
Title SAP: Stall-aware pacing for improved DASH video experience in
cellular networks

Authors Zahran, Ahmed H.;Quinlan, Jason J.;Ramakrishnan, K.
K.;Sreenan, Cormac J.

Publication date 2017-06

Original Citation Zahran, A. H., Quinlan, J. J., Ramakrishnan, K. K. and Sreenan,
C. J. (2017) 'SAP: Stall-Aware Pacing for Improved DASH Video
Experience in Cellular Networks', MMSys'17 Proceedings of the
8th ACM on Multimedia Systems Conference, 20-23 June. Taipei,
Taiwan. 3083199: ACM, pp. 13-26. isbn: 978-1-4503-5002-0/17/06

Type of publication Article (peer-reviewed);Conference item

Link to publisher's
version

10.1145/3083187.3083199

Rights © Owner/Author | ACM 2017. This is the author's version
of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in
MMSys'17 Proceedings of the 8th ACM on Multimedia Systems
Conference, http://dx.doi.org/10.1145/3083187.3083199

Download date 2024-04-20 08:16:03

Item downloaded
from

https://hdl.handle.net/10468/4924

https://hdl.handle.net/10468/4924

SAP: Stall-Aware Pacing for Improved DASH Video Experience
in Cellular Networks

Ahmed H. Zahran∗

Dept. of Computer Science,
University College Cork, Ireland

a.zahran@cs.ucc.ie

Jason J. Quinlan
Dept. of Computer Science,

University College Cork, Ireland
j.quinlan@cs.ucc.ie

K. K. Ramakrishnan
Dept. of Computer Science and Engineering,

University of California, Riverside
kk@cs.ucr.edu

Cormac J. Sreenan
Dept. of Computer Science,

University College Cork, Ireland
cjs@cs.ucc.ie

ABSTRACT
The dramatic growth of cellular video traffic represents a
practical challenge for cellular network operators in provid-
ing a consistent streaming Quality of Experience (QoE) to
their users. Satisfying this objective has so-far proved elu-
sive, due to the inherent system complexities that degrade
streaming performance, such as variability in both video bi-
trate and network conditions. In this paper, we present SAP
as a DASH video traffic management solution that reduces
playback stalls and seeks to maintain a consistent QoE for
cellular users, even those with diverse channel conditions.
SAP achieves this by leveraging both network and client
state information to optimize the pacing of individual video
flows. We extensively evaluate SAP performance using real
video content and clients, operating over a simulated LTE
network. We implement state-of-the-art client adaptation
and traffic management strategies for direct comparison. Our
results, using a heavily loaded base station, show that SAP
reduces the number of stalls and the average stall duration
per session by up to 95%. Additionally, SAP ensures that
clients with good channel conditions do not dominate avail-
able wireless resources, evidenced by a reduction of up to
40% in the standard deviation of the QoE metric.

CCS CONCEPTS
• Information systems → Multimedia streaming; •
Networks → Network performance modeling; Network sim-
ulations;

∗Also with Electronics and Electrical Communication Engineering
Dept., Cairo University, Egypt.

MMSys’17, Taipei,Taiwan

ACM. 978-1-4503-0000-0
DOI: 10.1145

KEYWORDS
Adaptive bitrate video streaming, DASH, QoE, separable
programming
ACM Reference format:
Ahmed H. Zahran, Jason J. Quinlan, K. K. Ramakrishnan, and Cor-
mac J. Sreenan. 2017. SAP: Stall-Aware Pacing for Improved
DASH Video Experience in Cellular Networks. In Proceedings of
MMSys’17, Taipei,Taiwan, June 20-23, 2017, 14 pages.
DOI: http://dx.doi.org/10.1145/3083187.3083199

1 INTRODUCTION
Video streaming over cellular networks is growing rapidly,
and is expected to reach 75% of all cellular traffic by 20201.
This rapid growth has network operators playing catch-up
trying to ensure that all of their customers are given a con-
sistent Quality of Experience (QoE). In cellular networks,
offering quality assurances is especially challenging due to
the complexities of the wireless transmission medium. In a
recent study by Conviva2, the majority of users identified
video stalls as the most irritating factor while streaming.
Hence, it is surprising that approximately 50% of video ses-
sions encounter stalls3. There is a crucial need to develop a
deep understanding of the cause of video stalls, and to design
techniques to minimize stalls.

Video streaming today involves a client player fetching seg-
ments from a server over HTTP. The most popular standard
is Dynamic Adaptive Streaming over HTTP (DASH). The
client continuously adapts the selected video quality based
on prevailing network conditions. A well-known issue with
DASH is when multiple video users compete in sharing a net-
work link, with several studies [1, 13, 15] demonstrating that
quality instability and stalls are very common. Such issues are
greatly exacerbated in wireless networks. To illustrate, when
multiple users share a cellular base station, there exist at
least three interacting control loops involved in the streaming
process. The DASH client exercises the control on the video
quality control loop with the server, the streaming server and
1CISCO Visual Networking Index. http://goo.gl/jFB2L7. Last accessed
Apr 25 2017.
2Conviva QoE report. https://goo.gl/lwI2At. Last accessed: Apr 25
2017.
3mux.com blog. https://goo.gl/SS674Q Last accessed: Apr 25 2017.

MMSys’17, June 20-23, 2017, Taipei,Taiwan A. H. Zahran et al.

client are involved in the underlying TCP congestion control
loop, and the base station scheduler controls the resource
allocation and scheduling over the downlink air interface con-
trol loop to the cellular device. Each of these control loops
operates independently and at different timescales, which
often leads to degraded streaming performance [4, 7].

Techniques proposed to improve streaming performance
consider different approaches including end-to-end [2, 5, 6,
11, 15, 16], network-based [4, 7, 13, 18, 22, 25], and hybrid
solutions [3, 10, 18, 19]. In end-to-end solutions, changing the
client adaptation logic and/or the server delivery behavior
represent common design elements. In network-based solu-
tions, traffic shaping, trans-rating, and/or trans-coding are
examples of the functions considered. These approaches main-
tain the independence between network operators and content
providers, but they may lead to sub-optimal performance.
For example, a streaming client may trade video quality by
adopting an overly conservative estimator for the available
network throughput to reduce stalls. Similarly, network-based
solutions usually consider network-state only in their deci-
sions and the application state is overlooked. Hence, a video
client may still suffer from performance degradation, such
as video stalls. Hybrid solutions assume interaction between
end-nodes and network agents. Additionally, these solutions
may assume integrated control loops for both the end-to-end
level and the network level by operating with a bird’s eye-
view. But this comes at the cost of communication overhead.
The MPEG Server and Network Assisted DASH (SAND)
standard provides such a framework, with a DASH-Aware
Network Element (DANE) as a network agent.

In delivering video over a wired link, the goal is to allocate
resources in a fair manner so that clients can have equiva-
lent QoE. But the nature of wireless access means that the
achievable data rate is not the same for each client, as it is a
function of the channel condition at each client. In addition,
each client’s channel condition can vary considerably over
short time periods due to fading and other factors. Thus,
unlike in wired links, it must be recognized that achieving
equivalent QoE across all clients is an unreasonable objec-
tive. Fairness is not absolute, but is rather a function of the
channel conditions available to each client. Thus, steps must
be taken to manage wireless resources to ensure that clients
with poorer channel conditions do not suffer unnecessarily,
while clients with good channel conditions always seek to
maximize their own QoE. This can be achieved by redis-
tributing channel resources so as to reduce extremes of QoE
across clients. Furthermore, the potential of a stall impairs
user QoE significantly, and it is desirable for the network to
re-allocate resources to such a client on a short term basis,
without introducing substantial unfairness. Our approach is
to guide this redistribution process while balancing multiple
considerations, including that of avoiding stalls.

In this research, we set out to see if we can eliminate stalls
(or come close to it) for cellular users through the use of a
network agent that is aware of a limited amount of client
state, and can judiciously manage resources at the bottleneck

wireless link. We further seek to design a solution that can
manage the link resources such that the Quality of Experience
across all clients is well-balanced, thus promoting fairness. We
introduce Stall Aware Pacing (SAP) as a novel network-based
solution to improve the streaming performance in cellular
systems. SAP indirectly integrates the client-server quality
control loop and the base station downlink scheduling process
to reduce stalls when a group of users share a congested
cellular downlink air interface. SAP achieves this goal by
optimizing the delivery rate of individual packets of a flow
based on both application and network states, targeting
resources to clients for whom a stall is imminent. These
clients are often, but not always, those at the cell edge. Our
performance evaluation based on real video sessions (H.264
video streamed from a server to clients playing the video) over
a simulated LTE network shows that SAP improves the stall
performance for different DASH client adaptation algorithms
in a wide variety of operating conditions in comparison to
state-of-the-art techniques. Moreover, SAP achieves this with
only a modest reduction in the average delivered video rate.
Our contributions can be summarized as follows:
• We developed SAP as a novel network-based optimized

pacing solution whose design captures the typical user per-
ception for image quality while factoring in the impact of
stalls. Additionally, the SAP design provides for differential
user treatment to accommodate inherent design features such
as device capability or user priority.
• We present collaborative SAP, in which the state of the

client buffer is relayed by the client to the network-based
pacing module. We also present non-collaborative SAP, an
in-network algorithm that operates on an estimate of the
buffer-level at the client.
• We evaluate SAP using a laboratory test-bed with video

clients streaming real video content over a simulated LTE
network in a wide variety of scenarios, including different
user topologies and fading conditions.
• We show that SAP reduces the number of stalls and the

average stall duration by up to 95% leading to a dramatic
reduction in the stall QoE penalty, up to 85%. We show
that SAP reduces the variability in the client QoE by up
to 40%, being especially effective when clients operate with
different network conditions. Finally, we conclude that the
extra requirement for access to client state information in
collaborative SAP does not provide a noticeable benefit over
non-collaborative SAP.

