To help ex-

plain the pseudo-code in our later section, we introduce two new concurrency

keywords, Fork and Join. The use of pseudo fork-join code makes our analy-

sis independent of any particular language or platform. Fork is used before a

procedure call, contrasting with ordinary procedure call. The caller thread may

continue to execute without needing to wait for the callee procedure to complete.

In the corresponding dag, Fork will create two dependency edges emanating from

a strand. One goes to the strand containing the first instruction of the Forked

procedure, the other goes to the strand containing the first instruction after the

forked procedure. A Join statement creates dependency edges from the strand

containing the last instruction of each Forked procedure to the strand containing

the instruction immediately after Join.
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Figure 6.1: A dag representation of a multithreaded program execution. Each
vertex is a strand, edges represent strand dependencies.

Two metrics work and span are used to gauge the theoretical efficiency of a

multithreaded algorithm. Work is the total amount of time spent in all strands,

and it corresponds to the execution time on 1 processor, it is represented by

T1. The second measure is span, which is the theoretically fastest time the dag

could be executed with an infinite number of processors available. T∞ is used to

represent span, it also means the critical path in the dag.

When considering the time taken with P processors, TP is used. The speedup

of P processor is T1

TP
. It can be seen clearly from the definition of T∞ that we

have the following inequality:

T∞ ≤ TP ≤ T1
T1

TP
≤

T1

T∞

These two inequalities will be used later to bound the performance of parallel

programs, the work and span will be derived by our new method.
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6.4 MOQA Theory Extension

In this section we will extend theMOQA theory stated in Section 2.3, to apply

tracked data structures and distributions to the parallel field and make the link

between multithreaded programs andMOQA theory.

Lemma 6.1. If a random bag preserving operation P1 is executed in parallel with

another random bag preserving operation P2 in the fork-join model, then the result

of each operation still forms a random bag. Thus the parallel operation is still

random bag preserving.

Proof. Because P1 is executed in parallel with P2 in the fork-join model, the two

tasks in the fork-join model won’t need to communicate. Hence we can view them

as two parallel strands in the computing dag. The parallel run won’t affect the

restructuring effect of the operation, because the operation itself runs in sequence.

Thus random bag preservation holds.

When we consider an algorithm’s complexity in sequential programming, a

recursive equation in terms of problem input size is considered. We bring the

same concept into the parallel field and introduce the following notations.

Theorem 6.2. Average Case Execution Work Time (ACEWT) for an operation

P with input random bag R = {(R1, K1), . . . , (Rn, Kn)} is

T
P

1 (R) =

n
∑

i=1

Ki|Ri|

|R|
× T

P

1 (Ri)

Theorem 6.3. Average Case Execution Span Time (ACEST) for an operation

P with input random bag R = {(R1, K1), . . . , (Rn, Kn)} is

T
P

∞(R) =
n

∑

i=1

Ki|Ri|

|R|
× T

P

∞(Ri)

Remark 6.1. The way to calculate ACEWT, ACEST and ACET is nearly the

same, ACEWT and ACEST is extended ACET for parallel algorithm. ACEWT

considers the complexity of the operation in terms of one processor, thus it is
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identical with ACET. ACEST assumes that infinity number of processors are

available, the average-case complexity is still the same pattern, the sum of com-

plexities for each individual structure multiply its probability.

After defining the notations used to represent the average-case complexity of

parallel algorithms, we extend Theorem 2.4 to deal with parallel execution where

we incorporate our new average-case time notations.

Consider two random bag preserving programs (operations) P and Q such

that executing P on random bag R results in random bag R′. The ACEWT and

ACEST for the sequential execution P and Q are as follows:

Theorem 6.4.

T
P ;Q

1 (R) = T
P

1 (R) + T
Q

1 (R
′)

T
P ;Q

∞ (R) = T
P

∞(R) + T
Q

∞(R′)

Proof. Since the two operations execute sequentially, one operation will have to

wait before starting until the other operation is completed. Thus ACEWT and

ACEST are the sum of two operations’ complexities.

Now consider two operations P and Q in parallel. Again, P is executed on

random bag R, and Q on random bag R′.

Theorem 6.5.

T
P‖Q

1 (R,R′) = T
P

1 (R) + T
Q

1 (R
′)

T
P‖Q

∞ (R,R′) = Max{T
P

∞(R), T
Q

∞(R′)}

Proof. When two operations run in parallel, there is no dependency between

them. If two or more processors are available, the average time will depend on

the longest operation run. The work time is always the same with the sequential

run.

The Fork-Join parallel computing model brings two new concurrent keywords:

Fork and Join into algorithm pseudocode. During the analysis of an algorithm,

we keep a set of forked procedures. When we encounter a join call we use The-

orem 6.5 to calculate the algorithm’s ACEWT and ACEST. For a sequential

procedure call, we use theMOQA linear composition equation in Theorem 6.4.
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6.5 Experimentation and Evaluating a Practical

Example

In this section we deduce the ACEWT and the ACEST for parallel Quicksort

based on our new method. To evaluate our result an experiment is designed and

discussed in this section.

The pseudo code of fork-join Quicksort is defined below. The original Quick-

sort and its MOQA programming implementation and ACET analysis can be

found in Section 5.2.

Next we will use the structure and distribution captured byMOQA combined

with our new equation in Section 6.4 to analyse this algorithm.

Algorithm 6.1 Parallel QuickSort algorithm(PQS)

if L.size ≤ 1 then return n

else

Split(L, Up,Down);

Fork ParallelQuickSort(Up);

Fork ParallelQuickSort(Down);

Join

end if

Remark 6.2. Parallel Quicksort algorithm based onMOQA Split operation, the

details of this operation is in Section 2.3.3.1 (page 28).

When n ≤ 1, T
PQS
∞ (R(∆n)) = T

PQS
1 (R(∆n)) = 0

Next we will focus on the other part of the algorithm. There are three state-

ments: Split; (PQS||PQS).

ACEWT of parallel Quicksort:

T
PQS
1 (R(∆n)) = T

split;(PQS||PQS)
1 (R(∆n))

= T
split
1 (R(∆n)) + T

PQS||PQS
1 (Up,Down)

= T
split
1 (R(∆n)) + T

PQS
1 (Up) + T

PQS
1 (Down)
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ACEST of parallel Quicksort:

TPQS
∞ (R(∆n)) = T

split;(PQS||PQS)
∞ (R(∆n))

= T
split
∞ (R(∆n)) + T

PQS||PQS
∞ (Up,Down)

= T
split
∞ (R(∆n)) +Max[T

PQS
∞ (Up), T

PQS
∞ (Down)]

Notice Up and Down in the equation are the random bags resulting after the

Split operation. Via Theorem 2.4 (page 27) and Theorem 2.5 (page 30) we obtain:

T
PQS
1 (R(∆n)) = T

split
1 (R(∆n))+
n
∑

i=1

αi(T
PQS
1 (R(∆n−i)) + T

PQS
1 (R(∆i−1)))

T
PQS
∞ (R(∆n)) = T

split
∞ (R(∆n))+
n
∑

i=1

αiMAX[T
PQS
∞ (R(∆n−i)), T

PQS
∞ (R(∆i−1))]

αi =
ki × |R(P [i− 1, n − 1])|

∑n
i=1 ki × |R(P [i− 1.n− 1])|

=
1

n

T
split
1 (R(∆n)) = T

split
∞ (R(∆n)) = n− 1

Where αi is the probability that the corresponding structure happens to occur.

Because the Split operation is a sequential operation, its ACEWT and ACEST

are the same, the comparisons amount to the list’s size minus one.

The resulting data structures of the Split operation can be seen in Figure 2.11

(page 31). We replace the random structures R(∆i) by their size i:

T
PQS
∞ (n) = T

split
∞ (n)+
n
∑

i=1

αiMAX[T
PQS
∞ (n− i), T

PQS
∞ (i− 1)]

Note that for the first half of the resulting structures, sorting in the upper part

will always take a longer time because the size of the upper collection is greater
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than the lower part. Symmetrically, in the second half the lower part will always

take the longest time. Because of the symmetry of the resulting structures, the

sum of the first half of the result will be the same as the sum of the second half.

We separate the final recursive equation according to the lengths of the lists,

because odd length lists will have a single structure in the middle of the resulting

structure list and hence need to be treated separately.

We conclude:

T
PQS

∞ (n) =











































For n is even:

n− 1 +
2

n

n
2

∑

i=1

T
PQS

∞ (n− i)

For n is even:

n− 1 +
2

n

n−1
2

∑

i=1

T
PQS

∞ (n− i) +
1

n
T

PQS

∞ (
n− 1

2
)

Base case: T∞(1) = 0

Because ACEWT coincides with sequential algorithmic ACET analysis in

MOQA we obtain:

T
PQS

1 (n) = (n− 1) +
2

n
×

n−1
∑

i=0

T
PQS

1 (i)

6.5.1 Experiment Result

To justify the correctness of our method, several experiments are designed. The

experiments are undertaken using the OpenJDK 64-Bit Server VM (build 1.6.0-

b09) on Fedora 9 (X86 64). The machine has two 2.6 GHz quad-core CPUs

with 12GB of DRAM. We measure the average-case execution times of sequential

and parallel Quicksort executed on a sample of 50, 000 randomly generated lists.

The experiments are undertaken with various lists sizes and different numbers of

cores enabled. We compare the resulting average-case times and speedup with the

number of comparisons and the speedup bound calculated from the recurrence
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equations obtained by our method.

The generation of the inputs is a key issue. Indeed the quality of the exper-

imental average-case time results is highly dependent on the distribution of the

input data. For our study, we used Apache Commons Math [36] which is a library

of lightweight, self-contained mathematics and statistics components written in

Java.

In order to minimize timer granularity and JVM (Java virtual machine) warm-

up artifacts, an initial sample list was running before starting the timers, and all

data are medians of three runs.

The recurrences represent the average number of comparisons executed in a

program. Of course this in general on its own will not give a sufficiently accurate

running time boundary. We use a work-coefficient in conjunction with the num-

ber of comparisons to reflect the expected maximum(work) and minimum(span)

amount of time to execute the program.

Here, for the purpose of the current experimental evaluation, we calculate the

work-coefficient by taking the experimentally obtained ACEWT and divide this

by the average number of comparisons over many lists of different sizes. The final

value of the coefficient is the average of the values obtained for each sample.

Because of the inequality introduced in Section 6.3:

T∞ ≤ TP ≤ T1

We claim that the performance of processor P will be bounded by the algorithm’s

ACEWT and ACEST. The experiment results in Figure 6.2 verify our prediction.

The upper and lower bound in the diagram is generated by our recursive equation,

which successfully set a performance boundary of the algorithm no matter how

many cores were used.

With the knowledge of the ACEWT and ACEST recursive equation, we can

bind the maximum speedup in terms of input size, using the inequality:

T1

TP

≤
T1

T∞

One may argue that asymptotic analysis will give a similar result. For asymp-
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Figure 6.2: A comparison of average time execution between different core
amounts and how ACEST and ACEWT bounds the times. Green represents
the sequential execution time.

totic analysis, the ACEWT (Work) of parallel Quicksort is O(nlogn) and the

ACEST (Span) is O(n), while the boundary speedup is O(logn) [26]. The result

of the experiment is shown in Figure 6.3.

According to the experiment’s results, our method is much more accurate than

the asymptotic boundary (with constant one). For the experiments with two and

four cores, the speedup is bounded by the number of cores available to work.

Meanwhile, for the case of six and eight cores, the bottleneck is the parallelism

of the algorithm. The predicted speedup accurately captures this boundary.

The usefulness of the speedup boundary equation is not only limited to this.

Because of the equation, we can get the boundary of the speedup in terms of

problem size, thus paving the way to resource optimization. One example would

be a web server in charge of sorting incoming data. With the help of the speedup

prediction we might dynamically change the number of processors allocated, for

instance, around speedup number, because more processors allocated won’t in-

crease the speedup noticeably.

One more thing to notice is that on smaller sized lists, parallel sort may be
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Figure 6.3: A comparison of the obtained speedup differences for core amounts
compared to sequential execution and the theoretically obtained values

slower than sequential sort. This is because the overhead of creating one thread

may be greater than sorting the list, thus a threshold is needed to switch between

sequential sort and parallel sort based on the size of the list to be processed. The

threshold is machine dependent, so currently we need to experiment to find a

good threshold. In the future we hope to investigate this area and design a new

algorithm to dynamically change the threshold on the fly and let the algorithm

seek the value. The equation we obtained will be the guide for that algorithm. At

the current stage, there are some brief discussions about this problem reported

by K. Rea in [79].

6.6 Summary

In this chapter we extended the originalMOQA theory and presented a new way

to analyse a multithreaded fork-join program. We expanded the MOQA mod-

ularity theory to a fork-join model, and showed that multithreaded algorithms

which satisfy MOQA theory can be easily analysed. Parallel Quicksort served

as an example, where we deduced its recursive equation for work (ACEWT) and
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span (ACEST). The experimental results confirmed that the predicted ACEWT

and ACEST yield bind the performance of the algorithm and speedup, and proved

to be much more accurate than asymptotic analysis.
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Chapter 7

Applications of MOQA
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We investigate a wide range of applications related toMOQA research.

In Section 7.1, we look at several types of heaps and explore their creation

algorithms. Random bag preservation properties for these algorithms are stud-

ied. We identify candidates that might able to fit into MOQA context. Some

types of heaps can be made with the current MOQA operations, while others

require extension on operations and constructs within MOQA, but might be

implemented in the future.

