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Introduction 1 

Movement is a ubiquitous ecological process that operates across many spatial and temporal scales and 2 
influences most facets of organism life.  ; however, ‘movement’ has only recently been incorporated in 3 
species distribution models (SDMs). SDMs provide a powerful spatial ecological framework for studying 4 
the geographic distribution of a wide range of organisms and are frequently used to address questions 5 
pertaining to ecological processes involving climate change, invasion risk and biogeographic hypotheses 6 
(Franklin 2009; Peterson et al. 2011). For SDMs that include movement, it has predominantly been 7 
conceptualized as (temporally and spatially) broad-scale processes like dispersal or migration (Franklin 8 
2010; Bateman et al. 2013; Miller and Holloway 2015), based on population-level models of movement 9 
(e.g. distance or kernel-based rates of movement), or as a measure of accessibility with which to select 10 
the appropriate spatial extent for model calibration, validation, and comparison (Barve et al. 2011; Saupe 11 
et al. 2012; Qiao et al. 2015). 12 

Movement patterns and processes vary substantially across taxa, landscapes and individuals, 13 
consequently, developing a generalized framework for incorporation has been difficult. Moreover, as 14 
movement occurs across such a broad range of spatiotemporal scales, its conceptualization should not be 15 
restricted to the aforementioned narrow and specific movement processes. In spite of the ecological 16 
significance, the incorporation of movement has lagged behind other methodological advancements. By 17 
not implementing measures of movement within SDM, projections of species distributions ignore one of 18 
the most important ecological processes that cause patterns of current and future geographic ranges of 19 
species. The incorporation of movement in SDMs should provide not only more accurate representations 20 
of the distribution of a species, but also an increased understanding for ecological processes that relate 21 
to habitat characteristics (e.g. climatic preferences), functional traits (e.g. behavior, physiology), and 22 
fitness components (e.g. survival, growth). The aim of this review is to provide a quantitative synthesis in 23 
order to recognize how movement has been incorporated in SDM to date, identify the under-studied 24 
components of incorporating movement, and outline emerging trends in this burgeoning research 25 
frontier. 26 

Meta-Analysis of Movement in SDM 27 

The ISI Web of Knowledge (http://apps.webofknowledge.com/) was used to conduct a comprehensive 28 
search for journal articles that satisfied a query of both SDM and ‘movement’ as words in the article topic. 29 
While the current terminology used to refer to correlative species-environment models is converging on 30 
‘species distribution models’, they have previously been referred to as ‘predictive vegetation models’ 31 
(Franklin, 1995), ‘niche models’ (Peterson et al. 2007) and ‘predictive habitat distribution models’ (Guisan 32 
and Zimmermann, 2000). While conceptual differences between terms do exist (e.g. modelling the actual 33 
versus potential distribution - Peterson et al. 2011), in order to correctly identify any article which could 34 
be considered under the SDM framework, all four terms were used within the search and for the purposes 35 
of this review can be considered synonymous. A variety of terms associated with organism movement 36 
were identified by Holyoak et al. (2008) in their quantitative study in a special issue of the Proceedings of 37 
the National Academy of Science introducing movement ecology. They identified 15 general movement 38 
terms from the literature, with four key terms used in 98% of the studies surveyed; movement, migration, 39 
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dispersal and gene flow. The four SDM terms and 15 movement terms identified by Holyoak et al. (2008) 40 
were used as search parameters, and while these parameters are relatively broad, we felt this was 41 
necessary in order to complete a comprehensive review. An article was deemed relevant if it referred to 42 
the movement of whole genes, progeny, organisms, populations, or species (Supplementary Information 43 
1). The search was conducted so that every journal article published up to and including December 31st 44 
2015 is included, with the search considered complete as of March 9th 2016. 45 

The last decade has seen a surge in the incorporation of movement within SDM, with between 20-25% of 46 
all SDM studies (n.b. total number of SDM studies was calculated using the total articles returned from 47 
the four SDM terms, controlled for by the overlap observed in articles from the SDM and movement 48 
searches) published since 2010 implementing a method of movement within the analysis, or discussing 49 
but not implementing movement (Figure 1). In total, 595 relevant articles were identified across 180 50 
journals, illustrating just how inter-disciplinary SDM has become. We distinguished between articles that 51 
explicitly implemented movement, compared to those that only discussed movement, and it can be seen 52 
that the proportion of studies explicitly accounting for movement has increased in recent years (Figure 1). 53 
When movement was only discussed in the article, discussion ranged from explicitly stating that dispersal 54 
was not incorporated in the study but an acknowledgement was made asserting that this likely increased 55 
uncertainty in projections (e.g. Garner et al. 2015), to studies that highlighted the importance of SDMs for 56 
plant migration, but made no further mention of movement factors or processes (e.g. Meineri et al. 2012).  57 

Movement Terminology 58 

SDMs are used across a number of disciplines, so it is therefore vital that if movement is to be successfully 59 
incorporated into SDMs, then one must be clear in the definitions and terms used. When concepts are 60 
not well defined, it distorts communication with scientists across (and beyond) the discipline, alienates 61 
the public through ambiguous, imprecise and unstandardized answers, and it distracts from the primary 62 
aims of the research (Hall et al. 1997). SDM researchers addressing questions related to range shifts in 63 
response to the changing climate or to track the spread of invasive species have used terms such as 64 
‘dispersal limitations’, ‘dispersal capacities’, ‘migration rates’, and ‘spread rates’ interchangeably to refer 65 
to the cumulative movement of a species or a population across a broad time scale and often across 66 
multiple generations (Miller and Holloway 2015). Definitions of movement behaviors are still strongly 67 
debated throughout the ecological disciplines (Dingle and Drake 2007), with terms such as ‘migration’ or 68 
‘dispersal’ causing highly emotive responses across both the scientific and public realms (Milner-Gulland 69 
et al. 2011). As such, it is not the purpose of this article to re-visit the debate surrounding movement 70 
definitions, but rather to provide a discussion on how movement concepts have been used in SDM, and 71 
illustrate the need for clear and concise definitions without the assumption of consensus. 72 