The rest of this paper is organized as follows. Background
and related work is presented in Section 2 followed by the
design of SAP in Section 3. We then present our performance
evaluation setup and results in Section 4. Conclusions and
future work are presented in Section 5.

2 BACKGROUND AND RELATED
WORK

Adaptive streaming over HTTP, recently standardized as
DASH, is becoming the dominant technique for transmitting

Stall Aware Pacing MMSys’17, June 20-23, 2017, Taipei,Taiwan

video due to its ability to traverse firewalls and the abun-
dance of HTTP infrastructure. With DASH, the video is split
into multiple segments and each segment is encoded into
different representations varying in their qualities. DASH
video clients may change the video quality at segment bound-
aries in response to variations in operating conditions. Client
adaptation strategies span different approaches including
buffer-based, rate-based, and hybrid approaches.

Huang et al. [14] propose a buffer-based strategy by which
the buffer-level is mapped to the selected video quality. Jiang
et al. [15] propose FESTIVE as a rate based heuristic with ran-
domized scheduling of segment requests and stateful adaptive
rate update strategy. In [5], De Cicco et al. propose ELASTIC
in which segment quality selection is based on a proportional
integral controller. In [16], Li et al. propose PANDA that
employs self-traffic network probing to establish an accurate
estimate of the available network throughput. These adap-
tation strategies include design elements to counter stalls
such as maintaining a high level of playout buffer occupancy
and/or conservative rate estimators. However, achieving the
best streaming performance in the highly variable operating
conditions of a cellular network is difficult to achieve while
solely relying on client adaptation.

A few server-based techniques have been proposed to im-
prove the streaming performance. In [6], De Cicco et al.
propose a closed-loop controller implemented at both the
client and server to take adaptation decisions and regulate
packet transmissions from the server. In [11], Ghobadi et
al. propose Trickle as a server-side solution that enforces an
upper-bound on the TCP congestion window. This bound
is adjusted according to the streaming rate and round-trip
time. However, such solutions are agnostic to the underlying
operating conditions and are not designed to achieve the
best performance in highly variable bandwidth conditions
observed in cellular networks, which is the focus of our work.

A number of network-based solutions proposed to improve
network resource sharing among multiple video clients are
more directly related to our work. In [13], Houdaille and
Gouache show that video rate shaping at a WiFi home gate-
way reduces the number of quality changes and oscillations for
both Microsoft smooth streaming and Apple’s HLS. In [22],
Pu et al. employ a proxy at the edge of network core. This
proxy implements split TCP, rate-dependent packet prioriti-
zation, and video transrating based on optimizing a system
objective function integrating user rate-utility, smooth rate
switching, and buffer-level tracking. [28] takes advantage of
mobile-CDN, as part of the network operator infrastructure,
to implement an application-level fair scheduler for video
rate control. The proposed scheduler integrates user, device,
network, and TCP information in its decisions. In [7], a target
rate for every data and video stream is communicated to
an underlying minimum rate proportional scheduler at the
base station. This target rate is estimated using an adaptive
guaranteed bit rate algorithm that is shown to match the
optimal solution of maximizing the total user utility under
resource constraints. In [4], Chen et al. propose the AVIS

scheduling framework that throttles each stream to a rate in
a specific range. The minimum rate in the range is identified
by solving an optimization problem that maximizes the total
user utility in the wireless system assuming limited resources.
The maximum rate is determined based on the allocated
minimum rate and the next higher video rate. A crucial
point of distinction for our SAP solution is that we adopt
a QoE-driven utility that integrates stall probability in its
decision, and the ability to incorporate device heterogeneity
as a factor. Furthermore, the aforementioned network-based
solutions do not allow one to benefit from state updates from
clients, thus distinguishing SAP, as it can operate whether
or not such collaboration is available.

Collaborative solutions assume some level of interaction
between clients and network elements. In [18], Mok et al. pro-
pose using a network proxy in the content provider network
to assist the client in measuring the available bandwidth by
monitoring packet round trip times. The client integrates
this estimate in its QoE-driven adaptation policy. In [25], the
authors show that maximizing the minimum buffer-level for
multiple non-adaptive video clients in a wireless system is an
NP-hard problem. With the client providing the buffer-level
at every epoch, they propose a greedy scheduler for non-
adaptive video and show its optimality if the wireless medium
remains stable between decision epochs. In [3], Bouten et al.
propose an in-network QoE-driven quality selection based
on both network and client information. The wired network
resources are monitored using a packet sampling approach
to accurately forecast future available resources in wired net-
works. The network then solves an optimization problem that
maximizes a total video QoE metric that includes received
quality, the number of rate switches and stalls, subject to
resource constraints. The result is passed directly to the client
which has been altered to use it in selecting the quality of the
next segment. Georgopoulos et al. [10] propose a framework
to identify individual user quality for fair resource allocation
among a group of users. The estimated rate is then com-
municated directly back to the customized client using the
northbound interface of the software defined network con-
troller. In contrast, SAP uses the solution of its optimization
to indirectly impact the client behavior, not requiring that
the clients be altered to accept directions from the network.
Thus, SAP also maintains the independence of control func-
tions of both network and content providers, which from a
practical viewpoint is advantageous for companies operating
in this highly competitive business sector.

3 SAP
3.1 SAP Overview
SAP is a stall-aware network element that manages a group
of video flows and seeks to minimize stalls, while improving
the QoE of video clients sharing a cellular base station (BS).
SAP achieves this goal by pacing the delivery rate of video
packets while considering both client application and network
state. Network state is captured by the amount of resources
dedicated to clients receiving video traffic, the number of

MMSys’17, June 20-23, 2017, Taipei,Taiwan A. H. Zahran et al.

SAP-PM

SAP-AL

SAP-Op

SAP-NL

DPI

Figure 1: SAP Architecture, comprising the appli-
cation state logger (SAP-AL), network state logger
(SAP-NL), SAP pacing optimizer (SAP-Op), and
SAP pacing manager (SAP-PM)

clients and the channel quality information for individual
clients. Application state information includes video encoding
information and the current video buffer-level at the client.
Figure 1 shows the SAP components.

SAP may operate in either a collaborative or non-collaborative
mode. In collaborative mode, the streaming client provides
the application logger the current application state infor-
mation. In the non-collaborative mode, SAP has to adopt
different techniques (e.g., deep packet inspection) to obtain
or estimate the application state information. SAP’s net-
work state logger interacts with network entities to collect
relevant network state information including the number of
DASH clients, their corresponding channel quality informa-
tion, and the amount of resources dedicated for them at the
BS. The pacing optimizer integrates the application and net-
work state information to determine the best delivery rate for
each individual video flow. SAP’s pacing manager controls
the delivery rate for each flow based on the rate calculated
by the optimizer.

3.2 Design of the SAP Pacing Optimizer
Typically, the adaptation algorithm of DASH determines the
quality of the next segment it is going to request. The time
between consecutive requests is therefore of the order of a
segment duration, which is typically between 4-10 seconds
for cellular networks. SAP’s optimization may execute peri-
odically, or it may be executed in response to a predefined set
of triggers such as client departure, client arrival, change in
network resources and/or similar related events. SAP’s opti-
mizer could also be invoked in a hybrid combination of both
periodic and explicit trigger events. The periodic execution
would be performed at a much longer time scale than the
BS scheduling time. The cellular BS scheduler executes every
few milliseconds, and in LTE it allocates resources every two
milliseconds. The SAP optimizer would run at a frequency
in between this BS scheduler frequency and the client ap-
plication adaptation frequency of once every 4-10 seconds.
We expect a typical period between 250 ms and 1 second as
being suitable for performing this pacing optimization. Such
period would enable SAP to perform several rate adjustments
per segment to orchestrate the interaction between different

streams without incurring excessive unnecessary processing
overhead.

