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Tyndall National Institute, Dyke Parade, Cork, Ireland

E-mail: wensi.wang@tyndall.ie

Abstract. The trend towards smart building and modern manufacturing demands ubiquitous
sensing in the foreseeable future. Self-powered Wireless sensor networks (WSNs) are essential
for such applications. This paper describes bulk material based thermoelectric generator (TEG)
design and implementation for WSN. A 20cm? BigsShy sTe; based TEG was created with
optimized configuration and generates 2.7mW in typical condition. A novel load matching
method is used to maximize the power output. The implemented power management module
delivers 651uW to WSN in 50 °C. With average power consumption of Tyndall WSN
measured at 72uW, feasibility of utilizing bulk material TEG to power WSN is demonstrated.

1. Introduction

While wireless sensor networks (WSN) have found and created various new applications in recent
years, the fundamental problem of short lifetime remains unsolved. New breakthroughs in ultra-low
power circuits have reduced the power consumption of wireless sensor modules from mwW to the uW
level in the last 10 years. Novel network protocols with focus on low power operation further enhance
the trend. However, despite of the efforts, coin-sized high energy density lithium batteries can only
supply an average load of 100 uW for less than a year [1]. One simple way to obtain longer lifetime is
to use larger or multiple batteries. Although this may extend the lifetime in some cases, it is not
commonly acceptable for many applications, especially for wearable and medical wireless sensor
networks. Even for applications with little dimension requirement the inevitable battery replacement
always brings unfavourable costs and maintenance efforts to the end users.

Harvesting environmental energy is often an effective approach to prolong the battery lifetime or
eliminate the battery from the system. Common energy sources can be harvested in daily environment
includes heat, light and vibration energy. The thermal energy can be found and used in various
locations and conditions. Using thermoelectric energy harvesting to power WSN with aerospace
sensors is demonstrated by EADS in [2]. A wrist watch formed thermoelectric generator (TEG) shows
ultra-low power wireless communication module powered from human body heat [3]. In the design of
TEGs, it has been discovered that the energy conversion efficiency in thermoelectric module and
conditioning circuits both play essential roles. The voltage generated from TEG is inherently low due
to the limited Seebeck coefficient of materials. With 1 Kelvin temperature difference applied on two
sides of one commercial off-the-shelf Bismuth Telluride thermopile, less than 1mV is measured. A
MIT team presents a design [4] with 35mV start-up voltage to allow the ultra-low voltage energy
harvested with comparatively high efficiency. A similar work is presented by Carlson et al. in [5].
Both of the power management devices require comprehensive and high cost ASIC designs.



In this paper, a different approach is presented. With a simple but essential investigation on bulk
material based TEG module, the design is optimized to allow higher voltage output compares to most
Peltier cooler modules. A charge pump and switching regulator based power management circuit
obtains a start up voltage at 300mV, delivers 650 uW power. Electric double layer capacitor energy
storage is implemented to replace the battery element. A first prototype is demonstrated in section 4.
The prototype evaluation was conducted on Tyndall WSN module with integrated temperature and
vibration sensing capabilities. The proposed thermal energy powered WSN module can be used to
monitor temperature and other parameters in industry and office environment when a 50 degree
Celsius temperature is available.

2. Tyndall Wireless Sensor Networks

2.1. Tyndall 25mm Wireless Sensor Module

The Tyndall wireless sensor module is a miniaturized, low-cost multi-function solution for wireless
sensing applications. The core of the node is an ATMEL ATmegal281 microcontroller with an 8MHz
external crystal oscillator. The ATmegal281 provides eight Analogue-to-Digital Converters (ADC),
an Inter-Integrated Circuit bus (1°C) and eight interrupt pins. This WSN module integrates EM2420
radio chip from EMBER which is 2.4 GHz IEEE 802.15.4 compliant RF transceiver. It interfaced to
the microcontroller with a 10 pins bus including a Serial Programmable Interface (SPI).
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Figure 1. From Left to right: 1) Tyndall 25mm Mote Block Diagram,;
2) Micro-Controller and RF Module; 3) Sensor Layer Implementation.

The sensor board is a fully miniaturized integrated sensors layer designated for WSNSs. It includes a
motion sensor for low-g vibration measurement, a passive infrared sensor (PIR), a light sensor, a 3-
axis accelerometer and a temperature-humidity sensor. The accelerometer and temperature-humidity
sensors are two digital sensors communicating with 1°C bus. The Tyndall Mote is C programmable. It
is also compatible with the TinyOS operation system and the BLIP (Berkeley Low Power IP) stack
which is an IP-based protocol implementation. TinyOS drivers have been developed for all the sensors
and systems described in figure 1, providing useful libraries of simple software interfaces for
embedded network applications development. In order to minimize the embedded code complexity,
sensor drivers provide unprocessed data only.

