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Abstract

This thesis investigates the optimisation of Coarse-Fine (CF) spectrum sensing architec-

tures under a distribution ofSNRs for Dynamic Spectrum Access (DSA). Three differ-

ent detector architectures are investigated: the Coarse-Sorting Fine Detector (CSFD), the

Coarse-Deciding Fine Detector (CDFD) and the Hybrid Coarse-Fine Detector (HCFD).

To date, the majority of the work on coarse-fine spectrum sensing for cognitive radio

has focused on a single value for theSNR. This approach overlooks the key advantage

that CF sensing has to offer, namely that high powered signalscan be easily detected

without extra signal processing. By considering a range ofSNR values, the detector can

be optimised more effectively and greater performance gains realised.

This work considers the optimisation of CF spectrum sensing schemes where the security

and performance are treated separately. Instead of optimising system performance at a

single, constant, lowSNR value, the system instead is optimised for the average operat-

ing conditions. The security is still provided such that at the lowSNR values the safety

specifications are met. By decoupling the security and performance, the system’s average

performance increases whilst maintaining the protection of licensed users from harmful

interference.

XI



The different architectures considered in this thesis are investigated in theory, simulation

and physical implementation to provide a complete overviewof the performance of each

system. This thesis provides a method for estimatingSNR distributions which is quick,

accurate and relatively low cost. The CSFD is modelled and thecharacteristic equations

are found for the CDFD scheme. The HCFD is introduced and optimisation schemes for

all three architectures are proposed.

Finally, using the Implementing Radio In Software (IRIS) test-bed to confirm simulation

results, CF spectrum sensing is shown to be significantly quicker than naive methods,

whilst still meeting the required interference probability rates and not requiring substantial

receiver complexity increases.

XII



Associated Publications

• B. Lawton, C. Murphy,Coarse-Fine Spectrun Sensing for Reduced Sensing

Time, 4th International Conference on Signal Processing and Communications Sys-

tems (ICSPS), Brisbane Australia, December 13th -15th, 2010.

• B. Lawton, C. Murphy,Minimizing the Coarse-Fine Spectrum Sensing Time

for Cognitive Radios with Ideal Secondary Detectors Subject to Noise Uncer-

tainty: An Analytical Approach, 4th International Conference on Cognitive Radio

and Advanced Spectrum Management (COGART), Barcelona Spain,October 23rd

-26th, 2011.

XIII



Acronyms

ADC Analogue-to-Digital Converter

AWGN Additive White Gaussian Noise

BEE2 Berkeley Emulation Engine 2

BER Bit-Error Rate

BPSK Binary Phase-Shift Keying

CAGR Compound Annual Growth Rate

CAV Covariance Absolute Value

CCDF Complementary Cumulative Distribution Function

CDF Cumulative Distribution Function

CDFD Coarse-Deciding Fine Detector

CF Coarse-Fine

CFD Cyclostationary Feature Detectors

XIV



CN Cognitive Network

CR Cognitive Radio

CREW Cognitive Radio Experimentation World

CSFD Coarse-Sorting Fine Detector

CTVR Centre for Telecommunications Value-Chain Research

DSA Dynamic Spectrum Access

DSM Dynamic Spectrum Management

DTV Digital Television

FCC Federal Communications Commission

FFT Fast Fourier Transform

GPS Global Positioning System

HCFD Hybrid Coarse-Fine Detector

ICDF Inverse Cumulative Distribution Function

IRIS Implementing Radio In Software

ISOM Incremental Self-Organising Map

KDE Kernel Density Estimation

LUT Look-Up Table

M-PSK M-ary Phase-Shift Keying

XV



MISE Mean Integrated Square Error

MISC Mean Integrated Square Change

MSE Mean Square Error

OFDM Orthogonal Frequency-Division Multiplexing

QPSK Quadrature Phase-Shift Keying

QAM Quadrature Amplitude Modulation

ROC Receiver Operating Characteristic

SDR Software Defined Radio

SNR Signal-to-Noise Ratio

SOM Self-Organising Map

SU Secondary User

PDF Probability Distribution Function

Pfa Probability of False Alarm

PLL Phase Lock Loop

Pmd Probability of Missed Detection

PU Primary User

USRP Universal Software Radio Peripheral

VCO Voltage Controlled Oscillator

XVI



WLAN Wireless Local Area Network

XVII



1
Introduction

1.1 Introduction

In recent years spectrum usage has increased dramatically.The proliferation of portable

devices using mobile information services has caused spectrum scarcity issues. Cognitive

Radio (CR) has been proposed as a possible solution to this problem. CR, as defined by

Mitola [1], is an intelligent system capable of using contextual information to provide an

improved service to the user. A CR should be capable of providing services based on
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various conditions, such as location or spectrum occupancy. One of the most exciting

possible applications of CR is Dynamic Spectrum Access (DSA).

DSA is the key technology that would allow CRs to solve the current spectrum scarcity

problem. Using DSA a CR would be able to transmit in a licensed band of spectrum,

provided the licensed Primary User (PU) is not interfered with. This ability should free,

in many cases, a significant amount of spectrum for opportunistic use. It is estimated that

current usage in licensed bands varies from 15% to 85% [2]. Therefore, a large amount

of BW could be re-used with this method.

Termed the CR standard, IEEE 802.22 requires that, when the CR is sensing the channels,

it should be able to detect signals with aSNR as low as -21 dB with a probability of

missed detection (Pmd) of, at most, 0.1 and a probability of false alarm (Pfa) of, at most,

0.1 [3]. This sensitivity ensures that the CR will not interfere with receivers at the edge

of the primary network, where the primary user signal power is low. Being able to detect

these very weak signals requires substantial signal processing. However, not all signals

will require this level of receiver complexity.

For example, consider the situation illustrated in Fig. 1.1where a CR scanning four bands

as it is attempting to detect a spectrum opportunity, or freespace, in one of the four bands.

The ranges at which the CR is required to detect transmissionsfrom each of the four PUs

are shown for each of the bands. Only the fourth band is available for transmission. If the

CR uses the full signal processing on all channels then it willdetect the available band, or

“spectrum hole”. However, band one and band two contain higher powered signals and

do not require such treatment. CF spectrum sensing can reducethe inefficiency of this

method.

In a sorting based architecture, such as the Coarse-Sorting Fine Detector (CSFD) consid-

ered in Chapter 5, the receiver can gain some preliminary information about the spectrum
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SU

PU

PU

PU

PU

Figure 1.1: Typical Signal Environment with PUs at Different Distances to the CR

which helps it to choose the bands that are more likely to be unoccupied. When the signal

sources are not equidistant from the receiver, such as in Fig. 1.1, theSNR will vary and

significant sensitivity is not required to detected the presence of all the signals. The signal

strengths at the CR vary from very high, Band 1, through medium strength, Band 2, to

signals that are too weak to be detected and the bands are declared free, Band 4. If an

estimate of the power in each band is found, then the bands canbe ordered with respect to

this estimate. As long as the noise power is constant across the bands, the bands without

signals present will have a lower average power than the bands with signals present. This
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estimate is found using an energy detector, as in Section 3.3, and, for the environment

illustrated in Fig. 1.1, the output will resemble Fig. 1.2.

Y

Band 1 Band 2 Band 3 Band 4

500

1000

1500

2000

Coarse Sorting Output

Figure 1.2: Energy Detector Output for Bands Under Sorting with 1000 Energy Detector
Samples per band Used for Sorting

It is clear that either Band 3 or Band 4 is the most likely to be free, thus the detector would

start its detection attempt in either channel three or channel four. This more informed se-

lection of channel sensing order will reduce the number of detection attempts, on average,

and, therefore, increase efficiency.

Another option for CF sensing is to exclude channels that are likely to be occupied. This

can be thought of as deciding to remove the higher powered channels and is termed here

a Coarse-Deciding Fine Detector (CDFD). This architecture isinvestigated in detail in

Chapter 6. For example, if the detector sequentially checks for lower power signals and

excludes any results where a signal exceeds a pre-defined threshold, then the overall effi-
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ciency can be increased. This can be performed by taking increasing numbers of samples

with an energy detector. The result of this method, for the environment in Fig. 1.1, is

shown in Fig. 1.3 - Fig. 1.5.

Band 1 Band 2 Band 3 Band 4

500

1000

1500

2000

Coarse Deciding OutputY

Figure 1.3: Energy Detector Output for Bands Under CDFD: FirstDetection Attempt

The first detection attempt uses 1000 samples, and the strongest signal, in Band 1, is

detected and excluded. This is shown in Fig. 1.3.

The second detection attempt uses 10,000 samples and the next strongest signal, in Band

2, is detected and excluded. This is shown in Fig. 1.4.

The third detection attempt uses approximately 209,000 samples and this is sufficient to

declare Band 4 free. This is shown in Fig. 1.4. Note that more than one channel can be

excluded per attempt and also that each detection attempt does not have to exclude any

channels.
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Figure 1.4: Energy Detector Output for Bands Under CDFD: Second Detection Attempt

CF sensing allows significant performance increases when a range of signal powers pre-

vails. However, to the author’s best knowledge, there has been no study published on the

performance of CF sensing under these conditions and no method exists for predicting the

optimum parameters for the sensing schemes, when a range of signal powers are present.

1.2 Objectives

The main objective of this thesis is to answer the following question:

“How can a Cognitive Radio Coarse-Fine sensing scheme be optimised for the pres-

ence of a wide range of signal-to-noise-ratios, such that sensing time is reduced to a

minimum, but interference probabilities remain unchanged, for Coarse-Fine schemes
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Figure 1.5: Energy Detector Output for Bands Under CDFD: ThirdDetection Attempt

based on sorting channels, deciding on channels or a combination of both?”

The optimisation of CF spectrum sensing will be investigatedand optimisation schemes

proposed for three CF architectures, namely CSFD, CDFD and a hybrid of the two, Hy-

brid Coarse-Fine Detector (HCFD).

1.3 Assumptions

Some assumptions have been made during the course of this work. Most are common

assumptions when dealing with CR systems and are summarised here.

• The noise is assumed to be Additive White Gaussian Noise (AWGN)and a suf-
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ficiently accurate estimate of the noise power is available.The signals are also

assumed to have a Gaussian distribution.

• The noise power in the bands is approximately equal, or is known.

• The CR and PU can move in space but are assumed to be relatively stationary and

that their locations do not change quickly relative to the sensing period. In addition,

the PU transmissions are assumed to vary with periods significantly larger than the

sensing time of the CR.

• The PU insists that the 10% false alarm and missed detection rates must still be met

at -21dB, even if knowledge of theSNR distribution is exploited.

• The receiver has no additional knowledge of the conditions in the sensing environ-

ment, such as correlation in occupancy between adjacent bands and, thus, can only

search randomly.

• This work is based on a single CR attempting to find free spectrum. It is assumed

that there are no other CRs available with which the CR can cooperate to improve

performance.

• For the CSFD it will be assumed that the signal powers in the bands are independent

and identically distributed (i.i.d.). Whilst not strictly true, it reduces the computa-

tional complexity substantially, whilst not introducing any significant inaccuracy.

This will be discussed further in Chapter 5.

• Finally, it has been assumed that the receiver front-end hasmultiple Phase Lock

Loops (PLLs) or the receiver has a wide-band front-end, suchthat there is no sig-

nificant time penalty when switching between channels.

8
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1.4 Contributions

The contributions of this work are as follows:

1. A reliable method for generating an estimate of aSNR distribution using a CR

attempting opportunistic access is shown.

2. A model of the CSFD is derived that is significantly quicker than Monte-Carlo

simulations, whilst remaining sufficiently accurate over awide range of practical

conditions.

3. Optimisation equations and schemes for a CDFD are derived allowing a fast and

accurate optimisation of the system.

4. A HCFD Architecture is introduced, using the CSFD and CDFD architectures, and

is shown to outperform both methods.

5. It is shown that optimising these detectors using a uniform distribution can replace

the need for in-line optimisation andSNR estimation, without reducing perfor-

mance significantly, under the operating conditions investigated here.

6. Results were generated from an implementation of each of the receiver architectures

on a test-bed that showed the architectures work in practice.

1.5 Outline

In Chapter 2, the current state of the art in CR is discussed. Starting with an overview

of the field, various topics are discussed, focusing on spectrum sensing applications. The

current options for CF spectrum sensing are reviewed and discussed. Also discussed are

9



1.5. OUTLINE

the various test-beds currently in use and the CR system architectures used in each test-

bed.

In Chapter 3, some basic theory is introduced. The basics of energy detector operation,

including the issue of noise uncertainty, are investigated. The effects of fading channels

and time varying channel occupancies are also considered. Markov Chain theory is also

introduced and the relevant equations governing Markov Chains shown. Finally, the IRIS

system and the Cognitive Radio Experimentation World (CREW) test-bed are examined

and the IRIS architecture’s structure shown.

In Chapter 4,SNR Probability Distribution Function (PDF) estimation is investigated.

Various strategies for generating sampleSNR PDFs are considered. In-line sensing is

chosen as the most promising candidate and the advantages and disadvantages are shown.

Testing and verification of the method is performed, both in simulation and on the IRIS

system.

In Chapter 5, the CSFD architecture is considered. A new model of the CSFD is gen-

erated that matches Monte-Carlo simulations closely, whilst requiring significantly less

(≈ 80 times) simulation time. By using order statistics to model the sorting operation

and Markov Chains to model the effects of the sorting on the relevant probabilities of the

fine detector, it is shown that the model predicts the CSFD performance accurately, even

under fading and noise uncertainty conditions.

In Chapter 6, the CDFD architecture is considered. The characteristic equation of the

CDFD is derived and three optimisation options investigated. It is shown that, by only

allowing one false alarm rate to vary, performance close to the global maximum can be

obtained, whilst reducing the complexity of the optimisation significantly.

In Chapter 7, the HCFD architecture is introduced. The HCFD is a combination of both

techniques, CSFD and CDFD, and has better performance than either detector. It is shown

10



1.5. OUTLINE

that the CSFD and the CDFD have close to optimal performance over a wide range of

SNR distributions when optimised for a uniform distribution. Using this fact, the HCFD

is not optimised directly, rather the parameters for the detectors optimised for the uni-

form distribution are chosen and the detector compared withthe other architectures. This

comparison is done both in simulation and using the IRIS test-bed for a practical imple-

mentation.

In Chapter 8, the work is concluded and future work proposed.
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2
Literature Review

2.1 Cognitive Radio

In recent years there has been a substantial increase in the amount of data being sent wire-

lessly. For example, in 2010 the Federal Communications Commission (FCC) authorized

nearly 12,000 wireless transmitters, almost four times that of 2000 [4]. This trend is set

to continue with CISCO predicting that, “Global mobile data traffic will increase 18-fold

between 2011 and 2016. Mobile data traffic will grow at a Compound Annual Growth
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Rate (CAGR) of 78 percent from 2011 to 2016, reaching 10.8 Exabytes per month by

2016” [5].

This increase in demand has come at a time when the majority ofavailable spectrum

has been allocated. However, even when the allocation is high, the utilization typically

remains significantly lower [6]. Spectrum utilization of 15% to 85% has been reported by

some studies [7]. CR has been proposed as the solution to this spectral shortage problem

[8].

The term CR was first coined by Joseph Mitola in 1999 [9]. Mitoladescribes a CR as an

intelligent radio able to adapt to the needs of its user. The CRarchitecture is based on a

Software Defined Radio (SDR), allowing greater flexibility, and a cognitive engine which

adapts the radio to the situation [1].

Initially, a CR was defined as a radio which could:

• “Detect user communications needs as a function of use context”

• “Provide radio resources and wireless services most appropriate to those needs”.

Some CR research has more recently focused more on the idea of Dynamic Spectrum

Access (DSA) [10].

DSA occurs where unlicensed Secondary Users (SUs) are allowed to use spectrum owned

by a licensed PU, provided the PU is not interfered with. DSA has become a central theme

of CR research, and there are a number of technical challengesthat need to be overcome

before it can become a reality [11, 12]. The work in this thesis is concerned with fast

reliable sensing for DSA.
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2.2 Dynamic Spectrum Access

2.2.1 Hardware Requirements

Significant hardware challenges are present when designinga practical CR for implemen-

tation [2,13]. The IEEE 802.22 standard [3] requires that the CR be able to detect a signal

at a signal to noise ratio (SNR) of -21dB, with a Probability of False Alarm (Pfa) and

a Probability of Missed Detection (Pmd) of less than or equal to 10% and that the entire

sensing process be performed within two seconds. In addition, the fundamental principle

underpinning CR is to enable the tailoring of signal characteristics to suit the situation.

This flexibility comes at the cost of increased hardware complexity. The IEEE 802.11 af

standard also has scope for opportunistic access but [14], though this has been envsioned

as using a location awareness based scheme.

The radio front-end must be capable of signal detection overa wide range of frequencies

but, at the same time, introduce little distortion. The IEEE802.22 standard allows CR

DSA in the bands between 41MHz and 910MHz. For efficient usage, it is proposed

that the system employ a digital wideband receiver [15]. If an analogue filter with a

narrowband frontend was used, then the system would need to change the frequency for

each new band being scanned. A PLL would have to be tuned to thenew frequency each

time and the settling time required for the PLL would most likely increase the required

sensing time significantly [16].

For the wideband receiver it has been shown that Analogue-to-Digital Converters (ADCs)

play an important role in determining receiver efficiency [17]. Hardware imperfections

and quantization noise reduce the efficiency of the ADC. The dynamic range required

is quite large, theSNR can be as low as -21dB in some bands but it is possible that it

could be as high as 20dB in others, where the signal source is nearby and strong. In
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addition, the wideband architecture will, in practice, reduce the effectiveSNR further

before sampling.

Other hardware implementation issues include non-linear effects from the Voltage Con-

trolled Oscillator (VCO) used by the PLL [18]. Typically, harmonics are generated by the

VCO, at odd multiples of the fundamental frequency, that could cause distortion capable

of compromising the detection algorithm. Finally, all of these hardware problems need to

be solved by a portable device having low power requirements.

2.2.2 Self Organising Networks

One advantage that a network of CRs, or a Cognitive Network (CN), has over traditional

systems is the ability to self-organise [19]. A CN differs from a CR in the scope of the

parameters that can be changed. A CR is mainly concerned with the physical layer and

the link layer of the OSI seven layer model. A CN can optimise over the entire operating

conditions. This is illustrated in Fig. 2.1, where the scopes of the two concepts are shown

on the OSI seven layer model.

Self-organisation can occur when a system is allocating frequencies for individual radio

nodes to use. Self-Organising Maps (SOMs) [20] can be used asa method of Dynamic

Spectrum Management (DSM). By creating a SOM for the nodes using observations of

their local signal environment, it is possible to reduce theprobability of interference with

PUs whilst also allowing the network to communicate efficiently. In addition, the system

is computationally simple, based on the Hebbian learning [21] (associated learning) rule.

It has been shown that SOMs can improve DSM, though the specific amount will depend

on the network conditions [20]. Note that the self-organising networks are used for a

distributed network where there is no central controller.
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Figure 2.1: OSI 7 Layer Model and the Scope of CN and CR

An improvement on SOMs for CR applications is the IncrementalSelf-Organising Map

(ISOM) [22]. ISOM has an intelligent weighting system that allows the system to learn,

starting with a total lack of information, which is the expected initial condition of a CR. In

addition, ISOMs allow the weighting system to be changed to facilitate shorter or longer

learning periods, depending on the prevailing radio conditions and user requirements.

One threat to self-organising networks is malicious users who seek to break the rules of

spectrum sharing [23]. A CR could lie about its received signal environment to other

users in the network, thus keeping free spectrum for itself by declaring it occupied. Al-

ternatively, another user may attempt to create interference for the PU by declaring an

occupied channel free. Other possibilities for attack stemfrom the imitation of a primary

user to prevent other CRs from attempting to share spectrum [24]. A CN would have to

be robust to such attacks to be commercially viable.

When a CR attempts to access free spectrum, there are two main options for the allocation
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of frequency bands. Firstly, there is the case where the PU isaware of interest in allocating

its band and holds an auction to decide which CR is given access[25,26]. Each CR can bid

for the spectrum and the auction winner can subsequently usethe spectrum for a set period

of time. This allows the PU to profit from the opening of the spectrum to a CR which,

it is hoped, would help incentivise PUs to release bands to CRs for DSA applications.

One drawback of this system is the requirement that the PU oversees the spectrum before

an auction can be held. Thus, there is no free method for including this option in bands

occupied by legacy PU systems [27].

Another option is where the secondary users decide to allocate the bands fairly between

all users of the network, depending on each CRs individual need[28]. A centralised node

can decide on the allocation of the bands such that each CR obtains fair access. If one

node requires more bandwidth than the other nodes and there is spectrum available, it will

allow the node to transmit with greater bandwidth. One challenge with this method is

security. If a node lies about its requirements, either to damage the network or to ensure

that its lower requirements are fully met, then the overall system performance can be

degraded.

2.3 Spectrum Awareness for DSA

To enable DSA, spectrum awareness remains the key issue. If the CR does not have

knowledge of the prevailing radio environment, it cannot guarantee that its transmissions

will not interfere with a PU which is, clearly, unacceptable. In general, the CR has to

be more sensitive than the PU if it is to ensure that little or no interference occurs. For

example, consider the situation illustrated in Fig. 2.2. The CR has an obstruction between

it and the transmitting PU and receives a low power signal. The receiving PU does not
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have any obstruction and receives a relatively high poweredsignal. If the CR declares the

channel free and transmits, then it might cause interference to the PUs in the band. This

is termed the Hidden Node Problem.

P.U. (Tx)

P.U (Rx).

C.R.
Obstruction

Figure 2.2: Hidden Node Problem for Cognitive Radios

Another situation is shown in Fig. 2.3. The distance over which a receiving PU is able to

detect a transmitting PU is shown by the area centred on the transmitting PU. The CR is

outside this region. However, if the CR transmits, then it will interfere with the PU at the

edge of the transmitting PU’s range. Therefore, an extra exclusion range is required.

In Cabric 2004 [2], the authors present a review of the requirements for spectrum sensing

in a CR system. The authors also summarize and compare possible sensing algorithms.

They show the inherent advantages and drawbacks of each method; Matched filters, en-

ergy detectors and Cyclostationary Feature Detectors (CFD).Also shown is the potential
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P.U.

Figure 2.3: Requirement for Extra Sensing for Cognitive Radios

of co-operative spectrum sensing to increase reliability whilst also reducing sensing time.

The authors generate a signal environment, in simulation, that is used to show the gain

in performance that cooperation between CRs can provide. The co-operative system is

compared to several individual radios, which are not cooperating, and a significant per-

formance gain is shown. These tests were also performed without any optimisation of the

voting rules for the co-operative network and thus, as discussed in 2.3.2, the performance

of the system would increase dramatically with optimisation.

To solve the challenge of DSA for CRs, three possible solutionsare proposed.

1. Location Awareness

2. Co-operative Spectrum Sensing

3. Single Radio Sensing
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2.3.1 Location Awareness

Due to the inherent problems associated with spectrum sensing, an alternative method

is to avoid it entirely. With location based spectrum awareness, the CR uses Look-Up

Tables (LUTs), based on its location, to determine which bands are available for use, and

at what transmit power. These LUTs are often known as geolocation databases [29].

In Fig. 2.4 an example of a location awareness scheme is shown. There are seven loca-

tions, each with two possible channels that might be free. Ifthe CR is in location one or

location five, then it can use band one. If it is in location four or location six, then it can

use band two. If it is any other location, it can use either of the bands.

1
2

53 4

6
7

Band 1 Occupied

Band 2 Free

Band 1 Free

Band 2 Occupied

Band 1 Free

Band 2 Free

Figure 2.4: Example Location Awareness Scheme

However, a difficulty for geolocation based systems is presented by quickly changing

bands. If the occupancies of the bands change rapidly, for example in the Wireless Local

Area Network (WLAN) band, then the database has to be updated frequently. This also

requires the PU to inform the databases of its change, a problem for legacy technology as
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new components would be required on all transmitters.

Despite these issues, for slowly changing bands, such as Digital Television (DTV) bands,

geolocation databases are an effective alternative to spectrum sensing [30]. Typically,

DTV bands are very slow to change occupancy or transmitter location, thus the database

would not require frequent updating. DTV bands generally cover large spatial ranges,

thus the number of PUs required to identify themselves is lower. Also, since DTV channel

allocations and transmitter locations are generally static, it is significantly easier for them

to communicate with the database if changes to the database are necessary.

One final concern for geolocation based systems is the requirement for location infor-

mation within the CR. If the CR requires a Global Positioning System (GPS) detector

to determine its location accurately, then the complexity savings accruing from avoiding

a spectrum sensor are largely lost when implementing the GPSdetector. In addition, in

urban environments, GPS signals are typically much less reliable than in rural areas [31].

2.3.2 Co-Operative Spectrum Sensing

Co-operative spectrum sensing occurs when multiple CRs attempt to sense the spectrum

and aid each other in generating the result. This can be seen in Fig. 2.5. Even though two

of the five CRs are obstructed, the system should be able to detect the presence of the PU

and avoid interference.

For a network of co-operating CR nodes, there are a number of methods for determining

the occupancy of the channels. A simple method is to give eachnode a separate channel

to scan. This allows multiple bands to be scanned quickly butdoes not give the same

advantages of other methods, such as the improvement in fading robustness shown in [32].

Other methods require the use of a fusion centre. A fusion centre is a CR where all the
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Figure 2.5: An Example of Co-Operative Spectrum Sensing

results are collated to make the decision [33]. This centralnode then communicates the

result and, therefore, the occupancy to all the other radios.

The simplest sensing scheme for co-operative sensing is called the voting rule, or the

counting rule [34]. Each node performs its detection separately and sends its decision to

the fusion centre, for example either “1”, if it decides there is a signal present, or “0” if

it decides there is no signal present. Then, the fusion centre counts the number of nodes

that decide a signal is present and compares this to a threshold. If it exceeds the threshold,
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then the system declares the band occupied. It has been shownthat the “half voting rule”,

where the threshold is set to be equal to half the number of co-operating nodes, is optimum

for this method [35].

Instead of sending just the binary decision, sometimes called hard fusion, if the nodes send

the numerical result of the detection, then improved performance can be attained [36].

This method of co-operative sensing is called soft fusion. The fusion centre then uses this

information to create a likelihood ratio test that satisfiesthe conditions for DSA. It has

been shown that soft fusion significantly outperforms hard fusion.

However, soft fusion requires sending more information than hard fusion. The analysis

performed in Visotsky [36] was for infinite precision soft fusion. For a practical system,

the number of bits transmitted must be limited. To the author’s best knowledge, there has

been no agreement on the required number of bits but it has been suggested that it is not

significantly greater than that of hard fusion [37].

A significant advantage of co-operative sensing over singleradio sensing is found when

fading is considered. It has been shown that co-operative sensing reduces the effect of

fading due to the averaging effect on the fading across the nodes. This sensing diversity

gain is present provided the radios are sufficiently far apart to be subjected to independent

fading [32]. For example, twenty radios in Rayleigh fading atanSNR of -21dB require

approximately 1000 samples each, whereas a single radio would require approximately

4.8M samples, to guarantee acceptable performance [32].

Co-operative spectrum sensing has been shown to mitigate noise uncertainty [38]. By the

use of a double threshold energy detector at each node, the effects of noise uncertainty

can be reduced. Each of the individual nodes uses a double threshold energy detector

which has three possible results, namely Signal Present, NoSignal Present and Uncertain

(where the detector decides that it does not know the occupancy of the channel). If the

23



2.4. SINGLE RADIO SENSING

width of the uncertainty region matches the noise uncertainty, it is possible to reduce the

uncertainty in the results forwarded to the fusion centre, in a hard fusion scheme. In a soft

fusion scheme the gain would be analogous to the averaging across the nodes in the case

of fading. Once again, this requires that the noise uncertainty be independent across the

nodes [39].