3.2.1 System Model. We consider a base station (BS)
serving U DASH users that each have a different channel
quality identified by its spectral efficiency per resource unit
(RU) γukbps/RU , where u ∈ {1..U}. We assume that the
BS capacity is divided into a group of allocatable resource
units managed by the BS scheduler. In LTE, a resource
block group (RBG) at an eNodeB represents the allocatable
resource unit. The size of a RBG would vary depending on
the BS bandwidth. For example, the RBG is a single resource
block for a BS with 1.4MHz cell bandwidth while 2-resource
blocks form a single RBG in a BS with bandwidth of 3MHz
or 5Mhz. As the BS bandwidth increases, RBG are formed
from larger resource block clusters to simplify the scheduler
design. We assume that C RUs are dedicated for DASH users.
Generally, C would vary dynamically depending on different
factors, including the volume of non-video traffic that may be
sharing the BS with DASH clients. We assume the presence of
a bandwidth slicer that distributes the cell bandwidth among
different traffic classes [4], e.g., DASH video, non-DASH
video, and background traffic. In compliance with DASH,
we consider each video is split into S segments with each
segment corresponding to a duration of τ seconds. The videos
are encoded into Q quality representations whose average
rates are denoted rq, where q ∈ {1..Q}.

3.2.2 SAP QoE-Oriented Design. The SAP pacing opti-
mizer integrates stalls and video quality as key aspects af-
fecting the QoE performance of video delivery over cellular
systems. Specifically, SAP maximizes a video quality utility
metric and minimizes a stall penalty that is a significant
factor for user QoE. SAP’s rate changes are presented to the
client adaptation logic in a manner similar to changes in the
channel condition. Our evaluation confirms that SAP does
not adversely impact the end-client switching performance
and in many cases reduces the number of quality switches.

SAP captures the visual quality using a tunable concave
quality utility metric inspired by the video quality metric
(VQM) [21]. For the same content encoded at different rates,
VQM varies between 0 to 1, with higher quality having a lower
value. Further, it is well understood that as the encoding
rate increases, the marginal improvement in quality reduces.
Therefore, we consider an exponential video quality utility
measure, denoted by Υu(xu), expressed as

Υu(xu) = (1− e−ρuxu/rq), (1)

where xu is the rate that would be allocated to user u and
ρu is a tunable parameter that can be set according to the
device capability or based on operator requirements. Note
that in Eq. (1), higher rates have larger utility. Also, Υu(xu)
would have a larger marginal utility for low video rates in
comparison to higher ones. With users viewing video on a
range of devices with varying capabilities, the video rate util-
ity would correspondingly vary across heterogeneous devices.
One option to account for this heterogeneity is to tune ρu by
the operator to differentiate the quality of service provided to

Stall Aware Pacing MMSys’17, June 20-23, 2017, Taipei,Taiwan

users with different priorities. Given the exponential utility
function is upper-bounded by 1, ρu can be estimated as

ρu = − rq
ru

log(ε) , (2)

where ru represents the maximum rate assigned to user u due
to device capability or assigned user priority. With ε being a
small fraction, this design implies that Υu(ru) = 1− ε and
that any increase in the streaming rate beyond ru for user u
would lead to an insignificant change in the user utility.

SAP seeks to capture the stall impairment by estimating
the probability of buffer depletion at the client. User u would
typically stall if the download time of the requested segment,
denoted as du, is larger than the segment deadline Du. Du
can be estimated as the time remaining until segment playout.
Since segments are typically downloaded sequentially, the
next segment deadline equals the buffer-level at the time of
sending the segment request. The download time du depends
on the downloaded segment size and the delivery rate of this
segment to the client. The downloaded segment quality is in-
dependently selected by the client according to its adaptation
policy based on the application state information. Assuming
that the wireless access link is the bottleneck, the delivery
rate of the segment would mainly depend on the resource
scheduling at the BS, which of course only considers network
state information when it is allocating resources to its users.

In essence, SAP indirectly controls the BS scheduling, by
managing the flow of packets toward the BS, considering
both network and application states. This is performed at
an intermediate timescale between the small BS scheduling
period and the much longer quality adaptation time scale.
Hence, when the SAP pacing manager is executed, users can
be classified into one of two states
• new-request state in which the user has recently finished

downloading a segment and is requesting a new one, or
• mid-request state in which the user is still downloading

a previously requested segment.
With the first class, SAP determines the stall probability

of user u, denoted as πu, as

πu = Prob(du > Du) = Prob
(
Sϑu

xu
> Du

)
,

where xu represents the rate at which user u’s packets would
be delivered to the BS and Sϑu represents a segment size
random variable conditioned on the selected quality level ϑu ∈
{1..Q} corresponding to the selected xu. It is worth noting
that for the new-request state, xu represents the quality rate
of the new segment that should ideally be requested by the
client from SAP’s point of view. This quality identifier ϑu
is maintained by SAP as part of the flow state until it is
updated with the next segment request. Hence, if the system
state made SAP to select a high quality rate at the beginning
of the segment, this decision would be supported until the
next segment request, even when network state changes.

If the user is in the mid-request state, the SAP pacing
manager calculates the stall probability using the conditional
residual segment size distribution, denoted as FSϑu

(.), and

is expressed as

πu =
1− FSϑu

(bu +Duxu)
1− FSSϑu

(bu) , (3)

where bu represents the total transmitted bytes for the cur-
rently downloaded segment of user u. Note that segment
download deadline Du is reduced by the time elapsed since
the last execution of the SAP pacing optimization. Clearly,
there is a need to monitor both downlink and uplink. The
downlink is monitored to determine the number of bytes
transmitted per segment for each active user. The uplink is
monitored to identify new segment requests.

3.2.3 SAP Optimization Program. SAP maximizes the to-
tal quality utility minus the total stall penalty for all users.
This design is inspired by the desire to provide an improve-
ment in the QoE performance of video delivery on the cellular
network, and particularly to seek consistent QoE for users,
even those with diverse wireless channel conditions. Our SAP
pacing manager optimization program is expressed as

max
xi

U∑
u=1

Υu(xu)− βπu

such that ∑
u

xu/γu < ζ C (4)

xu ∈ {r̂1, ..., r̂Q} (5)

where β represents non-negative weights for the switching and
stall penalties, respectively. r̂i represents the scaled version
of the video encoding rate, and ζ represents a scaling factor
to avoid resource underutilization at the BS. We scaled the
encoding rates ri to r̂i to compensate for the overhead of lower
layers such that the application goodput would match the
target encoding rate. Additionally, we employed the scaling
factor ζ to avoid resource underutilization, resulting from
performing SAP rate control using the reported wide-band
spectral efficiency while the scheduling performed at base
station is based on individual resource unit spectral efficiency.

The integration of quality and temporal components in
the SAP optimization assist streaming clients to avoid stalls,
irrespective of the cause of stalls. Stalls may happen for differ-
ent reasons including significant changes in the user channel
condition, sudden changes in network load (e.g., arrival of
new users), and/or large increase in the video’s bandwidth
demand due to the inherent variable bitrate of compressed
video. SAP accommodates many of these scenarios by dynam-
ically re-adjusting the resource allocation and thus controlling
the packet delivery process to the BS scheduler. By throttling
a specific user, the BS is implicitly forced to serve the traffic
of other users.

The operation of the SAP pace optimizer depends on the
availability of a set of conditional distributions for segment
sizes using different encoding rates for a given segment dura-
tion. These can be easily determined by fitting the segment
size data to a suitable distribution. A set of such distributions
are prepared in advance by the network operator for a wide

MMSys’17, June 20-23, 2017, Taipei,Taiwan A. H. Zahran et al.

Table 1: Weibull distribution parameters for segment
sizes

quality 1 2 3 4 5 6 7 8 9 10
Shape 2.65 2.7 2.72 2.84 2.9 3.18 3.07 3.21 3.15 3.20
Scale 132 210 313 419 586 973 1309 1666 2140 2388

range of content, with segment size data made available using
one of several techniques. One option is to fetch byte-range
MPD files if they are available; these provide segment sizes
for each encoding rate. Or segment sizes can be obtained
by iteratively downloading segments at several fixed qual-
ities from the content provider and recording the segment
sizes. Alternatively, if there was cooperation with the content
provider, segment size data (or indeed distributions) could
be provided to the network operator directly. In this work,
we obtain segment size data from the full iVID dataset [24]
and fit this data to a Weibull distribution using fitdistplus
package in R.

Table 1 shows the scale and shape parameters of the fitted
Weibull distributions for different quality levels of all movies
in the publicly available iVID dataset. The segment duration
for these is 4 seconds.

The SAP pacing optimization program can be classified as
a non-linear discrete optimization problem. Solving such prob-
lems is usually time consuming and not necessarily feasible in
real-time. However, we ensure real-time operation by taking
advantage of the problem structure. Since all nonlinear terms
are functions of a single optimization variable, the program
can be formulated as a separable programming problem that
can be solved at a speed similar to linear programs [9, 12].

