W CORA =

g/ﬁ%

Title

From offline to online kidney exchange optimization

Authors

Chisca, Danuta Sorina;Lombardi, Michele;Milano,
Michela;0'Sullivan, Barry

Publication date

2018-12-17

Original Citation

Chisca, D. S., Lombardi, M., Milano, M. and O'Sullivan, B.
(2018) 'From offline to online kidney exchange optimization’,
30th International Conference on Tools with Artificial
Intelligence (ICTAI), Volos, Greece, 5-7 November. doi:10.1109/
ICTAI.2018.00095

Type of publication

Conference item

Link to publisher’s
version

https://ieeexplore.ieee.org/abstract/document/8576093 - 10.1109/
ICTAI.2018.00095

Rights

© 2018 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.,

Download date

2024-05-12 19:51:27

[tem downloaded
from

https://hdl.handle.net/10468/7515

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh

https://hdl.handle.net/10468/7515

From Off-line to On-line Kidney Exchange
Optimization

Danuta Sorina Chisca and Barry O’Sullivan
Insight Centre for Data Analytics
Dept. of CS, University College Cork, Ireland
{sorina.chisca|barry.osullivan } @insight-centre.org

Abstract—Kidney exchange programs enable willing, but in-
compatible, donor-patient pairs to swap donors, thus allowing
persons suffering from organ failure to access transplantation.
Choosing which pairs to match requires to solve a stochastic
on-line optimization problem where patients and donors arrive
over time. Despite this, most of the related scientific literature has
focused on deterministic off-line models. In this paper, we present
a simple approach to employ a model for the off-line Kidney
Exchange Problem (KEP) as the basis of an on-line anticipatory
algorithm. Our approach grounds on existing techniques for the
on-line KEP, but it generalise them and provides a more accurate
estimate of the expected impact of current decisions. In an
experimentation based on a state-of-the-art donor pool generation
method, the approach provides improvements in terms of quality
and is able to deal with realistic instance size in reasonable time.

Index Terms—Optimisation, Anticipatory algorithm, Online
stochastic kidney exchange.

I. INTRODUCTION

Transplantation is an effective solution for people suffering
of kidney failure [1], but finding a viable organ can be very
difficult because of the scarcity of donors. Waiting for the
organ of a deceased person can take more than a couple of
years, and buying/selling of organs is illegal in most countries.
However, people have two kidneys and a person can live fine
with just one. This has encouraged voluntary donors (e.g.
family members), which however are often incompatible with
the patient due to (e.g.) blood or tissue type. A solution
consists in having the incompatible pairs join a system that
allows to swap donors, i.e. a kidney exchange program.

Centralised kidney exchange programs exist in many coun-
tries, including the US, the Netherlands and the UK [2], and
require to solve at regular intervals an optimization problem
(the Kidney Exchange Problem — KEP) to to find a matching
for the enrolled pairs that saves the largest possible number of
lives. This variant of the KEP has been addressed via a number
of effective approaches. In reality however, new pairs arrive
(and unfortunately drop-off) over time, making the problem
inherently on-line and stochastic. In this setting, it is known
that exploiting information about future outcomes, by means
of an anticipatory on-line algorithm, can lead to substantially

This work has been supported by a research grant by Science Foundation
Ireland under grant number SFI/12/RC/2289.

Michele Lombardi and Michela Milano
DISI, University of Bologna, Bologna, Italy
{michele.lombardi2|michela.milano} @unibo.it

better results. The availability of extensive medical data makes
the estimation of future outcomes practically viable.

On-line decision making can be framed as a form of
multi-stage stochastic optimization. This class of problems
is extremely hard to solve exactly, but high-quality solutions
can be found via scalable sub-optimal methods (see [3] and
references therein). These approaches typically estimate future
developments by sampling scenarios and optimize the (esti-
mated) expected value of current decisions. A few of the main
anticipatory algorithms from [3] have been adapted and ex-
tended to the KEP in [4], but the task was not straightforward
and forced the authors to introduce heuristic approximations.

