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Abstract In this letter, we report for the first time very large phase shifts of microwaves in the 1-

10 GHz range, in a 1-mm-long gold coplanar interdigitated structure deposited over 6 nm HfxZr1-

xO2 ferroelectric grown directly on a high-resistivity silicon substrate. The phase shift is larger 

than 60o at 1 GHz and 13o at 10 GHz at maximum applied DC voltages of  3 V, which can be 

supplied by a simple commercial battery. In this way, we demonstrate experimentally that the 

new ferroelectrics based on HfO2 could play an important role in the future development of 

wireless communication systems for very low power applications.  
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 1. Introduction 

 The ferroelectric behavior of HfO2 was discovered few years ago, by slightly doping 

HfO2 – a widespread gate insulator in transistors and very large scale integrated circuits such as 

microprocessors, which can be retrieved in any laptop or desktop computers and mobile phones. 

The ferroelectric HfO2 is only few nm thick, the ferroelectric phase being attributed to an 

orthorhombic crystalline structure. The physical mechanisms producing the ferroelectric phase in 

HfO2 doped with various dopants, in particular Zr used in this paper, are well described in Refs. 

[1-2] by the group of authors who discovered the ferroelectricity in HfO2, and in the 

comprehensive review in Ref. [3]. HfxZr1-xO2 ferroelectrics are now the subject of intense 

researches about their piezoelectric properties [4], pyroelectric response [5] and tunneling 

electroresistance [6]. 

 In a very recent paper, we have shown that ferroelectrics based on doped HfO2 confer 

extraordinary tunability to microwave circuits [7], which is a precondition for developing 

wireless communication circuits and systems that must satisfy simultaneously the following 

properties: (i) be miniaturized, (b) be tunable, i.e. have the ability to work at various 

electromagnetic bandwidths on demand, and (c) have low energy consumption. These 

prerequisites are difficult to be satisfied by perovskite ferroelectrics, used in the past as tunable 

microwave materials, because they are not fully CMOS compatible and their energy 

consumption is high; for example, tens of volts are necessary to obtain a significant phase shift in 

the microwave domain using perovskite ferroelectrics. On the contrary, HfO2-based ferroelectrics 

are fully CMOS compatible and can be scaled down up to a thickness of 2-3 nm, i.e. up to 

becoming an atomically thick material, such that a significant tunability of various circuits, in 

particular filters or phase shifters, is achieved at few volts.  

Phase shifters of electromagnetic waves are especially used as phased antenna arrays 

(PAAs). However, the utilization of perovskite ferroelectrics as phase shifters in PAAs is almost 

abandoned today, because they require high DC voltages, exceeding tens of volts, and rather 
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high losses [8]. The PAAs have many applications in daily life, and huge applications in 

communications and applied physics. Weather and airplane radars, space communications, as 

well as smart phones and base stations for 4G and 5G wireless communications are widespread 

applications of PAAs. Astrophysics and radio-telescopes are other beneficiaries of the phased 

arrays [9]. Therefore, it is of outmost importance to develop phase shifters that can be easily 

integrated in PAAs. In addition, these phase shifters must be able to satisfy the increasing 

demand of PAAs, which are among the few systems able to emit/receive electromagnetic waves 

in a crowded spectrum shared by billions of users. The aim of this paper is to demonstrate that a 

HfxZr1-xO2 ferroelectric phase shifter is able to produce significant phase shifts at low applied 

voltages, becoming thus an interesting choice for future PAAs. 

2. Fabrication and structural characterization 

The scanning electron microscope (SEM) image of a phase shifter based on a HfxZr1-xO2 

ferroelectric and the optical microscope image are represented in Fig. 1(a). The coplanar 

structure consists of three Au electrodes, with a thickness of 200 nm deposited over 6 nm  

HfxZr1-xO2, grown on a 500 m-thick high resistivity Si substrate. The central (signal) electrode 

of the CPW has a width of 100 m, and it is separated from the outer  ground electrodes  by a 

gap of 50 m. The length of the interdigitated capacitor (IDC) embedded in the central conductor 

is 200 m and each digit has a width of 5 m, two consecutive digits being distanced by 10 m. 

The transition between the IDC and the CPW electrodes is achieved by a taper.  