Co-operative spectrum sensing, of course, requires multiple radios to be present, and that

all the radios are willing to co-operate. In the case of a single radio, or where radios are

too far away from one another to co-operate, co-operative spectrum sensing cannot be

used and the CR must determine the state of the spectrum independently. In addition,

there may be a redundancy of information from some of the nodes, a condition that, to

date, has not been explored in the literature for many of the algorithms. In this work, the

fundamental sensing case will be investigated, i.e. a single radio attempting to find the

first available spectrum opportunity.

2.4 Single Radio Sensing

For a single CR attempting to find a spectrum opportunity thereare a number of detection

options for the sensing scheme [40], namely:

1. Matched Filters

2. Energy Detectors

3. Cyclostationary Feature Detectors (CFDs)

4. Other Detector Architectures
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2.4.1 Matched Filtering

Matched filters are the most efficient method of detecting thepresence of a signal [2]. The

required number of samples for a matched filter grows at rate of O(1/SNR) samples at

low SNR [41] for staticPfa andPmd. However, the receiver requires perfect knowledge

of the PU signal characteristics, such as bandwidth, modulation type, operating frequency

and any other relevent transmission characteristics. In practice, it is highly unlikely that

this information will be available to the system. In addition, the CR would require a

separate receiver for all signal types, which is highly impractical.

2.4.2 Energy Detectors

Energy detectors are a commonly studied detector type for CR applications [18, 32, 34–

37,42–53]. They are simple to implement, requiring little computation and no knowledge

of the signal characteristics, other than an estimate of thenoise power. Energy detectors

require more samples for detection than matched filtering, with the required number of

samples growing at rate ofO(1/SNR2) samples at low values ofSNR [40], for static

Pfa andPmd. This makes them ideal for co-operative sensing, where the expected number

of samples required is low. Also, most CF algorithms use energy detectors as the coarse

detector. This will be discussed further in Section 2.5.

An energy detector operates by estimating the energy in a band and comparing it to a

threshold,λ [54]. The output of the energy detector,Y , is:

Y =
N

∑

n=1

| x(n) |2, (2.1)

wherex(n) is thenth sample andN denotes the total number of samples taken for the

test. The required number of samples for an energy detector,N , is given by (2.2). The
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energy detector is addressed in detail in Chapter 3 and is subsequently used extensively

throughout this thesis.

A fundamental limit of energy detectors, which may impact ontheir usability in CR ap-

plications, is that of noise uncertainty andSNR walls (anSNR wall is anSNR value

below which it is impossible to guarantee performance). Work has been done to inves-

tigate the effects of inaccurate noise power estimation forenergy detectors [42]. If the

estimate of the noise power is wrong by a factor ofρ (ρ 6= 0) then, where previously the

equation for the required number of samples was:

N =
2[Q−1(Pfa) − Q−1(1 − Pmd)(1 + SNR)]2

SNR2
, (2.2)

andQ−1 is the inverse Q function, the new equation becomes:

N =
2[Q−1(Pfa) − Q−1(1 − Pmd)]

2

(SNR − (ρ − 1
ρ
))2

. (2.3)

As theSNR approaches(ρ− 1
ρ
), N will increase towards infinity, creating what is termed

an SNR wall. This sets a lower bound on theSNR that an energy detector can use

to reliably detect signals. With a noise uncertainty of 0.1 dB, it has been shown that

SNRs of less than -14dB cannot be reliably detected. To detect a signal with anSNR

of -21dB a noise uncertainty,ρ, of ≤ 0.017dB is required. This presents a significant

challenge to DSA under the IEEE802.22 standard. Noise uncertainty is addressed in

more detail in Chapter 3. However this is only for an single radio scheme using an energy

detector. A single radio using a cyclostationary feature detector does not suffer from noise

uncertainty. In addition, a co-operative scheme using an energy detector can reduce the

impact of noise uncertainty dramatically, though the exactamount has not been quantified.

An energy detector in the presence of fading suffers significantly degraded performance
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[55]. If the signal previously had anSNR of γ dB, then the fadedSNR becomes a

distribution with a mean value ofγ. By averaging over this newSNR distribution, it is

possible to generate an expression for the newPmd of the system and, thus, the number

of samples required. For a signal under Rayleigh fading, at anaverageSNR of -21dB,

the required number of samples for aPfa andPmd of 10% is 4.8M, compared to 209k

samples when fading is not present. Fading is addressed in more detail in Chapter 3.

100 200 300 400 500 600
Samples
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Signal Arrives halfway through sensing window
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Sensing Window

Figure 2.6: A Signal Appears During the Sensing Interval

These equations assume a static environment, where the signal is either present or not

present and the occupancy does not change during the sensinginterval. If this is not the

case, then a probability based scheme would have to be introduced, as in Ma 2008 [43].

Here the case where a PU begins transmitting during the sensing interval is investigated.

The situation is illustrated in Fig 2.6 where a PU begins transmitting approximately mid
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way through the sensing attempt. Ifx(n) denotes thenth sample of the received signal

then, if the PU begins transmitting at themth sample,x(n) is given by:

x(n) =











v(n), 1 ≤ n ≤ m

s(n) + v(n), m < n ≤ N
, (2.4)

wherev(n) is thenth noise sample ands(n) is thenth signal sample.

If the distribution ofm is known it is possible to generate a probability based scheme that

weights the samples based on the probability that a signal will appear before that sample.

This scheme has been shown to perform better than a conventional energy detector scheme

for signals that can appear within the sensing attempt, though an analysis under different

conditions, such as when the signal disappears after a certain period, was not investigated.

This architecture will be proposed later in Chapter 5 and Chapter 6 as a possible solution

when the time varying channel significantly degrades performance.

One important question is the improvement of the system under the condition that the

signal source stops transmitting during a sensing attempt.The weighting would then im-

prove the probability of declaring the channel free but, to the author’s best knowledge, the

characteristics of this improvement have not yet been quantified in the literature. How-

ever, this is not as important a parameter since the main concern of CR detection schemes

is avoiding interfering with PUs.

In Gahasemi 2007 [45], a formulation for the time required for sensing is derived, for an

energy detector based scheme. The sensing time is set as the time taken to find the first

available channel ofNch channels. The average search time,T̄search, is given by:

T̄search =
Ts

Pa

, (2.5)
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whereTs is the search time per band andPa is the average probability of a channel being

declared unoccupied and used for transmission.Pa is a function of the detector constraints

and the occupancy profile of the channels.

Both of the systems in [43, 45] assume an exponential distribution for the channel occu-

pancy duration. This is based on experimental results generated from separate studies,

in [56,57]. The occupancy probability,Pocc, aftert seconds is:

Pocc(t) = λe−λt, (2.6)

whereλ is the mean time for switching between states. For quickly changing channels,

such as Wi-Fi,λ could be very small, of the order of milliseconds or seconds.For more

slowly changing channels, such as DTV channels, modelling the change in occupancy is

less necessary. Under normal circumstances, they can be approximated as static channels

when performing individual sensing attempts asT̄search << λ. This is investigated further

in Chapter 3.

Traditionally, energy detector performance has been specified by setting thePfa and then

minimising thePmd, such that the sensing requirements are met. However, the detector

could be designed such thatPmd is set and thenPfa is minimised [46]. This, it is argued,

reduces the interference of the CR on the PU, though the CR requires knowledge of

the PU’sSNR. However, ifPfa andPmd are set at the threshold values for the lowest

requiredSNR, as in conventional schemes, then thePmd will be lower for all other values

of SNR. This results in a smaller probability of interfering with aPU than the case where

Pmd is set to the threshold value.

Although settingPmd for an individualSNR value each time will realise a speed gain,

requiring knowledge of theSNR renders it less practical. In Section 2.7,SNR estimation
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will be reviewed.

2.4.3 Cyclostationary Feature Detectors

CFDs rely on the inherent periodicity of man-made signals to detect these signals in the

presence of noise [58]. A cyclic feature will only appear where one of the statistical

features of a signal, such as the mean or the autocorrelation, is periodic. CFDs have

several advantages over energy detectors and have been studied quite extensively for use

in CR applications [59–69].

One major advantage of a CFD is that different signal types have different cyclic fea-

tures. It is possible to train a CFD to recognise the difference between modulation

types [62, 63, 68]. This allows a CR to distinguish between different users in a network

and identify the PU. However, to the author’s best knowledge, the ability of a CFD to per-

form the identification has not been published for lowSNR values and this may reduce

the performance dramatically.

Cyclic features can be embedded intentionally into signals to aid with system control

[59–61], even in the presence of frequency selective fading. This would allow a system

to re-organise itself quickly in the event of a PU returning to the band, without requiring

a control channel.

CFDs do not require an estimate of the noise power, thus noise uncertainty is not a prob-

lem [69]. This is a significant advantage over energy detectors. In addition, the per-

formance of CFDs can be improved upon by various means. Implementation time can be

reduced by performing a1st order cyclic test, though this requires knowledge of the signal

characteristics for efficient operation [65]. If the cyclicfrequency is low, then decimation

of the frequency to allow more samples to be taken can improvedetector performance
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significantly [66].

A subset of CFDs is the multitaper method. The multitaper method has been shown to

outperform cyclostationary feature detection, whilst still providing all of the features that

make a CFD so attractive for CR applications [67, 70], especially when filter banks are

used [71,72].

The main disadvantage of CFDs is the computational complexity of the detector. Unless

information is known about the signal, a two dimensional search space is required. The

search is required in both the cyclic frequency and the time delay dimensions. The al-

gorithm itself is also more complex than an energy detector,though it can be accelerated

by Fast Fourier Transforms (FFTs) [66]. Thus, the system requires significant processing

power to detect a signal. While CFDs are not directly studied inthis thesis, it is a possible

option for the fine detector used in Chapter 5 and the model developed can be used with a

CFD fine detector, if required.

2.4.4 Other Detector Architectures

Several other detector architectures have been proposed tomeet the sensing challenges of

IEEE 802.22. One proposal for the sensing scheme is to have a pro-active scheme that

probes the band in question with the aim of increasing detection rates [73]. If the PU has

an active power control scheme then increasing the interference in that band will increase

the transmit power, thus making detection easier. However,since spectrum sensing is

required to enable the CR to avoid interference, there is a question of whether PUs will

be open to a scheme that requires generating interference toavoid causing interference.

Another option to reduce sensing time is to increase the number of antennae on the system

[16,44,74]. However, if the total number of antennae is increased on a single radio there
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will be a correlation between the results such that performance gain is sub-linear in the

number of antennae. Indeed, it seems very unlikely that 100 antennae would need to be

implemented on a single radio [44]. A better performance gain accrueing with multiple

antennae is realised when statistical covariances are used[75]. However, once again,

the requirement that the antennae be sufficiently separate spatially such that the noise is

uncorrelated, is difficult to achieve in practice, especially on a handheld device. It is worth

noting that the analysis presented in [75] can be used for co-operative sensing where the

radios are connected through a broadband control channel. It is highly likely that this

would reduce the problem of correlation significantly.

Wavelet transformations can be used instead of traditionaltransformations to improve

upon the performance of the detector. A Wavelet transformation allows edge detection

that can be more efficient at finding the occupied and unoccupied bands. The detector

identifies all the locations at which the PSD changes significantly, usually denoting the

edge of a band. This information allows the CR to select the bands that have lower PSD

and are, therefore, more likely to be unoccupied [47]. This method is more appropriate

for selecting promising candidate bands for another detector type, such as a CFD and,

therefore, wavelets will be discussed again under the C-F detector architectures in Section

2.5.

Compressive Sensing allows CRs to detect signals when sampled below the Nyquist rate

[76, 77]. However, it is quite computationally intensive and requires significant signal

processing. When optimised for a single signal, multi-resolution Bayesian Compressive

Sensing can be performed more quickly and with fewer samplesthan normal Compressive

Schemes [78] but, again, the computational overhead is large.

Detector performance can also be improved by changing the search scheme used [79,80].

Consider Fig. 2.7, where the channels are correlated in occupancy with a correlation of
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∆. If a channel is occupied then the probability that the next channel is also occupied is

∆. Thus, if a channel is occupied, the adjacent channels are more likely to be occupied,

for ∆ > 0.5. Traditional methods are a random search scheme, where the channel is

selected at random or a serial search, where the channels areselected sequentially. For

high correlation values ( e.g. in the range∆ ≥ 0.9) a scheme called the n-step serial

search outperforms both methods. Instead of sequentially selecting the next band, the

scheme skips the nextn bands. This reduces the probability that the channel scanned is

in a similar state to that of the previous channel. The schemeperformed better than the

random search for a channel correlation of∆ ≥ 0.9 where the occupancy was 70%.

Figure 2.7: Markov Model of Correlated Channels

It is argued in [79,80] that, without additional information, this is the most efficient search

scheme that can be implemented. However, CF sensing allows additional information to

be generated that increases the efficiency of the search.
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2.5 Coarse-Fine Detectors

An obvious compromise between the energy detector’s speed and the CFD’s ability to

detect weak signals is to use the energy detector first to find the highSNR channels and

then the CFD to decide between lowSNR channels and unoccupied channels. This type

of detector is called a CF detector or a multi-resolution detector. The more accurate of the

detectors, usually called the fine detector, can be of any suitable architecture (eg. a CFD or

an energy detector), provided the interference constraints are satisfied. The architectures

can be divided into two types:

1. The coarse detector sorts the channels for the fine detector [18,47–50].

2. The coarse detector decides on the occupancies of some of the channels and then

the rest are scanned by the fine detector. [16,51,52,81–84].

A sorting based CF detector accelerates the radio’s attempt to find the first available chan-

nel. The sorting of the channels allows the fine detector to make better decisions regarding

which channels to scan first. It does not, however, reduce theoverall time to find the occu-

pancies of all the bands. Thus, it is more applicable to situations where finding a channel

to transmit is the main goal.

A deciding based CF detector reduces the time to find the occupancies of all the bands.

The bands containing highSNR signals are declared occupied by the coarse detector

and the fine detector is only run on bands about which the coarse detector is uncertain.

Generally, this reduces the time to find the first band. It is generally more applicable for

situations where the CR requires complete spectrum knowledge.

Both CF sensing types are investigated in this work. The sorting based scheme (denoted

the CSFD) is investigated in Chapter 5, the deciding based scheme (denoted the CDFD)
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Figure 2.8: Coarse-Fine Architectures

is investigated in Chapter 6 and a hybrid of both (denoted the HCFD) is investigated in

Chapter 7.

2.5.1 Sorting Based Coarse-Fine Sensing

In Yue 2009 [48], a one-order CFD [65] is used as the secondary detector. A one-order

CFD also relies on the inherent periodicity of man-made signals. In this case, the detector

uses the periodicity of the mean of the signal to improve detector performance. The coarse

detector uses an energy detector to sort the channels with respect to the energy in the band.

Based on this estimate, the channel that is most likely to be free is scanned by the one-

order CFD fine detector. The system performance is not shown for multiple channels or
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using the coarse detector, only results for a single detection attempt using the one-order

CFD are shown in [65]. If the analysis of Chapter 5 was extended to this architecture,

using the one-order CFD as the fine detector, then the number ofsamples used by the

coarse detector could be optimised accordingly.

In Hur 2006 [47], a wavelet based scheme was implemented. Thesystem used wavelet

transforms for the coarse section to identify spectrum opportunities. The output of the

coarse section gives a tuneable resolution for the spectrumestimation without any hard-

ware changes, a very useful feature for CR. It is not clear from this work whether the

authors intended the scheme to merely sort the channels or tomake decisions on occu-

pancy, though the wideband nature of the wavelet transform estimate of the spectrum

would be more suited towards the former. The fine detector used is a Temporal Signature

Detection technique. Since man-made signals are generallyperiodic, correlating a signal

with a delayed version of itself results in a peak where the period of the signal is equal to

the delay used. Since it does not exhibit this feature, a signal can be detected from noise

with fewer samples than an energy detector, though at an increased computational cost,

especially if the period of the signal is not known in advanceand must be searched for.

In Park 2006 [18], the hardware issues associated with the wavelet implementation of a

coarse detector scheme were investigated. Again, the implementation uses the wavelet

transform to search the spectrum in a coarse manner, with thecapability of being tuned

to finer resolutions. However, the main focus of [18] is on minimising the effects of the

hardware components’ non-linearities on the sensing results.

In Luo 2009 [50], a variant of the CF system is used. The detector uses a coarse-detector

over a group of bands to find a group that might contain an unoccupied band. This method

uses a coarseness in the frequency resolution, rather than in the accuracy of detection. This

method allows a number of bands to be scanned with fewer operations than in traditional
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CF detection schemes. The system is examined for different widths of the coarse detection

scheme, but only forSNR values greater than 3dB. In addition, theSNR is a single

constant value across all channels. This scheme could, however, be used to increase the

speed of the detectors used here, as it identifies a group of bands that appear to contain

a spectrum opportunity. If the HCFD from Chapter 7 was then usedon this group of

bands even greater performance gains may be realised. One issue that might reduce the

effectiveness of this scheme is the assumption of equal power in each band. If there is

a signal with a very largeSNR in one of the groups of bands then it will increase the

averageSNR of the bands, such that the coarse detector decides that the band is not

likely to contain any opportunies, even if some of the bands are free.

2.5.2 Deciding Based Coarse-Fine Sensing

In Maleki 2010 [51], a CF system using a cyclostationary feature detector as the fine

detector is examined. An energy detector scans the channel first and, if the energy detec-

tor does not declare the channel occupied, the cyclostationary feature detector scans the

channel. If either detector declares the channel occupied the next channel is then scanned.

Unlike other work, the authors treat the system as a single detector and attempt to find

the overall probability of missed detection and false alarm. The problem is formulated

as an attempt to maximise the probability of detection, given a minimum required prob-

ability of false alarm. By deriving expressions for the thresholds of both the coarse and

fine detectors enabling the combined detector to have a minimumPmd for a specificPfa,

the authors show that the optimisation can be easily performed. Simulation results show

that the detector has, on average, both a reduced mean detection time and a reducedPmd,

when compared to a cyclostationary detector alone. The system was not, however, anal-

37



2.5. COARSE-FINE DETECTORS

ysed for environments where theSNR is not constant across the bands, as is studied in

Chapter 6. It is envisaged that further optimisation would bepossible and that the system

performance would be even better, when compared to other detector types.

In Ejaz 2012 [82], the detector architecture in [51] is addedto a matched filter to create

an “iDetection” scheme. If the CR is aware of the parameters ofthe PU in the band then a

matched filter can be used as it is optimum. Knowing the parameters of the PU is difficult,

however, and without this knowledge no net gains accrue. In addition, the CR would not

be able to detect the presence of other CRs in the channel using the matched filter, if they

are of a different signal type to the primary user.

In Zamat 2008 [52], a dedicated receiver is investigated with a CF architecture. The main

CR receiver does not sense the channel in this scheme, rather adedicated receiver is used

to improve performance. The system uses a constantly updating LUT to decide the chan-

nels to be scanned. This LUT is updated via the coarse sensingstage and is used to decide

which of the channels are to be scanned and which are probablyoccupied. The coarse de-

tector architecture is varied, using a matched filter if the signal characteristics are known.

If the signal characteristics are not known, the system usesan energy detector based FFT

method to generate an estimate of the spectrum. This FFT method allows the spectrum

estimate to be generated in parallel for all bands. The FFT method is also quick, efficient

and tuneable. The results of [52] indicate that the dedicated sensing receiver system al-

lows significantly reduced sensing times. The dedicated sensing receiver system could

begin transmitting after 50.1 ms, compared with 5.5 s for traditional architectures. These

results were, however, based on a single theoretical situation and the actual improvement

of the system, on average, is not derived.

In Zhang 2010 [84], using CF sensing to reduce the effects of noise uncertainty is investi-

gated. By using a double threshold energy detector as the coarse detector it is possible to
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reduce the impact of noise uncertainty. The proposed detector is more robust to noise un-

certainty than an energy detector as well as being quicker than a cyclostationary detector.

In addition, it has a higher probability of detection than the energy detector, especially at

low SNR.

In Geethu 2012 [83], a CF system with a Covariance Absolute Value (CAV) detector for

the fine detector is investigated. The CAV fine detector is based on the detector of [75].

This detector differs from conventional CF detector schemesby enabling the coarse detec-

tor to declare a band free. This ability requires knowledge of theSNR, which the detector

does not estimate. If an estimate of theSNR is available, then the performance increase

is significant. In addition, this architecture requires less sensing time than conventional

schemes (e.g. CFDs).

In all of the CF systems discussed here theSNR is kept constant across the bands. To

the author’s best knowledge, there have been no CF studies published that investigate the

performance of a system where theSNR is taken from a possible set of values. This

situation is likely, in practice, to be more realistic and forms the basis for the work in this

thesis.

In addition, few works [49–51] attempt to optimise the coarse section of the detector.

Usually, the coarse detector is simply specified as an estimator using an energy detector,

or some similar scheme, and the parameters of the coarse detector are not investigated.

The question of how coarse the coarse detector should be is not answered. If the detectors

were analysed using the methods in Chapter 5 and Chapter 6 for anSNR distribution then

it is envisaged that they could be optimised and further performance gains realised. Unfor-

tunately, it is difficult to compare the schemes as each work makes different assumptions

about the prevailing channel conditions.
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2.6 Cognitive Radio Test-beds

A number of test beds have been set up by research institutions to test the theoreti-

cal designs in real environments. In the Centre for Telecommunications Value-Chain

Research (CTVR) in Trinity College, Dublin, the IRIS system [85,86] is available for

EU researchers. The IRIS system uses a Universal Software Radio Peripheral (USRP) as

the radio front-end [87]. The USRP is the most common radio front-end in use and all

the systems considered here use it. The IRIS system is used forall practical work in this

thesis, primarily in Chapter 4 and Chapter 7.

Figure 2.9: IRIS System with USRP front-end

Other test-beds exist that use similar systems such as GNU radio [88] and the Berkeley
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Emulation Engine 2 (BEE2) [89–92]. GNU radio differs from theIRIS system in terms of

the scope of previous implementations. GNU radio has had a long history (it commenced

in 2001), many test-beds use it and many systems have been implemented on it.

In [91,92], the BEE2 system is used to test practical issues for CR applications. The need

for a practical implementation in CR systems is argued. The effects of frequency offset

and noise uncertainty are investigated. The modification totheSNR walls due to FFT

length is shown, where a longer FFT can have a lowerSNR wall than a shorter FFT. In

addition, practical results for the gain possible from collaborative sensing show that, for

the signal environment used for the test, five collaboratingradios improved the detection

rate to 97%, compared to 63% for a single radio. The impact of spatial separation on col-

laborative sensing is also shown, since if the radios had experienced independent fading,

the detection rate would be approximately 99%.

2.7 SNR Estimation

One of the contributions of this work is the ability to estimate aSNR distribution accu-

rately.SNR estimation has been studied in several papers [93–96]. In Clarke 1980 [96],

a closed form solution for the distribution of theSNR, when estimated using an energy

detector, is derived. It shows that, for a small number of samples, it is difficult to get an

accurate estimate for theSNR, especially if theSNR is low. It is recommended that the

energy detector is not used forSNR estimation. In Chapter 4 an energy detector is used

for estimating theSNR; however, there are a few key differences in how the energy de-

tector is used. Firstly, a single value ofSNR is not expected, rather anSNR distribution

will be generated that will describe the possible range of values for theSNR. Conse-

quently a small variance in the result is generally tolerable. Secondly, from simulation
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results in Chapter 5 and Chapter 6, the systems that are being optimised are relatively

robust with little performance loss for slight errors in theSNR distribution estimate. Fi-

nally, there will be a large number of samples for each estimate generated, which will

reduce the variance of the output.

In Matricciani 2011 [93], anSNR distribution is estimated from Bit-Error Rate (BER)

measurements in Binary Phase-Shift Keying (BPSK), Quadrature Phase-Shift Keying

(QPSK) and Quadrature Amplitude Modulation (QAM) systems.The SNR at the re-

ceiver is shown to be lognormal in shape, with a mean and variance proportional to the

error rate. This method works well for a sufficient number of errors, reportingSNR er-

rors of less than 1dB for a wide range ofSNR values. However, only positiveSNR

values are analysed. This is an inherent feature of this system, the BER measurements

require data transmission. At very lowSNR values the BER would be sufficiently high

to render transmission too lossy to be reliable. Although for the applications envisioned

in [93] this is not an issue, for CR DSA it is. Indeed, there is noway for the CR to estimate

BER without knowing the system parameters. In network co-ordination, where a CN is

attempting to control parameter(s), such as transmission power, to meet a certain set of

requirements, this method of estimation could prove useful.

If knowing the system parameters is impractical, then non-data-aidedSNR estimation

must be used. In Wiesel 2002 [94], a system using BPSK is investigated, though M-ary

Phase-Shift Keying (M-PSK) is stated to be easily derived from the work. The estimator

architecture requires estimation of the underlying symbolPDF, rather than explicit sym-

bol decisions. The detector allows performance close to theCramer-Rao bound, the lower

bound on the error under certain conditions. TheSNR is not varied below 0dB, therefore

it is difficult to ascertain the performance at the very lowSNR values≈ -21dB that CRs

are required to detect.
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In Pauluzzi 2000 [95], multipleSNR estimation techniques are compared. The metric

used to judge the accuracy is the Mean Square Error (MSE). In Chapter 4 an equivalent

metric, the Mean Integrated Square Error (MISE) is used, the difference being that the

MISE is used for distributions and the MSE for single values. As a single value is being

estimated in [95], the results cannot be easily compared to those derived in this work.

However, the work can be compared to the idealised detector,which has no cost and

is completely accurate. In Chapter 4 it will be shown that theSNR estimator is both

accurate and requires very little extra computation.

As with the CF detector, there is currently a lack of comparable work. The papers exam-

ined [93–96] do not extend their analysis below 0dB. In CR applications theSNR will

often be significantly lower.

2.8 Conclusion

CRs have great potential to reduce the current issue of spectrum shortage but the tech-

nical challenges of DSA still need to be solved. CF sensing allows some significant

performance gains over more traditional architectures. Current CF architectures are not

optimised for a distribution ofSNR values and this does not allow the detectors to op-

erate at their peak efficiency. Methods to account for thisSNR distribution are the main

contribution of this work and most of the architectures studied in Section 2.5 would likely

benefit from this analysis. Some of the topics covered here, for example energy detectors

and fading, will now be covered in greater detail in Chapter 3.
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Basic Theory

3.1 Introduction

In this chapter some relevant background signal detection theory is reviewed. The binary

hypothesis test and the energy detector are fundamentals ofsignal detection and are used

extensively throughout the literature. Here, they are introduced and discussed within the

established bounds of this thesis. Effects such as noise uncertainty and fading are also

considered and their effects on the signal environment are shown.
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A method for modelling the transitions within a multi-statesystem, namely Markov Chain

analysis, is also reviewed. Markov Chains are used in this work to model the effects of

channel sorting in Chapter 5, and to derive related expressions for some important system

properties. Finally, the IRIS test-bed is described. The fundamentals of the IRIS system

and how radios can be designed using it are discussed. The IRISsystem is used throughout

this thesis for implementation results.

3.2 Binary Hypothesis Test

When attempting to determine the occupancy of a channel, there are two possible hy-

potheses. The channel can be unoccupied, denoted by hypothesis H0, or occupied, de-

notedH1. The detector estimates the channel occupancy and declaresit occupied,D(1),

or unoccupied,D(0), by use of a binary hypothesis test. There are four possible outcomes

for this test.