Here, we present a method to build an on-line anticipatory
algorithm from an off-line KEP model, with the objective to
maximize the number of transplants. Compared to the algo-
rithms from [4], our method is more general and it correctly
estimates expected values within the limit of sampling errors.
We call this method “Collective Scenario-Based Algorithm”,
for short CSBA. We compare this method against a baseline
that reflects the current practice (i.e. solving the off-line
model with the current pairs), against an oracle operating
under perfect information, and against the best performing
algorithms from [4]. On instances obtained via a realistic
donor pool generation method, our approach improves over
the state-of-the-art in terms of number of transplants.

The paper is organized as follows: Section II presents
the related literature and the basics for understanding our
algorithm, discussed in Section III. Experimental results are
in Section IV and concluding remarks in Section V.

II. PROBLEM DESCRIPTION AND RELATED WORK

Formally, the KEP is a non-bipartite matching problem on a
directed graph, where nodes correspond to patient/donor pairs
or simply to willing ("altruistic”’) donors. An arc from node
1 to j means that donor ¢ is compatible with patient j, and a
cycle (or chain starting from an altruistic donor) corresponds
a viable set of exchanges. The goal is to maximize a utility
function, in our case the total number of transplantations.

Figure 1 shows an example of such a graph, with four pa-
tient/donor pairs and one altruistic donor (i.e. (—, d4)). Edges
with two arrows corresponds to two arcs (one per direction).
A two-way exchange is given by dy — p2,ds — pg, a three

Fig. 1.
scenario-based anticipatory approach

A: Example graph for an off-line KEP. B: Example graph for a

way exchange by dg — p2,ds — p1,d1 — po, a chain starting
from an altruistic donor by d4 — ps.

Exchanges involving an arbitrary number of nodes (i.e. k-
way exchanges) have been considered in the literature. Dealing
with more than three/four pairs is hard in practice, since all the
operations often take place simultaneously to avoid withdrawal
of donors after their pair received the organ.

A. The Off-line Kidney Exchange Problem

Most works in the literature have focused on finding the
best matching for a given graph, i.e. on the off-line version of
the KEP. In the Operations Research community the problem
has been considered in [2], [5], [6], and more recently in [7],
[8].

One popular Mathematical Programming model for the KEP
is the so-called cycle formulation. The model is defined over
a directed graph (V, A(V')), where V is the set of nodes (pairs
and altruistic donors) and A(V) is the set of arcs. We assume
that A(-) is a function that maps a set of nodes into a set
of arcs, based on their compatibilities. The model requires
enumerating the set C of all cycles that respect the problem.
Paths starting from altruistic donors are equated to cycles.
Each cycle C; corresponds to a set of node indices and is
associated to a weight w(C}), equal to its cardinality when
the goal is maximizing the number of transplants. The cycle
formulation requires to introduce a binary decision variable
for each cycle j € C such that z; = 1 iff the corresponding
exchange has been chosen. The model is then given by:

maxz = Zw(Cj)xj ey
jec
s.t. Z z; <1 VieV)
jec,iecC;
z; € {0,1} vjec 3)

where the objective is to maximize the sum of weights (i.e.
the total number of transplantations). Constraint (2) prevents
the model from using the same node into more than one cycle.

The model is simple and capable to easily capture complex
constraints on the cycle formation (e.g. cardinality restric-
tions). The main drawback is limited scalability, since the

Algorithm 1: APST1 (adaptation of REGRET)

Set score; = 0 for each cycle C; in (Vo, A(Vo))
for all scenario s € {1...n:} do
Solve KEP on graph (Vo U Vi, A(Vp U V%))
for all cycle C; in graph (Vo, A(Vp)) do
if C; is in the solution then
score; = score; + sol. value
else
w; = w; — 1)
Solve KEP on (Vy, A(Vp)) with the computed scores

number of cycles is worst-case exponential in the maximum
graph cardinality. This issue has been addressed via column
generation in [9]-[13]. Recently, alternative compact models
have been proposed in [7], [8] to improve scalability with-
out resorting to column generation: the papers contain also
pointers to other relevant references for the interested reader.

