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We describe the application of Incoherent Broadband Cavity-Enhanced Absorption 

Spectroscopy (IBBCEAS) for the in situ detection of atmospheric trace gases and radicals 

(NO3, NO2, O3, H2O) in an atmospheric simulation chamber under realistic atmospheric 

conditions. The length of the optical cavity across the reaction chamber is 4.5 m, which is 

significantly longer than in previous studies that use high finesse optical cavities to achieve 

high absorption sensitivity. Using a straightforward spectrometer configuration, we show that 

detection limits corresponding to typical atmospheric concentrations can be achieved with a 

measurement time of seconds to a few minutes. In particular, with only moderate reflectivity 

mirrors, we report a measured sensitivity of 4 pptv to NO3 in a 1 minute acquisition time. The 

high spatial and temporal resolution of the IBBCEAS method and its pptv sensitivity to NO3 

makes it useful in laboratory studies of atmospheric processes as well as having obvious 

potential for field measurements. 

 

 

Keywords: Cavity–enhanced, broadband, spectroscopy, atmosphere, trace gases, detection, in situ, 
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Introduction 

Accurate determination of trace gas and radical concentrations is essential to advance our understanding 

of chemical processes in the troposphere (1–3). One of the most important tropospheric radicals is the 

nitrate radical, NO3 (2). It is the dominant oxidant in the nocturnal troposphere and has been the focus 

of atmospheric monitoring efforts since the late 1970s (4–6). The early detection of NO3 in the polluted 

troposphere (5) and the establishment of its diurnal variation (6) were based on the strong absorption in 

the electronic B ← X band of NO3 in the 600–700 nm region (7, 8) and were made using differential 

optical absorption spectroscopy (DOAS). Long–term DOAS measurements of tropospheric NO3 started 

in the mid–1990s (9–13) and focused on several issues including vertical concentration profiles in the 

urban boundary layer, daytime observations of NO3 (13), and the role of NO3 in the marine boundary 

layer (10). A limitation of DOAS is that it only determines column densities over several kilometers of 

optical absorption path length; small–scale spatial variations of trace gases cannot be observed with this 

method. However, recent reviews have emphasized the value of good spatial and temporal resolution in 

trace gas detection to take account of the variability of the dynamics and chemical composition of the 

troposphere (14, 15). High spatial and temporal resolution is particularly important for highly reactive 

species such as NO3, or those with significant point sources like NO2. Detection of NO3 in ambient air 

with high spatial resolution was first demonstrated in 2000 by King et al. using cavity ring–down 

spectroscopy (CRDS) (16). Several groups have subsequently developed CRD instruments for NO3 

absorption measurements using narrow band lasers (17–19) and broadband light sources (20–22). 

Recently laser–induced fluorescence (LIF) has also been employed to detect atmospheric NO3 (23–25), 

again using the strong electronic transition with maximum at 662 nm. In many cases, the CRDS and LIF 

instruments can also be used to determine N2O5 concentrations, which is in chemical equilibrium with 

NO3 and NO2 under normal conditions (26). Quantifying N2O5 provides valuable additional information 

about tropospheric NOX chemistry (1–3, 27, 28). 
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The approach taken in this work uses a broadband light source and a high finesse optical cavity to 

measure very small absorptions in a gas mixture. Broadband methods have some advantages over 

narrowband laser methods in the visible and UV owing to their multiplexing capabilities in combination 

with relatively short data acquisition times. Laser–based broadband methods have recently seen 

considerable development (29–31). However, a coherent light source is not necessary to take advantage 

of the increased effective absorption pathlength inside the optical cavity. This was first demonstrated by 

Fiedler et al. (32) who used an incoherent white light source (a Xe arc lamp) in a cavity–enhanced 

absorption experiment.  