MOQA was originally designed to support average-case analysis. Because

of the usage of random structures and random bag preserving operations, it also

paves the way to other application areas.

Section 7.2, focuses on average-case complexity and entropy analysis. The

treap insertion provides a new operation to the MOQA treap data structure,

we investigate the running time of this operation. Then, we define entropy over

a random bag and study several sorting algorithms by tracking their entropy

changes with random bags.

In Section 7.3, we show how randomness preservation can be used to make

MOQA partially reversible. A frugal encoding for the reversible Split operation

is designed and a reversible Quicksort is studied as an example.

Finally, a general introduction to MOQA smoothed analysis is presented.

We investigate how this metric fits into originalMOQA and we integrate it with

our interpreter analyzer.

7.1 Random Bag Preservation for Heap Algo-

rithms

A heap is a tree based data structure which satisfies the heap property. Based

on types of heap property, it is further classified to a max-heap or a min-heap.

In our context we focus on max-heaps of which we give the definition below.

Definition 7.1. A heap is generally viewed as a labelled tree. The max-heap

(min-heap) property requires the label stored in each node to be greater (less)

than or equal to the labels stored in its children. A max-heap (min-heap) is a

heap which satisfies the max-heap (min-heap) property.
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In this section, we examine several types of heaps. They all satisfy the max-

heap property, with one exception, in Section 7.1.4, we discuss a special type of

heap called min-max heap, of which each node at an even level in the heap satisfies

the min-heap property, while each node at an odd level in the heap satisfies the

max-heap property.

There are several operations that are commonly performed on a heap. In the

scope of this thesis, we only focus on the operations that build a heap object

from a random input list. Different types of heaps have different heap creation

algorithms. In the following sections, we focus on their random bag preservation

property. We will also encounter examples that are not random bag preserving

and hence do not fit in MOQA theory in their current form. In the original

MOQA research, the binary heap creation algorithm Heapify was well studied.

We present it below as our warm up example.

7.1.1 Binary Heap

A binary heap is a binary tree that satisfies two extra properties. One is called

the shape property. The binary tree must be a left-complete binary tree, that is,

each level of the tree is completely filled, except possibly the bottom level. At the

bottom level, it is filled from left to right. The second property is the max-heap

property (we focus on max-heaps).

As discussed in [85], the binary heap creation algorithm Heapify is random

bag preserving.

We recall the Heapify procedure which uses Push-Down (see Section 2.3.3.2)

to create a heap from a given list [26]. In Algorithm 7.1, we give the pseudo-

code for the Heapify procedure inMOQA, using the Product operation
⊗

. We

refer the reader to Section 5.7 for a corresponding Heapify implementation in the

MOQA programming language.

Algorithm 7.1 MOQA Binary Heap Heapify

input X : ∆

for j ← ⌊ |X|
2
⌋ downto 1 do

X[j] ← (X[2j], X[2j+1])
⊗

X[j]

end for

164



Remark 7.1. For a labelled partial order stored in X , which presents a binary

tree, the element with greatest index which has children is the element X [⌊ |X|
2
⌋].

Theorem 7.1. The MOQA binary heap heapify procedure is random bag pre-

serving.

Proof. This is a direct result from repeated application ofMOQA’s basic oper-

ations. At each iteration, theMOQA Product operation is applied on a random

element with its two subtrees. Each subtree is an isolated subset of the input

random structure (see Definition 2.10 for isolated subset, page 26). Because there

is no relation between the two subtrees, and the top element is greater than rest

of the elements, theMOQA Product is guaranteed to operate on random struc-

tures. As proven in [85], the Product operation is random bag preserving. Hence

the resulting structure will be a random structure and the algorithm is random

bag preserving.

7.1.2 Leonardo Heap

As shown earlier, not all algorithms are random bag preserving (see Example 2.7,

page 25). In the following, we introduce a new heap data structure, and show

that its creation algorithm is not random bag preserving.

The Leonardo Heap is a special heap that is invented for an interesting sorting

algorithm called Smoothsort. This sorting algorithm was originally created by the

legendary Edsger Dijkstra [30]. Keith Schwarz provided a detailed explanation

of this algorithm at the Stanford ACM Tech Talk [93].

Smoothsort is a comparison based sorting algorithm. Thus its performance

is bounded by O(nlogn) [26, 57]. But with clever design, this sorting algorithm

provides great memory and runtime guarantees. Its worst-case and average-case

performance are both asymptotically optimal, i.e. O(nlogn). Even better, this

sorting algorithm is an adaptive sort, it takes time closer to O(n) if the input

list is already sorted to some degree. This sorting algorithm can be viewed as a

variant of heap sort with a special heap called the Leonardo heap. We focus on

the Leonardo heap creation algorithm and examine if it is random bag preserving.

We refer the reader to [30, 93] for details about Smoothsort.
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The Leonardo heap is based on a number sequence called the Leonardo se-

quence, a close cousin of the well-known Fibonacci sequence 1.

Definition 7.2. The Leonardo numbers are a sequence of numbers (denoted

L(0), L(1), L(2), ...) given by the following recursive equation:

L(n) =























1 if n = 0;

1 if n = 1;

1 + L(n− 1) + L(n− 2), if n > 1.

Example 7.1. The first few Leonardo numbers are 1, 1, 3, 5, 9, 15, and 25.

Definition 7.3. A Leonardo tree is defined recursively. We use Ltk to denote an

order k Leonardo tree:

Ltk =























a singleton node if k = 0;

a singleton node if k = 1;

a node with two children, Ltk−1 and Ltk−2 (in that order), if k > 1.

Remark 7.2. It can be shown with a simple inductive proof that the number of

nodes in the tree Ltk is L(k).

Example 7.2. In Figure 7.1, we show Leonardo trees Lt0, Lt1, Lt2, Lt3.

Definition 7.4. A Leonardo heap is an ordered collection of Leonardo trees such

that:

• The order of the trees is strictly decreasing, i.e. no two trees have the same

order.

• A n elements Leonardo heap is made out of O(logn) Leonardo trees, and

there are at most two trees with consecutive order.

• Each tree obeys the max-heap property (see Definition 7.1 for max-heap

property).

1There is another type of heap, called the Fibonacci heap based on Fibonacci sequence, but
we won’t cover it in this thesis
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Lt0 Lt1 Lt2 Lt3

Figure 7.1: Leonardo tree examples: Lt0, Lt1, Lt2, Lt3
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43

21

12

8

Figure 7.2: Eight nodes Leonardo Heap example

• The roots of the trees are in ascending order from left to right.

Example 7.3. In Figure 7.2, we show an example Leonardo heap with eight

nodes.

In order to convert a list of elements to a Leonardo heap, we insert a new

element into a partially built heap repeatedly. The whole process is started with

a basic singleton node Leonardo heap that contains only the first element. When

we insert a new element to a Leonardo heap, there are three properties we need

to preserve:

• Ensure that the resulting Leonardo heap has the correct shape, e.g. trees

stored in descending order.

• Ensure that the roots of Leonardo trees are sorted in ascending order from

left to right.
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• Ensure that each Leonardo tree obeys the max-heap property.

We describe the steps to insert a new element into a Leonardo heap in Algo-

rithm 7.2.

Algorithm 7.2 Leonardo Heap Insertion

if last two trees have adjacent order then
merge them into one new tree with inserted element.
Push-Down on new tree.

else
if last tree is not order 1 then

Add a tree of order 1 with new element.
else

Add a tree of order 0 with new element.
end if
Shift new element to a proper heap, ensure that the tops of the heaps are

sorted in ascending order from left to right.
Push-Down on heap with new element.

end if

Example 7.4. To demonstrate how to convert a list of elements to a Leonardo

heap, we present an example in Figure 7.3. It illustrates how to convert a

Leonardo heap from input list L = {3, 1, 4, 2}. The creation steps repeatedly

apply the Leonardo heap insertion algorithm. At the start, we have an empty

heap, a single Lt1 tree with element 3 is made. Next, insert element 1. A new

tree Lt0 is created with label 1, then rearranging top labels, 3 is swapped with 1.

When 4 is inserted, the first condition in the insertion algorithm is satisfied, and

a new tree Lt2 combines both smaller trees. The labels are rearranged to ensure

max-heap property. Repeat the same insertion step. We insert the last element

2 and obtain the Leonardo heap as shown in the figure.

With this necessary background, we can start to look at the randomness

property for this heap creation algorithm. In this example, we can view the

resulting heap as a parallel partial order, while each parallel component is a

Leonardo tree. With a random list input, we hope that the resulting heaps form

a random bag. Unfortunately, as we show in the following, this procedure is not

random bag preserving.
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Figure 7.3: Leonardo Heap creation example with input List L = [3, 1, 4, 2]
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Figure 7.4: Leonardo Heap creation: random preserving contour example

Theorem 7.2. The Leonardo heap creation algorithm is not random bag preserv-

ing.

Proof. By a simple counter example, we show this result. For a three element

random input list, say with labels {1, 2, 3}, the resulting Leonardo heaps always

forms a ∧ shape partial order where of course 3 is always at the top. To make

the resulting heap a valid random bag, we need bottom labels to have the same

chance of being in order 1, 2 or 2, 1. Since before merging two trees, the insertion

always makes the top elements of the trees in sorted order, we have more chance

of resulting in order 1, 2. As shown in Figure 7.4, the last two columns form two

∧ shape random structures, but the left resulting heap in the first column is not

a random structure. Thus this algorithm won’t form a random bag output.

7.1.3 Skew Heap

The skew heap data structure is a self-adjusting heap. During each access or

update operation, the data structure is adjusted in a simple, uniform way. Like a
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binary heap, a skew heap is a heap-ordered binary tree. It was proposed by Sleator

and Tarjan [99]. In comparison with binary heaps, skew heaps are advantageous

because of their quicker merge operation. A functional implementation is also

provided in [72].

Definition 7.5. A skew heap can be defined recursively as:

• A single element is a skew heap.

• The result of skew merging two skew heaps is also a skew heap.

In the following, we only describe how to insert one element e into a skew heap

SH . The general merge operation of two skew heaps can be found in [99]. We

present the pseudo-code in Algorithm 7.3. Notice that root() gets a root element

of a skew heap, while left() and right() get its left and right subtree respectively,

and makeHeap() constructs a new skew heap with its first argument as root

element, and the second and third argument as left and right subtree.

Algorithm 7.3 Skew Heap Merge

Merge(SH , e)
if SH = ∅ then return e
else

if e > root(SH) then
makeHeap(e, SH, ∅)

else
makeHeap(root(SH),Merge(right(SH), e), left(SH))

end if
end if

Theorem 7.3. The Skew Heap Merge operation is random bag preserving.

Proof. In the following we use SHi to represent a skew heap of size i, and e as

a new random number. We prove it by induction. When i = 1, merge(SH1, e)

produces two possible skew heaps, as shown below. They have equal chance to

be formed and each heap itself is a random structure. Thus, for the base case,

this operation is random bag preserving.
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Now, assume our inductive hypothesis: merge(SHk, e) produce a random bag

when k < n. Consider merge(SHn, e). In the following figure, we show merge

executed on a skew heap random structure.

r e
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SHj
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SHi

SHj

e
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SHj
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Merge

1 ≤ k < n+ 1k = n+ 1

A n element skew heap random structure must have a top element, with i

elements in its left subtree (still a skew heap) and j elements in its right subtree

(still a skew heap), where i+ j = n− 1. When merging a random element say e,

this new element will have a rank in the overall labels which we call k.

If k = n+1, the new element is the biggest element. The resulting skew heap

is always the first case in the figure above. That is, adding a top element to a

random structure. It must result in a new random structure.

When 1 ≤ k < n + 1, the resulting skew heap is shown in the second case.

The right subtree SHi must be a random structure, because it is an isolated

subset of the original random structure. In the left subtree, we merge SHj with

a new element e. Because of the inductive hypothesis (j < n), the left subtree

also results in a random structure. Combining two random structures in parallel,

then adding a maximum element, we again have a random structure. Thus in

both cases, this operation transforms each random structure to a new random

structure, hence it is random bag preserving.
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Figure 7.5: Skew Heap creation example: length three random list

Remark 7.3. In our proof, both SHi and SHj are isolated subsets of the original

skew heap SHn (see Definition 2.10, page 2.10). This is because subtrees are

always isolated.

Corollary 7.4. Converting a random list to a skew heap is random bag preserv-

ing.

Proof. Note that constructing a skew heap from a random list is simply a repeated

application of skew heap merge operations. As shown in Theorem 7.3, the skew

heap merge operation is random bag preserving. The input random list is a

random structure, thus this construction is random bag preserving.

Example 7.5. In Figure 7.5, we convert a length three random list to skew heaps,

where each resulting random structure is coloured differently.

7.1.4 Min-Max Heap

A Min-Max heap is a modified version of a binary heap [16]. In this data structure

the maximum and minimum label can be retrieved in constant time.
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Figure 7.6: Min-Max heap built from input list [3, 5, 1, 2, 6, 4]

Like a binary heap, a Min-Max heap is represented as a complete binary tree.

A tree is said to be Min-Max ordered if every element on even (odd) levels is less

(greater) than all of its descendants, where the root is at level zero.

Example 7.6. Figure 7.6 illustrates a Min-Max heap constructed from an input

list [3,5,1,2,6,4].

