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Abstract 

Phase-change random access memory is a promising approach to non-volatile memory. 

However, the inability to secure consistent, reliable switching on a nanometre scale may limit 

its practical use for high density applications. Here, we report on the switching behaviour of 

PCRAM cells comprised of single crystalline Ge9Sb1Te5 (GST) nanowires. We show that 

device switching is dominated by the contacts and does not result in a resistance change within 

the bulk of the wire. For the devices studied, the typical contact resistance was ~30 kΩ, whereas 

the resistance of the GST channel was 1.8 kΩ. The applied voltage was predominately dropped 

across the passivating oxide on the surface of the GST nanowires, resulting in local resistive 

switching at the contacts and local power dissipation, which limited the endurance of the 

devices produced. The optimal device must balance low resistance contacts with a more 

resistive channel, to facilitate phase change switching within the nanowires. These results 

highlight the importance of contact formation on the switching properties in phase change 

devices and help guide the future design of more reliable neuromorphic devices. 

 

Keywords: Neuromorphic, Switching, Contact resistance, Phase change, Nanowire 

 

Introduction 

 

The recent interest in neuromorphic computing has been facilitated by the emergence of 

devices that exhibit memristance and resistive switching behaviours.  Many candidate materials 

systems have been investigated [1,2] and the chalcogenide-based phase-change memory 

(PCM) materials has emerged as a leading candidate for both optical data storage and next 

generation non-volatile memory [2,3] where differences in optical reflectivity or electrical 

resistance between amorphous and crystalline phases is used to store and manipulate 

information. Specifically, the application of electrical or optical pulses provide the means of 

switching in non-volatile PCM devices. In each case long duration low amplitude pulses are 

used to crystallize the material while short duration large amplitude pulses induce 

amorphization [4,5]. Improved scaling, low-power consumption and improved programming 

properties in non-volatile PCMs devices necessitate a better understanding of the crystalline-

to-amorphous phase transition in these devices [6–8], including the minimum energy input 

required to effect this process. Thus, great efforts have been devoted to identifying PCMs with 

large ON/OFF ratios to facilitate the read operation.  Charge injection by the contact metal 

electrode is necessary for electrical switching. To date, however, there has been limited study 

of the effect of contact resistance on the switching properties of non-volatile PCM devices 

[9,10]. As the device size is scaled down, the contact resistance effects between the PCM and 

the metal electrode become even more important in device performances [11,12].  

 

One-dimensional materials such as nanowire (NW) structures are an ideal model system to 

investigate material and scaling properties of PCM operation at the nanometre scale due to their 

sub-lithographic size, defect-free single-crystalline structure, and unique geometry [6,7]. The 

tunability of the interface between the PCM nanowire and the metal electrode enables interface 
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engineering, so that charge injection is controlled by the choice of metal electrode and work 

function, the influence of carrier concentration in the PCM through surface chemical 

modification and/or doping, and through the introduction or removal of interface trap states. 

As a result, the SET/RESET resistance ratio of PCM can be modulated using these principles 

so that it is not completely dominated by the change in the bulk electrical properties induced 

by a phase transition [13,14].  

 

In this study, we report on the interface switching in a nanowire PCM cell that is accompanied 

by no measurable change in the bulk resistance of the PCM itself. These devices are comprised 

of the single crystalline Ge9Sb1Te5 (GST) nanowires, whose composition is different from that 

of the better known prototypical phase change material Ge2Sb2Te5 [15,16]. The new 

composition was chosen because of its lower resistivity to facilitate a reduction in power 

dissipation during device operation. The two- and four terminal devices of Ge9Sb1Te5-based 

nanowire PCM cells were fabricated in order to study the electrical properties including the 

contact resistance. Through repeated switching and two- and four-probe testing, we show that 

the applied voltage is predominantly dropped across the contacts in Ge9Sb1Te5 (GST) nanowire 

devices, leaving the channel of the device unaffected. We discuss the implications for device 

scaling and offer new insights into the development of alternative PCMs for future PCRAM 

applications. 

 

Experimental Procedure 

 

Single-crystalline germanium antimony telluride (GST) nanowires were grown by a chemical 

vapour deposition setup, utilizing gold as a catalyst in a vapour-liquid-solid (VLS) growth 

scheme [17]. GeTe (Alfa Aesar) and Sb2Te3 (Sigma-Aldrich) powders were used as the 

precursor source, and were placed in quartz boats within the reaction chamber. The Au catalyst 

was prepared by evaporating a 3 nm thick Au layer on a silicon wafer that was then placed at 

the downstream end of the tube furnace to act as the growth substrate. The furnace was heated 

to 600°C and maintained for 2 hours with a constant 200 sccm flow of high purity argon gas. 