Pd is the probability of detection, an event that occurs when the detector correctly declares

the channel occupied and is given by:

Pd = P (D(1)|H1), (3.1)

whereP (x) denotes the probability of event x occurring.

Pmd is the probability of missed detection, where missed detection occurs when the de-

tector incorrectly declares the channel free and is given by:

Pmd = P (D(0)|H1). (3.2)

Pfs is the probability of detecting a free space, an event that occurs when the detector
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correctly declares the channel unoccupied and is given by:

Pfs = P (D(0)|H0). (3.3)

Pfa is the probability of false alarm, where a false alarm occurswhen the detector incor-

rectly declares the channel occupied and is given by:

Pfa = P (D(1)|H0). (3.4)

In addition,

Pd + Pmd = 1 (3.5)

and

Pfs + Pfa = 1. (3.6)

This binary hypothesis test is used for determining the channel occupancy in all of the

detectors investigated here.

3.3 Energy Detectors

An energy detector operates by generating an estimate of theenergy in the band. This

estimate can then be used to decide if a signal is present, or not, in the band. Here we

consider only a single threshold energy detector, such thatthe Binary Hypothesis test is

applicable.

An energy detector generates an estimate of the energy in theband by finding the aver-
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age energy inN instantaneous samples,x(n), 1 ≤ n ≤ N , assuming a 1Ω reference

resistor and the noise is AWGN. Note that the following equations assume that the noise

samples are independent, for example interference that is changing significantly slower

than the sample rate, if this is not the case then the AWGN assumption is not valid. The

characteristic equation of the detector is given by:

Y =
N

∑

n=1

| x(n) |2 . (3.7)

The energy content of the band will, in practice, be non-zeroeven in the absence of a

target man-made signal. In the absence of the target signal,this energy is due to the noise

power in the channel. If a signal is present in the band, then the energy in the band will

be increased by the energy of the signal, in addition to the noise power already present.

Thenth sample of the received signal,x(n), is given by

x(n) =











v(n) H0

v(n) + s(n) H1

, (3.8)

wherev(n) is thenth noise sample ands(n) is thenth signal sample.

The input to the energy detector is scaled by an estimate of the noise variance,σ2
n [54].

The noise is assumed to be zero mean, with a Gaussian distribution, therefore the noise

samples are now zero mean, unit variance or :

v(n) ∼ N (0, 1). (3.9)

The signal can also be considered a zero mean Gaussian variable with a variance ofσ2
s .

After scaling, the samples are zero mean with a variance ofσ2
s/σ

2
n, denoted here asγ, or:
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s(n) ∼ N (0, γ), (3.10)

whereγ is theSNR of the signal (in the linear scale).

UnderH0, the output of the energy detector is the sum of the squares ofN zero mean,

unit variance, Gaussian distributed variables. For largeN this can be approximated by a

Gaussian distribution with a mean ofN and variance of
√

2N [97] .

The output of the energy detector underH1 for largeN can be approximated by a Gaus-

sian distribution with a mean ofN(1 + γ) and variance of
√

2N(1 + 2γ) [54]:

Y ∼











N (N,
√

2N) H0

N (N(1 + γ),
√

2N(1 + 2γ)) H1

. (3.11)

To decide betweenH0 andH1 requires setting a threshold,λ. The binary hypothesis test

probabilities, (3.1)-(3.4), become

Pd = P (Y ≥ λ|H1), (3.12)

Pmd = P (Y < λ|H1), (3.13)

Pfs = P (Y < λ|H0), (3.14)

Pfa = P (Y ≥ λ|H0). (3.15)

In Fig. 3.1, the PDFs ofH0 andH1, along with the relevantλ, are plotted forN = 10, 000,
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γ = −15dB andPfa = 0.1.
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H0, H1 andΛ for SNR=-15dB andPfa=0.1

Λ

H1

H0

Figure 3.1: PDF’s of Y underH0 andH1 for SNR=-15dB andPfa=0.1

Pfs is a function ofN andλ and is equal to the Cumulative Distribution Function (CDF)

of a Gaussian variable with a mean ofN and variance of
√

2N evaluated atλ. Thus:

Pfs = CDF [N (N,
√

2N), λ]. (3.16)

Pd is a function ofN , λ andγ and is equal to the Complementary Cumulative Distribu-

tion Function (CCDF) of a Gaussian variable with a mean ofN(1 + γ) and variance of
√

2N(1 + 2γ) evaluated atλ. ThePd of the system associated with Fig. 3.1 is approxi-

mately 82.6%.

Pd = CCDF [N (N(1 + SNR),
√

N(1 + SNR)), λ]. (3.17)

It is possible, then, to solve for the values ofN andλ that give the requiredPd andPfs

for aSNR of γ. In practice, it is more usual to give them as a function ofPfa andPmd .
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Therefore:

N =
2[Q−1(Pfa) − Q−1(1 − Pmd)(1 + γ)]2

γ2
(3.18)

whereQ−1(·) is the Inverse Cumulative Distribution Function (ICDF) of thenormal dis-

tribution and

λ = ICDF [N (N,
√

N), Pfa]. (3.19)

For aPfa andPmd of 0.1, the required values forN andλ for varyingSNR are shown in

Fig. 3.2.
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SNR�dB
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104

105
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Ns

K andΛ for varying SNR

Λ

K

Figure 3.2: RequiredN andλ for Pfa=0.1 andPmd=0.1 Under VaryingSNR

Note the large rise in the required number of samples as theSNR decreases, indeed

N ∝ 1
γ2 . This leads to inefficiencies in sensing that will be discussed in later chapters.
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3.4 Energy Detector Outputs under Noise Uncertainty

Thus far in the analysis of the energy detector it has been assumed that the system has

perfect knowledge of the noise variance,σ2
n. This variance is used to scale the input of

the energy detector to give a unit variance input when no signal is present. However, if

the estimate of the variance,σ̂2
n, is incorrect, then the energy detector input will be scaled

incorrectly.

Consequently,ρ is defined as the noise-uncertainty, or the relative inaccuracy of the esti-

mate, and is given by [42]:

ρ =
σ̂2

n

σ2
n

. (3.20)

For an unoccupied channel, the distribution of the input to the energy detector, after nor-

malisation, has varianceρ:

v(n) ∼ N (0, ρ). (3.21)

The energy detector output:

Yn =
N

∑

n=1

v(n)2, (3.22)

is distributed according to,

Yn,ρ ∼
N

∑

n=1

N (0, ρ)2, (3.23)

For an occupied channel, thenth input to the energy detector,x(n), after normalisation,

is the sum of two zero mean Gaussian variables, namely a noisevariable with varianceρ
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and a signal of varianceγ
ρ
.

Therefore,x(n) is the sum of two Gaussian variables and has distribution:

x(n) ∼ N (0, ρ +
γ

ρ
). (3.24)

The energy detector output is then distributed according to:

Yn,ρ ∼
N

∑

n=1

N (0, ρ +
γ

ρ
)2. (3.25)

Clearly, the detector will find it more difficult to detect the signals in this case. In (2.3)

the total number of samples required for reliable detectionis shown. This equation shows

that the number of samples approaches infinity as the noise uncertainty reaches a certain

value, which depends on theSNR of the signal. Noise uncertainty is a severe problem in

energy detector based architectures. If noise uncertaintyis present, then reliable detection

becomes significantly more difficult.

3.5 Fading Channels

If the system is subjected to fading then, instead of a singlestaticSNR value, theSNR

now has a probability distribution associated with its instantaneous value. This could be

caused by multipath effects or shadowing [41]. There are many fading types with cor-

responding distributions, such as Rayleigh, Nakagami-m andRicean Fading. In addition

to the fading distribution type, there are also two different classifications of fading types,

namely fast and slow fading.

Fast fading occurs when the channel impulse response changes sufficiently quickly such

that theSNR is varying during each detection attempt and not just between detection
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attempts. For an energy detector, fast fading does not causesignificant problems. The

inherent averaging performed by the energy detector means that the performance will be

close to that for a system with anSNR equal to the averageSNR. Thus, fast fading is

not considered here.

Slow fading occurs when the channel impulse response changes slowly, such that the

SNR is constant within each detection attempt but may vary between detection attempts.

This form of fading is considered in this work.

For example, with Rayleigh fading [55], the PDF of theSNR, γ, with an averageSNR

of γ̄, ffad(γ, γ̄) is:

ffad(γ, γ̄) =
1

γ̄
e−γ/γ̄; γ ≥ 0. (3.26)

Distributions for Ricean and other channels, as well as methods for finding the probabili-

ties of missed detection for a signal under fading, can be found in [55].

For anSNR distribution, like that which will be considered in this work, fading changes

the distribution.

Replacing the single value ofγ̄ in (3.26) with the user definedSNR distribution,fSNR(γ̄),

and averaging, the newSNR distribution under fading can be calculated by

fSNRfaded(γ) =
∑

γ̄

fSNR(γ̄)ffad(γ, γ̄). (3.27)

Fading can significantly reduce the performance of a system.An energy detector sub-

jected to slow Rayleigh fading with an averageSNR of -21dB requires approximately

4.8M samples to detect a signal with aPmd of 10% and aPfa of 10%, compared to 209k

when fading is not present. This value can be found by averaging thePmd over theSNR

distribution of a Rayleigh faded signal at an averageSNR of -21dB [55].
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3.6 Markov Chains

A Markov Chain is a model of a system of transitions between groups of states of finite

size. Any system that is memoryless (i.e. the next transition depends only on the current

state), and has a countable number of possible states, can berepresented by a Markov

Chain [98] .

A simple example is a system such as a switch with three states, “on” (1), “off” (0) and

“broken”. When in the “off” state, there is a probability of turning “on” of Pon and a

probability of staying “off” of 1 − Pon. When in the “on” state, there is a probability

that the switch will turned “off” ofPoff , a probability that it will break ofPbreak and a

probability that it will stay “on” of1 − Poff − Pbreak. If the system enters the “broken”

state then it cannot leave, this is termed an absorbing state. The “on” and “off” states are

transient states as the system, given enough time, will always leave them.

Traditionally, Markov Chains are drawn as a directed graph and the graph for this example

is displayed in Fig. 3.3.

There exists a transitional probability matrix,Q, associated with every Markov Chain,

which gives the transition probabilities between all the transient states. TheQ matrix for

this example system is:

Q =













off on

off 1 − Pon Pon

on Poff 1 − Poff − Pbreak













. (3.28)

For the absorbing states there is a matrix,R, which gives the transition probabilities be-

tween the transient states and the absorbing states. TheR matrix for this system is:
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Off On1-Pon

1-Poff-PbreakPoff

Pon

Break

Pbreak

1

Figure 3.3: Markov Chain Represented in Directed Graph Format

R =







0

Pbreak






. (3.29)

The fundamental matrix,N, is given by:

N = (I − Q)−1, (3.30)

whereI is an identity matrix of the same order asQ andX−1 denotes the inverse of the

matrixX.

Using these matrices it is possible to derive expressions for some of the properties of the

system. This will be used in Chapter 5 to analyse the CSFD architecture. In particular,

the markov approach is used to model the effects of sorted channels in Chapter 5, and to

derive expressions for some of the properties, such as the average number of detection
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attempts and the probabilities of interference, of those systems.

3.7 Probability of Channel Changing State During De-

tection Attempt

In some of the work studied in Chapter 2 [43,45], the degradation in performance caused

by time varying occupancies was considered. There is a non-zero probability that, for

a time varying channel, the occupancy will change during a detection attempt and this

will cause a reduction in the accuracy of the detector. This was shown in Fig. 2.6. The

magnitude of this change depends on the length of the detection window and also the rate

at which the channel changes occupancy. An exponential distribution is commonly used

to model the ‘ON’-“OFF” time of transmissions [56,57] and this assumption will also be

used here.

For a channel which is “ON”, the PDF at a timetsense, fON(tsense), is given by:

fON(tsense) =
e−tsense/tON

2tON

, (3.31)

wheretON is the average length of a transmission for the “ON” state andtsense is the

length of time required by the detector to make a decision.

Similarly, the “OFF” PDF at a timetsense, foff (tsense), is given by:

foff (tsense) =
e−tsense/tOFF

2tOFF

, (3.32)

wheretOFF is the average time between transmissions or the “OFF” state.

Thus, it is possible to determine the probability that the channel will change its occupancy
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state within a certain time period,tsense. However, this probability can only be calculated

when the start (or end) time of transmission is known. If thisis not known, then the

current value oftsense is not available.

Instead, consider the situation aftert seconds, the PDF at a timet is:

fON(t) =
e−t/tON

2tON

. (3.33)

and, consequently,tsense seconds laterfON is:

fON(t + tsense) =
e−(t+tsense))/tON

2tON

. (3.34)

However, if the channel is still occupied aftert seconds this influences the probability of

staying ‘ON” aftert + tsense seconds. The probability of being occupied aftert + tsense,

given that aftert seconds the channel remains occupied, is:

PON(t + tsense | t) =
PON(t + tsense)

PON(t)
, (3.35)

wherePON(t + tsense) andPON(t) are given by the CCDF of the exponential distribution

at t + tsense andt respectively, or:

PON(t + tsense) = e
− t+tsense

tON , (3.36)

and

PON(t) = e
− t

tON . (3.37)

Equation (3.35) becomes:
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PON(t + tsense | t) = e
− tsense

tON . (3.38)

Similarly, for the “OFF” state:

POFF (t + tsense | t) = e
− tsense

tOFF . (3.39)

The probability of a change occurring in the occupancy within tsense seconds is, therefore:

Pchange =











1 − e
− tsense

tOFF “OFF ′′

1 − e
− tsense

tON “ON ′′

. (3.40)

If the result of (3.40) is sufficiently high (e.g.Pchange ≥ 0.05, for example), then the

effects of a changing occupancy will need to be accounted for. This analysis will be

performed on the CSFD and CDFD architectures in sections 5.5 and 6.3.2, respectively.

3.8 IRIS Architecture

The physical implementations for this thesis were implemented on the IRIS system. The

IRIS system is implemented on a CR/SDR test-bed hosted in Trinity College, Dublin.

The test-bed is under the control of the CREW project and is available to European Union

researchers upon request.

IRIS is a software radio architecture which has been developed by CTVR in Trinity. It is

written in C++ and implements a fully reconfigurable radio system. There is a minimal

hardware front end, in the form of a USRP, that provides a receiver and transmitter for the

radio. Each front-end is paired with a PC which runs the rest of the radio implementation

in software. The IRIS architecture allows for reconfigurablearchitectures to be run in real
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time on multiple nodes. There are a number of nodes availablein Trinity, nine of these

nodes were available for the work in this thesis, and these can be used to create sample

environments or networks.

In Fig. 3.4 the IRIS architecture is showni.

Engine Manager

Controller Manager

System

IRIS 2.0 Interface

Engine

Component
Manager

Component
Manager

Reconfiguration
Set

Radio
Representation XML

XML
Configuration

Controller Component Component
Repository

Event ReconfigurationData

XML

XML
Parser

Reconfiguration
Manager

Engine

Figure 3.4: IRIS Architecture

At the core of the all IRIS radio implementations is an .xml filethat sets the initial config-

uration of the system. This includes the components to be used, the controllers that allow

automatic reconfiguration and the links between them. It is possible to reconfigure the

ireproduced with permission
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radio by editing this .xml file but this is not ideal as it requires direct input from the user.

Each of the components has a single task that the radio can be reconfigured to use, such

as low pass filtering or Orthogonal Frequency-Division Multiplexing (OFDM) modula-

tion. Upon initialisation, the radio loads the components from a library controlled by the

component manager. Each of the components can be also reconfigured. For example,

the number of frequency bins in the OFDM modulation component can be changed. The

components can also be reconfigured manually by editing the .xml file.

Components are available as stack components or data flow process network (PN) compo-

nents. The stack components allow a bi-directional data flowand are designed primarily

with higher layers of the OSI seven layer model in mind. The components used in this

work are designed exclusively as PN components with strict uni-directional data flow

between components.

Around the components, controllers are set up that can automatically reconfigure the ra-

dio. These controllers require triggers sent by the components and allow the radio to adapt

without user input. The controllers can then pass the new parameters to the components.

All of the components and controllers are implemented in software on the radio. Indeed,

if no transmission or reception of signals is required by thesystem, such as in debugging,

then the USRPs are not required and the radio can be run entirely in software.

Although IRIS comes with a number of components already designed, some specialised

components and controllers have been generated for this work. Since the time of writing

the IRIS code base has been updated, making these components obsolete. The original

plan of including these components in the IRIS libraries cannot now occur.

A good example of the IRIS system in action is from a demonstration in DYSPAN 2007

[99], where the IRIS system was performing system rendezvous. The transmitting radio

changed the frequency of transmission and the receiver lostits lock. The controller in the
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second system noticed this event and reconfigured the front end to a new frequency and

attempted to find the signal again. In this case a cyclostationary feature detector attempted

to find the cyclic prefix and, thus, the new operating frequency. Once the signal had been

found, the controller again reconfigured the radio. It changed the operating frequency to

the correct value and restarted whatever processing was being done on the signal received.

In the case of the demonstration radios there was a song beingsent by the transmitting

radio’s PC and played by the receiving one. The video of the demonstration can be found

at [99] and is based on [61].

This reconfigurability will be used to allow the architectures in this work to be tested.

Where learning or adaptation is required, the controllers can implement the learning and

reconfigure the radios as required.

3.9 Conclusion

The relevant background theory underpinning signal detection has been introduced. In

addition, the basics of Markov Chains and issues with non-stationary channel occupancies

have also been discussed. The IRIS system has been outlined and, with this background

information, the main work of the thesis can be presented.
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4
SNR PDF Estimation

4.1 Introduction

In this chapter theSNR of a signal at a receiver is investigated and the argument for

using a distribution, rather than a single value, to describe the receivedSNR is made.

By examining a typical environment, it will be made clear thatthe concept of anSNR

distribution is valid, and that these distributions are of practical use to the designer of CR

receivers. TheSNR distributions derived here will allow further optimisation later in the
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thesis.

To generate the estimates of theSNR distributions based on observations of theSNR,

Kernel Density Estimation (KDE) is used. The basic theory ofKDE is explained and two

metrics for calculating the accuracy of the estimation are shown.

Three methods for generating the observations of theSNR values for use with KDE are

discussed. The three methods are:

1. Analytically in advance.

2. Experimentally in advance.

3. In-line sensing.

These methods are investigated and the last, in-line sensing, is shown to be the most

promising.

In-line sensing uses an energy detector to provide estimates of theSNR. Three issues

that may cause inaccuracy in the estimatedSNR values are investigated, namely noise

uncertainty, the threshold of the energy detector and occupancy of the channel. Finally, the

accuracy of the estimate of theSNR distribution will be investigated, both in simulations

and by practical implementation on the IRIS system.

4.1.1 Signal-to-Noise-Ratio

TheSNR of a band limited signal,γ, is the ratio of the received power of a signal,Ps, to

the power of the noise in that band,Pn or:

γ =
Ps

Pn

. (4.1)
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For example, if there is a signal present in a band with a powerat the receiver of 1W and

there is 10mW of noise in the band, then theSNR is 100.SNR is usually expressed in

dB, where:

γdB = 10log10γ. (4.2)

In this case theSNR in dB, γdB, would be 20dB.

The total noise power in a band is dependent on the bandwidth of the receiver and the

average noise power per Hz. The average noise power per Hz canbe expressed in W/Hz,

and, thus, is independent of the bandwidth of the channel. Tofind the total noise power

in any band it is then simply a case of multiplying the averagenoise power per Hz by

the bandwidth. If the front-end filter has a bandwidth of 8MHz, and the noise power is

10nW/Hz, then the total noise power is 80mW. In this work a channel width of 8MHz is

assumed. This is the bandwidth of the Irish DTV channels and will be used to estimate

theSNR for signals later in this chapter.

Typically, the average noise power is approximately constant across a group of bands,

provided there is no narrowband noise, e.g. no leakage from adjacent channels. The

signal power, however, will vary significantly due to distance and transmit power. If a

signal is transmitted from a station with a transmit power ofPT , then the signal power at

a receiver a distanced away,PR, satisfies:

PR ∝ PT

dn
, (4.3)

wheren, the order ofd, depends on the path type. Typically, the value ofn varies from

2-4, though for high path loss environments, such as indoor environments,n can be as

large as 6.
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In free space, wheren = 2, the power decreases withO(d2). For some channels subjected

to fading,n = 4 and the power decreases withO(d4). In fading environments the power

at a distanced is distributed with the appropriate situation specific distribution [100]. This

distribution ofSNR values is due to the time-varying nature of the channel and can be

caused by a large number of factors. These factors range fromatmospheric effects to

the motion of vehicles in the channel and can have a detrimental effect on the received

signal power. The instantaneous signal power is, therefore, difficult to find and, after

a short period, usually obsolete. Of greater importance arethe averageSNR and the

SNR distribution. These parameters can be used to accurately model the channel and the

performance of any system that receives signals from it [100].

Even if the signals are not subjected to fading, a group of signals in adjacent channels

will have a distribution of power values. The transmitters typically have different paths,

transmission powers and distances to the receiver and, thus, different signal powers at the

receiver. There is, however, a distribution that describestheSNRs of all the channels.

This distribution describes the signal powers of all the channels together, not the channels

individually. Instantaneously the powers in the bands may not match this distribution

but, as the number of observations increases, the histogramof the SNR estimates will

converge towards this distribution. As in the fading distribution case, this distribution can

be used to model the channel responses and the performance ofa system attempting to

detect a signal in the band.

In this chapter, various methods of finding thisSNR distribution are discussed and the

most promising method, in-line sensing, is investigated further.
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4.1.2 The SNR Distribution for CR applications

When a CR attempts to find a free band, the radio is required, by current standards [3], to

detect a signal at anSNR of -21dB with aPfa andPmd of, at most, 10%. The receiver

complexity required to detect such weak signals is significant, as was shown in Section

3.3. An energy detector attempting to detect signals with this SNR requires approxi-

mately 209k samples to meet thesePfa andPmd constraints. However, not all signals

are at such a smallSNR; some will have largerSNRs and, thus, will require less signal

processing to detect, whilst still meeting the constraintsonPfa andPmd.

Consider the situation in Fig. 1.1, reproduced in 4.1 for convenience. There is a CR

scanning four bands as it is attempting to detect a spectrum opportunity, or free space,

in one of the four bands. The ranges at which the CR is required to detect transmissions

from each of the four PUs are shown for each of the bands. Some transmitters will be

closer to the CR and have a relatively higherSNR, such as in Band 1. Others will be

on the edge of the detection range, such as in Band 3, and will have SNR values close

to -21dB. Some transmitters are so far from the CR that it can transmit without fear of

interfering, such as in Band 4.

Using current techniques, when attempting to optimise the CR,the radio typically as-

sumes that all of the signals in the bands have the sameSNR. Under the current standard,

all signals have to be assumed to have aSNR of -21dB to guarantee that the CR does not

interfere with any of the PUs.

This approach leads to significant inefficiencies. In contrast, CF spectrum sensing, which

is investigated in further chapters, can reduce this overhead significantly, reducing the

total number of samples required by 50% in some cases. Naturally, if the CR uses the

minimum required processing and number of samples, then theoverall system is opti-
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Figure 4.1: Typical Signal Environment with PUs at Different Distances to the CR

mised.

This optimisation can be performed over theSNR distribution to increase system perfor-

mance, relative to a system optimised for a singleSNR value. Provided that theSNR

distribution is only used to increase the speed of detection, and does not change the inter-

ference probabilities, then the overall performance can beincreased without any increase

in interference to the PUs. This “decoupling” of the interference probabilities andSNR

distribution ensures that, even if theSNR distribution is very inaccurate, only the CR’s

performance suffers and that the PUs remain safe from interference. Before optimising
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for theSNR distribution, however, theSNR distribution must be known.

4.2 Kernel Density Estimation

In general, theSNR distribution will be estimated from a number of sample observations,

Nobs. Although it may be possible to generate an analytical expression for the distribu-

tion, the wide range of operationing conditions that CRs couldbe subjected to makes

this approach impractical. A histogram method could be used, and would be sufficiently

accurate, provided the number of observations is sufficiently large.

A more effective method for estimating an underlying distribution from a series of obser-

vations is KDE. KDE operates in a manner similar to the histogram method but, instead

of a single value, there is a kernel centred on that value. TheKDE method converges on

the correct distribution more quickly than the histogram method, provided the distribution

is smooth and the width of the kernel is correctly specified [101].

The kernel can be any distribution having unit area. In this work a Gaussian kernel is

used. The kernel has a mean of the observation value and its variance depends on the

application. Fig. 4.2 shows the operation of the KDE for a Gaussian kernel with a unit

variance. Five observations are shown, with the appropriate Gaussian kernel centred on

each one. The estimated distribution is the sum of these distributions. The distribution

needs to be divided by the number of observations to ensure the area under the resulting

distribution remains equal to unity. To aid clarity, the kernels were divided by a larger

number than the number of observations (1.3 timesNobs) in Fig. 4.2, this allows the

shape of the kernels to be seen more clearly.

Selecting the correct variance for the kernel is difficult, as the distribution is not known

in advance. In [102], a method for setting the variance,ĥopt, is proposed (though in [102]
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Figure 4.2: Sample PDF Based on Observations Using Kernel Density Estimation

the variance was defined as the bandwidth of the kernel) as:

ĥopt =
0.9σ̂

N
1
5
obs

, (4.4)

whereσ̂ = min(s,R/1.34), R is the interquartile range of the data and s is given by:

s = +

√

√

√

√

1

n − 1

Nobs
∑

i=1

(xi − x̄)2. (4.5)

The kernel weighting function of theith estimate,wi(x, h), is :

wi(x, h) =
1√
2πh

e−(1/2)(
(x−ui)

2

h
), (4.6)
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whereui is the value of theith observation andh = ĥopt.

The PDF of the distribution atx, f(x), is the mean of all the weighting functions atx or:

f(x) =
1

Nobs

Nobs
∑

i=1

wi(x, h). (4.7)

4.2.1 Accuracy of Estimated Distribution

To measure the accuracy of an estimate of a distribution, theMean Integrated Square

Error (MISE) can be used. TheMISE is the integral of the difference between the

estimated distribution,̂f(x), and the actual distribution,f(x) over the full ranges of the

distributions. It is the integral of the MSE and is given by [102]:

MISE(f̂) =

∫ ∞

−∞

(f̂(x) − f(x))2 dx. (4.8)

This method of checking the accuracy of the system is only possible when the distribution

is already known. For unknown distributions a different approach is required. Note that

when theMISE compares analytical distributions an expectation operator is used. In

this work, sampled distributions are considered and the expectation operator omitted.

As the number of observations increases, the accuracy of theestimated distribution will,

on average, increase. In addition, as the number of observations increases, the differences

between the resultant distributions decrease also. For example, the difference between

the distributions found after ten observations and after twenty observations will be, on

average, greater than the difference between the distributions found after 100 observations

and after 200 observations. This is due to the extra information and also the reduction in

the effects of the outliers.

The following metric is proposed: theMISE between the distribution aftern observa-
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tions,fn(x), and the distribution afterm observations,fm(x), gives the Mean Integrated

Square Change (MISC), or:

MISC(f̂) =

∫ ∞

−∞

(f̂n(x) − f̂m(x))2 dx. (4.9)

wherem = kn, k ∈ N0. TheMISC is the measure of stability in the estimated distribu-

tion. TheMISC can be used to decide that the distribution has reached a sufficient level

of accuracy.

Note that the multiplicative relationship betweenm andn is important for fair compar-

isons. Ifm = n + k then, asn increased, the relative size ofk would decrease and, thus,

the change caused by the extra samples would not be as large. In this workk = 2 was

chosen and the first check occurred after twenty observations. Those values were chosen

to reduce the average number of observations based on the initial simulation results.