The detailed construction algorithm can be found in [16]. Before we continue,

we note the abuse of notation in this section. Formally, Hasse diagrams are up-

wardly orientated partially order sets. However, the dual of a partially ordered set

is a partially ordered set with the converse relation. In keeping with the Min-Max

heap notation in [16] we will refer to a dual-Hasse diagram as a Hasse diagram

in this section. Following from this, we refer to the Dual-Product operation as

the Product operation in this section. The Dual-Product performs like a normal

Product but keeps the min-heap property, and is denoted by notation
⊗D.

We recall the Heapify procedure which uses Push-Down to create a binary

heap from a given list. In Algorithm 7.1, we outline how to implement the Heapify

procedure inMOQA using theMOQA Dual-Product, which is published in [40].

We adjust the MOQA binary Heapify algorithm to allow for the Min-Max

property of the Min-Max heap. The MOQA Min-Max heapify procedure out-

lined in Algorithm 7.4 creates a partial order implicit within the normal Min-Max

heap construction.
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Algorithm 7.4 MOQA Min-Max heapify

input X : ∆

for j ← ⌊ |X|
2
⌋ downto 1 do

if ⌊log2(j)⌋%2 == 0 then

X[j] ← (X[2j], X[2j+1])
⊗D X[j]

else

X[j] ← X[j]
⊗D (X[2j], X[2j+1])

end if

end for

In Min-Max heapify, based on whether the product operation occurs at even

level or odd level, the algorithm places the two subtrees either above or below

the other singleton element. With this alternation, it tracks the partial order

implicitly within the normal Min-Max heap.

3

15

2 6 4

3

15

2 6 4

3

1

6

2 5

4

1

3

6

2 5

4

min level

max level

min level

⊗
D

⊗
D

Figure 7.7: MOQA Min-Max heapify on input list [3,5,1,2,6,4]

Theorem 7.5. TheMOQA Min-Max heapify partial order construction is ran-

dom bag preserving.
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Proof. The input for the algorithm is a trivial random structure. As theMOQA

product is recursively applied to isolated subsets (see Definition 2.10, page 26),

the algorithm is random bag preserving.

Example 7.7. Figure 7.7 illustratesMOQA Min-Max heapify on an input list

[3, 5, 1, 2, 6, 4]. As can be seen, the partial order created is the partial order

implicit within the normal Min-Max heap in Figure 7.6.

The Min-Max heapify could produce interesting partial orders, which we did

not have before. As shown in Algorithm 7.4, the code for Min-Max heapify stays

quite close to the original Heapify code (see Algorithm 7.1). The extension by a

conditional expression may seem to allow one to derive its timing function easily,

but in fact this is not an easy job. For the Heapify algorithm, the generated

structure has a nice recursive definition, but for Min-Max heapify, currently we

do not have a concise representation to capture the final structure. It makes the

time analysis quite hard. We illustrate this by showing one structure produced

by this algorithm in Figure 7.8. The full study of this problem is out of the scope

of this thesis. It would be an interesting project for future investigation.

Figure 7.8: One possible partial order generated by Min-Max heapify

In conclusion, we note that the Skew heap has the ability to merge more

quickly than the binary heap [99], and that the Min-Max heap allows us to find

both the smallest and the largest element in constant time. With a suitable gen-

eralization, the Min-Max heap can also support similar order-statistics operations

175

Chapter6/Chapter6Figs/EPS/min_max.eps


efficiently (e.g., FindMedian or DeleteMedian) [16]. As such the operations as-

sociated with constructing these structures are useful candidates to incorporate

in our MOQA language. We found these two data structures fit the MOQA

context well as their associated operations are random bag preserving. As such,

they are candidates for investigation in our future research, in particular in con-

nection with determining their exact average-case time, e.g. via typical recursive

formulas over series-parallel orders.

7.2 Complexity and Entropy based on MOQA

In this section, we present a new operation for theMOQA treap data structure,

and its average running time is analysed. In the second part of this section, we

investigate entropy and redefine it over a random bag. Because MOQA can

track random bags during the execution of an algorithm, it is possible to keep

track of data entropy as well.

7.2.1 Average Case Analysis of Treap Insertion

Consider inserting a random value into a n nodes random treap T REAP(n).

It will result in a n + 1 nodes random treap T REAP(n + 1). The LPOs in

T REAP(n) and T REAP(n+1) are n! and (n+1)! respectively (see Section 5.5,

page 5.5 for an introduction onMOQA treaps).

We design a new algorithm for inserting a new random element into aMOQA

treap. The pseudo-code is shown in Algorithm 7.5 1.

Algorithm 7.5 MOQA Treap Insertion

insert(b, F)
if root(F) < b then

makeTreap(b, F, null)
else

F = right(F)
insert(b, F)

end if

1This work is based on the discussion with Dr. P. Chebolu
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Remark 7.4. makeTreap(b, F, null) builds aMOQA treap with root b and left

child F , right child null. And root(null) = −∞

The Algorithm 7.5 recursively inserts a new element b into a MOQA treap

F . We illustrate this algorithm in Figure 7.9. Notice in the figure, the value

presents the rank of the LPO label. For example, 1 2 3 means a 3 elements input

list with the biggest value last, the smallest value first. From second column to

the last column, it shows the insertion of a new element with overall rank 1 to

4, e.g. the first example in the first row, second column. The input sequence is

updated from 1, 2, 3 to 2, 3, 4, 1 since the input element has rank 1. It causes the

other three elements all to increase their ranks by 1.

Theorem 7.6. The average running time of MOQA treap insertion on a n

elements treap T REAP(n) is:

T Insert(T REAP(n)) =











1 + 1
3
+ 1

4
+ . . .+ 1

n+1
if n ≥ 2

1 if n = 1

Proof.

T Insert(T REAP(n)) =
CInsert

n

(n+ 1)!

where CInsert
n is the total number of comparisons and (n + 1)! is the number of

new LPOs.

T Insert(T REAP(n)) =
(n+ 1)!× 1 +

∑n−1
i=1 (ki × T Insert(T REAP(i))

(n+ 1)!

The first (n + 1)!× 1 in the denominator represents the comparisons carried

out to compare the root of the treap with the new value. Since we have (n+ 1)!

new LPOs, the number of the comparisons in this part is (n+1)!× 1. If the new

value inserted is the biggest, the insertion process will stop. Thus the number of

comparisons for that case is 1. For the other cases, when there is more than one

node in the right part of the treap and the new value is not the biggest, more

comparisons need to be counted. We use ki × T Insert(T REAP(i)) to calculate
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Figure 7.9: Result of random insertion onMOQA T REAP(3)
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the number of comparisons needed to insert a random value into a right subtreap

with i nodes. We sum the comparisons for all possible right subtreap size ranging

from 1 to n− 1. In ki × T Insert(T REAP(i)), ki is the number of LPOs that are

the result of inserting a new random label into a i nodes right subtreap.

ki =

(

n− 1

i

)

× i!× (n− i− 1)!× n

Because the maximum label is always at the root, for a n node random treap,
(

n−1
i

)

counts the number of ways we can choose the label set on the right sub-

treap, and i! and (n− i−1)! are the permutations on the right and left subtreaps.

Thus we have
(

n−1
i

)

× i! × (n − i − 1)! LPOs with i nodes at the right sub-

treap. After inserting n possible new labels (with different overall ranks and

discarding the largest label because the algorithm stops with one comparison),

the new number of LPOs with i nodes at the right subtreap (before insertion) is
(

n−1
i

)

× i!× (n− i− 1)!× n, which is ki.

Notice that:

ki
(n+ 1)!

=

(

n−1
i

)

× i!× (n− i− 1)!× n

(n+ 1)!

=
(n− 1)!× ✓✓i!×✘✘✘✘✘✘✘

(n− i− 1)!× n

✓✓i!×✘✘✘✘✘✘✘
(n− i− 1)!× (n + 1)!

=
1

n+ 1

Thus

T Insert(T REAP(n)) =
(n + 1)!× 1 +

∑n−1
i=1 (ki × T

Insert

i )

(n+ 1)!

= 1 +
1

n + 1
×

n−1
∑

i=1

T Insert(T REAP(i))

(n+ 1)× T Insert(T REAP(n)) = (n+ 1) +
n−1
∑

i=1

T Insert(T REAP(i)) [a]
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n× T Insert(T REAP(n− 1)) = n+
n−2
∑

i=1

T Insert(T REAP(i)) [b]

[a]− [b]

(n+1)×T Insert(T REAP(n))−n×T Insert(T REAP(n−1)) = 1+T Insert(T REAP(n−1))

T Insert(T REAP(n)) =
1

n+ 1
+ T Insert(T REAP(n− 1))

We can solve this recursion as follows:

T Insert(T REAP(n)) =
1

n + 1
+ T Insert(T REAP(n− 1))

T Insert(T REAP(n− 1)) =
1

n
+ T Insert(T REAP(n− 2))

T Insert(T REAP(n− 2)) =
1

n− 1
+ T Insert(T REAP(n− 3))

...

T Insert(T REAP(2)) =
1

3
+ T Insert(T REAP(1))

Adding left and right parts and simplify them, we get:

T Insert(T REAP(n)) =











1 + 1
3
+ 1

4
+ . . .+ 1

n+1
= Hn+1 −

1
2

if n ≥ 2

1 if n = 1

where Hn+1 is the (n+ 1)th Harmonic number.

Remark 7.5. Since 1
2
+ 1

3
+ 1

4
+ · · ·+ 1

n
<

∫ n

1
1
x
dx, Hn < 1 + lnn then Hn+1−

1
2
<

1
2
+ ln(n+ 1). The treap insertion runs in O(logn).

7.2.2 Entropy Analysis based on Random Bags

The entropy function is used as a measurement of randomness. It is widely applied

in information retrieval, machine learning etc [25, 52]. We recall the definition of

entropy on a general random variable [68].
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Definition 7.6. The entropy of a random variable X is given by

H(X) = −
∑

x

Pr(X = x)log2Pr(X = x).

This is calculated by the summation over all values x in the range of X .

For instance X = {a, a, b, c, c, c}, Pr(X = a) = 2/6, Pr(X = b) = 1/6,

Pr(X = c) = 3/6, H(X) = −Pr(X = a) ∗ log2Pr(X = a) − Pr(X = b) ∗

log2Pr(X = b)− Pr(X = c) ∗ log2Pr(X = c) thus H(X) ≈ 1.459.

Using random bags, we show that it is possible to determine the entropy.

Entropy determination could be a complement of average-case timing and provide

extra information about an algorithm. Entropy information also might open up

a new approach to support the average-case power estimation [92].

Theorem 7.7. The entropy of a random bag R = {(R1, K1), ..., (Rn, Kn)} is:

H(R) = −
n

∑

i=1

|Ri|
Ki

|R|
log2

Ki

|R|

where |R| =
∑n

i=1Ki|Ri|

Proof. Assume αij is the jth LPO from Ri. Thus Ki copies of this LPO are in

the random bag R. The probability of this LPO to occur in the random bag is:

Pij =
Ki

|R| , where |R| =
∑n

i=1Ki|Ri| is the total number of LPOs in the random

bag.

According to Definition 7.6,

H(R) = −
n

∑

i=1

|Ri|
∑

j=1

Pijlog2Pij

= −
n

∑

i=1

|Ri|
∑

j=1

Ki

|R|
log2

Ki

|R|

Because the LPOs belonging to the same structure Ri have equal probability
Ki

|R| , we have: H(R) = −
∑n

i=1 |Ri|
Ki

|R| log2
Ki

|R| where |R| =
∑n

i=1Ki|Ri|.
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Recall that in the analysis of a sorting algorithm’s average-case performance,

unless stated otherwise, we will assume that the input list to the algorithm is

a uniform random permutation, in which each of the n! possible permutations

are equally likely. In MOQA we present a n element random input list as a

random bag with a single random structure R(∆n). We refer to this random bag

as Ln = {(R(∆n), 1)}.

We define a random variable S = (s1, s2, s3, ..., sn!) to represent the random

list to be sorted, where si is an instance of the random list. We have |S| = n! .

Before sorting, the random variable S = Ln.

Corollary 7.8. The entropy of a random bag with a single random structure,

R = {(R1, K1)} is:

H(R) = −
1

∑

i=1

|Ri|
Ki

|R|
log2

Ki

|R|
= −log2

1

|R1|
= log2(|R1|)

where |R| =
∑1

i=1Ki|Ri| = K1|R1|

Remark 7.6. The entropy of a random bag with a single random structure is

determined by the cardinality of the random structure. The multiplicity is not

involved.

Example 7.8. The entropy for a random bag Ln is given by

H(Ln) = log2(n!)

Because Ln = {(R(∆n), 1)}, as shown in Corollary 7.8, its entropy is not

related to the random structure’s multiplicity. Because |R1| = |R(∆n)| = n! we

have

H(Ln) = −log2
1

n!
= log2(n!)

Due to the nature of sorting, at the end of the sorting process, the random

variable S is equal to the random bag {(Sn, n!)}, where Sn represents sorted

order. At the end of sorting H(S) = 0, because the only possible order left is

the sorted order (This can be verified by Theorem 7.7). In the following we will

show how H(S) changes from computation step i to step i+1 by analysing some

common sorting algorithms such as Insertionsort, Treapsort and Mergesort.
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7.2.3 Tracking Entropy Changes in Sorting Algorithms

We define the initial step entropy as the entropy before sorting, represented by

H0(S). As shown in Corollary 7.8, H0(S) = log2(n!). The elements in a list are

given by (a1, a2, a3...an).