Ge9Sb1Te5 NWs resulted after 2-4 h of growth time while the chamber pressure was kept 

constant at 150 Torr. Dilute solutions of GST wires were dispersed in 400 ml isopropanol (IPA) 

and deposited on the substrate using a hand-spray. While it is known that solvent processing 

of nanowires can result in stress and hence a modification of the inherent resistance of the 

nanowire material, the presence of a passivation oxide layer on PC wires mitigates against any 

significant level of stress modulation [18]. The diameter of the Ge9Sb1Te5 nanowires varied 

between 230 and 300 nm and were approximately 60 μm in length. After spinning resist on the 

sample, Electron Beam Lithography (EBL) was used to define the metal contacts on the wires.  

Each of the four metal contacts was comprised of a 5 nm Ti adhesion layer followed by 80 nm 

of Au, with 1 m separation between each contact pad. The metal contacts were approximately 

700 nm wide. After preparing the sample, a Keithley 4200-SCS parameter analyser was used 

to carry out the electrical measurements (I-V) and ultra-fast pulsing on the devices. One of the 

electrodes was held at ground and used as a reference throughout. The device as fabricated was 

symmetric and highly resistive. To overcome the latter, the contacts were electroformed in 

pairs by increasing the current compliance (Icc) in a stepwise fashion until the resistance 

reached a minimum value.  
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Figure 1. (a) Optical microscopy image of Ge9Sb1Te5 device after three steps involving dropcast, EBL 

and contact metallization. (b) SEM image of the device, (c) TEM image of the bulk of nanowire. (d) 

The HR TEM image of the wire that shows hexagonal symmetry with a <110> growth direction and 

lattice spacing of 0.21 nm.  

 

Figure 1(a) shows a representative optical microscopy image of an individual Ge9Sb1Te5 NW 

device after EBL patterning and contact metallization. Figure 1(b) is a Scanning Electron 

Microscopy (SEM) image of the device contacted with four electrodes, and (c) depicts the 

Transmission Electron Microscopy (TEM) image of the nanowire, which shows the presence 

of a native oxide layer on the surface of the wire. Figure 1(d) shows a High Resolution TEM 

image that reveals a hexagonal symmetry pattern, similar to the hexagonal structure of 

Ge2Sb2Te5 [7]. The spacing along the <110> growth direction was 0.21 nm, very similar to the 

prototype Ge2Sb2Te5 nanowires reported by Jung et. al. [17]. The composition of the nanowires 

was confirmed by the TEM Energy Dispersive X-Ray (EDX) analysis and the atomic 

percentages resulting from EDX confirmed the Ge9Sb1Te5 composition (See Fig. S1).  

 

Results and discussion 

 

To study the I-V characteristics of the device, we performed 5V voltage sweeps on pairs of 

electrodes E12, E34 and E23, respectively. Figure 2(a) shows a selection of I-V characteristics of 

the GST device after 31 continuous voltage sweeps between E12. The value of Icc is increased 

from 1nA to the maximum value of 20 A in a step by step fashion. Clear hysteresis loops 

were observed for each sweep while the size of the loop progressively decreased. By sweep 

number 31 a linear response is observed and the hysteresis is eliminated, which means that the 

device defined by electrodes 1 and 2 has reached its lowest resistance value and exhibits ohmic 

behaviour. Fig. 2(b) shows the results of the same experiment between electrodes 3 and 4. The 

device defined by the electrodes reached its lowest resistance state without hysteresis after 41 

continuous voltage sweeps. In both cases, the resistance reached a steady state value and was 

optimised using a compliance current of 20 A. The resistance values defined by device 

sections E12 and E34 were 20 kΩ and 35 kΩ, respectively. To study the electrical status of the 

middle section of the device (E23), which is the GST device channel, the I–V characteristics 
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were measured and showed an immediate linear response without any evidence of hysteresis 

even after the first voltage sweep (Fig. 2(c)).  

 

 
 
Figure 2. (a) (b) and (c) show a selection of I-V characteristics of the GST device for E12 and E34 and 

E23 at increasing current compliances. (d) (e) and (f) are schematic diagram of the device in the low 

resistance state (LRS).  