Dispersal (48.15%) was the predominant term used to describe movement when studies across all taxa 73 
and spatiotemporal scales were considered, followed by migration (12.58%), and then movement (8.40%), 74 
with a total of 32 general terms used to describe organism movement (Supplementary Information 1).  75 
Only a handful of studies actually defined the terms they used. For example, Pittiglio et al. (2012) used 76 
the term transit corridor to refer to the seasonal movement of elephants in Tanzania, while Ai et al. (2012) 77 
defined dispersal limitation as spatially limited dispersal in local communities. Only 46 studies (7.73%) 78 



used a single movement term throughout the entirety of their paper. Some repetition in movement terms 79 
may have occurred due to researchers citing work which used a different term or referred to a different 80 
movement pattern; however, most of the repetition occurred due to researchers using multiple terms to 81 
refer to the same movement behavior. Moreover, in 37 (6.22%) studies we could not distinguish the 82 
predominant movement term used. 83 

Dispersal and migration were often used interchangeably to refer to the same movement behavior, in 84 
particular movement in response to changing climates.  Table 1 highlights the number of times migration 85 
or dispersal was recorded as the general term used to refer to movement in response to climate change 86 
or finer-scale daily or seasonal movements. Unsurprisingly, dispersal was the predominant term used for 87 
both movement patterns (as it was also the predominant term across all movement patterns), but it was 88 
used twice as much to describe tracking of the changing environment. The use of migration to describe 89 
the tracking of the changing environment is perhaps the most contradictory to the general consensus of 90 
what constitutes migration (e.g. the movement between two habitats on a predictable basis - Hansson 91 
and Åkesson 2014). Movement in response to climate change does not represent regular trips, and with 92 
the overwhelming use of dispersal to describe this movement pattern, migration should perhaps not be 93 
used in this context. However, the use of dispersal in the context of climate change is also slightly 94 
ambiguous with colonization. When movement over multiple generations is simulated (e.g. in response 95 
to climate change), an assumption of success at each stage of dispersal is inherently assumed in the 96 
dispersal models. Researchers need to emphasize any ambiguous definitions when modelling movement 97 
in an SDM context. Clarification of the movement patterns being simulated will only become more 98 
pertinent as methods continue to advance and the inclusion of multiple movement processes in models 99 
becomes a regular occurrence.  100 

What is Moving? 101 

Species Groups 102 

SDM studies addressing movement did so for a number of different organisms, ranging from amoebas 103 
(Aguilar and Lado 2012; Aguilar et al. 2014) to elephants (Richmond et al. 2010; Pittiglio et al. 2012). 104 
However, the majority of studies which addressed movement did so for plant taxa (Figure 2). These 105 
outnumbered all other taxon groups across all SDM applications with the exception of projecting the 106 
current distribution (for which the majority of the movement patterns studied resulted from processes 107 
such as foraging). While initially surprising that plants were recorded undertaking ‘regular movements’, 108 
communities of plants undergo regular turnover, and this is an important determinant in the maintenance 109 
of a species distribution. Many bird species epitomize animal movement, and it is therefore perhaps less 110 
surprising that these species constitute the second most studied group, recording equal coverage 111 
between applications of movement (with the exception of invasive spread). Plants and birds are the most 112 
studied species groups on the planet (Lomolino et al. 2006), with bird atlases collected with regularity 113 
since the 1960s (Sharrock 1976), and a disproportionately high number of available telemetry datasets for 114 
birds on data repositories such as Movebank (https://www.movebank.org/). These datasets will provide 115 
researchers with the most comprehensive data to evaluate the different movement models implemented 116 
by SDM researchers and will allow more rigorous testing and evaluation of movement models. 117 
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Of greater ecological concern are the under-studied species. Arthropods (insects, arachnids, crustaceans) 118 
constitute over half of the species recorded on the planet, but are relatively understudied compared to 119 
plants. This trend is not unique to SDM studies, with the paucity of entomologists in relation to other 120 
taxon specialists well documented (Lomolino et al. 2006). Arthropod species can undertake vast migration 121 
excursions (e.g. monarch butterflies), and therefore should be more readily studied. Moreover, in recent 122 
years, amphibians have suffered global and substantial losses (Pounds 2001; Alford et al. 2007; Blaustein 123 
et al. 2011). Subsequently, there is a pressing need to study these species in response to global change; 124 
however, only six studies investigated the impact of global change on amphibians and incorporated a 125 
measure of dispersal alongside this. While amphibians are considered relatively poor dispersers, they have 126 
been recorded undertaking relatively long migrations between breeding and hunting locations (e.g. 3 km 127 
Ray et al. 2002), meaning that future projections of these species should incorporate a measure of 128 
dispersal. 129 

Individuals, Populations, or Species 130 

As noted by Levin (1992), patterns at one level of organization can often be understood as the collective 131 
behavior of aggregates of smaller units. This is pertinent when studying species distributions, and while 132 
the focus of SDMs are often aimed towards population or species-level patterns, various levels of 133 
organization were recorded in the meta-analysis (Figure 3). Questions related to dispersal and 134 
colonization are population-level processes; however, many of the factors responsible for animal 135 
movement operate on an individual scale (Jønsson et al. 2016). The differences between Eulerian 136 
(population) and Lagrangian (individual) approaches to movement are important to consider here, 137 
particularly as methods to model movement in SDM are increasing in complexity. Both approaches deal 138 
with population-level movement, but one can be considered a top-down method while the other is 139 
bottom-up. The Lagrangian approach involves discrete steps and segments and is useful for tracking 140 
detailed movements of individuals, while the Eulerian approach describes the expected pattern of space 141 
use by an individual or population (Smouse et al. 2010). Movements of individuals contain the most detail 142 
concerning movement and environmental interactions, but emergent population- or species-level 143 
patterns are the focus of SDM. Subsequently, Lagrangian approaches to modelling movement have 144 
lagged, despite support for such approaches by ecologists and modelers alike (Tang and Bennett 2010).   145 