Insertionsort

Insertionsort keeps a sorted list and tries to insert a new element into it [26] (see

Section 5.1). Initially the sorted list contains only the first element. The first

step tries to insert a2 into it, resulting in a sorted order a1 >= a2. Notice that

after this step, H(S) had been changed because the first two elements have to be

in the sorted order. After this first insertion, the first two elements are in order

and the remaining elements still are in random order, thus the random variable

S changed from Ln to {(R(S2||∆n−2), 2!)}. S2||∆n−2 presents the partial order

where the first two elements are in sorted order, and parallel with n− 2 random

elements. The multiplicity for this random structure is 2! because the first two

elements are in order, hence the original lists with the same elements in the first

two positions result in the same LPO.

According to Corollary 7.8, after the first insertion,

H1(S) = log2(|R(S2||∆n−2)|) = log2(

(

n

2

)

(n− 2)!)

Generally, after step i, the first i + 1 elements will be in sorted order. The

random bag will be {(R(Si+1||∆n−i−1), (i+ 1)!)}.

Theorem 7.9. In Insertionsort, after the ith insertion,

Hi(S) = log2(

(

n

i+ 1

)

(n− i− 1)!) = log2(n!)− log2(i+ 1)!

where i ≤ n− 1.

Proof. This is a direct result from Corollary 7.8.
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Treapsort

As stated earlier, Treapsort is a new sorting algorithm, based on the MOQA

Treap data structure. We refer the reader to Section 5.6 (page 141) and [85] for

details of this algorithm.

Firstly, each input list is transformed to a MOQA treap by the TreapGen

algorithm, and each permutation order uniquely determines the shape of the

treap, and maps to a unique LPO in the random bag.

At each sorting step, the maximum element will be pushed down in the treap

and then placed back to the top. The rest of the elements still keep the random

property.

Theorem 7.10. After the ith PercM operation in Treapsort,

Hi(S) = log2((n− i)!)

where i ≤ n− 1.

Proof. We start with random bag {(T REAP(n), 1)}, and |T REAP(n)| = n!,

H0(S) = log2(n!). After the first PercM , according to Theorem 2.11, the random

bag changed to {(T REAP(n − 1) ⊗ •, n)}. Next, after the second PercM , the

random bag changed to {(T REAP(n−2)⊗•⊗•, n(n−1))},. Thus, after the ith

PercM , the random bag is {(T REAP(n−i)⊗Si,
n!

(n−i)!
)}. Applying Corollary 7.8

to the random bag, and because |T REAP(n − i) ⊗ Si| = (n − i)!, we get the

above result.

Mergesort

Mergesort is another widely used algorithm [26], which has both worst-case and

average-case complexity O(nlogn). There are two methods for implementing

a Mergesort algorithm: a top-down approach or a bottom-up approach. We

introduce a MOQA implementation with a top-down approach in Section 5.4.

In this section, we use a bottom-up approach, because its random bag after the

ith merge is easier to represent, but the technique we used, with the necessary

modification, should also work on the top-down version.
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Step 1

Step 2

Step 3

Step 4

Step 5

Figure 7.10: Bottom-up Mergesort example: first five merge operations

The bottom-up approach recursively breaks the array in half and then merges

the results together. Bottom-up Mergesort loops over the list using intervals of

varying sizes from 1 to n
2
. At each step, adjacent intervals are merged together.

Subsequent loops, execute over the list with larger intervals and merge our pre-

viously merged (smaller) intervals together.

In Figure 7.10, we show a bottom-up Mergesort example on the input with

list size 8. We only present the first five merge operations. To sort the whole list

we need two more merge operations. In the figure above, at each step the nodes

involved in the merge operation are highlighted in color.

To know the entropy after the ith merge, we need to know the output random

bag. In the following we will assume that the number of elements in the list to
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be sorted is a power of 2. The result will be that all of the sublists at each level

of the recursion tree will have the same size. The recursion tree will be a full and

balanced binary tree.

An example of such a recursion tree is shown in the left part of Figure 7.11.

Notice that each node has a number associated with it. It represents the size

of the list being sorted during that recursive call. The label Mi in each internal

node represents the sequential (sequence) numbers of the merge operation when

sorting the whole list. For example, M1 means the first merge and it occurred

when the algorithm merged the first two elements.

2,M1 2,M2 2,M3 2,M4

4,M5 4,M6

8,M7

7 6 5 4

3 2

1
Level 3

Level 2

Level 1

Level 0

Figure 7.11: Mergesort recursion tree on list size eight

In the following, we will analyse the entropy in terms of each merging step.

An equation will be derived to calculate the entropy value after the ith merging.

Definition 7.7. For an input list of size 2k, we define levels of a recursion tree

from bottom to top. The leaf node is at level 0. The maximum level is k.

Example 7.9. For the recursion tree in Figure 7.11. k = 3, and total number

of elements is n = 2k = 8.

Lemma 7.11. After completing a merge at level i, 2i more elements will be in

order.

Proof. Because merging at level i will merge two lists from level i−1, each merged

list has length 2i−1. Thus after this merge 2i, more elements will be in order.

Before we continue, we introduce the notation
∐

i

S. It constructs a random

structure by parallel composing the component S, i times. The parallel operation

is denoted by ‖.
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Example 7.10.
∐

3

S2 = S2 ‖ S2 ‖ S2

Theorem 7.12. To sort n = 2k elements, if we know the ith merge is at level

t and is the rth merge at its level, then the resulting random structure after this

merge is:

∐

r

S2t ‖
∐

n−r2t

2t−1

S2t−1

where S1 = •.

This means that the random structure is composed by r parallel S2t random

structures first, then paralleled with n−r2t

2t−1 S2t−1 random structures. Then the en-

tropy after the ith merge is simply the logarithm of the cardinality of the structure.

Hi(S) = log2(

r−1
∏

i=0

(

n− i2t

2t

)

n−r2t

2t−1 −1
∏

j=0

(

n− r2t − j2t−1

2t−1

)

)

because of Corollary 7.8.

Now, for the ith merge operation, if we know its level number t and the value

r (rth merge in its level) in the recursion tree, according to Theorem 7.12, we can

compute the resulting random structure and entropy. We illustrate this in the

next example. The way to compute the values t and r is covered in Theorem 7.13.

Example 7.11. In Figure 7.11, the third merge M3 is at level t = 1, with order

r = 3. Thus according to Theorem 7.12, after this merge operation, the random

structure is S2||S2||S2|| • ||•, and its entropy

H3(S) = log2(

3−1
∏

i=0

(

8− i21

21

)

8−3×21

21−1 −1
∏

j=0

(

8− 3× 21 − j21−1

21−1

)

)

= log2(

(

8

2

)(

6

2

)(

4

2

)(

2

1

)(

1

1

)

) = 12.299
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Theorem 7.13. When sorting n = 2k elements in Mergesort, the ith merge

operation is at level t and is the rth merge at its level in the recursion tree, where

t = k − ⌊log2(n− i)⌋

r = i− n+
n

2t−1

Proof. We prove this with the help of a full binary tree. In this full binary tree,

each node is marked with value 1 to n, and from top to bottom, right to left.

We show one example of a full binary tree in the right part of Figure 7.11. It

can be seen, for each ith merge, that its corresponding node in the full binary

tree is node n − i. E.g. In Figure 7.11, M2 corresponds to node 8 − 2 = 6, M5

corresponds to node 8 − 5 = 3. We define the level of the full binary tree from

top to bottom, and starting with 0.

When sorting n = 2k elements in Mergesort, for the ith merge operation

Mi in the recursion tree, we denote its level in the recursion tree by t and the

corresponding node in the full binary tree at level h, thus t+ h = k and we have:

t+ ⌊log2(n− i)⌋ = k

For the ith merge operation Mi, if at level t in the recursion tree, the first

merge that occurred at this level is, say the jth merge. Then j = 1 + n
21

+ n
22

+

· · · + n
2t−1 = 1 + n − n

2t−1 . And we have the order for the ith merge at level t:

i− (1 + n− n
2t−1 ) + 1 = i− n+ n

2t−1

Example 7.12. Sorting eight elements with Mergesort, M3 is at level t = 3 −

⌊log2(8−3)⌋ = 1 with order r = 3−8+ 8
21−1 = 3. M7 is at level t = 3−⌊log2(8−

7)⌋ = 3 with order r = 7− 8 + 8
23−1 = 1.

In this section, we have shown that MOQA random bags support an easy

approach to entropy analysis. We derived the formulas for computing the entropy

after each step (or k steps) for several sorting algorithms. With this entropy infor-

mation we could predict the randomness of output sequences. Some applications

might avail of this benefit, such as partially sorting an input list. Another appli-

cation is that we can now, after processing data, compute the entropy and hence

the compressibility which could help with resource budgeting etc. The study of
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these applications are beyond the scope of this thesis, which we leave it for future

investigation.

7.3 Reversible Computing for MOQA

The results on reversibleMOQA is joint work with D. Early and M. Schellekens.

Our paper has been published in [33]. The potential of reversible MOQA was

originally discussed by M. Schellekens in [87]. The mathematical proof of the

frugal encoding has been obtained by D. Early. We focus on a simplification and

an explanation of the original mathematical concepts. We approach the problem

from a computer science point of view by providing pseudo-codes and illustrate

the execution of algorithm’s both forward and reverse, using real examples.

7.3.1 Background

Reversible MOQA discussed in [87] and [32] complements traditional applica-

tions of reversibility with a new application domain, that of average-case cost

analysis (where cost can be running time or power usage) of reversible MOQA

programs. Here, we provide the frugal encoding for the reversibleMOQA Split

operation and illustrate the approach via a reversible version of the well-known

Quicksort algorithm.

Reversibility traditionally plays a role in hardware design, with implications

for low power design [19, 60, 106]. A few exceptions focus on high-level reversible

languages, including the language JANUS and the work discussed in [116]. Most

reversible approaches remain at hardware level. As observed, the use ofMOQA

as a high level reversible language brings a new type of application to the area of

reversible computing. As pointed out in [85] a sufficient condition for algorithms

to be analyzable in a modular way is that they are random bag preserving. Not

all algorithms are random bag preserving, a case in point being the traditional

heapsort algorithm [85]. As shown in [87], random bag preservation can typi-

cally be guaranteed by ensuring a “locally” one-to-one mapping, e.g. a mapping

guaranteed to be one-to-one on each of the parts of a partition of the inputs1.

1For example, theMOQA product operation as discussed in [85], Theorem 5.1
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MOQA’s random bag preserving programs are ensured to allow for a greatly

simplified average-case analysis. The key to understanding MOQA as a new

application domain for reversible computing is that its programs, with little ad-

ditional book-keeping become fully reversible [32, 87, 90]. Hence we establish

a link between reversibility and the capacity for modular (i.e. semi-automated)

average-case analysis. Of course, general algorithms typically can be subjected

to average-case analysis techniques. The key point is that some algorithms, like

heapsort, are not random bag preserving and hence either require complicated

(non-automatable) techniques or escape average-case analysis by current tech-

niques. As a degree of reversibility lies at the heart of random bag preserva-

tion [87], reversibility has the potential to play a fundamental role in the design of

modularly predictable algorithms. Since with a little more bookkeeping,MOQA

becomes a fully reversible language, the exploration of its reversible properties is

worthwhile, in particular since the reversible programs in turn allow for an exact

prediction of average-case computation time. Hence we can predict in a static

way the cost of computing forward and backward in the language.

The reversible aspects of MOQA open up possibilities to apply MOQA

to determine the average-case power usage but possibly also to use MOQA to

achieve power optimization based on traditional reversible approaches [115]. We

refer the reader to Chapter 2 for the necessary introduction to MOQA data

structures.

7.3.2 Reversible Split Operation

We refer the reader to Section 2.3.3.1 (page 28) for an introduction on theMOQA

Split operation. In the following context, for the resulting structure of a Split

operation, we will call the upper part Y1, the middle pivot Y2 and the bottom

part Y3.

Efficient Encoding

First, we show how to efficiently encode the information needed to reverse the

split of a list into two sublists (upper part and bottom part). We assume that all

lists are ordered.
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Clearly, if we know the position of each item in the upper sub-list in the

original list, this is enough. For example, if the two sub-lists are (f, g, q, p, z) and

(m, s, b, t), and if we know that the elements of the upper list were initially in

position 1, 3, 4, 8 and 9, then the original list except pivot element must be:

(f, m, g, q, s, b, t, p, z)

1 3 4 8 9

So, given positive integers k < n, suppose we have two lists of length k and

n−k. To combine them in the original order, we need k distinct integers between

1 and n. We write these as {xi}ki=1, where the xi are in ascending order. Clearly

there are
(

n
k

)

different sets with these properties.

One way to encode a subset of size k from a set of size n is with a binary

string of length n, whose ith bit is 1 if and only if the ith element of the set

is included in the subset. However, if k is very small or very large (relative to

n), this encoding is very inefficient. For example, we can encode a one-element

subset with a number between 1 and n, or log2(n) bits, whereas this method

would require n bits.

Using this method to reverse the split operation would give a worst-case rever-

sal overhead for Quicksort of O(n!2
(n2−n)

2 ). In our case, the overhead here is the

number of different possible combinations (and hence the amount of space needed

to store all possible configurations needed to do the reversal). So if there are two

numbers to be recorded, when the first can assume p different values and the sec-

ond can assume q different values, then in total we need to be able to store p× q

different values to be able to record all distinct cases. In terms of this method, for

reversing the whole Split operation, which would record what position the pivot

was in and record for each element whether it was above or below, the overhead

for split on a list of length n would be n2n−1. In the worst case where the list is al-

ready sorted, the total overhead would then be:
∏1

i=n i2
i−1 = n!2n−1+n−2+···+2+1,

which is O(n!2
(n2−n)

2 ). We will show that a more frugal encoding can achieve the

same result with a maximum overhead of n!.
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The following lemma shows how to encode position indices {xi}ki=1.