2.2. Power Consumption
The wireless sensor modules operate in duty cycle manner to reach monitoring frequency requirement
while conserve the energy by entering low power mode. In every service cycle Tsp, the sensing and
transmission mode only take place once. The energy consumption in sensing and transmission mode
and sleep mode is expressed in Equation 1.

ETotal = ESleep + EST = Eprx + Earx + EInit + ESen (1)



Where Egeep and Esr are the energy consumptions in sleep mode and sensing-transmission mode.
Epry = 4.6mJ, Earx = 0.06mJ, Eiir = 0.4mJ and Esen, = 0.4mJ are the data transmission,
acknowledgment receiving, board initialization and sensing energy consumptions, respectively. The
measurement is taken on Tyndall mote with temperature/humidity sensor and Analog Devices 3-axis
accelerometer activated. Both of the sensors require short warm up time, enables an ultra-low duty
cycle operation. The detailed energy consumption measurement is presented in Table 1.

Table 1. Energy Consumption Measurement

Energy(mJ)  Power(mW) Time(ms)

Sensing and Transmission (ST) 5.46 85.98 63.5
Data Transmission 4.6 131.4 35
Data Receiving 6.1 174.3 35
Mote Initialization 0.4 20 20
Sensing 0.4 53.3 7.5
Acknowledge Transmission 0.05 111.1 0.45
Acknowledge Receiving 0.06 133.3 0.45
Sleep 3.23 0.054 59,847

The time interval between each measurement is one minute in this case. The duty cycle of the
operation is measured at 0.1%. The average power consumption is 72uW in this typical test condition.

3. Thermoelectric Energy Harvesting

3.1. Thermoelectric Materials
To design a practical thermoelectric energy harvester, several types of thermoelectric materials are
investigated for optimized energy conversion rate. The efficiency of a TEG is determined by the
dimensionless figure of merit, ZT, The correlation between thermoelectric energy conversion
efficiency and ZT figure of merit is shown in Equation 2:
AT V1+ZT-1
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A typical cost efficient with relatively high energy conversion efficiency bulk material features a
ZT around 0.50-0.75 when located in 300K temperature condition. This was achieved by BixSb2-xTe3
p-type material in 1960s. A typical TEG implementation based on bulk material is shown in Figure 2.
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Figure 2. Thermoelectric Module based on Bulk Material

Recent breakthroughs in nano-technology based thermoelectric materials have demonstrated great
advantages for ZT improvement. Phonon-blocking superlattices structure material shows the highest
ZT figure of merit at 2.4 [6]. These advances certainly show the possibility of high efficiency energy
conversion in future TEGs. However, ZT is not the only parameter should be considered when design
a TEG. The actual output voltage is a key parameter in TEG design, shown in equation 3. Where o is
Seebeck coefficient, N is the number of thermopile pairs, AT is the temperature difference between the
outer surfaces of two substrates, k and k¢ are the thermal conductivities of thermopile and substrate. L
and L are the thickness of thermopile and substrate.
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With the nano material used in TEG, the thickness of thermopiles L will decrease significantly,
while the substrate thickness Lc remains the same as in bulk material based design. This effect may
substantially reduce the output voltage on single thermopile. Although high number of thermopiles N
will be available in nano technology based TEG design. The inevitable high internal resistance makes
it impossible to directly utilize the energy without load matching and other power management. The
complexity and associated high cost lead to the decision of using bulk material based thermoelectric
materials. In this work, BigsSbysTe; based thermoelectric material with a ZT at 0.7 is used to design

thermoelectric modules.

3.2. Thermoelectric Module Design

Thermoelectric module shows behaviors similar to a typical current controlled voltage source when
various temperatures applied across it. Similar to other practical voltage source, internal resistance
also exists in TEG. To deliver the maximum power output to the load, impedance matching is
important. However, different from conventional load matching with fixed internal resistance, in this
case the TEG can be modified with different configurations of thermopiles. This leads to a
configurable internal resistance. 2 mm? sized P type and N type BigsSb; sTes thermoelectric cubes are
used as the basic units of the TEG. With a series connecting configuration, the output power of the
TEG can be derived from equation 3. The output power P, is presented in the following equation.
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Where R, is the load resistance and Rrgg is the internal resistance of single thermopile, N is the
number of series connected thermopiles. The internal resistance of a pair of 2 mm?® thermopiles is
measured at 0.396 Q, while the load resistance in the supercapacitor is 30 Q when operate in low
frequency. Without forced convection cooling, the temperature difference between thermopiles only
measured at less than 5 Kelvin when 50 degree Celsius is applied on high temperature side. Due to the
small form factor nature of the WSN, the size of the TEG should no larger than 60mm by 60mm. This
factor limits the number of thermopiles pairs to less than 200. A simulation is conducted with above
predetermined conditions. The output power to the supercapacitor is presented in the following figure.
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Figure 3. Output Voltage and Output Power Analysis

