

Title	Cobalt doped JUC-160 derived functional carbon superstructures with synergetic catalyst effect for Li-SeS2 batteries			
Authors	Jin, Wen-wu;Li, He-Jun;Zou, Ji-zhao;Zhang, Qi;Inguva, Saikumar;Zeng, Shao-zhong;Xu, Guo-zhong;Zeng, Xie-rong			
Publication date	2020-07-03			
Original Citation	Jin, WW., Li, HJ., Zou, JZ., Zhang, Q., Inguva, S., Zeng, SZ., Xu, GZ. and Zeng, XR. (2020) 'Cobalt doped JUC-160 derived functional carbon superstructures with synergetic catalyst effect for Li-SeS2 batteries', Microporous and Mesoporous Materials, 306, 110438 (11pp). doi: 10.1016/j.micromeso.2020.110438			
Type of publication	Article (peer-reviewed)			
Link to publisher's version	10.1016/j.micromeso.2020.110438			
Rights	© 2020, Elsevier B.V. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license https:// creativecommons.org/licenses/by-nc-nd/4.0/			
Download date	2025-07-31 06:30:22			
Item downloaded from	https://hdl.handle.net/10468/12582			

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

Support information

Cobalt doped JUC-160 Derived Functional Carbon Superstructures with Synergetic Catalyst Effect for Li-SeS₂ Batteries

Wen-wu Jin^a, He-Jun Li^b, Ji-zhao Zou^{a,*}, Qi Zhang^c, Saikumar Inguva^d, Shao-zhong Zeng^a, Guo-zhong Xu^a, Xie-rong Zeng^{a,*}

a. Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.

b. State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an 710072, PR China.

c. School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK.

d. School of Chemistry, University College Cork and Tyndall National Institute, Cork, T12YN60, Ireland.

* Correspondence: zoujizhao@szu.edu.cn (J Z.Zou); zengxier@szu.edu.cn (X R.Zeng)

Keywords: Cobalt-doped, ZIF, Self-assembled, Crystal-shape engineering, Li-SeS₂

Table S1. List of abbreviations						
ZIF	Zeolitic imidazolate frame-work (ZIF), a subfamily of metal organic framework (MOF)					
	generated from an assembly of transition metal ions (i.e., Zn(II), Co(II)) and N-rich					
	imidazolate linkers					
JUC-160	A ZIF material with zinc ion as the central ion					
CJ-n	Cobalt doped ZIF prepared by adding CoCl ₂ .6H ₂ O in the synthesis of JUC-160, and based					
	on the addition amount of CoCl ₂ .6H ₂ O (0.03,0.05 and 0.07g), the cobalt doped JUC-160 is					
	named as CJ-n (n=0.03,0.05 and 0.07)					
PCJ-m	Cobalt doped JUC-160 was prepared by mixing 0.06g CoCl ₂ .6H ₂ O and a certain amount of					
	JUC-160, and based on the addition amount of JUC-160 (0.5,0.8 and 1.1 g), the cobalt					
	doped JUC-160 is named as PCJ-m (m=0.5,0.8 and 1.1)					
CNC-n	The carbonization products of CJ-n					
PCNC-m	The carbonization products of PCJ-m					
CNC-n/SeS ₂	Selenium sulfide-impregnated CNC-n					
PCNC-m/SeS ₂	Selenium sulfide-impregnated PCNC-m					

In order to better show the relationship between MOF, JUC-160, mixed linker ZIF and Zn-based ZIF,

the following figure is drawn with the concept of aggregate in mathematics.

Fig.S2.(a)The chemical used in the experiment and its XRD characteristic peak; (b) X-ray

diffraction (XRD) patterns of calculated the JUC-160 and CJ-n.

Fig.S3. JUC-160 (a) and their derived carbon materials (b,c).

Fig.S4. The photographs of (a) JUC-160, (b) CJ-0.03, (c) CJ-0.05 and (d) CJ-0.07.

Fig.S5. TEM images of the CNC-0.05 (a-c) and the open-book-like model (d); The hollow carbon

bubble structures of CNC-0.05(e-f).

Fig.S6. SEM image of (a1~a3) CNC-n and the corresponding EDS elemental maps for cobalt(c1~c3), nitrogen (d1~d3), carbon(e1~e3) and all elements combined (b1~b3). The scale bar is 10μm; elemental spectrum(f1~f3).

Fig.S7. SEM image of (a) PCNC-1.1, (b) PCNC-0.8 and (c) PCNC-0.5.

Fig.S8. SEM image of (a1~a3) PCNC-m and the corresponding EDS elemental maps for cobalt(c1~c3), nitrogen (d1~d3), carbon(e1~e3) and all elements combined (b1~b3). The scale bar is 1µm; elemental spectrum(f1~f3).