3.3 Collaborative vs. Non-collaborative
SAP

The previous section detailed the design of SAP and how it
makes use of network and application states. SAP can operate
in one of two modes: collaborative or non-collaborative. In
collaborative SAP, the application state logger acts as a
DANE interface that receives status messages from the client.
This provides SAP with encoding information (rates and
segment duration) and the client’s current buffer-level. Note
that the segment duration is used only for identifying the
conditional segment size distribution to apply. Encoding
parameters would be provided at the beginning of the session,
while the buffer-level would be reported on a regular basis
during the session. In the non-collaborative case, we assume
that the network operator would implement additional in-
network functions to identify the required information for
SAP. We now explore the non-collaborative case and consider
two possibilities:
• Non-encrypted client-CDN communication. In this

case, the operator would be able to extract encoding param-
eters, such as encoding rates and segment duration, from the
DASH description (MPD) file. To estimate the buffer-level,
the SAP application state logger would need to rely on deep
packet inspection. Generally, the uplink mainly carries HTTP
GET requests for video segments and TCP ACK packets. By

tracking HTTP requests, SAP can estimate a conservative
value for the client application buffer as detailed below.
• Encrypted client-CDN communication. In this case,

SAP has to rely on a priori information about video traffic.
General guidelines for encoding rates used by different video
content providers are publicly available. Hence, SAP may
rely on these public rates as alternatives for ri. Note that the
SAP pacing optimizer may use arbitrary discrete rates for ri
with inter-rate gaps following the public guidelines. A typical
rate ratio between consecutive rates is 1.5. But, we believe
that the minimum rate is the most critical factor. Choosing
the right value for the minimum rate is important, especially
for users with poor link conditions: choosing too small a value
may over-throttle the flow to the user, resulting in excessively
poor QoE; on the other hand, choosing too large a value may
result in inefficient utilization of the available resources. For
our work in this encrypted scenario, we assume a technique
to estimate the segment duration by observing the segment
size of the first few segments. This technique may assume a
small segment duration (e.g., 4 sec) until a more accurate
estimate of the segment duration is calculated. Similar to the
non-encrypted case, this segment duration would be used to
estimate the buffer-level as presented below.

3.3.1 SAP Buffer-level Estimator. The buffer-level estima-
tion is needed in the non-collaborative scenario to identify the
delivery deadline of segments. The buffer-level, denoted as b,
can be estimated as the difference between the received and
played video durations, denoted as Dr and Dp respectively.
Hence, the buffer-level can be calculated as

b = Dr −Dp. (6)

By knowing the segment duration and the number of received
segments, the received media duration can be directly esti-
mated as their product. The number of received segments
can be determined by monitoring the HTTP GET requests
on the user uplink, denoted as gu for user u. The received
video duration may be estimated as (gu − 1)τ seconds. It is
important to note that this approach would efficiently work
in both non-encrypted and encrypted cases, provided that
the client requests segments in a sequential manner. However,
if the client opts to abandon segments while they are being
downloaded, for example to request lower quality segments to
avoid stalls, then gu should correspond to sequential segment
requests. Note that in such mechanisms today the client is re-
quired to close the TCP connection to trigger abandonment
of the requested segment and establish a new connection
to request the new segment. Hence, this exchange can be
captured to maintain an accurate estimate of gu.

The playout video duration can be estimated as the dif-
ference between the current wall clock, denoted as tc, and
the time at which playout starts, denoted as tp. The initial
buffering depends on the client implementation, but an ini-
tial buffering duration between 6 and 10 seconds is common
and considered an acceptable startup delay for users. Our
estimator assumes that the client would always start after

Stall Aware Pacing MMSys’17, June 20-23, 2017, Taipei,Taiwan

downloading the first segment. The validity of this assump-
tion is based on the observation that larger segment durations
are used for cellular clients. Hence, the estimated buffer-level
would be close to the actual buffer-level. However, it would
be a conservative estimate for the buffer-level if the client
actually has a larger initial buffer. Additionally, this estimate
would deviate from the actual buffer if the user intervenes
with the session, e.g., pause the playout. Note that in this
case, the client would continue to download the media until
the buffer saturates and then would stop requesting segments
until the playout is resumed. In this case, SAP is agnostic to
user action and would consider all clients as actively playing
out their entire buffer.

Since we depend on the real-clock to capture the play-out
duration of the stream, the duration of an interruption should
be used to rectify the buffer-level estimate. In our estimator,
stalls are captured by negative buffer estimates. To rectify
the buffer-level estimate, we shift our playout reference time
to the instant at which the client resumes playout after a stall.
We assume that the client would continue the playout once
it receives a segment. Additionally, we reset the number of
received segments to 1 (i.e., gu = 2). Hence, we can consider
tp as the time at which playout starts or resume after a
stall. Similarly, gu can be considered the number of stall-free
received segments since the client started or since the last
stall.

4 PERFORMANCE EVALUATION
4.1 Evaluation Setup
The SAP evaluation testbed is designed based on an em-
pirical methodology that requires the use of realistic video
content and player software, operating over a simulated cellu-
lar network, thus promoting realism and enabling controlled
repeatability of experiments across a range of configurations.
Fig. 2 shows our evaluation testbed, which is based on iVID
D-LiTE testbed [23]. In the following subsections, we present
the key elements of our testbed and we provide full imple-
mentation details in the appendix.

4.1.1 Streaming Clients. In our testbed, DASH clients are
running over a version of Ubuntu installed in Raspberry Pi 2
and standard net-books. The clients use GPAC 0.5.2-DEV-
rev9854 that we extend with well-known/recent adaptation
algorithms such as BBA2 [14], FESTIVE [15], conventional
(CONV) [15, 16], and ARBITER [29]. BBA2 represents the
class of buffer-based algorithms in which the quality selection
mainly depends on the current buffer-level. FESTIVE repre-
sents the class of conservative rate-based algorithms that are
designed to operate well in scenarios with shared bottlenecks.
CONV represents another rate-based strategy that streams
video while trying to maintain the quality at a stable level as
much as possible. ARBITER represents the class of hybrid
algorithms that integrate both application and network state
in the quality selection decision. The parameters of different
streaming algorithms are set to the default values reported

4https://gpac.wp.mines-telecom.fr/

in the papers cited. In all the evaluation scenarios, a client
is configured to perform 8 seconds (two segments) of initial
buffering and 4 seconds (one segment) of rebuffering after
any stall [26].

4.1.2 LTE Network Setup. The LTE network is imple-
mented using the LTE-EPC network simulator (LENA) mod-
ule5 in ns36. In our setup, external nodes are connected to
simulated nodes using the ns-3 TAP mechanism, which uses
a special net device called a TapBridge. In order to connect
LTE UEs to the external streaming clients, a second carrier
sense multiple access (CSMA) net-device (12.0.0.x network) is
added to the UE, as LTE-net-devices are not compatible with
the ns3-TAP bridge. On the other side of the LTE network,
the LTE packet gateway (PGW) is connected to the network
attached storage (NAS) server through a master node whose
functionality is explained below. We have modified the code
of both the LENA scheduler and routing modules in ns3 as
described below.

For proper routing of downlink packets, we added static
routes for the 12.0.0.x network at the remote node. Addition-
ally, we changed the implementation of ipv4-list-rout-ing.cc
to mangle the destination address of downlink packets be-
fore entering and after exiting LENA devices to allow the
packets to travel through the tunnel between LTE PGW and
UEs. The destination address is changed from 12.0.0.x to
7.0.0.x before being forwarded to the PGW. Additionally,
the destination addresses of downlink video packets received
at an LTE netdevice (7.0.0.x network) are changed back to
the actual client 12.0.0.x address and are then forwarded to
the ns3 12.0.0.x TapBridge. For uplink traffic, the packets
follow the default gateway towards the PGW and are then
forwarded based on static routes that are installed at the LTE
PGW and remote host node for the NAS network (9.0.0.x) to
be forwarded to the appropriate device. Each physical client
node (Raspberry PI or netbook) is configured with a default
gateway which is the corresponding CSMA netdevice of the
connected LTE UE. The packets then proceed to the LTE
PGW as the default gateway for LTE UEs.

In LENA, we consider the log distance path-loss chan-
nel model [8] for the link between eNodeB and UEs. This
pathloss is overloaded with fading traces generated using a
tool provided with LENA. The default LENA configuration
parameters are used for both eNodeB and pathloss model. All
our evaluations are conducted with the proportional fairness
(PF) scheduler at the eNodeB. We have modified the PF
scheduler implementation only so that user channel quality
can be reported to the traffic manager being evaluated.

4.1.3 Master Controller. The master controller node is
responsible for orchestrating the evaluation and performing
traffic management functions during video sessions. More
specifically, this node configures the network and GPAC
clients before an evaluation run starts. Note that network
configurations include parameters such as eNodeB bandwidth,

5LENA module. https://goo.gl/6D1Wfq. Last accessed: Dec 8, 2016.
6https://www.nsnam.org/

MMSys’17, June 20-23, 2017, Taipei,Taiwan A. H. Zahran et al.

Figure 2: Evaluation Testbed
eNodeB scheduler, and fading model, while the client con-
figuration parameters include the adaptation algorithm and
streamed video specifications. At the end of the run, it also
collects performance logs from the clients for post processing.