B. The On-line Kidney Exchange Problem

In the online setting, pairs appear and expire at each time
step. Works [7], [10], [14] have taken into account the effect of
potential failures, but not of entering pairs. A simulator for the
on-line KEP is presented in [15], but the authors still rely on
periodic execution of an off-line approach. To the best of our
knowledge, the on-line version of the KEP has been targeted
using anticipatory algorithms only in [4].

Formally, the on-line KEP is a multi-stage stochastic prob-
lem whose exact solution is a policy tree, which specifies
recursively the best matching for each step and possible
uncertain outcome. This approach has clear scalability issues,
which are overcome in [4] via scenario sampling, based on the
ideas from [3] and references therein. A scenario refers here
to a set of nodes that may enter in the next h steps, where h
is called the look-ahead horizon. A number ng of scenarios
can be obtained by sampling the probability distribution for
pair entries (estimated from medical data). All scenarios are
considered equally likely after sampling. We refer as V) to the
nodes currently in the program and as V; (with s € {1...n})
to the those entering under scenario s. An example of two
simple scenarios with h = 1 is shown in Figure 1.

The two best performing algorithms from [4] are based on:
1) sampling a subset of scenarios; 2) using the scenarios to
compute scores for the cycles in the current time step; 3)
solving a cycle-based off-line KEP for the current time step,
with the computed scores. Both algorithms attempt to estimate
the expected impact of choosing a cycle in the current time
step, but they differ in how the estimate is computed.

The first algorithm in [4] (an adaptation of the REGRETS
method from [3]) computes cycle scores by solving an off-
line KEP for each scenario. Cycles (in the current graph) that
are chosen in the solution are rewarded with the value of the
solution, cycles that are not chosen receive a fixed penalty J.
We refer to this methods as APST1 (from the initials of the
authors): the pseudo-code is reported in Algorithm 1.

The second algorithm in [4] (which shares ideas with the
EXPECTATION method from [3]) computes scores by solving

Algorithm 2: APST2 (loosely based on EXPECTATION)

Set score; = 0 for each cycle C; in (Vo, A(Vo))
for all cycle C; in graph (Vo, A(V)) do
for all scenario s € {1...n,} do
Solve KEP on (Vo U Vi \ C;, A(Vo UV \ Cy))
score; = wj + sol. value
Solve KEP on (Vp, A(Vp)) with the modified weights

an off-line KEP for each cycle and scenario. The cycle scores
are obtained by summing the solution values. We refer to this
method as APST?2 and its pseudo-code is in Algorithm 2.

III. COLLECTIVE SCENARIO-BASED ALGORITHM (CSBA)

In the experimentation from [4], both APST1 and APST2
performed considerably better than a non-anticipatory algo-
rithm solving an off-line KEP at each time step. However,
both algorithms have a few significant weak points.

First, since there is no closed-form formula for the scores,
they require the use of a cycle formulation for the final KEP.
This prevents the use of the compact models from [7], [10],
[14] and may lead to scalability issues. This is particularly true
for APST2, which also needs to solve a set of optimization
problems for each cycle. Second, none of the two methods
correctly estimates (up to the sampling error) the expected
number of transplants. The APST?2 scores are proportional to
the expected value of choosing a single cycle, but disregard
non-linear effects arising when multiple cycles are chosen.

Third, both APSTI and APST2 sometimes cannot delay ex-
changes, even if it may have a beneficial effect on the long run.
This is illustrated in Figure 2, which shows solutions for the
example from Figure 1 (node descriptions have been replaced
with numbers). We assume that the scenarios represent the
only possible future outcomes; dark-shaded nodes are included
in the matching for the current time step ¢o; light-shaded nodes
will be included in a matching at ¢; for at least one scenario,
while non-shaded nodes have no chance to be included in a
matching. A non-anticipatory algorithm would include at ¢, as
many nodes as possible, leading to the solution in Figure 2A.
APST?2 always computes positive scores, and therefore its final
KEP will necessarily choose to include the chain 4 — 3. This
yields the solution from Figure 2B, which is sub-optimal in
terms of expected value. In this simple example APST1 would
assign a negative score to the chain 4 — 3 and to the cycle
1 < 3, leading to Figure 2C and the optimal expected value.
However, this depends in general on the (heuristic) penalty
value §, and may fail to happen in a more complex example.