Table S2, Synthesis conditions of CJ-n						
CJ-n	Derived	Zn(Ac) ₂ 2H ₂ O	CoCl ₂ .6			
	carbon	ole (g)	midazole (g)	(g)	$H_2O(g)$	
CJ-0.03	CNC-0.03	0.29539	0.26432	0.49394	0.03399	
CJ-0.05	CNC-0.05	0.29541	0.26439	0.49357	0.05558	
CJ-0.07	CNC-0.07	0.29543	0.26435	0.494071	0.07131	

	Table S3, Synthes	is conditions of	PCJ-m	
PCJ-(JUC-160(g)/	Derived carbon	JUC-160 (g)	CoCl ₂ .6H ₂ O (g)	ethanol
CoCl ₂ .6H ₂ O=0.06g)				(ml)
PCJ-0.5	PCNC-0.5	0.50722	0.06973	40ml
PCJ-0.8	PCNC-0.8	0.82162	0.06979	40ml
PCJ-1.1	PCNC-1.1	1.182	0.06970	40ml

Fig. S9 . SEM image of (a) CNC-0.05/SeS₂ and the corresponding EDS elemental maps for cobalt(c), nitrogen (d), carbon (e), selenium (f) , sulfur (f) and all elements combined (b). The scale

Fig. S10 . SEM image of (a) CNC-0.07/SeS₂ and the corresponding EDS elemental maps for cobalt(c), nitrogen (d), carbon (e), selenium (f) , sulfur (f) and all elements combined (b). The scale bar is 10μm.

Fig. S11. SEM image of (a) CNC-0.03/SeS₂ and the corresponding EDS elemental maps for cobalt(c), nitrogen (d), carbon (e), selenium (f) , sulfur (f) and all elements combined (b). The scale bar is 10μm.

Fig.S12. Raman spectra of CNC-0 and CNC-0/SeS₂.

Fig.13. Cycle performance of the CNC-0.05/SeS₂ at 0.5C.

Fig.S14. (a-b) FESEM and (c) TEM images of the CNC-0.05/SeS₂ electrode after 100 cycles at a current

density of 0.2C.

Fig.S15. XRD patterns of CNC-0.05/SeS₂ electrode on Al foil before and after 100 cycles at 0.2C.

Fig.S17. TGA curves of the CNC-0.05/SeS $_2$ and the samples of remove cobalt.

Fig.S18, (a) XPS survey spectrum of CNC-0/SeS₂, (b-d) the corresponding high-resolution XPS

spectra for N 1s and C 1s, S 2p/Se 3p, respectively; (e) XPS survey spectrum of the removing cobalt samples, (f–h) the corresponding high-resolution XPS spectra for N 1s and C 1s, S 2p/Se 3p, respectively.

Fig.S19, Cycle performance of the CNC-0.05/SeS₂ and remove cobalt at 0.2 C.

Table S4. A survey of electrochemical properties of the comparisons of cathode materials	for
Li-SeS ₂ batteries.	

Category	Carbon SSA* (m ² g ⁻¹)	Precursor	SeS ₂ content	Cycling stability	C-Rate-performance
CNC-0.05/SeS ₂ (This work)	416	Cobalt doped JUC-160 (Template-free)	~73%	820.87 mAh g ⁻¹ after 100 cycles at 0.2C/0.22 A g ⁻¹ 760.93 mAh g ⁻¹ after 250 cycles at 0.5C/0.56 A g ⁻¹	1067 mAh g ⁻¹ (0.1C/0.11 A g ⁻¹), 927 mAh g ⁻¹ (0.2C/0.22 A g ⁻¹), 822mAh g ⁻¹ (0.5C/0.56 A g ⁻¹), 733 mAh g ⁻¹ (1C/1.12 A g ⁻¹), 634mAh g ⁻¹ (2C/2.24 A g ⁻¹), 262mAh g ⁻¹ (5C/5.61 A g ⁻¹), 158 mAh g ⁻¹ (10C/11.23 A g ⁻¹)
$MYS-Co_4$ $N@C/SeS_2$ $(Ref.^1)$	142	ZIF-67 (Template-free)	70%	996 mA h.g $^{-1}$ after 100 cycles at 0.22 A g $^{-1}$ 669 mA h.g $^{-1}$ after 300 cycles at 0.56 A g $^{-1}$	962 mAh g ⁻¹ (0.22 A g ⁻¹), 866 mAh g ⁻¹ (0.56 A g ⁻¹), 735 mAh g ⁻¹ (1.12 A g ⁻¹), 610mAh g ⁻¹ (2.24 A g ⁻¹), 460 mAh g ⁻¹ (3.36 A g ⁻¹)