Lemma 7.14 (D. Early [33]). Given a positive integer n and an integer k ∈ [0, n],

the function f({xi}ki=1) =
∑k

i=1

(

xi−1
i

)

is a one-to-one mapping from the k-element

subsets of the first n integers (in ascending order) to the set of integers from 0 to
(

n
k

)

− 1.

Proof. First, we prove that no two subsets map to the same value(i.e., f is an

injection). Suppose that f({xi}ki=1) = f({yi}ki=1), and that xi 6= yi for some

i ∈ [1, k]. Let j be the largest value of i for which xi 6= yi. We can assume that

xj > yj. Now for all i ≤ j, yi ≤ xj − 1− j + i(note: xj > yj, yj > yi, both xi and

yj are integers in range [1,n]) and so:

j
∑

i=1

(

yi − 1

i

)

≤

j
∑

i=1

(

xj − 2− j + i

i

)

= −1 +

j
∑

i=0

(

xj − 2− j + i

i

)

(change of index)

= −1 +

(

xj − 1

j

)

<

(

xj − 1

j

)

Where the last equation follows from the hockeystick lemma [117].

So:

f({yi}
k
i=1) =

k
∑

i=1

(

yi − 1

i

)

=

j
∑

i=1

(

yi − 1

i

)

+

k
∑

i=j+1

(

xi − 1

i

)

<

k
∑

i=j

(

xi − 1

i

)

≤ f({xi}
k
i=1)

Which contradicts the assumption. To avoid contradiction, f must be an injec-

tion.

Now we prove upper and lower bounds on f . Clearly f({xi}ki=1) ≥ 0. To get

the upper bound, note that xi ≤ n− k + i, and thus:
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f({xi}
k
i=1) ≤

k
∑

i=1

(

n− k − 1 + i

i

)

= −1 +
k

∑

i=0

(

n− k − 1 + i

i

)

(change of index)

= −1 +

(

n

k

)

And the last equation again follows from the hockeystick lemma [117]. So the

range of f is [0,
(

n
k

)

− 1]. But now there are
(

n
k

)

distinct subsets,
(

n
k

)

possible

outputs and each input maps to a distinct output, so f must be one-to-one.

We provide a brief intuition for the indexing of the subsets:

• We define an order on the subsets whereby subset A is greater than subset

B if the largest element in one set but not the other is in subset A. Consider

the number of subsets less than a given subset, which contains the elements

of ranks x1, x2, · · · , xk in the full set.

• If the element of rank xp in the overall set is the largest that is not common

to both subsets, then all the larger elements are in common, and the smaller

subset can have any p elements from among the smallest xp − 1 in the set,

a total of
(

xp−1
p

)

possibilities.

• But now, for any pair of distinct subsets, there is only one largest element

in one but not the other, and so any subset smaller than the given one

must match this pattern for some p ∈ [1, k]. So the total number of smaller

subsets is
∑k

i=1

(

xi−1
i

)

.

• Now, assigning each subset an index which is the number of smaller subsets

gives each subset a unique index between 0 and
(

n
k

)

− 1.

We also briefly outline an algorithm for extracting the sequence {xi}ki=1 given

f({xi}
k
i=1) (and also the values of n and k) in Algorithm 7.6.
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Algorithm 7.6 Extracting the sequence {xi}ki=1 given f({xi}ki=1)

Input: N -- f({xi}ki=1), n -- size of original list, k -- sublist size.

Output: S (a set {xi}ki=1)

Extract(N, n, k) :

j ← k

S ← ∅

for i← n to 1 do

if N ≥
(

i−1
j

)

then

S ← {i} ∪ S

N ← N −
(

i
j

)

j ← j − 1

end if

end for

return S

Example 7.13. Suppose we split (f,m, g, q, s, b, t, p, z) into (f, g, q, p, z) and

(m, s, b, t). Then (x1, x2, x3, x4, x5) = (1, 3, 4, 8, 9).

f({xi}
5
i=1) =

(

9− 1

5

)

+

(

8− 1

4

)

+

(

4− 1

3

)

+

(

3− 1

2

)

+

(

1− 1

1

)

= 56 + 35 + 1 + 1 + 0 = 93

Now, given N = 93, n = 9, k = 5, we set j = 5 and run the algorithm:

i = 9, j = 5, 93 >
(

9−1
5

)

so S = {9}, j = 4, N = 93−
(

9−1
5

)

= 37

i = 8, j = 4, 37 >
(

8−1
4

)

so S = {8, 9}, j = 3, N = 37−
(

8−1
4

)

= 2

i = 7, j = 3, 2 <
(

7−1
3

)

so skip

i = 6, j = 3, 2 <
(

6−1
3

)

so skip

i = 5, j = 3, 2 <
(

5−1
5

)

so skip

i = 4, j = 3, 2 >
(

4−1
3

)

so S = {4, 8, 9}, j = 2, N = 2−
(

4−1
3

)

= 1

i = 3, j = 2, 1 =
(

3−1
2

)

so S = {3, 4, 8, 9}, j = 1, N = 1−
(

3−1
2

)

= 0

i = 2, j = 1, 0 <
(

2−1
1

)

so skip

i = 1, j = 1, 0 =
(

1−1
1

)

so S = {1, 3, 4, 8, 9}, j = 0, N = 0−
(

1−1
1

)

= 0
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x f m g q s b t p z

RSplit_F

x

f

m

g q

s b t

p z

RSplit_R

x f m g q s b t p z

RIndex: 93

Figure 7.12: Forward and reverse split on random list [x, f,m, g, q, s, b, t, p, z]

Algorithm 7.7 Reversible Split algorithm: Forward computing

Input: a discrete LPO L.
Output: a three-layered series LPO (Y1, Y2, Y3) and reversal index : RIndex.

RSplit F (L) : ⊲ Using the book notation, the top part is Y1,
(Y1, Y2, Y3)← Split(L) ⊲ pos maps element yi to its position xi in L
RIndex← f({pos(yi)− 1}yi∈Y1) ⊲ f defined in Lemma 7.14
return (Y1, Y2, Y3), RIndex

Thus, for aMOQA Split operation we can keep track of the encoding for the

upper elements in the resulting LPO and restore their original position with the

help of the Extract algorithm. In reverse computing, each operation will have

two versions, one for forward computing and the other for reverse computing.

We design the reversible Split operation in Algorithm 7.7 and Algorithm 7.8.

The forward version using the encoding we define in Lemma 7.14 calculates a

reversal index. The reverse computing version, uses the reversal index to restore

the structure.
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Algorithm 7.8 Reversible Split algorithm: Reverse computing

Input: a three-layered series LPO (Y1, Y2, Y3) and reversal index : RIndex.
Output: a discrete LPO L.

RSplit R((Y1, Y2, Y3), RIndex) :
n← |Y1|+ |Y2|+ |Y3|
X = Extract(RIndex, n, |Y1|)
L← [Y2]
for i← 2 to n do

if i− 1 ∈ X then
L← L+ Y1[1]
Del(Y1[1]) ⊲ Remove first element from Y1

else
L← L+ Y3[1]
Del(Y3[1]) ⊲ Remove first element from Y3

end if
end for
return L

Example 7.14. We provide an example for the forward and reverse split opera-

tion in Figure 7.12.

7.3.3 Reversible Quicksort

We define a reversible Quicksort algorithm, Q′ in Algorithm 7.9, which takes a

discrete LPO L as an argument and returns a linear LPO L∗ and an integer

between 1 and |L|! . Given L∗ and the integer, we can recover L.

We note that C2 ∈ [1, |Y3|!] by assumption, C1 ∈ [1, |Y1|!] by assumption.

C0 ∈ [0,
(

|L⊢1
|Y1|

)

− 1] from Lemma 7.14, and |Y3| ∈ [0, n− 1] from the definition of

Split, and so the min and max values of the code returned are 1 and

(|L| − 1)(|L| − 1)! + (

(

|L| − 1

|Y1|

)

− 1)|Y1|!|Y3|! + (|Y1|!− 1)|Y3|! + |Y3|!

= (|L| − 1)(|L| − 1)! + (
(|L| − 1)!

|Y1|!|Y3|!
− 1)|Y1|!|Y3|! + (|Y1|!− 1)|Y3|! + |Y3|!

= |L|!− (|L| − 1)! + (|L| − 1)!− |Y1|!|Y3|! + |Y1|!|Y3|!− |Y3|! + |Y3|! = |L|!
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Algorithm 7.9 Reversible Quicksort algorithm: Forward computing

Input: a discrete LPO L
Output: a linear LPO L∗ and reversal index

Q′(L) :
if |L| ≤ 1 then

return (L, 1)
else

(Y1, Y2, Y3), C0 ← RSplit F (L) ⊲ The top part is Y1,
⊲ the pivot is Y2 and the bottom part is Y3.

(Y1, C1)← Q′(Y1) ⊲ Let the code returned be C1

(Y3, C2)← Q′(Y3) ⊲ Let the code returned be C2

return ([Y1 : Y2 : Y3], |Y3|(|L ⊢ 1)! + C0|Y1|!|Y3|! + (C1 − 1)|Y3|! + C2)
end if

as expected.

Note that this encoding is the most efficient possible, since all n! different

unsorted lists are mapped to the same sorted output.

We briefly outline the intuition for the reversal index returned.

In order to reverse Quicksort, using the recursive structure of the algorithm,

we need three pieces of information: (i) the location of the pivot, which is encoded

by |Y3|, the number of elements placed below the pivot, (ii) the order in which

the nodes above and below the pivot originally appeared, which is encoded by

C0 as outlined in the previous section, and (iii) the information needed to reverse

each of the two recursive calls on the upper and lower parts, which are encoded

in C1 and C2 respectively. We would like to store these four numbers in a way

that allows us to recover each of them.

We could store them as a quadruple (a, b, c, d), but then the recursion would

mean that c and d were tuples themselves, and the final n-tuple could be very

large — so we need to combine them. The way we do this is similar to the

different digits in a number. To store 4 numbers a, b, c, and d between 0 and 9,

we can compute N = a ∗ 103+ b ∗ 102+ c ∗ 10+ d, and easily extract each one. In

the same way, if a, b, c, and d are non-negative and less than some different upper

bounds A, B, C, and D (where in the previous case A = B = C = D = 10), then

we can encode the combination as N = a ∗ BCD + b ∗ CD + c ∗D + d. This is
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the essence of how we have encoded the reversal index (with some adjustments

for codes that range between 1 and n instead of 0 and n− 1).

We can then extract the digits using floors and ceilings. For example, to

extract b from N above, we can use b = ⌊N/CD⌋ − B ∗ ⌊N/BCD⌋. The first

floor expression gives a ∗B + b, because c/BC + d/BCD is the fractional part of

N/CD, and similarly the second one gives a. Again, the technique needs to be

adapted slightly for codes that range between 1 and n instead of 0 and n−1, but

the essential idea is the same. We now show how we can use this information to

construct a reverse Quicksort algorithm.

Given a sorted list L∗ and a reversal index N , we can reverse Q′ to get the

input LPO as follows:

Algorithm 7.10 Reversible Quicksort algorithm: Reverse computing

Input: a sorted list L∗ and a reversal index N
Output: a discrete LPO L

Q
′
(L∗, N) :

if |L∗| ≤ 1 then
return L∗

else
k ← ⌈ N

(|L∗⊢1)!⌉ ⊲ kth smallest label in L∗ is the first pivot.

Y2 ← L∗[k] Y1 ← L∗[1 : k − 1] Y3 ← L∗[k + 1 : end]
⊲ : L∗[a : b] means elements from a to b

C2 ← N − (k − 1)!⌊ N−1
(k−1)!

⌋ C1 ← 1 +
N−C2−(k−1)!(|L∗⊢k)!⌊ N−1

(k−1)!(|L∗⊢k)!
⌋

k−1!

⊲ compute reversal index for upper and bottom parts.

Y1 ← Q
′
(Y1, C1) ⊲ Reverse upper part

Y3 ← Q
′
(Y3, C2) ⊲ Reverse bottom part

C0 ←
N−(|L∗⊢1)!(k−1)−(C1−1)(k−1)!−C2

(k−1)!(|L∗⊢k)!

L← RSplit R((Y1, Y2, Y3), C0)
return L

end if

Example 7.15. We use Quicksort to sort the list [b, d, a, c] as follows:
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b d a c b

d

a

c

b

d

a

c

Forward Computing

Let’s start with Q′ first. A split operation applied on the list [b, d, a, c] will

partition it into two sublists [d, c] and [a], and the according positions in the

original list for sublist [d, c] are [1, 3], thus C0 = f({xi}2i=1) =
(

3−1
2

)

+
(

1−1
1

)

= 1.

Recursively we look at the upper part, two sublists [c] and an empty list. So

C1 = 1× (2− 1)!+
(

1−1
1

)

× 0!× 1!+ (1− 1)1!+ 1 = 2. For the down part, because

it only has one element, so C2 = 1. Thus the final code returned for this sorting

is: 1 × (4 − 1)! + 1 × 2! × 1! + (2 − 1)1! + 1 = 6 + 2 + 1 + 1 = 10. So Q′ will

give us the sorted list [d, c, b, a] and the reversal index 10. Next let us reverse the

sorting.