During the evaluation, the master controller performs traf-
fic management functions. In our evaluation, we compare the
performance of three different traffic controllers including no
traffic control (noTC), AVIS [4], and SAP. AVIS focuses on
fair user allocation and reduction of quality switches, but
overlooks stalls in its design. Both AVIS and SAP optimiza-
tion programs are implemented using the Lindo solver7. The
AVIS implementation is based on the continuous version
presented in [4] and the SAP implementation is based on
the separable programming model. In our testbed, the AVIS
parameters are set to the default values presented in [4]. For
SAP, we set the stall weight β to 100 and the default utility
saturation parameter ρu of all clients to 3Mbps. 3Mbps is the
maximum rate for HD resolution in the iVID video dataset.

Both SAP and AVIS are periodically executed every 250
ms and the outcome of the optimization program is used to
throttle individual user queues using the traffic control com-
mand in Linux. The master node maintains a communication
channel with the eNodeB to obtain user channel quality infor-
mation (CQI) required by both AVIS and SAP. Similarly, it
maintains communication channels with streaming clients to
obtain relevant application information for the collaborative
scenarios. In the non-collaborative scenario, the buffer-level
is estimated as presented in Section 3.3.1.

4.1.4 Evaluation Scenarios. In our evaluation, we consider
a group of video users sharing a highly loaded LTE eNodeB
to capture the impact of streaming in a limited-resource en-
vironment. Our performance evaluation shows that different
traffic management solutions have similar performance in
lightly loaded scenarios. Hence, we focus more on the more
relevant highly loaded systems. The eNodeB bandwidth is
1.4 MHz and has a transmission power of 30.2dBm. This
eNodeB has 6 resource units split into 6 allocatable resource
block groups (RBG) in the downlink. Each RBG can support
a PHY rate between 16 Kbps and 712 Kbps depending on
the user reported channel quality indicator value. In our eval-
uation, we consider two different user topologies in highly
loaded cells as detailed below.

7http://www.lindo.com/

We consider 6 DASH clients streaming 5-minute, 4-second
segment, videos over a single LTE eNodeB. In every session,
the clients are introduced to the network separated by a 1
second time gap. Each user streams a different five-minute
video from the iVID dataset [24]8, whose videos are encoded
with 4-second segments at the following rates {235, 375, 560,
750, 1050, 1750, 2350, 3000, 3850, 4300} Kbps. Note that the
base station is only used by the video users. In a more general
setup, other traffic may share the eNodeB and video users
would be allocated a slice of the total base station resources.

4.2 Performance metrics
Our performance metrics include the average received data
rate per session (rav), the average number of stalls per session
(nst), the average stall duration per session (tst), the average
number of switches per session (nsw), the average switching
level (lsw), and a combined QoE metric (xq) [20], which
was originally developed in [17] and [27]. The QoE metric is
expressed as [20]

xq = max(0, 0.17 + 5.67qav
qQ
− 6.72 ∗ qstd

qQ
− 4.95ϕ),

where qav and qstd represents the average and standard devi-
ation of the received quality level, and ϕ represents the stall
penalty and is expressed as

ϕ = 0.875 ∗max(0, 1 + ln(fst)/6) + 0.008333 ∗min(tst, 15),
where fst represents the frequency of stalls and tst is the av-
erage stall duration per session. The results shown represents
the average of each metric obtained across 15 runs.

4.3 Performance Results
4.3.1 Scenario 1: Collaborative Clients with Diverse Link

Conditions. In this scenario, we consider equally separated
users with the nearest and farthest users being at 25m and
375m, respectively, from the base station. Fig. 3 illustrates
the distribution of the achievable rate per resource unit for
each user. Note that these rates are determined by mapping
the reported CQI value to the eNodeB as defined in the LTE
standards. The figure shows that the closest client to the
eNodeB can achieve the highest PHY rate per RU (712 Kbps)
almost all the time, while the farthest client’s achievable
rate is less than 200Kbps for 60% of the time. Fig. 4 shows
8iVID Dataset. https://goo.gl/BP6LWR. Last accessed: Dec 8, 2016.

Stall Aware Pacing MMSys’17, June 20-23, 2017, Taipei,Taiwan

 0

 20

 40

 60

 80

 100

 0 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

C
D

F

Achievable RU Rate (Kbps)

U1

U2

U3

U4

U5

U6

Figure 3: Achievable rate per resource unit (RU) per
user in scenario 1

the average of each of the performance metrics for different
streaming algorithms.

SAP significantly improves the stall performance for all
algorithms in comparison to both noTC and AVIS. The
existing diversity in the channel condition enabled SAP to
achieve a significant reduction in both the number of stalls,
nst, and stall duration, tst. In conjunction with BBA2, SAP
reduces both nst and tst by 84% and 94% in comparison to
noTC. SAP also reduces both nst and tst of FESTIVE by 95%.
Additionally, we note a significant reduction of 83% and 86%
for nst and tst when SAP is used with ARBITER. Similar
performance gains are achieved by SAP in comparison to
AVIS. In fact, AVIS shows stall performance that is similar to
or worse than noTC. The improvement in stall performance
by SAP thus reduces the stall QoE penalty ϕ by 50%, 89%,
66%, and 40% for BBA2, FESTIVE, CONV, and ARBITER,
respectively. In this scenario with users having diverse link
conditions, the user farthest from the eNodeB encounters
most of these stalls.

The improved stall performance for SAP is due to its
resource management strategy, that not only ensures a mini-
mum rate for every client, but also dynamically paces indi-
vidual stream packets to protect clients from stalling. Fig. 5
illustrates the resource shares allocated by SAP and AVIS
for individual streams. Clearly, Fig. 5a and Fig. 5b illustrates
that in SAP more resources are allocated to protect the far-
thest client who is more exposed to stalls. It is also interesting
to observe that with BBA2, SAP is continuously support-
ing this user by allocating more resources over the entire
session duration, in comparison to only the initial part with
FESTIVE. Note that BBA2 employs a large buffer (240 sec)
and its clients are continuously competing for the network re-
sources. On the contrary, FESTIVE employs a much smaller
buffer (30 Sec). Hence, FESTIVE clients with good channel
conditions are able to fill their buffer and consequently delay
their segment requests. Thus, clients with poorer channel
conditions are offered more transmission opportunities by the
eNodeB and SAP stall avoidance would kick in at a much
lower frequency in comparison to BBA2. On the other hand,
Fig. 5c shows that while AVIS tends to avoid frequent rate
changes it does not provide the same level of stall protection
to video clients.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

ARBITER BBA2 CONV FESTIVE

Av
g

N
um

be
r o

f s
ta

lls
 (n

st)

AVIS noTC SAP

(a) Avg. number of stalls

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

ARBITER BBA2 CONV FESTIVE

Av
g

St
al

l D
ur

at
io

n
(t s

t)[
Se

c]

AVIS noTC SAP

(b) Avg. stall Duration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

ARBITER BBA2 CONV FESTIVE

Av
g

St
al

l P
en

al
ty

 (�
)

AVIS noTC SAP

(c) Avg. stall QoE penalty

 220

 240

 260

 280

 300

 320

 340

 360

ARBITER BBA2 CONV FESTIVEAv
g

Re
pr

es
en

ta
tio

n
Ra

te
 (r

av
)[K

bp
s] AVIS noTC SAP

(d) Avg. quality rate

 0

 5

 10

 15

 20

 25

 30

 35

ARBITER BBA2 CONV FESTIVE

Av
g

N
um

be
r o

f S
w

itc
he

s (
n s

w
)

AVIS noTC SAP

(e) Avg. number of switches

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ARBITER BBA2 CONV FESTIVE

Av
g

Sw
itc

h
Le

ve
l (

l sw
)

AVIS noTC SAP

(f) Avg. switch level

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 1.05

ARBITER BBA2 CONV FESTIVE

Av
g

Q
oE

 (x
q)

AVIS noTC SAP

(g) Avg. QoE metric

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

ARBITER BBA2 CONV FESTIVE

Q
oE

 S
td

 D
ev

 (�
q)

AVIS noTC SAP

(h) QoE std. dev.

Figure 4: Performance metrics for scenario 1

Fig. 4d shows that introducing a network traffic controller,
e.g., AVIS or SAP, results in reducing the average representa-
tion rate rav. This reduction is expected, as pacing the traffic
would slow the delivery rate of packets, leading to lower rate
estimates for rate-based strategies or lower buffer-levels in
buffer-based strategies. Fig. 4e and Fig. 4f show that SAP
significantly reduced the average number of switches nsw
and average switching level lsw of BBA2 by 64% and 60%,
respectively. Excluding BBA2, the switching performance of
the remaining algorithms is not significantly affected by the
traffic pacing/control functions.

Fig. 4g shows that the QoE metric xq drops when SAP is
used. This reduction is due to SAP reshuffling resources to
help suffering clients - which are those close to the cell edge.
Such reshuffling reduces xq for users close to the eNodeB
and increases xq for distant users.We emphasize that SAP
provides improved fairness, by reducing the variance in QoE
as shown in Fig. 4h. The latter figure shows that SAP reduces
σq by 40%, 40%, 24%, and 26% in comparison to noTC for
BBA2, FESTIVE, CONV, and ARBITER, respectively.