If the MISC is below a user defined threshold, then the estimate of the PDFcan be

declared to be sufficiently accurate. TheMISC does not guarantee sufficient accuracy.

Instead, a lowMISC indicates a static distribution. This, however, is a strongindicator

of accuracy since a lowMISC would require the same outliers to be present in both sets

of estimates if the estimated distribution was inaccurate.

4.3 Generating Observations of SNR Values

To use the KDE method to find a distribution, a set ofSNR estimates must first be gen-

erated. Whilst estimating theSNR can be done in numerous ways, here three options

are investigated. However, it will be shown that only the last, in-line measuring, is of

practical use for real CR systems.
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The three methods are:

1. Analytically in advance: Given transmitter locations and knowledge of the likely

channel conditions, it is possible to estimate the power of the signals and, thus,

theSNR. Here the distribution associated with the Irish DTV systemis estimated.

This method isn’t practical for real implementation due to the issues discussed here,

however, it is used to generate a sample distribution that isused to evaluate the

detectors in later chapters.

2. Experimentally in advance: From measurements taken previously, it is possible

to estimate theSNR of the signals. Here measurements are taken by a spectrum

estimator of signal powers in the Irish DTV bands.

3. In-line measuring: If the system estimates the power of the signals found, it can

learn the distribution over time. Here a method is derived and practical and simula-

tion results shown.

4.3.1 Analytically in Advance: DTV Estimate

To demonstrate the difficulties in generating a distribution via analytical means, the Irish

DTV system is analysed and a sampleSNR distribution generated from this analysis.

In Fig. 4.3 the locations of the Irish DTV transmitters are shown [103]. To find the

PDF of theSNR we take the average over a range of possible locations for theCR. To

maximise the number of people covered, we analyse a number ofcities and large towns

and, with these six locations, it is possible to cover approximately 33% of the population

and a wide range of geographical locations. The transmission powers and the distances (in

kilometers) from each of the chosen locations for the CR to each of the DTV transmitters

are shown in Table 4.1.
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Figure 4.3: Irish DTV Locations

To find the received power at a distanced from a transmitter, a slightly modified version

of Friis’ equation [104] can be used:

PR = PT GT GR(
λ

4πd
)n, (4.10)

whereGT andGR are the gains of the transmitting and receiving antennae, respectively,

andn is the distance-loss factor. A Okumura-Hata propogation could be used for the

urban environments, however it has several parameters thatwould need to be estimated
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Table 4.1: Locations and Distances to Urban Areas of Irish DTV Transmitters

Transmitter PT /W Dublin /km Cork /km Limerick /km Athlone /km Sligo /km Galway /km
Three Rock 50000 11 212 173 115 186 186
Kippure 50000 19 203 164 110 185 181
Greystones 10000 26 213 179 128 202 198
Clermont Carn 25000 82 282 219 129 142 200
Cairn Hill 50000 109 218 140 45 71 103
MT Leinster 50000 88 140 125 119 215 170
Dungarvan 10000 166 62 93 150 248 165
Spur Hill 10000 224 5.6 90 178 268 165
Mullaghanish 50000 245 47 82 179 257 146
Woodcock Hill 4000 178 89 5 95 176 72
Maghera 50000 198 118 41 100 161 46
Truskmore 50000 179 274 191 110 13 126
Holywell Hill 6000 198 350 272 179 106 217

and the accuracy would still not be much greater than the Friis equation.

In dB, (4.10) becomes:

PR,dBW
= PT,dBW

+ GT,dB + GR,dB + 10nLog10(
λ

4πd
). (4.11)

Assuming a quarter wave antenna, the antenna gain is 5.14dB relative to an isotropic an-

tenna. Thus,GT,dB andGR,dB are 5.14dB. The DTV bands are broadcast at approximately

600MHz, thus f=600MHz andλ = 0.5m. The loss exponent due to distance is given by

n = 3; this was chosen to represent the fact that, while the signals would travel through

mostly free space, they will be subjected to other effects which increase the value ofn

and is consistent with practical measurements taken in these bands [105].

Assuming a noise floor of -174dBm/Hz (ideal receiver at a temperature of 290 K) and

8MHz bands, there is a noise power of approximately -104dBm ineach band (although

if strong signals are present in adjacent bands then there will be leakage, increasing this

value).

TheSNR distribution is shown in Fig. 4.4. A smoothing function was applied to the dis-
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tribution. The smoothing is performed by the kernel densitymethod described in Section

4.2. In addition, the distribution used in previous work [106,107] is also shown.
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SNR�dB
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SNR PDF

Distribution in Previous Work
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Figure 4.4: The DTV SNR PDF

Note that the distribution in [106–108] differs from that derived here. Different param-

eters were chosen, such as a lower frequency and a smaller value forn was used in the

previous work. In addition, smoothing was performed via a moving average filtering

rather the KDE method. The distribution was then matched to an appropriate Gaussian

distribution. Finally, an extra city, Galway, was added to the analysis.

This difference between two distributions based on the samedata shows one of the main

difficulties of this method. In practice, it is very difficultto analytically determine the

signal power at a distance from a transmitter with a high degree of accuracy. It was shown

in [105] that the actual pathloss exponent measured can varysignificantly in practice. In
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addition, this method is completely inappropriate for systems where the locations and

transmit powers of the PUs are not known in advance. Finally,in urban environments,

where the path loss is location specific and time varying [109], an analytical solution

becomes impractical.

4.3.2 Spectrum Measurements

An alternative to the analytical method presented above is to perform measurements and

use them to determine theSNR PDF of a signal environment. This method solves some

of the problems of the analytical method. The actual signal power can then be found

directly for that location.

With the help of the CTVR in Trinity College Dublin, measurements were taken in the

Irish TV bands. This set of measurements was taken outdoors in the vicinity of Mullingar,

a small town in Ireland. The measurements were in the range 660MHz to 766MHz on

April 07, 2012.

The equipment used for these measurements was an Anritsu MS2721B handheld spec-

trum analyser with a GPS module for location awareness. Significant averaging was per-

formed, with approximately 300,000 samples per bin. The spectrum is shown below in

Fig. 4.5. Also shown are indicators for the edges of the 8MHz bands in the range. Some

of the bands are numbered to allow easier reference.

It is possible to estimate the power in each band from this data and, therefore, theSNR.

Firstly, the noise floor of the reciever must be found. In Fig.4.5 band number four appears

to be empty. The frequency response is flat at approximately -125dBW . Each 8MHz

channel corresponds to 42 bins, thus the noise power in the channel is 10log10 (42) dB

higher i.e. 16.2dB higher. Therefore, the noise power in a 8MHz band is approximately
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Figure 4.5: Irish DTV Spectrum Measurements

-109dBW .

The total power in a band is given by the summation of the individual powers that are in

that band, as long as the signals do not create destructive interference. In this case the

total power includes the noise. For the measurements considered here, the signals are

OFDM signals with an 8MHz bandwidth and the power is spread across the entire 8MHz

bandwidth. Note that the powers must be added in a linear scale. For example, the total

power,PTotal, in band two is -91.2dBW .

Once the total power in the band is found then the noise power must be removed from it.

Again, this must be done in a linear scale. Once this power is removed the result is the

signal power in the band. Taking the ratio of the signal powerto the noise power gives

theSNR. For band two, the signal power,Ps, is -91.3dBW and theSNR is 17.41dB.

The results for this analysis are shown in Table 4.2.
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Table 4.2:SNR of Various Bands from Measurements

Band SNR
1 -1.45 dB
2 17.42 dB
3 -3.31 dB
4 Empty Channel
5 3.06 dB
6 4.33 dB

As can be seen, there is a range ofSNR values. If a larger number of locations, including

indoor locations, were used then it would be possible to determine anSNR distribution

using this data.

This method, however, is of limited practical use. Measurements are only valid for that

single location and time, and will become invalid if the radio is in a different location.

In addition, there is significant difficulty when attemptingto find theSNR of weak sig-

nals. Reducing the noise floor to -130dBW and obtaining increased accuracy for narrow-

band signals would require a tenfold increase in the resolution. This would enable signal

analysis at a lowerSNR, though only if the signals do not cover the entire bandwidth. For

bands where signals cover the entire bandwidth, such as DTV OFDM signals, significant

averaging would have to be used. For example, for a signal with anSNR of -15dB, the

difference between it and a noise floor at -125dBW would be 0.135dB, a difference that

is, in practice, very difficult to accurately detect. The difference between signals with an

SNR of -21dB and this noise floor is only 0.035dB. Substantial averaging would have

to be performed to be able to accurately decide on the occupancy and theSNR of such

signals. If this process was repeated in a number of different locations and times, an

SNR PDF could be created, but the system would still find lowSNR signals difficult to

categorise.

78



4.3. GENERATING OBSERVATIONS OF SNR VALUES

4.3.3 In-Line Measuring

As discussed above, the previous methods of estimating the distribution have some diffi-

culties associated with them. In addition to those already mentioned, one major problem

is that the methods must be performed in advance. If the conditions change, then the dis-

tribution changes also. Significant changes could render the distribution useless, or even

detrimental to performance.

If the measurement was performed by the system as part of its spectrum sensing, then

the distribution would match more closely to that of reality. In addition, as the condi-

tions changed, the system would be able to learn and adapt theSNR distribution used.

This would allow optimisation to occur during operation, a very desirable feature in CR

applications.

Most detector outputs depend on theSNR of the signal, though often the relationship is

complicated. In the case of cyclostationary feature detectors, for example, the magnitude

of the peak depends on the cyclic correlation of the signal, in addition to its power [58].

However, energy detectors have a linear response toSNR and are ideal for this purpose.

Indeed, using the energy detector output, it is a relativelysimple task to estimate the

SNR. Whilst thisSNR estimate will not be accurate enough to be used directly [96], it

is sufficient to generate an estimate of theSNR distribution.

The energy detector output,Y , has a meanµ which is given byN + N × SNR as in

(3.11). Thus, the estimate of theSNR, γ̂, of a signal is given by:

γ̂ =
Y

N
− 1. (4.12)

There is no concern about receiving negative values forγ̂. For Y ≤ N to occur would

requirePfa ≥ 50%, clearly a very poorly designed detector and, thus, it is safely assumed
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here that this will not occur.

This method of estimation would appear to be the most promising. Though a number

of detection attempts are required to “train” the CR to generate the correct distribution,

it has the ability to learn and adapt. In addition, it can find the SNR of weak signals

reliably as the energy detector must be able to detect them. Finally, this method does not

require estimation of channel loss or any of the other parameters that are required for the

analytical method.

There are, however, practical issues which reduce the accuracy of this estimation tech-

nique. The most important factor in the practicality of the method is the required number

of observations before the distribution is sufficiently accurate. How many times does

the detector need to be run before the distribution is appropriately reliable? This is now

investigated in simulations and in practical work.

4.4 Analysis of the In-Line Measurement System

There exist some non-idealities in theSNR estimation method of equation (4.12). Noise

uncertainty and the effects of the threshold and occupancy on the system generally renders

the estimates less accurate.

4.4.1 Effects of Noise Uncertainty on SNR Estimation

The estimation of theSNR distribution requires the use of an energy detector to generate

an estimate of theSNR. The energy detector and, thus, theSNR estimate, is susceptible

to noise uncertainty. Noise uncertainty causes a spreadingin the output PDF of the energy

detector (i.e. the variance increases).
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Assuming the noise uncertainty is unbiased, then the energydetector output remains un-

biased also. Whilst the mean of the energy detector’s output does not change, the variance

increases. This means that extra samples will be required togenerate an accurate result,

compared to the case where no noise uncertainty is present. For low values of noise un-

certainty, there will be no significant error in the distribution. As the noise uncertainty

increases, however, the effects of the threshold and occupancy will also increase. This

will lead to errors in the estimated distribution, even whenthe number of estimates is

very large. In addition, if the noise uncertainty has a bias,then the estimated distribution

will be incorrect, even when the number of estimates is very large. The performance of

the energy detector in-line measurement system under noiseuncertainty is shown later in

Fig. 4.8.

4.4.2 Effects of Threshold and Occupancy on SNR Estimation

The in-lineSNR estimation technique will give the correct distribution when the channel

is occupied and there is no threshold. In real applications,however, the channel may not

be occupied and a threshold will be present.

To see the impact of these factors, consider the energy detector output PDF in section 3.3.

The unoccupied channel (H0) has a probability of being declared occupied ofPfa. This

corresponds to the section of theH0 PDF that is above the threshold,λ. In addition, the

SNR estimate will be low due to the fact that the more probable values for the energy

detector output are closer to the threshold. Thus, there is alow, incorrect, value for the

SNR with a probability of occurring ofPfa × (1 − θ), whereθ, 0 ≤ θ ≤ 1, denotes

the occupancy of the channel. For a channel with 50% occupancy andPfa = 10%, ap-

proximately 5% of the detection attempts will result in incorrectly designated unoccupied
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channels with a lowSNR estimate.

Similarly, for the occupied channel (H1), there is a probability of being declared unoccu-

pied ofPmd. In this case, the lower values of the output will be removed,corresponding to

the section of theH1 PDF that is below the threshold,λ. This censoring of the occupied

channel results in the lowerSNR values being removed. Thus, there is a low value for the

SNR which is ignored, with a probability of occurrance ofPmd × θ. For a channel with

50% occupancy andPmd = 10%, approximately 5% of the detection attempts will result

in incorrectly designated occupied channels with a lowSNR estimate being ignored.

It can be seen that the two effects will counteract each othersomewhat. The new distri-

bution from which theSNR estimate is generated, compared to theH1 distribution, from

which it is assumed to be generated, is shown in Fig 4.6.
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Figure 4.6: PDF from which theSNR Distribution is Actually Based vsH1 Distribution
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It might be possible to reduce the impact of the threshold andoccupancy if the occupancy

is known. If a sufficiently large number of estimates is taken, then, by removing some of

the lowest valued results, which would correspond to the unoccupied channels incorrectly

designated, then some of the bias would be removed.

The PDF at each point could also be scaled by a term to counteract the bias. This term

would depend on the values ofθ andPfa and the value of theSNR that corresponds to

that point on the PDF. To test this method, Monte-Carlo simulations and practical tests

were performed using MathematicaR© 8.0.1.0 and the IRIS system, respectively.

4.4.3 Simulations

The simulations were performed by generating energy detector outputs based on anSNR

distribution. TheSNR PDF used here is the distribution based on the Irish DTV network

derived in section 4.3.1. Initially, a random variable fromthis distribution is generated for

theSNR and then, using thisSNR value, the output for the energy detector is generated.

Using (4.12), the estimate of theSNR is generated. This process is repeatedNobs times.

Once allNobs observations have been collected, the KDE method is performed and the

estimated distribution,̂f , generated.

In Fig. 4.7 sample distributions forNobs = 10, 100 and 1000 are shown, as well as the

actual distribution. This is for the case where the threshold and occupancy have to be

accounted for. The bias in theSNR distribution can be seen.

TheMISE is then calculated forf and f̂ . The process is repeated 5000 times and the

average value for theMISE found. The result for the DTV distribution is shown in Fig.

4.8. In addition, the results under noise uncertainty and when the effects of the threshold

and occupancy are included are shown.
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Figure 4.7: Samplêf for Various Observation Lengths,Nobs

There is a log-log relationship between the number of observations and theMISE. To

reduce theMISE by a factor of ten then the number of samples required increases also

by approximately the same factor. This has only been shown for the distribution used

here though, and other distributions will likely have different characteristics, especially

multimodal distributions. It is expected that other distributions would have similar re-

sponses, but this cannot be proven for all distributions. Thus, to guarantee performance,

theMISC is the recommended test for the ‘fit’ of the distribution.

The presence of noise uncertainty reduces the effectiveness of this system. There is a

greater error compared to the case where no noise uncertainty is present. In addition,

greater numbers of samples do not reduce theMISE by as much as the case where no

noise uncertainty is present. The noise uncertainty is quite large in this case though, noise
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Figure 4.8:MISE for Differing Numbers of Observations,Nobs

uncertainty of 0.1dB would be too large for the energy detector to reliably detect signals.

Lower levels of noise uncertainty would cause less deterioration in the performance of the

system.

The degradation due to the threshold and occupancy, however, cannot be ignored. There

is a greater error compared to the case where noise uncertainty is present. In addition,

greater numbers of samples do not reduce theMISE by as much as the case where noise

uncertainty is present. This impairment of performance will be present in the detector

under all conditions; thus, it must be included in all calculations.

TheMISE values shown are the averageMISE values for that number of observations.

In some cases theMISE will be larger than this. To provide a measure of confidence for

the estimated distribution, theMISC can be used.
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For the DTV distribution andk = 2, i.e. doubling the number of samples each check, the

MISC is calculated starting withNobs = 20. This process is repeated 5000 times, and

theMISC is calculated at each step. The averageMISC is shown in Fig. 4.9. These

simulations were performed on the boole cluster, NOTE
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Figure 4.9:MISC for Various Observation Lengths

Finally, for a practical system, a targetMISC value will be specified. Once the sys-

tem has a smallerMISC than the targetMISC value, f̂ can be considered stable and

sufficiently accurate.

Shown in Fig. 4.10 is a plot illustrating the probability of having met the targetMISC

by that number of observations for various targetMISC values. Obviously, the smaller

theMISC allowed, the longer the system takes to stabilise on a distribution.
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4.4.4 IRIS Implementation and Testing

To test this method in reality, a radio was designed on the IRISsystem that would estimate

the SNR PDF. A simple two radio system was used for this test, with a second radio

generating a random signal. The designs for both radios are shown in Fig. 4.11.

The transmitting radio, Tx, generates random data for an OFDM modulator. This is then

sent to the USRP front-end and transmitted over the channel. The power of the signal

is controlled by a gain module. The effectiveSNR at the receiver could also have been

controlled by modifying the bandwidth of the signal, thoughthis was not done as the gain

module provided sufficient flexibility.

The receiving radio, Rx, receives samples from a USRP front-end at a sample rate of

1MSps and passes them into an energy detector component. Theresults from the energy
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Figure 4.11: IRIS Test Radio Architecture

detector are fed into the KDE component which then performs one of the tests and the

results are written to a file. Both radios were operated at a frequency of 5.008GHz and a

photo of the equipment is shown in Fig. 4.12.

The time taken for Rx to generate an estimate was found to be approximately 0.2 seconds

(209k samples at 1MSps). Tx changed its gain approximately every 0.3 seconds. This

means that no two sensing periods had the sameSNR. In a real system Rx would not

be scanning the same band repeatedly, thus larger periods oftime would pass between

sensing attempts than in this test. In addition, multiple bands would be scanned when

generating theSNR distribution. Thus, it is unlikely that the sameSNR would be found
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Figure 4.12: IRIS Setup in Trinity College Dublin

for two sequential estimates. Hence, the constantly changingSNR is justified, as it mod-

els a more realistic environment. It may be possible that thetransmitter and receiver are

static over long periods of time, thus theSNR in that band would not change significantly

with time. In this case, however, the multiple bands being scanned still result in a range

of SNR values at the receiver.

The effectiveSNR, γeffective, at Rx is given by:

γeffective =
Ps

Pn

. (4.13)

The Rx USRP has a bandwidth of 1MHz in this experiment. This doesnot change and,

therefore, the noise power remains constant.

The USRP front end using a XCVR 4250 daughterboard displayed a drift in gain with

time. As the device began receiving samples the gain decreased. This is due to the rise in

temperature in the device changing the gain. Thus, as the device continued to operate, the

gain would slowly decrease. Once a certain threshold was reached the gain would shift

suddenly as automatic gain controls attempted to compensate. At this point in all the tests
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the system was shut down and allowed to cool.

The first test performed measured the averageMISE for a range ofNobs values. In

this test the gain began relatively high and then decreased slowly over time, with a 10%

change in gain over approximately an hour. As the decrease was slow and of relatively

low magnitude the estimation did not suffer significantly. The average distributions for

the Nobs=10, 50 and 100 estimates are shown in Fig. 4.13. The tests were performed

sequentially starting with theNobs=10, thenNobs=50 and, finally,Nobs=100. Indeed, the

effect of the gain drift could be seen as analogous to noise uncertainty. The scaling be-

ing performed is incorrect, thus the estimates will suffer from the same effects as noise

uncertainty. A sample distribution from each of the tests isshown in Fig 4.14.
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Figure 4.13: Change in theSNR Distribution Between theNobs=10, 50 and 100 Estimates
runs

Unlike the simulation, the underlying distribution for theIRIS test is not known. The
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Figure 4.14:SNR Distributions forNobs=10, 50 and 100 Estimates.

underlying distribution is estimated from an average of allthe distributions found. Each

estimated distribution is compared to a distribution that is the average of all the distri-

butions with the same number of estimates (i.e. theNobs =10 estimated distributions are

compared to the average of all theNobs =10 estimated distributions). Thus, any bias intro-

duced by the thresholds would also be in the distribution with which each distribution was

compared. Therefore, the correct simulation condition with which to compare this test is

the noise uncertainty case. TheMISE is then generated from the estimated distributions.

TheMISE is shown in Fig. 4.15.

The results do not match well. TheMISE is significantly higher than predicted. This

could be caused by the noise uncertainty and by the gain driftof the system. Approxi-

mately 5x samples are required by the practical system to have the same performance as
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Figure 4.15:MISE for IRIS Test

the simulated system.

This mismatch shows the need for constant noise power estimation in an adjacent band

to reduce the effects of the gain drift. TheMISC test described next used noise power

estimation in an adjacent band, to reduce the impact of the drift in gain.

As has already been stated in this chapter, theMISE is of little practical use to a system

because it requires knowledge of the distribution being estimated. TheMISC, however,

as defined in (4.9), can be used to provide a measure of confidence.

As the test is sequential (each step uses the previous step tocompare the currentSNR

estimate to) variance in theSNR will lead to difficulties. Thus, an extra controller was

added to the system. Every fifty energy detector results the system would change to an

adjacent (empty) band and recalibrate the gain to compensate for the thermal effects. The
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system would then return to the original band and resume the test.

Finally, the CDF of theMISC simulation is shown. This is the probability that the system

will have reached an estimate by thenth estimate for theMISC values chosen. This is

shown in Fig. 4.16.
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Figure 4.16:MISC CDF for Decision on Distribution for IRIS Test

Note that theMISC target values are not very low and are easily met by the systemin

most cases. However, the systems that will use the distribution are robust to inaccurate

distributions, as will be shown later in Chapter 5 and Chapter 6. Therefore, theMISC

target values do not need to be very low, thereby allowing a small number of estimates to

be used when estimating theSNR distribution.
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4.5 Conclusion

In this chapter the ability of a system to generate an accurateSNR distribution was inves-

tigated. In section 4.3, various options forSNR distribution estimation were examined.

The theoretical method suffered from a large degree of uncertainty in the parameters to be

used and was rejected as a viable option. Likewise, the experimentally in advance method

was also rejected though, in this case, the main issue was thefact that conditions could

change between having learned the distribution and the usage of that knowledge.

The experimentally in-line method was selected as the most promising. The method was

shown to have little cost, as the individualSNR estimates are readily available.

Using KDE with this method allows relatively quick and accurate estimates of theSNR

distribution to be found. In section 4.2, two methods for assessing the accuracy of a

distribution were presented. The first,MISE, is a well-studied method for checking the

accuracy of an estimate when the original distribution is available. When the original

distribution is unavailable,MISC allows the system to check that the distribution has

stabilised, a good indication that the distribution is accurate. ThisMISC was developed

for theSNR estimation scheme here, though it is likely a similar technique exists in other

work under a different name.

There are some non-idealities in the in-line estimation method. Noise uncertainty can

reduce the accuracy of the system. In addition, the threshold of the detector and occupancy

of the channel can introduce a bias in the estimates. Although it may be possible to reduce

this bias, this is outside the scope of this work.

The method was tested both in simulations and practically using the IRIS system. A drift

in the gain of the USRP was noted which reduced the accuracy of the system. This was

corrected by the system taking very regular estimates of thenoise power in an adjacent
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band. The IRIS results are not the same as the predicted ones from simulation. However,

the estimated distributions are still sufficiently close toallow the detector architectures in

Chapters 5 and 6 to work.

Finally, it should be stated that this method is not intendedto generate anSNR distribu-

tion to be used to guarantee safety to primary users. TheSNR distribution should only be

used to increase performance in a way that does not change theprobabilities of interfer-

ence with the licensed users of the band. In this work theSNR distribution is only used

to decrease the sensing time required. Thus, even if the estimate is substantially incorrect,

the primary user will not suffer, rather the CR alone will havereduced performance.
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5
Coarse Sorting Fine Detector

5.1 Introduction

5.1.1 Coarse-Sorting Fine Detector Architecture

When a cognitive radio attempts to find a free channel, it will not check a single channel

only. Instead, several candidate channels will be investigated. If the CR is attempting

to find the first free channel available, then it will stop onceit has found a channel that
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it declares to be free. Under most conditions, aside from heavily correlated channels, a

random search is the optimum, when no extra information is available [79].

However, if extra information was available, this would no longer be the case. If a quick

scan was performed on all the channels, then extra information would be available to the

CR. This would allow the CR to make a better decision on which of the channels to

intensively scan first. This could be achieved by first scanning all the channels with an

energy detector with a small number of samples per detectionattempt, this is the coarse

detection phase. Then the channels are sorted w.r.t. the outputs of the coarse scan. The

channels would then be scanned by an accurate detector, thisis known as the fine detector.

Such a detector has been known as a coarse-fine detector. However, to differentiate it

from other detectors that use coarse and fine scans but without any sorting, such as will

be seen in Chapter 6, it is denoted here as a Coarse-Sorting FineDetector (CSFD). The

flow diagram associated with a CSFD is shown in Fig. 5.1. Note that “next lowest” is

the lowest chanel on the first iteration. Also included is theflow diagram for a Naive

detector, where there is no coarse detection and, therefore, no sorting. An important

question is, how coarse should the coarse detection segmentbe to ensure efficient and

effective operation?

Consider the environment in Fig. 1.1. Some of the signals are strong and at a highSNR.

These signals would be easily detected by a quick (coarse) scan. Other signals are weak

and have very lowSNRs. These signals would not be detected reliably with a small

number of samples. However, the coarse detector is not intended to detect the signals

reliably. The coarse detector is attempting to provide an estimate that can be used to sort

the channels. As the number of samples in the coarse detectorincreases, the effectiveness

of the sorting will increase also.

To find the optimum point, corresponding to the minimum required number of coarse
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Figure 5.1: CSFD Flow Diagram Compared to Naive Detector

samples where the gain of taking extra samples is no longer worth the associated cost, is

difficult analytically. TheSNR distribution may be user-defined and expressed as a sam-

pled distribution. Thus, in general, an analytical solution is highly likely to be intractable.

Monte Carlo simulations could be performed to find the optimumpoint. In practice, these

simulations would most likely be accurate but costly in terms of computations and time.

Instead, a model of the process was generated that allows theaccurate prediction of system

performance in significantly less time than Monte-Carlo simulations running on the same

hardware.
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5.1.2 Modelling the System

First, an expression for the PDF of the output of the energy detector is found. This PDF

accurately describes the output of the energy detector overdifferent numbers of samples

and the prevailingSNR distribution, if a signal is present. In addition, the effects of noise

uncertainty on the distribution of the energy detector output are modelled.

Using order statistics [110], the outputs from the energy detector are sorted. It is assumed

that theSNR distributions are independent and identically distributed (i.i.d.). This as-

sumption reduces the computational complexity of the sorting process dramatically, with-

out impacting the accuracy of the estimates of the sorted outputs. By comparing the sorted

outputs, the probability that a signal is present in the channel analysed in thenth detection

attempt is calculated. The reduction in the accuracy of the model using this method for a

channel with a time varying occupancy is also found, allowing more realistic modelling.