In this paper, we describe the first application of incoherent broadband cavity–enhanced absorption 

spectroscopy (IBBCEAS) to in situ measurements of NO3 in an atmospheric simulation chamber. We 

demonstrate that IBBCEAS has high sensitivity to typical atmospheric NO3 concentrations (in the pptv 

range) together with the advantages of high temporal and spatial resolution. The technique therefore has 

considerable potential for use in atmospheric simulation chambers, for instance, to allow direct 

observation of NO3 in kinetic and mechanistic studies of the oxidation of tropospheric volatile organic 

compounds (VOC) (33). IBBCEAS also has great potential for deployment in the field, where its high 

sensitivity to multiple atmospheric species, combined with its high temporal and spatial resolution, will 

be advantageous in comparison to alternative approaches. 

 

 

 

 

 

Experiment 
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The atmospheric simulation chamber used in these experiments has been described in detail elsewhere 

(34). It consists of a cylindrical teflon vessel with a length of 4.1 m and a diameter of 1.1 m. The 

chamber has a volume of  approximately 3.9 m3 at atmospheric pressure. It is closed at both ends with 

teflon foil covered aluminum plates. The chamber is equipped with White–type multiple–reflection 

optics (35) consisting of three gold–coated mirrors separated by 3.82 m and a total optical path length of 

229.6 m (see Figure 1). The White–cell is coupled to a Fourier–transform infrared spectrometer 

(BioRad Excalibur) to record absorption spectra in the 600–4000 cm-1 region with a maximum spectral 

resolution of 0.25 cm-1. The chamber can be purged with clean air generated by an air purification 

system (Zander KMA 75) that runs on compressed air and reduces concentrations of NO and NO2 to 

less than 1 ppbv. The temperature and humidity in the chamber are monitored with a dewpoint meter 

(Vaisala DM70). For the measurements described here, a commercial NOx monitor (Monitor Europe 

ML 9841B) measured the concentrations of NO2 and NO.  

 

A scheme of the IBBCEAS setup is shown in Figure 1. Light from a 75 W Xenon short arc lamp 

(Osram XBO) was focused into a stable optical cavity formed by two high reflectivity dielectric mirrors 

(Layertec; plane/concave mirrors with a 5 m radius of curvature) at a distance of 462 cm. The mirrors 

were not purged with an inert gas. The light entering the cavity is spectrally limited by filters to 

wavelengths greater than 600 nm (Schott RG610 and RG630) and by two irises to reduce stray light. 

The cavity was aligned using a He–Ne laser and the cavity output was directed into a spectrograph 

(Oriel MS127i) equipped with a CCD detector (Andor DV401-BV). The spectrograph resolution was 

better than 0.3 nm, validated using the emission lines of a Sr/Ar hollow cathode lamp. The wavelength 

scale of the spectrograph and CCD detector was calibrated using an NO2 spectrum from the literature 

with a similar spectral resolution to our system (36). The root–mean–square deviation of the calibrated 
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pixel positions was 0.05 nm. The spectral range covered by the spectrograph and the CCD detector in 

this study was approximately 130 nm.  

 

In IBBCEAS the reflectivity of the mirrors must be accurately known to obtain quantitative results. We 

have therefore measured the reflectivity as a function of wavelength using known concentrations of NO2 

and O3 in the cavity (see Figure 2). Both species absorb across the whole spectral range studied here and 

their absorption cross–sections are known to high accuracy (36, 37). The NO2 concentrations were 

determined using the ML 9841B NOX monitor, while the O3 concentrations were obtained from the 

intergrated area of the FTIR absorption spectrum of the bands around 2100 cm-1 using the sum of the O3 

line intensities from the HITRAN database (38) as a reference. Once the number density n 

[molecules/cm3] of the species is known, the reflectivity R(λ) can be determined by (32): 

 

    
1

0(λ) 1 σ(λ) IR n
I

1
−

⎛= − −⎜
⎝ ⎠

⎞
⎟      (1) 

 

where σ(λ) is the absorption cross–section of either O3 or NO2 from the literature (36, 37, 39), is the 

cavity length, and I(λ) and I0(λ) are the intensities transmitted by the cavity with and without the 

absorbing gas present in the cavity. The R(λ) values were interpolated using a second–order 

polynomial; the mirror reflectivity spectrum obtained in this way is shown in Figure 2. The maximum 

reflectivity obtained at 665 nm is 0.99775 with an estimated uncertainty of 0.00020.  