4.3.2 Scenario 2: Collaborative Clients with Similar Network
Conditions. In our second scenario, we consider users with a
mobile vehicular fading channel at a distance of 300m from
the base station. These clients have an average achievable

MMSys’17, June 20-23, 2017, Taipei,Taiwan A. H. Zahran et al.

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300

 0

 1

 2

 3

 4

 5

 6

S
A

P
 R

e
so

u
rc

e
 A

ll
o

c
a

ti
o

n

Time (Sec)

Client 6

Client 5

Client 4

Client 3

Client 2

Client 1

(a) BBA2-SAP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

S
A

P
 R

e
so

u
rc

e
 A

ll
o

c
a

ti
o

n

Time (Sec)

Client 6

Client 5

Client 4

Client 3

Client 2

Client 1

(b) FESTIVE-SAP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200 250 300

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

A
V

IS
 R

e
so

u
rc

e
 A

ll
o

c
a

ti
o

n

Time (Sec)

Client 6

Client 5

Client 4

Client 3

Client 2

Client 1

(c) FESTIVE-AVIS

Figure 5: Comparing SAP and AVIS resource allocation with different algorithms

wireless RU PHY rate of 301Kbps that over time varies be-
tween 16Kbps and 712Kbps. Fig. 6 plots our key performance
metrics for different adaptation strategies and different traffic
management strategies. Fig. 6d-6f show that the traffic con-
troller has limited impact on the quality selection for both
FESTIVE and BBA2, although SAP does reduce the repre-
sentation rate of the streamed video for reasons explained
earlier. But, SAP does reduce the number of switches, and
switching level for the ARBITER and CONV algorithms.

Fig. 6a shows that SAP manages to noticeably reduce the
number of stalls encountered for all adaptation strategies in
comparison to both AVIS and noTC. This reduction reaches
up to 34% and 29% in comparison to noTC and AVIS re-
spectively. Fig. 6b shows that SAP also reduces the average
stall duration per session for most of the combinations of
adaptation strategies and traffic controllers. This improved
stall performance leads to a reduction in the stall penalty
up to 23%, 9%, and 3.5% for BBA2, CONV, and FESTIVE,
respectively. For ARBITER, we found that SAP’s reduced
stalls are in fact spread across more sessions leading to this
increase in the stall penalty of ARBITER in comparison to
noTC. Note that such a distribution of stalls across users
leads to a reduced QoE metric as shown in Fig. 6g but reduces
the variance in the QoE observed by the users sharing the
same resources as shown in Fig. 6h. Note that SAP helps both
FESTIVE and BBA2 clients to boost the QoE and reduce
the QoE variance among competing clients when compared
to noTC.

Fig. 7a plots a selected subset of performance metrics for
individual BBA2 clients with both noTC and SAP. Note
that BBA2 clients persist at the lowest quality. Because of
this, showing quality rate and switching metrics for this
would not be useful. The figure illustrates that SAP achieve
the performance gains by significantly reducing the stalls
encountered by the second client. We noticed that the second
user stalls more than the other users because its video rate
increases for a series of subsequent segments, leading to buffer
depletion and a series of stalls. To illustrate, Fig. 7b and Fig.
7c plot the dynamics of the video client for user 2, with the
noTC and SAP traffic controllers, respectively. Clearly, we see
that the video client sticks to the first quality representation
for the entire video. However, the video demand increases
mid-session, and for a series of subsequent segments, leading
to buffer depletion as these segments take longer time to

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

ARBITER BBA2 CONV FESTIVE

Av
g

N
um

be
r o

f s
ta

lls
 (n

st)

AVIS noTC SAP

(a) Avg. number of stalls

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

ARBITER BBA2 CONV FESTIVE

Av
g

St
al

l D
ur

at
io

n
(t s

t)[
Se

c]

AVIS noTC SAP

(b) Avg. stall Duration

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

ARBITER BBA2 CONV FESTIVE

Av
g

St
al

l P
en

al
ty

 (�
)

AVIS noTC SAP

(c) Avg. stall QoE penalty

 231

 231.5

 232

 232.5

 233

 233.5

 234

ARBITER BBA2 CONV FESTIVEAv
g

Re
pr

es
en

ta
tio

n
Ra

te
 (r

av
)[K

bp
s] AVIS noTC SAP

(d) Avg. quality rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

ARBITER BBA2 CONV FESTIVE

Av
g

N
um

be
r o

f S
w

itc
he

s (
n s

w
)

AVIS noTC SAP

(e) Avg. number of switches

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

ARBITER BBA2 CONV FESTIVE
Av

g
Sw

itc
h

Le
ve

l (
l sw

)

AVIS noTC SAP

(f) Avg. switch level

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

ARBITER BBA2 CONV FESTIVE

Av
g

Q
oE

 (x
q)

AVIS noTC SAP

(g) Avg. QoE metric

 3.4
 3.6
 3.8

 4
 4.2
 4.4
 4.6
 4.8

 5
 5.2
 5.4
 5.6

ARBITER BBA2 CONV FESTIVE

Q
oE

 S
td

 D
ev

 (�
q)

AVIS noTC SAP

(h) QoE std. dev.

Figure 6: Performance metrics for scenario 2

download (note the wide bars in the delivery rate curve).
Such a situation is handled well by SAP because it allocates
more resources to this client. Thus, SAP helps to reduce the
number of stalls from 6 with noTC to just one stall for the
session shown. Note that the delivery rate and quality curves
(b-c) are not time-aligned as delivered segments are stored in
the buffer before being played out. Additionally, the quality
rate curve captures the stalls by dropping to zero for the
duration of the stall, if any.

The integration of application and network states enables
SAP to assist users as needed when network conditions or
video demands change. With static users, edge-users are
disadvantaged. SAP assists edge-users by optimally throttling

Stall Aware Pacing MMSys’17, June 20-23, 2017, Taipei,Taiwan

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

U1 U2 U3 U4 U5 U6

Pe
rfo

rm
an

ce
 M

et
ric

 V
al

ue

SAP-nst
noTC-nst

SAP-tst
noTC-tst

SAP-�
noTC-�

SAP-xq
noTC-xq

(a) Individual BBA2 client performance
with noTC and SAP

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350

 0

 5

 10

 15

 20

 25

 30

 35

R
a

te
 (

kb
p

s)

B
u

ff
er

 (
S

ec
)

Time (Sec)

Delivery Rate
Quality Rate

buffer level
Actual Rate

(b) BBA2 client dynamics over noTC

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350

 0

 5

 10

 15

 20

 25

 30

 35

R
a

te
 (

kb
p

s)

B
u

ff
er

 (
S

ec
)

Time (Sec)

Delivery Rate
Quality Rate

buffer level
Actual Rate

(c) BBA2 client dynamics over SAP

Figure 7: Detailed client performance and session dynamics example in scenario 2.

 0

 0.5

 1

 1.5

 2

 2.5

nst tst r'av n'sw lsw φ xq σ'q

No
rm

al
ize

d
M

et
ric

 V
al

ue

ARBITER-e
ARBITER

BBA2-e
BBA2

CONV-e
CONV

FESTIVE-e
FESTIVE

Figure 8: Normalized streaming performance met-
rics for collaborative and non-collaborative scenarios.
-e denotes the non-collaborative version. r′av = rav/235
, σ′q = σq/3, and n′sw = nsw/15.

the traffic of other users as shown in Scenario 1. SAP can
also support users as video demand increases as shown in
Scenario 2. We believe also that SAP can assist users that
experience large scale variation in link conditions due to
user mobility. Such changes can result in a noticeable drop
in the user data rate that would lead to a longer segment
download time. Hence, SAP would proactively help users
with a degrading channel, especially those users which SAP
estimates as having a low buffer-level. This assistance can
avoid stalls and large quality changes. Hence, we believe that
SAP would benefit both static and mobile scenarios.

4.3.3 Collaborative vs. Non-collaborative SAP. In this sec-
tion, we investigate the performance of SAP in non-collaborative
mode in which the buffer-level is estimated by SAP in com-
parison to being collaboratively provided by the client. In the
non-collaborative mode, we consider that encoding informa-
tion is available to SAP, but the instantaneous buffer-level
has to be estimated by SAP, using the estimation technique
presented in Section 3.3.1. Fig. 8 shows the streaming per-
formance metrics averaged over all sessions. Note that we
normalized some of the metrics to fit all of them in one
figure, and the normalization factors are indicated in the
caption. This figure shows that both collaborative and non-
collaborative SAP achieve similar performance metrics for
all the adaptation algorithms. Additionally, Fig. 9 plots the
correlation between individual client performance metrics
for both collaborative and non-collaborative scenarios. The

 0

 0.2

 0.4

 0.6

 0.8

 1

nst tst rav nsw lsw φ xq

Co
rr

el
at

io
n

ARBITER BBA2 CONV FESTIVE

Figure 9: The correlation between the performance
metrics of collaborative and non-collaborative sce-
narios
figure shows a high correlation for all metrics for all adapta-
tion strategies except for the FESTIVE stall metric. The low
correlation for the FESTIVE stalls is due to a minor variation
in the stall distribution across the clients. Only the farthest
client encounter stalls in the collaborative scenario while in
the non-collaborative scenario the second farthest client also
has a couple of stalls. Hence, we conclude that integrating
the buffer estimation technique with SAP can be sufficient,
thus avoiding any frequent updates from the streaming end
client. Consequently, the network does not need to have a
direct interface with client software or be aware of the local
state of the individual client adaptation.

