
Title Systematic delay-driven power optimisation and power-driven
delay optimisation of combinational circuits

Authors Mehrotra, Rashmi

Publication date 2013

Original Citation Mehrotra, R. 2013. Systematic delay-driven power optimisation
and power-driven delay optimisation of combinational circuits.
PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2013, Rashmi Mehrotra - http://creativecommons.org/licenses/
by-nc-nd/3.0/

Download date 2024-05-05 03:35:36

Item downloaded
from

https://hdl.handle.net/10468/1111

https://hdl.handle.net/10468/1111

Ollscoil na hÉireann

Systematic Delay-driven Power

Optimisation and Power-driven Delay

Optimisation of Combinational Circuits

A thesis presented to the

National University of Ireland, Cork

for the Degree of

Doctor of Philosophy

by

Rashmi Mehrotra

Supervisor: Dr. Emanuel. M. Popovici

Head of Department: Prof. Nabeel Riza

Department of Electrical and Electronic Engineering,

University College Cork, Ireland

Feb 4, 2013

Abstract

With the proliferation of mobile wireless communication and embedded systems, the

energy efficiency becomes a major design constraint. The dissipated energy is often

referred as the product of power dissipation and the input-output delay. Most of elec-

tronic design automation techniques focus on optimising only one of these parameters

either power or delay. Industry standard design flows integrate systematic methods of

optimising either area or timing while for power consumption optimisation one often

employs heuristics which are characteristic to a specific design. In this work we answer

three questions in our quest to provide a systematic approach to joint power and delay

optimisation. The first question of our research is: How to build a design flow which

incorporates academic and industry standard design flows for power optimisation? To

address this question, we use a reference design flow provided by Synopsys and inte-

grate in this flow academic tools and methodologies. The proposed design flow is used

as a platform for analysing some novel algorithms and methodologies for optimisation

in the context of digital circuits. The second question we answer is: Is possible to

apply a systematic approach for power optimisation in the context of combinational

digital circuits? The starting point is a selection of a suitable data structure which

can easily incorporate information about delay, power, area and which then allows op-

timisation algorithms to be applied. In particular we address the implications of a

systematic power optimisation methodologies and the potential degradation of other

(often conflicting) parameters such as area or the delay of implementation. Finally,

the third question which this thesis attempts to answer is: Is there a systematic ap-

proach for multi-objective optimisation of delay and power? A delay-driven power and

power-driven delay optimisation is proposed in order to have balanced delay and power

values. This implies that each power optimisation step is not only constrained by the

decrease in power but also the increase in delay. Similarly, each delay optimisation step

is not only governed with the decrease in delay but also the increase in power. The

goal is to obtain multi-objective optimisation of digital circuits where the two conflict-

ing objectives are power and delay. The logic synthesis and optimisation methodology

is based on AND-Inverter Graphs (AIGs) which represent the functionality of the cir-

cuit. The switching activities and arrival times of circuit nodes are annotated onto an

AND-Inverter Graph under the zero and a non-zero-delay model. We introduce then

several reordering rules which are applied on the AIG nodes to minimise switching

power or longest path delay of the circuit at the pre-technology mapping level. The

academic Electronic Design Automation (EDA) tool ABC is used for the manipulation

of AND-Inverter Graphs. We have implemented various combinatorial optimisation

algorithms often used in Electronic Design Automation such as Simulated Annealing

and Uniform Cost Search Algorithm. Simulated Annealing (SMA) is a probabilistic

meta heuristic for the global optimization problem of locating a good approximation

to the global optimum of a given function in a large search space. We used SMA to

probabilistically decide between moving from one optimised solution to another such

that the dynamic power is optimised under given delay constraints and the delay is op-

timised under given power constraints. A good approximation to the global optimum

solution of energy constraint is obtained. Uniform Cost Search (UCS) is a tree search

algorithm used for traversing or searching a weighted tree, tree structure, or graph. We

have used Uniform Cost Search Algorithm to search within the AIG network, a specific

AIG node order for the reordering rules application. After the reordering rules appli-

cation, the AIG network is mapped to an AIG netlist using specific library cells. Our

approach combines network re-structuring, AIG nodes reordering, dynamic power and

longest path delay estimation and optimisation and finally technology mapping to an

AIG netlist. A set of MCNC Benchmark circuits and large combinational circuits up to

100,000 gates have been used to validate our methodology. Comparisons for power and

delay optimisation are made with the best synthesis scripts used in ABC. Reduction

of 23% in power and 15% in delay with minimal overhead is achieved, compared to

the best known ABC results. Also, our approach is also implemented on a number of

processors with combinational and sequential components and significant savings are

achieved.

iv

Acknowledgement

First and foremost, all thanks are due to God Almighty for the innumerable blessings

through my life, one of which is this thesis.

My thesis supervisor, Dr. Emanuel M. Popovici, deserves a special acknowledgement

for his vision, guidance and support throughout the research work.

I would like to express my sincere thanks to my parents and my brother who have

installed in me the courage to continue with higher education.

I would like to thank my fellow Ph.D. students in the lab, Shraddha, Nasim, Richard,

Tom, Chen, Stevan and Christian for the interesting discussions and support through

these four years.

I gratefully acknowledge the support of IDA Ireland and Synopsys for the financial

support of this work.

Lastly to my fianc Vivek who has always been a tremendous source of encouragement,

confidence and love.

v

Contents

1 Introduction 1

2 Background 5

2.1 Binary Decision Diagrams (BDDs) . 5

2.2 AND-Inverter Graphs (AIGs) . 6

2.3 NAND-NOR-Inverter Graphs (NNIGs) 7

2.4 Review of Academic Electronic Design Automation (EDA) tools 9

2.4.1 CUDD package . 9

2.4.2 Folded Binary Decision Diagrams (FBDDs) 9

2.4.3 A System for Sequential Circuit Synthesis (SIS) 9

2.4.4 A System for Sequential Synthesis and Verification (ABC) 10

2.5 Power and delay optimisation techniques 10

3 Digital power estimation flow 13

3.1 Introduction . 13

3.2 Power dissipation in CMOS circuits . 14

3.3 Industrial Design Flow for Power Estimation 15

3.4 Academic Design Flow for Power Estimation 17

3.4.1 Structural Information . 18

3.4.2 Details of the design flow . 18

3.5 Integrated Design Flow . 20

3.5.1 Tool Flow . 21

3.5.2 Key features of the integrated design flow 21

3.6 Experimental Results . 22

3.7 Conclusions . 22

vi

4 Graph manipulation for both power and delay analysis 24

4.1 Introduction . 24

4.2 Background of data structures . 26

4.3 DSM tool . 27

4.4 Experimental Results for AIG vs. NNIG 28

4.5 Probabilistic Timed NNIGs (PTNNIGs) 30

4.5.1 Background . 30

4.5.2 NNIG and PTNNIG . 31

4.5.3 Mapping of Probability and Delay on PTNNIGs 31

4.6 Experimental Results for PTNNIG . 34

4.7 Conclusions . 36

5 Power and delay estimation and optimisation on AIGs 39

5.1 Introduction . 39

5.2 Switching probability estimation under the zero-delay model 40

5.3 Longest path delay and switching power estimation under a non-zero-

delay model . 42

5.3.1 Longest path delay estimation 42

5.3.2 Dynamic power estimation under given delay model 43

5.4 Reordering rules for power optimisation 46

5.4.1 Rule Rp1 . 46

5.4.2 Rule Rp2 . 49

5.4.3 Rule Rp3 . 51

5.4.4 Rule Rp4 . 53

5.5 Reordering rules for delay optimisation 55

5.5.1 Rule Rd1 . 55

5.5.2 Rule Rd2 . 56

5.5.3 Rule Rd3 . 57

5.6 Conclusions . 59

6 Implementation of reordering rules for power and delay optimisation 61

6.1 Implementation of low power optimisation rules using Greedy Algorithm 62

6.2 Architecture and application of AIG2Net 63

vii

6.2.1 Estimation/Optimisation Design Flow 66

6.3 Delay-driven power optimisation and power-driven delay optimisation . 67

6.4 Simulated Annealing . 69

6.5 Switching nodes order for OPT-PT application 75

6.5.1 Application of Uniform Cost Search algorithm 75

6.5.2 Matrices and graphs during OPT-P and OPT-T 78

6.5.3 Comparison of Uniform Cost Search (UCS) algorithm with pre-

vious methods in OPT-P tool application 80

6.6 Conclusions . 82

7 Experimental Results using OPT-PT 85

7.1 Simulation Design Flow . 86

7.2 Results with OPT-P application . 87

7.3 Results with OPT-T application . 89

7.4 Results after technology mapping by Synopsys Design Compiler 92

7.5 Power-Time (P-T) curve . 94

7.6 Experimental results on sequential circuits 95

7.7 The impact on switching power corresponding to various input data sets 99

7.8 Conclusions . 103

8 Combinatorial optimisation techniques for dynamic power reduction 105

8.1 Introduction . 105

8.2 Multi-objective power-delay optimisation is NP-Complete 106

8.3 The Local Search Method . 108

8.4 The Tabu Search Method . 110

8.5 The Simulated Annealing Search . 110

8.6 The Partitioned Random Search . 113

8.7 Experimental Results . 113

8.8 Conclusions . 117

9 Conclusions 118

9.1 Contributions . 118

9.2 Future Work . 120

viii

Bibliography 121

ix

List of Figures

2.1 A BDD example for a circuit with functionality abc+ a′b′ 6

2.2 An AIG example for a circuit with functionality abc+ a′b′ 7

2.3 A NNIG example for a circuit with functionality abc+ a′b′ 8

3.1 Industrial Design Flow . 16

3.2 Academic Design Flow . 19

3.3 Proposed Integrated Design Flow . 20

4.1 DSM tool flow . 27

4.2 A NNIG example for a circuit with functionality (((c+ d)Xa)Xb) . . . 32

4.3 BLIF file of the circuit representing the logic function ab(c+ d) 33

4.4 Verilog file of the circuit representing the logic function ab(c+ d) 33

4.5 SAIF . 35

4.6 SDF . 36

4.7 Mapping of Probability and Delay issues on PTNNIGs 37

5.1 AIG of logic function ab . 41

5.2 AIG of logic function abc . 44

5.3 Rule Rp1 on AIG . 47

5.4 Rule Rp2 on AIG . 50

5.5 Rule Rp3 on AIG . 52

5.6 Rule Rp4 on AIG . 54

5.7 Rule Rd1 on AIG . 56

5.8 Rule Rd2 on AIG . 58

5.9 Rule Rd3 on AIG . 60

6.1 AIG of logic function a(b+ c) . 64

x

6.2 Mapped Verilog netlist of an AIG network 65

6.3 User defined switching activity file for the netlist shown in Figure 6.2 . . 65

6.4 The design flow for power, delay and area estimation 66

6.5 The graph G(V,E) corresponding to the circuit x2 79

6.6 The graph G(V,E) corresponding to the circuit count 81

6.7 The Uniform Cost Search Algorithm . 82

7.1 The ROM Look-Up Table . 86

7.2 The graph for power reduction among various circuits 88

7.3 The graph for delay reduction among various circuits 93

7.4 The P-T curve on Ri10,o12 . 96

7.5 High level view of a Processor . 97

7.6 Sequential AIG of a 3-bit shift register 97

7.7 Flat SAP . 100

7.8 Decreasing Log2 SAP . 100

7.9 Random SAP . 100

8.1 Local nodes within an AIG network . 108

xi

List of Tables

3.1 Power dissipation with and without SWF 23

4.1 Power estimation on AIG and NNIG . 29

4.2 Power comparisons against ABC and DSM 30

4.3 Power estimation against BLIF and optimised BLIF 38

6.1 SP (f) without and with the application of rewriting rules Rp1, Rp2, Rp3

and Rp4 . 63

6.2 Power dissipation with and without the RESWITCH tool 68

6.3 The Matrix OrderinitSNx[y] . 80

6.4 The comparison of T1, T2 and T3 used on DES using OPT-P application 82

6.5 The comparison of T1, T2 and T3 used on Ri8,o10 using OPT-P application 83

6.6 The comparison of T1, T2 and T3 used on pair using OPT-P application 83

7.1 The comparison of OPT-P with the best algorithm in ABC (65nm pro-

cess) . 88

7.2 Computation time of OPT-P with respect to resyn script of ABC . . . 89

7.3 Dynamic and Static Power for the simulations stated in Table 7.1 (65nm

process) . 90

7.4 The comparison of OPT-P with the best algorithm in ABC (90nm pro-

cess) . 91

7.5 Dynamic and Static Power for the circuits stated in Table 7.4 (90nm

process) . 92

7.6 The comparison of OPT-T with ABC 93

7.7 Computation time of OPT-T with respect to resyn script of ABC . . . 94

7.8 Results using Synopsys Design Compiler mapping via OPT-P 95

xii

7.9 Sequential circuit synthesis results for selected MCNC circuits 98

7.10 The comparison of OPT-P with ABC, (65nm process) 99

7.11 Power reduction on the combinational sub-network for a set of sequential

circuits . 99

7.12 Impact on power reduction under various input data sets (implemented

on 6× 4 bit multiplier) . 102

7.13 Impact on power reduction under various input data sets (implemented

on 5 bit adder) . 103

8.1 Power comparisons among LS, TS, SS and PS 115

8.2 Delay comparison among LS, TS, SS and PS 116

8.3 Comparison of computation time using LS, TS, SS and PS 116

xiii

Appendix

The thesis is based in part on the following publications:

1. R. Mehrotra, T. English, K.L. Man, E. Popovici and M. Schellekens, “Digital power

estimation flow combining academic and industrial tools”, IEEE International Soc De-

sign Conference (ISOCC) Busan, Nov 2008, pp. 89-92.

2. R. Mehrotra, K.L. Man, E. Popovici and M. Schellekens, “Data Structure Ma-

nipulation for NNIG and PTNNIG: Towards a Unified Power and Timing Analysis”,

IEEE 3rd International Conference on Signals, Circuits and Systems Tunisia, Nov 2009,

pp. 1-6.

3. R. Mehrotra, E. Popovici, K. L. Man and M. Schellekens, “Power reduction and

technology mapping of digital circuits using AND-Inverter Graphs”, IEEE 27th Inter-

national Conference on Microelectronics (MIEL) Serbia, May 2010, pp. 295-298.

4. R. Mehrotra, T. English, E. Popovici and M. Schellekens, “Delay dependent power

optimisation of combinational circuits using AND-Inverter Graphs”, IEEE International

SOC conference (SOCC) Las Vegas, Sept 2010, pp. 9-14.

5. R. Mehrotra, T. English, M. Schellekens, S. Hollands and E. Popovici, “Timing-

driven Power Optimisation and Power-driven Timing Optimisation of Combinational

Circuits”, Journal of Low Power Electronics (JOLPE), August 2011, Vol. 7, No. 3, pp.

364-380.

xiv

Chapter 1

Introduction

In recent years, with the development of electronic devices such as cellular phones,

smart phones, laptops, tablets and mobile multimedia systems, energy dissipation has

become a critical parameter in digital VLSI design. In battery operated system such

as portable systems, the amount of energy stored within the battery is limited. Hence

power dissipation is important as it defines the runtime of the device on a single battery

charge.

With the advances in CMOS fabrication technology, the number of transistors per chip

and operating frequency is increasing every year. Consecutively, the power dissipation

per unit area is also growing thereby increasing the chip temperature. This excessive

temperature reduces the reliability and lifetime of the circuit, and a large cooling sys-

tem and expensive packaging is required to dissipate the extra heat. Hence low power

design is crucial in today’s circuit design in Deep Sub-Micron (DSM) technology.

However, although power dissipation is important in portable systems, the delay

parameter is an equally important constraint for digital designers as the energy con-

sumption is the product of power dissipation times delay (longest path delay of the cir-

cuit). Tight energy constraints are commonplace in many modern VLSI applications.

Consumers expect higher speed, more functionality and higher levels of integration,

from their cellular phones and hand-held devices. Low power design is not effective if

it increases the delay (performance of the circuit) largely. Similarly fast circuit design

(longest path delay optimisation) is not fruitful if it increases power dissipation sig-

nificantly. Hence one needs to explore optimisation schemes for power with minimal

overhead of delay, and optimisation schemes for delay with minimal overhead with re-

1

spect to power.

Market competition and wide-spread use of mobile equipment has resulted in ever-

tightening constraints for power, delay and area. This has led to a drastic increase in

design complexity. In order to handle the ever increasing complexity, Computer-Aided

Design (CAD) tools have been developed to produce circuit design solutions for a wide

range of applications. These tools are used for logic synthesis to obtain optimised logic

circuits from some input-output specification. The logic synthesis process is split up

into two different phases as explained in [35]. First logic optimisation is performed on

the Boolean description of the circuit. Next, the technology mapping is performed on

this optimised circuit that translates the generic Boolean description to logic gates or

cells existing in the chosen library. This library is specified to the fabrication process

that is used and has precise layout, area and delay information for each gate or cell.

There are various Electronic Design Automation (EDA) tools available, some of which

are commercial tools (for e.g. Synopsys Design Compiler and Synopsys Prime Time)

and some are open-source academic tools (ABC, SIS and FBDD) used in research for

logic synthesis, power, delay and area optimisation, technology mapping, etc, of dig-

ital circuits. The academic tools are open-source tools and many new optimisation

techniques for digital circuits are introduced by researchers within these tools. One

objective of this dissertation is to introduce a set of rules (within the state of the art

academic open-source EDA tool ABC [11]) applied on the nodes of the Boolean network

representation of a digital circuit represented as AIG network such that power and de-

lay is optimised. We have introduced the concept of delay-driven power optimisation

and power-driven delay optimisation. For delay-driven power optimisation, firstly we

assume that the increase in longest path delay shall not exceed a given constraint while

optimising for dynamic power. Secondly for each application of the reordering rules

on the AIG nodes, a weight is calculated which is directly proportional to the decrease

in switching power and inversely proportional to the increase in delay. These weights

keep a check on every bad move where delay increases largely in the process of switch-

ing power reduction. Similarly, power-driven delay optimisation is defined by assuming

that firstly, the increase in dynamic power shall not exceed a given constraint while

optimising for delay. Secondly for each application of the reordering rules on the AIG

nodes, a weight is calculated which is directly proportional to the decrease in delay

2

and inversely proportional to the increase in dynamic power. Hence multi-objective

optimisation of two conflicting objectives (namely power and delay) subjected to each

other’s constraints, is considered in our research. The optimisation method uses two

optimisation algorithms namely Simulated Annealing and Uniform Cost Search Algo-

rithm.

The synthesis techniques must not only optimise the above parameters (power and

delay) but also lead to a better circuit (with respect to total power and longest path

delay) in as little time as possible. The techniques introduced in our work for synthesis

and optimisation have a low computation time. Their runtime ranges from 1.2 to 1.8

times when compared to the ABC synthesis scripts, with some significant reduction in

power and delay.

The advances in process technology typically come with a host of new design variables

and hence a new set of challenges to the designers (such as optimisation of the leakage

power). Hence the CAD tools must handle such new design parameters as well. One

can also introduce an area constraint during power or delay optimisation. The synthesis

and optimisation methods introduced in this work give a constraint to the area (number

of AND nodes of the AIG network) while optimising power and/or delay. This keeps

a bound on the total silicon area and leakage power of the circuit while optimising for

dynamic power or longest path delay.

The thesis is organised as follows: Chapter 2 gives some background on various

data structures used within the CAD tools for the synthesis and optimisation of logic

circuits. This is followed by a review of some academic EDA tools which use these data

structures. Existing power and delay reduction techniques are also discussed in this

chapter. Chapter 3 describes various design flows of digital circuits including industry

and academic. This design flow converts the RTL description of the circuit to the gate-

level netlist, followed by the generation of power, delay and area reports. The chapter

presents an industrial design flow using industrial EDA tools, an academic design flow

using academic research EDA tools and an integrated design flow. Although many tech-

niques applied in the academic tools demonstrate robustness and optimality in EDA,

the tools have not found application in industry and can only be considered theoretical

frameworks. Hence we have introduced an integrated design flow which links the two

design flows, for improved and simplified application of academic tools in the industrial

3

domain.

Various data structures used by academic EDA tools such as NAND-NOR-Inverter

Graphs (NNIGs) are being presented. These graphs have gained much importance in

recent years for power and delay optimisation. In Chapter 4, we introduce a novel tool

for the manipulation of NNIGs. We also introduce a new data structure known as Prob-

abilistic Timed NNIG (PTNNIG) in this chapter, which has switching probabilities and

delay values annotated on each node of the NNIG. This data structure can be used for

power and delay optimisation. The PTNNIG is the basis to achieve delay-driven power

optimisation and power-driven delay optimisation.

In Chapter 5, firstly we estimated switching power and longest path delay of an AIG

network representing the functionality of a digital circuit. We introduce then various

reordering and re-structuring rules applied on each of the nodes of the AIG network for

power and delay optimisation. The reordering rules applied on AIGs help in reducing

the switching power and the delay of the network. The problem of glitches is also dealt

in our work, while estimating the switching power on the AIG network.

Chapter 6 deals with the implementation of the reordering rules. Various optimisation

algorithms are also introduced which implement these rules. A simulation design flow is

also presented which allows us to obtain power, delay and area reports of the optimised

AIG network using industrial tools. The chapter also introduces the application of two

algorithms ‘Simulated Annealing’ and ‘Uniform Cost Search Algorithm’ which are used

in delay-driven power optimisation and power-driven delay optimisation. We introduce

a new tool OPT-PT which is sub-divided into two tools, OPT-P for delay-driven power

optimisation and OPT-T for power-driven delay optimisation. The tool is implemented

in C as a sub-package in ABC.

Chapter 7 presents a list of experimental results on large combinational circuits with

node count ranging from 1,000 to 100,000 gates. OPT-PT tool is implemented on large

combinational and sequential circuits and the optimised power and delay results are

reported.

Chapter 8 gives a brief overview of the various combinatorial optimisation techniques

that are incorporated in our tool OPT-PT. Finally, Chapter 9 presents conclusions and

topics for future work.

4

Chapter 2

Background

Various data structures which are used within the Electronic Design Automation (EDA)

tools for synthesis and optimisation of digital logic circuits are described in this chapter.

The data structures represent the functionality of the logic circuit. A list of academic

EDA tools are also covered. In the last section, some state of the art power and delay

reduction techniques for digital circuits using data structures, are reviewed.

2.1 Binary Decision Diagrams (BDDs)

Binary Decision Diagrams (BDDs) [13] can be represented as a rooted, directed acyclic

graph denoted as Graph G(V,E) where V is the set of vertices and E is the set of edges

which link the vertices denoted in V . Any v ∈ V is either a non-terminal node or one

of the two terminal nodes namely 0-terminal and 1-terminal. The non-terminal nodes

are the decision nodes which are labeled by a Boolean variable. These nodes have two

child nodes called low child and high child. Any e ∈ E from the decision nodes point

to the low child or high child depending upon the assignment of the Boolean variable

labeled on the decision node to be ‘0’ or ‘1’ respectively. The starting decision node of

the graph is called the root node. This forms a BDD.

Such a BDD is called ‘ordered’ if all the paths from the root node to the terminal

nodes have the same Boolean variable order. A BDD is said to be ‘reduced’ if the fol-

lowing two rules have been applied to its graph. Firstly, there exists no two sub-graphs

expressing the same function i.e. no two sub-graphs are graph isomorphic. Secondly,

there exist no two decision nodes whose two children are isomorphic.

5

In popular usage, the term BDD almost always refers to Reduced Ordered Binary De-

cision Diagram (ROBDD). One advantage of a ROBDD is that it is canonical (unique)

for a particular function and variable order. This property makes it useful in functional

equivalence checking and other operations like functional technology mapping.

Figure 2.1 shows a BDD graph G(V,E) where V is the set of decision nodes and

terminal nodes. The decision nodes are represented with a circle and terminal nodes

are represented with a rectangle. The decision nodes represent Boolean variables a, b

and c representing the functionality abc+a′b′ of the circuit. In the figure, the light edges

point to the low child i.e assignment of the Boolean variable to ‘0’. The highlighted

edges point to the high child i.e. assignment of the Boolean variable to ‘1’. In the

figure, the functionality at each decision node is also mentioned.

Figure 2.1: A BDD example for a circuit with functionality abc+ a′b′

2.2 AND-Inverter Graphs (AIGs)

An AND-Inverter Graph (AIG) [48] is a directed acyclic graph denoted as Graph

G(V,E) where V is the set of vertices and E is the set of edges which link any two

vertices. The graph represents the structural functionality of the digital logic circuit.

6

Any v ∈ V either represents two-input AND gate or terminal node labeled with a vari-

able name. The variable names are the names of the input variables of the logic circuit.

Any e ∈ E is the input to the two-input AND gate. Figure 2.2 shows an example of

AIG, representing the functionality abc+ a′b′ of the circuit. The inputs are a, b and c.

The inputs are represented as the terminal nodes denoted within a triangle. The nodes

which represent two-input AND gates are denoted within a circle. × represent that

those nodes are 2-Input AND nodes. Edges with a dot indicate negation i.e. inversion

of that input. Here the term ‘vertices’ and ‘nodes’ imply the same. AIGs are simple

and flexible data structures which promise improvements in quality and runtime of sev-

eral applications. The runtime of the combinational synthesis and mapping is typically

faster using AIGs. AIGs provide a much compact representation of digital circuits than

BDDs. Formal verification is simpler as they can be easily mapped to a netlist.

Figure 2.2: An AIG example for a circuit with functionality abc+ a′b′

2.3 NAND-NOR-Inverter Graphs (NNIGs)

NAND-NOR-Inverter Graph (NNIG) [3] is also a directed acyclic graph denoted as

Graph G(V,E) where V is the set of vertices and E is the set of edges which link

7

any two vertices. The graph represents the structural functionality of the digital logic

circuit. Any v ∈ V either represents two-input NAND gate, two-input NOR gate or a

terminal node labeled with a variable name. The variable names are the names of the

input variables of the logic circuit. Any e ∈ E is the input to the two-input NAND

gate or two-input NOR gate. Figure 2.3 shows an example of NNIG, representing

the functionality abc + a′b′ of the circuit. The inputs are a, b and c. The inputs are

represented as the terminal nodes denoted within a triangle. ⊗ and ⊕ represent those

nodes as 2-Input AND gates and 2-input OR gates respectively. The symbol ⊗ linked

with the notation • indicates a NAND, similarly the symbol ⊕ linked with the notation

• indicates a NOR. Edges with a dot indicate negation i.e. inversion of that input.

NNIGs also provide a compact representation of the digital circuit and are immensely

used in logic synthesis, technology mapping and formal verification.

Figure 2.3: A NNIG example for a circuit with functionality abc+ a′b′

Another data structure is the NAND-Inverter Graphs (NIGs). It is represented as

a directed acyclic graph consisting of 2-input NAND gates and Inverters only.