Once the probabilities of occupancy have been found for all the channels, Markov Chains

can be used to predict the performance of the system. Using the Fine Detector’s Receiver

Operating Characteristic (ROC) the performance can be estimated, even in the presence

of fading. The fine detector could have a different ROC to the coarse detector if a different

detector is used for the coarse and fine detectors. In this case an energy detector is used

for both and there is only one ROC to consider. The Markov chain can be used to find

the average number of samples required to find a free channel (and, thus, the speed gain

relative to a Naive detector), the variance in the number of samples required to find a free

channel, the probability of generating interference and the probability of not finding a free

channel.

In this chapter the various components of the model are described and the accuracy of each

section is discussed. Finally, the overall accuracy of the model is shown by comparisons
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to large scale Monte-Carlo simulations.

5.2 Energy Detector Output

For an energy detector based coarse detector the output,Y , as derived in [54], is chi-square

distributed when there is no signal present (H0) and non-central chi-square distributed

when a signal is present (H1) or,

Y ∼











χ2
Ncoarse

H0

χ2
Ncoarse

(γ) H1

, (5.1)

whereNcoarse is the number of degrees of freedom (equal to the number of samples used

by the coarse detector) andγ is the non-centrality parameter, given by the product of the

SNR andNcoarse.

The distribution of the output, when no signal is present, depends only on the number of

samples used. In Fig. 5.2, the output PDF is shown for variousvalues ofNcoarse.

When a signal is present the output depends on both the number of samples and theSNR.

In Fig. 5.3, the output PDFs are shown for various values ofSNR.

The distribution of the output of the energy detector,Y , depends on the distribution of the

SNR. If the SNR distribution is known, then the new distribution,fY,SNR, can be found

by averaging over theSNR via:

fY,SNR(x) =

∫ ∞

0

fSNR(γ)χ2
Ncoarse

(γ, x)dγ, (5.2)

whereχ2
Ncoarse

(γ, x) is the value of the non-central chi squared distribution atx, for a

non-centrality parameterγ andNcoarse degrees of freedom andfSNR(γ) is the value of
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Figure 5.2: PDF of Energy Detector Output When No Signal is Present

theSNR PDF for anSNR of γ.

Since, in practice, most distributions will be derived fromobservations, as in [106], ex-

pressingfY,SNR in terms of a sampledSNR distribution is usually more appropriate. In

addition, since the dB scale contains more information for auniformly sampledSNR

distribution, the range is changed to dB, thus (5.2) becomes,

fY,SNR[x] = ∆
∞

∑

γ=−∞

fSNR[γ]χ2
Ncoarse

[γ, x], (5.3)

where∆ is the step size of the summation and the range of the summation reflects the

appropriate bounds. In the example used in this work, theSNR distribution is in the

range -21dB to 10dB and so the summation is performed over this range. Note that the

operation is not, strictly speaking, a summation; the step size is not usually equal to unity.

The summation notation is used for expository simplicity.

TheSNR distribution derived in the previous chapter is used for demonstrative purposes
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Figure 5.3: PDFs of Energy Detector Output When a Signal is Present

throughout this chapter. For this example distribution, the PDF of the output of the energy

detector is illustrated in Fig. 5.4.

This distribution,fY,SNR[x], is then the distribution of the output of the energy detector

when a signal is present, without the detector having any knowledge of theSNR other

than its distribution. The small peak at roughly 11000 is thepeak seen in the sampleSNR

distribution at approximately 20dB

5.3 Energy Detector Outputs under Noise Uncertainty

Thus far in the analysis it has been assumed that the system has accurate knowledge of the

noise variance,σ2
n. This variance is used to scale the input of the energy detection to give

a unit variance input when no signal is present. However, if the estimate of the variance,

σ̂2
n, is incorrect, then the energy detector input will be scaledincorrectly.

ρ is defined as the noise-uncertainty, or the relative inaccuracy of the estimate, and is
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Figure 5.4: PDFs of Energy Detector Output When a Signal is Present WithSNR Distri-
bution of Fig. 4.4

given by [42]:

ρ =
σ̂2

n

σ2
n

. (5.4)

5.3.1 Noise-Uncertainty for Unoccupied Channels

For a noise-only channel, the distribution of the input to the energy detector, after normal-

isation, has varianceρ:

v(n) ∼ N (0, ρ). (5.5)

The energy detector output:
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Yn =
Ncoarse
∑

n=1

v2(n), (5.6)

is then distributed according to:

Yn,ρ ∼
Ncoarse
∑

n=1

N (0, ρ)2, (5.7)

which can be written as:

Yn,ρ ∼ ρ
Ncoarse
∑

n=1

N (0, 1)2. (5.8)

The sum of the squares ofNcoarse zero mean, unit variance, Normally distributed random

variables isχ2 distributed withNcoarse degrees of freedom.

The PDF of a noise-only energy detector output with uncertainty ρ, fYn,ρ
[x], is, therefore,

fYn,ρ
∼ ρχ2

Ncoarse
, (5.9)

fYn,ρ
[x] =

1

ρ
χ2

Ncoarse
[
x

ρ
]. (5.10)

To generate the PDF of the energy detector output,fN , for a distribution ofρ, denoted

fρ, these PDFs must be averaged overfρ. In this work a discrete distribution forfρ is

considered. In Fig. 5.5, the output PDF is shown for various values ofρ.

Consequently,fN becomes,

fN [x] = ∆

ρmax
∑

ρ=ρmin

fρ[ρ]fYn,ρ
[x], (5.11)

where,ρmax andρmin are the maximum and minimum values ofρ, respectively, and∆ is
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Figure 5.5: PDF of Energy Detector Output With Noise Uncertainty and No Signal
Present

the step-size of the summation.

The distribution offN [x] in (5.11) can then be used for the unoccupied case,H(0), in

(5.1) .

5.3.2 Noise-Uncertainty for Occupied Channels

For an occupied channel the input to the energy detector,x(n), after normalisation, is the

sum of two zero mean Gaussian variables, namely a noise variable with varianceρ and a

signal of varianceγ
ρ
. Therefore,x(n) is the sum of two Gaussian variables and has the

distribution:

xs ∼ N (0, ρ +
γ

ρ
). (5.12)
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Sinceρ ≈ 1 [42] and, forSNRs where noise uncertainty has the greatest effect,γ ≪ 1,

then (5.12) can be well approximated by:

xs ∼ N (0, ρ + γ). (5.13)

This assumption was compared with the exact distribution for x(n). Forρ = ±0.1dB and

γ = −10dB the percentage difference is approximately 1.04%. Thus, the approximation

in (5.13) is deemed to be sufficiently accurate here.

When a signal is present the energy detector output is well approximated by:

Ys,ρ,γ ∼
Ncoarse
∑

n=1

| N (0, ρ + SNR) |2 . (5.14)

where the the absolute value operator is required for complex valued signals.

Therefore, the PDF of the energy detector output for a signal-and-noise channel with

uncertaintyρ andSNR of γ, fYs,ρ,γ
[x], is,

fYs,ρ,γ
[x] =

1

ρ + γ
χ2

Ncoarse
(

x

ρ + γ
). (5.15)

In Fig. 5.6, the output PDF is shown for various values ofρ.

To generate the PDF of the energy detector output,fY,SNR, for a distribution ofρ, fρ, and

a distribution ofSNR, fγ, the PDFs could be averaged separately:

fY,SNR[x] = stepsizeγ

γmax
∑

γ=γmin

fγ [γ]stepsizeρ

ρmax
∑

ρ=ρmin

fρ[ρ]fYs,ρ,γ
[x], (5.16)

wherestepsizeγ andstepsizeρ are the step-size of theγ andρ summations andγmax and

γmin are the maximum and minimumSNR values, respectively.

This method, however, is computationally inefficient, requiring the calculation of the val-
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Figure 5.6: PDF of Energy Detector Output With Noise Uncertainty and a Signal Present

ues ofχ2
Ncoarse

[ρ, γ] for all values over both distributions.

Alternatively, if the PDF ofρ + γ, denoted,fρ+γ, is generated first, then the computa-

tion time can be significantly reduced. Firstly, theSNR and the noise uncertainty are

converted from their dB representation to their linear form, as it is in this scale that they

are added. This can be done using the cumulative distribution function and changing the

scale [111].

Then the PDF of the sum of these two variables is the convolution of their respective

PDFs [112], i.e.:

fρ+γ[x] =
N

∑

n=1

fγ[x]fρ[n − x]. (5.17)

This relatively quick convolution reduces the number of times that the values of theχ2

PDF are calculated. For example, for a 100 pointfγ andfρ, 10000χ2 PDF values are

calculated without this convolution. With (5.17), however, only 200 PDF values are cal-
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culated, though this depends on the required∆ for the composite distribution. This is a

50× reduction in a complicated operation.

Consequently, (5.16) becomes:

fY,SNR[x] = stepsizeρ+γ

(ρ+γ)max
∑

ρ+γ=(ρ+γ)min

fρ+γ[ρ + γ]fYs,ρ+γ
[x]. (5.18)

Equation (5.18) can then be used instead of (5.3) for all calculations when noise uncer-

tainty is present.

5.4 Sorting Energy Detector Outputs

When attempting to predict the result of sorting the energy detector outputs, order statis-

tics can be used. IfN independent and identically distributed (i.i.d.) random variables,

(x1, x2, · · · , xN), each having the same PDF,f(x), and CDF,F (x), are sorted with re-

spect to their magnitudes, order statistics allow the generation of the PDF of thenth lowest

valued variable, known as thenth order statistic,xn:N .

The PDF of thenth order statistic of N variables,fn:N(x), is given by [110]:

fn:N(x) =
N !

(N − n)!(n − 1)!
F (x)n−1(1 − F (x))N−nf(x). (5.19)

In the noise-only case, letNn denote the number of channels with no signal present. Thus,

the PDF of thenth noise-only variable,xN,n:Nn
, namelyfN,n:Nn

(x), is given by:

fN,n:Nn
(x) =

Nn!

(Nn − n)!(n − 1)!
×

FN(x)n−1(1 − FN(x))Nn−nfN(x), (5.20)
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whereFN(x) is the noise-only CDF atx andfN(x) is the noise-only PDF atx.

In the signal-and-noise case, we haveNsig channels with signals present. Thus, the PDF

of thenth signal-and-noise variablexS,n:Nsig
, denotedfS,n:Nsig

(x), is given by:

fS,n:Nsig
(x) =

Nsig!

(Nsig − n)!(n − 1)!
(FS(x))n−1 ×

(1 − FS(x))Nsig−nfY,SNR(x), (5.21)

whereFS(x) is the CDF of the energy detector output atx andfN(x) is the PDF of the

energy detector output atx.

In Fig. 5.7 four signal-and-noise i.i.d. outputs, withNcoarse = 1000 and using the example

SNR PDF from 4.4, are sorted by (5.21) and the result is shown along with the original

PDF of the outputs.

For non-identically distributed variables, an alternative method for generating the sorted

distributions is available [113]. However, non i.i.d. variables are not considered here as

this method requires the computation of the permanent of anNa×Na matrix for each point

in the distribution, whereNa is the number of energy detector outputs to be sorted and

is equal toNn andNsig for the noise-only and signal-and-noise cases, respectively. The

computation required for this isO(2NaNa) [114]. For example, ifNa = 9, then each point

on the PDF would require 4.6k calculations, significantly increasing the time required for

the simulation.

It will be shown in Section 5.9.1 that the error introduced into the final result due to the

assumption of i.i.d. variables is small and the predicted optimum number of samples for

the coarse detectionNcoarse does not change significantly.
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Figure 5.7: PDFs of Energy Detector Output When a Signal is Present and the Output is
Sorted w.r.t. Magnitude

5.4.1 Comparing PDFs

Once the PDFs for the noise-only and signal-and-noise caseshave been generated, they

must be compared to find the sorting efficiency of the system.

The probability that a variabley1, with PDFfy1, will be smaller than a variabley2, with

PDFfy2, assuming variables are independent, can be calculated as follows: The fraction

of the signal PDFfy1 that is smaller than a value,k, is the probability thaty1 will be

smaller thank.

Thus:

Py1<k =

∫ k

−∞

fy1(x)dx. (5.22)

For a sampled distribution wherefy1[x] andfy2[x] = 0 for x ≤ 0:
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Py1<k = ∆
k

∑

j=1

fy1[j × stepsize], (5.23)

where∆ is the step size of the summation.

Performing a weighted sum, based on the value of the second PDF, y2, at these points,

gives:

Py1<y2 = ∆
Ncoarse
∑

k=1

Py1<kfy2[k × stepsize], (5.24)

or

Py1<y2 = ∆2

Ncoarse
∑

k=1

k
∑

j=1

fy1[j]fy2[k × stepsize]. (5.25)

In Fig. 5.8 the lowest of four noise-only outputs with the lowest of four signal-and-noise

outputs, where the sampleSNR distribution is used andNcoarse = 1000, are shown.

Using (5.25) results in the probability of the lowest of fournoise-only outputs being lower

than the lowest of four signal-and-noise outputs being 98.1%. Comparing this to Monte-

Carlo simulations run one million times, which produced a probability of 98.6% for the

same event, shows that the method is accurate. If the∆ was reduced then this error would,

on average, decrease further.

This method can be repeated to compare each of the signal-and-noise channels to the

noise-only channels and generate a matrix,P, whereP(i,j) is the probability that theith

signal-and-noise output is greater than thejth noise-only output, with all of the corre-

sponding probabilities. This matrix will be used with Markov Chains to model the system

with a view to calculating the system response.
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Figure 5.8: Comparison PDFs of Lowest of Four Sorted Energy Detector Outputs
for Signal-And-Noise Case for SampleSNR Distribution, and Noise-Only Case for
Ncoarse = 1000

5.5 Time varying occupancies

Using the equations for timing in Section 3.7, the average probability of change in occu-

pancy can be generated. As can be seen in Fig. 5.9 for a fine detector with approximately

200k samples, and a sampling rate of 1MHz, there is a low probability of interference

(≤ 10%) for TON = TOFF ≥ 2 seconds.

If this interference probability is sufficiently low that the Fine Detector’s performance

does not become significantly impaired then no changes are required to the fine detector.

If this is not the case, then a weighting scheme, similar to that proposed in [43], could be

used to increase performance.

Of greater impact on the CSFD is the fact that, as the number of detection attempts in-
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Figure 5.9: Probability of Change fortsense =0.2s and VaryingTON , TOFF

creases, the accuracy of the sorting tends to decrease, in a channel with time varying

occupancies. Here it is assumed that the probability of the channel switching occupancy

twice during a sensing period is very low, i.e. that theTON + TOFF >> tsense. If the

nth detection attempt has a probability of scanning an occupiedchannel ofPocc (which is

generated from (5.25)) then, with a time varying channel, the new probability is:

Pocc,new = Pocc(1 − Pchange,ON [n − 1]) + (1 − Pocc)Pchange,OFF [n − 1], (5.26)

wherePchange,OFF [n − 1] is the probability of change from occupied to unoccupied by

the end of the(n − 1)th detection attempt and usesTON as the mean channel time and

Pchange,OFF [n − 1] is the probability of change from unoccupied to occupied by the end

of the(n− 1)th detection attempt and usesTOFF as the mean off time. Note that only the
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probability of the detector changing before thenth detection attempt is used here, as this

will lead to the decision becoming inaccurate.

In Fig. 5.10 the new occupancy probabilities are shown for the nth detection attempt,

2 ≤ n ≤ 6, for varyingTON andTOFF . The sensing time,tsense, is now0.2 × (n − 1).
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Figure 5.10:Pocc,new for tsense =0.2s,Pocc =0.8 and VaryingTON , TOFF

For TON = TOFF ≥ 10s, there is little change in the occupancy probability, i.e.for n=6

andTON , TOff = 10s, Pocc,new = 0.74. However, theTON andTOFF times will not be

equal when the average occupancy,θ, is not equal to 50%.

The average occupancy,θ, is a function of the average “ON” and “OFF” times and can be

written as

θ =
TON

TON + TOFF

. (5.27)
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If TON + TOFF is set to a specific value, then it is easy to find the appropriate values for

TON andTOFF for a specificθ. In Fig. 5.11 this is shown.
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Figure 5.11:Pocc,new for tsense =0.2s,Pocc =0.2 and VaryingTON + TOFF andθ= 60%

For the third detection attempt at an average occupancy of 60% andTON +TOFF of 5s, the

new occupancy probability equals 0.25 ( the expected value is 0.2 without a time varying

occupancy).

In this system it is unlikely that the detector will require six detections, indeed it will be

shown later that the average number of detection attempts required by coarse fine sensing

is approximately two. Thus, small variations in the probability of occupancy will not

change the model significantly. If the occupancy is time varying with a sufficiently small

TON + TOFF , then the model can account for this by using (5.26).

115



5.6. MARKOV CHAIN MODEL

5.6 Markov Chain Model

A Markov Chain can be used to model the system once the probability matrix, P, has

been generated [98]. In real systems the secondary detectorwill have a finitePfa and

Pmd. Thus, to have an accurate model of the system, it must include these probabilities of

failure.

The sorting performed by the coarse detector does not dependon the secondary detector.

Therefore, the probability matrixP is independent of the secondary detector used.

The Markov model is somewhat complicated, as the system cannot assume that the fine

detector will detect the spectrum opportunity on the first attempt. The system must com-

pare all the noise-only energy detector outputs to the signal-and-noise energy detector

outputs.

The Markov model has a significant number of possible paths. In Fig. 5.12 the transition

probabilities are shown for a single transient state,Sm,n.

StateSm,n is the decision between themth signal-and-noise energy detector output and

nth noise-only energy detector output. From stateSm,n there are four possible paths.

The system will transition fromSm,n to Sm+1,n with a transition probability ofPT1(m,n).

It will transition fromSm,n to Sm,n+1 with a transition probability ofPT2(m,n).

The system will transition fromSm,n to the missed detection absorbing state with a tran-

sition probability ofPInt(m,n). It will transition fromSm,n to the free channel detected

absorbing state with a transition probability ofPFC(m,n). Equations (5.30)-(5.33) below

specify how these probabilities are calculated.
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Figure 5.12: Markov Chain for CSFD and Naive Models

5.6.1 Naive Detector

For a Naive detector with a non-ideal secondary detector, the probability that the channel

to be scanned in stateSm,n is unoccupied,PN(m,n), is given by:

PN(m,n) =























0 if n > NNoise

1 if m > NSig

Nnoiser

Nchr
otherwise

, (5.28)

whereNnoiser is the number of remaining noise-only channels andNchr is the total number

of channels remaining.

There is no possibility of bothn > NNoise andm > NSig being simultaneously true as
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this would require more detection attempts than channels. Since stateSm,n corresponds to

havingm−1 signal-and-noise channels andn−1 noise-only channels scanned previously,

(5.28) becomes:

PN(m,n) =























0 if n > NNoise

1 if m > NSig

Nnoise−n+1
Nch−n−m+2

otherwise

. (5.29)

The transition probabilities for the Markov chain are defined, whereP̄md is the average

Pmd over theSNR distribution, as:

• PT1 is the probability of correctly deciding that a signal is present, requiring the

system to continue scanning from stateSm+1,n, given by:

PT1(m,n) = (1 − PN(m,n))(1 − P̄md). (5.30)

• PT2 is the probability of incorrectly deciding that a signal is present, requiring the

system to continue scanning from stateSm,n+1, given by:

PT2(m,n) = PN(m,n)Pfa. (5.31)

• PInt is the probability of incorrectly deciding that no signal ispresent, thus causing

harmful interference to the primary user, given by:

PInt(m,n) = (1 − PN(m,n))P̄md. (5.32)

• PFC is the probability of correctly deciding that no signal is present, thus finding a
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spectrum opportunity, given by:

PFC(m,n) = PN(m,n)(1 − Pfa). (5.33)

Pfa will remain constant at the chosen value but, for the fine detector architectures con-

sidered here,Pmd will depend on the PDF of theSNR.

Equations (5.29)-(5.33) allow the Markov Chain matrices to be populated for the Naive

system, where there is a non-ideal secondary detector. The transitional matrixQ [98] is

a square matrix of ordern(n+1)
2

. ForNch = 10, Q is a55 × 55 matrix. For an absorbing

Markov chain the fundamental matrix,N, is defined as [98]:

N = (I − Q)−1, (5.34)

whereI is an identity matrix of corresponding size.

The average number of steps required to reach an absorbing state, starting from theith

state, is then given bȳNsteps[i]:

N̄steps[i] = Nξ[i], (5.35)

whereξ denotes the row sum of a matrix.

Since each step corresponds to a detection attempt, the average total number of samples

required for the detector,̄NT,Naive, is given by:

N̄T,Naive = N̄steps[i]Nfine, (5.36)

whereNfine is the number of samples required for fine detection.

For an energy detector to guarantee aPfa andPmd of 10% at anSNR of -21dB, it requires
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Table 5.1: The increase in number of detection attempts required for increasing occupancy
for a Naive Detector

θ NT,Naive PDF Method NT,Naive Monte-Carlo Method
0.1 254k 255k
0.2 282k 283k
0.3 317k 319k
0.4 363k 364k
0.5 423k 425k
0.6 507k 509k
0.7 633k 636k
0.8 841k 844k
0.9 1230k 1236k

Nfine = 209k samples.NT,Naive was generated for these values and compared to Monte

Carlo simulations to verify accuracy. The results are shown in Table 5.1.

The results for the Markov Chain analysis match very closely with those found using

Monte-Carlo simulations. Even at 90% occupancy, whereθ denotes the occupancy and is

equal to 0.9 in this case, the relative error is still less than 0.6%.

5.6.2 Coarse-Sorting Fine Detector

For the CSFD detector, using a non-ideal secondary detector,each transient state in the

chain corresponds to the comparison of a signal-and-noise energy detector output PDF to

a noise-only energy detector output PDF. Since the energy detector outputs are sorted,

thePmd for the lowest signal-and-noise will generally not be equalto the averagePmd for

theSNR distribution. Consequently, the effects of the ordering must be accounted for.

TheSNR of the outputs can be thought to be ordered on average, thoughnot in all cases.

It is possible that thenth signal-and-noise energy detector output could have anSNR

that was greater than that of the(n + 1)th signal-and-noise energy detector output. On

120



5.6. MARKOV CHAIN MODEL

average, however, thenth signal-and-noise energy detector output will have a lowerSNR

than successive outputs.

For four signal-and-noise channels with the sampleSNR distribution, the signals with

the lowest energy detector output have aPmd of 0.206%. Using the sorting method, this

is predicted to be 0.232%. Since thePmd is so low this accuracy is deemed sufficient for

detector speed calculations. It will, however, influence the overallPmd calculations and

reduce the accuracy of the calculations.

It is, therefore, deemed acceptable to use order statisticsupon theSNR distribution to

get an estimate of the distribution of thenth signal-and-noise energy detector output, for

the purposes of calculatingPmd.

The sortedSNR PDF,fSNR,n:Nsig
[x], is given by:

fSNR,n:Nsig
[x] =

Nsig!

(Nsig − n)!(n − 1)!
FSNR[x]n−1 ×

(1 − FSNR[x])Nsig−nfSNR[x]. (5.37)

Thus, the averagePmd associated with thenth detection attempt,̄Pmd(n), is:

P̄md(n) = ∆
SNRmax

∑

γ=SNRmin

fSNR,n:Nsig
[γ]Pmd(γ), (5.38)

wherePmd(γ) is the probability of missed detection at anSNR of γ and∆ is the step

size of the summation or the “resolution” of theSNR PDF.

When the comparisons of the PDFs are completed using (5.25), the result is the probability

that thenth noise-only energy detector output PDF will be smaller than themth signal-

and-noise energy detector output PDF, denotedPorig(m,n).
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For stateSm,n, Pa(m,n) is the probability that thenth noise-only coarse detector out-

put will be smaller than themth signal-and-noise coarse detector output,given that the

detector has reached stateSm,n.

Similar to (5.29),Pa(m,n) can be expressed as :

Pa(m,n) =























0 if n > NNoise

1 if m > NSig

Porig(m,n) | Sm,n otherwise

. (5.39)

For stateSm,n, i.e. the comparison of themth signal-and-noise Coarse Detector output

PDF to thenth noise-only energy detector output PDF, the transitional probabilities gen-

erated are:

PT1(m,n) = (1 − Pa(m,n))(1 − Pmd(m)), (5.40)

PT2(m,n) = Pa(m,n)Pfa, (5.41)

PInt(m,n) = (1 − Pa(m,n))Pmd(m), (5.42)

PFC(m,n) = Pa(m,n)(1 − Pfa). (5.43)

From Fig. 5.12 there are two possible paths to stateSm,n. The probability of reaching

stateSm,n is the sum of these two probabilities, i.e.:

P (m,n) = Pp1(m,n) + Pp2(m,n). (5.44)
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The two associated probabilities must be treated separately and the results weighted by

the probabilities of each path respectively (Pp1 andPp2) to give the correct result.

5.6.2.1 Path 1

In stateSm−1,n, the path from stateSm−1,n to stateSm,n, which occurs when the fine

detector correctly declares a signal present, has a transitional probability ofPT1(m−1, n).

The probability of this path being chosen,Pp1(m,n), is the transitional probability of the

previous state to the current state,PT1(m−1, n), multiplied by the probability of reaching

stateSm−1,n, denotedP (m − 1, n), i.e.

Pp1(m,n) = P (m − 1, n)PT1(m − 1, n). (5.45)

In the previous detection attempt the(m − 1)th signal-and-noise channel was selected

for fine scanning with probability1 − Porig(m − 1, n) (event A). The channel was then

correctly declared occupied with probability1 − Pmd(m). The probability that themth

signal-and-noise coarse detector output is smaller than thenth noise-only energy detector

output is1 − Porig(m,n) (event B).

Since event A has already occurred then the probability of event B occurring is1 −

Pa,p1(m,n) where,

Pa,p1(m,n) = 1 − P (B | A) = 1 − P (B ∩ A)

P (A)
. (5.46)

If the mth signal-and-noise energy detector output is smaller than the nth noise-only en-

ergy detector output, then the(m − 1)th signal-and-noise coarse detector output must

also be smaller, as it is smaller than themth signal (due to the ordering). Therefore,

P (B ∩ A) = P (B) andPa,p1(m,n) becomes:
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Pa,p1(m,n) = 1 − P (B)

P (A)
= 1 − 1 − Porig(m,n)

1 − Porig(m − 1, n)
. (5.47)

5.6.2.2 Path 2

In stateSm,n−1, the path from stateSm,n−1 to stateSm,n, which occurs where the fine

detector incorrectly declares a signal present, has a transitional probability ofPT2(m,n−

1). Therefore, similar to (5.45), the probability of path 2 being chosen is given by:

Pp2(m,n) = P (m,n − 1)PT2(m,n − 1). (5.48)

In the previous detection attempt the(n − 1)th noise-only channel was selected for fine

scanning with probabilityPorig(m,n − 1) (event C). The channel was then incorrectly

declared occupied with probabilityPfa.