Reverse Computing

First find the first pivot, k = ⌈ N
(|L∗⊢1)!⌉ = ⌈

10
(4−1)!

⌉ = 2, thus the second smallest

label is the pivot, which is b. So Y1 contains [d, c], Y3 contains [a]. C2 = N − (k−

1)!⌊ N−1
(k−1)!

⌋ = 10− (2− 1)!⌊ 10−1
(2−1)!

⌋ = 1 and C1 =
N−C2−(k−1)!(|L∗⊢k)!⌊ N−1

(k−1)!(|L∗⊢k)!
⌋

k−1!

+1 =
10−1−(2−1)!(4−2)!⌊ 10−1

(2−1)!∗(4−2)!
⌋

1!
+ 1 =

10−1−2⌊ 9
2
⌋

1
+ 1 = 2.

Recursively we reverse Y1 = [d, c] with reversal index 2: pivot k = ⌈ N
(|L∗⊢1)!

⌉ =

⌈ 2
(2−1)!

⌉ = 2, thus the second smallest element d is the pivot in the sorted sublist

[d, c]. C2 = 2 − (2 − 1)!⌊ 2−1
(2−1)!

⌋ = 1, C1 = 1 +
2−1−(2−1)!(2−2)!⌊ 2−1

(2−1)!(2−2)!
⌋

(2−1)!
= 1.

For its recursive cases, only containing a single element and the empty element,

we restore the sorted sublist[d, c] with C0 = 2−(2−1)!(2−1)−(1−1)(2−1)!−1
(2−1)!(2−2)!

= 0. The

final reversed sublist places the pivot d in first position, places upper elements

(empty) according to the extracted sequence from C0 (still empty), combined

with reversed bottom elements (the single element c). We obtain the reversed

unsorted sublist [d, c] for this recursive call.
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Similarly, we restore Y3 with reversal index 1 and obtain the reversed sublist

[a].

Finally we combine the two reversed sublists [d, c] and [a] with

C0 = 10−(4−1)!(2−1)−(2−1)(2−1)!−1
2!

= 1. According to Algorithm 7.6, we can obtain

the original position indices for [d, c], which is [1, 3] as can be verified in Sec-

tion 7.15. Thus finally we reversed Quicksort and restored the input sequence

[b, d, a, c].

7.4 Smoothed Analysis for MOQA

This work is based on the recent research carried out in our research group [89].

We focus on how it integrates with our interpreter analyzer. Prior work from M.

Schellekens and D. Early [88] has shown the fruitful links between MOQA and

smoothed complexity analysis.

Smoothed analysis is a recent approach to measure how unusual the worst-

case running time is [100]. This new measurement is valuable for many algo-

rithms where there is a wide divergence between average-case and worst-case

running times. For example, Quicksort has an optimal average-case running time

O(nlogn) for length n random lists, while it has a worst-case running time of

O(n2). Because, in a practical context, most of data is not uniformly distributed,

it is crucial to know how likely the algorithm will perform with its worst-case run-

ning time. Smoothed analysis tries to answer this question by considering inputs

that are subject to some random perturbation. Perturbations can be defined in

various ways. We will give one such definition below.

Definition 7.8. The smoothed Measure of an algorithm acting on an input is

the average running time of the algorithm over the perturbations of that input

instance [100].

Definition 7.9. The smoothed complexity of an algorithm is the the worst

smoothed measure of the algorithm on any input instance [100].

The early work on smoothed complexity [100], dealt with continuous problems

such as the Simplex method. [17] proposes a similar approach for discrete sorting
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problems based on a method called partial permutations. We follow this model in

MOQA smoothed complexity but with a slight simplification introduced in [89].

Definition 7.10. Let S = (s1, s2, · · · , sn) be a sequence of n elements, where

a probability σ ∈ [0, 1]. A σ-partial permutation of S is a random sequence

S ′ = (s′1, s
′
2, · · · , s

′
n) obtained from S in two steps [17]

• Each element from S is selected with probability σ (independent selections)

• if m elements are selected, we choose one of the m! permutations of the

selected elements (uniformly at random) and rearrange them in that order,

leaving the positions of all the other elements unchanged.

The parameter σ is used to measure the degree of perturbation. When σ be-

comes large, the perturbations on the input become significant, and the smoothed

complexity tends towards the average-case running time. On the other hand, as

σ becomes small, the perturbations become insignificant on the original instance,

and the smoothed complexity tends towards the worst-case running time.

As a first step to merging theMOQA approach with smoothed complexity

analysis, we follow the definition of σ-partial permutations according to [89].

Recall, we generally assume that any MOQA program starts from a discrete

partial order (random lists as input).

Definition 7.11. Let S = (s1, s2, · · · , sn) be a sequence of n elements, if σ = k
n

(0 ≤ k ≤ n), we define a σ-partial permutations function Pertnk . It maps each

sequence s ∈ S to a collection of n elements sequences as follows:

• For all possible subsets of k elements out of S

• we choose all of the k! permutations of the elements and rearrange the

original elements according to these permutations.

For a n elements list, after Pertnk , a group of
(

n
k

)

k! lists are obtained.

Example 7.16. Let S = (a, b, c), Pert32(S) = {(a, b, c), (b, a, c), (a, b, c), (c, b, a),

(a, b, c), (a, c, b)}.

In MOQA smoothed complexity, instead of σ, we generally refer to degree

of perturbation by the k value.
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Definition 7.12 ([89]). For aMOQA program P , with inputs n elements ran-

dom lists, theMOQA smoothed complexity with perturbation value k is defined

by:

T S
P (n, k) = Maxs∈R(∆n)(T P (Pertnk(s)))

Remark 7.7. The formal justification is provided in [89]. With this “simplified”

definition, we can have a very clear interpretation of the degree of perturbation

(see Example 7.17). Notice that to obtain smoothed complexity, the average-

case analysis of the program with certain inputs is needed, and this is where the

originalMOQA theory comes into play.

Example 7.17. Given aMOQA program P with R(∆3) as input.

• For the case of k = 1, we consider partial permutations Pert31 on inputs I =

{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. For each input, there

are three possible selections on 1 element. The only permutation on 1 ele-

ment is the identity. Hence e.g. Pert31((2, 1, 3)) = {(2, 1, 3), (2, 1, 3), (2, 1, 3)}

T P (Pert31((2, 1, 3))) =

∑3
i=1 TP ((2, 1, 3))

3
= TP ((2, 1, 3))

So in general:

T S
P (n, 1) = Maxs∈R(∆n)(TP (s)) = TW

P (n)

This verifies that the smallest perturbations yield the worst-case time.

• For the case of k = n, for each input s ∈ R(∆n), Pertnn(s) = R(∆n). So:

T S
P (n, n) = Maxs∈R(∆n)(T P (R(∆n))) = T P (n)

This verifies that the largest perturbations yield the average-case time.

Thus, the MOQA smoothed complexity is a function of k (or viewed as

σ) which interpolates between the worst-case and average-case running times.

The dependence on the perturbation value k gives a sense of how unusual an

occurrence of the worst-case input actually is.
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Smoothed Analysis of Quicksort

In the following, we present how smoothed analysis is integrated with our in-

terpreter analyzer, in more recent research, following up from [89]. Smoothed

analysis of Quicksort is used as an example. We use results obtained in [89] and

omit details of how these results are derived.

Recall that Quicksort is based on theMOQA Split operation (see Section 5.2,

page 131). To facilitateMOQA smoothed analysis, a smoothed split operation

SplitS is obtained in [89]. In comparison with the original split operation, the

smoothed version produces different multiplicities based on the perturbation value

k. Based on this modified resulting random bag, the smoothed complexity is

obtained. We outline the smoothed split operation below:

Theorem 7.15 ( [89]).

SplitS : R(△n) 7→ {(R(P [0, n− 1]), Kn−1, Pn−1), . . . , (R(P [n− 1, 0]), K0, P0)}

and where

Ki =







(n−k−1)(n−1)!
(n−k)!

, if i = 0
(

n
k

)k!(k−1)
n(n−1)

(

n−1
j−1

)

, if i 6= 0

Pi =







n−k+1
n

, if i = 0

k−1
n(n−1)

, if i 6= 0

and k is perturbation value, Ki and Pi are the multiplicity and probability of the

ith random structure respectively.

T splitS(△n) = n− 1

To integrate smoothed analysis in our interpreter analyzer, we simply mod-

ify the original Split operation to SplitS. Most of our codes do not need to be

modified, because the shapes of resulting random structures do not change. We

only modify the codes to calculate the multiplicity and the probability for each

random structure and the smoothed complexity is obtained by the same process

as in analysis mode. The analyzer walks over the abstract syntax tree and ab-
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stractly interprets MOQA operations based on random bags and accumulates

the number of comparisons made. Similar to the Quicksort average-case analysis

(See Section 5.2). Based on the modified multiplicity, the smoothed complexity

we are computing is: T S
qsort(n, k) = n+

∑n−1
i=0 Pi(T

S
qsort(i, k) + T S

qsort(n− i− 1, k))

where Pi is probability of the ith random structure, which is defined in Theo-

rem 7.15. (The details of Quicksort smoothed complexity are shown in [89]).

In the shell command, a user can use the flag -S to determine whether to use

smoothed analysis mode. By this method, the interpreter can switch between the

normal Split or and the smoothed SplitS operation.

Consider the following command:

1 $ python moqa.py -S50 ,5 Quicksort .moqa

It invokes theMOQA interpreter smoothed analysis mode on Quicksort.moqa.

-S50,5 tells the interpreter to do the smoothed analysis (-S) with an initial par-

tial order of size 50 and a perturbation value k = 5.

Figure 7.13 illustrates the results produced by our interpreter analyzer with

different degrees of perturbation 1. It can be seen, with increasing perturbation

value, that the running time gradually becomes smaller and reaches its average-

case timing when the perturbation value equals the input list size. With this

automated result, in future work, we could study how the algorithm is affected

by perturbations in order to identify where the performance of the algorithm

changes from worst-case to average-case. This information could support predict-

ing the unlikelihood of worst-case occurrences which might support soft real-time

applications.

7.5 Summary

In this chapter, we presented a number of useful applications of the MOQA

method. By examining random bag preservation properties of several heap cre-

ation algorithms, we identified possible candidates that might be further inves-

1The formulas in Theorem 7.15 only focus on the smoothed complexity with perturbation
value k ≥ 2, because our interpreter relies on these results only. The worst-case complexity
(k = 1) is calculated via the standard analysis technique.
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Figure 7.13: MOQA Smoothed Analysis of Quicksort with input list size 50 on
different degrees of perturbation

tigated in futureMOQA research. Skew heap and Min-Max heap are found to

be reasonable candidates, for their partial order creations are random bag pre-

serving, while Leonardo Heap is not. With necessary extensions inMOQA, i.e.,

by extending the conditional expression to allow for odd-even level detection etc,

these new structures might be introduced inMOQA and support the automated

time analysis in the future.

Next, the insertion operation was introduced for theMOQA treap data struc-

ture and its complexity was analysed.

Then, based onMOQA random bags and the ability track data distributions

throughout computation, entropy changes have been derived for several algo-

rithms. Also, in this chapter, we showed the frugal encoding underpinning the

reversibleMOQA Split operation, where the encoding can be achieved through

the bookkeeping of a single number. The applicability of the encoding has been

demonstrated via reversible Quicksort. Finally, we briefly discussed MOQA

smoothed analysis. With a small extension to our interpreter analyzer, we can
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provide a smoothed analysis forMOQA programs and a smoothed analysis for

Quicksort has been given as an example.
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8.1 Conclusions

This thesis has considered the problem ofMOQA research extensions from both

practical and theoretical aspects.

Trying to overcome the problems pointed out in Section 3.2.1 (page 47), we

developed a new domain specific language (Chapter 3 to Chapter 5). The new

MOQA language is a standalone scripting language and provides automated

average-case analysis. No other programming language of this scope (in par-

ticular, capable of handling general data structures) has been able to achieve

this. The language has a clean and concise syntax, similar to a normal proce-

dural programming language, powered using the original MOQA theory. The

programmer defines manipulations over a LPO usingMOQA basic operations.

The analyzer analyses the running time using the notation of random bags and

timing functions associated to each operation.

Because of the standalone language design, we can prevent most invalidMOQA

programs both by syntax checking and by semantics checking. This not only im-

proves the usability of our tools but also tidies up programs and makes code

analysis easier.

The well studied interpreter architecture also avails us of a nice extension

ability. We illustrated this feature by extending the analyzer to smoothed analysis

in Section 7.4. Adding extra language constructs or operations also does not

complicate matters due to clear pipeline in the interpreter, e.g. Lexer, Parser etc.

Our approach to automated average-case analysis differs from Distritrack [48].

It benefits from directly accessing the abstract syntax tree (AST). By walking

over the AST and abstractly executing statements in terms of random bags, the

analyzer provides automated timing analysis. Because of this essential differ-

ence, our approach not only provides automated time analysis on recursive data

structures, but also on general MOQA structures (see Section 5.7 for a timing

analysis of the Heapify algorithm, which is not possible in Distritrack).

Everything has two sides. Currently our analyzer provides the user instant

feedback on a specific problem size, but there is no general equation output.

Due to the abstract execution in the analyzer, currently it cannot handle large
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problem sizes, e.g. 1 billion. It simply takes too much memory and large recursive

call stacks. If we have a general equation, we might be able to approximate

the answer. Because exact timing is not so important in very large problems,

automated asymptotic analysis might suffice in this case, i.e., both approaches

find a use in their respective contexts.