Recent developments in the fields of movement ecology and computational movement analysis are 146 
beginning to address this long-standing issue. The potential of individual-based models to simulate the 147 
inherent relationship between movement and the environment while aggregating individual movement 148 
to the population level has seen an increase in the use of spatial simulation models to understand animal 149 
movement, and are subsequently beginning to be observed within the SDM framework (Martinez et al. 150 
2012; Adams et al. 2015). For example, Martinez et al. (2012) used a parameterized individual-based 151 
model which incorporated competition, facilitation and dispersal limitations to estimate a realistic rate of 152 
tree line ‘migration’ (or dispersal as defined in this review) under climate change in the Pyrenees. Similarly, 153 
Adams et al. (2015) used an individual-based cellular automata model based on dispersal constraints to 154 
model invasive spread of a non-native weed in Australia over a period of five to ten years. While the 155 
potential to estimate population level redistributions of species using individual-based models within SDM 156 
is promising, currently only one study has addressed this beyond plants (Zurrell et al. 2012). Furthermore, 157 



all of these studies used a gridded representation of an individual, meaning explicit idiosyncratic 158 
movement patterns are amalgamated to a grid and subsequently lost. These methods begin to bridge the 159 
gap between population and individual movements; however, these models could be argued to be grid-160 
based population models. Furthermore, discretizing movement into a gridded structure can result in an 161 
over-estimation of movement distances (Chipperfield et al. 2011), meaning research needs to be directed 162 
towards addressing these methodological artefacts. The uptake of Lagrangian movement paths within 163 
SDM therefore remains a challenging but potentially rewarding research frontier. 164 

The ‘BAM’ Framework 165 

To illustrate the individual and joint effects of three factors deemed most important in determining 166 
species distributions, Soberón and Peterson (2005) developed the heuristic ‘BAM’ framework (Figure 4a). 167 
In this framework, biotic factors (B) represent interactions with other species (i.e. competition, predation), 168 
abiotic factors (A) represent the physiological tolerances of a species (i.e. temperature, precipitation) and 169 
movement factors (M) refer to the area that has been or will be accessible to a species within a certain 170 
timeframe (i.e. dispersal, connectivity). The intersection of suitable biotic and abiotic factors beyond 171 
movement factors represent the invadable distribution (Gi), or where a species could survive if such areas 172 
were accessible. This area can be considered analogous with the species potential distribution. The 173 
occupied distribution (Go) represents the intersection of suitable biotic, abiotic, and movement factors, 174 
or where species are actually found. This area is often considered synonymous to the species actual 175 
distribution. Central to this framework is M, as the inclusion of movement allows the species range to be 176 
considered a dynamic entity, as it is the inaccessibility to Gi that is preventing an area from being occupied. 177 
The importance of abiotic and biotic factors is well established in SDM applications, while the 178 
incorporation of movement has lagged. The incorporation of M has generally been considered useful for 179 
predicting Go, the actual distribution of species, but less so when Gi or the potential distribution is sought. 180 
Despite this, there is substantial overlap in the theories and methodologies implemented by researchers 181 
predicting both Gi and Go, and furthermore many of the assumptions within modelling the potential 182 
distribution could be improved alongside a measure of movement. 183 

Recently, Barve et al. (2011) identified three implications of M within SDM: model calibration, validation, 184 
and comparison. The  choice of geographic extent has been found to significantly alter the projected 185 
environmental drivers during SDM calibration (VanDerWal et al. 2009). If the geographic extent used in 186 
an SDM is beyond the dispersal capacity of the species, then the model will project the species to be 187 
absent due to the abiotic or biotic conditions, when in fact it is absent due to factors related to M (Barve 188 
et al. 2011). Such models would under-predict the species potential distribution under changing climates 189 
and possible lead to incorrect extinction predictions. Similarly, the use of absence or pseudo-absence test 190 
data beyond the dispersal capacity of a species will  improve the accuracy of the projection in model 191 
evaluation and validation. Areas beyond the dispersal capacity are projected as having a low habitat 192 
suitability due to the lack of presence observations rather than unsuitable abiotic and biotic conditions 193 
(Barve et al. 2011). These assumptions can inflate accuracy metrics, identify incorrect or spuriously 194 
correlated environmental drivers, and undermine the robustness of SDM results . Finally, comparisons of 195 
niche similarity are an important application for many studies investigating biogeographic hypotheses 196 
(Warren et al. 2008). These comparisons require an estimate of background area, which should be 197 



considered the equivalent of M, meaning the aforementioned issues associated with model calibration 198 
and validation could cause insufficient representation of movement and significant repercussions on 199 
model inference. 200 

Various ‘BAM’ scenarios exist, with different assumptions of B, A, and M strongly influencing all phases of 201 
model configuration (Figure 4). For example, Saupe et al. (2012) used virtual species to explore the 202 
implications of different BAM scenarios, explicitly pertaining to A and M. They found that models that 203 
assumed total accessibility and abiotic suitability (Figure 4c) failed to perform better than random 204 
expectations. They cited this example as being similar to island species, whose distribution is most likely 205 
the result of dispersal limitations (M) rather than abiotic conditions (A). Similarly, M can be thought of in 206 
terms of invasive species (Figure 4d), which cannot disperse to suitable abiotic and biotic habitats under 207 
their own ability. Figure 4d would also represent a scenario where favorable  abiotic and biotic conditions 208 
have shifted under climate change, but the species lacks the dispersal capacity required to keep track, 209 
which would result in a species going extinct. These conceptualizations of M within the BAM framework 210 
have led to an increased understanding of model interpretation (Barve et al. 2011; Saupe et al. 2012; Qiao 211 
et al. 2015), with a number of studies explicitly acknowledging M when defining modelling extent, pseudo-212 
absence selection or model validation (Belaire et al. 2014; Escobar et al. 2014; Strubbe et al. 2015; 213 
McQuillan and Rice 2015; Mateo et al. 2015; Bradley et al. 2015). 214 

A criticism of BAM is that it fails to regularly account for the dynamic nature of the three factors, and in 215 
particular it could benefit from a representation of time. This is eluded to in Figure 4d, where time is an 216 
important construct of shifting both A and B beyond locations deemed accessible to the species, but it 217 
cannot be depicted in this static representation. Another example is the fact that B and M are inherently 218 
linked. When organisms traverse through a landscape, biotic resources can be depleted while the 219 
individual is in the area (e.g. herbivory) and replenish while the individual is absent. For example, the 220 
reintroduction of wolves to Yellowstone National Park in the mid-1990s changed elk movement patterns 221 
and dramatically transformed the distribution of biotic resources in a short space of time (Turner et al. 222 
2001). While M has been used to describe contingent demographic factors that can facilitate dispersal or 223 
migration, such as the distribution and configuration of suitable patches required to maintain populations 224 
(Anderson, 2013; Fordham et al., 2013), these landscape constructs such as fragmentation, connectivity, 225 
and species-area relationships are still represented as static entities. Subsequently, the BAM framework 226 
currently lacks the detail required to incorporate these dynamic relationships and this singular or static 227 
representation of M will therefore have to be revisited as increasingly complex representations of 228 
movement processes are incorporated more readily within SDM.  229 