We propose to address all these issues by solving a single
KEP on a graph constructed using all scenarios, but with
modified constraints. The final matching is given by all ex-
changes in the solution that are defined solely over nodes from
the current time step. Indeed, we simply propose to employ
the classical Sample Average Approximation scheme for two-
stage stochastic programs (see e.g. [16]), which to the best of
our knowledge has never been applied in this context.

#transp. at to: 4 #transp. at to: 2

exp. #transp.: 6

#transp. at to: 5
exp. #transp.: 5

exp. #transp.: 7

Fig. 2. A: A non-anticipatory solution. B: The solution returned by APST1;
C: the solution with the best expected value (returned by APST?2 in this case)

The CSBA algorithm is not tied to a specific KEP formula-
tion, and hence we start by providing an abstract description.
Let x be the set of problem variables (both for the current
time step and the scenarios). Let F' be the feasible set for
such decisions. Finally, let u,;(x) be a function denoting
the number of times node 1 is used (i.e. participates in an
exchange), assuming that scenario s occurs. Then our abstract
model is given by:

1 &
maxz = — Ug i (T %)
- ;; ()
s.t.ug i (x) <1 Vs=1...n,Vie VUV, (5

reF (6)

which assumes equally likely scenarios. Equation (4) is the
expected total amount of transplants, while Equation (5) states
that, considering each scenario individually, the same node
cannot participate into two exchanges.

In the case of the cycle formulation, the approach can be
instantiated by introducing a variable for each cycle (including
those from the scenarios). Specifically, let Cy be the set of
cycles in graph (Vp, A(Vp)) and let C, be the set of cycles in
(Vo UV, A(Vo UV;)), excluding the cycles already in Co. Let
Zs,] be the variable associated to Cs ;. Then we have:

usﬁi(x): Z l’o’j'i‘ Z Ts,j (7)

Co,; €Co, Cs,; €Cs,
ieCO,j Z‘ECS.’j

Le. a node is used when scenario s occurs if it participates to
a cycle in Cy or to a cycle in C,. By substituting we get:

max z = Z w(Co,j)o,; + ni z Z w(Cs j)zs; (8

S

j€Co s=14€Cgq
st Y <1 VieVy (9)
Jj€Co,i€Co,;
Vs=1...n4Vi e VoUVs,
Eq. (T) ‘ (10)
A0, €Cs:i€Cy
zs; € {0,1} Vs=0...n.YjeCs (11)

where terms related exclusively to cycles in the current time
step have be collected via factorization. This improves the

model performance at the expense of readability. We stress that
the approach does not apply exclusively to the cycle formu-
lation, but the cycle formulation provides a good instantiation
example due to its simplicity.

IV. EXPERIMENTS

Since the problem instances from [4] were not available,
we resorted to generating new ones following the same general
rules. In particular, we consider two experimental setups: in the
first one (referred to as ”small”) we assume that 5 pairs arrive
each month for over 31 months. In the second setup (referred
to as ”big”) 10 pairs arrive each month for over 51 months.
For each setup, we generate a global pool of pairs with blood
types, PRA values, and ages following the distributions from
[17]. Overall, we have 158 pairs (11 altruistic donors) and
4,086 edges in the small setup, and 510 pairs (25 altruistic
donors) and 15,400 edges in the big setup. Fixed drop-off
dates for each pair are generated based on 10-year survival
percentages from [18]. Our data is available on-line !.

Each simulation requires to sample (at each time step) a
set of entering pairs from the pool, uniformly at random and
without reinsertion. The pairs in each scenario are sampled in
the same fashion, except that 1) reinsertion is used and 2) pairs
are sampled for each future time step within the look-ahead
horizon (or the end of the simulation if it comes earlier).