 The nominally 6-nm-thick HfxZr1-xO2 films were grown at 250oC on high resistivity Si 

(100) substrates by Atomic Layer Deposition (ALD) using a Cambridge NanoTech F200 ALD 

reactor. The ALD precursors were Tetrakis(ethylmethylamido)hafnium (TEMAHf), Tetrakis 

(ethylmethylamido)zirconium (TEMAZr) and water. Growth was performed in a laminate ALD 

mode using 30 super-cycles of TEMAZr-H2O-TEMAHf-H20, all separated by argon purges. The 

film thickness was confirmed by spectroscopic ellipsometry (Woollam M2000) to be 5.6±0.2 nm 

using a four layer optical model: air/HfxZr1-xO2/SiO2/Si [1]. The composition of the nominally 
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HfxZr1-xO2 films was investigated by X-ray photoelectron spectroscopy (XPS) using a Kratos 

AXIS ULTRA spectrometer with a source of monochromatic Al Kα of 1486.58 eV. The 

nominally HfZrO4 films are clearly non stoichiometric (Hf0.45Zr0.55O1.76), due to a small 

differences in the metal growth rates, and a significant oxygen deficiency (see Table I).  

Furthermore, the XPS data implies that this oxygen deficiency can be more likely attributed to 

ZrOx species. The grazing incidence X-ray diffraction (GIXRD) pattern of the Hf0.45Zr0.55O1.76 

film has have been measured on a Rigaku Smartlab system using the Cu Kα line at an angle of 

incidence of 0.35o. The GIXRD pattern is presented in Fig. 1(b), and shows two broad peaks, at 

around 30.5o and 55o, which were previously assigned to (111)O and (022)O/(220)O reflections 

for the HfO2 orthorhombic phase with Pbc21 symmetry [1, 10, 11]. The Cr (5nm)/Au (200nm) 

electrodes were finally deposited using a Temescal FC200 e-beam evaporation system and have 

been photolithographic configured using a standard lift-off process.   

 3. Measurements and discussions 

 The ferroelectric phase shifters are measured directly on-wafer with a vector network 

analyzer (VNA)-Anritsu-37397D connected to a Karl-Suss PM5 on-wafer probe station. The 

SOLT calibration standard was used to calibrate the system before measurements of the devices. 

During measurements, the calibration was verified few times to see if the accuracy is preserved. 

The set-up is schematically represented in Fig. 2. The ferroelectric phase shifters were biased by 

an external DC source, which is able to control very precisely the supplied DC voltage. The bias 

is applied vertically on the entire structure, conferring to the Hf0.45Zr0.55O1.76 ferroelectric a DC 

polarization via a vertical electric field.   

 The phase shift of microwave signals in the range of 1-10 GHz at various voltages, in the 

range 3 V, is represented in Fig. 3(a) at room temperature. The phase shift is defined as 

VVDC 0  , i.e. as the difference between the phases acquired at a certain DC voltage and 

at 0 V. At a certain frequency, the modulus of the phase shift increases as the voltage increases. 
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However, at biases higher than +3 V no significant increase in the phase shift is observed due to 

saturation of the ferroelectric response. 

Hundreds of phase shifters were fabricated on the same wafer, all of them showing 

almost identical characteristics. Moreover, the measurements were repeated on a daily basis for 

more than one month on 10 devices located arbitrarily on the wafer, in order to verify the 

reproducibility of the results in Fig. 3(a). No significant changes were observed during this 

period.  

The total phase shift of the device when polarized at +3 V and -3 V, defined as 

|||| 33 VVt    , is represented in Table II at different frequencies. The phase shifts in 

Table II are promisingly large taking into account that the entire phase shifter has a length of 

only 1 mm.  

The electromagnetic losses, represented in Fig. 3(b), decrease with increasing the bias. 

Thus, the losses at 1 GHz were -15.6 dB at a bias of -3 V and -6.3 dB at +3 V, and decrease with 

frequency up to -4  -5 dB at 10 GHz, irrespective of the applied voltages. The losses are higher 

at lower frequencies because the thicknesses of the gold electrodes are only 200 nm, smaller that 

the skin depth, which is higher than 1 m at 1 GHz. In future experiments we intend to use gold 

electroplating techniques to obtain more than 1 m gold metallization over the entire structure, 

which would decrease the losses up to -2  -3 dB.   