In this thesis we also developed a formal definition of theMOQA language.

Both syntax and semantics are discussed. This specification could serve as a

guideline to aid futureMOQA language development and it would be interest-

ing to see the language implemented with other programming languages. We

discussed a Python implementation as a prototype for this language and veri-

fied the correctness of the theory (Chapter 4 and Chapter 5). It illustrates that

MOQA research not only provides valuable theoretical results, but also exhibits

potential to explore practical implications.

Besides these benefits, our interpreter also supports a graphical display of

the final results and the LPO at various points in the execution. This was not

supported in the previous approach.

The second part of the thesis focused on MOQA extensions, and several

useful applications related toMOQA research were explored.

We started withMOQA parallel extensions. Modularity theory was extended

to a fork-join model. A new way to analyse a multithreaded fork-join program

underMOQA theory was presented. We showed that multithreaded algorithms

which satisfy MOQA theory can be easily analysed. Parallel Quicksort served

as a case study and justified our theory (Chapter 6).

Next, we examined several new heap creation algorithms. By studying their

random bag preserving properties, Skew heap and Min-Max heap were found to

fit theMOQA context well and could be candidates for investigation in future

research.

We introduced an insertion operation to theMOQA treap data structure and

its complexity was derived. We also showed thatMOQA random bags provide

an easy approach not only to capture average-case cost, but also to entropy

analysis. We demonstrated this property by tracking entropy changes in several

sorting algorithms. It has been proven in prior work [32, 87, 90], that there is

a strong link betweenMOQA and reversible computing. With some additional
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bookkeeping, MOQA operations can be designed reversible. We demonstrated

this feature through a reversible Split operation and reversible Quicksort [33]. In

the last part, we briefly discussed recent research result on smoothed analysis and

presented how it can be integrated into our interpreter analyzer (Chapter 7).

8.2 Future Work

There are two possible directions that could be our future research, from an

application perspective and a theoretical perspective. We discuss them in the

following sections.

8.2.1 From An Application Perspective

The first possible improvement to theMOQA language is to add extra features

that we have discussed theoretically in this thesis. There is potential to modify

the MOQA language to incorporate parallel execution. The Go language is a

great example that provides parallel execution by using keyword Goroutine in

the language [8]. Like the Go language, it might be possible to add fork and join

keywords in theMOQA language to enable fork-join execution in our interpreter

at runtime. Using the theory we developed in this thesis, it would be interesting

to obtain an automated analysis of fork-joinMOQA programs’ complexity and

to derive the work and span boundary.

As shown in this thesis, data entropy is tracked naturally with the help of

random bags (see Section 7.2.3). Inside the interpreter, these random bags are

tracked to enable automated average-case analysis. With necessary modifica-

tion, the interpreter should be able to handle entropy tracking automatically and

output a data sheet or graph to illustrate the entropy changes for a MOQA

program.

Another improvement to theMOQA language interpreter would be an ani-

mation of the random bags at various points in the code analysed. Currently, the

interpreter only supports a graphical display of a LPO. It would be possible to

display a random bag, for the analyzer keeps tracking these structures throughout
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computation.

The future research could also investigate a more economical representation of

random bags and structures in the interpreter analyzer to handle bigger problem

sizes, or we might be able to develop an automated asymptotic analysis. For

asymptotic analysis, the data we need to track might be reduced (e.g. only struc-

ture size is involved) and enable us a better performance in large problems. Of

course, by setting a threshold, switching between extract analysis to asymptotic

analysis would also be a smart approach.

MOQA builds upon data restructuring operations and algorithms. And these

operations are generally focused on subsets of original structures (formally called

isolated subsets, see Section 2.3). In functional programming, pattern matching

is a widely used feature. It helps you decompose and navigate data structures

in a very convenient, and compact syntax [20, 72]. The future work could take

advantage of pattern matching and redesignMOQA into a functional language.

The functional programming paradigm might in nature be more close toMOQA

theory.

So far, MOQA theory takes comparisons as basic instructions. However,

the theory could be further developed to lower level instructions, e.g. in terms

of MIPS assembly. It would be interesting to see the redesign of our language

and the analyzer to handle these low level performance predictions. Also, the

language might need to change from interpreting to a compiled language. And as

shown by other projects in the group, there is a connection betweenMOQA and

compositionality in measuring power consumption [92, 115]. With a low level

redesign, we might be able to bridge the gap between MOQA language and

automated prediction of power consumption.

Finally, in Chapter 6, we demonstrated the extension ofMOQA theory to a

parallel field. Because the information obtained by MOQA theory has a great

potential in other fields, future research could focus on using this information

to fine tune parallel programs, e.g. by dynamically changing threshold, and

by optimizing processor allocation in the system. There are some applications

already discussed in [79], e.g. parallel Mergesort, under my guidance. Also we

could experiment and spreadMOQA theory to other platforms. E.g. the recent

GPU computing frameworks: CUDA or OpenCL [54].
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8.2.2 From A Theoretical Perspective

We have provided some theoretical contributions on MOQA in the thesis. e.g.

MOQA language formal syntax and operational semantics, extensions to the

parallel filed, entropy tracking, new algorithms analysis etc. However, it would

be interesting to continue these works to explore other possibilities and obtain

more results. For example, we raised an open question in Section 7.1.4 (page 172),

future research could dig further to the output structures of the Min-Max heapify

and derive its complexity.

In particular, at the moment the initial input to all MOQA programs is

considered to be a random list, though there is no inherent restriction inMOQA’s

theory to do so. Future research could relax this restriction or allow the user to

specify the input random bag. With this relaxation more interesting algorithms

might be analysed with theMOQA approach.

Currently,MOQA only deals with input data which are uniformly distributed.

It is worthwhile developing an extension ofMOQA theory to handle other data

distributions, e.g. the normal distribution. These data distributions are more

widely used to model complex system in practice. Of course, smoothed complex-

ity has been motivated by this consideration and we have been made explorations

in this direction.

In terms of a parallel analysis based on MOQA, further investigating our

method for the case of other fork-join programs and showing its applicability

would be a worthwhile endeavour. The formalized extension of our method to

other frameworks such as CUDA or OpenCL would be an interesting project.

Finally, regarding reversibility onMOQA theory, the first step in future work

might be to explore a generalization to ensure frugal encodings for all ofMOQA

operations. The encoding could liftMOQA from a language underpinning static

average-case analysis to a reversible language, capable of exact average-cost pre-

dictions. Follow on work could focus on extracting the benefits of both aspects,

and, on exploring the interesting novel connection between guaranteeing a mod-

ular derivation of the average computation cost (a key requirement to develop

static timing tools) and reversibility of language operations.

212



Appendix A

MOQA Language

Contents

A1 MOQA Language Syntax Specification . . . . . . . . . 214

A2 MOQA Language Lexer . . . . . . . . . . . . . . . . . . 216

A3 MOQA Language Parser . . . . . . . . . . . . . . . . . 219

213



A1 MOQA Language Syntax Specification

214

Appendix1/Appendix1Figs/EPS/bnf.eps


215

Appendix1/Appendix1Figs/EPS/bnf2.eps


A2 MOQA Language Lexer

Listing A.1: MOQA Language Lexer (moqa tokens.py)

1 #!/usr/bin/python

2 # -*- coding: utf -8 -*-

3

4 # Copyright (C) 2012 by CEOL , Ang Gao <a.gao@cs.ucc.ie>

5 # All rights reserved .

6

7 """

8 This is a set of regular expressions defining a lexer

9 for MOQA fragments .

10 """

11

12 import ply.lex as lex

13

14 tokens = (

15 ’AND ’, # and

16 ’COMMA ’, # ,

17 ’DIVIDE’, # /

18 ’ELSE ’, # else

19 ’ASSIGN’, # =

20 ’EQUALEQUAL ’, # ==

21 ’FALSE ’, # false

22 ’DEF ’, # def

23 ’GE’, # >=

24 ’GT’, # >

25 ’IDENTIFIER ’, # eg: factorial

26 ’IF’, # if

27 ’FOR ’, # for

28 ’DO’, # do

29 ’LE’, # <=

30 ’LPAREN’, # (

31 ’LT’, # <

32 ’MINUS ’, # -

33 ’MOD ’, # %

34 ’NOT ’, # !

35 ’NUMBER’, # eg: 1234 5.678

36 ’OR’, # or

37 ’PLUS ’, # +

38 ’TO’, # to

39 ’DOWNTO’, # downto

40 ’END ’, # end

41 ’RETURN’, # return

42 ’RPAREN’, # )
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43 ’STRING’, # "this is a \" tricky\" string"

44 ’TIMES ’, # *

45 ’TRUE ’, # true

46 ’LET ’, # let

47 ’PRINT ’, # print

48 ’SHOW ’, # show

49 ’BAR ’, # |

50 ’LBRACE’, # {

51 ’RBRACE’, # }

52 ’SPLIT ’, # ><

53 ’PRODUCT ’, # <>

54 ’TOP ’, # ^

55 ’BOT ’, # ~

56 ’LBRACK’, # [

57 ’RBRACK’, # ]

58 ’COLON ’, # :

59 ’XOR ’, # xor

60 ’MERGE ’, # merge

61 ’PERCM ’, # percM

62 )

63

64 states = (

65 (’comment ’, ’exclusive ’), # /* ... */

66 )

67

68 def t_comment (t):

69 r’\/\* ’

70 t.lexer .begin (’comment ’)

71

72 def t_comment_end (t):

73 r’\*\/ ’

74 t.lexer .lineno += t.value .count (’\n’)

75 t.lexer .begin (’INITIAL ’)

76 pass

77

78 def t_comment_error (t):

79 t.lexer .skip (1)

80

81 def t_eolcomment (t):

82 r’//.* ’

83 pass

84

85 reserved = [ ’def ’, ’if’, ’let ’, ’return’, ’for’, ’else ’, ’true ’, \

86 ’false ’, ’print ’, ’show ’, ’end’, ’do’, ’and ’, ’or’, ’to’, \

87 ’xor ’, ’Merge ’, ’downto’, ’PercM ’]

88

89 def t_IDENTIFIER (t):

90 r’[A-Za-z][0-9A-Za -z_]*’

91 if t.value in reserved :

92 t.type = t.value .upper ()
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93 return t

94

95 def t_NUMBER (t):

96 r’ -?[0 -9]+(\.[0 -9]*)? ’

97 t.value = float (t.value )

98 return t

99

100 def t_STRING (t):

101 r’"([^"\\]|(\\.))*" ’

102 t.value = t.value [1:-1] # strip off "

103 return t

104

105 t_COMMA = r’,’

106 t_DIVIDE = r’/’

107 t_EQUALEQUAL = r’==’

108 t_ASSIGN = r’=’

109 t_LPAREN = r’\(’

110 t_MINUS = r’-’

111 t_MOD = r’%’

112 t_NOT = r’!’

113 t_PLUS = r’\+’

114 t_RPAREN = r’\)’

115 t_TIMES = r’\*’

116 t_LE = r’<=’

117 t_LT = r’<’

118 t_GT = r’>’

119 t_GE = r’>=’

120 t_LBRACE = r’{’

121 t_RBRACE = r’}’

122 t_LBRACK = r’\[’

123 t_RBRACK = r’\]’

124 t_BAR = r’\|’

125 t_SPLIT = r’><’

126 t_PRODUCT = r’<>’

127 t_TOP = r’\^’

128 t_BOT = r’~’

129 t_COLON = r’\:’

130 t_ignore = ’ \t\v\r’

131 t_comment_ignore = ’ \t\v\r’

132

133 def t_newline (t):

134 r’\n’

135 t.lexer .lineno += 1

136

137 def t_error(t):

138 print "MOQA Lexer : Illegal character " + t.value [0]

139 t.lexer .skip (1)
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A3 MOQA Language Parser

Listing A.2: MOQA Language Parser (moqa grammar.py)

1 #!/usr/bin/python

2 # -*- coding: utf -8 -*-

3

4 # Copyright (C) 2012 by CEOL , Ang Gao <a.gao@cs.ucc.ie>

5 # All rights reserved .