The probability that themth signal-and-noise coarse detector output is lower than thenth

noise-only energy detector output remains equal to1−Porig(m,n) (event D). Since event

C has already occurred, the probability of event D occurringis 1 − Pa,p2(m,n) where,

Pa,p2(m,n) = 1 − P (D | C) = 1 − P (D ∩ C)

P (C)
. (5.49)

Similar to (5.47), it can be shown that,

Pa,p2(m,n) =
Porig(m,n)

Porig(m,n − 1)
. (5.50)

Thus,Pa becomes:

Pa(m,n) =
Pa,p1(m,n)Pp1(m,n) + Pa,p2(m,n)Pp2(m,n)

P (m,n)
. (5.51)
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Using (5.47) and (5.50),Pa(m,n) is given by

Pa(m,n) = (1 − 1 − Porig(m,n)

1 − Porig(m − 1, n)
)
Pp1(m,n)

P (m,n)
+

(
Porig(m,n)

Porig(m,n − 1)
)
Pp2(m,n)

P (m,n)
. (5.52)

It must be noted that the values forSm,n depend on both previous states,Sm−1,n and

Sm,n−1. The values must be generated consecutively, starting in the initial stateS1,1,

where the first detection attempt is considered, moving on toS1,2 andS2,1 and continuing

until all the transition probabilities for all possible states have been generated. For the

initial stateS1,1 we have:P (1, 1) = 1, i.e. the detector has to start in this state, and

Pa(1, 1) = Porig(1, 1) (since there are no previous decisions to influence this).

It is then possible to populate the matrices for the CSFD Markov Chain and to use (5.34)

and (5.35) to generate the average number of detection attempts required by the CSFD

detector,N̄T,CSFD(Ncoarse, θ), for a number of coarse detector samples,Ncoarse, and oc-

cupancy,θ:-

N̄T,CSFD(Ncoarse, θ) = N̄steps(Ncoarse, θ)Nfine + NcoarseNch. (5.53)

For an energy detector to guarantee aPfa andPmd of 10% at anSNR of -21dB,Nfine

is 209k samples.N̄T,CSFD(Ncoarse, θ) was generated for these values and compared to

Monte Carlo simulations to verify accuracy.Ncoarse was set at 1k samples. The results

are shown in Table 5.2. The results of this comparison for theMarkov chain match very

closely indeed to the Monte-Carlo simulations, (forθ = 0.9 the relative error is still less

than 0.5%).
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Table 5.2: The increase in number of detection attempts required for increasing occupancy
for a CSFD Detector

θ NT,CSFD PDF Method NT,CSFD Monte-Carlo Method
0.1 243k 244k
0.2 247k 248k
0.3 253k 254k
0.4 261k 262k
0.5 272k 273k
0.6 289k 290k
0.7 320k 320k
0.8 387k 388k
0.9 622k 624k

5.7 Expected Speed Gain and Interference Rates

The average number of samples required for detection, underthe conditions specified

here, can be used to find the optimum number of coarse detectorsamples and, thus, the

maximum speed gain possible for a CSFD detector over a Naive detector. For an occu-

pancyθ andNcoarse coarse detector samples, equation (5.53) gives the expected number

of samples required for detection for a CSFD detector.

If θ is known then a search can be performed to find the optimum number of samples.

This can be done graphically by generating the full curve fora range ofNcoarse values

and finding the value ofNcoarse that gives the minimum̄NT,CSFD(Ncoarse, θ).

Another option is to search numerically, evaluatingN̄T,CSFD(Ncoarse, θ) only for spe-

cific values and attempting to find the minimum. For theSNR PDFs considered here,

N̄T,CSFD, is smooth and unimodal w.r.tNcoarse, as can be seen in Fig. 5.14. Thus, it is

expected that a simple search algorithm can be used to find theminimum.

For an unknownθ, the averagēNT,CSFD(Ncoarse, θ) over the occupancy must be found.

If the distribution is not known then it must be assumed to be uniform. If this is not the
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case, then the individual values of̄NT,CSFD(Ncoarse, θ) must be scaled by the PDF ofθ,

denotedfθ.

The averagēNT,CSFD for a coarse fine detector,̄Navg,CSFD, can be expressed as:

N̄avg,CSFD(Ncoarse) =

∫ 1

0

fθ(θ)N̄T,CSFD(Ncoarse, θ)dθ. (5.54)

The average number of samples used for a Naive detector,N̄T,Naive, can be expressed as:

N̄avg,Naive =

∫ 1

0

fθ(θ)N̄T,Naive(θ)dθ. (5.55)

Consequently, the speed gain of the system is expressed as:

Ḡs(Ncoarse) =
N̄avg,Naive

N̄avg,CSFD(Ncoarse)
. (5.56)

The Markov Chain can also be used to generate a matrix of the variance in the number of

steps required to reach a decision,Vsteps. It is given by [98]:

Vsteps = (2N − I)N̄steps − N̄steps,sq, (5.57)

whereN̄steps,sq is the square of each of the entries in theN̄steps matrix or

N̄steps,sq[i, j] = N̄steps[i, j]
2. (5.58)

V ar[Nsteps] is then a vector of length equal to the number of states andV ar[Nsteps][i]

gives the variance of the number of steps required to reach a decision, starting in theith

state. This then allows the variance of the number of samplesrequired for CSFD to be

found.

127



5.8. FADING

It is also possible to find the probability of incorrect operation. The probability matrix,B,

of entering an absorbing state is given by:

B = NR, (5.59)

whereR(i, j) is the matrix term that governs the probability of transition from theith

transient state to thejth absorbing state. The first entry in theB matrix corresponds to the

probability of entering the first absorbing state.

The probability of causing interference is given by the probability of deciding an occupied

channel is unoccupied and using it for transmission. In the Markov chain studied here,

this occurs if the system enters the missed detection absorbing state. Similarly, there is a

probability of missing a free channel. If there is a free channel available, and the radio

declares it occupied, then there is a missed opportunity. This occurs if the system enters

the missed opportunity state. The appropriate probabilitycan be found by selecting the

relevant entry inB.

5.8 Fading

If the system is subjected to fading then theSNR PDF is modified by the appropriate

fading distribution. Here, attention is confined to slow fading. Slow fading occurs when

the channel impulse response changes slowly, such that the SNR is constant within each

detection attempt but may vary between detection attempts.Not that shadow fading is not

considered here.

For example, with Rayleigh fading [55], the PDF ofγ is:
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Figure 5.13: Verification of Model Under Fading for Non-Ideal Secondary Detector for
different levels of occupancy

ffad(γ, γ̄) =
1

γ̄
e−γ/γ̄; γ ≥ 0, (5.60)

whereγ̄ is the averageSNR. Distributions for Ricean and other channels, as well as

methods for finding the probabilities of missed detection for a signal under fading, can be

found in [55].

Replacing the single value ofγ̄ in (5.60) with the user defined SNR distribution,fSNR(γ̄),

and averaging, the new SNR distribution under fading can be calculated by

fSNRfaded(γ) =
∑

γ̄

fSNR(γ̄)ffad(γ, γ̄). (5.61)

This newSNR distribution can then be used with the PDF method to generatethe design

curves without any further changes to the model.

The fine detector will need to be modified to account for the fading also. An energy detec-
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tor subjected to Rayleigh fading with an averageSNR of -21dB requires approximately

4.8M samples to detect a signal with aPmd of 10% and aPfa of 10%. This value can be

found by averaging thePmd over theSNR distribution of a Rayleigh faded signal at an

averageSNR of -21dB [55]. If an energy detector is used, then these probabilities can

be generated withfSNRfaded(γ) replacingfSNR(γ) in equation (5.37). Verification of the

model under Rayleigh fading for a non-ideal secondary detector is shown in Fig. 5.13.

5.9 Results
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Figure 5.14: Speed GainGs vs Number of Samples for VaryingNcoarse for Rayleigh
Fading and Gaussian (No Fading) Noise.

Shown in Fig 5.14 is the predicted speed gain performance under Rayleigh fading. Also

shown is the performance without fading, i.e. for a Gaussianchannel. Note that, although

the gain possible for both conditions is roughly equal, the number of samples for detection
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under Rayleigh fading is significantly larger.

Fig. 5.15 shows thePfa andPmd for Gaussian and Rayleigh channels. ThePmd matches

well, though the sorting effects are not properly calibrated (as discussed in section 5.6.2)

the magnitude of the error is small. ThePfa does not match as well, though, as the average

Pfa is approximately 0.01, the effects of this error are small.
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Figure 5.15:Pfa andPmd Under Gaussian and Rayleigh Channels

The PDF Method was significantly quicker than the Monte-CarloMethod. The PDF

method took approximately four hours to generate the designcurves abovei. The Monte-

Carlo Method required approximately two weeks on the same machine. Therefore, the

PDF is approximately 84 times faster.

5.9.1 Non-I.I.D. SNR Distributions

As stated in section 5.4 the assumption of i.i.d. forSNRs of the signals to be sorted is

made to reduce the complexity of the sorting calculations. Now that the full system model

iSingle machine single processor at 2.53GHz and 3GB of RAM
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is available, the expected speed gain for non-i.i.d. channels is investigated.

Fig 5.16 shows a sampleSNR PDF for ten channels together, where the channels have

differentSNR distributions. The channels haveSNR distributions that are Gaussian in

shape with different means and standard deviations. These are summarised in Table 5.3.

-30 -20 -10 0 10
SNR�dB

0.05

0.10

0.15

0.20

Sample Non-IID SNR PDF

Figure 5.16: OverallSNR PDF for all Ten Channels

The sample distributions were used in three ways to test the i.i.d. assumption. First, the

overall distribution of theSNRs were used with the model developed here to predict

performance assuming that all theSNR distributions were i.i.d.

The second test was a Monte-Carlo simulation where theSNR was generated for each of

the bands and then used individually on the channels. This result shows the average speed

gain for the system where theSNR distributions were independent but not identically

distributed.
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Table 5.3: The exampleSNR distributions used for test

Channel Mean\dB Standard Deviation\dB
1 -9.9 5
2 -11 0.8
3 -8 5
4 -15 1
5 -7 2.6
6 -10 1
7 -6 3
8 -10 1
9 -9.5 1.5
10 -11.1 2

The final test case generated theSNRs for each distribution but the channels were se-

lected randomly from the list, with the possibility that twochannels could have the same

SNR. This result shows the average speed gain for the system where theSNR distribu-

tions for some of the channels were not independent and the channels were not identically

distributed.

The speed gains for all three cases are shown in Fig. 5.17. Themaximum speed gain is

correctly predicted by the PDF method using the i.i.d. assumption to within 0.03% of both

of the other cases (≈ 1.74×). The maximum is located for the same number of coarse

samples for the i.i.d. assumption and for the case where the channels are independent

but with non-identical distributions (Ncoarse = 2.1k samples) but 100 samples higher for

the case where the channels can be dependent also (Ncoarse = 2.2k samples). This result

shows that the i.i.d. assumption is valid and that the improvement of CSFD’s performance

over a Naive detector does not change dramatically.

There is a possibility for further improvement upon the CSFD.After the first few detec-

tion attempts it is very unlikely that there are any free channels remaining. If the CSFD
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truncates its search then, at high occupancies, the performance can be improved. This

is investigated further in Chapter 7, where a hybrid detectoruses a similar principle to

increase performance.

5.10 Conclusions

This work has presented a method enabling the modelling of performance for coarse fine

spectrum sensing. By the use of Markov chains and order statistics, accurate estimation

of system performance is possible. This method is significantly faster (approximately 100

times) than Monte-Carlo simulations.

The mismatch in thePfa does not change the overall speed gain significantly. In addition,
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the system has its performance at -21dB guaranteed by the finedetector alone.

The use of aSNR distribution is a more accurate method of estimating systemperfor-

mance in a real environment. The method shown here allows theeasy inclusion of user

definedSNR distributions. Provided the PDF of the distribution is available then this

approach can be used to analyse it. The Monte-Carlo method would require the ability to

generate a variable with this distribution.

The channels have been approximated as i.i.d. here to reducecomputational complexity.

It was shown that this approximation does not significantly impact on the accuracy of the

model presented here, with less than 0.03% of a difference inthe predicted maximum

speed gain.

This work also assumes a slowly varying channel, where the occupancies are not varying

during the detection attempt. If the occupancies are varying with time, then the Markov

model will have to be modified to account for this. As DTV channels are considered

in this work it is deemed reasonable make the assumption of fixed occupancies during

detection.

Using this work design curves can be generated quickly, allowing the system to be opti-

mised. These curves allow the designer to pick the value forNcoarse that gives the best

performance under the expected signal conditions.

The value forN̄avg,CSFD(Ncoarse) does not change significantly for small changes in

Ncoarse. Therefore, it might be possible to select a value forNcoarse that is appropriate

for a wide range of distributions. This is investigated further in Chapter 7.

The truncation of a search when the system has a high degree ofconfidence that a channel

is occupied is considered in the next chapter. The CDFD is a detector that, instead of

sorting the channels, makes a decision on whether the channel is occupied or whether a

more accurate scan should be performed. This also allows multiple coarse stages to be
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used, as will now be discussed.
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6
Coarse Deciding Fine Detector

6.1 Introduction

6.1.1 Multi-Resolution Architecture

As stated in the previous chapter, CF spectrum sensing uses a quick scan to generate

information about a band and the energy levels in that band that can be used to optimise

the fine scan. A coarse scan can provide information about thespectrum that can reduce
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the usage of the fine detector and, thus, the total detection time. The previous chapter

presented a method enabling the optimum number of samples tobe found for a single

coarse scan, for a user-specifiedSNR distribution. However, if a more accurate coarse

scan was used between the coarse and fine ones, could it reducethe total detection time

even further? Indeed, is there an optimum number of scans to be used?

Obviously, repeatedly sorting the channels would result inno advantage to using multiple

detection attempts, or multiple regions. The detector mustbe able to remove some of the

candidate channels from consideration at each detection attempt for multiple regions to

be of advantage. To be able to reliably detect occupied channels at a lowSNR means

that reliably deciding a channel is unoccupied, when using asmall number of samples,

is difficult. However, reliably deciding a channel is occupied with a small number of

samples is possible if theSNR is sufficiently high.

The detector operates as follows: firstly, after each detection attempt it decides if there is a

signal present or not. If the detector decides that there is asignal present then it can declare

the channel occupied. If the detector decides that there is no detectable signal present,

then the next, finer, detection attempt is used. A channel is only declared unoccupied

after the final detection attempt has failed to detect a signal. This final detection attempt

can then decide that a signal at -21dB is not present, with therequired probabilities of

false alarm and missed detection. This again decouples the safety of the system from its

speed performance.

A sample flow chart for the Multi-Resolution sensor is shown below in Fig. 6.1. The

system hasNR sensing regions, orNR different sensing attempts. For theith region,

or sensing attempt, the system takesNi samples and the energy detector is run on these

samples for an outputYi. Samples are re-used such that theith threshold is set for the total

number of samples taken up to that point, not justNi, and the sum of allYj (1 ≤ j ≤ i)
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outputs is compared to the threshold to determine if the signal is present. If the threshold

is not exceeded, then the system moves through succesive regions until all of the detection

attempts have been completed. The channel is then declared unoccupied if the threshold

has not been exceeded. If, however, the threshold is exceeded at any point then the system

declares the channel occupied and moves to the next channel to be scanned.

Figure 6.1: Flow diagram for CDFD Architecture

Since the detector makes decisions in the coarse detector mode it is termed a CDFD.

This CDFD technique can significantly decrease overall sensing time, as will be shown
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in this chapter. However, the system is complicated, havinga large number of parameters

to choose. ForNR regions there areNR thresholds to be set, one for each region. The

number of samples for each region can also be set. Thus, for aNR region detector, there

are2NR − 1 parameters that can be set; the last detection attempt’s threshold and number

of samples are constrained to meet the overallPfa andPmd rates. Finally, the number of

regions can also be changed, adding a further layer of complexity to the calculations.

In this chapter the CDFD architecture is investigated and thecharacteristic equation de-

rived for the system. A simplified version of the characteristic equation of the detector

is derived, which allows a significant reduction in the computational complexity when

an optimisation is performed, though at the cost of performance. Using observations on

the model, a simplified optimisation is proposed for the fullcharacteristic equation which

reduces implementation cost significantly, whilst being sufficiently accurate and show ex-

cellent performance. The optimisation results are compared to Monte-Carlo simulations

to verify the accuracy of the model. Finally, fading is considered and the impact of fading

on the optimisation process is shown.

6.2 Average Number of Samples Required for Detection

To optimise the system (i.e. minimise its sensing time), initially a closed form expression

for the average number of samples required by the system mustbe developed. There are

two possible conditions for the channel, namely occupied orunoccupied. Each condition

is now considered separately.
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6.2.1 Unoccupied Channel

For an unoccupied channel the average number of samples required for detection is a

function of the false alarm rate and number of samples per detection attempt. Thenth

detection attempt(n = 1, . . . , NR − 1) has a probability of false alarm ofPfa[n], for

Ns[n] extra samples (relative to the(n − 1)th attempt), whereNR is the total number of

regions.

If this detection attempt is reached thenNs[n + 1] samples will be used. The average

number of samples contributed by this attempt is, therefore, Ns[n] times the probability

of a false alarm occurring during the(n−1)th detection attempt. This latter probability is

the product of1−Pfa[i] for the previousn−1 attempts. The average number of additional

samples contributed by thenth detection attempt,Nunocc[n], is therefore:

Nunocc[n] = Ns[n]
n−1
∏

i=1

(1 − Pfa[i]). (6.1)

whereNs[n] is the number of extra samples used by thenth detection attempt, relative

to the(n − 1)th attempt, andPfa[i] is the probability of false alarm for theith detection

attempt (which can be found using equation 3.15).

The total average number of samples required when analysingan unoccupied channel,

Nunocc, is the sum of the contribution from each of theNR regions:

Nunocc =

NR
∑

n=1

Nunocc[n] (6.2)

and, using (6.1), this becomes:

Nunocc =

NR
∑

n=1

Ns[n]
n−1
∏

i=1

(1 − Pfa[i]). (6.3)
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This is then the average number of samples required for detection when the channel is

unoccupied.

6.2.2 Occupied Channel

When a signal is present with anSNR≥ −21dB the detector is attempting to declare the

channel occupied. Each subsequent detection attempt is more likely than the previous one

to detect a lowerSNR value. Thus, it can be imagined that the PDF is being partitioned

on a per-detection attempt basis. This is shown in Fig. 6.2 where the sections of theSNR

distribution that each of the detectors detects signals forare shown.

-20 -10 10 20
SNR�dB

0.01

0.02

0.03
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P
SNR PDF

Region 3

Region 2
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Figure 6.2: Contributions of Each Region for CDFD Spectrum Sensing

The results shown are for a three region detector with the sample distribution shown in

Fig. 4.4. The detector values have not been optimised, as this is for illustrative purposes
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only. The number of samples used for the first to last detectors, respectively, are 5000,

45000 and 355000 samples. Each detector has a probability offalse alarm of 0.02.

The first detection attempt uses the fewest samples, but covers the majority of the distri-

bution. This is to be expected as signals with anSNR greater than -10dB can be reliably

detected by an energy detector with 5000 samples. In practice, the last detection attempt

does not detect a significant percentage of the signals, but it is required to guarantee that

signals at anSNR of -21dB are detected with the requiredPmd.

The average total number of samples required for detection for an occupied channel,Nocc,

is given by the sum of the average number of samples required for each region.

Hence:

Nocc =

NR
∑

n=1

Nocc[n], (6.4)

whereNR is the total number of regions used andNocc[n] is the average number of sam-

ples for thenth region.

Each individual application of the detector analyses a section of theSNR PDF. The

contribution of thenth region,Nocc[n], is given by:

Nocc[n] = Ns[n]Pdr[n], (6.5)

whereNs(n) is the number of extra samples for thenth region andPdr[n] is the probability

of the signal being detected during the analysis of thenth region (which can be found

using equation 3.13).

A signal with anSNR of γ will only be analysed in thenth region if a missed detection

occurs for all of the preceding detection attempts. The probability of this occurring i.e.

the probability of reaching attemptn, Pdr(n, γ), is the product of the missed detection
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probabilities for all the preceding detection attempts. This is given by:

Pdr(n, γ) =
n−1
∏

i=1

Pmd(i, γ), (6.6)

wherePmd(i, γ) is the probability of missed detection for theith detection attempt with

anSNR of γ.

Weighting equation (6.6) by the value of theSNR PDF atγ, fSNR(γ), and integrating

over the range ofSNR values gives the average probability of detecting at thenth attempt,

Pdr[n], or:

Pdr[n] =

∫ ∞

0

fSNR(γ)
n−1
∏

i=1

Pmd,i(γ) dγ, (6.7)

wherefSNR is the user definedSNR PDF whose method of generation is described in

section 4.3.3.

Using (6.5) and (6.7), (6.4) becomes,

Nocc =

NR
∑

n=1

Ns[n]

∫ ∞

0

fSNR(γ)
n−1
∏

i=1

Pmd,i(γ) dγ, (6.8)

whereNs[n] is the number of extra samples for thenth region,fSNR is the user defined

SNR PDF andPmd,i(γ) is the probability of missed detection for theith region at an

SNR of γ. However, since it is more appropriate to describe theSNR in the dB scale,

the limits of integration change to:

Nocc =

NR
∑

n=1

Ns(n)

∫ ∞

−∞

fSNRdB
(γ)

n−1
∏

i=1

Pmd,i,dB(γ) dγ. (6.9)

wherePmd,i,dB(γ) is Pmd,i(γ) for the corresponding dB value ofSNR.
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6.2.3 Total Average Number of Samples Required

For an occupancyθ, where0 ≤ θ ≤ 1, the average total number of samples required is:

NT,CDFD = θNocc + (1 − θ)Nunocc. (6.10)

Using equations (6.3) and equations (6.8), (6.10) becomes:

NT,CDFD(θ) = θ

NR
∑

n=1

Ns[n]

∫ ∞

−∞

fSNRdB
(γ)

n−1
∏

i=1

Pmd,i,dB(γ) dγ

+ (1 − θ)

NR−1
∑

n=1

Ns[n]
n−1
∏

i=1

(1 − Pfa[i]) (6.11)

or, for a sampledSNR PDF, in this case satisfying−21dB ≤ γ ≤ 10dB, with a step size

of ∆:

NT,CDFD(θ) = θ

NR
∑

n=1

Ns[n]∆
10

∑

γ=−21

fSNRdB
[γ]

n−1
∏

i=1

Pmd,i[γ]

+ (1 − θ)

NR−1
∑

n=1

Ns[n]
n−1
∏

i=1

(1 − Pfa[i]). (6.12)

As in equation (5.3), theSNR summation is not strictly a summation, as the step size is

not unity. To find the minimum number of samples required for this system would require

an optimisation overNR and all the different values ofNs[n] andPfa[n] . Since all of the

dimensions are interdependent, solving for a closed form solution is deemed out of scope

here.

Added to this difficulty is the fact thatfSNRdB
is user defined and cannot be assumed to be

145



6.3. NON-IDEALITIES

of any particular type. Thus, either numerical methods are required to find the optimum

multi-resolution detector parameters or significant simplification is required.

The accuracy of equation (6.12) forNR = 2 is shown in Fig. 6.3, where the accuracy of

the theory is compared to Monte-Carlo simulations with 50,000 runs. The simulations,

which were performed on the same machine as that used to generate the theoretical curves,

took approximately 4,000 times longer to generate the data required. The time taken was

approximately forty hours for the simulations vs thirty seconds for the analytical model.

In addition, the Monte-Carlo curve is not smooth, indicatingthat more runs would be

required to reduce the variability of the relative error. The mean relative error was less

than 0.005 (0.5%) and the maximum relative error was 0.015 (1.5%). The plot seems

random in its distribution of peaks. This further indicatesthat more samples were required

for the simulations and that the analytical equations predict performance accurately.

This analysis was only done forNR = 2. Visualising similar data for higher dimensions

would be difficult and adding another dimension would increase the run time of the simu-

lations beyond that which is practical here. IfNR = 3 was used then, with another thirty

points in that dimension, the simulations would take approximately ten weeks, whilst, for

NR = 4, years would be required, with available hardware. Instead, for higher order sys-

tems, the predicted optimum point is tested, i.e. Monte-Carlo simulations are performed

for the parameters chosen by the optimisation and the results compared to the expected

values from the theory.

6.3 Non-Idealities

Here, two non-idealities are investigated. The effects of sample reuse and time-varying

signals on the detector are modelled. It is shown that both have minimal impact and can
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Figure 6.3: Relative Error in Results Compared to Simulations

be safely discounted under normal operating conditions.

6.3.1 Sample Reuse

Sample reuse changes the distribution of the output of the energy detector but allows

even greater speed gains to be realised. Even if the samples cannot be satisfactorily used

to determine the occupancy of the band, they contain information that may be usefully

exploited.

6.3.1.1 No Signal Present

When there is no signal present, an energy detector outputY has a chi-square distribution

with Ns degrees of freedom, whereNs is the number of samples used, i.e.:
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Y ∼ χ2
Ns

. (6.13)

If the samples from previous detection attempts are used then the total value of the energy

detector output at thenth detection attempt,YT,n, is:

YT,n = Yn + YT,n−1, (6.14)

whereYn is the contribution due to the extra samples for thenth region andYT,n−1 is the

total result for the previous region.

Yn is a chi-square variable withNs[n] degrees of freedom or:

Yn ∼ χ2
Ns[n], (6.15)

where, as before,Ns[n] denotes the number of samples used.

The contribution due to the previously acquired samples,YT,n−1, is not a chi squared

variable due to the fact that it might not be used if it exceedsthe threshold for the(n−1)th

region and a signal is declared present.

Instead, it is a censored chi-square variable (i.e. a chi-square variable where any result

over the(n − 1)th threshold,λ[n − 1], is not included) or:

YT,n−1 ∼ χ2
NT,n[n−1]|λ[n−1]

0 , (6.16)

whereNT,n[n − 1] is the total number of samples for the(n − 1)th region, or the sum of

all the values ofNs[i] for 0 ≤ i ≤ n − 1 andZ|ba denotes that the distribution is censored

for outputsz ≤ a andz ≥ b, where z is a random variable governed by the pdf Z.

As the ratio ofNT [n − 1] to Ns[n] increases, the distortion introduced by the censored
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distribution increases. Thus, for lowerNR, the effect is lessened. AsPfa decreases,λ

increases and, thus, the distortion introduced by the censored distribution also decreases,

as less of the distribution is removed by the censoring.

Shown in Fig. 6.4 is the comparison between the expected ‘uncorrected’Pfa and the

actualPfa when the censored distribution is included. All the probabilities of false alarm

for the regions are set to the same valuePfa,set.
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Figure 6.4: Change inPfa that Results from Sample Reuse

It can be seen that forNR = 2 the expected value matches the actual value very closely

and there is little distortion. ForNR = 10 at a reasonablePfa i.e. the total false alarm rate

Pfa ≈ 0.16, the distortion is lessened to an acceptable level (2.6%), at higher levels the

distortion grows significantly and the censoring would haveto be included in the model.

As the IEEE 802.22 standard [3] requires a total false alarm rate of≤ 10%, the overall

distortion will be even less for an implementation. It is, therefore, deemed acceptable

here to reuse samples without having to model the change inPfa.
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6.3.1.2 Signal Present

Similarly, it is possible to show that, when a signal is present, sample re-use does not

require modelling forNR < 10. The analysis is complicated by theSNR distribution

but, due to the large value ofβ, anySNR for which there is a non-negligible value ofPd

(thus censoring the contribution to the second detector) for the first detector implies there

is also a negligible value ofPmd for the second detector.

Since the system detection probabilities are defined for a signal with anSNR of -21dB,

the change inPmd, due to the extra attempts, will be negligible for smallNR (NR ≤ 10)

and will always reducePmd. For NR = 10, the overallPmd is still approximately 8%

when set to 10%, though this will change with differing values forNs[n].

This analysis was done for equalPfa. As will be shown later in Section 6.4.3, the optimum

solution for thePfa values is heavily weighted towards the last detection attempt. The

other values forPfa will be significantly lower. This further reduces the effectof sample

re-use as there will be less of a censoring action.