Another source of losses at low frequencies, especially in the range 1-4 GHz, is the IDC 

configuration based on electromagnetic coupling, which can be represented by an equivalent 

series RC circuit, with C depending on the applied voltage. The resistance R decreases rapidly 

with frequency, attaining at 0 V values of 232 Ω at 1 GHz and of 126 Ω at 2.45 GHz. As such, 

the resistance of the equivalent circuit of the IDC configuration induces mismatch to the 50 Ω 

port impedance at low frequencies, and thus significant insertion loss, which becomes less 

evident as the frequency increases. 
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The capacitance of the structure, dependent on frequency f and the applied voltage VDC, 

is computed as )],(Im[/1 DCin VfZC  , where ),( DCin VfZ  is the input impedance of the 

coplanar structure, and it is represented in Fig. 4. This figure shows that the capacitance 

decreases with frequency and increases with the applied voltage, the increase being especially 

significant for VDC between 2 and 3 V, where C increases about 4 times in the range 1-3 GHz. 

This behaviour explains the significant phase shift gained at low frequencies. 

The nonlinear behaviour of phase and capacitance at lower frequencies (1-4 GHz) are due  

to nonlinear behaviour of the electrical permittivity of the ferroelectric with frequency  a 

situation  that can be observed  in any ferroelectric  in certain frequency range. 

 We have simulated the ferroelectric phase shifter using CST and compared with the 

experimental results. The results are displayed in Fig. 5. In Fig. 5a, we present the comparison 

between simulated (dashed lines) and measured (solid lines) scattering parameters (return loss – 

S11 – and transmission – S21), whereas Fig. 5b shows the simulated (dashed line) and measured 

(solid line) transmission phase, in the frequency range 1 – 11 GHz. The reference situation is 

with unbiased HfZrO,  hence at 0 V. The overall behavior of the predicted (i.e. simulated) results 

is in rather good agreement with the measurements: the corresponding curves exhibit the same 

trend. The disagreements could be due to the limitations of the electromagnetic simulator, 

considering that the aspect ratio AR between the thin HfZrO layer and the bulk HRSi substrate is 

very high (if tHFZrO and tHRSi are the thickness of the HfZrO and HRSi layer, respectively, we 

have AR = tHRSi/tHFZrO = 87500); furthermore, the overall ferroelectric effect considered in the 

simulations was limited to the relative permittivity and dielectric losses, as extracted from the 

literature. This means that the ferroelectric’s real characteristics can affect even significantly the 

agreement with the simulations. 

We have measured the same devices annealed at 130oC for two hours. While the phase 

shift range for the -3 V to +3 V applied voltages remains almost the same, the capacitance 
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decreases with about 22%, preserving the same shape as in Fig. 4, which indicates that the 

ferroelectric effect becomes weaker.  

4. Conclusions 

 In conclusion, we have demonstrated that a Hf0.45Zr0.55O1.76 ferroelectric is able to 

produce a significant phase shift of electromagnetic signals in the range 1-10 GHz, at very low 

applied voltages. Further research will be dedicated to improve the losses of phase shifters and to 

integrate them in an antenna array in fully compatible CMOS technology. 
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Table I. XPS High resolution Spectrum Quantification 
 

Name Position % Conc. 
O 1s 530.4 62.1 
C 1s 284.7 2.6 
Zr 3d 182.4 19.6 
Hf 4d 17.1 15.7 

 

 

 

Table II. Total phase t /mm between -3 V and +3 V 

Frequency (GHz) V3  V3  
t  

1 14.99o -51.24o 66.23o 

2.45 18.92o -30.87o 49.79o 

5.5 14.20o -14.56o 28.76o 

10 8.78o -6.86o 15.62o 
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Figure captions  

Fig. 1 (a) Scanning electron microscope (SEM) image of the phase shifter based on HfZrO. 

Inset: optical microscope image; (b) GIXRD pattern for the HfZrO thin film on Si(100). 

Fig. 2   Schematic representation of the measurement set-up. 

Fig. 3  (a) The phase shift and (b) insertion loss as a function of applied bias and frequency.  

Fig. 4  Capacitance of the equivalent circuit as a function of applied bias and frequency. 

Fig. 5 Comparison between the simulated and measured results. 
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Fig. 2  
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(b)   
 
Fig. 3 
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Fig. 4 
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Fig. 5 
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