Applications of Movement in SDM 230 

As stated, applications of movement in SDM have consisted of either coupling the statistical model of 231 
abiotic and biotic suitability with a measure of dispersal in response to climate change or invasive spread, 232 
or as a measure of accessibility with which to select the appropriate spatial extent for model calibration, 233 
validation, and comparison. However, movement occurs across a broad range of spatiotemporal scales 234 
and as such should not be restricted to these narrow and specific movement behaviors. Following this 235 
meta-analysis, Figure 5 was developed as a conceptual diagram illustrating the patterns of movement that 236 



were identified as having been studied within SDM, and the following sub-sections will discuss how these 237 
patterns of movement have been implemented, and identify the conceptual and methodological issues 238 
associated with them. 239 

Tracking Changing Environmental Conditions 240 

Incorporating movement factors is particularly pertinent for SDMs for which the main focus is to identify 241 
changes in distributions over broad time-scales. Climate conditions and land cover are changing, and 242 
SDMs are an important tool for exploring how these changes will affect species distributions. If the new 243 
abiotic and biotic conditions are still within the range the species can tolerate, it can persist; otherwise it 244 
will need to colonize new suitable areas. Most applications involve refining a projected species 245 
distribution map to distinguish (abiotically and biotically) suitable and accessible habitat from suitable and 246 
inaccessible habitat, with accessibility measured as a function of dispersal (Miller and Holloway 2015). 247 
However, when dispersal has been implemented in SDM research, it has often taken one of two extreme 248 
approaches: either unlimited or no dispersal (e.g. Araújo et al. 2006; Lawler et al. 2006; Araújo and Luoto 249 
2007). Unlimited dispersal assumes that there are no barriers to movement and that distance is not a 250 
limiting factor, implying that any suitable habitat which is present in the study area can become occupied. 251 
Conversely, no dispersal assumes the opposite, with dispersal not possible, and the future suitable habitat 252 
is restricted to locations that overlap with the original distribution. 253 

The use of both unlimited dispersal and no dispersal (‘all or nothing’) was recorded in a quarter of the 254 
studies investigating distribution shifts under climate change. While these two approaches overly simplify 255 
movement, using both together is an improvement on studies that overlooked dispersal (and thus 256 
implicitly assumed unlimited dispersal). Furthermore, due to their extreme variation, these 257 
implementations of dispersal can be used to represent the uncertainty associated with the effects of 258 
climate change, as the actual dispersal capacity will most likely be found somewhere in the middle of 259 
those two predictions. A number of methods have begun to emerge in the literature, ranging from a fixed 260 
rate of dispersal applied as a time based distance buffer (Hsu et al. 2012; Gallardo et al. 2012; Jaeschke et 261 
al. 2013), to complex probabilistic dispersal kernels (Summers et al. 2012; Alagador et al. 2014; Bush et 262 
al. 2014). A summary of these dispersal models is provided by Miller and Holloway (2015) in a recent 263 
review on the subject; however, these methods used to simulate dispersal vary greatly in terms of 264 
implementation. Recently, Holloway et al. (2016) compared the accuracy and uncertainty of 20 dispersal 265 
models for future projections (1990 to 2010) of breeding British birds. They found that the choice of 266 
dispersal model and how it is implemented could significantly influence the results both in terms of 267 
accuracy and the area predicted as present. The choice of dispersal model undoubtedly introduces 268 
uncertainty into projections, and while a handful of studies have compared the results (Engler and Guisan, 269 
2009; Cunze et al. 2013; Holloway et al. 2016) more extensive testing across different taxa and spatial 270 
scales is needed. 271 

Moreover, when extrapolating species-environment relationships across time, there is also the 272 
assumption that the biotic and abiotic factors will remain constant for every intermediate time period. 273 
While a postulate of equilibrium is necessary for projecting the model in space and time (Guisan and 274 
Thuiller 2005), for long time periods (e.g. 100 years) it is highly unlikely that the biotic and abiotic factors 275 



will remain the same. Dispersal is commonly simulated as a one-step process (e.g., from the current period 276 
[t1] to the future period [t2]); however, it could be simulated as a multiple-step process (e.g., from the 277 
current period [t1] to a number of chronological intermediate periods [t1a, t1b, t1c] to the future period [t2]) 278 
(Midgely et al. 2006), accounting for some of the inherent uncertainty related to the assumption of 279 
homogeneity of abiotic and biotic factors. For models simulating dispersal as a multiple step process, at 280 
each intermediate time-step the dispersal model is coupled with a corresponding statistical model of 281 
abiotic and biotic suitability. The next dispersal event then originates from the area predicted present 282 
based on suitability and accessibility for this time period. If the abiotic and biotic conditions alter 283 
significantly, then the number of steps used to model dispersal could greatly influence the projected 284 
distributions. For example, in a study investigating the effects of climate change on 336 Proteceae species 285 
in South Africa, Midgely et al. (2006) found that the resulting ranges of species in 2050 were larger by 286 
approximately 10% when dispersal was simulated as a single 50-year time-step compared to when 287 
dispersal was simulated in decadal time-steps. Due to these vast differences in areal extent of future 288 
projections of geographic ranges, the uncertainty arising from modelling future distributions in multiple 289 
time-steps needs to be explored further. 290 

Invasive Spread 291 
Invasive species are often characterized by excessive movements within relatively short time periods, and 292 
this movement can be a particularly confounding parameter to estimate, as species movement can be 293 
human-assisted or facilitated by long distance dispersal events. This has meant that movement of invasive 294 
spread in an SDM context has focused on post-establishment distributions (Miller and Holloway 2015). 295 
This is illustrated in Figure 5 as this movement pattern is depicted as expanding from a single point in 296 
space and time (e.g. the location of release or escape). Methods for incorporating post-establishment 297 
spread of invasive species in SDM studies are broadly similar to those used to investigate the impacts of 298 
climate change on distributions, meaning the research challenges and frontiers are mostly similar. 299 