Co–N–C/SeS ₂ (Ref. ²)	296	ZIF-67 (Template-free)	66.5%	970.2 mAh g ⁻¹ after 200 cycles at 0.26 A g ⁻¹	1193.5 mAh g^{-1} (0.13 A g^{-1}), 1080.7 mAh g^{-1} (0.26 A g^{-1}), 928.2 mAh g^{-1} (0.26 A g^{-1}), 928.2 mAh g^{-1} (0.67 A g^{-1}), 760 mAh g^{-1} (1.34 A g^{-1}), 604.1 mAh g^{-1} (2.69 A g^{-1}), 439.7mAh g^{-1} (2.69 A g^{-1}), 300.3 mAh g^{-1} (8.07 A g^{-1}), 138.1 mAh g^{-1} (10.76 A g^{-1})
NiCo ₂ S ₄ @NC /SeS ₂ (Ref. ³)	44.5	Dopamine hydrochloride (NiCo2S4 template)	66.7 %	556.45 mAh g ⁻¹ after 800 cycles at 1.34 A g ⁻¹	1205.1 mAh g^{-1} (0.13 A g^{-1}), 1021.2 mAh g^{-1} (0.26 A g^{-1}), 871.6 mAh g^{-1} (0.67 A g^{-1}), 776.6 mAh g^{-1} (1.34 A g^{-1}), 673.5 mAh g^{-1} (2.69 A g^{-1}),
SeS ₂ @MCA (Ref. ⁴)		mesoporous carbon aerogels (Template-free)	49.3 %	308 mAh g $^{-1}$ after 130 cycles at 0.2 A g $^{-1}$	1074 mAh g ⁻¹ (0.25A g ⁻¹), 731 mAh g ⁻¹ (0.5A g ⁻¹), 371mAh g ⁻¹ (2A g ⁻¹),
$CMK-3/SeS_2$ @PDA: (Ref. ⁵)		CMK-3/SeS 2 @PDA (Core-shell structure)	70%	783 mAh g ⁻¹ after 150 cycles at 0.2 A g ⁻¹	$1005 \text{ mAh } \text{g}^{-1} (0.2\text{A } \text{g}^{-1}),$ $864 \text{ mAh } \text{g}^{-1} (0.5\text{A } \text{g}^{-1}),$ $787 \text{mAh } \text{g}^{-1} (1\text{A } \text{g}^{-1}),$ $702 \text{mAh } \text{g}^{-1} (2\text{A } \text{g}^{-1}),$ $645 \text{mAh } \text{g}^{-1} (3\text{A } \text{g}^{-1}),$ $584 \text{mAh } \text{g}^{-1} (4\text{A } \text{g}^{-1}),$ $535 \text{mAh } \text{g}^{-1} (5\text{A } \text{g}^{-1})$
CoS ₂ @LRC/SeS ₂ (Ref. ⁶)	77.6	Co(Ac) 2 /PAN/PS paper	70%	745 mAh g ⁻¹ after 100 cycles at 0.2A g ⁻¹	1096 mA hg $^{-1}$ (0.1A g $^{-1}$), 1038mA hg $^{-1}$ (0.2A g $^{-1}$), 846mA hg $^{-1}$ (0.5A g $^{-1}$), 686 mA hg $^{-1}$ (1A g $^{-1}$), 526mA hg $^{-1}$ (2A g $^{-1}$),

Reference

[1] Tao Chen, Weihua Kong, Mengting Fan, Zewen Zhang, Lei Wang, Renpeng Chen, Yi Hu, Jing Ma and Zhong Jin, Chelation-assisted formation of multi-yolk–shell Co₄N@carbon nanoboxes for self-discharge-suppressed high-performance Li–SeS2 batteries, J. Mater. Chem. A, 2019, 7, 20302–20309. [2] Jiarui He, Weiqiang Lv, Yuanfu Chen, Jie Xiong, Kechun Wen, Chen Xu, Wanli Zhang, Yanrong Li, Wu Qin ,Weidong He, Direct impregnation of SeS₂ into a MOF-derived 3D nanoporous Co–N–C architecture towards superior rechargeable lithium batteries, J. Mater. Chem. A, 2018, 6, 10466–10473
[3] Bingshu Guo, Tingting Yang, Wenyan Du, Qianru Ma, a Long-zhen Zhang, Shu-Juan Bao, Xiaoyan Li, Yuming Chen,Maowen Xu, Double-walled N-doped carbon@NiCo₂ S₄ hollow capsules as SeS₂ hosts for advanced Li–SeS₂ batteries, J. Mater. Chem. A, 2019, 7, 12276–12282

[4] Zhian Zhang, Shaofeng Jiang, Yanqing Lai, Junming Li, Junxiao Song, Jie Li, Selenium sulfide@mesoporous carbon aerogel composite for rechargeable lithium batteries with good electrochemical performance, Journal of Power Sources 284 (2015) 95-102

[5] Zhen Li, Jintao Zhang, Hao Bin Wu, and Xiong Wen (David) Lou, An Improved Li–SeS₂ Battery with High Energy Density and Long Cycle Life, Adv. Energy Mater. 2017, 1700281

[6] Jintao Zhang, Zhen Li, Xiong Wen (David) Lou, A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfide-Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance, Angew. Chem. Int. Ed. 2017, 56, 1–7