From the reflectivity the effective absorption path length without an absorber present can be estimated 

from the corresponding ring–down time τcrd = [c(1-R )]–1. Hence the distance travelled within the time 

τcrd is approximately 2000 m. 
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Results and Discussion  

NO3 was produced in the atmospheric simulation chamber from the reaction  NO2 + O3 → NO3 + O2 

(26). In order to guarantee a complete NO2 to NO3 conversion, we first introduced several ppmv of 

ozone into the atmospheric simulation chamber. The ozone was produced by an electrical discharge in a 

constant flow of pure oxygen yielding a mixture of O3 and O2. A few ppbv of NO2 was then added from 

a small storage bulb that was first filled with a few mbar of NO2 from a reservoir and then flushed into 

the simulation chamber with purified air. NO3 was readily formed due to the large excess of O3 

compared to NO2. No traces of residual NO2 were observed in the absorption spectra and N2O4 

formation was entirely negligible at such low NO2 concentrations. A typical IBBCEAS spectrum of 

NO3 is shown in Figure 3(A). The strongest NO3 absorption bands (B←X) around 662 and 623 nm 

dominate the spectrum. The spectrally unresolved absorption bands at 628 and 688 nm shown in Figure 

3(A) correspond to the strongly forbidden transitions 1 3( 1, 2) X ( 0g gb v v+ −′ )′′Σ = ← Σ =  (γ– and B– band) 

of molecular oxygen. The Chappuis absorption band of O3 also contributes to the observed absorption 

over the entire spectrum. The ozone absorption spectrum is very smooth in this spectral region and 

decreases monotonically with increasing wavelength. 

To determine experimentally the minimum detectable concentration of NO3, we purged the atmospheric 

simulation chamber for about 30 minutes with a flow of purified air. A typical absorption spectrum is 

shown in Figure 4, illustrating that a concentration of approximately 4 pptv is readily detected in the 

measurement time of 57 seconds. A nonlinear least squares fit (40) was used to describe the absorption 

coefficient by: 

3 3 3 3O O NO NOα(λ) (λ) (λ)n n aσ σ= + +  .     (2) 
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In this equation the number densities and  [cm–3] and the constant a [cm–1] are fit parameters,  
3On

3NOn

3O (λ)σ and 
3NO (λ)σ  are taken from the literature for T = 296 K (39, 41). The number densities found in 

the fit were = (1.74±0.05) × 1012 molecules cm–3 (≈ 70 ppbv) and = (1.01±0.03) × 108 

molecules cm–3 (≈ 4.1 pptv). The value for a in the fit shown was (5.24±0.12) × 10–9 cm-1. The stated 

uncertainties only represent errors concerning the quality of the fit rather than physical measurement 

uncertainties. Especially parameter a, which accounts for a constant background due to unavoidable 

(small) variations in the lamp intensity, can vary from measurement to measurement. In Figure 4 a 

spectrum by Yokelson et al. (42) is also shown for comparison. This spectrum was scaled down to a 

mixing ratio of 4.1 pptv to independently confirm the validity of the NO3 number density obtained in 

the fit. 

3On
3NOn

 

The largest contribution to the overall error in the evaluation of concentrations arises from the 

uncertainty of the term (1– R(λ)) in Eq. (1) and that of the NO3 absorption cross–sections σ(λ). The 

NO3 absorption cross–sections are accurate to within 10% (41). The error in (1– R(λ)) is also 

approximately 10% using the measured mirror reflectivity  R = 0.99775 ± 0.00020. Therefore the 

estimated maximum uncertainty in the absolute NO3 concentration is approximately 14%. This 

uncertainty would always be affected by the same systematic error in R(λ) and σ(λ). The signal–to–

noise ratio of the measurement shown in Figure 4 can be estimated from the maximum of the NO3 

absorption  and the noise in the measurement which is taken as the 

standard deviation (1σ) of the fit residual (σ ≈ 0.33×10-9 cm-1, cf. lower panel in Figure 4). With these 

values the signal–to–noise ratio is approximately (αmax/σ) = 7 in the present measurement. Assuming 

the detection limit to be three times the noise level of the measurement (3σ), our detection limit for NO3 