8

2.4 Review of Academic Electronic Design Automation

(EDA) tools

A number of academic EDA tools [49], [59], [9], [76], [77], [79] and [11] have been pro-

posed in the literature. These open-source tools provide a programming environment

and a solid platform for research in logic synthesis, technology mapping, power and

delay estimation and optimisation. These academic tools represent the Boolean func-

tionality of any digital circuit using a data structure. Manipulation for logic synthesis,

optimisation and technology mapping are done on these data structures. Although

many techniques applied in the tools demonstrate robustness and optimality in EDA,

the tools have not found application in industry and can only be considered theoretical

frameworks. Some academic EDA tools with their data structure are presented below.

2.4.1 CUDD package

The CUDD package provides functions to manipulate Binary Decision Diagrams (BDDs)

[13] and other decision diagrams [81]. The size of the BDD is largely governed by the

order of the input variables. The package also provides a large assortment of variable

reordering methods, to reduce the number of BDD nodes.

2.4.2 Folded Binary Decision Diagrams (FBDDs)

FBDD [79] is an open-source logic synthesis package based on BDDs. The package

employs several new techniques, including folded logic transformations and two-variable

sharing extraction. The primary objective of the package is to scale the logic synthesis

algorithm runtime by one order of magnitude, while producing competitive synthesis

quality.

2.4.3 A System for Sequential Circuit Synthesis (SIS)

SIS [59] is another interactive tool for synthesis and optimisation of sequential circuits.

Given a state transition table, a signal transition graph, or a logic-level description

of a sequential circuit, it produces an optimised netlist in the target technology while

preserving the sequential input-output behavior. The input specifications in SIS are

STG (State Transition Graph) and ASTG (Asynchronous Signal Transition Graph).

9

2.4.4 A System for Sequential Synthesis and Verification (ABC)

ABC [11] is a logic synthesis and verification tool which performs scalable logic optimi-

sation based on AND-Inverter Graphs (AIGs) [48]. In all of these academic tools, data

structures and algorithms largely determine the efficiency of the tool in implementing

new applications. Previous tools like SIS [59], BDD [13] and FBDD [79] get inefficient

for large circuits and do not provide enough flexibility for binary synthesis, owing to

their type of data structures. ABC deals with simple and flexible data structures, i.e.

AIGs, which promise improvements in quality and runtime of several applications. Our

major work is based on AND-Inverter Graphs, manipulated in ABC.

2.5 Power and delay optimisation techniques

There are three main sources of power dissipation in digital CMOS circuits [14] namely

short-circuit power, leakage power and switching power. A detailed description of each

of the components is given in Chapter 3. In our work we have mainly targeted switching

power optimisation. The switching power component is often the dominant component

however in deep sub-micron technology, leakage power is also quite significant. There-

fore, in the experimental results we have tabulated leakage power component as well.

The switching power dissipation in a CMOS gate is dependent on the switching activity

at the circuit nodes, capacitive load, supply voltage and operating frequency. Various

techniques which aim at the reduction of switching power and delay are presented be-

low.

Previously, various probabilistic techniques have been used to estimate and min-

imise the switching activity of the circuit based on data structures and graphs. Binary

Decision Diagrams (BDDs) have been used extensively in [78], [34], [38], [19], [36] and

[74] for switching activity estimation and optimisation. In these works, the zero-delay

model is assumed and reduced switching activity is obtained either by reducing the

BDD size or by changing the order of the BDD. The main drawback of these techniques

is their computational complexity. Computation time and memory footprint increase

rapidly with the circuit size.

The probabilistic technique for switching activity estimation using BDD follows a

BDD traversal method [74]. The BDD structure involved in this traversal method in-

10

creases rapidly with circuit size, hence making it cumbersome for large circuits. Many

techniques in [69], [26], [27] and [25] work on reducing the BDD size as used in the

BDD traversal method in order to reduce the memory usage and computation time.

Several other power-aware BDD-based synthesis techniques are introduced in [54] and

[73]. Another BDD based synthesis technique for low power is introduced in [70] which

is based on split BDDs, which disables parts of the circuit under useless switching (parts

of the circuit not being used but still dissipating power due to switching), however the

delay parameter is again ignored.

Several new academic tools have been developed for switching activity and power

estimation including BLAPE [78] and POSE [34]. These tools are mainly used for

behavioural and gate-level designs. They assume the zero-delay model, resulting in

inaccurate power estimation. The contribution of glitches - spurious transitions due to

inertial delays and differential gate delays - is not captured. Further, when optimising

power, these tools ignore other factors such as delay, area and power-delay product.

Plotting a power-delay curve illustrates how power reduction has impacted on circuit

delay. In this context, work has been done on delay-dependent power estimation, but

optimisation remains still an issue [62].

In [23], a gate-level power estimation technique under a delay model, based on tagged

probabilistic simulation (TPS) is introduced, which proved to be efficient and accurate

even for large circuits. However, power optimisation is not considered. An extension

of [74] is introduced in [75] which works on the estimation of switching activity under

a delay model, followed by dynamic power estimation and optimisation. However, a

unit-delay model has been assumed rather than a variable delay model and the overhead

parameters are not discussed.

To improve the synthesis process, several efficient and compact data structures have

been introduced to represent the functionality of combinational circuits, such as AIGs

[48] , NNIGs [3], [6] and NIGs [4] as discussed in the previous section. Each data struc-

ture focuses on capturing either power or delay in a graph representation for further

manipulation. The academic tool ABC [11] is used for the manipulation of AIGs but

offers minimal support for power estimation and optimisation. AIGs are used in [44]

and [50] mainly to make the logic synthesis flow more scalable and faster, and to unify

and enhance many phases of logic synthesis. AIGs are also used in [12] which intro-

11

duces various local two-level algebraic rules applied on the AIG network for reducing

the number of AIG nodes. A tool was also introduced in [42] for NNIG manipulation.

Works in [3] and [5] largely deal with AIGs, NNIGs and NIGs comparisons among each

other with respect to power or delay. A power optimisation tool box which uses AIGs

for logic synthesis and mapping introduced in [46] largely motivated us to use AIGs

in our research work. Works in [71], [72], [53], [64] and [55] introduce methods for

switching activity estimation using fast, accurate, delay-dependent methods under a

variable-delay model. The above works underpin the research presented in this thesis.

For delay optimisation, many techniques have been developed [61], [15]. However

they did not provide a clear link with the power dissipation due to the delay (critical

path length) reduction. Work in [20] is based on delay- driven optimisation, however

power values increase largely in the simulation results. Research in [21], [80], [39], [47]

and [45] deal with delay and area optimisation, but the power is still left out. None

of the techniques mentioned above focus on multi-objective optimisation such as joint

power and delay optimisation.

Finally, many techniques used in [68], [2], [37], [51] and [16] which focused on power

and delay optimisation, motivated us for the research indicated in this thesis. However,

these techniques do not follow delay-driven power optimisation and power-driven delay

optimisation as described earlier. Reviewing various power and delay reduction tech-

niques introduced to date, new techniques and methodologies implemented on AIGs

are introduced in our work for delay-driven power optimisation and power-driven delay

optimisation. The synthesis method is based on AIGs which represent the functionality

of the circuit.

12

Chapter 3

Digital power estimation flow

3.1 Introduction

Over the years, a number of academic EDA tools [49], [59], [9], [76], [77], [79] and [11]

have been proposed in the literature. These open-source tools provide a programming

environment and a solid platform for research in logic synthesis, power and delay opti-

misation and technology mapping. However, the tools do not support constructs from

more modern HDLs such as Verilog-2001 and System Verilog. Only a restricted subset

of language constructs in Verilog and VHDL are supported for input and output. Basic

random-pattern simulation is supported, but complex test benches with user-supplied

test vectors and assertions are not. The academic tools only include generic technology

libraries, and data exchange between academic tools is complicated by occasional file

format incompatibilities.

Several academic tools used for logic synthesis, power estimation and power optimi-

sation are surveyed with the aim of building a better understanding of the theoretical

foundations behind such tools as well as motivating research towards an integration of

academic tools into an industrial design flow.

In this chapter, we propose a design flow which translates the RTL description of the

circuit to a gate-level netlist, using several well-known academic tools, and is integrated

into an industrial design flow. This integration will be beneficial to researchers in logic

synthesis, power estimation and power optimisation. The aims of the integration are

to relate academic tools to an industrial design flow and to bridge gaps between the

academic and industrial design flows (new tools have been developed to achieve this). It

13

also intends to make the academic tools easier to deploy and to use by connecting them

together with a set of customisable Unix shell scripts. This will create an open-source,

academic tool flow within which new techniques can be developed and compared. Also

data from the industrial design flow (such as event-driven simulation results) can be

used to support the development of logic synthesis, power estimation and power opti-

misation techniques in the academic domain.

The remainder of the chapter is organised as follows. Section 3.2 gives an overview

of power dissipation in CMOS circuits. A standard industrial design flow and the pro-

posed academic design flow for power estimation are presented in Sections 3.3 and 3.4,

respectively. Section 3.5 outlines an integrated design flow and the motivation for its

development. Experimental results (enabling power saving of over 40%) are provided

in Section 3.6 to demonstrate the applicability and effectiveness of such an integrated

design flow. Finally, concluding remarks are made in Section 3.7.

3.2 Power dissipation in CMOS circuits

There are three main sources of power dissipation in digital CMOS circuits [14]:

• short-circuit power;

• leakage power;

• switching power;

The short-circuit power is due to the direct-path short circuit current, which arises

when both the NMOS and PMOS transistors are simultaneously active, conducting

current directly from supply to ground. Leakage power which arises from substrate

injection and sub-threshold effects, is primarily determined by fabrication technology

considerations.

The switching power dissipation in a CMOS gate is due to charging and discharging of

load capacitance driven by gate. The capacitance consists of the internal capacitance of

the gate, wire capacitance of the fanout net and the capacitances of the gate terminals

of the transistors being controlled by the fanout net. The sum of switching power and

short circuit power is referred as the dynamic power of the CMOS circuit. The switching

14

power dissipation referred as dynamic power is calculated by the following equation:

Pdynamic = αClV
2
ddfclk (3.1)

where α is the switching activity factor (transition probability of switching from 0 to

1 or 1 to 0), Cl is the overall capacitance to be charged and discharged in a reference

clock cycle, Vdd is the supply voltage and fclk is the clock frequency. The dynamic power

dissipation of a CMOS logic circuit with the set of gates S is given by the equation:

Pdynamic = V 2
ddfclk.

∑
G∈S

CGαG (3.2)

where CG is the load capacitance at gate G and αG is the switching activity factor at

gate G. When fclk and Vdd are given,
∑

G∈S CGαG needs to be computed for evaluat-

ing Pdynamic. Throughout the thesis, this product has been used as the parameter for

power dissipation. Thus an accurate estimation of the transition density in a circuit

(product of capacitive load and transition probability) will give an accurate estimation

of dynamic power dissipated in the circuit. The transition probability or the switch-

ing probability αG is a function of transition probabilities of primary inputs, logical

behaviour and design style of the CMOS circuit. Several low power techniques have

concentrated on reducing dynamic power. Dynamic power (switching power) is clas-

sified into necessary transition for correct functioning of the circuit and unnecessary

transition due to unbalanced paths in the circuit. This latter component of the power

dissipated is known as glitching power. Glitches [18] are unnecessary transitions pro-

duced in the circuit due to the difference in signal arrival times at the inputs of a gate.

The power dissipated due to glitches is glitching power.

3.3 Industrial Design Flow for Power Estimation

The industrial design flow is presented in Figure 3.1. The design flow outlines the path

of a digital circuit from the RTL level to the gate-level netlist followed by power, delay

and area reports. The tools used in this flow are all commercial EDA tools and hence

the name industrial design flow. In the flow, the input is a RTL description of a circuit

and the outputs are power, delay and area reports.

In this flow, RTL simulation is performed using VCS, a commercial tool from EDA

vendor Synopsys [67]. VCS (like some other commercial simulators) supports Verilog

15

Figure 3.1: Industrial Design Flow

and VHDL as well as more recent IEEE-standard HDLs such as Verilog-2001 and Sys-

temVerilog. The logic description is constrained and then synthesised to a gate-level

netlist targeting our chosen standard cell library in Design Compiler, tool from Syn-

opsys. Formal verification is performed in Formality, tool from Synopsys, ensuring

equivalence between RTL and the resulting gate-level netlist. Reports generated by the

synthesis tool detail the silicon area consumed by the logic design. Delay reports are

generated using PrimeTime, tool from Synopsys determining whether the netlist meets

constraints laid down prior to synthesis. PrimeTime also generates Standard Delay

Format (SDF) [58] containing delay information for netlist annotation during gate-level

simulation. The primary goal of constructing this flow was to perform power analysis

on the pre-placement netlist using commercial tools. Switching probability information

16

is recorded by VCS during simulation as Switching Activity Information File (SAIF)

[57]. Time domain value-change data are recorded as Value Change Dump (VCD) [33].

SAIF and VCD are used during power analysis to obtain realistic power figures for the

simulated scenario. Two power analysis flows are used:

1. SAIF switching probabilities from RTL simulation are annotated onto the netlist in

Power Compiler from Synopsys [67]. The tool propagates switching activity through

the netlist and reports average power for the simulated scenario. (SAIF from gate-level

simulation can also be used, if available, for more accurate results at the expense of

processing time).

2. The netlist is simulated in PrimeTime PX, tool from Synopsys using value-change

data from gate-level VCD. Using VCD allows both average and instantaneous (peak)

power reports to be generated, along with time domain power waveforms from the

simulation.

3.4 Academic Design Flow for Power Estimation

A typical academic logic synthesis tool first constructs a two-level or multi-level Boolean

network corresponding to the RTL description of a design. This network is then opti-

mised using various technology-independent techniques. Finally, technology mapping

transforms the technology independent circuit into a network of gates in a given tech-

nology. Mapping is constrained by several factors including the available gates in the

technology library, the drive sizes of each gate and the delay, power and area charac-

teristics of each gate.

Binary Decision Diagrams (BDDs) [13] and AIGs [48] have become very effective

representations for Boolean functions in VLSI/CAD and they are widely used in many

applications like logic synthesis and formal verification. Berkeley Logic Interchange For-

mat (BLIF) is the most popular format used in academic tools for describing logic-level

hierarchical circuits in textual form. A circuit described in BLIF can be viewed as a

directed graph of combinational logic nodes and sequential elements. Due to this, it is

reasonably easy to transform a circuit described in BLIF into the corresponding BDD

or a corresponding AIG. This has already been automated in many academic EDA tools

(e.g. SIS [59], VIS [77], MVSIS [9] and ABC [11]). Furthermore, several (bi-directional)

translators between BLIF and HDL/netlists are publicly available.

17

3.4.1 Structural Information

Figure 3.2 shows our proposed academic design flow. This design flow outlines a similar

path as that of the industrial design flow. The input file is given in BLIF, PLA and

BENCH file formats describing the digital circuit in textual form and the output is

again the power, delay and area reports. However all the tools used in this flow are

academic open-source tools used in research. Hence the name academic design flow.

The flow is composed of three types of tools i) HDL translators, ii) logic synthesis and

verification tools and iii) power analysis tools. The selection of tools are:

• HDL translators EDIF2BLIF [24], BLIF2VHDL [7] and several built-in translators

in VIS, FBDD and ABC;

• SIS [59] - a classical interactive tool for logic synthesis and power estimation in

academia;

• MVSIS [9] - a multi-level, multi-valued logic synthesis tool;

• FBDD [79] - a BDD logic synthesis system based on folded logic transformation

and two-variable sharing extraction;

• BDS-PGA [76] - a practical logic synthesis system based on a BDD decomposition

technique;

• ABC [11] - a logic synthesis and verification tool which performs scalable logic

optimisation based on AND-Inverter Graphs (AIGs) [48];

• VIS [77] - a tool that integrates the verification, simulation and synthesis of hard-

ware systems;

3.4.2 Details of the design flow

The input of the design flow can be a circuit description in BLIF, PLA, or BENCH for-

mats. Restricted subsets of EDIF, Verilog, VHDL and Synopsys Equation Format are

also accepted as input. The output of the design flow is an optimised circuit in BLIF or

a restricted form of Verilog. The power analysis tools are then be used to calculate the

18

Figure 3.2: Academic Design Flow

circuit’s power dissipation. Note that this design flow also enables technology mapping

which converts a circuit composed of simple gates into a circuit composed of lookup

tables (LUTs) suitable for FPGA based implementation. Moreover, various transfor-

mations of circuit descriptions (e.g. Verilog to BLIF) at different stages of the flow can

be done by using HDL translators available within the design flow. The correctness of

such transformations is ensured by the equivalence checker in VIS and ABC.

The design flow is complete as it takes the RTL description of the circuit and syn-

thesises it into a gate-level netlist after technology mapping. Power, delay and area

estimations tools are also available within the design flow. The same flow is observed

within the industrial design flow as well. However, there are several issues that can be

improved within the academic tool. Firstly the technology libraries used in all logic

synthesis tools available within the design flow are outdated. Due to this, the final

optimised circuit cannot be interfaced with commercial EDA tools. Secondly, some

19

commercial EDA tool features are still missing in the proposed design flow. For exam-

ple, switching activity from gate-level event-driven simulation cannot yet be annotated

directly onto the circuit for power analysis. Due to these issues, an integrated design

flow is essential. In this way information from the industrial domain can be used within

the academic domain and vice versa.

3.5 Integrated Design Flow

The two design flows presented in Sections 3.3 and 3.4 (with some enhancements) are

integrated, providing a solid platform for future research in low power design method-

ologies. This integrated design flow provides a flexible programming environment with

new capabilities and improved performance. Our integrated design flow is depicted in

Figure 3.3.

Figure 3.3: Proposed Integrated Design Flow

20

3.5.1 Tool Flow

The integrated design flow is composed of four different types of tools: i) existing aca-

demic tools, ii) commercial tools, iii) modified existing academic tools and iv) new tools.

A short description of the new tools introduced within the integrated design flow is as

follows:

• LIB2GENLIB is a new tool implemented in Java which converts an industrial

technology library file (e.g. 65nm TSMC technology) to the corresponding genlib,

the technology library file format used by SIS, MVSIS, ABC and VIS;

• SAIF2SIS is a new tool implemented in C which converts relevant switching ac-

tivity information from an SAIF file (obtained from the industrial design flow)

into the corresponding switching activity file used in academic tool SIS;

3.5.2 Key features of the integrated design flow

The integrated design flow consists of two sub-flows, the academic flow and the indus-

trial flow (as shown in the Figure 3.3), and possesses the following features:

• Flexible programming environment - the academic flow provides an open and

flexible programming environment in which new techniques for logic optimisa-

tion, power estimation and power optimisation can be developed; and possibly

compared with similar techniques presented in the industrial flow.

• Up-to-date technology processes - the tool LIB2GENLIB provides up-to-date com-

mercial technology processes that can be used for mapping in the academic flow.

• Interoperability - useful information (e.g. switching activity information from

gate-level simulation) can be easily obtained from the industrial flow and plugged

into the academic flow to obtain better and accurate power analysis results.

• Comparative study - the integrated design flow can serve as an optimal platform to

evaluate the effectiveness and efficiency of techniques developed in the academic

flow by means of comparative study amongst the academic flow and industrial

flow.

21

3.6 Experimental Results

We performed experiments on several combinational MCNC benchmark circuits using

an AMD 2258 MHz CPU with 256 MB RAM. Before running the experiments, the tool

LIB2GENLIB translates the 65nm CMOS TSMC standard cell library (tcbn65gplustc.lib)

to the corresponding genlib for mapping. In all the experiments, the updated genlib file

is used for the mapping. Since we have used the updated technology library files, the

results are accurate and can be used within the industrial domain. Also realistic switch-

ing activity information which is essential in power estimation is introduced in using

SAIF2SIS tool. The tool SAIF2SIS converts the relevant switching activity information

from SAIF files into the corresponding SIS switching activity files. (The SAIF files are

obtained by running a RTL-level simulation of the equivalent benchmarks modeled in

Verilog using VCS.) The selected benchmarks are run on ABC for logic synthesis and

SIS is used to calculate their power dissipation with and without the switching activity

files (SWF) provided by SAIF2SIS. The results shown in Table 3.1 are the estimated

power values by SIS which uses the modified genlib library for mapping (using the tool

LIB2GENLIB) and also uses the relevant switching activity information through the

SWF (using the tool SAIF2SIS). The results (given in µW) indicate that annotating re-

alistic switching activity has reduced estimated dynamic power by 40% while compared

to the power estimated values without switching activity information.

3.7 Conclusions

An integrated design flow consisting of both academic and commercial tools has been

presented, in which new techniques can be developed and compared. In addition, this

integrated design flow provides a solid platform for future research in low power design

methodologies, with new capabilities and improved performance (see the experimental

results given in Section 3.6 for details). This chapter outlines the foundation behind the

academic EDA tools, and its integration with the commercial tools via the integrated

design flow. This helped in the manipulation followed by simulation of any digital cir-

cuit represented as Boolean logic network (eg. AIG, NNIG and NIG) for power and

delay estimation and optimisation, as discussed in the next chapters of the thesis. In the

next chapter, we present the manipulation of NAND-NOR-Inverter Graphs (NNIGs)

22

Table 3.1: Power dissipation with and without SWF

Circuit without SWF with SWF % reduction

- (µW) (µW) -

cm138a 63.80 51.80 -18.80%

alu4 2519.30 1445.00 -42.64%

b1 58.30 31.90 -45.28%

c8 615.80 298.30 -51.55%

dalu 3880.70 1290.60 -66.74%

b9 417.60 113.30 -72.86%

count 654.50 115.40 -82.36%

which are largely being used in the academic domain for logic synthesis and technol-

ogy mapping of digital circuits. Another data structure called Probabilistic Timed

NAND-NOR-Inverter Graph is also introduced which has switching activity and delay

information of a digital circuit introduced on each of the nodes of the network. These

parameters are obtained using the integrated design flow we presented in this chapter.

23

Chapter 4

Graph manipulation for both

power and delay analysis

The structural representation of any digital circuit into a Boolean network and tech-

nology mapping of the digital circuit using the Boolean network are important issues

in the synthesis of digital circuits. In the literature, data structures such as ROB-

DDs, AIGs and NNIGs are commonly used for the structural representations of binary

logic networks at the technology-independent stage. They are widely used in the EDA

community and their main application domains are logic synthesis, testing and for-

mal verification, technology mapping, power and delay optimisation, as stated in the

previous chapter.

4.1 Introduction

Optimisation of multi-level logic networks after structural representation plays an equally

important role in EDA. Various factorization methods such as Boolean and Algebraic

factorisation are used in the optimisation of such Boolean networks. In [56], a decom-

posed algebraically factored form representation of a Boolean expression is introduced

to guide the structural transformations of a Boolean network for low power. NAND-

NOR-Inverter Graphs (NNIGs) are another multi-level Boolean network introduced for

such structural representation. According to [3], NNIGs (functionality of the circuit rep-

resented and synthesised as NNIGs) are found to exhibit 3.97% less node count when

compared to AIGs and consume 23.74% less library cells than AIGs for the representa-

24

tion of the same circuits. We therefore proceeded with NNIGs as our data structure for

future manipulation and implementation. The tool ABC [11] has been developed for the

logic synthesis and manipulation of AIGs. To automate the implementation of NNIGs,

we present a new tool Data Structure Manipulation (DSM), which has been developed

as a sub-package in ABC. The implementation of the tool is based on the algebraic

factorisation of minimised SOP form of the combinational logic. For experimentation,

power comparisons using NNIGs and AIGs of the same circuits is done using SIS [59].

A comparisons of DSM against the ABC tool is also done.

One difficulty with the data structures including NNIGs is that it is difficult to capture

all information such as power, delay and area in the same data structure. Each data

structure is optimised for a particular parameter optimisation (power or delay or area).

Hence even after the implementation of the tool for NNIG manipulation, NNIGs are

still not ideal for both power and delay analysis as they do not incorporate power and

delay as parameters. Hence we propose a new data structure called Probabilistic Timed

NAND-NOR-Inverter Graph (PTNNIG), which can be used for more accurate power

estimation as well as joint delay and power analysis. Switching activity and delay of a

circuit from the RTL simulation are represented in PTNNIGs as probability and delay

parameters respectively. To the best of our understanding, PTNNIGs are the first data

structures incorporating delay and switching activity for the graph representations of

digital circuits. A one-to-one mapping is presented, between a Verilog netlist and NNIG

structure to map switching activity and delay values using an integrated design flow.

Some experimental results are performed for the implementation of PTNNIGs.

The remainder of the chapter is organised as follows. Section 4.2 gives an overview

about different graph structures and their manipulation. Section 4.3 presents the tool

DSM. Section 4.4 shows some experimental results which include comparisons made on

NNIGs against AIGs on the basis of power estimation. It also includes comparisons of

DSM against the ABC tool. Section 4.5 introduces the new data structure PTNNIG

along with an example, followed by an explanation of how switching activity and de-

lay of a circuit from RTL simulation can be obtained and mapped on NNIGs for joint

power and delay analysis. Section 4.6 presents some experimental results using BLIF

and optimised BLIF using realistic switching activity information. Finally, concluding

remarks are made in Section 4.7.

25

4.2 Background of data structures

Compact multi-level binary networks can be efficiently and effectively represented us-

ing AIGs and NNIGs. AIGs consist of only two-input AND gates and inverters. An

example of an AIG is also given in Chapter 2. For more details refer to [48].

Similar to AIG, a logic circuit can be conveniently represented using NNIG. A NNIG

also corresponds to a DAG representation for a logic comprising of two-input NAND

gates, two-input NOR gates and inverters. For details refer to Chapter 2.

During multilevel network synthesis, each node of a Boolean network can be repre-

sented by minimal ON- and/or OFF- covers and in some cases together with factored

expressions derived from the minimal sum-of-products (SOPs). ESPRESSO [40] is an

academic standard two-level logic minimiser which is being widely and most commonly

used to obtain minimised SOPs. Factoring Boolean functions is also a basic operation

in algorithmic logic synthesis. Factoring is the translation of a function in the SOP

form (also called disjunctive form) having minimum number of literals. For instance

a, abc and a(b+ c+ d) + e are all factored forms. A factored form can be represented

as a tree structure, where each internal node is an AND or OR operator and each leaf

is a literal. There are mainly two methods to obtain the factored form of a two-level

representation of the function. One is Algebraic division [10] and [8], also known as

weak division which is quite fast. The other method is Boolean division [65], also known

as strong division which is slower but capable of giving better results (shorter form)

in many cases. In general, the algebraic methods are fast because the logic function is

treated as a polynomial, and hence fast methods of manipulation are available. All the

digital circuits structurally represented as multi-level logic networks (i.e. NNIGs, AIGs

etc) are synthesised using these factorial methods.

Both AIG and NNIG can be built recursively using De Morgan’s laws. NNIGs and

AIGs are non-canonical structures. A Boolean function can have many functionally

equivalent NNIG representations corresponding to different expressions at the two-level

logic, typically two structures will be compact representations; one obtained from a fac-

tored minimum sum of products (MSOP) of the function and other based on factored

minimum products of sum (MPOS) of the function.