 

To optimise the resistance of the GST device defined by electrodes 2 and 3, the current 

compliance Icc was increased from 10 nA to 1  over 5 different voltage sweeps yielding a 

value of 38 kΩ at an Icc of 1A. The reason for the gradual reduction in the E23 resistance 

without the presence of hysteresis is due to the gradual change in the contact areas at electrodes 

2 and 3, which had been initially formed in response to an electrical field with electrodes 1 and 

4, respectively, but subsequently evolves in response to the applied field between electrodes 2 

and 3. The sequential electrical activation of the GST device is shown schematically in Fig. 

2(d), (e) and (f).   

Four terminal electrical measurements of the GST nanowire device were performed to measure 

the resistance of the contacts and the resistivity of the pristine crystalline device channel, as 

shown in Fig. 3(a). A constant current source was applied on E14 while the resistance was 

measured across electrodes 2 and 3 (E23). The objective was to determine the initial resistivity 

of device channel and the amount of power dissipation at the contacts. The resistance of the 

device channel was measured in Fig. 3(b) to be 1.8 kΩ, independent of the drive current.  

Figure 3(c) shows the SEM image of the device including the details of the profile, length and 

diameter of the nanowire. A calculation of the resistivity using R=ρL/A, yields a value ρ = 7.8 

x 10-5 Ω.m. We note this value is significantly lower that the  resistivity of Ge2Sb2Te5, which 

is known to be 4.16x10-4 (Ω.m) [15,16]. Moreover, the resistance of the contacts to the GST 

Page 4 of 10AUTHOR SUBMITTED MANUSCRIPT - NANO-120835.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



device channel E23 was found to be 36.2 kΩ (38 kΩ -1.8  kΩ), some twenty times the resistance 

of the channel itself. 

 

Figure 3. (a) Basic schematic showing the four-terminal resistance measurement method. (b) The I-V 

characteristics of middle contacts (E23) showed a linear behaviour and from which 1/slope gives the 

resistance value (c) SEM image of the device containing the details of profile width and diameter of the 

device used to estimate the channel resistivity.    

To study electrical switching in our device, a series of ultra-fast switching pulses (100 ns width) 

and of increasing voltage, were applied to E23 prior to the I-V measurement, with the device 

initially in the pristine low resistance ON state. After each measurement, the condition of the 

device was probed using a 20 μsec wide 300 mV triangle wave pulses (see Fig. 4). Figure. 4 

(a-d) shows the status of the GST device after the application of 100 nsec pulses with 

amplitudes of 600 mV, 800 mV, 1.1 V and 1.2 V. The probe pulse train is shown in black and 

the current response in red. The device is still in the ON state after the application of sequential 

600 mV and 800 mV pulses, consistent with a two-probe resistance level of around 30 kΩ 

similar to that found in Fig. 2(c). The application of a 1.1 V pulse results in an increase in the 

device resistance as measured by the reduction in the current response (see Fig. 4(c)). The 

application of a 1.2 V pulse caused the device to switch into a high resistance (>106 Ω) OFF 

state. The observed three order of magnitude resistance difference between the ON and OFF 

states is typical of PCM devices. The insets in Fig. 4(d) shows a schematic that illustrates two 

possible OFF states; reflecting amorphization in the body of the wire channel, i.e. normal 

device switching, or a failure at one or both of the contacts. In order to test which of these 

possibilities corresponds to the OFF state, we explore the I-V characteristics at both E12 and 

E34.  
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Figure 4. Illustrates the I-V characteristics of GST device after application of fast 100 ns voltage pulse 

of magnitudes (a) 600 mV, (b) 800 mV, (c) 1.1 V and (d) 1.2 V at E23.  The device current response (red 

curve) following each pulse is probed using a low voltage triangular pulse (black curve). After (d) the 

device is in the OFF state and the insets schematically shows of two different amorphization states of 

device, for which the dislocation lines and defects are predicted to exist either around the contacts or in 

the bulk of wire. The latter are depicted by red crosses and a circle, respectively.   

 

Figure 5(a) shows the behaviour of E12 after voltage sweeps at current compliances of 10A 

and 20A. The section of the device is still in the ON state after the application of the 1.2 V 

100 ns pulse to E23, with a measured resistance is 29kΩ, which is close to the originally 

measured value in Fig. 2(a). Since the fast probe pulses were applied to E23, we next examined 

the status of E34. Figure 5(b) shows clear evidence of hysteresis loops and after successive I-V 

sweeps at increasingly higher compliance current, the resistance of this device section returned 

to its original value. This demonstrates that contact 3 switched during the application of the 

100 ns pulses to E23. To confirm that this is indeed was the case, or whether the body of the 

wire and contact 3 could have simultaneously switched during the pulse application, we studied 

the behaviour of E23. Figure 5(c) clearly shows that the middle section of the device is in the 

ON state so that switching is confined to the contact.  