3

9
max 662 NOα σ 2.30 10 cmn −= = × 1−
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is approximately 1.8 pptv corresponding to αmin=1×10–9 cm–1  for a 1 minute acquisition time. However, 

we stress that this detection limit is a conservative estimate based on a single spectral point (the 

absorption maximum at 662 nm); taking account of the full absorption spectrum would give a lower 

detection limit.  Furthermore, with an integration time of 10 minutes for example, the detection limit 

estimated using the above approach is expected to be about ~0.6 pptv. The determination of relative 

NO3 concentrations in long–term time dependent monitoring applications is also better than 1 pptv. The 

sensitivity of our setup to NO3 is comparable to reports from the literature but does not require a 

sophisticated laser system or fast detection electronics (18, 20, 43). 

 

The IBBCEAS detection limit for NO2 in the same spectral region was estimated (see Figure 3(B) and 

5) to be approximately 10 ppbv for an integration time of 57 seconds. This limit implies that typical 

tropospheric NO2 concentrations would also be detectable in field measurements using this set of 

mirrors. The main uncertainty in the measured concentration of NO2 arises from the uncertainty in the 

mirror reflectivity, since the NO2 absorption cross–sections are estimated to be accurate to at least 5% in 

this spectral range (37). It was not necessary to convolute the NO2 reference spectrum (36) with our 

instrument function because the spectral resolution of the reference spectrum is very close to that of our 

spectrograph/detection system. (The reference spectrum shown in Figure 5 is not an atmospheric 

spectrum taken from a satellite, but a very accurate reference spectrum of NO2 taken in the lab). 

A practical issue is the presence of H2O absorption lines in the spectral region of interest, which is 

well–known in DOAS observations of NO3. Figure 6 shows the absorption of water in an experiment 

where the atmospheric simulation chamber was filled overnight with air from the laboratory and the 

humidity was monitored using the dewpoint meter. The H2O lines of the HITRAN 2004 database (38) 

were used to calculate a theoretical spectrum that was convoluted to match the spectral resolution of the 

spectrograph/detection system. The agreement of both spectra is very good, bearing in mind that no 
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fitting of the IBBCEAS instrument function has been performed and that other absorbers are also 

present in the spectrum (see for example the absorption feature at 638 nm). For field experiments, the 

accurate convolution of the H2O absorption with the IBBCEAS apparatus function needs to be 

investigated in greater detail (22). The absorption signature of H2O may be used to determine the mirror 

reflectivity and hence the effective absorption path length in a field experiment, even if the strong lines 

of water are saturated. A convolution of the H2O with the NO3 absorption may be less severe at the 

second strong absorption band of NO3 at 624 nm. Studies of this kind are in preparation. 

  

 

Comparison with other methods 

The IBBCEAS can be thought of as a hybrid between laser–based cavity–enhanced absorption 

spectroscopy (CEAS) (where the transmission of an optical cavity is detected) and conventional long–

path (differential optical) absorption spectroscopy. Since IBBCEAS has great potential for field 

deployment as well as for laboratory studies, its advantages and drawbacks in comparison to (A) laser–

based CEA techniques and (B) to long–path DOAS methods will be briefly addressed here. 

