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Abstract

The field of constraint acquisition (CA) aims to remove the
“modelling bottleneck” by learning constraints from exam-
ples. However, it gives rise to a “data collection bottleneck™ as
humans must prepare a suitable (labelled) dataset. A recently
published paper described an unsupervised CA method called
MineAcq that can learn standard CA benchmarks. In this pa-
per we summarise the results, and apply MineAcq to a new,
noisy, unlabelled dataset that was not designed for CA.

Constraint acquisition

Constraint Programming is the area of Artificial Intelligence
(AI) concerned with modelling and solving combinatorial
problems. A constraint satisfaction problem (CSP) has a set
of problem variables, each with a domain of possible val-
ues, and a network of constraints imposed on subsets of the
variables. Modelling a CSP requires knowledge and experi-
ence, and can be difficult even for experts. An approach to
automating this task is Constraint Acquisition (CA) in which
constraints are learned from examples.

Though CA can remove the modelling bottleneck, it intro-
duces what is sometimes called a data collection bottleneck
in machine learning (ML): the task of gathering labelled in-
stances to form a training dataset. This affects CA because
all current methods used some form of supervised learning
which requires (sometimes implicitly) labelled data. More-
over, most CA methods require rather a lot of data even for
small problems.

One way to eliminate the data collection bottleneck would
be to eliminate the need for labels, by designing new CA
methods based on some form of unsupervised learning. In
many ML applications this is the key to scalability, and some
experts believe that the future of Al lies in unsupervised
learning (Hao 2019).

MineAcq

A recent paper (Prestwich 2021) proposed an unsupervised
CA method called MineAcq, inspired by data mining tech-
niques. MineAcq can learn from positive-only, negative-
only and positive-negative data; does not need labels; can
learn constraint models for over-constrained problems; and
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is robust under data errors. Because it is unsupervised it
could, for example, use data scraped from the Web.
MineAcq uses ideas from Association Rule Mining
(ARM). ARM aims to extract interesting correlations, pat-
terns and associations among sets of items in databases.
Candidate association rules are tested using measures of in-
terestingness, and any rule that passes the test is learned.
MineAcq uses two measures of the interestingness of a con-
straint, corresponding to the conviction and Ralambondrainy
measure in ARM, with runtime parameters denoted by 7 and
p.
In (Prestwich 2021) MineAcq learned a 9 x 9 Sudoku
model, a 10 x 10 Latin square model, a Golomb ruler of
length 12, random 3-SAT problems, and a partial ordering.
It was faster than all other methods apart from SeqAcq and
BayesAcq.

A new application

In this paper we choose a dataset that was not designed with
CA in mind, but is simple enough so that we know the target
constraint model.

LED display problem

The LED Display Domain Data Set is available from the
UCI Machine Learning Repository (Dua and Graff 2017) in
the form of a dataset generation program. This problem was
designed as a 10-class classification problem, to test classi-
fication trees on noisy data (Breiman et al. 1984).

As a SAT problem the target model has 7 Boolean vari-
ables which we shall call A-G, each true if a light-emitting
diode (LED) is illuminated in a digital display with the lay-
out shown in Figure 1. There are 27 = 128 possible con-
figurations, 10 of which are used to represent digits 0-9. A
dataset contains a specified number of examples such as

10100107

meaning that variables A, C and F set to true (1) repre-
sents digit 7. A specified noise level is used to randomly flip
each attribute value; typically a noise level of 10% is used,
causing a misclassification rate of 26%. We generate several
datasets for this classification problem, and remove all labels
to treat them as unsupervised CA problems.
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Figure 1: LED digital display
The target model

As this was designed as a classification problem, what does
it mean to learn a clausal (or constraint) model from it?
There was presumably no such model in the designers’
minds, so what model are we trying to learn? Like associ-
ation rule mining methods, MineAcq tries to learn data reg-
ularities in the form of clauses (or constraints). An instance
is a SAT solution if and only if it satisfies all these clauses.
Note that there might not be a solution: it is possible that no
instance can exhibit all observed regularities in the dataset.
In that case we learn an over-constrained CSP, which could
be treated as a max-CSP. But for the LED dataset we are try-
ing to learn a clausal model with 10 solutions corresponding
to the digits 0-9.

To allow us to check the correctness of our results on
noisy data, we first find the target model. This is easily done
by generating a dataset with 0% noise so that all instances
are solutions of the target CSP (like some other methods,
MineAcq can handle positive-only datasets). MineAcq with
7 = oo and p = 0 learned 13 2-literal clauses:

AvC Av-E AVF AvV-G
BvC -BVF CvD CVF
cvG DVF EVF -EVG FVG

and 108 3-literal clauses which reduce (by subsumption) to
12:

AvBvV-D Av-BVvD -AV-BVG
AvVv-DV-G -AvVv-DVG BVDV-E
-BVvVDVE BvVvDV-G BvV-DVG
-BvDVG BV-EV-F DVEV-G

This clausal model has exactly 10 solutions, corresponding
to the 10 digits, and is our target model.

Note that in general we might need to learn clauses longer
than 3 literals, which would quickly become computation-
ally expensive. However, for this application 2- and 3-literal
clauses are sufficient. In future work we aim to adapt ARM
methods to scale up to longer clauses.

Learning from noisy data

We experimented with different noise levels in the data. With
1% noise, 10* instances, 7 = 2.5 and p = 0.01 we learn the
target in 0.08 seconds. With 3% noise we learn the target
with p = 0.03 (data noise does not affect runtime). With 5%
noise we get the right result using p = 0.05. With 10% noise
there seem to be no parameter settings that yield the correct
result. Increasing the number of instances reduces the error,

but even with 107 instances (runtime 168 seconds) the best
result we achieved failed to learn one of the target clauses.
Moreover, the noiser the data the more careful we must be
to choose the correct value of p, though given enough data
the method works for a range of values.

Conclusion

Based on these and previous experiments, we make some
observations about MineAcq. (i) It can work on datasets that
were not designed for CA, which bodes well for its applica-
bility to automatically gathered data. (ii) It can handle noise,
given sufficient data and appropriate parameter values. (iii)
The noisier the data the narrower the range of appropriate
parameter values. (iv) For very noisy data a great deal of
data might be required, which also increases MineAcq run-
time. However, many ML experts believe that simple models
and a lot of data trump more elaborate models based on less
data (Halevy, Norvig, and Pereira 2009).

To the best of our knowledge, MineAcq is the first un-
supervised CA method. It is similar in spirit to Process
Mining in which event logs are mined for useful informa-
tion (van der Aalst 2016). This has been used to learn con-
straints for scheduling problems (Senderovich, Booth, and
Beck 2019) but it is not a general CA method.
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