6.3.2 Timing Issues

In section 3.7, and in some of the work studied in Chapter 2 [43,45], the performance

degradation caused by time varying occupancies is considered. Using equation (3.40),

the probability of change was found for sensing times,tsense of 0.1s, 0.15s and 0.2s. This

corresponds to 100k, 150k and 200k samples, respectively, at a sample rate of 1MSps.

The average of the “ON” and “OFF” times,TON/OFF , is varied and the probability of

change was found. The result is shown below in Fig. 6.5.

For channels that vary less often than every ten seconds there is a small value ofPchange of

the order of≈ 1.5% for TON/OFF =10s andtsense =0.15s. This will not affect performance
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Figure 6.5: Change inPchange with TON/OFF for Varying tsense

significantly. However, for very quickly changing channels(≤ 1s) the value ofPchange ≈

14% for TON/OFF = 1s andtsense =0.15s. If the detector is required to run in such rapidly

varying channels, further work is required to ensure acceptable performance, though this

is beyond the scope of this work.

If the weighted sum proposed in [43] were to be used with this detector architecture it

is possible that the impact of changing occupancies in the channel would be reduced

even further, though this was not investigated here. However, it is worth noting that

the utility of such a quickly changing channel is unlikely tobe high, in general. To

reduce the probability of negative impact, the CR would have to scan the channel every

second to regenerate the occupancy estimate. This regularity would, in practice, cause

substantial power consumption. It is, therefore, considered reasonable that the CR would

avoid channels with such rapidly changing occupancies and the detector studied here is
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still important.

6.4 Optimisation Options

There are three options for optimising the system based on (6.11).

1. All false alarm rates and sample numbers are variable. Each region has two param-

eters that are optimised, except for the final region which has only one parameter,

namely the false alarm rate.

2. All sample numbers are variable and all false alarm rates are equal. ThePfa for

each region is also set to be equal and only the number of samples for each region

is varied.

3. All sample numbers are variable and the last region’s false alarm rate is variable.

All other false alarm rates are set equal.

Note that, for all three methods, the system must satisfy thePfa andPmd criteria at the

SNR specified, i.e.Pfa ≤ 0.1 andPmd ≤ 0.1 at anSNR of -21dB. The final region

is used to guarantee the missed detection probability; thus, the final region is constrained

and only one of the parameters, namelyPfa or Ns, can be varied freely.

Of critical importance when using the CDFD is ensuring that the overallPfa andPmd

specifications are not exceeded. Compared to a single detection attempt with the samePfa

andPmd as the last detection region, multiple detection attempts will reduce the overall

Pmd but increase thePfa.

To guarantee an overallPfa satisfyingPfa ≤ Pfareq, for examplePfareq = 0.1, underNR

detection attempts, the system requires setting the individual values forPfa[n] such that:
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Pfareq = 1 −
NR
∏

n=1

1 − Pfa[n]. (6.17)

This constraint removes a degree of freedom and reduces the total variables to be opti-

mised from2NR (all the thresholds and numbers of samples) to2NR−1 (where, generally,

the number of samples used in the last attempt is set to guarantee performance at -21dB).

6.4.1 All False Alarm Rates and Sample Numbers Variable

In this case no simplifications are made when attempting to optimise, all the parameters

are variable. Equation (6.11) is used without modification and, using numerical optimi-

sation techniques, the optimum parameters can be found for this system such thatNT is

minimised.

6.4.2 Equal Probabilities of False Alarm

If the optimisation is simplified such that all values ofPfa[n] are set to be equal then

(6.17) can be re-arranged to become:

Pfa[n] = 1 − (1 − Pfareq)
1

NR . (6.18)

For a system withNR = 4 andPfareq = 10% the individual values forPfa[n] are set

equal to 0.026 for1 ≤ n ≤ NR.

For a detector with the requirementsPfa ≤ 10% andPmd ≤ 10% at anSNR of -21dB,

if no signal is present then the detector requires an increasing number of samples asNR

increases. This is shown in Fig. 6.6. A single region energy detector requires 209k

samples under the same conditions. Optimisation will not greatly change the number of

153



6.4. OPTIMISATION OPTIONS

samples required when the channel is unoccupied, if the individual values forPfa[n] are

set to be equal.
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Figure 6.6: Increase in the Number of Samples Needed forPfa ≤ 10% andPmd ≤ 10%
at -21dB, Without a Signal Present, for Multiple Regions

When optimising the system it must be noted that this increasewill counteract the speed

gain that extra regions will provide when detecting signals. For NR ≥ 13 there is no

gain possible, as the average number of samples required forthe unoccupied case at 50%

occupancy is greater than the average number of samples required for naive detection.

6.4.2.1 Number of Regions

For an unknown environment, the average number of samples required can be approxi-

mated by the average over all the occupancies.
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NT =

∫ 1

0

NT (θ)dθ. (6.19)

i.e.

NT =

∫ 1

0

Nunocc(1 − θ) + Noccθ. (6.20)

Since the number of samples does not depend on the occupancy,this givesθ = 0.5.

As NR increasesNunocc will increase also, as can be seen in Fig. 6.6.

Other distributions or occupancies may have other optimum values forNR but here this

work is concerned with distributions that are based on a lackof knowledge of the system

(uniform distribution, 50% occupancy) or ones based on realsystems previously investi-

gated [106]. For the distributions used hereNR = 2 is optimum whenθ = 0.5. This is

shown in Fig. 6.7. It can be seen in Fig. 6.7 that, at 75% occupancy, NR =3 gives the

maximum possible speed gain. With this occupancy, however,the difference between the

NR =2 andNR =3 detectors is small.
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Figure 6.7: Average Number of Samples Required vsNR for Varying Occupancies
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Thus, it is reasonable to make the assumption that, for the distribution adopted here,

NR = 2 is the optimum for the case ofPfa being equal over all detection attempts. For

other distributions this is not guaranteed but, for similardistributions, it is expected that

NR = 2 provides either the optimum, or a result sufficiently close to the optimum for

practical purposes. This method is concerned with reducingthe optimisation problem,

thusNR = 2 is more attractive as it reduces the number of parameters being optimised to

one, namely the number of coarse detector samples.

With NR = 2, as derived for the simplified case, where all values forPfa are equal,

equation (6.9) can be greatly simplified and becomes:

Nocc = Nc + (Nf − Nc)

∫ ∞

−∞

fSNRdB
(γ)Pmdc

(γ) dγ, (6.21)

whereNf is the number of samples required to guarantee performance at an SNR of

-21dB,Pmdc
(γ) is the probability of missed detection for the coarse detection attempt and

Nc is the coarse region number of samples that the system is optimising.

Since, for practical applications,fSNRdB
is a sampled distribution, the integral in (6.21)

is replaced with a sum to become:

Nocc = Nc + ∆(Nf − Nc)
10dB
∑

γ=−21dB

fSNRdB
[γ]Pmd[γ], (6.22)

where∆ in the summation depends on the smoothness of thefSNRdB
and, here,∆ =

0.5dB.
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6.4.3 Last Region’s False Alarm Rate Variable

The most important value forPfa is the final value,Pfa[NR]. To reduce the computational

complexity of finding the optimum values for the system, the number of variables being

optimised can be reduced. IfPfa[NR] is optimised, and the rest of thePfa[n], 1 ≤ n ≤

NR − 1, are set equal then, forNR regions, the optimisation requires optimising overNR

variables instead of over2NR − 1 variables.

The individual valuesPfa[n] , 1 ≤ n ≤ NR − 1, are given by:

Pfa[n] = 1 − (1 − Pfareq)
1

NR−1

1 − Pfa[NR]
. (6.23)

In the next section, an optimisation is performed for each ofthe three options and the

methods are compared. It will be shown that, for the test distribution considered here, the

last method, only the last false alarm rate being variable, is the most appropriate.

6.5 Optimisation of CDFD

The simplified equation, (6.12) and the full complexity equation, (6.22), are now opti-

mised. The distributions considered here are the distributions based on the Irish DTV

system, shown in section 4.4, and later, in Chapter 7, some Gaussian distributions with

similar shape but higherSNR and a uniform distribution (representing a complete lack

of prior knowledge of theSNR distribution, where allSNRs are equally likely in the

range -21dB to 0dB) will be considered.

The curves generated for the number of samples are smooth and, in the cases studied here,

there is only one minimum, the global minimum. Therefore, numerical optimisation is

possible and can use simple optimisation schemes such as Pattern Search [115] or Nelder-
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Mead [116]. If the distribution is more complicated and/or multimodal, then the curves

may not have a single minimum and a more sophisticated optimisation scheme may be

needed. In this work, the Pattern Search algorithm is used asit is easily implemented

and relatively efficient at finding the maximum or minimum of anumerically computable

function. The Pattern Search method is discussed further inSection 6.7.1.

Instead of using equation (6.22), the exact equation, equation (6.12) is used for the op-

timisation, where all values ofPfa are set to be equal for equal regions. This allows a

comparison between all the optimisation options over a range of NR values. As would

be expected, the lowest average number of samples occurs forNR = 2 in this case. The

most complicated optimisation allows the independent setting of Pfa for all the regions.

Finally, the system is optimised when only the lastPfa is variable.

Using numerical optimisation methods, the optimum values for the test distribution are

found for a range ofNR values. The minimum number of samples required was found for

each distribution and the results are plotted in Fig. 6.8. Note that the exact and approx-

imated optimisation results overlap untilNR = 5 and the symbols for the approximated

optimisation simulation results are masked by the symbols for the exact optimisation sim-

ulation results.

In addition, Monte-Carlo simulations, with 100,000 runs, were performed to verify the

results of the optimisation for each value ofNR. In most cases, the predicted value of

NT is shown to be within 1% of the Monte-Carlo values. The only cases where the

predicted values do not match the Monte-Carlo simulations well are for largeNR in the

simplified case. This is partly due to the fact that the assumptions about sample reuse,

stated in Section 6.3.1, are not as valid for such large values ofPfa in the earlier detection

attempts.

There is almost no degradation in performance when switching to the less complex op-
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Figure 6.8: Optimised Speed Gain Compared with Monte-Carlo Simulations

timisation where only the lastPfa is variable. The maximum percentage difference was

found to be 0.1%, whenNR = 5. Further exact optimisation beyondNR = 5 was found

to be difficult, even with the in-built MathematicaR© 8.0.1.0 optimisation algorithms, due

to the number of variables and the constraint on totalPfa . The simplified method does

not suffer from this problem, and the optimisation evaluates significantly faster. Since the

accuracy is very good and the reduction in computational complexity is so significant, this

simplified optimisation will be used for the rest of this work.

6.6 CDFD in Fading Channels

An important section of the IEEE 802.22 standard is the requirement for the system to

maintain satisfactory performance even when operating in afading environment. If a

signal is subjected to fading then theSNR, γ, of the signal is distributed according to the

fading distribution. For example, a signal with an averageSNR of γ, when subjected to

Rayleigh fading, has itsSNR γ distribution according to [55]:
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f(γ) =
1

γ
exp(−γ

γ
), γ ≥ 0. (6.24)

Similarly when there are multiple fading paths Nakagami Fading is used [55], and,

f(γ) =
1

Γ(m)
(
m

γ
)mγm−1exp(−mγ

γ
), γ ≥ 0, (6.25)

wherem is the Nakagami parameter, andΓ(m) is the gamma distribution evaluated atm

andm is the measure of the multipath effects.

Applying fading to the originalSNR distribution creates a new distribution. This distri-

bution can then be used in place of the originalSNR distribution to find the optimum

number of samples for the coarse detector. This was covered in detail in section 5.8.

The number of samples required by the fine detector needs to bedetermined for 10%

false alarm and 10% missed detection at an averageSNR, γ, of -21dB; thus, the value

for Nfine will increase relative to the non-faded case.

Under Rayleigh fading andPfa = 0.1 , Nfine ≈ 4.8M samples, whilst, under Nakagami

fading withm = 2 andPfa = 0.1 , Nfine ≈ 0.99M samples. The value ofNfine depends

on the value ofPfa used for the final detection attempt. It is possible to solve for the value

of Nfine numerically each time, or a look-up table of values forPfa can be used.

The approximate optimisation is performed on the DTV distribution under Nakagami and

Rayleigh fading and the results are shown in Fig. 6.9. Also shown are the results of

optimisation for a Gaussian channel. In addition, Monte-Carlo simulations with 100,000

runs were performed to verify the result of the optimisationfor each value ofNR under

the two fading types. In most cases the predicted value ofNT is shown to be within 0.1%

of the Monte-Carlo values.

It is difficult to see the slope of the curves in Fig. 6.9 due to the large difference in the
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Figure 6.9: The change inNT with Optimised Sensing Under Different Fading Types for
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number of samples required under the different fading types. Shown in Fig. 6.10 is the

speed gain, relative to a single region detector withPfa=10% andPmd=10% at aSNR of

-21dB, for the three channels considered here.

As can be seen in Fig. 6.10, the gain for adding extra regions decreases with each region

added. The cost of optimisation increases with every additional region, e.g. with the

pattern search method the number of test points per iteration doubles with every extra

dimension added. For the test distribution used here, the optimum values for the system

are shown in Table 6.1.

For a system in Rayleigh Fading with the same underlying distribution, Table 6.2 is pro-

duced.

This analysis assumes complete knowledge of theSNR distribution. Naturally, in a real

system, there will almost certainly be an error in the estimated distribution relative to the

actual distribution. This will now be investigated.
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Table 6.1: Comparison of Optimum Points for CDFD for Gaussian Channel

Gaussian NR=1 NR=2 NR=3 NR=4 NR=5 NR=6 NR=7

N1 209k 19.6k 7.7k 4.6k 3.28k 2.5k 2.1k
N2 215k 57.6k 29.3k 18.8k 14.3k 10.9k
N3 214.5k 82.9k 50k 38.2k 26.8k
N4 214.2k 97.1k 68.9k 49.1k
N5 214.1k 102.1k 77.1k
N6 214.1k 112.3k
N7 213.9k
Pfa 0.1 0.0947 0.0952 0.0955 0.0956 0.0956 0.0958
NT Theory 209k 133.9k 124.8k 122k 120.5k 119.4k 118.8k
NT Simulation 209k 132k 124k 121.6k 120.6k 120.4k 119.9k
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Table 6.2: Comparison of Optimum Points for CDFD for Rayleigh Channel

Gaussian NR=1 NR=2 NR=3 NR=4 NR=5 NR=6 NR=7

N1 4.79M 396.2k 140.9k 78k 53k 40.1k 32.4k
N2 4.86M 1.2M 569.7k 353k 251.3k 195k
N3 4.84M 1.79M 1.03M 694.4k 519.3k
N4 4.84M 2.16M 1.39M 1M
N5 4.84M 2.38M 1.67M
N6 4.84M 2.54M
N7 4.836M
Pfa 0.1 0.0982 0.0986 0.0987 0.0988 0.0988 0.0988
NT Theory 209k 3.055M 2.87M 2.815M 2.79M 2.77M 2.76M
NT Simulation 209k 3.042M 2.866M 2.82M 2.8M 2.79M 2.77M

6.7 Optimisation Using a Learned Distribution

In a cognitive radio system theSNR distribution must be learned before the optimisation.

This learning was performed in Chapter 4 using KDE. In practice, the optimisation would

only be performed periodically, depending on how often the distribution is updated, and

could be improved upon by a more efficient optimisation, if necessary. Thus, timing is

not of great significance. In addition, rather than using theinbuilt MathematicaR© 8.0.1.0

optimisation algorithms, the pattern search algorithm will be used to find the minimum

for the estimatedSNR distribution. This is because the algorithms in MathematicaR©

8.0.1.0 are heavily optimised for the platform and this workis designed for platform

independence.

6.7.1 Pattern Search

The pattern search algorithm is a relatively simple search scheme for numerical optimi-

sation. It is a heuristic scheme, with initial settings generally being application specific.

A simple implementation of the pattern search algorithm is used here to minimise the
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objective function.

Let xi denote theith dimension of freedom, orith variable of the object function being

minimised. The function is evaluated forxi±∆xi, where∆xi is the step size per iteration,

for xi. The smallest result is then selected and the process repeated. If there are no smaller

results than the current result, the∆xi are halved for allxi. The process is then repeated

until a specified number of reductions in size are performed.This is illustrated in Fig.

6.11, where the flow diagram is shown.
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Figure 6.11: Pattern Search Flow Diagram

In general, the computational complexity is impossible to derive in advance as the number
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of steps required depends on the object function and the initial values. The number of

times the function is calculated per step is twice the numberof parameters that can be

varied. Thus, for the system considered here, seven regionswould require calculating the

value of the objective function fourteen times per step. It is also reasonable to assume that,

as the number of parameters increases, the number of steps required to find the optimum

increases also [117]. Though this assumption cannot be proven here, is has been found to

be true, in practice, for the distributions considered here.

6.8 Noise Uncertainty

This system is susceptible to problems due to noise power uncertainty. There are a number

of possible solutions to the problem of noise uncertainty.

Firstly, the system could use an accurate noise power estimate. If the noise uncertainty

is sufficiently small so as to render its effects negligible (e.g. ρ ≤ 0.001dB) then the

analysis performed here can be used without any alteration.

If the system cannot guarantee a sufficient level of accuracywith the noise power estimate,

then another solution must be found. If there are a large number of free bands then

the system can sacrificePfa to reduce the required noise power estimate accuracy. By

increasingPfa, thePmd decreases and then the overall probability of interferencecan be

kept under the 10% required.

If it is unlikely that there are a number of free channels or that the noise power estimate

cannot be reliably found, then co-operative sensing can be used. Co-operative sensing

reduces the required accuracy that the system needs to detect a signal at -21dB, in addition

the effects of noise uncertainty are reduced. The exact effects of this co-operative mode

have not been investigated and cannot be quantified at this time.
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Finally, if a single sensor is used without any of the above options then the final option is

to use the CSFD with a fine detector that is immune to noise uncertainty such as the CFD.

6.8.1 Performance of Optimised System with Target MISC

An estimate of theSNR distribution is found for a threshold value ofMISC. This en-

sures a relatively accurate estimate. Then, using the pattern search algorithm, the system

is optimised forNR, 2 ≤ NR ≤ 7. The values selected by the optimisation are then

used with the correct underlying distribution to find the actual performance of the system,

under these conditions. This is repeated 1500 times and thenaveraged to find the new

average number of samples required for detection. Finally,the target value ofMISC is

changed and the process repeated. The results of this analysis are shown in Fig. 6.12.
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0.0010

0.0015

0.0020

Mean Error

Mean Error from Optimum Number

of Samples for MISC Target Distribution Optimisation

MISC Target = 0.01

MISC Target = 0.1

MISC Target = 1

Figure 6.12: Accuracy of CDFD Optimisation vs TargetMISC for EstimatedSNR
Distributions
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As can be seen, even a small number of samples can lead to accurate results from the

optimisation. This is partly due to the fact that the output is relatively uniform at the

maximum and is weakly influenced by small differences in the parameters. For a target

MISC of 0.01 and seven regions the mean error is less than 0.1%.

The mean error is small, despite the relatively large targetMISC. As theMISC de-

creases, the mean error decreases. This is clearly seen as the targetMISC decreases

from 0.1 to 0.01. It is less visible as theMISC decreases from 1 to 0.1. This is due to

the setup of theMISC simulations. The smallest number of samples that can be used

is forty, one set of twenty samples to begin and then another set of twenty samples to

compare and generate theMISC. The targetMISCs of 1 and 0.1 do not require, on

average, more than this number and, thus, the results are quite similar. If the minimum

number of samples was decreased then the results for theMISC target of unity would

almost certainly change and the error would increase.

The variance of the error found in the 1500 runs is shown in Fig. 6.13. Similar to the

mean error, the variance of the error decreases with the morestringent target value for the

MISC. Additionally, the difference between the targetMISCs of 1 and 0.1 is small,

though more noticeable in this case. For a targetMISC of 0.01 and seven regions the

mean error is less than 1.18×10−4%.

The relative lack of accuracy required for the optimised parameters leads to an important

question: is optimisation required? Is there a set of valuesfor Pfa and NT that give

performance sufficiently close to the optimum across a wide range of distributions? This

is investigated in section 7.3.2.

This system has a number of features that make it an attractive solution for cognitive radio

sensing schemes. It uses an energy detector to perform the spectrum sensing, thus making

it cheap and simple to implement. The optimisation scheme uses only data that is readily
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Figure 6.13: Variance of System vs TargetMISC for EstimatedSNR Distributions

available from the energy detector output, therefore the optimisation scheme is efficient.

By using a pattern search the scheme is low on computational complexity. Indeed, the

pattern search initial step size can set by using theMISE between the new distribution

and the old distribution and the initial point can be the optimum point for the previous

distribution. This new, novel, detector architecture is, therefore, a self-optimising scheme

that is faster than typical energy detector schemes but alsoone that does not require any

substantial processing.

6.9 Conclusion

In this chapter the CDFD was introduced. By using a multi-region detector, where each

consecutive region is analysed with an energy detector of increasing sample size, the
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CDFD can be used to reduce the average number of samples required for spectrum sensing

in CR applications. By accounting for theSNR distribution, the CDFD can provide

significant performance gains over a single region energy detector. This detector, however,

does not contain any robustness to noise uncertainty and, therefore, is not effective in

situations where the noise uncertainty is expected to be large.

By analysing the CDFD an expression for the average number of samples, equation (6.22),

was derived. This expression was shown to be accurate over a range of typical values for

the number of regions, number of samples in each detection attempt and the false alarm

rate of each detection attempt. The expression also allows user definedSNR distributions

to be used. In addition, the average occupancy of the channelcan also be included in the

calculation, if known. Using Monte-Carlo simulations, for comparative purposes, the

average error for a two region detector over a wide range of operating parameters was

found to be approximately 0.5%. For larger numbers of regions the result was shown to

be accurate at the optimum points also, with the error being less than 0.9% for a seven

region detector. This was also shown to be accurate under fading conditions, with a

maximum error of 1.5%.

Some of the non-idealities of the system were also investigated. If the samples are reused

from one detection attempt to the next, then an error will be introduced into the prediction

of the average number of samples. It was shown, however, thatfor the small number of

regions considered here (less than seven, typically) the effect of sample reuse is minimal

and can be usefully discounted in the analysis.

Timing issues were also considered. If the occupancy of the channel changes between

detection attempts, then, obviously, the detector performance will suffer. For the sensing

times considered here, there is little chance of the channeloccupancy changing during

a detection attempt where the average time between changes is large. For an average
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time between occupancy changes of 10s there is approximately a 1.5% chance of the

occupancy changing. If the occupancy changes are less frequent, then the probability of

change will be even smaller.

After verifying that the expression remained accurate across a range of conditions, mul-

tiple schemes for optimising the CDFD were discussed. The nature of the problem in-

dicated that an analytical solution would prove difficult tofind and, therefore, numerical

optimization methods were used. A simplified (and approximate) optimisation was for-

mulated that reduced the number of variables to be optimisedby almost 50% but that

achieved performance within 0.1% of the case where exact optimisation was performed.

This simplified optimisation requires only the false alarm rate for the final region to be

optimised, rather than the false alarm rates for all of the regions. This reduction in the

number of variables allows the numerical optimization to beperformed more quickly and

with less computation, though the exact reduction is difficult to quantify, in general.

In a real implementation the detector would probably not have complete knowledge of

theSNR distribution when optimising. Instead, an estimate would have to be used. This

estimate is provided using the method in Chapter 4. The methodis shown to be very

accurate for setting optimum parameters with a mean error ofless than 0.1% for a target

MISC of 0.01 and seven regions. This new, novel, detector architecture is, therefore,

a self-optimising scheme that is faster than typical energydetector schemes but also one

that does not require any substantial processing.

This method does not help, however, with the selection of theorder in which to scan the

channels. If the first region was used to sort a group of channels, then it is likely that the

system performance would be increased further over naive detectors. This is investigated

in section 7.4 as a Hybrid Coarse-Fine Detector (HCFD) system.
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7
Practical Coarse Fine Detectors

7.1 Introduction

In this chapter, a practical CR spectrum sensing architecture will be designed and then

tested by simulations and implementation on the IRIS system.Firstly, the requirements

for a practical CR system are discussed. A CR system must be realisable, robust, practical

and effective to be considered worthwhile. The previous architectures, CSFD and CDFD,

are investigated under optimisation for a uniformSNR distribution. This uniform distri-
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bution approach is shown to be effective over a wide range of distributions, whilst also

removing the requirement for in-line optimisation andSNR distribution estimation.

A new architecture, the HCFD, is introduced and discussed. Using simulations, it is

shown to be superior to the CSFD and CDFD in terms of performance, without increas-

ing the implementation cost significantly. Finally, the four architectures, CSFD, CDFD,

HCFD and the energy detector are implemented on the IRIS system. It is shown that the

architectures can be used in a real environment and that the results match those predicted

by simulations to within an acceptable level. The source of the differences between the

simulations and practical results will also be discussed.

7.2 Practical Cognitive Radio Receivers

An important feature of the work in this chapter is the implementation of the CF detector

on the IRIS system. To date, a large number of possible solutions to the spectrum sensing

problem have been proposed and simulated. However, to the author’s best knowledge,

most of the architectures have not yet been implemented in reality. The implementation

of the detectors is of great importance for many reasons. Firstly, while some detector

architectures may work well in theory, their real performance may differ significantly.

An architecture that is not sufficiently robust to the issuesthat occur in reality is not, in

general, an architecture that can be used for CR applications. In addition, the actual per-

formance of the system will, most likely, not match the predictions sufficiently well. A

good model of the system can be used to make useful predictions of the practical perfor-

mance, whilst implementation testing can also be used to further refine the model.

Some of the criteria for a potential CR system are:

1. It must be realisable, i.e. there cannot be memory/hardware requirements that can-
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not be met by current technology.

2. It must be robust, i.e. the radio must be able to operate even in relatively difficult

signalling conditions.

3. It must be practical, i.e. the implementation cost of the system must not be too high,

either in terms of the resources required or the computational complexity.

4. It must be effective, i.e. there must be no better alternative available.

5. It must be worthwhile, i.e. the system must be superior in some area over other

architectures that justifies the implementation cost of thesystem.

The architectures considered here are realisable. They have been implemented on the

IRIS system using USRP front-ends. The architectures do not require any extra hardware

to operate when compared to an energy detector.

The architectures can also be considered robust. Even with the USRP front-end, which

is not designed for spectrum sensing and has several non-idealities that degrade its per-

formance, in practice the architectures were able to detectsignals relatively reliably. The

main factor that reduces the effectiveness of any energy detector based architectures is

the presence of noise uncertainty. If there is no significantnoise uncertainty then the

architectures will operate with improved performance.

The architectures, without in-line optimisation, do not require significant extra compu-

tation when compared to the energy detector. Thus, practicality is not an issue. Using

in-line optimisation for the architectures does require extra computation. If the in-line op-

timisation can be removed then the architectures become significantly more usable. This

is investigated in section 7.3.
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It is difficult to declare the architectures considered here“better” than other options. It

is possible to say, however, that no superior scheme has beenshown, to the author’s best

knowledge, for CF sensing under anSNR distribution.

Finally, the systems are worthwhile. It will be shown that all the architectures significantly

improve upon the energy detector. For example, the HCFD requires less than 30% of the

samples required by the energy detector, at a high occupancy(θ = 0.9).

It must be noted that here it is assumed that there is no time penalty for changing channels.

This can be achieved by using multiple PLLs to “preload” the next frequency to be looked

at.