(A) The incoherent broadband approach possesses most of the advantages of cavity–enhanced 

absorption methods, i.e. high sensitivity, short integration times (seconds to minutes) and compactness 

of the setup. However, IBBCEAS is experimentally simpler and setups for field experiments are more 

straightforward to implement in a robust and portable way. The application of a broadband incoherent 

light source in connection with a spectrograph/CCD detection system has two advantages over laser–

based CEAS: (i) Multi-component analysis of spectra is possible due to the multiplexing capability of 

the method if the concepts of differential optical absorption spectroscopy (DOAS) are applied. (ii) The 

wavelength region of interest can easily be changed within a wide spectral range from the near UV to 

near IR. 
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The most important calibration parameter which needs to be determined accurately for field deployment 

of IBBCEAS is the mirror reflectivity R(λ) = 1 – T(λ) – L(λ), where T is the mirror transmission and L 

are the inherent losses of the cavity without the relevant absorbing species present. Even though L is 

assumed to be generally time independent, small variations of L occur from measurement to 

measurement due to a gradual accumulation of impurities on the mirrors. This is one of the uncertainties 

of R as shown in Figure 2 and discussed above. The closer to the time of measurement R can be 

determined, the smaller will be variations of L and the better is the resulting accuracy of the 

measurement. In systems employing cavity ring–down spectroscopy, R(λ) can in principle be 

determined from the ring–down time in clean air. In CRD applications not using an open path NO3 is 

removed by reaction with NO to establish an absorption baseline. In IBBCEAS, R(λ) can be obtained 

from a known concentration of a molecular species that absorbs in the same spectral range as the target 

compound. For monitoring NO3 possible species for the reflectivity calibration are H2O, O2, NO2, or O3 

(as demonstrated in this paper). For example, water concentrations could be determined by a calibrated 

hygrometer. A drawback of the IBBCEAS approach is the generally lower spectral resolution compared 

to laser–based methods. A high spectral resolution increases the selectivity of the approach and 

facilitates the spectral analysis, provided the absorbing gases exhibit highly structured spectra like for 

instance most atmospheric species in the IR. 

(B) IBBCEAS can also be compared to long–path DOAS, which has been used in the field for several 

decades. The principles of the spectral evaluation procedure are very similar (40). Single–  or two–pass 

DOAS setups are limited to large sample volumes and therefore provide only information on the column 

densities of trace species. Absorption measurements requiring high spatial resolution, for instance those 

affected by spatially confined photochemistry or on highly localized radical sources or sinks, are not 

possible with the long–path DOAS approach. In this context IBBCEAS can be best compared to DOAS 
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setups coupled to multi–reflection cells, which possess a better spatial resolution and have been 

employed in conjunction with atmospheric simulation chambers (44, 45). Using an optically stable 

resonator in IBBCEAS rather than a White– or Herriott–type multi–pass setup offers the advantage of 

simpler alignment procedures while retaining good spatial resolution and a sensitivity comparable to 

long–path DOAS. Furthermore, an apparatus based on IBBCEAS has a better portability than a long–

path (single– or two–pass) DOAS system and only a single site is required. IBBCEAS can also be used 

in certain atmospheric applications where the air is sampled and pretreated to remove aerosols, allowing 

continued observations during periods of precipitation or low visibility. In the specific case of NO3 

monitoring, it would be possible to thermally decompose N2O5 to detect this species, as some CRDS 

and LIF systems have demonstrated (18, 28). 

 

Conclusions 

Because many important species involved in tropospheric chemistry have abundances in the ppbv to 

sub–pptv range, quantifying the mixing ratios of relevant species such as NO3 requires extremely high 

sensitivity techniques. Incoherent broadband cavity–enhanced absorption spectroscopy (IBBCEAS) is a 

highly sensitive method for in situ monitoring of NO3 between 620 and 690 nm. We have demonstrated 

that concentrations in the pptv range can be measured with an absolute accuracy of approximately 14% 

(dominated by systematic uncertainties from the mirror reflectivity and the absorption cross–sections of 

NO3) and with a relative precision of better than 1 pptv, in an integration time of about one minute. In 

the same spectral region, NO2 can also be detected with a sensitivity of tens of ppbv and the absorption 

of H2O and O3 can be utilized for the spectral analysis. This method therefore has considerable potential 

for field measurements and for kinetic and mechanistic studies of NO3 reactions at typical atmospheric 

concentrations. By employing dielectric mirrors with high reflectivity in different spectral regions, the 
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same instrument can in principle also be used to monitor halogen oxides or other tropospheric species 

such as HONO or H2CO. The potential of IBBCEAS for field deployment and its advantages for 

measuring small scale spatial variations in the composition of the troposphere are also apparent. 
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FIGURE 1. Schematic diagram of the experimental setup. L1 and L2: lenses; M: metallic mirrors; M1 and 