We implemented the cycle-based model from Section III in
Python, using Numberjack [19] as a modeling front-end and
CPLEX as a back-end. The same tools we used to implement
the APST1 and APST2 algorithms. We also include in our
comparison: 1) a baseline approach that solves an off-line
KEP for each step; and 2) an oracle that solves a single
off-line KEP including all pairs entering the program in a
simulation (and disregarding drop-off dates). The “off-line”
approach is representative of the current practice, and the
oracle provides an optimistic bounds on the performance of
any on-line algorithm. All the tests have run on Intel Xeon E5-
2640 machines. We consider all transplants equally worthy.

A. Effect of lookahead and number of scenarios

Similarly to [4], we tested different number of scenarios
and lookahead horizon values. Due to space limitations, we
report only a subset of there results in Tables I and II. Every
table column corresponds to a different algorithm and each
row to a different configuration. Each row is denoted by
hxq1_ngro, where x1 is the lookahead horizon and x5 is the
number of scenarios. For the small setup z; € {2,4,7} and
x2 € {5,10,15}, and for the big setup x; € {5,10,20}
and x2 € {10,20,50}. Each cell reports the average number
of transplants (saved lives) over 10 runs and the standard
deviation. The optimal horizon and number of scenarios for
each approach is reported in bold. The oracle and the baseline
approaches do not actually make use of scenarios, but are
reported on each row for reference.

In Table I we show the results for the small (31-months)
setup. CSBA algorithm outperforms the other scenario-based

In case the paper is accepted

methods, saving on average 1.6 more lives than APSTI, 3.4
more than APST2, 8 more than the baseline, and only 5.9 less
than the oracle. Note that even a small improvement can be
significant when measured in human lives. Unlike in [4], we
found that APST1 performed better than APST2: we suspect
this may be due to subtle differences in instance generation.

Figure 3 shows the evolution of the cumulative number of
saved lives for each algorithm. Interestingly, CSBA method
lags behind for the first months, and then rapidly improves:
this matches the intuition from Figure 2 that a correct estimate
of the expected value may delay some transplants to maximize
the long term performance. This behaviour seems to pay off,
since the method eventually takes over the competitors.

TABLE I
31-MONTHS SETUP

Lookahead/

Scenarios CSBA APST2 APSTI Baseline Oracle
h2_ng5 503 £ 5.84 48.7 + 6.24 49.5 + 5.40 44.7+ 5.36 57.1 +7.38
h2_ng10 485 + 4.17 46.5 £ 4.58 49.0 £ 5.09 428+ 5.79 56.0 4 5.03
h2_ngl15 52.8 4+ 6.16 494 £+ 529 51.6 4+ 5.08 445+ 3.82 60.1 4 5.10
hd_ng5 493 + 4.10 457 £ 4.60 48.1 + 4.70 433+ 5.56 54.7 + 6.00
hd_n 10 527 £+ 5.02 49.1 £ 5.00 50.7 + 4.79 427+ 5.83 57.5 + 3.95
hd_ng15 555 + 8.62 523 + 824 54.7 + 8.61 4744 833 61.1 4+ 9.82
h7_ngs5 56.4 + 5.44 51.7 + 456 529 £+ 531 4724 2.99 61.9 + 5.90
h7_n 510 544 + 894 49.6 £ 7.72 514 + 7.56 4524 5.19 59.8 + 9.07
h7_nsl5 53.3 4+ 7.82 493 & 6.98 50.6 & 6.97 4374 544 579 &+ 8.01

- CSBA
E) P eetededeted eheiiediedietetedesiod vitodeieteeeiotied wedebeieeiieiiodiot hedeieiodioieiedes

-~ Offline
- APST1
- Oracle

Lives saved

0 5 10 15 20 25 30
Months

Fig. 3. Trend of the algorithms (31 months setup)