The optimisation methods shown in previous chapters, Chapter 5 and Chapter 6, are not

considered appropriate for the practical implementationsstudied here. The methods do

provide a very accurate estimate of the optimum operating points; however, as will now

be shown, there is another solution that provides a set of parameters that are sufficiently

close to the optimum for most practical applications. Although other applications may

use the optimisation methods of Chapters 5 and 6 to provide increased performance, the

cost is deemed too large here and an alternative option is proposed.

7.3 Uniform Distribution

If no estimation of theSNR is performed; the system is unable to make any assumptions

about the shape of theSNR PDF. Thus, a possible alternative to estimating theSNR

distribution is to assume a uniform distribution, i.e. no knowledge of the system, and to

optimise for that distribution instead.

To test the validity of this approach the test distribution from Chapter 4 is not used. Since

using only one distribution is not sufficient to test the method, a range of Gaussian dis-
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tributions is used instead. Each Gaussian distribution hasa mean value between -19dB

and -1dB and a standard deviation between 1dB and 15dB (variance between 1dB and

225dB).

7.3.1 CSFD Optimised for a Uniform Distribution

Firstly, the optimisation of the CSFD under a uniform distribution is considered. For a

uniform distribution, in the range -21dB to 10dB, the optimumnumber of coarse samples,

Ncoarse, is 1200 samples.

To see the how well this number of coarse samples performs, consider a Gaussian distri-

bution with a mean of -5dB and a standard deviation of 7dB. For aCSFD optimised with

full knowledge of this distribution, the optimum number of coarse samples,Ncoarse, is

1500 samples, with an average speed gain of 1.81.

Using a uniform distribution, withNcoarse= 1200 samples, the average speed gain is 1.8

times. The speed gains for the two methods have only a 0.16% difference.

Repeating this analysis over the range of Gaussian distributions gives the contour plot

in Fig. 7.1. The relative speed gain for a CSFD optimised for the uniform distribution

compared to a CSFD optimised with full knowledge of theSNR distribution is shown.

The relative speed gain is close to the optimum for a wide range of distributions. The

lowest speed gain is 89% of the optimum, for a distribution with a very small variance.

The other distributions have significantly higher relativegains. Using the PDF method

described in Chapter 5, the simulations were completed in less than two weeks on the

boole cluster [118]. Without this model the simulations would have taken 3-4 years on

the same cluster.
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Figure 7.1: Relative Speed Gain for Uniform Distribution

7.3.2 CDFD Optimised for a Uniform Distribution

For example, consider a Gaussian distribution with a mean of-5dB and a standard devia-

tion of 7dB. For a CDFD withNR = 4, and full knowledge of this distribution, the opti-

mum sample values areNsamples = (2000, 17000, 64500, 211540) withPfa = (6.5×10−4,

6.5 × 10−4, 6.5 × 10−4, 0.09825), respectively, with the total average number of samples

required being 111851.

Using a uniform distribution, the optimum values areNsamples = (1000, 22000, 82500,

212000) withPfa = (8.3 × 10−4, 8.3 × 10−4, 8.3 × 10−4, 0.09775), respectively, the
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total average number of samples required, for the Gaussian distribution, being 112350.

Repeating this analysis over the range of Gaussian distributions gives the contour plots in

Fig. 7.2, Fig. 7.3 and Fig. 7.4.

The white shaded areas on some of the plots indicate where theuniform distribution set-

tings exceeded the optimised settings in terms of performance. The optimisation result

depends on the starting point, since the starting points were different for both systems

there is a probability that the flat distribution optimised system has performance similar

to the fully optimised system. Note that the flat distribution optimised system has perfor-

mance only slightly greater than the fully optimised system(0.01%) in these cases.

As NR increases, the relative error generally decreases. This isshown more clearly in

Fig. 7.5 where the mean and the variance of the data in the contour plots are shown.

As can be seen, the average relative error is low. ForNR=7 the average error is less

than 1.35%. The greatest error occurs for narrow distributions (distributions with a low

variance) and with a low meanSNR, i.e. µ = -19 dB andσ = 1 dB, where the relative

error is almost 12%.

7.3.3 CF Detector Optimised for Uniform Distribution

The greatest error in both detector architectures occurs for distributions with low vari-

ances. This would only occur in a situation where theSNR over multiple channels re-

mains static (at the same value across all bands) over time. This situation is unlikely,

in practice, though it is possible if the receiver were static, as well as the primary users.

Apart from this unlikely case, the uniform distribution provides quite an effective set of

operating points for a wide range of distributions.

A further advantage of the uniform distribution method, beyond the removal of theSNR
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Figure 7.2: Total Number of Samples Required for Detection for CDFD Optimised for a
Uniform Distribution Relative to a Directly Optimised System for (a)NR = 2 and (b)NR

= 3
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Figure 7.3: Total Number of Samples Required for Detection for CDFD Optimised for a
Uniform Distribution Relative to a Directly Optimised System for (a)NR = 4 and (b)NR

= 5
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Figure 7.4: Total Number of Samples Required for Detection for CDFD Optimised for a
Uniform Distribution Relative to a Directly Optimised System for (a)NR = 6 and (b)NR

= 7
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distribution estimation and the associated optimisation,is the static nature of the system.

Even if the underlying distribution changes dramatically,the uniform distribution method

remains consistent. A continuously optimising detector would find this change inSNR

detrimental to performance until the new distribution has been learned. For example, if

the SNR distribution had a mean of -17dB and a standard deviation of 4dB, an opti-

mising detector would set its parameters accordingly. If the distribution then changed in

mean to -4 dB the optimum parameters would change. A CDFD optimised for a uniform

distribution would require 107.8k samples, whereas optimisation with knowledge of the

distribution would require 119k, for the firstNobs detection attempts, whereNobs is the

number of observations, or detection attempts, when a signal is present, to meet the target

MISC for the detector. Therefore, the optimising detector wouldrequire approximately
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10% more samples, on average, until the new distribution waslearned.

Finally, the complexity of the optimisation of the CSFD is such that inline optimisation is

not currently feasible (due to computational constraints); thus, the uniform distribution is

the most realistic, practical option.

An interesting question that has not been answered by this work is whether there is any

distribution that would cause a significant failure in the uniform distribution method? No

such distribution was found in this work, though it may be possible. It is envisaged that

such a distribution, if one exists, would probably be multimodal with distinct peaks. This,

however, lies outside the scope of this work.

7.4 Hybrid Coarse Fine Detector

As has been noted in Chapter 5 and Chapter 6, the individual detectors, CSFD and CDFD,

perform different actions on the signals received to improve the overall efficiency of the

system. It is logical, then, to ask if a combination of the twoarchitectures would perform

better than either of the individual architectures. As was stated in Section 5.10, the CSFD

does not discount a channel, even if the result of the coarse detection attempt is almost

certainly from an occupied channel. This leads to channels that are very likely to be

occupied being searched without any gain in safety for the PU. The CDFD, as stated

in Section 6.9, has the opposite problem. If a result is very close to the threshold then

another channel might be less likely to be occupied, i.e. no sorting is performed.

By combining the sorting action of the CSFD and the censoring action of the CDFD,

the system reduces the overall time spent attempting to find afree channel, whilst not

increasing the probability of interference to the PU. Here,a system with these hybrid

properties is called a HCFD.
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Figure 7.6: Flow Diagram for HCFD

The improvement in performance for the HCFD is not simply the multiple of both system

performance gains. The CSFD and CDFD mutually counteract one another, thereby re-

ducing the overall gain. The sorting action of the CSFD reduces the effective occupancy

of the channel, which, in turn, lowers the gain from the CDFD. The CDFD reduces the

cost of an incorrect choice, which lowers the gain from the CSFD. However, the overall

average number of samples required is still less than eitherof the two other CF detectors.

The first detection attempt in the CDFD can be used for the HCFD sorting action. The
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optimum number of samples for the CSFD is less than the optimumfirst number of sam-

ples for the CDFD. However, as the HCFD has a lower cost than the CSFD when making

an incorrect decision, the optimum number of samples for sorting will be lower than the

CSFD.

The HCFD could be optimised by the following method: firstly, using order statistics, an

estimate of the effective occupancy for the system is found for the sorting section. The

optimisation is then performed on the CDFD section of the detector using the effective

occupancy previously derived. Obviously, the first detection attempt has its number of

samples set by the sorting section. However, as was shown in Section 7.3, both systems

perform sufficiently close to the optimum when optimised fora uniform distribution. The

optimisation is more complex than either the CDFD or the CSFD optimisations. There-

fore, the settings for the HCFD that are used here are the optimum ones for the CDFD.

7.5 Comparison in Simulation

To compare the three receivers with a naive detector (an energy detector without sorting),

and to verify that the HCFD is indeed more efficient that the CSFDand CDFD, Monte-

Carlo simulations were performed. The detectors had to find a spectrum opportunity from

ten channels where the occupancy,θ, varied from 0.1 to 0.9 in steps of 0.1. TheSNR

was distributed as in the test distribution in Section 4.4. The results are shown in Fig. 7.7.

The HCFD has the lowest average number of samples required, especially at high occu-

pancies. Atθ = 0.9, the HCFD requires 355k samples compared with 390k samples for

the CDFD, 627k samples for the CSFD and 1127k samples for the energy detector. The

values ofPfa andPmd were also generated for each detector and the results are shown in

Fig. 7.8 and Fig. 7.9, respectively.
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Figure 7.8:Pfa for the Four Detector Architectures

The four architectures have very similar false alarm and missed detection rates. The CF

detectors do not cause a change in the values ofPfa andPmd, even when the average
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number of samples required is significantly lower than the energy detector. Therefore,

for the test distribution, it is clear that the HCFD is the bestchoice of all the detectors

considered here. This test assumes that there is no time penalty for changing channels,

i.e. that the system either has multiple PLLs or a wideband frontend. If this is not the

case, then the HCFD may not be more efficient when compared to the CDFD, as the

HCFD scans each channel once before beginning operation.
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Figure 7.9:Pmd for the Four Detector Architectures

7.6 IRIS Test

As has been stated in Section 7.2, simulation results are nota guarantee of performance

in reality. To ensure that the systems are practical for implementation, the IRIS system is

used to test the architectures.
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7.6.1 IRIS set-up

The test was performed simultaneously on all four receiver architectures. This ensured

that the test would be as fair as possible. The four architectures were implemented on one

node each, with each computer and USRP frontend being identical. A picture of the IRIS

receivers is shown in Fig. 7.10. Since only five nodes remained available for transmission,

six channels were available as 100% occupancy was not used inthe test.

Figure 7.10: Picture of IRIS Receivers at CREW Test-Bed

Each of the five nodes had a distribution of signal powers. Oneof the nodes had a very

high average signal strengthSNR ≥ 50dB, two had a low average signal strength10 ≤

SNR ≤ −10dB and two had a very low average signal strengthSNR ≤ −15dB, relative

to the noise. A snapshot of the spectrum when all nodes were transmitting is shown in
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Fig. 7.11. The frequencies used for transmission were 5010MHz to 5020MHz in steps

of 2MHz and the frequency of 5008MHz was used as a free channelfor noise power

estimation.

Figure 7.11: IRIS Transmitter Spectrum Snapshot

To allow the detectors to determine the occupancy of the channel and whether a false

alarm or a missed detection had occurred, the occupancy of the channels was set in ad-

vance. As the detectors either sort the channels or select them randomly, this is analogous

to having a random occupancy in the channels. The occupancy profiles are shown in Fig.

7.12. Finally, theSNR distributions received for each of the occupancies are shown in

Fig. 7.13.
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Occupancy 5.01GHz 5.012GHz 5.014GHz 5.016GHz 5.018GHz 5.02GHz

1/6 0 0 1 0 0 0

2/6 1 0 1 0 0 0

3/6 1 1 1 0 0 0

4/6 1 1 1 0 1 0

5/6 1 1 1 0 1 1

Occupied Unoccupied

1 0

Figure 7.12: IRIS transmitter Occupancy Profile
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Figure 7.13:SNR Distributions

Each of the tests at different occupancies had a differentSNR distribution, as the trans-

mitters in use changed with the occupancy. There were some very strong signals,SNR ≥

50dB, but also some weak signalsSNR ≤ −15dB. In a real environment, it might be

the case that there would be a greater number of weak signals.However, due to the lim-

189



7.6. IRIS TEST

itations of the USRPs as sensing devices (discussed in 7.6.2), stronger signals were used

for the test.

7.6.2 IRIS results

To compare the IRIS results to simulations the environment must be also be simulated as

accurately as possible. The average number of samples required from IRIS tests and sim-

ulations are shown in Fig. 7.14. The results for the average number of samples required

for detection match quite well with the simulations. The HCFDdetector required approx-

imately the same number of samples as the CDFD though, for highoccupancy channels

(θ = 0.9), the HCFD required fewer samples.
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Figure 7.14: Average Number of Samples Required as a functionof occupancy: IRIS vs
Simulation

Shown in Fig. 7.15 are the probabilities of failing to find a free channel. This is not
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exactly equal toPfa, as defined here.Pfa is more usually defined for a single detection

attempt in a single channel, this is not the case here. However, it is the real figure of merit

for a detector scanning multiple bands.
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Figure 7.15: Probability of Failing to Find a Free Channel as afunction of occupancy:
IRIS vs Simulation

The probabilities found in the IRIS test do not match the simulations as well as the average

speed gain results did. However, the probabilities of failing to find a free space are quite

small. As aPfa of 0.1 is deemed acceptable for the IEEE 802.22 standard, thedetectors

are sufficiently accurate, with only the CSFD having a probability of failing to find a free

channel greater than 0.02.

Fig. 7.16 illustrates the values ofPmd for the various architectures. ThePmd values of

some of the systems do exceed the IEEE 802.22 requirement ofPmd ≤ 0.1. Both the

CDFD and the energy detector havePmd ≈ 0.2, at θ = 0.8. The other detectors do not
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havePmd > 0.03 for any values of occupancy. The predicted values for thePmd were

significantly lower (≈ 10−4). The simulations matched the practical results well for some

parameters (average number of samples required) and poorlyfor others (Pmd). Some

possible reasons for the mismatch are now discussed.
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Figure 7.16: Probability of Causing Interference as a function of occupancy: IRIS vs
Simulation

The CDFD requires approximately the same average number of samples for detection as

the HCFD. The calibration errors, however, act to reduce thisnumber. ThePmd, which

causes the detector to end its detection attempt early, is significantly greater in the CDFD

than in the HCFD. Therefore, the average number of samples fora better calibrated CDFD

would be greater.

Firstly, the number of runs that each detector had at each occupancy level was only ap-
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proximately 1000. The testing required the usage of the entire CREW test-bed and, as

such, could not be performed for long periods of time. If moreruns could be performed,

the results would most likely become more accurate and may match the simulations better,

though this is not certain.

In addition, the USRPs are not designed for precise spectrum measurements. The gain of

any USRP varies with time and temperature. Thus, the noise power scaling that is needed

changes constantly. This was not accounted for in the simulations. In a real CR system

the front-end would be more stable and the gain would vary less, allowing more accurate

sensing to be performed.

In addition, the gain of the USRPs varies with frequency. An extra scaling term had to be

included for each channel used by the USRP. Thus, calibrationbefore use was required

for each USRP, as the scaling was different for each node. In addition, the scaling required

varied during operation, causing further calibration issues.

The primary effect of these issues is to increase the noise uncertainty in the system, though

the magnitude of the corresponding noise uncertainty was not calculated or estimated. As

the gain drifted with time it is impossible to say what the uncertainty is at any moment.

If this was not the case then it would be possible to determineroughly the level of un-

certainty as a function of the number of samples taken duringthe noise power estimation

phase.

In a practical CR the noise uncertainty would, most likely, belower and it is believed the

results would match more closely with those predicted here by simulation.

Finally, it is noted that the HCFD had the best performance of the systems considered.

It required the fewest samples, on average, for detection and did not exceed the required

Pfa andPmd specifications. However, as the settings on the USRPs were so important to

the operation of the system, it is likely that the HCFD radio front-end was simply better
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calibrated than the other radios.

7.7 Conclusion

In this chapter, practical CR spectrum sensing was considered and the requirements for a

practical CR were examined. A new architecture, the HCFD, was introduced and shown

to be superior to the CSFD and CDFD in terms of average number of samples required,

whilst maintaining the samePfa andPmd.

The four architectures, CSFD, CDFD, HCFD and the energy detector, were implemented

on the IRIS system. The results, for the average number of samples required, match well

with the simulations. For thePfa andPmd the results were sufficiently close, as the radio

front-ends used caused difficulties for weak signal detection.

The HCFD was also shown in the IRIS tests to be a very efficient architecture. The HCFD

required (atθ = 0.9), on average, 212k samples when attempting to find a free channel.

In contrast, the energy detector required, on average, 712ksamples.

Finally, the performance of the three CF detectors, when optimised for a uniform distri-

bution, was considered. It was shown that optimising for a uniform distribution, for the

scenarios considered here, gives performance sufficientlyclose to the global maximum,

and that this method can be used under normal operating conditions. With this result, the

central question of the thesis has been answered, as stated in Section 1.2, and the work

will now be concluded and the results summarised.
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Conclusion

8.1 Summary

This thesis has investigated the use of CF spectrum sensing for DSA in CR applications.

Instead of the traditional method of using a singleSNR value when considering the

detectors, a range ofSNR values were used. This different analysis method is a powerful

technique that allows a more indepth optimisation.

In Chapter 2, the current state of the art in CR was discussed. Anoverview of the field was
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given , with special emphasis on spectrum sensing applications. Several current detector

architectures for CF spectrum sensing were reviewed and discussed. Also discussed were

the various test-beds currently in use and the CR system architectures used in each test-

bed.

In Chapter 3, some basic theory was reviewed. The basics of energy detector operation,

including the issue of noise uncertainty, were investigated. The effects of fading channels

and time varying channel occupancies were also considered.Markov Chain theory was

also introduced and the relevant equations governing Markov Chains shown. Finally, the

IRIS system and the CREW test-bed were examined and the IRIS architecture’s structure

shown.

In Chapter 4,SNR PDF estimation was investigated. Various strategies for generating

sampleSNR PDFs were considered. In-line sensing was chosen as the mostpromising

candidate and the advantages and disadvantages were shown.Testing and verification of

the method was performed, both in simulation and on the IRIS system.

In Chapter 5, the CSFD architecture was considered. A new modelof the CSFD was

generated that matches Monte-Carlo simulations closely, whilst requiring significantly

less (≈ 80 times) simulation time. By using order statistics to model the sorting operation

and Markov Chains to model the effects of the sorting on the relevant probabilities of

the fine detector, it was shown that the model predicts the CSFDperformance accurately,

even under fading and noise uncertainty conditions.

In Chapter 6, the CDFD architecture was considered. The characteristic equation of the

CDFD was derived and three optimisation options investigated. It was shown that, by

only allowing one false alarm rate to vary, performance close to the global maximum can

be obtained, whilst reducing the complexity of the optimisation significantly.

In Chapter 7, the HCFD architecture was introduced. The HCFD is acombination of
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both techniques, CSFD and CDFD, and has better performance than either detector. It

was shown that the CSFD and the CDFD have close to optimal performance over a wide

range ofSNR distributions when optimised for a uniform distribution. Using this fact, the

HCFD was not optimised directly, rather the parameters for the detectors optimised for the

uniform distribution were chosen and the detector comparedwith the other architectures.

This comparison was done both in simulation and using the IRIStest-bed for a practical

implementation.

8.2 Contributions

In this thesis the following contributions were made:

1. Method for generating a reliable estimate of anSNR distribution : A method for

generating a reliable estimate of anSNR distribution was developed. By using

the results of the energy detector when a signal was declaredpresent, an estimate

of theSNR can be obtained, without extra processing being required. Bytaking

a sufficient number of estimates of the individualSNR values, a reliable estimate

of the distribution can be generated. A technique for measuring the accuracy of

this method was proposed, theMISE, which compares the sequential distribution

estimates to see if the distribution has settled.

Although this method does have a bias due to false alarms reporting low SNR val-

ues, the fact that it is effectively free makes it a valuable technique. A CR using

energy detection techniques incurs only a small computational cost when generat-

ing theSNR estimate. By using preloaded kernel distributions the computational

cost of the distribution estimation can be greatly reduced.The system does have
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difficulties in dealing with high noise uncertainty environments and there is a bias

introduced by the false alarm and missed detection rates of the detector. However,

even in these cases, the estimate remains sufficiently closeto the actual distribution

that overall system performance does not suffer greatly.

2. CSFD model: A model was developed of the CSFD that allowed significantly

quicker simulations, compared to Monte-Carlo simulations.Using order statistics

and Markov Chains to model the process, the model was approximately two orders

of magnitude quicker when generating results, whilst stillbeing very accurate, even

in the presence of fading and noise uncertainty.

This model allows the user to test the CSFD over a wider range ofconditions that

would be possible using Monte-Carlo simulations. Indeed, the graph shown in

Fig. 7.1 could not have been generated using Monte-Carlo simulations without

significant computational resources. Using the PDF method,the simulations were

completed in less than two weeks on the boole cluster. Without this model the

simulations would have taken 3-4 years. This method is stilltoo slow to be used for

inline optimisation however, as the CR does not have a large amount of processing

power or processing time available. For design work during the development of the

CR system this method can reduce the simulation overhead dramatically.

3. CDFD characteristic equation and optimisation: The characteristic equation of the

CDFD was derived. This closed form expression predicts the performance of the

CDFD accurately, even when the CDFD reuses samples. Using thisequation, an

optimisation scheme was proposed. This optimisation scheme was significantly less

complicated than an exact optimisation, whilst still producing results close to the

global optimum (within 1%) for the CDFD.
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The combined equation and reduced complexity optimisationscheme can be used

for inline optimisation. The computational complexity is relatively low and the en-

tire process can be completed between sensing periods. The optimisation is only

performed when theSNR distribution has changed. The CDFD does have an is-

sue with noise uncertainty, however several possible solutions to the problem have

been presented, including co-operative sensing and reducing the false alarm re-

quirements.

4. Uniform distribution optimisation proposed: Instead of individual optimisation for

each distribution, it was shown that assuming a uniform distribution for theSNR

results in a set of parameters that are sufficiently close to the global optimum, for

a wide range ofSNR distributions (within 12% for the CSFD and CDFD). This

removes the requirement for the CR to know theSNR distribution and for in-line

optimisation, thereby reducing the complexity of the implementation.

For the CSFD there is currently no-inline option available, therefore, the uniform

distribution assumption is a good option. For the CDFD, the option of the in-line

optimisation scheme allows the end-user a choice, the system can use the in-line

scheme if the greatest level of performance is required. If alower complexity or

lower powered implementation is required, then the uniformdistribution assump-

tion can be used.

5. HCFD Architecture developed: A new architecture was developed, the HCFD,

which has performance superior to that of the CSFD and CDFD, under the operat-

ing conditions considered in this thesis. At high occupancies (θ = 0.9) the HCFD

required approximately 57% of the samples that the CSFD required and 91% of the

samples required by the CDFD, without any optimisation beingperformed on the
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HCFD.

The exact magnitude of the improvement will depend on the operating conditions,

though for all the cases considered here, the HCFD had superior performance. The

HCFD does not require any extra hardware and only a slight increase in compu-

tational complexity compared to the CSFD and CDFD detectors. Therefore, it is

recommended that the HCFD be used in advance of the other detector architectures

studied here.

6. Practical tests performed on architectures: Finally, the detectors were implemented

using the IRIS system on the CREW test-bed. This provided practical results for

the CSFD, CDFD and HCFD that proved that the simulations are matched well by

reality, within the constraints of the equipment used. For real end-user implementa-

tions, custom recievers will be designed that will provide superior performance and

reduce the innacuracies that were seen in the results here.

8.3 Future Work

During the course of this work, several questions appeared that were not answered as part

of this thesis. Some of these questions would make valuable additions to the work here.

There was no optimisation performed on the HCFD. It was assumed that the parameters

used for the CDFD would be sufficiently close to the optimum. A full test could be

performed to check the optimisation. The sorting operationcould be modified, as in

Chapter 5, to provide an estimate of the new effective occupancy of the channel. Then

the characteristic equation of the CDFD (derived in Chapter 6)could be used, with the

constraint of the number of samples used in the sorting operation, to find the optimum
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CDFD settings.

The SNR estimation method used was found to have an inherent bias. Some methods

of reducing or removing this bias from the resulting distribution were considered but not

tested. If this bias could be removed from the estimates, then the estimation technique

should become significantly more reliable.

A very important question that arises from the investigation of detection attempts across

multiple bands is the question of the false alarm and missed detection rates. Simply

specifyingPfa andPmd targets that must be met at a certainSNR does not guarantee

safety. In this work it has been noted than thePfa is not the same as the probability of not

finding a free channel for a detector scanning multiple bands. Similarly, the probability

that a radio scanning multiple bands will interfere with oneof those channels is not the

same as thePmd of the detector. This is an important factor that should be considered for

CR detectors.

Every analysis performed in this thesis assumes a single radio performing the sensing. If

multiple radios are co-operating then the situation changes dramatically. A large number

of co-operating radios do not require CF sensing as the diversity gain is likely to provide

sufficient performance. However, a small number of co-operating radios (e.g.≤ 5) may

be able to profit from a CF sensing scheme.

Such a sensing scheme could use the architectures discussedhere to reduce overall sensing

time. However, it would probably be more advantageous to design the scheme directly

with co-operative sensing in mind. The availability of a control channel and the allowable

levels of communication between the nodes would set constraints on the system. For

example, if communications between the nodes is to be minimised, then a central node

can be used for the sorting detection and then broadcasts theorder to the other channels. If

communications are unconstrained all the nodes can performthe coarse sorting detections.
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The second option would result in greater performance, especially in the presence of

fading and noise uncertainty.

Even if CF sensing is not used for co-operative scheme,SNR distributions can be used

to optimise the co-operative system and make it more efficient. TheSNR distribution

can be used to estimate the performance of a system under realoperating conditions. In

addition, theSNR distribution estimation technique has not been studied forco-operative

sensing. The offset due to noise uncertainty and the probabilities of false alarm and missed

detection will be reduced due to co-operative sensing, though the improvement has not

been quantified.

The CDFD optimisation scheme implemented here uses the pattern search algorithm.

The efficiency of the pattern search algorithm depends on thestarting point and the initial

step size. The more appropriate the selection the more efficient the search. This work

does not optimise this selection of the parameters. As the optimisation of the parameters

occurs when the distribution changes, the initial point should be the optimum point for the

previous distribution. The initial step size should be a function of the difference between

the distributions, i.e. theMISC. This needs to be investigated further and the exact

relationship between theMISC and the optimum step size found.

Finally, one major issue that was encountered during this work was the definition of the

specifications for spectrum sensing. Spectrum sensing for cognitive radio applications has

the requirement that the detector has aPfa of less than 10% andPmd of less than 10% at an

SNR of -21dB. However, this is not stated for a single channel or multiple channels. As

cognitive radios are scanning over multiple candidate channels trying to find a free space,

traditional single channel metrics are less appropriate. If it is a single channel metric, as

most publications assume, then a 10% missed detection rate per channel for 10 occupied

channels, results in a 65% probability of interfering with one of the channels. Instead,
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new multiple scan metrics should be generated to determine the permissible interference

rates for CRs operating in licensed bands.

8.4 Final Summary

This thesis has shown how a CR CF sensing scheme may be optimisedfor the presence

of a wide range ofSNRs. The detectors analysed have been shown to be significantly

quicker than the naive detector and the method of using a distribution of SNR values,

rather than a single value, can provide significant performance gains. A CF system opti-

mised for a uniform distribution has performance sufficiently close to the global optimum

for most practical purposes. Therefore, the uniform distribution assumption is recom-

mended for use with the methods in this thesis to optimise anyCF system scheme based

on sorting channels, deciding on channels, or a combinationof both, for anySNR distri-

bution of the types considered here.
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