M2: high reflectivity dielectric mirrors with R ≈ 0.99775 at 665 nm; Filters: Schott RG 610 and RG 630 of 

1mm and 3 mm, respectively; FTIR: Fourier Transform Infrared spectrometer. 
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FIGURE 2. The experimentally determined reflectivity as a function of wavelength in the 625–705 nm 

range. The solid line represents a second–order polynomial fit to the reflectivity values which were 

determined using concentrations of O3 (open circles) and NO2 (solid circles). The O3 and NO2 

concentrations were determined with the FTIR spectrometer and NOX monitor respectively (see Figure 

1). The dotted horizontal line corresponds to a maximum reflectivity of R=0.99775 at 665 nm. The error 

bars indicate an estimated uncertainty of ±0.00020.  
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FIGURE 3. Intensity transmitted by the optical cavity: integration time 57 seconds (corresponding to an 

average of 3000 single readouts of the CCD array with an individual exposure time of 19 ms). (A) The 

upper panel shows the effect of NO3 absorption. The simulation chamber was filled with O3 (ca. 9 

ppmv) in large excess of NO2 prior to the measurement. (B) Shows the effect of filling the cavity with 

0.17 ppmv of NO2. Weak oxygen bands around 688 nm (b(1,0)←X) and 628 nm (b(2,0)←X band) are 

indicated by vertical arrows. The structure between 635 and 655 nm in (A) and (B) is due to 

insufficiently suppressed UV emission from the Xe lamp leaking into the detector via the second order 

of the spectrograph.  
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FIGURE 4. Detection of trace amounts of NO3 in the atmospheric simulation chamber. Upper panel: 

The data in the upper curve (denoted “this work”) were recorded with an integration time of 57 

seconds. The minimum detectable concentration of NO3 with this integration time is estimated to be 

better than 1 pptv. The upper solid line was calculated using equation (2) with the parameters given in 

the text. The offset is due to ozone absorption in the atmospheric simulation chamber. The lower curve 

shows a spectrum of NO3 by Yokelson et al. (39) scaled to a mixing ratio of 4.1 pptv to match our NO3 

spectrum. Lower panel: Absolute deviation, ∆, between the measured and calculated values of the 

absorption coefficient. 
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FIGURE 5. Comparison of NO2 absorption spectra (a) recorded with the IBBCEAS system in an 

atmospheric simulation chamber (lower trace), and (b) taken with the GOME spectrometer (34) (upper 

trace). The GOME NO2 reference spectrum, taken with the GOME-FM in the lab before launch of the 

mission, was shifted upwards for clarity. Note that the IBBCEAS data fall off in the region of lower 

mirror reflectivity, i.e. below 620 nm and above 708 nm. Our spectrum was obtained assuming a 

constant reflectivity over the entire range, leading to slightly distorted features around 645 nm. The 

detection limit for NO2 is estimated to be better than 10 ppbv for an integration time of 57 seconds. The 
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NO2 absorption features were used for the wavelength calibration of the spectra with an accuracy of 

about 0.05 nm (RMS). 
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FIGURE 6. Comparison of H2O absorption spectra recorded with IBBCEAS in an atmospheric 

simulation chamber (upper trace), and calculated using the HITRAN 2004 database (36) (lower trace). 

The grey line shows the high–resolution HITRAN spectrum, the black line shows the reference 

spectrum reduced to instrumental resolution. The IBBCEAS spectrum was shifted upwards by 0.02 for 

clarity. Note the presence of other absorbers (for example O2 at 688 nm) in the IBBCEAS spectrum. 

The HITRAN spectrum was calculated for an effective optical pathlength of 3000 m.  
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