TABLE I

51-MONTHS SETUP
Lookahead/
Sampling CSBA APST2 APST1 Baseline Oracle
h5_n 510 1422 £ 10.43 133.8 £ 11.12 140.2 £ 12.89 117.6 £ 9.00 1725 £ 12.53
h5_n 520 151.6 + 10.79 144.6 + 9.39 1492 + 11.91 125.5 + 10.36 186.3 + 12.87
h5_n 550 151.1 + 12.16 142.8 £ 9.48 150.1 + 12.61 123.1 + 7.67 1804 + 1243
hl0_n 510 1495 + 11.79 137.7 £ 848 146.3 + 8.48 122.1 + 853 177.5 £ 11.30
h10_n 520 152.8 + 10.54 1382 + 8.84 1432 + 7.50 119.2 + 855 1824 + 11.77
h10_n 550 1584 + 11.56 139.8 + 7.13 148.0 + 10.26 123.9 + 9.62 184.6 + 11.58
h20_n 10 1549 + 8.63 139.1 £ 7.87 146.9 + 7.36 1242 + 7.08 172.6 + 8.53
h20_n 20 160.6 + 9.23 141.7 £ 9.66 149.7 £ 10.62 1223 + 5.34 180.6 £ 11.76
h20_n 50 - - - - -

In Table II we present the results of the 51-months setup.
CSBA algorithm saves on average 12.9 lives more than
APST2, 5.9 more than APST2, 30.4 more than the base-
line, and 26 less than the oracle. The best configuration for
each approach is highlighted in bold. For the configuration
h20_ns50 the solution times for some of the approaches were
too large for practical use. Figure 4 shows the evolution of
the cumulative number of saved lives for all algorithms, which
shows a trend similar to that of Figure 3.

200 -

CSBA
APST2
Offline
APST1
1501 -~ oracle

100

Lives saved

Months

Fig. 4. Trend of the algorithms (51 months setup)

TABLE III
COMPARISON OF SOLUTION TIMES (31-MONTHS SETUP)
Lookahead/Sampling CSBA APST2 APST1

h2_ns5 0.03942 | 2.17652 | 0.05244
h2_ns10 0.04707 | 1.81701 | 0.08525
h2_ns15 0.05912 | 2.72386 | 0.13198
h4_ns5 0.07757 | 1.63905 | 0.07198
h4_ns10 0.15664 | 4.52681 | 0.14688
h4_ns15 0.1469 5.83408 | 0.22714
h7_ns5 0.32522 | 3.81995 | 0.13239
h7_ns10 0.81852 | 4.25008 | 0.25438
h7_ns15 0.99315 | 7.42773 0.3321

B. Solution times

In Table III we report the solution time for all scenario-
based algorithms (not including the time for preprocessing,
graph construction, and scenario generation). Each value is
measured in seconds and represents the average of 10 runs for
each configuration. Let us assume that for each step we have
m scenarios and n cycles. The ATSP2 algorithm has to solve
m X n sub-problems per time step for adjusting the scores,
plus the last problem to compute the solution. ATSP1 solves
m sub-problems for the scores, plus one for the final solution.
CSBA algorithm needs to solve a single problem per time step.
On the other hand, the APST2 and APST1 subproblems are
defined using a single scenario, while our algorithm needs to
consider all scenarios at the same time.

Since the KEP is NP-hard, solving multiple smaller sub-
problems is in theory preferable to solving a single large
one. In practice, however, our method is always faster (in
the considered benchmark) than APST2, and sometimes even
faster then APST1 (which was designed with efficiency as one
of its main goals). This is due to the effectiveness of modern
ILP solvers, and to the fact that the number of cycles in a
graph (and hence of the subproblems that APST2 needs to
solve) grows exponentially with the size.

V. CONCLUSIONS

We presented a simple and general method to build an
anticipatory algorithm for the on-line KEP from a model for
the off-line version of the problem. The method allows us
to obtain an expected value estimate that is correct up to
the sampling error. The method improves over the state of

TABLE IV
COMPARISON OF SOLUTION TIMES (51-MONTHS SETUP)

Lookahead/Sampling CSBA APST2 APST1
h5_ns10 0.82089 24.17977 0.82821
h5_ns20 2.06233 65.99152 2.41063
h5_ns50 421478 127.37255 | 4.31868
h10_ns10 5.84768 65.62082 2.56756
h10_ns20 11.69444 89.10698 4.39736
h10_ns50 75.05608 170.21087 | 7.55183
h20_ns10 27.96764 66.508 5.30497
h20_ns20 117.4085889 | 166.04401 | 11.94762

the art in terms of number of saved lives and has reasonable
scalability.