26

4.3 DSM tool

This section presents the tool DSM implemented as a sub-package in ABC. The theoret-

ical foundation behind the tool is based on [3] and [5]. The DSM tool allows us to build

a NNIG for a given circuit. The input of DSM is given in Berkeley Logic Interchange

Format (BLIF) which is the most popular format used in academic tools for describing

logic-level hierarchical circuits in a textual form. By using some optimisation steps, the

output as the NNIG of the digital circuit (given as input in BLIF) is obtained. The

NNIG network is again translated to a BLIF file format. The flow for generating NNIGs

using DSM is shown in Figure 4.1.

Figure 4.1: DSM tool flow

First, the BLIF file is read as a network in ABC whose functionality is converted

to SOP. Using ESPRESSO, the SOP undergoes a two-level logic minimisation. If there

is a sharing of variables in the reduced SOP expression of the function, the obtained

minimised SOP is then factorised using the algebraic factorisation technique. The

factorised-minimised SOP is converted to AIG in the environment of ABC and then fur-

ther transformed to a NNIG network using a sub-command AIG2NNIG. The function-

27

ality of the NNIG network is converted back to SOP using a sub-command SOP2NNIG

in the DSM tool and then to BLIF file format using the translator available in ABC.

This tool is implemented in C as a sub-package in ABC. It can handle both sequential

and combinational digital circuits as inputs.

4.4 Experimental Results for AIG vs. NNIG

The BLIF files corresponding to AIG and NNIG are compared with respect to power

dissipation in this experiment. The BLIF file corresponding to NNIG is obtained as

shown in Section 4.3. The BLIF file corresponding to AIG is obtained following the

same DSM tool flow (shown in Figure 4.1) after ESPRESSO optimisation [40]. The

corresponding AIG structure is derived from the minimum SOP form of the function

in the environment of ABC and then written to BLIF file format using ABC.

The BLIF files corresponding to AIG and NNIG networks are given as inputs in SIS (in

the environment of ABC) for power estimation. Table 4.1 presents a list of randomly

taken 10 combinational and 5 sequential circuits and their power estimation in µW .

Some BLIF examples used in these results are from the MCNC benchmark circuits and

some of the BLIF files used are those mentioned in [3]. We have considered the clock

frequency and Vdd to be 20 MHz and 5 Volts respectively. The table clearly indicates

that many combinational and sequential digital circuits synthesised using NNIGs (NNIG

blif file) consume less power than AIG based synthesis. On average, the difference in

power consumption is 22.06%.

Another set of experiments is performed on the BLIF files obtained from the DSM

tool against the BLIF files obtained from ABC. The BLIF files from ABC considered

in this experiment are those obtained from AIG network creation after using one of the

standard scripts of ABC namely resyn. In this script, the series of synthesis commands

are balancing, rewriting, rewriting with zero cost replacement, balancing, rewriting

with zero cost replacement and balancing. These synthesis commands are used to

reduce the number of nodes, number of logic levels and delay. Power estimation on the

two BLIF files is done using SIS. Table 4.2 presents a list of combinational circuits and

their power estimation in µW . The BLIF files used in these experimental results are

those mentioned in [3]. We have considered the clock frequency and Vdd to be 20 MHz

and 5 Volts respectively.

28

The table indicates that for some of the combinational circuits, the tool technique

used in DSM can prove better than some of the synthesis techniques used in ABC,

resulting in lower power dissipation. On average, the power reduction is 17.69%.

Table 4.1: Power estimation on AIG and NNIG

Circuit AIG network NNIG network % power difference

- (µW) (µW) -

lf3 29.50 22.80 -22.71%

lf6 36.30 26.70 -26.44%

lf11 41.00 37.80 -7.80%

lf8 56.00 32.50 -41.96%

lf5 60.10 44.10 -26.62%

cm85a 205.70 179.60 -12.68%

cm162a 249.80 162.50 -34.94%

cc 367.20 289.20 -21.24%

b9 639.90 540.10 -15.59%

adder 1242.50 998.80 -19.54%

bbara 162.00 94.60 -42.07%

tav 245.50 241.70 -2.08%

ex7 378.90 325.90 -14.09%

ex3 418.70 267.90 -35.04%

ex1 878.10 805.90 -8.25%

29

Table 4.2: Power comparisons against ABC and DSM

Circuit ABC DSM % power difference

- (µW) (µW) -

lf2 24.20 18.10 -25.65%

lf3 24.00 22.80 -5.08%

lf5 56.60 44.10 -22.45%

lf6 28.30 26.70 -6.28%

lf7 71.40 61.00 -14.62%

lf10 49.40 37.70 -23.68%

lf12 64.20 51.20 -20.07%

lf13 24.20 18.10 -25.04%

4.5 Probabilistic Timed NNIGs (PTNNIGs)

4.5.1 Background

In recent years, power consumption has become one of the biggest constraints in digital

circuits. Power can be broken down into static and dynamic components. The dynamic

power also known as switching power is caused by the charging and discharging of the

capacitances in a CMOS circuit. Dynamic power optimisation is targeted in our work.

The dynamic power is also described in Equation 3.1. In our work, alpha also known as

switching activity factor is considered as the parameter for dynamic power optimisation.

The critical path length or the longest path delay in the circuit network is considered

as the parameter for delay optimisation.

Various data structures have been used for the manipulation of switching activity

and delay such as those referred to in [38]. However they were not ideal for a combined

power estimation and delay analysis. This section hence proposes the new data struc-

ture PTNNIG. Switching activity and delay both represented as probability and delay

parameters respectively are specifically defined in the syntax of PTNNIGs for power

and delay analysis. Optimising such graphs will imply power and delay minimisation.

30

Our ultimate goal is to provide a data structure which enables efficient power-driven

delay optimisation and delay-driven power optimisation.

4.5.2 NNIG and PTNNIG

A NNIG network represents the functionality of the circuit using 2-input NANDs, 2-

input NORs and Inverters.

A PTNNIG is defined as a quadruple(V,E, P, T), where V and E represent the same

set of attributes as defined in the NNIG network. Refer to Chapter 2 Section 2.3.

Two new elements are defined in this data structure namely P and T . P is a set of

probabilities and T is a set of delay values. Switching probability at each logic node

in the NNIG network (probability of switching from logic state ‘1’ to ‘0’ and ‘0’ to

‘1’) is an important factor in dynamic power dissipation as described in Equation 3.1.

Probability of a logic node to be at state ‘1’ represented as p1 also gives an estimate

of switching probability. These p1 values associated at each logic node of the NNIG

network are represented in the set P . Similarly the delay value from the input to the

output of each logic node of the NNIG network is important to determine the longest

path delay of the network. Let tf represent the the delay at a logic node at the falling

edge. These tf values are represented in the set T . Hence the probability and the delay

are two parameters added to existing NNIG data structures. The new parameters

namely P and T are associated to each logic node of the NNIG network i.e. set V .

4.5.3 Mapping of Probability and Delay on PTNNIGs

For illustration purpose, this section presents a way to map probability and delay at-

tributes P and T on NNIG to build PTNNIG. We introduce a tool written in C namely

NNIG2Net. This tool converts the NNIG network (obtained from the DSM tool) to a

NNIG netlist in Verilog. In this translation, each NAND node of the NNIG network

is converted to 2-input NAND cell, each NOR node of the NNIG network is converted

to 2-input NOR cell from a specific library. The complemented (inverted) edges are

replaced with inverter cells and non-complemented edges are replaced with buffer cells.

Even the name mapping of NNIG nodes and edges to the netlist cells and wires is kept

in mind. In this way exact technology mapping of the NNIG network to a NNIG netlist

(in Verilog) is possible. The two comparative structures are a NNIG network obtained

31

from the tool DSM and a NNIG netlist obtained from NNIG2Net. A one-to-one map-

ping is possible between the information associating the Verilog netlist to the nodes

of the NNIG network. A NNIG network representing the functionality ab(c + d) i.e.

(((c + d)Xa)Xb) is shown in Figure 4.2. A one to one mapping between this NNIG

network and NNIG Verilog netlist is explained in Figure 4.7.

Figure 4.2: A NNIG example for a circuit with functionality (((c+ d)Xa)Xb)

The description of such a circuit in BLIF is shown in Figure 4.3. This NNIG network

is converted to a NNIG netlist in Verilog using NNIG2Net as shown in top right side of

the figure. The Verilog netlist is shown in Figure 4.4.

On performing RTL simulation on this Verilog design using VCS, a commercial tool

from Synopsys, SAIF files are obtained. The probabilities in the set P of PTNNIG are

derived from these SAIF files [57]. SAIF files contain information such as the switching

activities for all the nodes of the digital circuit. Switching activity of a node in a digi-

tal circuit is highly dependent on the circuit inputs of the current clock cycle and the

previous clock cycle. It indicates the number of times a particular circuit node switches

from 0 − 1 and from 1 − 0 in a given clock cycle. SAIF files begin with a header and

contain a set of activity metrics such as T0, T1, TX, TC, TS and DUR for each circuit

32

.model ptnnig

.inputs a b c d

.outputs e

.names a b c d e

1101 1

1110 1

1111 1

.end

Figure 4.3: BLIF file of the circuit representing the logic function ab(c+ d)

module ptnnig (a, b, c, d, e);

input a, b, c, d;

output e;

wire n5, n6, n7, n8;

NR2D0HVT U6 (.A1(c), .A2(d), .ZN(n8));

NR2D0HVT U7 (.A1(n5), .A2(n6), .ZN(e));

INVD0HVT U8 (.I(b), .ZN(n5));

ND2D0HVT U9 (.A1(a), .A2(n7), .ZN(n6));

INVD0HVT U10 (.I(n8), .ZN(n7));

endmodules

Figure 4.4: Verilog file of the circuit representing the logic function ab(c+ d)

node.

• T0, T1 and TX represent the total time spent at logic 0, 1 and X respectively.

• TC represents the total number of logic transitions (0 to 1 and 1 to 0).

• TS represents the SAIF header ‘TIMESCALE’ field.

• DUR represents the SAIF header ‘DURATION’ field.

Hence the p1 values for the probability set P are defined as:

p1 =
T1

T
(4.1)

33

where the simulation duration T is defined as

T = TS ∗DUR (4.2)

Using the one-to-one mapping, switching probabilities p1 for P for each circuit node

is obtained from the SAIF file and mapped to each node of the NNIG network obtained

from DSM.

Similarly, according to Figure 4.7, the delay values in the set T are obtained from the

Standard Delay Format (SDF) files [58]. The SDF files are generated using PrimeTime

from Synopsys.

The SDF files are used for the representation and interpretation of delay data used

at any stage of the logic synthesis. It includes path delays, delay constraint values

and interconnect delays for each of the cells. The files contain the cell names used

in the mapping along with the individual delays from each input-output path of the

corresponding cells. The term IOPATH represents the path referenced to, followed by

the worst case and the best case values at rising edge, which is then followed by the

worst case and the best case values at falling edge. The falling edge delay for each cell

of the netlist defined as tf is mapped on each node of the NNIG network and hence the

delay set T is defined.

The corresponding SAIF and SDF files of the Verilog design are generated and shown

in Figure 4.5 and Figure 4.6 respectively. Only parts of the SAIF and SDF files are

shown.

P and T are sets containing p1 and tf information of each circuit node respectively.

The p1 and tf for the set P and T respectively are hence obtained from the SAIF and

SDF files by one-to-one mapping. The conversion from NNIG to PTNNIG is described

in the Figure 4.7. The final PTNNIG is shown in the bottom left side of the Figure

4.7. On each node of the PTNNIG network, the probability and delay parameters P

and T are shown. p1 is a probability value hence less than 1 and tf is measured in

nanoseconds.

4.6 Experimental Results for PTNNIG

Power estimation using the academic EDA tool SIS allows the user to input a file

with specifications of input probabilities, node capacitances and node delays of the

34

........

(e

(T0 18081) (T1 1919) (TX 0)

(TC 127) (IG 0)

)

(n5

(T0 16820) (T1 3180) (TX 0)

(TC 126) (IG 0)

)

(n6

(T0 1920) (T1 18080) (TX 0)

(TC 191) (IG 0)

)

.........

Figure 4.5: SAIF

circuit. We have named this file as SA file. In our experiments for power estimation,

the probability values of primary inputs and primary outputs are annotated in the SA

file. The C tool, SAIF2SIS [41] reads the relevant switching activity information from a

SAIF file, calculates p1 ∈ P using Equation 4.1 and allows to specify these probabilities

of the primary inputs and primary output in the SA file. For inputs, BLIF files of 10

combinational MCNC benchmark circuits are taken. Power estimation results in µW

against a BLIF file and an optimised BLIF file obtained from the tool DSM are shown in

Table 4.3. Same SA file is used with both the BLIF files. The clock frequency is 20 MHz

and Vdd is 5 Volts for power estimation. The NNIG network corresponding to the BLIF

file obtained from the DSM tool used in these results can be referred as the PTNNIG,

with probability parameter annotated through the SA file and delay parameter assumed

zero assuming the zero-delay model. From the results, it is concluded that the power

dissipation is less in the case of BLIF files obtained from the tool DSM. The average

reduction in the estimated power is 16.7%.

35

.........

(CELL

(CELLTYPE“ND2D0HVT”)

(INSTANCE U9)

(DELAY

(ABSOLUTE

(IOPATH A1 ZN (0.010::0.023)

(0.011::0.031))

(IOPATH A2 ZN (0.013::0.032)

(0.014::0.041))

)

)

)

(CELL

(CELLTYPE “INVD0HVT”)

(INSTANCE U8)

(DELAY

(ABSOLUTE

(IOPATH I ZN (0.009::0.022)

(0.006::0.015))

)

)

)

...........

Figure 4.6: SDF

4.7 Conclusions

This chapter presented a tool to build optimised NNIG networks of digital circuits within

ABC. From the results, we obtained an average power reduction of 22.06% with NNIG

networks while compared to AIG networks. An average power reduction of 17.69% on

BLIF files from DSM compared to BLIF files from ABC tool, was also obtained. The

36

Figure 4.7: Mapping of Probability and Delay issues on PTNNIGs

node probabilities for power estimation are introduced in SIS using an integrated design

flow as used in Chapter 3, Section 3.5. This implies that NNIG logic data structures

can be used for enabling low power logic designs.

This chapter also introduces briefly the concept of concurrent power and delay op-

timisation. In the context of a unified framework for power and delay analysis and

optimisation, the new data structure PTNNIG is presented which represents the func-

tionality of any digital design along with switching activity and delay as parameters

on each node of PTNNIG. Such data structures will also help us to apply a statistical

37

Table 4.3: Power estimation against BLIF and optimised BLIF

Circuit BLIF optimised BLIF % power difference

- (µW) (µW) -

b1 29.30 23.40 -20.05%

cm85a 126.40 119.30 -5.61%

cm162a 125.20 116.60 -6.90%

cmb 126.70 117.50 -7.38%

pm1 143.70 108.10 -24.79%

x2 143.40 121.70 -15.12%

mux 195.30 115.70 -40.72%

cc 217.00 206.70 -4.74%

b9 212.50 148.40 -30.21%

c8 497.40 414.40 -16.77%

approach to the power analysis with constraints on delay parameter, similarly a statis-

tical approach to delay analysis with constraints on switching activity parameter. Such

constraints will allow us to obtain delay-aware power optimisation and power-aware

delay optimisation. Although our major work of synthesis and optimisation of digital

circuits (in terms of dynamic power and delay) is based on AIGs implemented in ABC,

as it will be discussed in the next chapters, the introduced PTNNIG structure gave the

motivation to achieve our main objective of the thesis i.e. power-driven delay optimi-

sation and delay-driven power optimisation. In the next chapter, we work on AIGs for

the estimation and optimisation of dynamic power and delay of a digital logic circuit.

Further, various reordering rules for delay-driven power optimisation and power-driven

delay optimisation are introduced on AIGs.

38

Chapter 5

Power and delay estimation and

optimisation on AIGs

With the advent of wireless communication and portable devices, energy efficiency has

become a major constraint in digital circuit design. Tight energy constraints are com-

mon place in many modern VLSI applications. The energy dissipated, often referred

as the power-delay product, is the product of power dissipation and the input-output

delay. In this chapter, dynamic power and longest path delay of a digital logic combina-

tional circuit are estimated and optimised. The logic synthesis and optimisation is based

on AND-Inverter Graphs (AIGs) which capture the functionality of the circuit. The

switching power and arrival times of circuit nodes are annotated onto a AND-Inverter

Graph under the zero and a non-zero-delay model. We introduce several reordering and

restructuring rules which are applied on the AIG nodes to minimise switching power

or longest path delay of the circuit at the pre-technology mapping level. The aca-

demic Electronic Design Automation (EDA) tool ABC is used for the manipulation of

AND-Inverter Graphs.

5.1 Introduction

In recent years, power dissipation and delay are being given increased importance in

digital design. Average power dissipation in digital CMOS circuits can be expressed

as the sum of three main components Pshort−circuit, Pleakage and Pswitching, as stated

in Chapter 3. Pswitching is the switching power dissipation, also called the dynamic

39

power, and is given by Equation 3.1 of Chapter 3. The switching power is proportional

to α the switching activity factor (also called transition probability), Cl the overall

capacitance to be charged and discharged in a reference clock cycle, Vdd the supply

voltage and fclk the clock frequency. Given the supply voltage and clock frequency, the

product of capacitive load and switching activity factor can give an estimate of dynamic

power dissipation (as illustrated in Equation 3.1). In this chapter we have estimated

this product using AIGs. We have also estimated longest path delay of the network for

delay optimisation by assuming a non-zero-delay model.

Our power optimisation method is based on AIGs. AIGs offer a much compact

representation of the same circuit than BDDs. Further, it is difficult to incorporate

delay information in BDDs which restricts them to power optimisation only. However

AIGs allow to map the delay information along with the switching probability. In

addition to that, formal verification and technology mapping is easier in AIGs owing

to its simple and flexible structure. Hence power and delay analysis and optimisation,

both are possible using such data structures.

The remainder of the chapter is organised as follows. Section 5.2 presents switching

power estimation on AIG nodes under the zero-delay model. Section 5.3 presents longest

path delay (critical path length of the network) and switching power estimation under

a non-zero-delay model. Section 5.4 presents four reordering rules which are used to

reduce the switching power of the AIG network. Similarly Section 5.5 presents three

reordering rules used in the reduction of critical path length of the network. Finally

concluding remarks are given in Section 5.6.

5.2 Switching probability estimation under the zero-delay

model

The functionality of the digital logic circuit is structurally represented as an AIG net-

work and switching probability is estimated on each of the AIG nodes. The switching

probability estimation method on each of the AIG nodes used in our work is based on

the technique used in [38]. For this estimation, circuit input signals are assumed to

be statistically uncorrelated and completely independent. The zero-delay model is as-

sumed, that is all gate output evaluations occur instantaneously. Consider a sub-graph

40

of an AIG shown in Figure 5.1, with AND nodes a, b and c. The node c has 2 inputs

(fanins) namely nodes a and b. The functionality at node c is denoted as c = ab.

Figure 5.1: AIG of logic function ab

The probability of a node c denoted as P (c) is the probability that c has a value of ‘1’

at some arbitrary time of observation. Similarly P (c′) denotes the probability that c has

a value of ‘0’ at some point of time. Consider the node c having the probability P (c) and

probabilities P (a) and P (b) for the corresponding inputs a and b and the functionality

given by c = ab. The switching probability Psw(c) of c is to be determined. Switching

occurs if and only if the value of c changes from ‘0’ to ‘1’ or ‘1’ to ‘0’, at two different

time of observation. The output c is ‘1’ when both inputs are ‘1’.

P (c) = P (a)P (b) (5.1)

The output c is ‘0’ when either one or both inputs are ‘0’.

P (c′) = (1− P (a))P (b) + P (a)(1− P (b)) + (1− P (a))(1− P (b)) (5.2)

Consider the value of c at two different observation times ct1 and ct2. If the value

of c at those instants is not the same, c is considered to switch. For more details refer

[38]. Hence the switching probability Psw(c) of c is:

Psw(c) = P ((ct1 = 0) ∩ (ct2 = 1)) + P ((ct1 = 1) ∩ (ct2 = 0)) (5.3)

Psw(c) = 2P (a)P (b)(1− P (a)P (b)) (5.4)

41

Using the equation above, the switching probability on each of the AIG nodes can be

calculated if the probabilities of the primary inputs of the AIG are known. As stated

in Equation 3.1 of Chapter 3, given Vdd and fclk the dynamic power is the product of

switching activity factor and capacitive load. In our case, switching power at each node

is the product of switching probability calculated at each node times the capacitive load

at each node. The fanout at a given nodes is assumed to be the measure of capacitive

load at that given node. Consider an AIG network of functionality f with n AND nodes

namely N1, N2,.....,Nn and fanout F1, F2,.....,Fn at each of the nodes respectively. Let

Psw(N1) denotes the switching probability at node N1, Psw(N2) denotes the switching

probability at node N2 etc. The total switching power of this AIG network denoted as

SP (f) is given by:

SP (f) = Psw(N1).F1 + Psw(N2).F2 +Psw(Nn).Fn (5.5)

The switching power SP (f) is chosen as the parameter for dynamic power optimi-

sation.

5.3 Longest path delay and switching power estimation

under a non-zero-delay model

5.3.1 Longest path delay estimation

The circuit is structurally represented as an AIG graph and the longest path delay from

one of the inputs to one of the outputs of the network is calculated under a given delay

model. A non-zero-delay model (corresponding to the AIGs) is assumed which takes

into account the delay due to AND gates, inverters and the fanout. Consider the AIG

network shown in Figure 5.1 with three AND nodes namely a, b and c. The node c has

two fanins namely a and b representing the functionality c = ab. The arrival time at

the output of the AND node c with inputs a and b can be calculated as follows. Let

tarr,a represent the arrival time at node a and tarr,b represent the arrival time at node

b. IND is the parameter accounting for the inverter delay. If there is no inversion edge

corresponding to that input, then IND is zero. td,c denotes the node delay at node

c. Finally FAND is the parameter to measure the fanout delay and Fc represents the

fanouts at node c. Let AT0 define the arrival time from fanin a to c and let AT1 define

42

the arrival time from fanin b to c, then:

AT0 = tarr,a + IND (5.6)

AT1 = tarr,b + IND (5.7)

tarr,c = max(AT0, AT1) + td,c + FAND.Fc (5.8)

In the example of Figure 5.1, IND is zero with respect to both the fanins and fanouts

of c. Fc is equal to one.

Once the delay model is fixed, the arrival time at each of the AIG nodes is calculated,

assuming arrival time of primary inputs to be zero. The maximum arrival time (longest

path delay) of the AIG network with functionality f (represented as MAT (f)) is used

for delay optimisation.

5.3.2 Dynamic power estimation under given delay model

The difference in arrival times of signals at a gate input (the difference in the arrival

times of the fanins at the AND node), leads to spurious or unwanted transitions, also

called glitches. These spurious transitions play a major role in dynamic power dissi-

pation. Based on the fanins’ arrival times and the delay of the node, time instants at

which a possible signal transition can occur have been calculated and associated with

each node of the graph. Let tsw,a denote a switching instant at node a.

The time parameter hence plays a critical role in the power dissipation estimation.

Hence, the exact description of a logic circuit shall include not only its logic behavior,

but also the time dependency among the logic signals. Furthermore, since the glitch

generation is strongly dependent on time, a modified Boolean function, which describes

the logic and delay behavior of each signal, is needed. This is called the Real Delay

Boolean Function (RDBF). For more details refer to [72] and [64]. The RDBF of each

signal is built using AIG. Consider the AIG of the logic function f = abc as shown in

Figure 5.2. The arrival time of the primary inputs namely a, b and c is assumed to be

zero.

The logic behavior of the node f is described in time domain by the following RDBF:

f = a(t− 5d)b(t− 5d)c(t− 3d) (5.9)

43

Figure 5.2: AIG of logic function abc

This equation implies that the function f is dependent on three input signals namely

a, b and c. Node a is at 5d delay from f , hence the term a(t−5d) is used in the equation.

Similarly, node b is also at 5d delay from f , hence the term b(t − 5d) is used in the

equation. Node c is at 3d delay from f , hence the term c(t−3d) is used in the equation.

The signal f will switch at two time instants then i.e. tsw,f = 3d and tsw,f = 5d. These

two time instants are actually the switching instants. The set of switching instants

of node f is denoted as Tsw,f . In an AIG network these switching instants can be

easily calculated by traversing the graph from lower levels to higher levels of the AIG

network. Associating the arrival times and node delays corresponding to each node of

the network, the switching instants can be calculated. Hence this method aims at a

series of switching activity calculations at certain switching time points. Let Psw,tsw,x(x)

denote the switching probability at node x at the switching instant tsw,x. The sum of

switching probabilities on all the switching instants of a given node is the total switching

probability at that node. Let N1 denotes one of the nodes of the AIG network and N1sp

denotes the total switching probability at node N1, given by the following equation.

44

N1sp =
∑

tsw,N1∈Tsw,N1

Psw,tsw,N1(N1) (5.10)

For the switching probability calculation, consider the node c with fanins a and b,

as in Figure 5.1. Let t1 be one of the switching instants of node c in Tsw,c and dt be a

small interval of time. Consider the value of c at two different observation times ct1 and

ct1+dt. If the value of c at those instants is not same, c is considered to switch. Hence

the switching probability Psw,t1(c) can be calculated as follows. Let the node delay at

c be td,c. Pt(a) is the probability of a being ‘1’ at time t.

Psw,t1(c) = P (ct1 = 0).P (ct1+dt = 1) + P (ct1 = 1).P (ct1+dt = 0) (5.11)

P (ct1 = 0) = 1− Pt1−td,c(a)Pt1−td,c(b) (5.12)

P (ct1+dt = 1) = Pt1+dt−td,c(a)Pt1+dt−td,c(b) (5.13)

P (ct1 = 1) = Pt1−td,c(a)Pt1−td,c(b) (5.14)

P (ct1+dt = 0) = 1− Pt1+dt−td,c(a)Pt1+dt−td,c(b) (5.15)

Design approaches, which take into account signal probability, show good results

with respect to power optimisation. Many methods have been presented which primarily

focus on the probabilistic behavior of the processed data, like bus encoding techniques

[1]. This technique exploits redundancy in the data transmitted on the bus. According

to the equations above, a probability profile or a waveform is needed corresponding to

each primary input, with respect to each bit of an n-bit bus used at every interval of

time. The Real Delay Boolean Function of each node is written in term of primary

inputs whose probability profiles are known (at each unit interval of time) and hence

switching probability is predicted.