However, if dispersal processes are not well known, incorporating fine-scale spatial autocorrelation (see 300 
Miller 2012 for a discussion in SDM) may represent an alternative way to constrain predictions, especially 301 
in the early stages of colonization. For example, Václavík et al. (2012) used autocovariate logistic 302 
regression and spatial eigenvector modelling to incorporate spatial information into the model outputs in 303 
order to constrain projections of Sudden Oak Death in California, and found that these proxies for 304 
dispersal better predicted the presence of the pathogen compared to models calibrated only on abiotic 305 
factors. Invasive organism distributions are often driven by factors beyond environmental controls, and 306 
so a direct set of abiotic and biotic predictors may not plausible. Indirect gradients and surrogate factors 307 
therefore remain important, and studies that have used dispersal kernels (Meentemeyer et al., 2008; Ellis 308 
et al. 2010) or simple distance metrics (Václavík et al. 2010) have found that dispersal pressure was a 309 
better indicator of invasive distributions than abiotic and biotic factors alone. 310 

Disease Spread 311 
Infectious diseases can present a serious threat to both wildlife and humans, and subsequently an 312 
increasingly utilized application area of SDMs in recent years has been in understanding and predicting 313 
the geography of vector-borne diseases (González et al. 2010; Signorini et al. 2014; Campbell et al. 2015).  314 
Again, the challenges of modelling the spread of diseases within an SDM context have a number of analogs 315 



with modeling invasive spread. However, modelling infectious diseases that subsequently impact humans 316 
is a unique challenge due to the movement capacity of people as disease vectors. Gardner et al. (2012) 317 
addressed this by coupling risk analysis and infection data alongside suitable climatic factors for dengue 318 
fever. By incorporating infection data, estimations for ‘at risk’ airports and travel routes could be made, 319 
identifying specific ‘high risk’ airports, and in turn allowing more effective surveillance of these diseases 320 
(Gardner and Sarkar 2013; 2015). The use of network models alongside SDM could allow for research to 321 
address not only disease spread through human vectors but also inform on pre-establishment human-322 
facilitated movements for invasive species.  323 

Seasonal Movement 324 
For species that move, some parts of their geographic range may temporally experience abiotic and biotic 325 
conditions beyond the tolerance of the organism. As a result, species may migrate seasonally to track the 326 
changing resources (e.g. wildebeest migrations in Africa to track seasonal rainfall patterns). However, the 327 
movement activities associated with seasonal migration may exist ‘outside’ what would constitute a 328 
species distribution. For example, the large swath of the Atlantic Ocean between Greenland and mainland 329 
Europe over which barnacle geese migrate is not suitable habitat. While abiotic (e.g. wind speed, 330 
direction) and biotic (e.g. increased predation) factors play important roles in determining the success of 331 
these specific migration events, there is little overlap with the movement factors as established in the 332 
‘BAM’ framework. Subsequently, the need to incorporate a dynamic temporal dimension within such 333 
models, as well as the ‘BAM’ framework, persists.  334 

A simple delineation of summer and winter habitats is a common method used to account for these 335 
migrations (e.g. Martin et al. 2011), and begins to address the dynamic nature of a species distribution. A 336 
key issue associated with seasonal migrations in SDM is the observation of a species during the migration, 337 
which is subsequently in climatic conditions beyond the species tolerance. The example provided for the 338 
barnacle geese was extreme, but for many migrating species the differences in abiotic and biotic 339 
conditions across the migration corridor will be less obvious. The use of these ‘migration sightings’ in any 340 
statistical model assumes that this species can survive in these conditions on a permanent basis, and the 341 
resultant projection will most likely over-predict the distribution (Sinclair et al. 2010). 342 

Projecting habitat suitability along a migration corridor could address some of the issues associated with 343 
the temporal variability in predicting the distribution of migrating species distributions. For example, 344 
Hefley et al. (2015) projected the abiotic and biotic conditions for stopover habitat along the migration 345 
path of the whooping crane in Nebraska, USA, and identified areas that could support high densities of 346 
individuals during migration. This study does well to address variables along a migration pathway; 347 
however, the need to explicitly address the suitability of migration zones persists, and should be a key 348 
focus of researchers working with migratory species. 349 

The use of temporally explicit variables removes some of the uncertainty in the seasonal distributions of 350 
species (Gscwheng et al. 2012; O’Connor et al. 2012). For example, O’Connor et al. (2012) incorporated 351 
Julian day in their generation of an SDM projecting the fall distribution of American shad and striped bass 352 
in the Hudson River Estuary, and found that it was the most important determinant of fish presence. 353 
Similarly, Gscwheng et al. (2012) matched telemetry data with abiotic conditions obtained at a monthly 354 



temporal period, and projected monthly distribution models of the Eleonora’s falcon in Madagascar. 355 
These methods begin to identify that resource use for mobile animals is not uniform in space or time, 356 
although projections are still representative of a static species-environment relationship, albeit at a finer 357 
temporal resolution.  358 

Regular Movements 359 
Regular movements maintain the distribution of a population or species, and include behaviors such as 360 
foraging (searching for food), homing (returning to home), bounding (marking home range limits), and 361 
biotic interactions (e.g., movement in response to predation) (Figure 5).  These movements were 362 
distinguished as different from seasonal migration, as all of these movement behaviors also occur within 363 
the seasonal distribution of a species (e.g. foraging occurs in both breeding and wintering habitats). 364 
Explicit information of movement activity in locality data is rare, and while some studies have generated 365 
projections of suitable habitat for different activities such as nesting and foraging (Smart et al. 2012; 366 
Brambilla and Saporetti 2014; D’Elia et al. 2015), most presence data is absent of ‘animal activity’. This 367 
means most projections of a species distribution inherently assume that the habitat is suitable for a 368 
multitude of activities (e.g. foraging, nesting, etc.) which are representative of the regular movements of 369 
species. The application of activity to animal observations is routinely undertaken in animal behavior 370 
studies, identifying areas where inter-disciplinary research could bridge the gap needed within the SDM 371 
discipline. 372 