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

J. P. Dickerson and T. Sandholm, “Liver and multi-organ exchange,” in
American Journal of Transplantation, vol. 13, 2013, pp. 272-273.

D. F. Manlove and G. O’Malley, “Paired and altruistic kidney donation in
the UK: algorithms and experimentation,” ACM Journal of Experimental
Algorithmics, vol. 19, no. 1, 2014.

P. V. Hentenryck and R. Bent, Online stochastic combinatorial optimiza-
tion. The MIT Press, 2009.

P. Awasthi and T. Sandholm, “Online stochastic optimization in the large:
Application to kidney exchange.” in Proc. of IJCAI, vol. 9, 2009, pp.
405-411.

V. Mak-Hau, “On the kidney exchange problem: cardinality constrained
cycle and chain problems on directed graphs: a survey of integer pro-
gramming approaches,” Journal of combinatorial optimization, vol. 33,
no. 1, pp. 35-59, 2017.

R. Anderson, I. Ashlagi, D. Gamarnik, and A. E. Roth, “Finding
long chains in kidney exchange using the traveling salesman problem,”
Proceedings of the National Academy of Sciences, vol. 112, no. 3, pp.
663-668, Jan. 2015.

F. Alvelos, X. Klimentova, A. Rais, and A. Viana, “A compact for-
mulation for maximizing the expected number of transplants in kidney
exchange programs,” in Journal of Physics: Conference Series, vol. 616,
no. 1. IOP Publishing, 2015, p. 012011.

J. P. Dickerson, D. F. Manlove, B. Plaut, T. Sandholm, and J. Trimble,
“Position-indexed formulations for kidney exchange,” in Proc. of EC.
ACM, 2016, pp. 25-42.

D. J. Abraham, A. Blum, and T. Sandholm, “Clearing algorithms for
barter exchange markets: enabling nationwide kidney exchanges,” in
Proc. of EC, 2007, pp. 295-304.

J. P. Dickerson, A. D. Procaccia, and T. Sandholm, “Failure-aware
kidney exchange,” in Proc. of EC. ACM, 2013, pp. 323-340.

K. M. Glorie, J. J. van de Klundert, and A. P. Wagelmans, “Kidney
exchange with long chains: An efficient pricing algorithm for clearing
barter exchanges with branch-and-price,” Manufacturing & Service
Operations Management, vol. 16, no. 4, pp. 498-512, 2014.

X. Klimentova, F. Alvelos, and A. Viana, “A new branch-and-price ap-
proach for the kidney exchange problem,” in Proc. of ICCSA. Springer,
2014, pp. 237-252.

B. Plaut, J. P. Dickerson, and T. Sandholm, “Fast optimal clearing of
capped-chain barter exchanges.” in Proc. of AAAL, 2016, pp. 601-607.

J. P. Pedroso, Maximizing Expectation on Vertex-Disjoint Cycle Packing.
Cham: Springer International Publishing, 2014, pp. 32-46.

N. Santos, P. Tubertini, A. Viana, and J. P. Pedroso, “Kidney exchange
simulation and optimization,” Journal of the Operational Research
Society, vol. 68, no. 12, pp. 1521-1532, Dec 2017.

A. Shapiro, D. Dentcheva, and A. Ruszczyiiski, Lectures on stochastic
programming: modeling and theory. SIAM, 20009.

S. L. Saidman, A. E. Roth, T. Sénmez, M. U. Unver, and E. L.
Delmonico, “Increasing the opportunity of live kidney donation by
matching for two-and three-way exchanges,” Transplantation, vol. 81,
no. 5, pp. 773-782, 2006.

J. P. Dickerson, A. D. Procaccia, and T. Sandholm, “Dynamic matching
via weighted myopia with application to kidney exchange.” in Proc. of
AAAI vol. 2012, 2012, pp. 98-100.

N. V. 1.1.0. [Online]. Available: http://numberjack.ucc.ie/