Once the switching probability is estimated on each of the nodes, the switching power

at each node (which is the product of the switching probability and capacitive load at

that node) is estimated. Consider an AIG network of functionality f with n number of

AND nodes namely N1, N2,, Nn. Let N1(sp) denotes the total switching probability

at node N1, similarly for N2,.....,Nn. F1 represents the number of fanouts at node N1

etc. The total switching power of the circuit which is the sum of switching power at all

the nodes of the AIG network is given by:

45

SP (f) = N1(sp).F1 +N2(sp).F2 +Nn(sp).Fn (5.16)

The process of switching power calculation under a non-zero-delay model is slightly

complex than the method under the zero-delay model. However the results are more

accurate in this case due to consideration of unwanted and spurious transitions.

5.4 Reordering rules for power optimisation

So far we considered power estimation using AIGs. We consider the same graph struc-

ture for power optimisation as well. Work in [12] bases its synthesis and optimisation

method on AIGs. A set of local two-level rewriting rules on the AIG network for node

reduction is introduced. Similarly, work in [17] is based on two-level logic minimization

technique for low power-driven synthesis based on local transformations. Motivated by

these works, we introduced a set of low power-driven reordering rules to minimise the

switching power at the AIG nodes. Four reordering and rewriting rules namely Rp1,

Rp2, Rp3 and Rp4 are introduced which help us reduce the overall switching power

of the digital circuit structurally represented as an AIG network. These rules based

on swapping and interchanging of variables change the structuring of the AIG network

while maintaining the functionality using common rules of Boolean Algebra.

5.4.1 Rule Rp1

Consider an AIG network represented by a graph G(V,E) where V (vertices) is the set

of AND nodes and E is the set of edges which link the AND Nodes. Consider V1 in V .

Let F (V1) be the number of fanouts at node V1. Consider another node V2 in V such

that V1 is a fanin of V2. Let f((V1, V2)) represent the complement attribute from edge

V1 to V2 where (V1, V2) is in E. If there is no inversion on the edge (V1, V2), f((V1, V2))

is zero. And if there is an inversion on the edge (V1, V2), f((V1, V2)) is one. Rule Rp1

at node V1 is valid according to the following conditions:

• F (V1) = 1

• f((V1, V2)) = 0

If the above conditions are valid, then the fanin of node V2 other than V1 can be

swapped with the fanins of V1. This swapping does not affect the functionality of the

46

AIG network but may reduce the total switching power of the network.

The rule is based on the associative rule i.e. c×(a×b) = (c×a)×b which is explained

in Figure 5.3, showing a sub-graph of an AIG with AND nodes namely a, b, c, d and

e. Rule Rp1 is applied on node d as the above conditions are met i.e. F (d) = 1 and

f((d, e)) = 0. Hence the fanin of node e i.e. node c gets swapped with the fanins of

node d i.e. b. The functionality of node e does not change and since node d does not

have any other fanouts, the swapping does not affect the overall AIG network.

Figure 5.3: Rule Rp1 on AIG

Under a zero-delay model, due to the swapping of nodes and change in the fanins,

the switching power (SP (d)) at node d might decrease or increase. For this, cases are

made to direct the swapping of a particular node only when the switching power is

getting reduced. Denote the switching power at node d before swapping, when the

fanins of node d are nodes a and b, as SP (d)ab, switching power at node d on swapping

a and c (nodes b and c are the fanins of node d) as SP (d)bc and switching power at

node d on swapping b and c (nodes a and c are the fanins of node d) as SP (d)ac.

If (SP (d)ab is less than SP (d)bc) and (SP (d)ab is less than SP (d)ac), no swapping is

required.

If (SP (d)bc is less than SP (d)ab) and (SP (d)bc is less than SP (d)ac), swap nodes a and

c.

If (SP (d)ac is less than SP (d)ab) and (SP (d)ac is less than SP (d)bc), swap nodes b and

c.

47

The same conditions are applied in the rest of the rules, to direct that particular rule

application. An example for Rule Rp1 explanation is presented below.

Consider P (a) = 0.2, P (b) = 0.6 and P (c) = 0.4. The switching probability SP (f)ab

at node d before swapping (i.e. when nodes a and b are the fanins of node d) (using the

Equation 5.4) is:

SP (d)ab = 0.1056 (5.17)

The switching probability SP (d)ac at node d after swapping nodes b and c (i.e. when

nodes a and c are the fanins of node d) (using the Equation 5.4) is:

SP (d)ac = 0.073 (5.18)

The switching power at node d reduces by 30%. The estimations are made under a

zero-delay model.

Under a non-zero-delay model, not only the fanins but the arrival times and switching

instants at nodes d, e and the rest of the nodes change due to swapping. After each

swap the arrival times for the rest of the nodes are updated and new switching instants

are calculated as described in the previous sections. The switching power at node d

and node e might decrease or increase, due to changes in the fanins and changes in the

switching instants. Consider t1 to be the switching instant at node d before swapping

and t2 be the switching instant at node d after swapping. Consider nodes a and c to

be the fanins of node d now. Let the delay at node d be td,d. The initial and final

switching probabilities at node d namely Psw,t1(d) and Psw,t2(d) are as follows:

Psw,t1(d) = P (dt1 = 0).P (dt1+dt = 1) + P (dt1 = 1).P (dt1+dt = 0) (5.19)

P (dt1 = 0) = [1− Pt1−td,d(a)Pt1−td,d(b)] (5.20)

P (dt1+dt = 1) = Pt1+dt−td,d(a)Pt1+dt−td,d(b) (5.21)

P (dt1 = 1) = Pt1−td,d(a)Pt1−td,d(b) (5.22)

P (dt1+dt = 0) = [1− Pt1+dt−td,d(a)Pt1+dt−td,d(b)] (5.23)

Psw,t2(d) = P (dt2 = 0).P (dt2+dt = 1) + P (dt2 = 1).P (dt2+dt = 0) (5.24)

P (dt2 = 0) = [1− Pt2−td,d(a)Pt2−td,d(c)] (5.25)

48

P (dt2+dt = 1) = Pt2+dt−td,d(a)Pt2+dt−td,d(c) (5.26)

P (dt2 = 1) = Pt2−td,d(a)Pt2−td,d(c) (5.27)

P (dt2+dt = 0) = [1− Pt2+dt−td,d(a)Pt2+dt−td,d(c)] (5.28)

Psw,t1(d) = [1− Pt1−td,d(a)Pt1−td,d(b)]

Pt1+dt−td,d(a)Pt1+dt−td,d(b) +

Pt1−td,d(a)Pt1−td,d(b)

[1− Pt1+dt−td,d(a)Pt1+dt−td,d(b)]

Psw,t2(d) = [1− Pt2−td,d(a)Pt2−td,d(c)]

Pt2+dt−td,d(a)(1− Pt2+dt−td,d(c)) +

Pt2−td,d(a)(1− Pt2−td,d(c))

[1− Pt2+dt−td,d(a)Pt2+dt−td,d(c)]

5.4.2 Rule Rp2

Consider the AIG network represented by a graph G(V,E) where V (vertices) is the set

of AND nodes and E is the set of edges which link the AND Nodes. Let the conditions

for Rule Rp1 be true and Rule Rp1 is being followed, such that V1 has different fanins

than before. There can be a case when there already exists a node V3 in V with the

same fanins and same functionality as that of V1. Nodes V1 and V3 become redundant

and one of the nodes gets removed. Due to reduction of a node, the total switching

power of the network decreases. Let func(V1) denote the functionality at node V1. Let

func(V3) denote the functionality at node V3. Rule Rp2 at node V1 is valid according

to the following conditions:

• F (V1) = 1

• f((V1, V2)) = 0

• func(V1) = func(V3)

49

If the above conditions are valid, then one of the redundant nodes between V1 and

V3 is removed from the graph G(V,E). Hence with no change in the functionality, one

of the nodes gets removed from the AIG network followed by reduction in switching

power.

The rule is explained in Figure 5.4, showing sub-graph of an AIG with AND nodes

namely a, b, c, d, e and f . Rule Rp2 is applied on node d as the above conditions are

met i.e. F (d) = 1, f((d, e)) = 0 and func(d) = func(f). Hence the fanin of node e

i.e. node c can be swapped with the fanin of node d i.e. b. The functionality of node e

does not change and since node d does not have any other fanouts, the swapping does

not affect the overall AIG network. Node d has fanins a and c. There already exists a

node f with same fanins a and c and same functionality as that of node d. Hence node

f is removed from the graph. The total switching power of the network gets reduced as

the switching power at the redundant node (removed from the network) is not counted.

Such swapping of nodes reduces the overall switching power of the AIG network and

also reduces the number of nodes.

Figure 5.4: Rule Rp2 on AIG

50

5.4.3 Rule Rp3

Consider an AIG network represented by a graph G(V,E) where V (vertices) is the set

of AND nodes and E is the set of edges which links the AND Nodes. Consider V1 and

V3 in V . Let F (V1) be the number of fanouts at node V1. Let F (V3) be the number of

fanouts at node V3. Consider another node V2 in V such that V1 and V3 are the fanins

of V2. Let f((V1, V2)) represent the complement attribute from edge V1 to V2 where

(V1, V2) is in E. Similarly, let f((V3, V2)) represent the complement attribute from edge

V3 to V2 where (V3, V2) is in E. If there is no inversion on the edge (V1, V2), f((V1, V2))

is zero. And if there is an inversion on the edge (V1, V2), f((V1, V2)) is one. Rule Rp3

at nodes V1 and V3 combine is valid according to the following conditions:

• F (V1) = 1

• F (V3) = 1

• f((V1, V2)) = 0

• f((V3, V2)) = 0

If the above conditions are valid, then the fanins of node V1 can be swapped with the

fanins of V3. This swapping does not affect the functionality of the AIG network but

may reduce the total switching power of the network.

Rule Rp3 is based on the associative rule with four variables i.e. (a × b) × (c ×

d) = a × (b × c) × d and the commutative rule i.e. a × b = b × a. This implies that

(a × b) × (c × d) = a × (b × c) × d = a × (c × b) × d = (a × c) × (b × d). Rule Rp3 is

explained in Figure 5.5 showing a part of an AIG network with AND nodes namely a,

b, c, d, e, f and g. Rule Rp3 is applied on node e and f as the above conditions are

met i.e. F (e) = 1, F (f) = 1, f((e, g)) = 0 and f((f, g)) = 0. Hence the fanin of node e

i.e. node b can be swapped with the fanin of node f i.e. c. The functionality of node g

does not change and since node e and f does not have any other fanouts, the swapping

does not affect the overall AIG network.

In the Figure 5.5, on swapping nodes b and c, nodes b and d are the fanins of

node f , and nodes a and c are the fanins of node e. This swapping creates redundant

nodes which can be removed from the graph. On the other hand, consider SP (e)ab and

SP (f)cd as the switching probability at node e and f respectively before swapping. If

51

Figure 5.5: Rule Rp3 on AIG

nodes a and c are swapped, consider SP (e)bc and SP (f)ad as the switching probability

at node e and f respectively after swapping nodes a and c. There can be a case when

SP (e)ab + SP (f)cd is greater than SP (e)bc + SP (f)ad. In that case, switching power

is getting reduced. Hence Rule Rp3 actually combines the options available by rules

Rp1 and Rp2. An example for Rule Rp3 implementation (under zero-delay model) is

presented below.

Consider P (a) = 0.7, P (b) = 0.3, P (c) = 0.4 and P (d) = 0.2. The switching power

SP (e)ab at node e before swapping (i.e. when nodes a and b are the fanins of node e)

is:

SP (e)ab = 0.3318 (5.29)

The switching power SP (f)cd at node f before swapping (i.e. when nodes c and d are

the fanins of node f) is:

SP (f)cd = 0.1472 (5.30)

The switching power SP (e)bc at node e after swapping (i.e. when nodes b and c are the

fanins of node e) is:

SP (e)bc = 0.2112 (5.31)

52

The switching power SP (f)ad at node f after swapping (i.e. when nodes a and d are

the fanins of node f) is:

SP (f)ad = 0.2408 (5.32)

The sum of the switching power at nodes e and f before swapping is:

SP (e)ab + SP (f)cd = 0.479 (5.33)

The sum of the switching power at nodes e and f after swapping is:

SP (e)bc + SP (f)ad = 0.452 (5.34)

The switching power gets reduced by 5.6%.

Under a non-zero-delay model, this swapping changes the arrival times, switching

instants and hence switching power at nodes e, f , g and the rest of the nodes as well.

After every swap the arrival times and switching instants has to be updated. Due

to change in the fanins and switching instants, the switching power at various nodes

change without changing the functionality. The present and the final sum of switching

power need to be compared for the implementation of Rule Rp3. The swapping is not

affecting the overall AIG network, however the swapping has the potential to either

reduce the switching power or find redundant nodes which can be removed from the

graph. Hence Rule Rp3 actually combines the options available by the rules Rp1 and

Rp2.

5.4.4 Rule Rp4

Consider an AIG network represented by a graph G(V,E) where V (vertices) is the set

of AND nodes and E is the set of edges which links the AND Nodes. Consider V1 in V .

Let F (V1) be the number of fanouts at node V1. Consider another node V2 in V such

that V1 is a fanin of V2. Let f((V1, V2)) represent the complement attribute from edge

V1 to V2 where (V1, V2) is in E. If there is no inversion on the edge (V1, V2), f((V1, V2))

is zero. And if there is an inversion on the edge (V1, V2), f((V1, V2)) is one. Rule Rp4

at node V1 is valid according to the following conditions:

• F (V1) = 1

• f((V1, V2)) = 1

53

If the above conditions are valid, then the fanin of node V2 other than V1 is swapped

with one of the fanins of V1. A new node V3 in V is also created with one of the fanins of

V1 and one of the fanins of V2 following the distributive rule such that the functionality

of the network does not change. This swapping creates an extra node but does not

affect the functionality of the AIG network. The switching power may get reduced even

after increment of a node.

The rule is based on the distributive rule i.e. a × (b + c) = (a × b) + (a × c) and

De Morgan’s Theorem i.e. (a′ × b′)′ = a + b and (a′ + b′)′ = a × b. This implies that

(a′× b′)′× c = (a+ b)× c = (a× c)+ (b× c) = [(a× c)′× (b× c)′]′. The rule is explained

in Figure 5.6, showing a part of an AIG network with AND nodes namely a, b, c, d and

e. Rule Rp4 is applied on node d as the above conditions are met i.e. F (d) = 1 and

f((d, e)) = 1. In this case, e = (a′ ∗ b′)′ ∗ c as (a∗ c)+(b∗ c) can be written following the

distributive rule. So an extra AND node f is created with fanins b and c, while node

d has fanins a and c. Rule Rp4 increases the node count by one but may reduce the

switching power of the network significantly. Under a non-zero-delay model, the new

node has the same node delay as that of node d.

Figure 5.6: Rule Rp4 on AIG

54

These four rules (for switching power reduction) are applied on each of the AIG

nodes, depending upon the conditions for the applicability of the rules. After each rule

application, the switching power SP (f), the critical path length MAT (f) and the total

area might change.

5.5 Reordering rules for delay optimisation

We have introduced three reordering and rewriting rules namely Rd1, Rd2 and Rd3

which help us reduce the overall longest path delay of the digital circuit structurally

represented as an AIG network. These rules are also based on swapping and interchang-

ing of variables which change the structuring of the AIG network while maintaining the

functionality.

5.5.1 Rule Rd1

Rule Rd1 states that the last arriving signal (fanin with maximum arrival time) in an

AIG tree must be closer to the output, or closer to the root node of a sub-graph [61].

Consider an AIG network represented by a graph G(V,E) where V (vertices) is the set

of AND nodes and E is the set of edges which links the AND Nodes. Consider V1 in V .

Let F (V1) be the number of fanouts at node V1. Consider another node V2 in V such

that V1 is a fanin of V2. Also consider node V2 to be the root node of a sub-graph. Let

f((V1, V2)) represent the complement attribute from edge V1 to V2 where (V1, V2) is in

E. If there is no inversion on the edge (V1, V2), f((V1, V2)) is zero. And if there is an

inversion on the edge (V1, V2), f((V1, V2)) is one. Rule Rd1 at node V1 is valid according

to the following conditions:

• F (V1) = 1

• f((V1, V2)) = 0

If the above conditions are valid, then the fanin of node V2 other than V1 and the fanins

of node V1 are compared and swapped among each other such that the last arriving

signal coming from these fanins is collapsed to the root node of this sub-graph which

is node V2. This rearrangement reduces the arrival time at the root node V2 and hence

reduces the longest path delay of the whole network. The functionality of the network

55

does not change if the above conditions are valid.

Rule Rd1 is explained in Figure 5.7, showing a part of an AIG network with AND

nodes namely a, b, c, d and e. Rule Rd1 is applied on node d as the above conditions

are met i.e. F (d) = 1 and f((d, e)) = 0. In this case, the fanins of node d and e are

compared. Hence the arrival times of a, b and c are compared. Node b has the highest

arrival time among the three signals. Hence the signals are rearranged at this level such

that the last arriving signal i.e. b is collapsed to the root node of this sub-graph i.e. e,

this implies that now node b is the fanin of the root node e. This rearrangement is not

changing the functionality of the network but reduces the arrival time at e and hence

the longest path delay MAT (f) of the network.

Figure 5.7: Rule Rd1 on AIG

In Figure 5.7, let the arrival time at nodes a, b, c, d and e be 4, 10, 6, 14 and 18

respectively. All the AND nodes have delay of 4. After Rule Rd1, the arrival times at

nodes a, b, c, d and e are 4, 10, 6, 10 and 14 respectively, using Equation 5.8. The

arrival time at node e is reduced from 18 to 14 on the application of Rule Rd1.

5.5.2 Rule Rd2

Rule Rd2 is based on AIG node duplication [15]. Consider an AIG network represented

by a graph G(V,E) where V (vertices) is the set of AND nodes and E is the set of edges

which links the AND Nodes. Consider V1 in V . Let F (V1) be the number of fanouts at

node V1. Rule Rd2 at node V1 is valid according to the following conditions:

56

• F (V1) > 1

If the above condition is valid, then node V1 is duplicated and another node V2 in V

is created. Both nodes V1 and V2 have the same fanins and same functionality. Node

V2 has one of the fanouts of node V1. Due to this duplication, the fanouts at node V1

decreases. This reduction in the fanouts reduces the arrival time at node V1 according

to Equation 5.8. This duplication of a node increases the node count by one but can

reduce the arrival time at V1 and hence the longest path delay of the network. The

reduction in the arrival time is explained in the following example.

Rule Rd2 is explained in Figure 5.8 showing a sub-graph of an AIG with AND nodes

namely a, b, c, d, e, f and g. Rule Rd2 is applied on node c as the above condition is

valid i.e. F (c) > 1. According to Equation 5.8, the arrival time on a node is directly

proportional to the number of fanouts at that node. Hence if we reduce the number of

fanouts at a given node, the arrival time of that node decreases. The same concept is

applied in this rule. To reduce the number of fanouts at c, node c is duplicated as node

d. Node d has the same node delay, same fanins and same functionality as that of node

c. One of the fanins of node c i.e. e is linked as fanout of node d. This duplication is

not changing the functionality, may lead to a slight area increase but can bring about

some significant reduction in delay at node c. The delay at node c always decreases due

to decrease in the number of fanouts at that node.

In the Figure 5.8, node c with three fanouts e, f and g. Consider the arrival time

at node c to be x + FAND.F (c), where x = 10 , FAND = 2 and F (c) = 3, hence

according to Equation 5.8, tarr,c = 16. Once node c is duplicated with a new node d

having the same fanins as node c, the arrival times at node c and d become 14 and 12

respectively. This is caused by the reduction in the number of fanouts. Eventually, c

has two fanouts and d has one fanout.

5.5.3 Rule Rd3

Rule Rd3 combines the use of Rule Rd1 and Rd2 in one step. Consider an AIG network

represented by a graph G(V,E) where V (vertices) is the set of AND nodes and E is

the set of edges which links the AND Nodes. Consider V1 in V . Let F (V1) be the

number of fanouts at node V1. Consider another node V2 in V such that V1 is a fanin

of V2. Consider another node V3 in V such that V1 is a fanin of V3. Let f((V1, V2))

57

Figure 5.8: Rule Rd2 on AIG

represent the complement attribute from edge V1 to V2 where (V1, V2) is in E. If there

is no inversion on the edge (V1, V2), f((V1, V2)) is zero. And if there is an inversion on

the edge (V1, V2), f((V1, V2)) is one. Let f((V1, V3)) represent the complement attribute

from edge V1 to V3 where (V1, V3) is in E. Rule Rd3 at node V1 is carried out in three

steps, with initial conditions as follows:

• F (V1) > 1

If the above condition is valid, node V1 is duplicated as V4 in V (following Rd2). Node

V4 gets linked to one of the fanouts of node V1 say V3 which implies F (V4) = 1. The

second step is carried out with the following conditions:

• f((V4, V3)) = 0

If the above condition is valid then the fanin of node V3 other than V4 and the

fanins of node V4 are compared and swapped among each other (following Rule Rd1).

The last arriving signal coming from these fanins is collapsed to the root node of this

sub-graph which is node V3 (following Rd1). This rearrangement reduces the arrival

time at the root node V3 and hence reduces the longest path delay of the whole network.

The functionality of the network does not change if the above conditions are valid. The

third step is carried out with the following conditions:

58

• F (V1) = 1

• f((V1, V2)) = 0

If the above conditions are valid then the fanin of node V2 other than V1 and the

fanins of node V1 are compared and swapped among each other such that the last

arriving signal coming from these fanins is collapsed to the root node of this sub-graph

which is node V2 (following Rd1). This rearrangement reduces the arrival time at the

root node V2 and hence reduces the longest path delay of the whole network. The

functionality of the network does not change if the above conditions are valid.

Rule Rd3 is explained in Figure 5.9 showing a sub-graph of an AIG with AND nodes

namely a, b, c, d, e, f , g and h. The first step of node duplication is applied on node c as

the above condition is valid i.e. F (c) > 1. A new node d is created with same fanins as

that of c namely a and b. Node d has node e as its fanout. The second step of swapping

signals on the duplicated node d is applied as the condition f((d, e)) = 0 is valid. The

signals a, b and g are rearranged such that the last arriving signal is collapsed closer

the root node of this sub-graph which is node e (also stated in Rule Rd1). In the Figure

5.9, the arrival time at a, b and g are 6, 10 and 14 respectively. Signal b is collapsed

with the root node e since it is the last arriving signal. The third step is also valid as

the conditions F (c) = 1 and f((c, f)) = 0. The signals a, b and h are rearranged such

that the last arriving signal is collapsed closer the root node of this sub-graph which is

node f (as stated in Rule Rd1). In the Figure 5.9, the arrival time at a, b and h are

6, 10 and 14 respectively. Signal h is the last arriving signal which is collapsed with

the root node f already. The functionality of the network does not change with any of

the above transformations. However the rule helps in some significant reduction in the

longest path delay (MAT (f)) of the network.

5.6 Conclusions

In this chapter, we have introduced a set of reordering rules for power and delay opti-

misation. The synthesis and optimisation method is based on AIGs. The digital logic

circuit is structurally represented as an AIG network and switching power and longest

path delay of the circuit is estimated on this network. The rules are applied on each

of the AIG nodes. However there are two issues which have to be discussed with these

59

Figure 5.9: Rule Rd3 on AIG

rules and they are discussed in the next chapter. Firstly if more than one rule is pos-

sible on a given node, then to decide which rule is most beneficial for the power and

delay optimisation, various algorithms are introduced in the next chapter. Secondly

since the goal of our thesis is delay-driven power optimisation and power-driven delay

optimisation, the rules must account for the increase in delay with every decrease in

switching power and similarly the increase in power with every decrease in longest path

delay. In the next chapter, we discuss various algorithms and techniques which are used

in our work for the rule implementation on the AIG nodes. We used these algorithms

to get better optimisation results and for the implementation of power-driven delay

optimisation and delay-driven power optimisation.

60

Chapter 6

Implementation of reordering

rules for power and delay

optimisation

The previous chapter introduces a set of reordering rules for power and delay optimi-

sation. This chapters presents the implementation of the introduced rules. Initially

our method only targeted low power optimisation schemes. This implies decreasing the

switching power (SP (f)) with no constraints on the longest path delay (MAT (f)) of

the network. According to the conditions for the applicability of any rule, if all the

four rules of power optimisation namely Rp1, Rp2, Rp3 and Rp4 are possible on a given

node, then the rule which gives maximum reduction of switching power is chosen. Same

applies when any three rules are possible on a given node. The rules applied in this

method may decrease the switching power greedily but may increase the MAT (f) of

the network largely. The algorithm applied in this implementation is a Greedy Algo-

rithm [32] i.e. the rules are applied recursively at locally optimal AIG nodes until the

minimal sum of switching power is achieved. The optimisation scheme proposed in this

method is local and more emphasis will be on global and multi-objective optimisation in

the further optimisation schemes. Also Greedy Algorithm may not always yield global

optimisation. This implies that if at each step we choose the locally optimal node (i.e.

the local node which gives maximum reduction in switching power on the application of

the reordering rules), then it may not always give the global minimum. Hence, we intro-

61

duced optimisation schemes which firstly do not stuck at local minimum and secondly

they look globally into the AIG network to find an order or sequence of nodes in which

the rules have to be applied such that it gives better results than Greedy Algorithm.

In Section 6.1, implementation of low power reordering rules (introduced in the pre-

vious chapter) under Greedy Algorithm is shown. Section 6.2 shows some simulation

results on the application of the reordering rules on few benchmark circuits using a new

tool AIG2Net. Section 6.3 introduces the concept of delay-driven power optimisation

and power-driven delay optimisation. We introduce a new tool OPT-PT implemented

as a sub-package in ABC for multi-objective optimisation of power and delay. Section

6.4 introduces the application of Simulated Annealing in multi-objective optimisation

of power and delay. Section 6.5 introduces the application of Uniform Cost Search

Algorithm for global search within the AIG network for reduced power and delay val-

ues. Finally, section 6.6 gives concluding remarks on the various optimisation schemes

introduced in this chapter.

6.1 Implementation of low power optimisation rules using

Greedy Algorithm

We have introduced a tool called RESWITCH implemented in C as a sub-package in

ABC. The tool does power optimisation using the four rules of power optimisation. The

RESWITCH tool takes a set of MCNC Benchmark circuits as inputs. The BLIF file

of such a circuit is taken and converted to an AIG network in ABC. The AIG network

is then synthesised and optimised in ABC using one of the best synthesis script resyn.

This script is used for reducing the network complexity in terms of AIG nodes. In this

script, the series of synthesis commands are balancing, rewriting, rewriting with zero

cost replacement, balancing, rewriting with zero cost replacement and balancing.