The temperature difference shown in this figure is the temperature difference on the two ceramic
substrates, instead on the thermopiles directly. The simulation results illustrated in figure 3 show the
required 72uW can be obtained from the TEG when 36 thermopiles connected in series at one Kelvin
temperature difference. However, under the same condition, the output voltage on the supercapacitor
is only 52.4mV. To operate without ASIC based DC/DC conversion circuit, the minimum voltage
output should be higher than 300mV. In the worst case scenario, when the temperature on the hot side
is 50 degree Celsius, the temperature difference on the substrates is 3.5 Kelvin when minimum airflow

Number of Thermopiles



is measured in laboratory condition. In this case, to obtain a 300mV output voltage, the minimum
number of thermopile is 120. With this number of thermopiles integrated in the TEG, the output power
is 2.96mW. Based on this analysis, a 16 by 16 thermopile legs (P/N type cubes) array is created, given
a thermopile number at 128. The device is measured at 45mm by 45mm.

3.3. Power Management

In this implementation, low cost off-the-shelf components are utilized to step up the output voltage of
TEG to usable voltage for WSN. A Texas Instruments TPS61200 boost converter and a Seiko
Instruments S-882Z18 charge pump are selected due to their high efficiency in ultra-low voltage
conditions. To step up the output voltage from 300mV, directly utilizing a boost converter is not
feasible since the starting voltage of boost converter is substantially higher. The power management
circuit is shown in Figure 4.
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Figure 4. Simplified Step-up DC/DC Conversion

The ultra-low input voltage of Seiko Instruments S-882Z enables a start up voltage at 300mV. Once
the voltage of TEG boosts to above the threshold, the voltage on the output capacitor of the charge
pump increases until it reaches the start up voltage of the boost converter at 700mV. The Enable pin is
controlled manually in this case to assist the start up process. It also can be connected to a comparator
based self start controller similar to a design presented in previous work [1]. It employs a MAX931
ultra-low power comparator to detect the Vccp until it settled at the 700mV and enabled the DC/DC
converter to step up to 3.3V.

4. Thermoelectric Generator Powered WSN Implementation

Based on the proposed TEG design, the assembling and packaging was conducted by [6]. Due to the
fact WSN operates in duty cycling manner, energy buffer is essential to avoid periodic power failure.
Electric double-layer capacitor (supercapacitor) is the selected energy storage in this work. Low
equivalent series resistance (ESR) energy storage unit is used to avoid sudden voltage drop in the
WSN active mode. While high density type supercapacitor is connected in parallel to increase the
capacity. Additionally, energy failure detection circuit is integrated using a voltage comparator to
detect low voltage condition in supercapacitor. The failure detection is based on Seiko Instruments S-
89530A ultra-low power (5 pA) comparator. The prototype is shown in Figure 5.
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Figure 5. Thermoelectric Powered WSN Prototype



The viability of the TEG design and the application on WSN were tested through a set of experiments.
The prototype was placed on hotplate in various temperatures to test the start up performance,
continuous operation and finally energy storage lifetime when no thermal energy is available.
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Figure 6. TEG Start-up Performance

The above figure shows the start up performance when prototype deployed on 50 degree Celsius
temperature. The initial elevated temperature difference was clearly observed when output voltage
peaked at 1 minute 25 second from the beginning of the test at 0.97V. This effect automatically starts
up the boost converter. The switching regulator operates in continuous mode providing a stable output
at 3.3V to the WSN when output voltage of TEG drop back to 350mV in the later stage of start up.
The supercapacitor was pre-charged to 2.7V in this experiment. The charging lasts 11 minutes and 30
seconds to reach 97% of the full charge. The TEG obtains an output power at 2.7mW, which
consistent with the simulation results with an 8.7% error. The power management circuit features
average conversion efficiency at 55%. The leakage current on the supercapacitor and the output end
power conversion further decreases the conversion efficiency. The available power delivered from
TEG to WSN is measured at 651puW.

5. Conclusions

A thermoelectric powered wireless sensor module which eliminates the need for a battery is developed.
The relative simplicity of the design and utilizing bulk material thermopiles plays a major role in
reducing the system cost. The verified implementation, with BiysSb; sTes based thermopiles arranged
in a 16 by 16 configuration deliver 2.7mW when 50 degree Celsius temperature is applied upon. The
power management features a charge pump and switching regulator design. It steps up the voltage
from 300mV to 3.3V. The power delivered to WSN is measured at 651 pW in this typical condition.
The generated power is substantially higher than the average power consumption of WSN at 72 pW.
The results demonstrated the feasibility of using bulk material based TEG to achieve power
autonomous in many WSN applications.
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