5 CONCLUSIONS
The ability of DASH video streaming clients to operate ef-
fectively over cellular networks is poor, due to the inherent
variability of both video datarates and the wireless channel
quality. In highly loaded systems, these characteristics may
lead to streaming issues, such as stalls. Unlike the situation
when using wired links, it must be recognized that achieving
equivalent QoE across all clients is not a reasonable objective.
Fairness is not absolute, but is rather a function of the chan-
nel conditions available to each client. Thus, steps must be
taken to manage wireless resources to ensure that clients with
poorer channel conditions do not suffer unnecessarily, even
as clients with good channel conditions seek to maximize
their own QoE. This can be achieved by the network redis-
tributing channel resources so as to reduce extremes of QoE

MMSys’17, June 20-23, 2017, Taipei,Taiwan A. H. Zahran et al.

across clients. SAP seeks to re-allocate wireless resources in
favor of a client that becomes less likely to experience a stall,
without significantly degrading the QoE of other users. In
this paper, we present SAP as a traffic management solution
to improve the streaming performance of a group of DASH
video users competing for a base station’s resources. SAP
integrates both application and network state to optimally
pace individual stream delivery. Our extensive experiments
show that SAP significantly reduces video stalls encountered
by different users in comparison to the state of the art solu-
tions. Additionally, SAP reduces the QoE variability across
multiple clients, leading to a more consistent user experience.

ACKNOWLEDGMENTS
The authors would also like to thank the anonymous referees
for their valuable comments and helpful suggestions. This
publication has emanated from research conducted with the
financial support of Science Foundation Ireland (SFI) under
Grant No.: 13/IA/1892. This work was supported in part by
NSF grant CNS-1619441.

REFERENCES
[1] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis.

2012. What Happens when HTTP Adaptive Streaming Players
Compete for Bandwidth?. In Proceedings of the 22nd Interna-
tional Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV ’12). Toronto, Canada,
9–14.

[2] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen.
2013. Server-based Traffic Shaping for Stabilizing Oscillating
Adaptive Streaming Players. In Proceeding of the 23rd ACM
Workshop on Network and Operating Systems Support for Digi-
tal Audio and Video (NOSSDAV ’13). Oslo, Norway, 19–24.

[3] N. Bouten, R. de O. Schmidt, J. Famaey, S. Latré, A. Pras, and
F. De Turck. 2015. QoE-driven in-network optimization for Adap-
tive Video Streaming based on packet sampling measurements.
Computer Networks 81 (2015), 96 – 115.

[4] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and
M. Chiang. 2013. A Scheduling Framework for Adaptive Video De-
livery over Cellular Networks. In Proceedings of the 19th Annual
International Conference on Mobile Computing & Networking
(MobiCom ’13). Miami, Florida, USA, 389–400.

[5] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. 2013.
ELASTIC: A Client-Side Controller for Dynamic Adaptive Stream-
ing over HTTP (DASH). In 20th International Packet Video
Workshop (PV). San Jose, CA USA, 1–8.

[6] L. De Cicco and S. Mascolo. 2014. An Adaptive Video Streaming
Control System: Modeling, Validation, and Performance Evalu-
ation. Networking, IEEE/ACM Transactions on 22, 2 (April
2014), 526–539.

[7] D. De Vleeschauwer, H. Viswanathan, A. Beck, S. Benno, Gang Li,
and R. Miller. 2013. Optimization of HTTP adaptive streaming
over mobile cellular networks. In INFOCOM, 2013 Proceedings
IEEE. Turin, Italy, 898–997.

[8] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta,
B. Kulic, A. A. Julius, and R. Bianchi. 1999. An empirically based
path loss model for wireless channels in suburban environments.
IEEE Journal on Selected Areas in Communications 17, 7 (Jul
1999), 1205–1211.

[9] A. Galperin and Z. Waksman. 1981. A separable integer program-
ming problem equivalent to its continual version. J. Comput.
Appl. Math. 7, 3 (1981), 173 – 179.

[10] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N.
Race. 2013. Towards Network-wide QoE Fairness Using Openflow-
assisted Adaptive Video Streaming. In Proceedings of the 2013
ACM SIGCOMM Workshop on Future Human-centric Multi-
media Networking (FhMN ’13). Hong Kong, China, 15–20.

[11] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. 2012. Trickle:
Rate Limiting YouTube Video Streaming. In Proceedings of the

2012 USENIX Conference on Annual Technical Conference
(USENIX ATC’12). Berkeley, CA, USA, 191–196.

[12] D. S. Hochbaum and J. George Shanthikumar. 1990. Convex
Separable Optimization is Not Much Harder Than Linear Opti-
mization. J. ACM 37, 4 (Oct. 1990), 843–862.

[13] R. Houdaille and S. Gouache. 2012. Shaping HTTP Adaptive
Streams for a Better User Experience. In Proceedings of the
3rd Multimedia Systems Conference (MMSys ’12). Chapel Hill,
North Carolina, 1–9.

[14] T. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson.
2014. A Buffer-based Approach to Rate Adaptation: Evidence
from a Large Video Streaming Service. In Proceedings of the 2014
ACM Conference on SIGCOMM (SIGCOMM ’14). Chicago,
Illinois, USA, 187–198.

[15] J. Jiang, V. Sekar, and H. Zhang. 2012. Improving Fairness, Effi-
ciency, and Stability in HTTP-based Adaptive Video Streaming
with FESTIVE. In Proceedings of the 8th International Confer-
ence on Emerging Networking Experiments and Technologies
(CoNEXT ’12). Nice, France, 97–108.

[16] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D.
Oran. 2014. Probe and Adapt: Rate Adaptation for HTTP Video
Streaming At Scale. EEE Journal on Selected Areas in Com-
munications 32, 4 (2014), 719–733.

[17] R.K.P. Mok, E.W.W. Chan, and R.K.C. Chang. 2011. Measuring
the quality of experience of HTTP video streaming. In Integrated
Network Management (IM), 2011 IFIP/IEEE International
Symposium on. Dublin Ireland, 485–492.

[18] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang.
2012. QDASH: A QoE-aware DASH System. In Proceedings of
the 3rd Multimedia Systems Conference (MMSys ’12). Chapel
Hill, North Carolina, 11–22.

[19] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck.
2015. QoE-Driven Rate Adaptation Heuristic for Fair Adaptive
Video Streaming. ACM Trans. Multimedia Comput. Commun.
Appl. 12, 2, Article 28 (Oct. 2015), 24 pages.

[20] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck.
2015. QoE-Driven Rate Adaptation Heuristic for Fair Adaptive
Video Streaming. ACM Trans. Multimedia Comput. Commun.
Appl. 12, 2, Article 28 (Oct. 2015), 24 pages.

[21] M.H. Pinson and S. Wolf. 2004. A new standardized method
for objectively measuring video quality. Broadcasting, IEEE
Transactions on 50, 3 (Sept 2004), 312–322.

[22] W. Pu, Z. Zou, and C. W. Chen. 2012. Video adaptation
proxy for wireless Dynamic Adaptive Streaming over HTTP. In
Packet Video Workshop (PV), 2012 19th International. Munich-
Garching, Germany, 65–70.

[23] J. J. Quinlan, D. Raca, A. H. Zahran, A. Khalid, K. K. Ra-
makrishnan, and C. J. Sreenan. 2016. D-LiTE: A platform for
evaluating DASH performance over a simulated LTE network. In
2016 IEEE International Symposium on Local and Metropolitan
Area Networks (LANMAN). Rome, Italy, 1–2.

[24] J. J Quinlan, A. H. Zahran, and C. J. Sreenan. 2016. Datasets for
AVC (H.264) and HEVC (H.265) for Evaluating Dynamic Adap-
tive Streaming over HTTP (DASH). In Proc. of ACM MMsys
2016 (dataset track). Klagenfurt, Austria.

[25] A. Seetharam, P. Dutta, V. Arya, J. Kurose, M. Chetlur, and
S. Kalyanaraman. 2015. On Managing Quality of Experience of
Multiple Video Streams in Wireless Networks. Mobile Computing,
IEEE Transactions on 14, 3 (March 2015), 619–631.

[26] T. C. Thang, H. T. Le, H. X. Nguyen, A. T. Pham, J. W. Kang,
and Y. M. Ro. 2013. Adaptive video streaming over HTTP with
dynamic resource estimation. Journal of Communications and
Networks 15, 6 (Dec 2013), 635–644.