These synthesis commands are used for the reduction of nodes and complexity. Af-

ter the application of the synthesis script, the switching power is estimated on each

of the AIG nodes as mentioned in subsection 5.3.2, using Equation 5.16 followed by

the RESWITCH application. The RESWITCH tool gives power optimised circuit as

output. Table 6.1 presents the overall decrease in the sum of the switching power of the

nodes. It also specifies the decrease in the number of nodes of the AIG network. In the

62

table, SP (f)b and SP (f)a stand for switching power sum before and after the applica-

tion of RESWITCH (again estimated using Equation 5.16). NCb and NCa stand for

node count (AIG nodes in the AIG network) before and after the RESWITCH applica-

tion. △SP (f) is the change in switching power in percentage. △NC is the percentage

change in AIG node count. The overall decrease in the switching power is 14.90%.

Table 6.1: SP (f) without and with the application of rewriting rules Rp1, Rp2, Rp3

and Rp4

Circuit SP (f)b SP (f)a NCb NCa △SP (f) △NC

- (µW) (µW) - - - -

b1 2.56 2.32 10 10 -9.37% -

cc 12.67 10.47 51 53 -17.36% 3.90%

cm162a 6.57 5.73 33 34 -12.78% 3.02%

mux 15.40 13.24 81 83 -14.02% 2.54%

alu2 63.41 55.75 361 370 -12.00% 2.56%

alu4 117.97 101.53 657 675 -14.00% 2.78%

x2 7.53 6.30 45 47 -16.33% 4.49%

cmb 5.86 4.43 37 39 -23.37% 5.47%

6.2 Architecture and application of AIG2Net

The above results are estimated within ABC at pre-technology mapping level. Tech-

nology mapping refers to the final step of the logic synthesis and optimisation task.

In technology mapping, library gates are selected to realise the design that has been

structurally optimised, in our case by the four rewriting rules. We introduce a new tool

AIG2Net implemented in C. This tool converts the AIG network of each Benchmark

circuit obtained within ABC to a netlist form. The netlist is actually a technology

mapped design written in Verilog, which can be read and compiled in Design Compiler

DC. In this translation, each AND node of the AIG network is converted to 2-input

63

AND cell from a specific library. The complemented (inverted) edges are replaced by

inverter cells and non complemented edges are replaced by buffer cells. The names of

AIG nodes and edges to the netlist cells and wires respectively is also kept same. In

this way exact technology mapping of the AIG network to a AIG netlist (in Verilog) is

possible. Figure 6.2 shows a mapped Verilog AIG netlist of an AIG network represent-

ing functionality a(b+ c) obtained from AIG2Net. The corresponding AIG network of

functionality a(b+ c) is shown in Figure 6.1.

Figure 6.1: AIG of logic function a(b+ c)

With the netlist obtained, DC from Synopsys is used to report the power. For the

dynamic power dissipation, a user defined switching activity file SAIF is also provided.

The SAIF files are used and generated by various commercial tools. These files define

the switching activity of all the primary inputs, primary outputs and internal cells of

the netlist. A similar user defined SAIF file is created for the circuits specifying the

switching activity approximated as switching probabilities annotated at all the AND

nodes (replaced by AND cells). This SAIF file helps map the earlier calculated and min-

imised switching probabilities on the netlist for exact dynamic power estimation. Figure

6.3 shows a part of the user defined SAIF file given as an input to the netlist (shown

in Figure 6.2) for power calculation. This SAIF file specify the switching probabilities

estimated and optimised on the AIG network representing functionality a(b+ c).

64

module peg (a, b, c, f);

input a, b, c ;

output f ;

wire n2;

INVD0 U2z (.I(b), .ZN(n2));

wire n5;

AN2D0 U5 (.A1(n2), .A2(c), .Z(n5));

wire n5p5;

INVD0 U5z (.I(n5), .ZN(n5p5));

wire n6;

AN2D0 U6 (.A1(n2), .A2(n5p5), .Z(n6));

wire n6p6;

INVD0 U6z (.I(n6), .ZN(n6p6));

wire n7;

AN2D0 U7 (.A1(a), .A2(n6p6), .Z(n7));

BUFFD0 U4 (.I(n7), .Z(f));

endmodule

Figure 6.2: Mapped Verilog netlist of an AIG network

............................

set switching activity n2 -static prob

0.032000 -toggle rate 0.061952

set switching activity n5 -static prob

0.138807 -toggle rate 0.239079

set switching activity n6 -static prob

0.138807 -toggle rate 0.239079

...............................

Figure 6.3: User defined switching activity file for the netlist shown in Figure 6.2

65

6.2.1 Estimation/Optimisation Design Flow

For technology-mapped power results, the flow diagram as shown in Figure 6.4 is fol-

lowed. The input files are BLIF files. The BLIF format is the most common format used

in academic tools. The MCNC Benchmark circuits are read as BLIF files into ABC.

ABC converts this file into an AIG network. There are two sets of networks being com-

pared - the ABC-optimised AIG network and the corresponding RESWITCH-optimised

AIG network.

Figure 6.4: The design flow for power, delay and area estimation

The tool AIG2Net is used for the mapping of the AIG network to a Verilog netlist

using 2-input AND, NOT and buffer cells from the TSMC 65GP CMOS standard

cell library. Two sets of netlists are obtained - the ABC-optimised AIG netlist and

RESWITCH-optimised AIG netlist. A user-defined SAIF (as shown in the Figure 6.4)

is also provided with respect to the two networks. The SAIF file corresponding to the

ABC-optimised AIG netlist relates to the initial switching probabilities. The SAIF

file corresponding to the RESWITCH-optimised AIG netlist relates to the reduced

switching probabilities after applying the reordering rules. At the end of the process,

Synopsys Design Compiler (DC) is used for power, delay and area estimation on the

two netlists. Also the two networks’ netlists are verified for consistency by Synopsys

66

Formality.

The basis of comparison in the experimental results is as follows. All the power

estimations and optimisations are performed on an AIG network. Firstly, the AIG

network is optimised using the resyn script in ABC, which is the most efficient synthesis

script available for reducing complexity of the AIG network with respect to node count.

Secondly, the AIG network is optimised using our tool i.e. RESWITCH. The two

optimised AIG networks are converted to mapped Verilog netlists (consisting of 2-input

ANDs, Inverters and Buffer cells, still representing the same AIG network). Power

reports are then generated in Design Compiler (Synopsys) and the results are compared.

Circuits used are MCNC Benchmark circuits which are generally used in literature.

Table 6.2 presents few examples. Power results are in µW , corresponding to the AIG

netlist with and without RESWITCH. SP (f) stands for power. △SP (f) denotes the

change in the switching power.

After power optimisation and technology mapping of various MCNC Benchmark

Circuits, we obtained an average power reduction of 17.52%. AIG is used in our work

as it gives much more compact representation than BDD and it allows both delay and

power to be analysed and optimised, as dealt with in later sections of the chapter. The

technology mapping tool AIG2Net is fast, accurate and makes exact name mapping of

AIG network (nodes and edges) to the AIG netlist (cells and wires) possible. Use of

AIGs at this stage helped in easy and fast technology mapping for realistic observation.

6.3 Delay-driven power optimisation and power-driven de-

lay optimisation

In the previous section, we dealt with low power optimisation schemes using Greedy

Algorithm. However the impact of decrease in switching power on the longest path

delay is not considered. The main objective of our thesis is delay-driven power optimi-

sation and power-driven delay optimisation. As discussed in Chapter 1, we introduced

the concept of delay-driven power optimisation and power-driven delay optimisation.

Delay-driven power optimisation implies two things, firstly the increase in longest path

delay shall not exceed a given constraint while optimising for dynamic power. Secondly

for each application of the reordering rules on the AIG nodes, a weight is calculated

67

Table 6.2: Power dissipation with and without the RESWITCH tool

Circuit SP (f)beforeRESWITCH SP (f)afterRESWITCH △SP (f)

- (µW) (µW) -

cmb 31.86 25.48 -20.01%

b1 9.00 6.52 -27.03%

c8 75.18 64.91 -13.55%

cm162a 8.65 7.00 -19.07%

alu2 94.35 83.97 -11.09%

x2 27.96 23.31 -16.80%

cc 20.76 17.56 -15.42%

which is directly proportional to the decrease in switching power and inversely propor-

tional to the increase in delay. These weights hence keep a check on every bad move

where delay increases largely in the process of switching power reduction. Similarly

power-driven delay optimisation is defined implying the same two things, firstly the

increase in dynamic power shall not exceed a given constraint while optimising for de-

lay. Secondly for each application of the reordering rules on the AIG nodes, a weight

is calculated which is directly proportional to the decrease in delay and inversely pro-

portional to the increase in dynamic power. The following method is introduced using

two optimisation algorithms namely Simulated Annealing and Uniform Cost Search

Algorithm. Hence multi-objective optimisation of two conflicting objectives (namely

power and delay) subjected to each other’s constraints, is dealt using these algorithms.

We have introduced a new tool called OPT-PT (implemented in C as a sub-package

in ABC) for the multi-objective optimisation of power and delay. OPT-PT has two

components - OPT-P for delay-driven power optimisation and OPT-T for power-driven

delay optimisation.

The OPT-P tool is based on the four reordering rules of power optimisation namely

Rp1, Rp2, Rp3 and Rp4. However the rule’s application is based on the two algorithms

namely Simulated Annealing and Uniform Cost Search Algorithm. This will reduce

68

the overall switching power SP (f) such that the maximum arrival time or longest path

delay (MAT (f)) in the AIG network does not exceed a given constraint. This delay-

driven power optimisation facilitates a decrease in power while constraining the tool to

a slight increase in delay and/or area. Also the order of rule application on the AIG

nodes of the network is determined according to Uniform Cost Search Algorithm.

The OPT-T for delay optimisation is based on three reordering rules Rd1, Rd2 and

Rd3. However the rule’s application is based on the two algorithms namely Simulated

Annealing and Uniform Cost Search Algorithm. This will reduce the critical path length

MAT (f) such that the switching power (SP (f)) in the AIG network does not exceed

a given constraint. This power-driven delay optimisation facilitates a decrease in delay

while constraining the tool to a slight increase in power and/or area. Also the order of

rule application on the AIG nodes of the network is determined according to Uniform

Cost Search Algorithm.

6.4 Simulated Annealing

The reordering rules for power and delay optimisation can be applied on each node of the

AIG network depending upon the conditions mentioned above. Simulated Annealing

(SMA) [31] is used as the optimisation algorithm, to decide which of the rules (if any)

on a given AIG node is appropriate for delay-driven power optimisation or power-driven

delay optimisation. The cost function SP (f) (which is the total switching power of the

AIG network representing the functionality f of the circuit) and MAT (f) (which is the

longest path delay or maximum arrival time of the AIG network) has to be reduced

for power and delay optimisation respectively. At each step, the Simulated Annealing

method considers some neighbour s
′
of the current state s. In our application, s is

the initial AIG network prior to rule application and s
′
is the final AIG network after

rule application. Our goal is to probabilistically decide between moving the system to

state s
′
or staying in state s such that the cost function is minimised. Instead of prob-

abilities, weights have been defined for each movement at each node. These weights

depend upon the difference in the cost function before and after rule implementation.

The weights also depend on a control parameter T . Wp1, Wp2, Wp3 and Wp4 are the

weights corresponding to the four rules for power optimisation i.e. Rp1, Rp2, Rp3 and

Rp4 respectively. Wd1, Wd2 and Wd3 are the weights corresponding to the three rules

69

for delay optimisation i.e. Rd1, Rd2 and Rd3 respectively. The weights are determined

in accordance with the method in [31], with slight modifications. In the formulation of

the Simulated Annealing method [31], the acceptance function of any move from s to

the neighbouring state s
′
is defined as exp((e− e′)/T) where e is the system energy at

the present state, e
′
is the system energy of the neighbouring state and T is the temper-

ature or the control parameter in the Simulated Annealing method. Hence the function

is directly proportional to the decrease in the system energy and inversely proportional

to the control parameter. A similar technique has been used while defining the weights

of the Simulated Annealing method used in our case.

While applying the OPT-P tool, the cost function is SP (f) (which has to be min-

imised) and the control parameter T is the difference between the initial and the final

MAT of the network obtained at each step. This allows us to perform delay-driven

power optimisation. The weights are described below. Note that the weights are pos-

itive even when the cost function increases slightly. This is mainly performed in the

simulated annealing method to avoid local minimum. △pOPT−P and △tOPT−P for the

weight calculation are defined as follows:

△pOPT−P = SPi(f)− SPf (f) (6.1)

where SPi(f) is the total switching power of the network before the given rule applica-

tion. SPf (f) is the total switching power of the network after the given rule application.

△tOPT−P = MATf (f)−MATi(f) (6.2)

where MATi(f) is the MAT of the network before the given rule application. MATf (f)

is the MAT of the network after the given rule application. The weights are defined as

follows:

If △pOPT−P > 0 and △tOPT−P > 0, then W = e△pOPT−P /△tOPT−P

If △pOPT−P > 0 and △tOPT−P < 0, then W = e△pOPT−P ∗(−1∗△tOPT−P)

If △pOPT−P > 0 and △tOPT−P == 0, then W = e△pOPT−P

If △pOPT−P < 0 and △tOPT−P > 0, then W = 1/e(−1∗△pOPT−P)∗△tOPT−P

If △pOPT−P < 0 and △tOPT−P < 0, then W = 1/e(−1∗△pOPT−P)/△tOPT−P

If △pOPT−P < 0 and △tOPT−P == 0, then W = 1/e−1∗△pOPT−P

The stop condition weights are defined as follows:

70

If △pOPT−P == 0, then W = 0

If △tOPT−P /MATi(f) > 0.1, then W = 0

Algorithm 1 describes the technique as used in OPT-P.

The stop condition weights indicate two things. Firstly, if there is no change in the

switching power, on the application of that rule, the weight corresponding to that rule

is set to zero. Secondly, the weight of a given rule is set to zero if the application of that

rule exceeds delay limitations. This implies that if there is more than 10% increase in

delay, on the application of that rule, the weight is set to zero. The definition of weights

(i.e. directly proportional to the decrease in switching power and inversely proportional

to the increase in delay) and the second stop condition clearly shows the concept of

delay-driven power optimisation. In our case, we have set the constraint limits on delay

to be 10%.

The weights are directly proportional to the decrease in switching power and inversely

proportional to the increase in MAT, as indicated in the weight equations above. Con-

sider a case, when Rule Rpx (x ∈ 1, 2, 3, 4) is applied on a given node on a given AIG net-

work of a circuit. Assume that on applying Rpx, △pOPT−P = 0.2 and △tOPT−P = 0.1.

Consider another case, when Rule Rpy (y ∈ 1, 2, 3, 4) is applied on the given node of the

given AIG network of a circuit. Assume that on applying Rule Rpy, △pOPT−P = 0.3

and △tOPT−P = 0.3. Although Rule Rpy gives more reduction in switching power, it

increases the MAT significantly. The weights corresponding to Rpx and Rpy are exp(2)

and exp(1). Rule Rpx has higher weight and hence it is chosen in the process. These

weights facilitate a decrease in switching power without much increase in MAT. This

also shows the concept of delay-driven power optimisation. While considering power

optimisation, the overall delay constraint for each circuit is relaxed step by step ranging

from 1% to 10%. The process stops when there is no further reduction in power even

after relaxing the delay constraint.

While applying the OPT-T tool, the cost function is MAT (f) and the control param-

eter T is the difference between the initial SP (f) of the network and the final SP (f)

of the network obtained at each step. This allows us to perform power-driven delay

optimisation. The weights for OPT-T are defined in a similar way as defined in the

OPT-P method. Since OPT-T is for delay optimisation, the exponential weights are

directly proportional to the decrease in delay and inversely proportional to the increase

71

Algorithm 1 Simulated Annealing in OPT-P

Require: N , RN

Ensure: R

1: { N is the total number of nodes in the AIG network}

2: {RN is the number of rules in OPT-P}

3: for i = 1 to N do

4: for j = 1 to RN do

5: if Nodei follows Rule Rj then

6: {calculation of Simulated Annealing weights}

7: {calculation of Wp}

8: end if

9: Wj = Wp

10: end for

11: {Comparisons of Wj i.e. Wp1, Wp2, Wp3 and Wp4 }

12: Wmax = max(Wp1,Wp2,Wp3,Wp4)

13: if Wmax == Wp1 then

14: R = Rp1

15: else if Wmax == Wp2 then

16: R = Rp2

17: else if Wmax == Wp3 then

18: R = Rp3

19: else if Wmax == Wp4 then

20: R = Rp4

21: end if

22: { R is the rule chosen at that step, for OPT-P application}

23: { Implement OPT-P on Node Nodei using Rule R}

24: end for

72

in switching power. △pOPT−T and △tOPT−T for the weight calculation are defined as

follows:

△pOPT−T = SPf (f)− SPi(f) (6.3)

where SPi(f) is the total switching power of the network before the given rule applica-

tion. SPf (f) is the total switching power of the network after the given rule application.

△tOPT−T = MATi(f)−MATf (f) (6.4)

where MATi(f) is the MAT of the network before the given rule application. MATf (f)

is the MAT of the network after the given rule application. The weights are defined as

follows:

If △pOPT−T > 0 and △tOPT−T > 0, then W = e△tOPT−T /△pOPT−T

If △pOPT−T > 0 and △tOPT−T < 0, then W = e△tOPT−T ∗(−1∗△pOPT−T)

If △pOPT−T > 0 and △tOPT−T == 0, then W = e△tOPT−T

If △pOPT−T < 0 and △tOPT−T > 0, then W = 1/e(−1∗△tOPT−T)∗△pOPT−T

If △pOPT−T < 0 and △tOPT−T < 0, then W = 1/e(−1∗△tOPT−T)/△pOPT−T

If △pOPT−T < 0 and △tOPT−T == 0, then W = 1/e−1∗△tOPT−T

The stop condition weights are:

If △tOPT−T == 0, then W == 0

If △pOPT−T /SPi(f) > 0.1, then W = 0

Similarly, the Algorithm 2 describes the technique as used in OPT-T.

The stop condition weights indicate two things. Firstly, if there is no change in the

MAT (f), on the application of that rule, the weight corresponding to that rule is made

zero. Secondly, the weight of a given rule is set to zero if the application of that rule

exceeds the power limitations. This implies that if there is more than 10% increase in

switching power, on the application of that rule, the weight is set to zero. The second

stop condition clearly shows the concept of power-driven delay optimisation. In our

case, we have set the constraint limits on switching power to be 10%.

Also the weights (in OPT-T) are directly proportional to the decrease in MAT (f) and

inversely proportional to the increase in switching power. This is to obtain a significant

reduction in delay without much increase in switching power. While performing delay

optimisation, the overall power constraint for each circuit is relaxed step by step ranging

73

Algorithm 2 Simulated Annealing in OPT-T

Require: N , RN

Ensure: R

1: { N is the total number of nodes in the AIG network}

2: {RN is the number of rules in OPT-T}

3: for i = 1 to N do

4: for j = 1 to RN do

5: if Nodei follows Rule Rj then

6: {calculation of Simulated Annealing weights}

7: {calculation of Wt}

8: end if

9: Wj = Wt

10: end for

11: {Comparisons of Wj i.e. Wd1, Wd2 and Wd3 }

12: Wmax = max(Wd1,Wd2,Wd3)

13: if Wmax == Wd1 then

14: R = Rd1

15: else if Wmax == Wd2 then

16: R = Rd2

17: else if Wmax == Wd3 then

18: R = Rd3

19: end if

20: { R is the rule chosen at that step, for OPT-T application}

21: { Implement OPT-T on Node Nodei using Rule R}

22: end for

74

from 1% to 10%. The process stops when there is no further reduction in delay even

after relaxing the power constraint.

6.5 Switching nodes order for OPT-PT application

Consider an AIG network with n nodes representing the functionality f of a combina-

tional circuit. Let us denote the nodes as N1, N2,, Nn. Among these nodes, the

reordering rules can be applied on a subset depending upon the conditions mentioned

in Section 5.4 and Section 5.5. A term called switching nodes is defined. Among the

nodes N1, N2,, Nn, the switching nodes are those on which any of the reordering

rules can be applied (satisfying the conditions for the applicability of the reordering

rules) such that SP (f) or MAT (f) is getting decreased. Let SN denote a set of such

switching nodes among the total n nodes and SNx be an element in SN . With the

calculation of the eligible switching nodes for the set SN , we introduce a technique

which determines a favourable switching nodes order or sequence say R. This order is

the sequence of switching nodes in which OPT-PT has to be implemented. This order

gives better results in terms of SP (f) and MAT (f) for power and delay optimisation

respectively, as compared to the previous ordering techniques discussed in the following

section. Uniform Cost Search algorithm [66] is used to obtain a better switching nodes

order for OPT-PT implementation.

6.5.1 Application of Uniform Cost Search algorithm

Uniform Cost Search (UCS) [66] is a tree search algorithm used for traversing or search-

ing a weighted tree or graph. The search begins at the root node, then continues by

visiting the next node which has the least total cost from the root. Typically, the search

algorithm involves expanding nodes by adding all unexpanded neighbouring nodes that

are connected by directed paths to a priority queue. In the queue, each node is associ-

ated with its total path cost from the root, where the least-cost paths are given highest

priority. The Uniform Cost Search is complete and optimal. To implement such an

algorithm, a graph G(V,E) is constructed such that:

• the vertices represent the switching nodes chosen from the total n nodes

• edges represent or link two consecutive vertices (representing switching nodes)

75

meant for sequential application of OPT-PT. Any two switching nodes which are

linked in the Graph G(V,E) may not necessarily be linked in the AIG network.

This linkage only implies that these two switching nodes located globally in the

AIG network are used consecutively for OPT-PT application.

• it is a weighted graph with weights (total path cost) associated to each edge.

Suppose there is a weight W on the edge (V1, V2). For the weight calculations of W in

OPT-P, certain variables are defined as follows:

△pOPT−P = SPV1(f)− SPV2(f) (6.5)

where SPV1(f) is the total switching power of the network, when OPT-P has been

applied on all of the nodes up to node V1 following the calculated order of switching

nodes. SPV2(f) is the total switching power of the network, when OPT-P has been

applied on all of the nodes up to node V1 following the same calculated order of switching

nodes and then on node V2.

△tOPT−P = MATV2(f)−MATV1(f) (6.6)

MATV1(f) is the MAT of the network, when OPT-P has been applied on all of the

nodes up to node V 1 following the calculated order of switching nodes. MATV2(f) is

the MAT of the network, when OPT-P has been applied on all of the nodes up to node

V1 following the same calculated order of switching nodes and then on node V2.

Both, △pOPT−T and △tOPT−T can be defined similarly. The weights are defined as

in the Simulated Annealing method described in Section 6.4.

In the Simulated Annealing method, weights decide which rule is most beneficial at a

particular node of the network. However, in the Uniform Cost Search algorithm, these

weights decide a better switching nodes order for OPT-PT application sequentially.

Application of OPT-PT in this order gives minimal switching power or minimal delay for

power or delay optimisation respectively. For this algorithm application, some matrices

are defined corresponding to the weights on the edges of the graph.

• Orderinit[x] is a one dimensional array of order 1 × sn. sn is the number of

elements in the set SN . The array represents initial weights Wp or Wt of the

circuit corresponding to OPT-PT application on every switching node mentioned

in the array.

76

• OrderinitSNx[y] is another one-dimensional array of order 1× (sn−1). The node

SNx where SNx ∈ SN is chosen to be the root node among the sn number of

switching nodes. It has the maximum weight in the array Orderinit[x]. This

array represents the weights corresponding to OPT-PT application on the rest

of the switching nodes, after the application on node SNx. Hence these weights

correspond to the edges from SNx to the rest of the switching nodes. The size is

reduced by one as the root node has already been chosen from the previous array

as SNx.

• Similarly, another array OrderinitSNx,SNy[z] of order 1×(sn−2) is defined. This

array represents the weights corresponding to OPT-PT application on the rest of

the switching nodes, after the application of OPT-PT on nodes SNx and SNy.

Hence these weights correspond to the edges from SNy to the rest of the switching

nodes. The size is reduced by two as the two nodes have already been chosen from

the previous array.

The rest of the matrices used for determining the rest of the order (i.e. after

SNx, SNy and SNz) are computed accordingly. These matrix elements correspond

to the weights on the above created graph G(V,E) traversing from the root node to

the leaf nodes. Hence a particular node is paired with an adjacent node among all the

neighbouring nodes depending upon the maximum weight with respect to that edge as

mentioned in the adjacency matrix. The path cost with respect to each edge is inversely

proportional to the weights calculated, hence the edge with maximum weight is chosen

so as to obtain minimal SP (f) or minimal MAT (f).

R is a set to store the ordered switching node sequence. Q is a set to store SN −R.

This set depicts the switching nodes left to be ordered. The root node is obtained by

the array Orderinit[x]. This root node SNx is connected to all the rest of the nodes

with weights corresponding to OrderinitSNx[y] matrix. Further nodes are expanded

by adding the unexpanded neighbouring nodes. The process continues until all the

switching nodes are covered or reach a minimal without exceeding the constraint limits

of power or delay.

Algorithm 3 describes this technique.

77

Algorithm 3 Uniform Cost Search in OPT-PT

Require: sn

Ensure: R

1: {sn is the total number of switching nodes in the AIG network}

2: for i = 1 to sn do

3: for j = 1 to sn do

4: if Nodej ! = SNx then

5: Orderinit[j] = Wj

6: { Wj corresponds to weights when OPT-PT is applied on Node Nodej}

7: end if

8: end for

9: { Max(Orderinit[x]) is at Node SNx}

10: { Apply OPT-PT on Node SNx}

11: { R is the set to store ordered switching node sequence}

12: R[i] = SNx

13: end for

6.5.2 Matrices and graphs during OPT-P and OPT-T

To exemplify, the above optimisation algorithm is explained by implementing it on a

MCNC Benchmark circuit x2. The OPT-P tool is implemented and the associated

graph G(V,E) is shown in Figure 6.5.

78

Figure 6.5: The graph G(V,E) corresponding to the circuit x2

The nodes shown in Figure 6.5 are the chosen switching nodes and the edges link two

switching nodes meant for sequential OPT-PT application. In the graph, the weights

on the edges correspond to the matrix values of OrderinitSNx[y], OrderinitSNx,SNy[z]

and so on. In the graph, the node with id ‘25’ NodeId25 is chosen as the root node,

using Orderinit[x]. The weights in the matrix OrderinitSNx[y] (shown in Table 6.3)

are for the edges from NodeId25 to the rest of the remaining switching nodes. The

weights are determined as explained in the sub-section above. From the graph G(V,E),

it is visible that NodeId25, NodeId55, NodeId29, NodeId38, NodeId34 and NodeId50

are the switching nodes chosen for the circuit x2. In the first step, the root node is

chosen which isNodeId25. In the second step, weights in the matrixOrderinitSNx[y] are

compared. Hence weights 1.19, 1.22, 1.32, 1.77 and 1.25 with respect to nodesNodeId55,

NodeId29, NodeId38, NodeId34 and NodeId50 are compared. The maximum weight of

79

1.77 with respect to NodeId34 is chosen. This implies the OPT-PT gets applied initially

on NodeId25 and then on NodeId34. In the third step, weights from NodeId34 to the

remaining switching nodes namely NodeId29, NodeId38, NodeId55 and NodeId50 are

compared. Similarly, rest of the weights in the following matrices are compared and

a sequence or order of nodes is obtained, which when followed gives minimum and

optimised power or delay values.