6

7 """

8 This is a grammar definition file for MOQA language .

9 """

10

11 import ply.lex as lex

12 import ply.yacc as yacc

13 from moqa_tokens import tokens

14 import moqa_ast

15

16 start = ’program ’

17

18 precedence = (

19 (’left ’, ’OR’, ’XOR ’),

20 (’left ’, ’AND ’),

21 (’left ’, ’EQUALEQUAL ’),

22 (’left ’, ’LT’, ’LE’, ’GT’, ’GE’),

23 (’left ’, ’PLUS ’, ’MINUS ’),

24 (’left ’, ’TIMES ’, ’DIVIDE ’, ’MOD ’),

25 (’right ’, ’NOT ’),

26 )

27

28 # program -> element program

29 def p_module_list (p):

30 ’program : element program ’

31 p[0] = moqa_ast .ModuleNode ([p[1]] + p[2]. children )

32

33 # program -> element

34 def p_module_empty (p):

35 ’program : element ’

36 p[0] = moqa_ast .ModuleNode ([p[1]])

37

38 # element -> expr | defFun

39 def p_element (p):

40 ’’’

41 element : expr

42 | defFun
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43 | lpoBuilder

44 ’’’

45 p[0] = moqa_ast .ElementNode (p[1])

46

47 # lpoBuilder -> let Identifier = { nodelist }

48 def p_element_lpoBuilder (p):

49 ’lpoBuilder : LET IDENTIFIER ASSIGN LBRACE nodelist RBRACE ’

50 idf = moqa_ast .IdentifierNode (p[2])

51 lpo = moqa_ast .LPONode (p[5])

52 p[0] = moqa_ast .LetExprNode ([idf , lpo ])

53

54 # expr -> let Identifier = expr ;

55 def p_expr_let (p):

56 ’expr : LET IDENTIFIER ASSIGN expr ’

57 idf = moqa_ast .IdentifierNode (p[2])

58 p[0] = moqa_ast .LetExprNode ([idf , p[4]])

59

60 # expr -> Identifier = expr ;

61 def p_expr_idf (p):

62 ’expr : IDENTIFIER ASSIGN expr ’

63 idf = moqa_ast .IdentifierNode (p[1])

64 p[0] = moqa_ast .AssignExprNode ([idf , p[3]])

65

66 # expr -> Identifier indexes = expr ;

67 def p_expr_idf_idx (p):

68 ’expr : IDENTIFIER indexes ASSIGN expr ’

69 idf = moqa_ast .IdentifierNode (p[1])

70 slice = moqa_ast .SliceNode ([idf ,p[2]])

71 p[0] = moqa_ast .AssignExprNode ([slice , p[4]])

72

73 # expr -> return expr ;

74 def p_expr_return (p):

75 ’expr : RETURN expr ’

76 p[0] = moqa_ast .ReturnExprNode (p[2])

77

78 # expr -> Identifier ( optargs )

79 def p_expr_funcall (p):

80 ’expr : IDENTIFIER LPAREN optargs RPAREN’

81 p[0] = moqa_ast .FuncUseNode (p[1], p[3])

82

83 # expr -> Print ( optargs )

84 def p_expr_print (p):

85 ’expr : PRINT LPAREN optargs RPAREN’

86 p[0] = moqa_ast .FuncUseNode (’print ’, p[3])

87

88 # expr -> Show ( optargs )

89 def p_expr_show (p):

90 ’expr : SHOW LPAREN optargs RPAREN ’

91 p[0] = moqa_ast .FuncUseNode (’show ’, p[3])

92
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93 # expr -> lpoSize

94 def p_expr_lposize (p):

95 ’expr : lpoSize ’

96 p[0] = p[1]

97

98 # expr -> | Identifier |

99 def p_lpoSize (p):

100 ’lpoSize : BAR IDENTIFIER BAR ’

101 idf = moqa_ast .IdentifierNode (p[2])

102 p[0] = moqa_ast .FuncUseNode (’size ’, idf)

103

104 # expr -> ifExpr

105 def p_expr_ifStatement (p):

106 ’expr : ifExpr ’

107 p[0] = p[1]

108

109 def p_expr_forStatement (p):

110 ’expr : forStatement ’

111 p[0] = p[1]

112

113 # expr -> Bool

114 def p_expr_bool (p):

115 ’expr : TRUE ’

116 p[0] = moqa_ast .BoolNode (True )

117

118 def p_expr_bool_f (p):

119 ’expr : FALSE ’

120 p[0] = moqa_ast .BoolNode (False )

121

122 # expr -> logicExpr

123 def p_expr_logicExpr (p):

124 ’expr : logicExpr ’

125 p[0] = p[1]

126

127 # logicExpr -> moqa_cond op moqa_cond

128 def p_logicExpr (p):

129 ’’’

130 logicExpr : moqa_cond AND moqa_cond

131 | moqa_cond OR moqa_cond

132 | moqa_cond XOR moqa_cond

133 ’’’

134 p[0] = moqa_ast .OpNode(p[2], [p[1],p[3]])

135

136 # logicExpr -> not moqa_cond

137 def p_logicExpr_not (p):

138 ’logicExpr : NOT moqa_cond ’

139 p[0] = moqa_ast .OpNode(’NOT’, [p[2]])

140

141 # expr -> moqa_expr

142 def p_expr_moqa (p):
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143 ’expr : moqaExpr ’

144 p[0] = p[1]

145

146 # moqaExpr -> expr op expr

147 def p_moqa_expr_binop (p):

148 ’’’

149 moqaExpr : expr SPLIT expr

150 | expr PRODUCT expr

151 ’’’

152 p[0] = moqa_ast .MoqaOpNode (p[2], [p[1], p[3]])

153

154 # moqaExpr -> Merge (expr , expr )

155 def p_moqa_expr_binop_merge (p):

156 ’’’

157 moqaExpr : MERGE LPAREN expr COMMA expr RPAREN

158 ’’’

159 p[0] = moqa_ast .MoqaOpNode (p[1], [p[3], p[5]])

160

161

162 # moqaExpr -> PercM (expr )

163 def p_moqa_expr_unaryop_percm (p):

164 ’’’

165 moqaExpr : PERCM LPAREN expr RPAREN

166 ’’’

167 p[0] = moqa_ast .MoqaOpNode (p[1], [p[3]])

168

169 # moqaExpr -> op expr

170 def p_moqa_expr_unaryop (p):

171 ’’’

172 moqaExpr : TOP expr

173 | BOT expr

174 ’’’

175 p[0] = moqa_ast .MoqaOpNode (p[1], [p[2]])

176

177 # expr -> Identifier

178 def p_expr_idenf (p):

179 ’expr : IDENTIFIER ’

180 p[0] = moqa_ast .IdentifierNode (p[1])

181

182 # expr -> IDENTIFIER indexes

183 def p_expr_idenf_idx (p):

184 ’expr : IDENTIFIER indexes ’

185 idf = moqa_ast .IdentifierNode (p[1])

186 p[0] = moqa_ast .SliceNode ([idf ,p[2]])

187

188 # indexes -> ( expr )

189 def p_indexes_simple (p):

190 ’indexes : LBRACK expr RBRACK ’

191 p[0] = moqa_ast .IndexNode ([p[2]])

192
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193 # indexes -> (expr : expr )

194 def p_indexes_slice (p):

195 ’indexes : LBRACK expr COLON expr RBRACK’

196 p[0] = moqa_ast .IndexNode ([p[2], p[4]])

197

198 # indexes -> (expr :)

199 def p_indexes_slice_lower (p):

200 ’indexes : LBRACK expr COLON RBRACK’

201 p[0] = moqa_ast .IndexNode ([p[2], moqa_ast .NumNode (-1)])

202

203 # indexes -> (: expr )

204 def p_indexes_slice_upper (p):

205 ’indexes : LBRACK COLON expr RBRACK’

206 p[0] = moqa_ast .IndexNode ([ moqa_ast .NumNode (0), p[3]])

207

208 # nodelist -> node (, nodelist )*

209 def p_nodelist_one (p):

210 ’nodelist : node ’

211 p[0] = [p[1]]

212

213 def p_nodelist (p):

214 ’nodelist : node COMMA nodelist ’

215 p[0] = [p[1]] + p[3]

216

217 def p_node(p):

218 ’’’node : NUMBER

219 | STRING

220 ’’’

221 p[0] = p[1]

222

223 # optargs -> args

224 def p_optargs (p):

225 ’optargs : args ’

226 p[0] = p[1]

227

228 # optargs ->

229 def p_optargs_empty (p):

230 ’optargs : ’

231 p[0] = []

232

233 # args -> expr , args

234 def p_args(p):

235 ’args : expr COMMA args ’

236 p[0] = [p[1]] + p[3]

237

238 # args -> expr

239 def p_args_one (p):

240 ’args : expr ’

241 p[0] = [p[1]]

242
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243 # ifExpr -> ifStat optElseStat End

244 def p_expr_ifExpr (p):

245 ’ifExpr : ifStat optElseStat END ’

246 p[0] = moqa_ast .IfNode(p[1]. children + [p[2]])

247

248 # optElseStat ->

249 def p_optElseStat_empty (p):

250 ’optElseStat : ’

251 p[0] = []

252

253 # optElseStat -> exprList

254 def p_optElseStat_exprs (p):

255 ’optElseStat : ELSE exprlist ’

256 p[0] = p[2]

257

258 # ifStat -> If moqa_cond Do explist

259 def p_ifExpr_ifStat (p):

260 ’ifStat : IF moqa_cond DO exprlist ’

261 p[0] = moqa_ast .IfNode ([p[2]]+[p[4]])

262

263 # exprlist -> expr

264 def p_exprlist_single (p):

265 ’exprlist : expr ’

266 p[0] = [p[1]]

267

268 # exprlist -> expr exprlist

269 def p_exprlist (p):

270 ’exprlist : expr exprlist ’

271 p[0] = [p[1]] + p[2]

272

273 # moqa_cond -> |Identifier | op arithExpr

274 def p_moqa_cond (p):

275 ’’’moqa_cond : lpoSize LT expr

276 | lpoSize GT expr

277 | lpoSize GE expr

278 | lpoSize LE expr

279 | lpoSize EQUALEQUAL expr

280 ’’’

281 p[0] = moqa_ast .OpNode(p[2], [p[1],p[3]])

282

283 # expr -> ( expr )

284 def p_expr_paren (p):

285 ’expr : LPAREN expr RPAREN ’

286 p[0] = p[2]

287

288 # arithExpr -> arithExpr op arithExpr

289 def p_arithExpr (p):

290 ’’’

291 arithExpr : expr PLUS expr

292 | expr MINUS expr
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293 | expr TIMES expr

294 | expr DIVIDE expr

295 | expr MOD expr

296 ’’’

297 p[0] = moqa_ast .OpNode(p[2], [p[1],p[3]])

298

299 # expr -> NUMBER

300 def p_expr_number (p):

301 ’expr : NUMBER ’

302 p[0] = moqa_ast .NumNode(p[1])

303

304 # expr -> arithExpr

305 def p_expr_arithExpr (p):

306 ’expr : arithExpr ’

307 p[0] = p[1]

308

309 # forStatement -> For IDENTIFIER = expr to expr Do expr + End

310 def p_forStatement_to (p):

311 ’forStatement : FOR IDENTIFIER ASSIGN expr TO expr DO exprlist END ’

312 idf = moqa_ast .IdentifierNode (p[2])

313 p[0] = moqa_ast .ForNode ([idf , p[4], p[6]]+ p[8])

314

315 # forStatement -> For IDENTIFIER = expr downto expr Do expr + End

316 def p_forStatement_downto (p):

317 ’forStatement : FOR IDENTIFIER ASSIGN expr DOWNTO expr DO exprlist END ’

318 idf = moqa_ast .IdentifierNode (p[2])

319 p[0] = moqa_ast .DownForNode ([idf , p[4], p[6]]+ p[8])

320

321 # defFun -> Def IDENTIFIER ( optparams ) expr + end

322 def p_defFun (p):

323 ’defFun : DEF IDENTIFIER LPAREN optparams RPAREN exprlist END ’

324 p[0] = moqa_ast .FuncDefNode (p[2], p[4], p[6])

325

326 # optparams -> IDENTIFIER (, IDENTIFIER )*

327 def p_optparams (p):

328 ’optparams : params’

329 p[0] = p[1]

330 def p_optparams_empty (p):

331 ’optparams : ’

332 p[0] = [ ]

333 def p_params (p):

334 ’params : IDENTIFIER COMMA params ’

335 p[0] = [p[1]] + p[3]

336 def p_params_one (p):

337 ’params : IDENTIFIER ’

338 p[0] = [p[1]]

339

340 def p_error(p):

341 raise SyntaxError
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Listing A.3: MOQA interpreter environment implementation

1 # env = (parent_env , {})

2 def env_lookup (name , env ):

3 if name in env [1]:

4 return (env [1])[ name ]

5 elif env [0] == None :

6 return None

7 else :

8 return env_lookup (name , env [0])

9

10 def env_update (name , value , env):

11 if name in env [1]:

12 (env [1])[ name ] = value

13 elif not (env [0] == None ):

14 env_update (name , value , env [0])

15 raise RuntimeError (str(name ) + ’ is not defined ’)
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B1 Approximation Timing for the Merge Oper-

ation

n n+1 Experimentation Approximation Difference
1 2 1.6667 1.6000 0.0667
2 3 3.5 3.4286 0.0714
3 4 5.4 5.3333 0.0667
4 5 7.3333 7.2727 0.0606
5 6 9.2857 9.2308 0.0549
6 7 11.25 11.2000 0.0500
7 8 13.2222 13.1765 0.0457
8 9 15.2 15.1579 0.0421
9 10 17.1818 17.1429 0.0389
10 11 19.1667 19.1304 0.0363
11 12 21.1538 21.1200 0.0338
12 13 23.1429 23.1111 0.0318
13 14 25.1333 25.1034 0.0299
14 15 27.125 27.0968 0.0282
15 16 29.0106 29.0909 0.0803
16 17 31.0718 31.0857 0.0139

Table B.1: Times for merging two lists of length n and n+ 1

As proven in [73], merging two lists of same length has the following equation:

TMerge(R(∆n), R(∆n)) =
2n2

n + 1

.

But there is no general solution to express the average time of merging two

lists with different lengths as discussed in Section 5.4 (page 136). We approximate

the merging time for two lists of length n and n+ 1 with the following equation:

TMerge(R(∆n), R(∆n+1)) =
2n(n+ 1)

(n + (n+ 1))/2 + 1
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.

This equation mimics the original merge timing function. The numerator is

twice the product of two lists’ length, the denominator is the average length of

two lists plus one. We justify the usefulness of the equation by experiments.

In our experiment, we count the exact average-case times for merging lists

with lengths ranging from 1 to 11, while for the bigger problem size, we sample

1, 000, 000 cases and obtain their average times. The final result is shown in

Table B.1. The difference between the experimentation and our approximation

is small.
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