Mobile species utilize several patches of suitable habitat within their home range, meaning species 373 
observations may be recorded in an environment which is unsuitable for them on a permanent basis. Due 374 
to the fragmentation of suitable habitat, animals often have to traverse through an inhospitable matrix 375 
(e.g. forests separated by an open meadow or urban area). Subsequently the aforementioned issue 376 
relating to using sightings of presence in unsuitable habitat in model calibration persists. However, as 377 
regular movements occur at a finer spatiotemporal scale, this issue could be controlled for by observing 378 
the environmental variables at a neighborhood scale (Ashcroft and Major 2013). Subsequently, for many 379 
mobile animals, the use of a focal statistic summarizing the abiotic and biotic conditions within a specified 380 
neighborhood may better represent what is available to it within its home range. For example, black 381 
grouse utilize a mixture of moorland (for mating) and woodland (for shelter) habitats, and Geary et al. 382 
(2013) identified the habitat richness of different land cover types within various neighborhood scales and 383 
incorporated this into the statistical model. The use of a focal statistic to describe the proportion of land 384 
cover types as an indicator of habitat suitability and connectivity in SDM has been found to have equal or 385 
higher predictive power than a local model, and can also help to clarify the influence of the other 386 
environmental factors that are contributing to the distribution of a mobile species (Czúcz et al. 2011; 387 
Ashcroft and Major 2013; Betts et al. 2014).  388 

A number of methods have been proposed to incorporate a focal model, ranging from the simplistic 389 
definition of a neighborhood around a point (Arthur et al. 1996), to using distance from points (Cooper 390 
and Millspaugh 1999), weighted distances (Hjermann 2000), and topographic barriers (Matthiopoulos 391 
2003), as covariates in the model. The methods used to identify accessible neighboring features have been 392 
found to significantly alter the importance of the environmental variables in such statistical models 393 
(Forrester et al. 2009: Holloway and Miller 2014), meaning how researchers define ‘accessible’ in these 394 



models can have large implications on model projections. Currently, the methods used in SDM to describe 395 
the surrounding and available habitat do not explicitly incorporate geographic context and results are 396 
subject to uncertainty pertaining to the accessibility, connectivity, and availability of habitat within a 397 
neighborhood. Research needs to be directed to find models which better illustrate these issues of 398 
accessibility for mobile species. This concept is perhaps closest to Anderson’s (2013) definition of 399 
‘movement suitability’ which describes the contingent demographic factors that can facilitate dispersal, 400 
such as the distribution and configuration of suitable patches, and if realistic models of movement can be 401 
generated that reliably simulate these regular movements, then these could be used to identify 402 
accessibility to all features of an individual’s home range, including nesting locations, boundaries, biotic 403 
interactions as well as suitable habitat. 404 

Gene Flow 405 
Recently, phylogeographic analysis has been integrated with SDM as a multi-faceted approach to address 406 
the processes of how current distribution patterns of genes, populations and species were shaped 407 
(Carstens and Richards 2007). The ability to use SDMs to ‘hindcast’ species distributions has provided 408 
researchers with a means to characterize the spatial distribution of previous suitable climatic conditions 409 
for species, and these past projections have been used to determine the potential distribution and refugia 410 
areas during the late Quaternary (e.g. Veloz et al. 2012). The coupling of SDMs and phylogeographic 411 
analyses can be considered complementary, as information is provided about potential dispersal corridors 412 
from habitat suitability and genetic similarity, with both approaches used to explore and assess each other 413 
(Peterson et al. 2004). The testing of biogeographic hypotheses has recently ‘exploded’ in terms of its 414 
application in SDM, with 120 studies (20.27%) explicitly addressing a biogeographic hypothesis identified 415 
in the meta-analysis. Studies have explored several biogeographic questions such as speciation 416 
mechanisms (e.g. Raxworthy et al. 2008), niche shifts (e.g. Hill et al. 2013), and dispersal versus vicariance 417 
hypotheses (e.g. Bendiksby et al. 2014). Several methods have been utilized to explore gene migrations 418 
with the majority of methods identifying the most likely divergence scenario for each species using mtDNA 419 
or microsatellite data from phylogenetic analyses (e.g. MIGRATE - Inoue et al. 2015). The most likely gene 420 
migration pattern is then obtained from population-isolation analyses (Mellick et al. 2014), with the 421 
results used to identify barriers to colonization or the differences between isolated populations. For 422 
example, Chang et al. (2012) coupled SDM with an analysis of population genetic structure and 423 
demography to investigate the effect of historical climate changes on the endemic Hainan Island 424 
partridge, and concluded that its current distribution is representative of its in situ refuge and not 425 
dispersal from the mainland. 426 

These models are more exploratory compared to the more predictive ‘climate change’ and ‘invasive 427 
spread’ movement patterns which have been incorporated more readily in SDM. However, if these 428 
methods do well to explain historical movements in response to changing climates, then they have the 429 
potential to be used to predict future changes. Recently, Razgour (2015) used a landscape genetics 430 
approach to investigate the future range shifts of the gray long-eared bat in Iberia. Implementation of the 431 
landscape genetics framework (which identified landscape variables that impede or facilitate gene flow 432 
movement) with SDM was similar to many other methods used to simulate dispersal in response to 433 
climate change, with the outputs from the landscape genetic analysis used to restrain the potentially 434 



suitable abiotic and biotic future habitat. Subsequently, there exists the possibility to combine research 435 
from both movement patterns, and use the more empirical data and analysis used in gene migration 436 
studies to predict future changes in the distribution of species, as well as identifying possible divergent 437 
events. 438 

Movement Data as Response Data 439 

With the recent technological advances in satellite tracking, movement data is becoming increasingly 440 
ubiquitous in habitat studies. Such technology permits continuous monitoring of individual animals, which 441 
can provide more objective information on the habitat preferences of individual species than can be 442 
achieved from other observation strategies or opportunistic sightings (Dambach and Rödder 2012). 443 
Subsequently, a number of studies have begun using the locations obtained from telemetry data as the 444 
response data in SDM (e.g. Edrén et al. 2010; Gscwheng et al. 2012; D’Elia et al. 2015). Despite the vast 445 
potential to use telemetry data within an SDM framework, a number of new conceptual issues related to 446 
this data type have arisen.  447 