Table 6.3: The Matrix OrderinitSNx[y]

Edge (25,29) (25,34) (25,38) (25,50) (25,55)

Weight 1.22 1.77 1.32 1.25 1.19

Similarly the OPT-T tool is implemented on a combinational MCNC Benchmark

circuit count and the graph G(V,E) is shown in Figure 6.6. In this graph, since the

weights had very small decimal values, they are multiplied by 1000 for clear visibility.

The global nature of our algorithm is indicated in Figure 6.7. The figure shows an

AIG network with inputs a, b, c, d, e, f, g, h and i and outputs O1, O2 and O3. The high-

lighted nodes are the switching nodes chosen among the total nodes. Arrows indicate

the order of switching nodes followed for OPT-PT application, to obtain better results

in terms of power and delay.

6.5.3 Comparison of Uniform Cost Search (UCS) algorithm with pre-

vious methods in OPT-P tool application

Initially, the sequence of OPT-P applications on the AIG nodes proceeded from lower

level nodes to higher level nodes of the network. Let this technique be called T1. Next,

the sequence of OPT-P application on the AIG nodes proceeded from ‘hotter’ nodes

to the ‘cooler’ nodes of the AIG network (higher SP (f) to lower SP (f)). Let this

technique be called T2. Finally, the Uniform Cost Search Algorithm is adopted for the

sequence of OPT-P applications on the AIG nodes. Let this technique be called T3. In

all these three techniques, 10% delay (increase in MAT (f)) and 10% area constraint

(increase in node count) are allowed. In our case, we have set the constraint limits to

be 10% on power, delay and area. Table 6.4, Table 6.5 and Table 6.6 represent the

80

Figure 6.6: The graph G(V,E) corresponding to the circuit count

switching power reduction on combinational circuits DES, Ri8,o10 and pair respectively.

The circuits DES and pair are MCNC benchmark circuits. Circuit Ri8,o10 actually

represents a ROM circuit with 8 inputs and 10 outputs. The best results are obtained

when the Uniform Cost Search (UCS) algorithm (T3) is applied. The total switching

power SP (f) is obtained by the product of the switching probability at each node and

number of fanouts at that node of the AIG network, as derived in Section 5.3.2. N

stands for node count i.e. number of AIG nodes in the network as built by ABC.

MAT (f) stands for the longest path delay in the AIG network or the maximum arrival

time, as derived in Section 5.3.1. △SP (f) stands for percentage reduction in switching

power.

We used the Uniform Cost Search (UCS) algorithm on several Benchmark circuits

and in most of the circuits the technique T3 prove to be better than the previous

81

Figure 6.7: The Uniform Cost Search Algorithm

Table 6.4: The comparison of T1, T2 and T3 used on DES using OPT-P application

Technique SP (f) N MAT (f) △SP (f)%

Original 798.80 3612 74.00 -

T1 749.27 3616 85.00 -6.27%

T2 681.25 3615 85.00 -14.71%

T3 594.34 3678 82.00 -25.53%

techniques T1 and T2.

6.6 Conclusions

We present an efficient power and delay optimisation tool for digital circuits. This tool is

motivated by the fact that power reductions can sometimes increase delay significantly.

Similarly, delay reductions can increase power. In order to get a trade-off between the

power and delay values, the new tool introduced namely OPT-PT performs a joint

optimisation of power and delay. The tool is implemented as a sub-package in the

82

Table 6.5: The comparison of T1, T2 and T3 used on Ri8,o10 using OPT-P application

Technique SP (f) N MAT (f) △SP (f)%

Original 327.16 1107 65.00 -

T1 324.15 1108 72.00 -0.95%

T2 295.13 1105 73.00 -10.87%

T3 281.34 1123 72.00 -17.28%

Table 6.6: The comparison of T1, T2 and T3 used on pair using OPT-P application

Technique SP (f) N MAT (f) △SP (f)%

Original 167.60 1292 93.00 -

T1 138.92 1292 104.00 -17.04%

T2 124.26 1292 101.00 -25.88%

T3 100.11 1309 102.00 -40.03%

popular academic synthesis tool ABC.

The tool can be directed to optimise either delay or power. The delay optimisation

mode, referred to as OPT-T, reduces critical path length in a combinatorial circuit as

much as possible, while honouring a constraint on the switching power. In so-called

OPT-P mode, the tool takes the converse approach, reducing switching power as much

as possible within a constraint on maximum delay degradation.

In this chapter, we introduced two algorithms which were used within our OPT-PT

tool to give reduced and balanced power and delay values. The idea of delay-driven

power optimisation and power-driven delay optimisation is introduced using Simulated

Annealing method. Further ordering of nodes for OPT-PT application such that it

gives reduced power and delay values is brought by the Uniform Cost Search Algorithm.

Uniform Cost Search Algorithm searches globally within the AIG network and calculate

the order of nodes in which OPT-PT has to be applied such that it gives far better

values than previous ordering techniques. In the next chapter, a set of experimental

83

results (obtained by OPT-PT) is presented on large digital combinational and sequential

circuits

84

Chapter 7

Experimental Results using

OPT-PT

The tool OPT-PT is implemented on a set of MCNC Benchmark circuits. To comple-

ment the MCNC benchmark circuits, a set of large-scale random combinational logic

circuits were prepared. These were created using a Verilog case statement filled with

random data values implementing a Lookup Table (LUT). The address and the data

word lengths were parameterised, allowing the complexity of the resulting LUT logic to

be varied as illustrated in Figure 7.1. The random logic lookup tables (ROM circuits)

have the names specifying the number of input variables and output lines. For example,

Ri6,o8 specifies that there are 6 input variables and 8 output lines.

The rest of the chapter is organised as follows. Section 7.1 explains the simulation

design flow used to obtain power, delay and area reports on the optimised AIG net-

work by commercial tools. Section 7.2 presents various experimental results of power

optimisation using OPT-P application. The results are presented with respect to two

technology library files namely TSMC 65nm GP CMOS and TSMC 90nm GP CMOS.

Section 7.3 presents various experimental results of delay optimisation using OPT-T

application. Some experiments are also performed on few processors and the results are

tabulated in Section 7.4. Section 7.5 presents some results interpreted with respect to

various input data sets i.e. with varying switching profiles. Finally Section 7.6 makes

some concluding remarks.

85

Figure 7.1: The ROM Look-Up Table

7.1 Simulation Design Flow

For technology-mapped power and delay results, the flow diagram as shown in Figure

6.4 is followed. The tool used is OPT-PT for power and delay optimisation. There

are two sets of networks being compared - the ABC-optimised AIG network and the

corresponding OPT-PT-optimised AIG network. The tool AIG2Net [43], as described in

Chapter 6 is used for the mapping of the AIG network to a Verilog netlist using 2-input

AND, NOT and buffer cells from the TSMC 65GP CMOS standard cell library. The

concept behind AIG2Net is referenced in [43]. Two sets of netlists are obtained - the

ABC-optimised AIG netlist and the OPT-PT-optimised AIG netlist. At the end of the

process, Synopsys Design Compiler (DC) is used for power, delay and area estimation

on the two netlists. Also the two networks’ netlists are verified for consistency by

Synopsys Formality.

All the power and delay estimations and optimisations are performed on an AIG

network. Firstly, the AIG network is optimised using the resyn script in ABC, which is

the most efficient synthesis script available for reducing complexity of the AIG network

86

with respect to node count. Secondly, the AIG network is optimised using our tool i.e.

OPT-PT. The two optimised AIG networks are converted to mapped Verilog netlists

(consisting of 2-input ANDs, Inverters and Buffer cells, still representing the same AIG

network). Power, delay and area reports are then generated in DC and the results are

compared.

7.2 Results with OPT-P application

Table 7.1 shows some experimental results based on the application of OPT-P tool.

In the table, PABC , TABC and AABC are the power, delay and area results from the

netlist obtained from the ABC-optimised AIG network. PPO, TPO and APO are the

power, delay and area results from the netlist obtained by the OPT-P-optimised AIG

network. In all the tables below, power values are in µW and delay values are in ns.

The power values shown in the table are the total power values i.e. sum of static and

dynamic power. In the table, a negative sign indicates a decrease and positive indicates

an increase. The average power decrease is 23.46% with slight increase in delay and

area. The power reduction ranges from 14% to 33%.

Table 7.2 shows the computation time required to run the synthesis scripts within

ABC, on the same circuits mentioned in Table 7.1. Gates represent the number of

standard cells, that is the number of 2-Input AND, Inverter and Buffer cells used in the

mapping of the network. RTABC is the run time (given in seconds) resulting from the

synthesis script resyn used in ABC to optimise the AIG network. RTPO is the run time

(given in seconds) resulting from the optimisation script used in OPT-P to optimise the

AIG network. Observing the run time, it can be stated that as the number of nodes

are doubled, the run time doubles.

In Figure 7.2, a graph for the percentage power reduction among various circuits

on the application of OPT-P is shown. R8,10 implies ROM circuit with 8 inputs and 10

outputs.

Considering circuit Ri8,o10 from the Table 7.1, the total power reduction of 25% is

obtained by the four reordering rules namely Rp1, Rp2, Rp3 and Rp4 used in OPT-P.

The percentage usage of each rule in the experiment is 38.82% of Rp1, 8.24% of Rp2,

7.37% of Rp3 and 45.56% of Rp4.

Table 7.3, presents the static and dynamic power component for the simulation result

87

Table 7.1: The comparison of OPT-P with the best algorithm in ABC (65nm process)

Circuit PABC TABC AABC PPO TPO APO △P △T △A

- (µW) (ns) (um2) (µW) (ns) (um2) - - -

dalu 160.76 1.82 3464.64 107.42 1.82 3620.28 -33.20% 0% 4.51%

frg2 318.55 0.78 2279.88 243.35 0.79 2358.08 -21.72% 1.33% 3.44%

vda 123.20 0.49 1566.00 84.92 0.51 1560.00 -30.95% 4.16% 0%

x3 329.87 1.21 1999.80 249.58 1.24 2084.28 -22.97% 2.58% 4.79%

des 1460.50 1.95 10674.36 1025.33 2.04 11056.68 - 29.80% 4.61% 3.62%

i8 302.70 1.17 3261.60 256.28 1.20 3358.84 -15.13% 2.64% 3.05%

i9 84.59 1.14 1707.48 56.67 1.19 1735.56 -33.36% 4.47% 1.68%

Ri8,o10 512.50 0.86 3260.52 384.36 0.90 3368.50 -25.09% 4.61% 3.32%

Ri7,o9 306.44 0.62 1557.36 222.19 0.65 1623.24 -27.43% 4.84% 4.25%

Ri10,o12 1868.90 1.42 14509.80 1516.33 1.48 14509.80 -19.46% 4.27% 0

Ri11,o13 3818.09 2.36 30217.00 3226.44 2.39 30821.30 -15.58% 1.39% 2.01%

Ri10,o10 1899.92 1.57 15872.70 1523.69 1.59 16348.03 -19.84% 1.30% 3.06%

Ri12,o14 6585.28 3.52 66266.40 5649.40 3.54 66928.60 -14.27% 0% 0%

Ri11,o11 3646.70 2.20 31555.44 2905.26 2.17 32280.70 -20.38% -1.49% 2.30%

Average - - - - - - -23.51% 2.42% 2.63%

Figure 7.2: The graph for power reduction among various circuits

88

Table 7.2: Computation time of OPT-P with respect to resyn script of ABC

Circuit Gates RTABC RTPO

- - (s) (s)

dalu 2097 0.50 0.69

frg2 1358 0.45 0.56

vda 850 0.32 0.46

x3 1180 0.33 0.47

des 6233 1.68 2.85

i8 1900 0.76 1.05

i9 1025 0.31 0.45

Ri8,o10 1911 0.51 0.66

Ri7,o9 918 0.21 0.31

Ri10,o12 8533 2.19 3.02

Ri11,o13 17864 4.38 8.38

Ri10,o10 9379 2.94 4.47

Ri12,o14 36270 8.61 15.95

Ri11,o11 18704 4.39 8.19

stated in Table 7.1. In the tables, DP represents dynamic power, LP represents leakage

power and TP represents the total power.

Table 7.4 shows similar power, delay and area results as shown in Table 7.1. All

the notations and variables are same as in Table 7.1, except here TSMC 90GP CMOS

standard library cells of 2-Input ANDs, Inverters and Buffers are used. The leakage

power in both technologies increased due to the addition of extra nodes. However in

most of the examples, the leakage power increase ranges from 1% to 4%. Table 7.5

presents the static, dynamic and total power for the circuits stated in Table 7.4.

7.3 Results with OPT-T application

Table 7.6 shows some experimental results based on the application of the OPT-T tool.

PTO, TTO and ATO are the power, delay and area results from the netlist obtained by

the OPT-T-optimised AIG network. The average delay (critical path length) decrease

is 15.53% with slight increase in power and area. The technology used is the TSMC

89

Table 7.3: Dynamic and Static Power for the simulations stated in Table 7.1 (65nm

process)

Circuit Gates DPABC LPABC TPABC DPPO LPPO TPPO △DP △LP

- - (µW) (µW) (µW) (µW) (µW) (µW) - -

dalu 2097 149.01 11.75 160.76 95.20 12.22 107.42 -36.11% 4.00%

frg2 1358 310.81 7.74 318.55 235.38 7.97 243.35 -24.26% 2.97%

vda 805 117.79 5.41 123.20 79.60 5.32 84.92 -32.42% -1.66%

x3 1180 323.02 6.85 329.87 242.60 7.05 249.58 -24.89% 3.00%

des 6233 1423.80 36.25 1460.50 987.84 37.49 1025.33 -30.61% 3.42%

i8 1917 291.79 10.91 302.70 245.10 11.18 256.28 -16.05% 2.47%

i9 1025 78.73 5.86 84.59 50.66 6.01 56.67 -35.65% 2.55%

Ri8,o10 1911 501.53 10.97 512.50 373.01 11.35 384.36 -25.62% 3.46%

Ri7,o9 918 301.21 5.23 306.44 216.74 5.45 222.19 -28.04% 4.20%

Ri10,o12 8533 1820.30 48.63 1868.93 1467.70 48.63 1516.33 -19.37% 0

Ri11,o13 17864 3716.80 101.29 3818.09 3122.11 104.33 3226.44 -16.05% 3.06%

Ri10,o10 9379 1846.70 53.21 1899.91 1469.69 54.54 1523.70 -20.41% 2.49%

Ri12,o14 36270 6373.80 211.48 6585.28 5436.85 212.53 5651.50 -14.70% 0%

Ri11,o11 18704 3541.10 105.74 3646.84 2797.46 107.85 2905.31 -20.99% 1.99%

65GP CMOS standard library cells of 2-Input ANDs, Inverters and Buffers. The delay

reduction ranges from 9% to 32%.

Table 7.7 shows the computation time required to run the synthesis scripts within

ABC, on the same circuits mentioned in Table 7.6. RTABC is the run time (given in

seconds) resulting from the synthesis script resyn used in ABC to optimise the AIG

network. RTTO is the run time (given in seconds) resulting from the optimisation script

used in OPT-T to optimise the AIG network. △RT is the change in the run time.

Considering the circuit count from Table 7.6, the delay reduction of 31% is obtained

90

Table 7.4: The comparison of OPT-P with the best algorithm in ABC (90nm process)

Circuit PABC TABC AABC PPO TPO APO △P △T △A

- (µW) (ns) (um2) (µW) (ns) (um2) - - -

dalu 292 3.05 6006.77 202.41 3.02 6270.07 -30.50% 0% 4.40%

frg2 577.35 1.36 3953.47 422.08 1.38 4119.02 -26.98% 1.59% 4.20%

vda 220.63 0.82 2615.65 161.05 0.85 2607.19 -27.01% 3.62% 0%

x3 606.73 2.08 3467.31 467.18 2.11 3588.34 -23.03% 1.44% 3.50%

des 2707.87 3.92 18373.05 1949.66 4.06 19050.06 - 28.07% 3.60% 3.90%

i8 570.25 2.15 5614.45 467.60 2.22 5754.35 -18.08% 3.29% 2.50%

i9 150.02 2.08 2954.34 103.51 2.17 3001.62 -31.01% 4.32% 1.63%

Ri8,o10 958.21 1.43 5609.52 721.85 1.48 5790.85 -24.74% 3.55% 3.26%

Ri7,o9 564.59 1.02 2683.39 411.65 1.06 2796.29 -27.17% 3.98% 4.20%

Ri10,o12 3709.60 2.45 24981.00 2938.03 2.54 25105.00 -20.80% 3.71% 0%

Ri11,013 7654.82 52089.02 4.38 6441.89 4.21 53130.03 -15.94% 1.45% 2.06%

Ri10,o10 3722.40 2.75 27358.06 2986.93 2.79 28178.00 -19.87% 1.40% 3.08%

Ri12,o14 13395.90 6.22 114595.00 11281.09 6.22 115167.00 -15.80% 0% 0%

Ri11,o11 7245.63 3.88 54429.88 5670.82 3.86 55790.62 -21.71% 0% 2.52%

by the three reordering rules namely Rd1, Rd2 and Rd3 used in OPT-T. The percentage

of usage for each rule in the experiment is 32.36% for Rd1, 11.99% for Rd2 and 55.65%

for Rd3. Similarly, consider another circuit frg1 from Table 7.6, the delay reduction

of 12% is obtained by the three reordering rules namely Rd1, Rd2 and Rd3 used in

OPT-T. The percentage of usage for each rule in the experiment is 79.75% for Rd1,

8.54% for Rd2 and 11.71% for Rd3. In Table 7.6, in some of the cases, area increases

marginally. This means there is a small node count increase during the application of

OPT-T, implying little usage of Rd2 and Rd3. However, the delay reduction obtained

from the usage of these rules even once is high and hence the rules cannot be eliminated.

In Figure 7.3, a graph for the percentage delay reduction among various circuits on the

application of OPT-T is shown.

91

Table 7.5: Dynamic and Static Power for the circuits stated in Table 7.4 (90nm process)

Circuit Gates DPABC LPABC TPABC DPPO LPPO TPPO △DP △LP

- - (µW) (µW) (µW) (µW) (µW) (µW) - -

dalu 2097 282.81 9.19 292.00 192.86 9.55 202.41 -31.80% 3.91%

frg2 1358 571.73 5.75 577.35 416.16 5.92 422.08 -27.21% 2.95%

vda 805 216.84 3.79 220.63 157.33 3.72 161.05 -27.44% -1.84%

x3 1180 601.75 4.98 606.73 461.91 5.07 467.18 -23.23% 1.80%

des 6233 2681.40 26.47 2707.87 1922.00 27.66 1949.66 -28.33% 4.51%

i8 1917 562.03 8.22 570.25 459.18 8.42 467.60 -18.29% 2.43%

i9 1025 145.18 4.84 150.02 98.56 4.95 103.51 -32.11% 2.27%

Ri8,o10 1911 950.18 8.03 958.21 713.51 8.35 384.36 -24.90% 3.98%

Ri7,o9 918 560.79 3.80 564.59 407.72 3.93 411.65 -27.30% 3.42%

Ri10,o12 8533 3672.90 36.16 3709.60 2901.59 36.44 2938.03 -21.02% 0%

Ri11,o13 17864 7578.70 76.12 7654.82 6441.89 77.64 6519.53 -15.03% 1.99%

Ri10,o10 9379 3682.50 39.94 3722.40 2946.00 40.93 2986.93 -20.04% 2.47%

Ri12,o14 36270 13228.44 167.46 13395.93 11111.88 169.13 11281.05 -16.06% 0%

Ri11,o11 18704 7165.50 80.13 7245.63 5589.09 81.73 5670.82 -22.07% 2.08%

7.4 Results after technology mapping by Synopsys Design

Compiler

The netlists considered in all of the above simulation results are composed of standard

library cells of 2-Input ANDs, Inverters and Buffers, hence still representing the exact

AIG networks. Another set of experiments were also performed. In the first experi-

ment, one ABC-optimised and one OPT-PT-optimised netlist were written out of ABC

as Verilog files in Generic Technology (GTECH) (i.e. without being mapped to any

technology). These Verilog files and the associated SAIF files are read, synthesised and

92

Table 7.6: The comparison of OPT-T with ABC

Circuit PABC TABC AABC PTO TTO ATO △P △T △A

- (µW) (ns) (um2) (µW) (ns) (um2) - - -

count 76.85 0.91 414.72 78.68 0.62 436.32 2.40% -31.91 % 5.22%

frg2 354.51 0.78 2279.88 338.88 0.66 2290.68 -4.43% -15.44% 0%

x3 307.18 1.21 1999.80 297.56 1.10 2290.68 -3.15% -9.16% 0%

frg1 53.37 0.64 380.52 54.91 0.56 388.13 2.37% -12.58% 2.09%

dalu 144.12 1.82 3464.64 150.32 1.63 3468.80 4.30% -10.41% 0%

toolarge 176.18 1.09 1359.72 179.50 0.92 1376.20 2.02% -15.63% 1.24%

sct 27.22 0.31 185.04 26.36 0.25 186.70 0% -19.45% 0%

term1 60.23 0.52 534.24 63.63 0.47 546.40 5.60% -9.60% 2.30%

i2 184.53 0.42 721.44 184.11 0.34 721.44 0% -19.06% 0%

k2 136.86 0.67 3150.36 148.58 0.55 3152.52 8.57% -17.98% 0%

DES 1156.66 1.95 10674.36 1126.40 1.73 15879.24 -2.59% -11.30% 2.01%

Ri10,o10 1587.32 1.57 15872.76 1497.70 1.37 15879.24 -5.62% -12.73% 0%

Ri9,o11 783.48 1.05 6906.60 781.41 0.87 7010.40 0% -17.24% 1.55%

Average - - - - - - - -15.65% -

Figure 7.3: The graph for delay reduction among various circuits

93

Table 7.7: Computation time of OPT-T with respect to resyn script of ABC

Circuit Gates RTABC RTTO

- - (s) (s)

count 257 0.05 0.09

frg2 1355 0.49 0.88

x3 1180 0.33 0.52

frg1 236 0.07 0.11

dalu 2097 0.46 0.82

toolarge 795 0.21 0.39

sct 114 0.02 0.025

term1 317 0.14 0.19

i2 447 0.12 0.19

k2 1638 0.61 1.1

DES 6233 1.68 3.12

Ri10,o10 9379 2.29 4.15

Ri9,o11 4063 1.05 1.95

compiled in Synopsys DC. Power, delay and area results obtained after actual technol-

ogy mapping using all the standard cells of TSMC 65GP CMOS library, are reported

in Table 7.8. There are two experiments denoted by o1 and o2. In o1, the Verilog

file from the ABC-optimised AIG network is analysed. In o2, the Verilog file from the

OPT-P-optimised AIG network is analysed. Table 7.8 shows power, timing and area

results. Po1, To1, Ao1 and Go1 are power, delay, area and gate count obtained by the

o1 experiment. Po2, To2, Ao2 and Go2 are power, delay, area and gate count obtained

by o2 experiment.

The power reductions using Synopsys technology mapping are marginally better

than the power reductions using AIG2Net mapping on OPT-P optimised netlist. The

average percentage reduction in power using AIG2Net mapping on OPT-P optimised

netlist is 23% and using Synopsys technology mapping is 19%.

7.5 Power-Time (P-T) curve

A P-T curve of circuit Ri10,o12 with 8500 gates, undergoing OPT-P optimisation is also

presented. This is shown in Figure 7.4. The x-axis indicates the delay constraint. For

94

Table 7.8: Results using Synopsys Design Compiler mapping via OPT-P

Circuit Po1 To1 Ao1 Po2 To2 Ao2 △P

- (µW) (ns) (um2) (µW) (ns) (um2) -

x3 97.50 0.70 692.64 78.21 0.73 725.04 -19.79%

frg2 137.16 0.71 686.16 112.47 0.74 706.52 -18.03%

i9 30.21 0.74 479.52 23.86 0.71 486.28 -21.04%

dalu 24.80 0.95 679.32 20.50 0.99 713.28 -17.33%

vda 37.97 0.63 551.16 30.07 0.65 559.16 -20.80%

des 428.52 0.85 3213.36 334.98 0.89 3293.48 -21.82%

k2 32.34 0.77 943.56 26.54 0.80 978.84 -17.93%

Ri8,o10 131.47 0.60 1104.84 109.12 0.58 1137.88 -17.04%

example, 3% delay constraint implies that the increase in MAT shall not be greater than

0.03 times the original. On the y-axis, the optimised switching power corresponding to

the given delay increase is presented. The figure indicates the maximum reduction in

switching power obtained when allowing the specified relaxation in delay constraint. In

the above experiments there was no area constraint hence area increased by 6.5%. The

power, delay and area values are estimated by Synopsys DC following the flow diagram

mentioned in Figure 6.4. The curve shown in Figure 7.4 indicates delay-driven power

optimisation using the OPT-P tool.

7.6 Experimental results on sequential circuits

We performed another set of experimental results on sequential circuits (with both

combinational plus memory (sequential) component). This section presents results on

few circuits (used as differential equation solver, elliptic equation solver etc.) having

both combinational sub network plus registers and flip flops.

The Figure 7.5 shows a high-level description of a processor with combinational

and sequential components. The inputs X1, ..., Xm are the primary inputs and the

95

Figure 7.4: The P-T curve on Ri10,o12

outputs Z1, ..., Zn are the primary outputs. The ports Q1, ..., Qk and Q+
1 , ..., Q

+
k are

the flip-flip/registers outputs and flip-flop/registers inputs respectively, and are usually

called as pseudo primary outputs/inputs. The sequential component of a processor is

composed of registers and flip flops represented as storage (Memory). The sub-circuit

which links the primary inputs and flip-flip/register outputs with primary outputs and

96

flip-flop/registers inputs is the combinational sub network of the circuit. Using such

module, we can easily identify the combinational part of the circuit.

Figure 7.5: High level view of a Processor

A similar concept is performed on the sequential AIG network. A sequential AIG

network is shown in Figure 7.6. The flip-flop/register inputs v1L − in, v2L − in and

v3L − in and flip-flop/register outputs v1L, v2L and v3L are removed and replaced

with pseudo Primary Inputs (PIs) and Primary Outputs (POs). The network between

Pseudo PIs and Pseudo POs represents the combinational component of the circuit and

hence OPT-PT rules can be applied on this combinational sub network.