[27] J. De Vriendt, D. De Vleeschauwer, and D. Robinson. 2013. Model
for estimating QoE of video delivered using HTTP adaptive
streaming. In 2013 IFIP/IEEE International Symposium on
Integrated Network Management (IM 2013). Ghent, Belgium,
1288–1293.

[28] F.Z. Yousaf, M. Liebsch, A. Maeder, and S. Schmid. 2013. Mobile
CDN enhancements for QoE-improved content delivery in mobile
operator networks. Network, IEEE 27, 2 (March 2013), 14–21.

[29] A. H. Zahran and C. J. Sreenan. 2016. ARBITER: Adaptive rate-
based intelligent HTTP streaming algorithm. In 2016 IEEE Inter-
national Conference on Multimedia Expo Workshops (ICMEW).
Seattle, WA, USA, 1–6.

Stall Aware Pacing MMSys’17, June 20-23, 2017, Taipei,Taiwan

6 APPENDIX: TESTBED
IMPLEMENTATION DETAILS

In this Appendix, we present the steps required to replicate
our testbed setup. Our testbed is based on iVID D-LiTE
testbed, which is developed as part of the iVID project at
University College Cork, Ireland. Our testbed is designed
based on an empirical methodology that uses real end-points
operating over a simulated network, LTE network in our case.
This model promotes realism and enables controlled repeata-
bility of experiments across a range of configurations. We
extend D-LiTE to test the performance of different streaming
algorithms while performing traffic management functions,
which may implicitly include interfacing the controller with
other network nodes to obtain application and network state
information. Fig. 2 shows our evaluation testbed. In the fol-
lowing, we present implementation details for the key parts
of our evaluation testbed. Additionally, we provide an online
step-by-step guide9 for building different testbed elements.

6.1 Testbed Setup
6.1.1 Video Content and Server Setup. Our video content

is based on the iVID dataset [24]. DASH uses standard HTTP
servers that host the video content in its content directory.
In order to setup the server, one should download the dataset
content into the content folder of the selected HTTP server.
For example, the Apache default content folder in Linux is
/var/www.

6.1.2 Streaming Client Setup. Our streaming clients are
based on GPAC, which is installed in a typical UBUNTU
desktop. In the SAP testbed webpage, we provide a script
that can be used to setup GPAC and its dependencies for both
H.264 and H.265 on an UBUNTU desktop. Note that we use
static IP addresses for both physical and virtual interfaces.

The released GPAC code implements different streaming al-
gorithms including BBA2, FESTIVE, ARBITER, and CONV
algorithms. For experimentation purposes, we also modified
GPAC behavior to suit different algorithms. Specifically, we
changed the buffering and ON/OFF behavior of GPAC.

GPAC implements a two-level buffering hierarchy including
cache and playout buffer. The cache directly receives from the
socket while the playout buffer loads media segments from
the cache as needed by the decoder. The default behavior in
GPAC is to fill the cache buffer before decoding the media.
Our modifications enable setting the initial playout delay,
rebuffering delay (in segments), and the cache and playout
buffer sizes in milliseconds.

Further, we modified the default ON/OFF behavior. By
default, GPAC stops segment download when the cache buffer
is full and resumes when it drops to half its size. This behavior
is overridden as request scheduling is now a design component
of different streaming algorithms. For example, FESTIVE
considers a random delay before sending the next request.
Hence, an algorithm-dependent request delay is implemented

9https://www.ucc.ie/en/misl/research/software/sap-testbed/

by introducing a request_delay variable, determining the
next GET request delay in milliseconds.

Our main GPAC modifications extend over five files in-
cluding
• GPAC.cfg is extended to include algorithm-specific and

general parameters.
• export.cpp defines additional template links for these

parameters.
• mpd_in.c is changed to determine the algorithm accord-

ing to the parsed configuration.
• dash.h includes headers for functions used for parsing

the configuration.
• dash_client.c includes the implementation of configura-

tion parsing functions and the adaptation logic of different
algorithms.

GPAC calls the adaptation logic from a function called
dash_ adaptation_selection. We also implemented helper
functions, such as calculating the first and second order
statistics of throughput samples and getting buffered media
duration, that are shared by different algorithms. In order to
implement a new adaptation algorithm, one should introduce
modification to all these files.

Note that, some algorithms, such as BBA and ARBITER,
require segment size information in their decision. Byte-range
MPD files include this information while URL based MPD
files do not. In our implementation, such data is made avail-
able to the client by maintaining a local copy of segment size
information provided by the third iVID Dataset [24]. Note
that if another dataset is used, one should prepare segment
size information files in order to use algorithms such as BBA
and ARBITER.

6.1.3 Network Simulator Setup. The network simulator
node is used to emulate LTE while interacting with real
end nodes, i.e., real client and servers. Real and simulated
nodes are connected using a network consisting of virtual
and real network interfaces. As shown in Fig. 2, every real
client is connected to a real switch that is connected also
to one of two Ethernet interfaces of the simulator node.
Every simulated user equipment (UE) has two netDevices
including one connected to the LTE network and a CSMA
netDevice connected to a Linux TAP device. UE TAP de-
vices are connected to a Linux bridge device that is also
connected to the Ethernet interface connected with the real
clients. Hence, the simulated nodes and corresponding real
clients are connected using an Ethernet network consist-
ing of a virtual bridge device and a real Ethernet switch.
In the SAP testbed webpage, we provide shell scripts that
can be used to setup (bridge_network_build.sh) and tear
down (bridge_network_teardown.sh) the required virtual de-
vices. We also provide our LTE simulation code to setup the
simulated network and connect UEs to corresponding TAP
devices (lena-simple-epc-tap-nas.cc). Note that one should
create internal TAP and bridge devices before running the
simulator. Proper routing and packet mangling rules for up-
link and downlink should be set up as described in Section

MMSys’17, June 20-23, 2017, Taipei,Taiwan A. H. Zahran et al.

4.1.2. We also provide a modified ipv4 routing module file
(ipv4-list-routing.cc) for ns3 in the SAP testbed webpage.

6.1.4 Master controller Setup. The master controller node
performs three main functions. It orchestrates the experi-
ments, interfaces with other nodes for obtaining relevant
information, and performs traffic management functions.

Experiment Orchestration . The master controller orches-
trates the experiment by initializing other testbed elements
(streaming clients and network), terminating the experiment,
and collecting performance log files. Before the actual experi-
ment starts, the master controller configures the streaming
client with the adaptation algorithm, buffer size, and other
relevant parameters. These parameters are passed to a shell
script that is distributed in all clients. This script takes re-
sponsibility of preparing the streaming client configuration
file before starting the video client. The configuration file
includes information about the selected adaptation logic and
relevant algorithm parameters. Additionally, the master con-
troller configures the network node with relevant mobility
and channel configurations. Note that the simulator code
(lena-simple-epc-tap-nas.cc) is developed to parse these con-
figuration and set up the network accordingly. On configuring
all nodes, the master controller uses distributed shell utility
(dsh) in Ubuntu.

Controller Interface. The master controller maintains a
control channel with the simulator and streaming nodes to
obtain relevant information for traffic management functions.
For example, the traffic management may need information
about the link quality of individual clients and act accord-
ingly. Additionally, streaming clients may exchange appli-
cation state information with the network controller over a
different control link. In our implementation, the communi-
cation between the master controller and other nodes takes
place over the distributed shell used for orchestrating the
experiment. Each video client and the simulator node log the
required corresponding information to the shell. Exchanged
information over such channels are parsed for specific in-
formation, such as channel quality and buffer-level at the
client.

Traffic Management. In our testbed, we implement per flow
traffic rate control for both AVIS and SAP. Both solutions
employ an optimization framework that identifies the target
rate for individual sessions. The rates are enforced using
typical token bucket filter (TBF) in the traffic control (tc)
command in Linux. The traffic from all sessions is also limited
to the total of the estimated individual flow rates. Note
that both AVIS and SAP avoid resource waste by allowing
the usage of the unused residual bandwidth up to a limit
identified as the average rate of the selected quality rate and
next quality rate. In the iVID D-LiTE web-page, we provide
the master controller shell scripts. Note that the code is
distributed over multiple directories and files as described in
the README file.

To implement a new traffic management function, one
should introduce a new branch for the if statement handling
different traffic management functions.

6.1.5 Testing your setup. We would like to stress that ping
packets do not travel through the simulated LTE network.
Hence, one should test the connectivity using other applica-
tions, such as web browsing or iperf, running at the physical
devices.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 SAP
	3.1 SAP Overview
	3.2 Design of the SAP Pacing Optimizer
	3.3 Collaborative vs. Non-collaborative SAP

	4 Performance Evaluation
	4.1 Evaluation Setup
	4.2 Performance metrics
	4.3 Performance Results

	5 Conclusions
	Acknowledgments
	References
	6 Appendix: Testbed Implementation Details
	6.1 Testbed Setup