 

Four contact I-V measurements were then carried out again as depicted in Fig. 3 to measure 

the resistivity of the middle section of the wire after pulsing. The resistance value was found 

to be unchanged at 1.8 kΩ, and conclusively demonstrates that the crystalline phase of the wire 

has not been affected by the pulsing operation. Comparing the 2-contact (38 kΩ) and 4-contact 

(1.8 kΩ) resistance measurements allows us to evaluate the power dissipation in different 

regions of the device. Clearly, the voltage drop associate with each pulse occurred 

predominantly within the contact region where it induces resistive switching rather than 

amorphization within the bulk of the wire.  
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Figure 5. Sequential electrical measurements (a) E12, I-V characteristics after two voltage sweeps, which 

illustrates the section of device, is still in the ON state. (b) E34, I-V characteristics shows that switching 

has occurred at electrode 3 during the pulsing sequence and that the contact can be restored to its original 

value after successive I-V sweeps at increasing current compliance. (c) The linear behaviour of the E23 

shows that device was switched from an amorphous phase after ultra-fast pulsing into the crystalline 

phase. 

In scaling down memory cells, contact resistance between phase change material and the 

electrodes becomes a dominant factor in determining the memory cell resistance and 

performance [12,14,19]. To illustrate this, consider a nanowire of channel length L and radius 

r that is contacted by a metal electrode of width d. To maintain the resistance of the channel a 

reduction in channel length to L/2 must be accompanied by a reduction in radius by r/√2, but 

a commensurate reduction in the electrode width d will actually lead to an increase in the 

contact resistance by a factor of 4. The balance between the resistances of the contacts and the 

channel is crucial for device operation. In the present case, the contact resistance is 

approximately 20x the channel resistance, which causes the voltage drop and power dissipation 

to occur predominantly at the contacts [20,21]. This results in resistive switching at the contacts 

(presumably via the resistive oxide layer at the nanowire surface, cf. Fig. 1), preventing a 

current induced phase change within the wire channel. It is well established the reduction in 

contact resistance leads to improvement in memory cell performance [20-22]. On the other 

hand, device geometry is also known to influence switching and endurance of the memristor 

devices [22-25]. This is particularly true for nanowire devices where the contacts are on the 

wire surface, so that device operation requires charge injection into and out of the wire in 

addition to scattering in the vicinity of the contacts to effect charge transport along the wire 

channel itself. In contrast, for planar devices the applied electric field facilitates charge 

injection into the device, through the PCM and into the collector electrode. For devices of 

similar dimensions and materials the contact resistance will always be greater for nanowire 

devices compared to planar devices. In the present case, the failure of the device to switch can 

also be attributed to the composition of the device channel. The high concentration of Ge and 

low concentration of Sb in G9Sb1Te5 is responsible for the reduced resistivity compared to 

Ge2Sb2Te5 [26,27]. It is likely that switching is possible for G9Sb1Te5 nanowire devices if the 

diameter can be reduced significantly below 100 nm. 
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Conclusion 

 

Four terminal PCM devices comprised of single crystalline Ge9Sb1Te5 (GST) nanowires were 

fabricated and their electrical properties investigated by 2-probe and 4-probe I-V 

measurements. The device contacts were formed through a series of voltage sweeps at 

increasingly higher current compliances during which hysteresis loops in the I-V characteristics 

gradually evolved into an ohmic behaviour. The optimised resistance of the contacts were 

measured to be at least 20 times that of the wire channel. Device switching induced by 100 ns 

voltage pulses yielded an ON/OFF ratio in excess of 103, however the high resistance state was 

associated with resistive switching at the device contacts rather than amorphization of the 

PCM. This behaviour is attributed to the high contact resistance and low resistivity of the 

channel PCM, which results in power dissipation to be concentrated at the contacts. We 

speculate that voltage drop at the contacts is due to the presence of a native oxide layer on the 

surface of the wire. This layer was present in previously published studies of GST devices but 

did not impact performance. Use of more conducting materials such as those described here 

may be possible by eliminating the oxide layer before contact metallization using an ICP etcher 

with Argon gas. These result points to the challenges of scaling PCM nanowire-based device 

and the importance of choosing the channel materials with a resistivity and dimensions that are 

commensurate with the resistance of the contacts.  
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