Figure 7.6: Sequential AIG of a 3-bit shift register

After the OPT-PT application, the network is again mapped to a Verilog netlist

97

using AIG2Net where AND nodes are replaced with AND cells, complemented edges

with inverter cells and non-complemented edges with buffer cells chosen from a specific

library (TSMC 65nm GP CMOS). The pseudo PIs and POs are reconnected to their

sequential component. On mapping, the flip-flop/registers are replaced with D-flip flops

chosen from the specified library. A table for the sequential circuit synthesis results is

given in Table 7.9. The table presents six sequential circuits followed by their function

description, number of input-output ports, number of nodes and edges, number of

latches and latch area (non-combinational memory area). These values are tabulated

after the technology mapping is done by tool AIG2Net. Table 7.10 presents the power,

delay and area results on these circuits and the results are compared with the ABC

synthesis scripts. Also note that the results mentioned in Table 7.10 are with respect to

the complete circuit i.e. including combinational sub-network and latches. However in

Table 7.11, power results are presented while only considering the combinational sub-

network of the six sequential circuits considered in the experiment. In Table 7.10 and

Table 7.11, PABC , TABC and AABC are the total power, delay and area results obtained

using the ABC synthesis scripts. And PPO, TPO and APO are the power, delay and

area results obtained using OPT-P script for power optimisation.

Table 7.9: Sequential circuit synthesis results for selected MCNC circuits

Circuit Description I/O ports Cells Nets nDFF Latches Area

- - - - - - (um2)

dsip Sequential Encryption 427 4541 4770 224 1532.16

tseng Bus Controller 175 3964 4016 385 2633.40

diffeq Differential Equation Solver 104 4743 4807 377 2578.68

bigkey Sequential Key Encryption 461 5779 6008 224 1532.16

elliptic Elliptic Equation Solver 246 11260 11391 1122 7674.00

frisc - 137 11137 11157 886 6060.01

From the results we can infer that the average power reduction of 20% is obtained

when only considering the combinational sub network of the circuit, as shown in Table

7.11. However a significant reduction in the average power of 14% is obtained even when

considering the complete circuit including combinational plus sequential components as

shown in Table 7.10.

98

Table 7.10: The comparison of OPT-P with ABC, (65nm process)

Circuit PABC TABC AABC PPO TPO APO △P △T △A

- (µW) (ns) (um2) (µW) (ns) (um2) - - -

dsip 823.57 1.27 8979.84 716.00 1.32 9338.16 -13.01% 3.92% 4.03%

tseng 938 0.19 8481.96 806.04 0.19 8777.80 -14.05% 0% 3.56%

diffeq 1223 0.19 9770.06 1002.07 0.19 10209.08 -18.09% 0% 4.50%

bigkey 1499 1.23 10926.01 1319.02 1.25 11199.03 -12.04% 2.05% 2.50%

elliptic 2721 0.19 24468.06 2312.07 0.19 25202.00 -15.08% 1.50% 3.09%

frisc 1350 0.18 23308.00 1200.01 0.18 23890.02 - 11.03% 2.54% 2.55%

Average - - - - - - -13.86% - -

Table 7.11: Power reduction on the combinational sub-network for a set of sequential

circuits

Circuit PABC PPO △P

- (µW) (µW) -

dsip 367.00 289.02 -21.04%

tseng 621.06 496.08 -20.10%

diffeq 732.11 563.13 -23.15%

bigkey 1227.17 1018.19 -17.20%

elliptic 1805.22 1425.24 - 21.26%

frisc 760.28 615.30 - 19.02%

Average - - -20.04%

7.7 The impact on switching power corresponding to var-

ious input data sets

In all of the above experimental results, for the estimation of switching power at each

node, we assumed random input probabilities of the primary inputs. Next we observe

the impact on the switching power corresponding to various input probability data

sets. Various switching activity profiles (SAP) have been considered with respect to

the primary inputs. Inputs with flat SAP denoted as SAP1, inputs with log2 decreasing

SAP denoted as SAP2 and inputs with random SAP denoted as SAP3 are considered

in our work. Figure 7.7, Figure 7.8 and Figure 7.9 represent examples of SAP1, SAP2

99

and SAP3 respectively.

Figure 7.7: Flat SAP

Figure 7.8: Decreasing Log2 SAP

Figure 7.9: Random SAP

100

The experiment corresponding to different SAPs is performed on a 6 × 4 bit mul-

tiplier. The two inputs of the multiplier are A and B with A of 6 bits and B of 4 bits.

Hence the primary inputs of the multiplier are A(0), A(1), A(2), A(3), A(4), A(5) and

B(0), B(1), B(2), B(3). Flat SAP implies all the ten primary inputs of the multiplier

circuit have same switching activity as implied in Figure 7.7.

log2 SAP implies that the switching activity of one input is half with respect to

another input, as implied in Figure 7.8. Hence the switching activity decreases by half

from A(0) to A(5) and from B(0) to B(3).

Random SAP implies that the switching activities of primary inputs from A(0) to

A(5) and from B(0) to B(3) is randomly chosen as implied in Figure 7.9. For the ran-

dom SAP profile (SAP3), another set of experiments are performed. The randomly

generated switching activities corresponding to the primary inputs A(0), A(1), A(2),

A(3), A(4), A(5), B(0), B(1), B(2) and B(3) of the multiplier circuit, are stored in a

set R. The switching activity of any one of the inputs is altered, while the rest of the

switching activities are unchanged. We did this altering on each of the inputs namely

and reported the change in switching power corresponding to each altering. Table 7.12

shows the switching power reduction on the 6×4 bit multiplier under the various switch-

ing activity profiles.

In the Table 7.12, SAP10.48 implies flat SAP with switching activity set at 0.48.

SAP20.48 implies log2 decreasing SAP with maximum switching activity set at 0.48.

SAP3r1 and SAP3r2 are two random SAPs. SAP3A(0) implies random switching ac-

tivities taken from SAP3r1 where the switching activity of input A(0) is altered while

rest of the activities are same. For example, SAP3A(1) implies random switching ac-

tivities taken from SAP3r1 where the switching activity of input A(1) is altered while

rest of the activities are same. SAP3A(2), SAP3A(3), SAP3A(4), SAP3A(5), SAP3B(0),

SAP3B(1), SAP3B(2) and SAP3B(3) are described in a similar fashion.

The results in the Table 7.12 have been tabulated for various switching activity pro-

files on a multiplier circuit. From the results, the log2 decreasing SAP given significant

reduction of 19%. Also in the random SAP , there are instances when the reduction is

as low as 9% and instances when the reduction is as high as 23%. In the random SAP ,

the results alter when we change the switching activity of one of the inputs keeping the

rest same. Hence altering the switching activity at inputs A(1), A(4), A(5) and B(1)

101

Table 7.12: Impact on power reduction under various input data sets (implemented on

6× 4 bit multiplier)

SAP PABC PPO △P

- (µW) (µW) -

SAP10.48 523.10 453.12 -13.14%

SAP20.48 431.16 350.18 -19.20%

SAP3r2 477.11 400.13 -16.15%

SAP3r1 380.17 307.19 -19.01%

SAP3A(0) 380.17 338.19 -11.20%

SAP3A(1) 380.17 304.21 -20.02%

SAP3A(2) 380.17 326.22 -14.04%

SAP3A(3) 380.17 323.23 -15.06%

SAP3A(4) 380.17 300.24 -21.08%

SAP3A(5) 380.17 292.25 -23.11%

SAP3B(0) 380.17 345.26 -9.13%

SAP3B(1) 380.17 296.27 -22.15%

SAP3B(2) 380.17 342.28 -10.17%

SAP3B(3) 380.17 329.29 -13.18%

gives higher reduction than the rest ones.

A similar experiment corresponding to different SAPs is performed on a 5 bit adder.

The two inputs of the adder are A and B with A of 5 bits and B of 5 bits. Hence the

primary inputs of the adder are A(0), A(1), A(2), A(3), A(4) and B(0), B(1), B(2),

B(3), B(4). Table 7.13 shows the power reduction on the 5 bit adder under the various

switching activity profiles. The notations are the same as described above.

The results in the Table 7.13 have been tabulated for various switching activity

profiles on an adder circuit. From the results, the log2 decreasing SAP and flat SAP

gives equivalent reduction of 24%. Also in the random SAP , there are instances when

the reduction is as low as 12% and instances when the reduction is as high as 38%.

In the random SAP , the results alter when we change the switching activity of one of

the inputs keeping the rest same. Hence altering the switching activity on inputs A(0),

A(3), A(4) and B(2) gives highest reduction.

102

Table 7.13: Impact on power reduction under various input data sets (implemented on

5 bit adder)

SAP PABC PPO △P

- (µW) (µW) -

SAP10.48 178.00 134.04 -24.18%

SAP20.48 141.01 107.05 -24.18%

SAP3r2 163.02 120.06 -26.19%

SAP3r1 117.03 84.07 -28.20%

SAP3A(0) 117.03 82.08 -30.21%

SAP3A(1) 117.03 93.09 -20.22%

SAP3A(2) 117.03 96.10 -18.23%

SAP3A(3) 117.03 83.11 -29.24%

SAP3A(4) 117.03 72.12 -38.25%

SAP3B(0) 117.03 84.13 -28.26%

SAP3B(1) 117.03 103.14 -12.05%

SAP3B(2) 117.03 82.15 -30.10%

SAP3B(3) 117.03 97.16 -17.15%

SAP3B(4) 117.03 93.17 -20.20%

7.8 Conclusions

The OPT-PT tool is applied on a set of large MCNC Benchmark circuits. It is also

applied on large, randomly-created ROM circuits with gate counts ranging from 1,000

to 100,000. Across MCNC benchmark circuits and a set of large, randomly-generated

combinatorial ROM circuits, OPT-PT achieved promising power and delay optimisation

results. In OPT-P mode, the average power reduction is 23.46% with respect to the ABC

synthesis (also minimal overhead with respect to delay and area). The power reduction

ranged from 14% to 33%. On applying OPT-T for power-driven delay optimisation, the

average critical path length is reduced by 15.53% with respect to the ABC synthesis

(also with minimal overhead with respect to power and area). The delay reduction

ranged from 9% to 32%. The networks before and after reordering are verified by

Synopsys Formality.

Another experiment is also performed on digital circuits with combinational plus

sequential component. The experiment is performed on processors used as differential

103

equation solver, elliptic equation solver etc., having both combinational sub network

plus flip-flops/registers. The results show an average power reduction of 20% when

only considering the combinational sub network of the circuit. However a significant

reduction in the average power of 14% is obtained even when considering the complete

circuit including combinational plus sequential components.

Finally, a set of experiments are performed to study the impact on power reduction

with respect to various switching activity profiles. The power reduction is observed

under flat switching activity profile, logarithmic decreasing switching activity profile

and random switching activity profile.

In the next chapter, we use several combinatorial optimisation techniques to determine

the order of rule application on the AIG nodes to achieve improved results in terms of

power and delay optimisation.

104

Chapter 8

Combinatorial optimisation

techniques for dynamic power

reduction

Power optimisation is a crucial problem in modern circuit design, as discussed in the

previous chapters. One way of power optimisation is to reduce the switching activity

of circuit nodes by annotating it on AIG graphs, followed by reordering and restructur-

ing rules on the AIG network to alter the switching probability and switching power,

as dealt in Chapter 5. In this chapter, several combinatorial optimisation algorithms

namely Local Search, Tabu Search, Simulated Annealing Search and Partitioned Ran-

dom Search, are used and incorporated in our previous tool OPT-P for a systematic

power optimisation. A comparison among these optimisation algorithms on the basis of

dynamic power reduction and computation time is presented. Some significant results

of dynamic power reduction are shown on digital circuits such as multipliers, which are

a key part of many circuits.

8.1 Introduction

In the previous chapter, the switching activity of the circuit nodes is annotated as

switching probabilities onto the nodes of AND-Inverter Graphs (AIGs) using a specific

delay model. Various reordering and restructuring rules are applied using OPT-P to

alter the switching probabilities on the AIG nodes, to reduce the switching power. The

105

four reordering rules, namely Rp1, Rp2, Rp3 and Rp4 used in OPT-P are described in

Section 5.4 of Chapter 5. Each rule can be applied on each node of the AIG network

if the node satisfies the condition required for the application of that rule. On the

application of these rules for switching power reduction, either the maximum arrival

time MAT (f) of the AIG network or the node count of the AIG network may increase.

Consider the AIG network to be a graph with AIG nodes as the vertices. The tool

OPT-P is applied on some of the AIG nodes on traversing through the AIG network.

The order of the nodes scheduled for OPT-P application is determined by the four

optimisation algorithms used in this chapter. The combinatorial optimisation methods

used are namely Local Search (LS), Tabu Search (TS), Simulated Annealing Search (SS)

and Partitioned Random Search (PS). These algorithms are extensively used in Elec-

tronic Design Automation (EDA). The algorithms traverses the AIG network, to find

the node order (path followed) for sequential OPT-P application, to optimise a cost

function namely switching power. A comparison is made among the four optimisation

algorithms on the basis of switching power and computation time. The switching power

is estimated on some combinational circuits namely multipliers.

8.2 Multi-objective power-delay optimisation is NP-Complete

Finding the best possible order of AIG nodes for sequential rule application, which

gives maximum reduction in the switching power SP (f) and minimum increase in delay

MAT (f) (such that the product of power and delay gets minimised) is an NP-Complete

problem.

It is well known that the complexity of the VLSI dynamic power optimization [60]

and power-delay optimization [52] are NP-Complete. The generalized low power bind-

ing problem (i.e. the synthesis of a low power architecture based on a fixed number of

resources from a Data Flow Graph) is formulated as an Integer Linear Programming

(ILP) problem which is shown to be an NP-complete task to solve, as presented in

[22]. Dynamic power minimisation during combinational testing is also formulated as a

Traveling Salesman Problem (another well known NP-Complete Problem) as presented

in [63].

In order to analyse the complexity of our research problem, we also consider the Trav-

106

eling Salesman Problem (TSP). The Traveling Salesman Problem can be formulated as

follows:

Given an undirected weighted graph G(V,E) where the cities are the graph’s vertices

V , paths between cities are the graph’s edges E, and path’s distances are the weights

W associated with each edge, find a path/order including every vertex in the set V that

is a path p = (v1, v2, v3,, vn) containing the vertices in V such that:

∀vi ∈ V

(
∑

1<=i<=n−1W (vi, vi+1)) +W (vn, v1) is minimised.

The multi-objective power-delay optimisation problem dealt in our work can be

re-framed as follows. Consider the set of AIG nodes on which the reordering rules

have to be applied as AN . Let E denote the product of △P (decrease in switching

power) and △T (increase in delay) of the circuit when the optimisation reordering

rules are applied consecutively first on ANi and then on ANj where ANi ∈ AN and

ANj ∈ AN . Given AN and E, the problem is to find AIG nodes order such that∑
ANi,ANj∈AN 1/E(ANi, ANj) is minimised.

The Traveling Salesman Problem can be reduced to our multi-objective power-delay

optimisation problem. The set of vertices V of the Traveling Salesman Problem can be

replaced with the set of AIG nodes selected for rule application AN . The functionW as-

sociated with each edge of the graph can be replaced with the the function E as described

above. This reduction implies that a solution to the Traveling Salesman Problem exists

if and only if there exists a solution to the multi-objective power-delay optimisation

problem. Since TSP is NP-Complete, hence it can be concluded that multi-objective

power-delay optimisation problem mentioned in our work is NP-Complete. The prob-

lem being NP-Complete, several heuristics methods are used in this chapter to find

better node ordering with respect to each other. Work in [28] presents implementation

and comparison among various heuristics (Tabu Search, Simulated Annealing Search

etc) to solve the Traveling Salesman Problem

The rest of the chapter is organised as follows. Section 8.3, 8.4, 8.5 and 8.6 presents

the implementation of Local Search, Tabu Search, Simulated Annealing Search and Par-

titioned Random Search methods respectively. Section 8.7 presents some experimental

results using some multipliers and Section 8.8 presents some concluding remarks.

107

8.3 The Local Search Method

Local Search (LS) is a combinatorial optimisation algorithm [29] which starts with a

candidate solution and moves iteratively to a neighbouring solution. Termination of

a LS can be based on a time bound, number of iterations or any other parametric

constraints set by the user. To proceed with any such search algorithms, a graph

G(V,E) is defined. In reference to our context, the graph has vertices as the AIG

nodes (solution space) and edges represent two AIG nodes meant for reordering rules

application sequentially. In LS, if two nodes x first and then y are chosen, it implies

that the reordering rules are applied on node x first and then on node y. There are two

aims of these optimisation algorithms. Firstly the total switching power SP (f) of the

AIG network gets reduced by finding the correct order node order for sequential rule

application. Secondly, the computation time of the solution search gets reduced.

Any AIG node can have several neighbouring (local) nodes in the AIG network,

the best neighbouring (local) node will be the node which gives maximum reduction of

switching power when the OPT-P tool is applied on that node. The process continues

until the percentage of MAT (f) or the node count of the AIG network exceeds the

given limitations set as 10%. In the AIG network, nodes which we have defined local

to each other, are shown in Figure 8.1. The highlighted nodes are neighbouring (local)

nodes with respect to nodei.

Figure 8.1: Local nodes within an AIG network

Some variables common to all the presented search methods below are declared here.

108

Let pNtk be the AIG network considered. ♯ denotes the condition for a node to be local

with respect to another node. Let the ordered node sequence calculated by the search

methods be stored in set R. Let nodei be the starting node of any search. Let L be the

set of l local nodes with respect to Node nodei satisfying the condition ♯. Ni, Nf and

△n represent the initial, final and fractional node count increase of the AIG network

respectively. MATi(f), MATf (f) and△t represent the initial, final and fractional MAT

increase after OPT-P application on a chosen node of the AIG network respectively.

Let SPi(f), SPf (f) and △p represent the initial, final and fractional switching power

decrease of the AIG network respectively. The pseudo code description of LS is shown

in Algorithm 4.

Algorithm 4 Local Search Method

Require: Ni, pNtk, MATi(f)

Ensure: R

1: MATf (f) = MATi(f) and Nf = Ni

2: { Compute △t and △n }

3: △t = (MATf (f)−MATi(f))/MATf (f)

4: △n = (Nf −Ni)/Nf

5: while △n < 0.10 and △t < 0.10 do

6: for j = 1 to l do

7: { Let L be the set of l local nodes with respect to Node nodei satisfying the

condition ♯}

8: { current node is represented as nodei}

9: {SPj(f) denotes the total switching power of the network when OPT-P is

applied on node nodej after node nodei }

10: { Compute Min SPm(f) at node nodem }

11: end for

12: R[i] = nodem and i = i+ 1

13: { Apply OPT-P on node nodem}

14: { Compute MATf (f), Nf , △t and △n }

15: MATi(f) = MATf (f) and Ni = Nf

16: nodei = R[i]

17: end while

109

8.4 The Tabu Search Method

Tabu Search (TS) is another optimisation algorithm [30] which enhances the perfor-

mance of LS by using memory structures. Once a potential solution has been deter-

mined, it is marked as ‘taboo’ so that the algorithm does not re-visit that solution. This

method prepares a tabu list, which contains the solutions that have been visited in the

recent past (less than k iterations ago, where k is the number of previous solutions to

be stored). Hence TS excludes the solutions present in the tabu list, when looking for

the next neighbouring solution. This is mainly done to overcome the drawback of LS.

Sometimes LS gets stuck in a cycle (local minimum) and repeatedly chooses the same

set of solutions. This may either lead to very large computation time or a poor/false

minimum. The stopping conditions are same as in the LS. Let α represent the condition

that the new node solution is not among the last k solutions. The pseudo code for TS

is shown in Algorithm 5.

8.5 The Simulated Annealing Search

Simulated Annealing Search (SS) is an optimisation algorithm [31] which probabilis-

tically determines between moving to another neighbouring state s
′
or remaining in

state s. In our SS, the cost function SP (f) has to be minimised. Instead of prob-

abilities, weights are defined for the movement at each node. These weights depend

upon the difference in the cost function before and after rules application, and a control

parameter T . The control parameter T is the difference between the initial MAT of the

network and the final MAT of the network obtained after the application of the rules.

The weights chosen are directly proportional to the decrease in switching power and

inversely proportional to the increase in MAT. To proceed, the weights are described

below.

If △p > 0 and △t > 0, then W = e△p/△t

If △p > 0 and △t < 0, then W = e△p∗(−1∗△t)

If △p > 0 and △t = 0, then W = e△p

The pseudo code for SS is shown in Algorithm 6.

110

Algorithm 5 Tabu Search Method

Require: Ni, pNtk, MATi(f), k

Ensure: R

1: {k represents the number of last iterative solutions in the tabu list }

2: MATf (f) = MATi(f) and Nf = Ni

3: { Compute △t and △n }

4: △t = (MATf (f)−MATi(f))/MATf (f)

5: △n = (Nf −Ni)/Nf

6: while △n < 0.10 and △t < 0.10 do

7: for j = 1 to l do

8: { Let L be the set of l local nodes with respect to Node nodei satisfying the

condition ♯}

9: { i represents the current number of nodes chosen in the tabu list, current node

is represented as nodei}

10: if (i > k and α == 1) or i <= k then

11: { Compute Min SPm(f) at node nodem }

12: end if

13: end for

14: R[i] = nodem and i = i+ 1

15: { Apply OPT-P on node nodem}

16: { Compute MATf (f), Nf , △t and △n }

17: MATi(f) = MATf (f) and Ni = Nf

18: nodei = R[i]

19: end while

111

Algorithm 6 Simulated Annealing Search

Require: Ni, pNtk, MATi(f)

Ensure: R

1: MATf (f) = MATi(f) and Nf = Ni

2: { Compute △t and △n }

3: △t = (MATf (f)−MATi(f))/MATf (f)

4: △n = (Nf −Ni)/Nf

5: while △n < 0.10 and △t < 0.10 do

6: for j = 1 to l do

7: { Let L be the set of l local nodes with respect to Node nodei satisfying the

condition ♯}

8: { current node is represented as nodei}

9: { Compute Wj corresponding to each node nodej }

10: { Compute maxWm corresponding to node nodem }

11: end for

12: R[i] = nodem and i = i+ 1

13: { Apply OPT-P on node nodem}

14: { Compute MATf (f), Nf , △t and △n }

15: MATi(f) = MATf (f) and Ni = Nf

16: nodei = R[i]

17: end while

112

8.6 The Partitioned Random Search

Partitioned Random Search (PS) is an optimisation algorithm [82] with low complexity

and low computation time. This method divides the search space into various partitions

called sub-sets. It proceeds by looking into all the solutions of the first partition and

then proceeds to the next sub-set (partition). Inside the partition, the search is random.

In our method, the solution space is the set of AIG nodes of the network N . The number

of subsets is ns = 10. Each node has a switching power assigned to it, which is the

product of the switching probability and number of fanouts (capacitive load) at that

node. Let the switching power at node n be represented by SPn(f). Let the maximum

switching power among all the nodes be denoted by SPmax(f). From the set N , nodes

with switching power greater than or equal to 0.9.SPmax(f) fall in the sub-set T9. Nodes

with switching power greater than or equal to 0.8.SPmax(f) and less than 0.9.SPmax(f)

fall in sub-set T8. Similarly, nodes with switching power less than 0.1.SPmax(f) fall in

sub-set T0. Let the number of nodes in set T9 be n9, in set T8 be n8,..., in set T0 be n0.

If exit gets equal to 1, the search process stops there itself. The pseudo code for PS is

shown in Algorithm 7.

8.7 Experimental Results

Technology mapped power results (after the application of OPT-P tool combined with

the combinatorial optimisation algorithms on AIG nodes of the AIG network) are ob-

tained with the same design flow as explained in Section 6.2.1 of Chapter 6. The input

file is BLIF file format. The ABC converts this file to an AIG network. This AIG

network is optimised using various synthesis scripts and optimisation algorithms. The

networks are mapped to a Verilog netlist using AIG2Net [43]. This tool uses TSMC

CMOS 65nm GP library cells of 2-input ANDs, Inverters and buffers in order to have

almost similar mapping of AIG network to the netlist. A user defined SAIF file is

also provided corresponding to the switching probabilities of AIG nodes of the AIG

networks (netlist). Power is then estimated using Design Compiler (DC). In our exper-

iments, four sets of AIG networks optimised using the four optimisation methods are

considered. The four networks are then mapped to a netlist and power is estimated

using DC. The computation time required to run these scripts on combinational circuits

113

Algorithm 7 Partitioned Random Search Method

Require: Ni, pNtk, MATi(f), T9, T8, T7, T6, T5, T4, T3, T2, T1, T0

Ensure: R

1: MATf (f) = MATi(f) and Nf = Ni

2: exit = 0

3: { Compute △t and △n }

4: △t = (MATf (f)−MATi(f))/MATf (f)

5: △n = (Nf −Ni)/Nf

6: for j = 1 to n9 do

7: k = Random(n9)

8: { Apply OPT-P on node T9[k]}

9: { Compute MATf (f), Nf , △t and △n }

10: MATi(f) = MATf (f) and Ni = Nf

11: if △n > 0.07 and △t > 0.07 then

12: exit = 1

13: end if

14: { Search process stops}

15: R[i] = T9[k]and i = i+ 1

16: end for

17:

18: { Compute for rest of the subsets ns }

19:

20: for j = 1 to n0 do

21: k = Random(n0)

22: { Apply OPT-P on node T0[k]}

23: { Compute MATf (f), Nf , △t and △n }

24: MATi(f) = MATf (f) and Ni = Nf

25: if △n > 0.07 and △t > 0.07 then

26: exit = 1

27: end if

28: { Search process stops}

29: R[i] = T0[k] and i = i+ 1

30: end for

114

is estimated in ABC.

Experiments on some multiplier circuits are performed and three tables of comparison

among the four search algorithms are presented on the basis of power, delay and com-

putation time. Table 8.1 and Table 8.2 present power and delay comparisons. Table

8.3 presents the comparison of the computation time required on eight combinational

multiplier circuits with respect to the four search algorithms. In the tables, m4−6 rep-

resent a multiplier circuit with a four bit and six bit input. In the tables, P represents

power values, T stands for delay values and CT stands for the computation time. Also

PIn and TIn stand for initial power and delay values. Power values are in µW , delay

values are in ns and computation time is given in s.

Table 8.1: Power comparisons among LS, TS, SS and PS

Circuit PIn PLS PTS PSS PPS △PLS △PTS △PSS △PPS

- (µW) (µW) (µW) (µW) (µW) - - - -

m4− 6 503.14 410.21 398.33 392.39 392.39 -18.47% -20.83% -22.01% -22.01%

m4− 7 683.49 573.78 576.38 577.68 553.76 -16.05% -15.67% -15.48% -18.98%

m4− 8 908.84 787.14 790.87 781.60 760.78 -13.39% -12.98% -14.01% -16.29%

m5− 6 988.84 861.97 847.23 882.34 831.31 -12.83% -14.32% -10.77% -15.93%

m4− 9 1090.67 963.17 958.15 963.17 936.88 -11.69% -12.15% -11.69% -14.10%

m5− 7 1696.22 1485.21 1503.52 1476.22 1441.44 -12.44% -11.36% -12.94% -15.02%

m6− 6 2105.36 1856.08 1863.06 1823.45 1811.87 -11.84% -11.51% -13.39% -13.94%

m5− 8 2713.61 2396.67 2326.78 2276.89 2265.88 -11.67% -14.26% -16.10% -16.51%

Average - - - - - -13.54% -14.13% -14.53% - 16.59%

In Table 8.3, comparing the computation time of LS and TS, it is observed that

the computation time is almost similar for smaller circuits, but the difference increases

significantly for larger circuits. This is mainly because large circuits imply large solu-

tion searching space. In the LS method with large solution space, there might be many

cases when the search is stuck in a local minimum thereby increasing the computation

time significantly. In Table 8.3, computation time is ∞ in one the cases of Local Search.