Spatial imprecision is an inherent problem associated with the collection of telemetry data as observations 448 
are subject to variability in precision, measured as the distribution of differences between the central 449 
location and GPS-estimated locations (Frair et al. 2010).  Another issue associated with using telemetry 450 
data is the fact that the sequential observations of an individual are not independent, and subsequently 451 
spatially and temporally autocorrelated, meaning any statistical inference associated with this data 452 
requires special considerations (Boyce et al. 2010). Finally, idiosyncratic preferences of individuals may 453 
influence the habitat suitability. If a single individual contributes more locations to the analysis, then the 454 
subsequent SDM may be biased towards the individual’s habitat preferences. Table 2 identifies the 455 
methods currently implemented to address these new issues, and research should be directed towards 456 
developing a deeper understanding of how the different methodologies influence SDM outputs.  457 

How should movement be represented? 458 

Finally, this research has highlighted a difference in how movement has been incorporated within SDM. 459 
For studies investigating the impact of global change on future distributions, the predominant 460 
methodology has been to couple the statistical model of abiotic and biotic suitability with a dispersal 461 
model (also known as hybrid models in the literature). Whereas for movement patterns indicative of finer 462 
temporal scales (e.g. regular movements), a spatial variable representative of movement, connectivity or 463 
dispersal has been generated and incorporated in the statistical model. These two approaches both 464 
incorporate movement into SDM, but do so in very different conceptual and methodological manners. 465 

Moreover, Schymanski et al. (2013) have suggested that the coupling of a dispersal model with a 466 
correlative habitat suitability map into a hybrid model may create a new problem. When calibrating the 467 
correlative species-environment relationship, the effects of dispersal limitation could already be included 468 
in the habitat suitability projection (as it was essentially fit to reproduce the observed distribution). 469 
Therefore, dispersal may already be a latent factor included in the model, with another environmental 470 
variable already accounting for some of the effects of dispersal. By coupling this with a dispersal model, 471 



the same process may be incorporated in the overall model twice, propagating uncertainty and incorrectly 472 
accounting for effects of movement.  473 

The differentiation between explanation and prediction of the correlative model being fit should be 474 
considered in this argument, but so too is the fact that perfect statistical independence between 475 
environmental variables is perhaps unrealistic of real-world variables. Propagation of environmental 476 
variables most likely exists in most SDMs. Omitting movement from a model based on the possibility that 477 
dispersal may already be incorporated is the same as omitting abiotic or biotic factors for the same 478 
reasons. Simple assumptions of dispersal limitation have been simulated to explore the effect of each of 479 
the BAM factors (Saupe et al. 2012; Qiao et al. 2015), so a virtual ecologist approach (Miller 2014) could 480 
be a method to explore exactly how much error would be propagated through such ‘noisey’ dispersal 481 
assumptions. This argument is perhaps more pertinent for the Barve et al. (2011) definition of M 482 
representing accessibility based on historical dispersal rather than dispersal or invasive spread into new 483 
habitats over space and time. However, it is important to consider that the decision to generate hybrid 484 
models or to generate a variable of dispersal potentially has wide ranging consequences beyond the 485 
simple differences in user decisions and assumptions made. Therefore, future research should aim to 486 
quantify the uncertainty between projections, as well as any assumptions of a latent dispersal variable. 487 

Conclusion 488 

Incorporating movement should now be a compulsory aspect of any study projecting the current or future 489 
distributions of species. This review has investigated and reported results across a broad range of taxa, 490 
for multiple movement processes at a range of spatial and temporal scales. The results from the meta-491 
analysis have identified a number of key findings pertaining to dispersal in response to climate change 492 
and regular movements, as well as opening a dialogue regarding the incorporation of multiple scales of 493 
movement in SDM research. Here we conclude with the identification of a number of future research 494 
trajectories for the continued incorporation of movement within species distribution modelling: 495 

1. Further exploration of the differences in dispersal models used in climate change studies is 496 
needed. Only one study (Holloway et al. 2016) has extensively compared the dispersal models 497 
for birds, meaning continued investigation across different spatiotemporal scales and taxa is 498 
still needed. 499 

2. The assumption of abiotic and biotic homogeneity over time should be revisited. Significant 500 
differences between implementations of models which simulated dispersal as a one-step 501 
process and as a multiple-step process were found. Future research should be directed 502 
towards further exploring this fundamental issue, focusing on how often the temporal period 503 
should be deconstructed and if data coverage allows, the accuracy of intermediate time-504 
periods could be evaluated in order to identify whether errors in these models propagate. 505 

3. The exploration of how movement can be incorporated for different species groups should 506 
continue to be investigated. In particular, the less frequently studied species (Figure 2) should 507 
be of key concern.  508 

4. How can spatial simulation continue to address individual-based simulations of animal 509 
movement? To date, individual-based models in SDM have focused on the movement of 510 



individuals as grids, so research should investigate how using movement paths can be 511 
incorporated in SDM. 512 

5. A number of studies have begun using the locations obtained from telemetry data as the 513 
response data in SDM (e.g. Gscwheng et al. 2012). Despite the vast potential to use telemetry 514 
data within an SDM framework, a number of new conceptual issues related to this data 515 
structure, such as precision, autocorrelation, and idiosyncratic preferences have arisen. 516 
Various methods have been implemented for data filtering, but to date they all remain 517 
untested as to their impact on SDM results.  518 

6. What are the differences between coupling the statistical model with a model of dispersal 519 
compared to incorporating a movement variable in the statistical model? When calibrating 520 
the correlative species-environment relationship, the effects of dispersal limitation may be a 521 
latent factor included in the model (Schymanski et al. 2013). Subsequently, to what extent 522 
does coupling the statistical model with a dispersal model propagate potential bias in 523 
prediction? Virtual species with known properties could be used to answer this question and 524 
quantify any error or uncertainty. 525 

7. Finally, research should continue to focus on integrating multiple scales of movement within 526 
SDM. Movement undoubtedly occurs across fine and broad spatial and temporal scales, 527 
meaning the most informative models will be those that continue to bridge the gap between 528 
scales.  529 
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Tables 810 

Table 1: The number of times dispersal or migration was used to refer to the tracking of changing 811 
environmental conditions or regular movement. The value in the brackets refers to the number of times 812 
the main terms were indistinguishable. 813 
 814 

 Track Changing 
Environment 

Daily or Seasonal 
Movements 

Dispersal 91 (10) 35 (1) 
Migration 37 (10) 27 (1) 

 815 

 816 
 817 



Table 2: Description of the different filtering methods used to control for unique issues associated with using telemetry data as response data. SE: 818 
Spatial Error, SAC: Spatial Autocorrelation, TAC: Temporal Autocorrelation, IP: Individual Preferences.  819 

Method Description SE SAC TAC IP Source 
Spatial Accuracy 
Filtering 

Selection of locations which have a spatial accuracy estimated within a predefined 
distance (often coupled with the spatial resolution of the environmental 
variables).  