This implies that the search is stuck in an infinite loop (stuck at local minimum) and

115

Table 8.2: Delay comparison among LS, TS, SS and PS

Circuit TIn TLS TTS TSS TPS △TLS △TTS △TSS △TPS

- (ns) (ns) (ns) (ns) (ns) - - - -

m4− 6 0.95 1.02 1.03 0.98 1.01 6.36% 7.42% 2.15% 5.31%

m4− 7 1.03 1.10 1.09 1.07 1.08 5.79% 4.82% 2.88% 3.85%

m4− 8 1.19 1.26 1.26 1.24 1.22 4.88% 4.88% 3.20% 1.52%

m5− 6 1.20 1.25 1.24 1.23 1.25 3.16% 2.33% 1.50% 3.16%

m4− 9 1.22 1.34 1.31 1.28 1.26 8.83% 6.37% 4.64% 2.27%

m5− 7 1.49 1.61 1.57 1.55 1.61 7.05% 4.36% 3.02% 7.05%

m6− 6 1.57 1.58 1.58 1.58 1.58 0.63% 0.63% 0.63% 0.63%

m5− 8 1.87 1.91 1.97 1.91 1.98 2.13% 5.34% 2.13% 5.88%

Table 8.3: Comparison of computation time using LS, TS, SS and PS

Circuit Gates CTLS CTTS CTSS CTPS

- - (s) (s) (s) (s)

m4− 6 2451 1.69 1.74 1.94 1.29

m4− 7 3345 1.87 1.73 1.70 1.97

m4− 8 4821 5.44 5.28 6.40 5.18

m5− 6 5049 6.39 6.69 6.71 5.17

m4− 9 6082 6.69 6.92 7.18 6.32

m5− 7 8955 40.86 25.99 28.38 27.44

m6− 6 11263 44.16 30.89 46.92 26.10

m5− 8 15119 ∞ 118.53 164.97 102.47

hence the computation time tends to ∞. On the other hand, TS prepares a list of last

solutions which prevents it from getting stuck in cycles. Hence in the Table 8.3, in the

last three circuits, the computation time for LS increases significantly. In one case, the

method gets stuck in an infinite loop. In the smaller circuits, i.e. the first five circuits

in Table 8.3, either the computation time for TS is low with respect to LS or if high,

then the corresponding power results are better. This can be observed in Table 8.1.

116

Observing the computation time of SS in Table 8.3, it can be noticed that SS is a slow

and gradual process and is based on delay dependent power optimisation. Although

the computation time is higher for all the circuits, it has a significant decrease in power

with a very slight increase in delay. This can be observed in Table 8.2. In Table 8.1

and Table 8.2, the power reductions due to SS are moderate but with that reduction,

there is very little increase in the delay. The delay values in Table 8.2 for SS are least

in the majority of the circuits.

The computation time in PS as shown in Table 8.3, is low in majority of the cases. The

method has a fixed procedure of partitioning the search space and choosing randomly all

solutions in each partition, thereby reducing the computation time significantly. How-

ever the criteria of partitioning is very subjective to the problem considered.

In Table 8.1, the maximum reduction in power is obtained in PS. TS and SS have

almost similar power reduction values. LS method has the minimum average power

reduction among the four search methods as shown in Table 8.1. LS is a basic and con-

venient method of search and provides good results with less time if the search space is

small.

8.8 Conclusions

The chapter presents a comparison of four combinatorial optimisation algorithms namely

Local Search, Tabu Search, Simulated Annealing Search and Partitioned Random Search.

A methodology of how these optimisation algorithms can be incorporated in the OPT-

P tool to reduce power on some combinational multiplier circuits is presented. In our

experimental results it is shown that choosing the correct optimisation method is a

trade-off between computation time, power reduction, overhead factors like delay, and

complexity of the method. According to the results obtained, PS provided good results

with good reductions in power, low computation time, low overhead with respect to

delay. SS provided good power reductions, least overhead with respect to delay but

with high computation time. TS is an enhanced version of LS and hence improved the

results significantly with respect to LS. Power reduction values range from 13.5% to

16.6% as one shifts from LS to PS.

117

Chapter 9

Conclusions

Low power design is becoming increasingly important in today’s technology as wireless

communication becomes increasingly desirable. Although power dissipation is impor-

tant in portable systems, delay issue (performance) is an equally important target for

digital designers. Energy consumption is the product of power dissipation and runtime.

Tight energy constraints are commonplace in many modern VLSI applications. Con-

sumers expect higher speed, more functionality and higher levels of integration, from

their cellular phones and hand-held devices. Low power design shall not be done at

the expense of delay (performance) of the circuit. Similarly fast circuit design shall not

be done at the expense of increased power dissipation. Hence the motive of the thesis

was to explore optimisation schemes for power with minimal overhead of delay, and

optimisation schemes for delay with minimal overhead with respect to power.

9.1 Contributions

A number of academic EDA synthesis tools proposed in the literature were studied.

These open-source tools provide a programming environment and a solid platform for

research in logic synthesis, technology mapping, power and delay estimation and optimi-

sation. These academic tools represent the Boolean functionality of any digital circuit

using a data structure. Data structure manipulations for logic synthesis, optimisation

and technology mapping are done on these data structures. In our approach, AND-

Inverter Graph (AIG) was used as the data structure for synthesis and optimisation.

The academic EDA synthesis tool called ABC was selected and used for the implemen-

118

tation of various optimisation tools used in our work. The ABC package builds and

manipulates AIGs.

The thesis introduced new methodologies and new synthesis methods for low power

digital design. In our approach, the switching power and critical path lengths of digital

circuits were estimated on AND-Inverter Graphs both under the zero-delay model and

then under a real-delay model. A series of graph reordering rules were applied on these

graphs. These rules were based on common rules of Boolean Algebra and worked on the

restructuring of the AIG network keeping the functionality the same. This reordering

and restructuring of the AIG nodes achieved significant reduction in switching power

or delay.

The work also focused on concurrent power and delay optimisation. Delay-driven

power optimisation and power-driven delay optimisation methodologies were introduced

to have balanced power and delay values. A new tool was introduced called OPT-PT,

implemented in C as a sub-package within ABC. OPT-PT has two components - OPT-

P for delay-driven power optimisation and OPT-T for power-driven delay optimisation.

This was motivated by the fact that optimisation of one of the factors (say switching

power) might increase the other factor (like delay). Similarly, reduction of delay might

increase the switching power.

To overcome this problem, two optimisation algorithms namely Simulated Annealing

and Uniform Cost Search Algorithm were introduced. These algorithms were mainly

used in delay-driven power optimisation and power-driven delay optimisation. Several

other combinatorial optimisation techniques were also discussed and compared, which

were used as a graph search engine, in reference to our work.

For power and delay simulation results, a design flow was introduced which converted

the AIG network to an AIG netlist using TSMC GP CMOS library cells of 2-input

ANDs, Inverters and Buffers. The comparisons were made with respect to the best

synthesis scripts (used in reducing the complexity of the AIG network) of the most

popular academic state of the art synthesis tool ABC. The two AIG networks, one opti-

mised by the ABC synthesis scripts and one optimised by the OPT-PT synthesis scripts,

were mapped to AIG netlist. Power, delay and area reports on these AIG netlists were

generated using Design Compiler. Our tool was implemented on MCNC Benchmark

Circuits and on large ROM circuits with gates count ranging from 1,000 to 100,000.

119

A power reduction of 23.46% is obtained using OPT-PT with respect to the ABC

synthesis (also minimal overhead with respect to delay and area). The average criti-

cal path length was reduced by 15.53% using OPT-PT with respect to ABC synthesis

(also with minimal overhead with respect to power and area). Also, the leakage power

increased very marginally ranging from 1% to 4%.

9.2 Future Work

While this work introduced some solutions for the existing problems, it also opened

the door for new questions and new methodologies for multi-objective optimisation in

digital circuits.

NAND-NOR-Inverter Graphs proved to be another promising data structures which

could be used for logic synthesis, technology mapping, power and delay estimation and

optimisation. A tool can be introduced not only for implementing these data structures

but also manipulating them for logic synthesis, technology mapping and optimisation.

In the simulation design flow, the AIG network is mapped to an AIG netlist using only

the 2-input ANDs, Inverter and Buffer cells of TSMC GP CMOS library. A technology

mapper tool can be developed as a sub-package in ABC which maps the AIG network

to a better netlist (using all the cells of TSMC GP CMOS library) which can give

further delay and power reduction. The technology mapper shall consider power as the

optimisation metric or delay as the optimisation metric while mapping.

120

Bibliography

[1] Y. Aghaghiri, F. Fallah and M. Pedram, “Irredundant Address Bus Encoding for

Low Power”, International Symposium on Low Power Electronics and Design, Hunt-

ington Beach, CA, Aug. 2001, pp. 182–187.

[2] M. W. Allam, “New Methodologies for Low-Power High-Performance Digital VLSI

Design”, Thesis submitted to Department of Electrical and Computer Engineering,

University of Waterloo, Ontario, 2000.

[3] P. Balasubramanian and K. Anantha, “Power and delay optimised graph represen-

tation for combinational logic circuits”, International Journal of Computer Science,

Vol. 2, No. 1, 2007, pp. 47–53.

[4] P. Balasubramanian and D. A. Edwards, “Synthesis of Power and Delay optimized

NIG structures”, Proceedings of 20th IEEE Canadian Conference on Electrical and

Computer Engineering, Apr. 2007, pp. 239–242.

[5] P. Balasubramanian, R. T. Naayagi, A. Karthik and B. Raghavendra, “Evaluation of

Logic Network Representations For Achilles’ Heel Boolean Functions”, International

Journal of Computers, Systems and Signals, Vol. 9, No. 1, 2008, pp. 14–22.

[6] P. Balasubramanian, C. H. Narayanan and K. Anantha, “Low Power Design of

Digital Combinatorial Circuits with Complementary CMOS Logic”, International

Journal of Electronics, Circuits and Systems, Vol. 1, No. 1, 2006, pp. 10–18.

[7] BLIF2VHDL, “Blif to vhdl translator”, http://tams-www.informatik.

uni-hamburg.de/vhdl/tools/blif2vhdl.

[8] R. Brayton, “Factoring logic functions”, IBM Journal of Research and Development,

Vol. 31, No. 2, 1987, pp. 187–198, .

121

[9] R. K. Brayton, M. Gao, J. H. R. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S. Sinha and

T. Villa, “Optimization of multivalued multi-level networks”, Proceedings of 32nd

IEEE International Symposium on Multiple-Valued Logic (ISMVL), May 2002, pp.

168–177.

[10] R. Brayton and C. McMullen, “The decomposition and factorisation of Boolean ex-

pressions”, Proceedings of IEEE International Symposium on Circuits and Systems,

1982, pp. 49–54.

[11] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verifica-

tion tool”, Proceedings of CAV’10, Springer, LNCS 6174, 2010, pp. 24–40.

[12] R. Brummayer and A. Biere, “Local Two-Level AND-Inverter Graph Minimization

without Blowup”, Proceedings of 2nd Doctoral Workshop on Mathematical and

Engineering Methods in Computer Science (MEMICS), Oct. 2006, pp. 32–38.

[13] R. Bryant, “Graph-based algorithms for Boolean function manipulation”, IEEE

Transactions on Computers, Vol. 35, No. 8, 1986, pp. 677–691.

[14] A. P. Chandrakasan and R. Brodersen, “Minimizing power consumption in digital

CMOS circuits”, Proceedings of the IEEE, Vol. 83, No. 4, Apr. 1995, pp. 498–523.

[15] C. Chen and C. Tsui, “Timing Optimization of Logic Network Using Gate Duplica-

tion”, Asia and South Pacific Design Automation Conference 1999 (ASP-DAC’99),

1999, pp. 233–236.

[16] H. Choi and S. H. Hwang, “Power Reduction and Power-Delay Trade- Offs Using

Logic Transformations”, ACM Transactions on Design Automation of Electronic

Systems, Vol. 4, No. 1, Jan. 1999, pp. 97–121.

[17] H. Choi and S. H. Hwang, “Improving Two-Level Logic Minimization Technique for

Low Power Driven Multi-Level Logic Re-Synthesis”, Proc. 40th Midwest Symposium

on Circuits and systems, 1997, pp. 1026–1029.

[18] H. Choi and S. H. Hwang, “Low Power Logic Synthesis under a General Delay

Model”, ISLPED 98, Monterey, CA USA, Aug. 1998, pp. 209–214.

122

[19] H. Choi and S. H. Hwang, “Reducing the size of a BDD in the combinational

circuit power estimation by using the dynamic size limit”, Proceedings of 1997

IEEE International Symposium on Circuits and Systems, Vol. 3, No. 1, Jun. 1997,

pp. 1520–1523.

[20] M. Choudhury and K. Mohanram, “Timing-driven optimization using lookahead

logic circuits”, Proceedings of 46th Annual Design Automation Conference, NY,

2009, pp. 390–395.

[21] W. Chuang, S. S. Sapatnekar and I. N. Hajj, “Timing and Area Optimization

for Standard-Cell VLSI Circuit Design”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 14, No. 3, 1995, pp. 308–320.

[22] A. Davoodi and A. Srivastava, “Effective graph theoretic techniques for the general-

ized low power binding problem”, Proceedings of the 2003 International Symposium

on Low Power Electronics and Design (ISLPED), 2003, pp. 152–157.

[23] C. Ding, C. Tsui and M. Pedram, “Gate-Level Power Estimation Using Tagged

Probabilistic Simulation”, IEEE Transactions On Computer-Aided Design Of Inte-

grated Circuits and Systems, Vol. 17, No. 11, Nov. 1998, pp. 1099–1107.

[24] EDIF2BLIF, “An EDIF to BLIF conversion utility”, http://www.eecg.toronto.

edu/~jayar/software/edif2blif/edif2blif.html.

[25] M. Felipe, R. Teresa and T. Yago, “Disjoint Region Partitioning for Probabilistic

Switching Activity Estimation at Register Transfer Level”, PATMOS, 2008, pp.

399–408.

[26] M. Felipe, T. Yago and R. Teresa, “A BDD Proposal for Probabilistic Switching

Activity Estimation”, International Conference on Design of Circuits and Integrated

Systems (DCIS), Grenoble, France, Nov. 2008, pp. 54–62.

[27] M. Felipe, T. Yago and R. Teresa, “Exploiting VHDL-RTL features to reduce the

complexity of power estimation in combinational circuits”, Research in Microelec-

tronics and Electronics, Jul. 2005, pp. 111–114.

123

[28] D. Garg, “Choosing the best heuristic for a NP-Problem”, International Journal

of Information Technology and Knowledge Management, Vol. 1, No. 2, 2008, pp.

537-547.

[29] S. H. Gerez, “Local Search”, Algorithms for VLSI Design Automation, John Wiley

and Sons, pp. 69–71.

[30] S. H. Gerez, “Tabu Search”, Algorithms for VLSI Design Automation, John Wiley

and Sons, pp. 73–74.

[31] S. H. Gerez, “Simulated annealing”, Algorithms for VLSI Design Automation,

John Wiley and Sons, pp. 71–72.

[32] Greedy Algorithm, “Approximation and learning by greedy algorithms”, Annals

of Statistics - ANN STATIST, Vol. 36, No. 1, 2008, pp. 64–94.

[33] IEEE, “IEEE standard hardware description language based on the Verilog hard-

ware description language”, (IEEE Std 1364-1995), 1995.

[34] S. Iman and M. Pedram, “POSE: Power Optimization and Synthesis Environ-

ment”, 33rd Annual Conference on Design Automation, 1996, pp. 21–26.

[35] J. H. R. Jiang and S. Devadas, “Logic Synthesis in a Nutshell”, Chapter 6 of

Electronic Design Automation: Synthesis, Verification, and Test, Elsevier 2009.

[36] M. Kerttu, “Low Power Synthesis of BDD Mapped Circuits”, Thesis submitted

to Department of Computer Science and Electrical Engineering, Lulea University of

Technology, Lulea, Sweden, 2000.

[37] S. N. Kumar and J. G. J. Gnannamal, “Delay and Power Optimization of Se-

quential Circuits through DJP Algorithm”, Proceedings of the World Congress on

Engineering, Vol. 1, No. 2, 2008, pp. 24–28.

[38] M. T. P. Lindgren, M. Kerttu and R. Drechsler, “Low power optimisation technique

for BDD mapped circuits”, ASP-DAC, 2001, pp. 615–621.

[39] A. C. Ling, J. Zhu and S. D. Brown, “Delay Driven AIG Restructuring using Slack

Budget Management”, ACM/IEEE Great Lakes Symposium on VLSI, 2008, pp.

163–166.

124

[40] P. C. McGeer, J. V. Sanghavi, R. K. Brayton and A. L. Sangiovannivincentelli,

“ESPRESSO-SIGNATURE: A new exact minimiser for logic functions”, IEEE

Transactions on VLSI, Vol. 1, No. 4, 1996, pp. 432–440.

[41] R. Mehrotra, T. English, K. L. Man, E. Popovici and M. Schellekens, “Digital

power estimation flow combining academic and industrial tools”, IEEE Proceedings

of the 5th IEEE International SoC Design Conference, 2008, pp. 89–92.

[42] R. Mehrotra, K. L. Man, E. Popovici and M. Schellekens, “Data Structure Manip-

ulation for NNIG and PTNNIG: Towards a Unified Power and Timing Analysis”,

3rd International conference on Signals, Circuits and Systems, Nov. 2009, pp. 1–6.

[43] R. Mehrotra, E. Popovici, K. L. Man and M. Schellekens, “Power reduction and

technology mapping of digital circuits using AND-Inverter Graphs”, 27th Inter-

national conference on Microelectronics (MIEL 2010), Nis, Serbia, May 2010, pp.

295–298.

[44] A. Mishchenko and R. Brayton, “Scalable Logic Synthesis using a Simple Circuit

Structure”, Proceedings of IWLS, 2006, pp. 15–22.

[45] A. Mishchenko, R. Brayton and S. Jang, “Global delay optimization using struc-

tural choices”, Proceedings of FPGA’10, 2010, pp. 181–184.

[46] A. Mishchenko, R. Brayton, S. Jang, and K. Chung, “A power optimization toolbox

for logic synthesis and mapping”, IEEE International Workshop on Logic Synthesis,

San Francisco, CA, 2009, pp. 1–8.

[47] A. Mishchenko, R. Brayton, S. Jang and V. Kravets, “Delay Optimization Using

SOP Balancing”, Proceedings of IWLS’11, 2011, pp. 75–82.

[48] A. Mishchenko, S. Chatterjee and R. Brayton, “Dag-aware AIG rewriting a fresh

look at combinational logic synthesis”, Proceedings of the 43rd annual conference

on Design automation, 2006, pp. 532–535.

[49] A. Mishchenko, S. Chatterjee, R. Brayton and P. Pan, “Integrating logic synthesis,

technology mapping and retiming”, Proceedings of IWLS ’05, 2005, pp. 383–390.

125

[50] A. Mishchenko, S. Chatterjee, R. Jiang and R. Brayton, “FRAIGs: A Unifying

Representation for Logic Synthesis and Verification”, ERL Technical Report, EECS

Dept., UC Berkeley, Mar. 2005.

[51] K. Moiseev and A. Kolodny, “Power-Delay Optimization in VLSI Microprocessors

by Wire Spacing”, ACM Transactions on Design Automation of Electronic Systems,

Vol. 14, No. 4, Aug. 2009, pp. 34–40.

[52] K. Moiseev, A. Kolodny and S. Wimer, “The complexity of VLSI power-delay

optimization by interconnect resizing”, Journal of Comb. Optim., Vol. 23, No. 2,

2012, pp. 292–300.

[53] J. Monteiro, S. Devadas, A. Ghosh, K. Keutzer and J. White, “Estimation of

average switching activity in combinational logic circuits using symbolic simulation”,

IEEE transactions on computer-aided design of integrated circuits and systems, Vol.

16, No. 1, 1997, pp. 121–127.

[54] S. N. Pradhan, G. Paul, A. Pal and B. B. Bhattacharya, “Power Aware BDD-

based Logic Synthesis Using Adiabatic Multiplexers”, 4th International Conference

on Electrical and Computer Engineering, Bangladesh, Dec. 2006, pp. 149–152.

[55] S. S. Ramani, “Graphical Probabilistic Switching Model: Inference and Char-

acterization for Power Dissipation in VLSI Circuits”, Ph. D. Thesis submitted to

Department of Electrical Engineering, College of Engineering, University of South

Florida, 2004.

[56] S. Roy, A. Harm and P. Banerjee, “PowerShake: A Low Power Driven Cluster-

ing and Factoring Methodology for Boolean Expressions”, Proceedings of Design,

Automation and Test in Europe Conference, Feb. 1998, pp. 967–968.

[57] SAIF, “Switching Activity Interchange Format”, http://www.synopsys.com/

partners/tapin/saif.html.

[58] SDF, “Delay Format (SDF) for the electronic design process”, (IEEE Std 1497-

2004), 2004.

[59] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A system for

126

sequential circuit synthesis”, Technical Report UCB/ERL M92/41, EECS Depart-

ment, University of California, Berkeley, 1992.

[60] G. Singh, “Optimization and Verification Techniques for Hardware Synthesis from

Concurrent Action-Oriented Specications”, Ph. D. Thesis submitted to Department

of Computer Engineering, Virginia Polytechnic Institute and State University, Sept.

2008.

[61] K. J. Singh, A. R. Wang, R. K. Brayton and A. Sangiovanni-Vincentelli, “Timing

optimization of combinational logic”, IEEE International conference on Computer-

Aided Design, Nov. 1988, pp. 282–285.

[62] D. Sinha, D. Khalil, Y. Ismail and H. Zhou, “A Timing-Dependent Power Esti-

mation Framework Considering Coupling”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 17, No. 6, Jun. 2009, pp. 843–847.

[63] A. Sokolov, A. Sanyal, D. Whitley and Y. Malaiya, “Dynamic power minimization

during combinational circuit testing as a traveling salesman problem”, Proceedings

of IEEE Congress on Evolutionary Computation, Vol. 2, No. 2, Sept. 2005, pp.

1088–1095.

[64] V. Srinivasan, “Real Delay Graphical Probabilistic Switching Model for VLSI

Circuits”, Ph. D. Thesis submitted to Department of Electrical Engineering, College

of Engineering, University of South Florida, 2000.

[65] T. Stanion and C. Sechen, “Boolean division and factorisation using binary decision

diagrams”, IEEE Transactions on CAD of Integrated Circuits and Systems, Vol. 13,

No. 9, 1994, pp. 1179–1184.

[66] J. R. Stuart and P. Norvig, “Artificial Intelligence: A Modern Approach”, (2nd

ed.), Upper Saddle River, New Jersey, Prentice Hall.

[67] Synopsys, “Synopsys design platforms”, http://www.synopsys.com/products/

products.html.

[68] C. H. Tan, “Optimisation of Power and Delay in VLSI Circuits Using Transis-

tor Sizing and Input Ordering”, Ph. D. Thesis submitted to Department of Com-

127

puter Science and Electrical Engineering, Massachusetts Institute of Technology,

May 1994.

[69] S. Tani, K. Hamaguchi and S. Yajima, “The Complexity of the Optimal Variable

Ordering Problems of A Shared Binary Decision Diagram ”, Proceedings of the 4th

International Symposium on Algorithms and Computation, 1993, pp. 389–398.

[70] R. Tavares, K. V. Eijk and M. Berkelaar, “BDD Techniques to Reduce Switching

Activity in Logic Circuits”, IEEE/ProRISC99, 1999, pp. 497–502.

[71] G. Theodoridis, S. Theoharis, D. Soudris, C. Goutis, “Switching activity esti-

mation under real-gate delay using timed Boolean functions”, IEE Proceedings on

Computers and Digital Technique, Vol. 147, No. 6, 2000, pp. 444–450.

[72] S. Theoharis, G. Theodoridis, D. Soudris, C. Goutis and A. Thanailakis, “A fast

and accurate delay dependent method for switching estimation of large combina-

tional circuits”, Journal of Systems Architecture, Vol. 48, No. 4, 2002, pp. 113–124.

[73] K. O. Tinmaung, D. Howland and R. Tessier, “Power-Aware FPGA Logic Synthe-

sis Using Binary Decision Diagrams”, Proceedings of the 2007 ACM/SIGDA 15th

international symposium on Field programmable gate arrays, NY USA, 2007, pp.

148–155.

[74] H. Ueda and K. Kinoshita, “Low power design and its testability”, Proceedings of

the Fourth Asian Test Symposium, India, Nov. 1995, pp. 361–366.

[75] H. Ueda and K. Kinoshita, “Power Estimation And Reduction Of Cmos Circuits

Considering Gate Delay”, IEICI Transactions on Information and System, Vol.

E82-D, No. 1, Jan. 1999, pp. 301–308.

[76] N. Vemuri, P. Kalla, K. O. TinMaung, and R. Tessier, “BDD based logic synthesis

system for lut-based FPGAs”, Design Automation of Electronic Systems, Vol. 7,

No. 4, 2002, pp. 501–525.

[77] VIS, “VIS: Verification interacting with synthesis”, Proceedings of CAV96. LNCS

1102, Springer-Verlag, 1996, pp. 423–427.

128

[78] R. L. Wright, M. A. Shanblatt, DCS Corp and V. A. Alexandria, “Improved

switching activity estimation for behavioral and gate level designs”, Proceedings of

the 43rd IEEE Midwest Symposium on Circuits and Systems, 2000, pp. 172–175.

[79] D. Wu and J. Zhu, “FBDD: A folded logic synthesis system”, In Proceedings of

the International Conference on ASIC (ASICON), Oct. 2005, pp. 746–751.

[80] C. Yang, M. Ciesielski and V. Singhal, “BDS: A BDD-Based Logic Optimization

System”, Proceedings of DAC, 2000, pp. 92–97.

[81] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko and R. S. Stankovic, “Decision

Diagram Techniques for Micro- and Nanoelectronic Design Handbook”, CRS Press,

2006, pp. 429–445.

[82] H. Q. Ye and Z. B. Tang, “Partitioned Random Search for Global Optimization

with Sampling Cost and Discounting Factor”, Journal of optimisation theory and

application, Vol. 110, No. 2, 1998, pp. 445–455.

129