X    D’Elia et al. 
2015 

Density 
Contouring 

When large spatial error exists, density contours including a predefined 
proportion of observations (e.g. 50%) are generated, with presence points 
created within. Use of a higher proportion (e.g. 90%) can then be used as the 
extent with which to generate pseudo-absences. 

X    Torres et al. 
2015 

Grid Filtering Removal of observations which all fall into the same environmental grid.  X   Monnet et 
al. 2015 

Removal of serial 
correlation. 

Specification of a time-period after which observations are no longer 
autocorrelated. Use of exploratory analysis of autocorrelations and partial-
autocorrelations of the deviance residuals.  

 X X  Fortin et al. 
2005 

Best Daily 
Location 

Selection of one observation within a 24-hour period which has the highest spatial 
accuracy. 

X X X  Abecasis et 
al. 2014 

Bootstrapping 
Individuals 

Use of a bootstrapping procedure to randomly select a fixed number of records 
for each animal, pooling the records and then creating an SDM. 

   X Edrén et al. 
2010 

Removal of 
Individuals 

Systematically removing one individual from the analysis to identify significant 
changes in accuracy. 

   X Gscwheng 
et al. 2012 

No filtering No data-filtering (beyond extreme outliers) undertaken and all data considered in 
analysis. 

    Meisingset 
et al. 2013 



Figures 820 

 821 

Figure 1: The number of SDM articles per year in which movement was implemented, or discussed but not 822 
implemented since 2005 (n.b. two SDM articles pre-2005 discussed movement but were not included in 823 
the above figure). 824 
 825 



826 

 827 

Figure 2: The number of SDM studies applying movement for a species group. 828 
 829 



 830 

Figure 3: Levels of organization for which movement has been investigated within an SDM context. 831 
 832 

 833 

  834 



 835 

 836 

Figure 4: Different ‘BAM’ scenarios, a) represents the classic ‘BAM’ framework that depicts the interaction 837 
between biotic (B), abiotic (A), and movement (M) factors. G is the geographic space within which the 838 
analysis occurs, Gi s the invadable (abiotic and biotic) suitable area. Finally Go represents the occupied 839 
(abiotic and biotic) suitable area and is therefore the actual distribution, b) represents a situation where 840 
all the combined suitable abiotic and biotic area is accessible, so the invadable area is null, c) represents 841 
a situation where all of A and B are accessible, and so movement does not restrict the distribution. 842 
Finally d) represents a situation where neither A or B is accessible. This could represent the potential 843 
area of an invasive species, or where potentially abiotic and biotic conditions have shifted under climate 844 
change, but the species lacks the dispersal capacity required to keep track, which could result in a species 845 
going extinct. Modified from Peterson et al. (2011). 846 



 847 

 848 



Figure 5: The spatiotemporal scales of movement applications within species distribution modelling. Dispersal movements represent the 849 
processes through which species move in response to changing environmental conditions. Typically, these movements are modeled at a temporal 850 
scale greater than a year, despite yearly dispersal events of individuals. While local dispersal events have been known to occur, often this 851 
movement takes a species into a new geographic area, and as such is depicted as being between local and regional scales. Invasive movements 852 
within an SDM context are often simulated as spreading from a single point of invasion through both space and time. Migration movements 853 
represent the seasonal migration processes that many species undertake, either tracking seasonal changes in resources, or movement between 854 
different habitat types. Due to the variety of seasonal movements, these can range from very local migrations (e.g. amphibians) to global 855 
migrations (e.g. albatrosses). Gene movements represent the flow of genes through populations. This process can occur on very short time 856 
periods within local populations, or over many millennia at a much coarser spatial scale. Finally, regular movements maintain the distribution 857 
of a population and species, and include behaviors such as a) interactions (e.g. movement in response to predation or competition), b) foraging 858 
(e.g. searching for resources) and bounding (e.g. marking home range limits). These movements are markedly different from seasonal 859 
movements, as these activities operate within seasonal habitats. 860 



Supplementary Information 1: The number of articles returned from different ISI Web of Knowledge search 861 
parameters. Terms representing the correlative species-environment models are species distribution 862 
models (SDM), niche models (NM), predictive habitat distribution models (PHDM), and predictive 863 
vegetation models (PVM). 864 
 865 

Movement Term SDM NM PHDM PVM 

Diffusion 3 1 0 0 

Dispersal 266 106 0 2 

Distance Travelled 0 0 0 0 

Gene Dispersal 0 0 0 0 

Gene Flow 45 55 0 0 

Habitat Use 41 12 1 0 

Interconnectivity 1 0 0 0 

Locomotor Activity 0 0 0 0 

Migration 103 35 0 0 

Movement 55 18 0 0 

Passage 2 0 0 0 

Population Connectivity 7 1 0 0 

Site Fidelity 2 0 0 0 

Transport 11 9 0 0 

Traverse 1 1 0 0 

 866 
 867 

In total there were 32 general terms used to describe organism movement. In alphabetical order, these 868 
were: assisted migration, colonize, connectivity, corridor, diel turnover, diffusion, dispersal, dispersal 869 
limitation, dispersal pressure, distance to, emigration / immigration, forage, gene flow, geographic 870 
background, geographic distance, habitat selection, habitat use, interconnectivity, jump dispersal, 871 
migration, movement, partial dispersal, passage, population connectivity, propagule limited, shift, site 872 
fidelity, spread, track, transit corridors, transport, traverse.  873 
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