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Abstract 29 

This work aimed to model the effect of heat treatment on viscosity of milk protein 30 

concentrate (MPC) using kinetic data. MPC obtained after ultrafiltration was subjected to 31 

different heat treatments with time-temperature. Heat treatment at high temperature and short 32 

time (i.e., 100 or 120°C×30 s) led to a significant increase in viscosity in MPC systems. 33 

Second-order reaction kinetic models proved a better fit than zero- or first-order models when 34 

fitted for viscosity response to heat treatment. A distinct deviation in the slope of the 35 

Arrhenius plot at 77.9°C correlated to a significant increase in the rate of viscosity 36 

development at temperatures above this, confirming the transition of protein denaturation 37 

from the unfolding to the aggregation stage. This study demonstrated that heat-induced 38 

viscosity of MPC as a result of protein denaturation/aggregation can be successfully modelled 39 

in response to thermal treatment, providing useful new information in predicting the effect of 40 

thermal treatment on viscosity of MPC. 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

Keywords: Milk protein concentrate, reaction kinetics, viscosity, modelling, heat stability, 50 

heat treatment 51 
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1. Introduction 53 

Milk protein concentrate (MPC) ingredients are generally obtained by ultrafiltration 54 

of pasteurized skim milk, often followed by diafiltration with water to remove additional 55 

minerals and lactose (Martin et al., 2010). MPC ingredients are an excellent source of protein 56 

with good nutritional, sensory and functional properties in many food applications (Banach et 57 

al., 2014; Huffman and Harper, 1999). MPC ingredients contain a high protein to total solids 58 

ratio, while the ratio of caseins to whey proteins is similar to that of the original skim milk 59 

(Bastian et al., 1991; Green et al., 1984). Following filtration, heat treatment (high 60 

temperature - short time) of liquid MPC is frequently carried out to inactivate microbiological 61 

organisms. However, such heat treatments result in a number of physicochemical changes in 62 

the liquid concentrate, in particular, denaturation and aggregation of proteins leading to an 63 

increase in viscosity and possible gelation (Murphy et al., 2013; Singh and Havea, 2003; 64 

Walstra and Jenness, 1984). High viscosity of the concentrate also leads to adverse effects in 65 

the manufacturing process such as a reduction in pump efficiencies, fouling on evaporation 66 

distribution plates/tubes of calandria, and thereby effectively limiting the total solids level 67 

achievable prior to spray drying. This in turn affects the droplet size during atomization and 68 

hence affects properties of the final powder (Bienvenue et al., 2003; Crowley et al., 2014; 69 

Fryer, 1989; Schuck et al., 2005; Schuck et al., 2007). 70 

Many previous studies have shown the significant effect of heat treatment temperature 71 

on whey protein denaturation (Anema et al., 2004; Anema and McKenna, 1996; Buggy et al., 72 

2017; Kehoe et al., 2011; Oldfield et al., 2005; Oldfield et al., 1998) and subsequently 73 

viscosity of the concentrates such as skim concentrate (Anema et al., 2014) or concentrates 74 

containing different proportions of MPC and whey protein concentrate (Souza et al., 2015). 75 

Means of predicting and modelling the influence of heat treatment on whey protein 76 

denaturation of dairy ingredients, particularly whey proteins in whole milk (Anema and 77 
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McKenna, 1996), whey proteins in skim milk (Oldfield et al., 1998) or skim milk with 78 

adjusted concentration of whey protein (Oldfield et al., 2005), whey proteins in  high protein 79 

concentrates (Wolz and Kulozik, 2015) and heat denaturation of β-lactoglobulin (β-lg) 80 

(Loveday, 2016) has previously been investigated using reaction kinetics. In such models, 81 

measurement of residual native protein concentration, relative to its initial concentration, as a 82 

function of time at a given temperature, is commonly used to determine the kinetic 83 

parameters of protein denaturation (Anema and McKenna, 1996; Kehoe et al., 2011; Oldfield 84 

et al., 1998). The rate of heat-induced whey protein denaturation is assumed to be 85 

proportional to the denaturation rate constant at a specific temperature and the concentration 86 

of native protein (Anema and McKenna, 1996; Oldfield et al., 1998; Petit et al., 2011).  87 

Furthermore, the Arrhenius relationship has been used to describe the dependence of 88 

denaturation rate of native whey protein, particularly β-lg and α-lactalbumin (α-la) on 89 

temperature (Anema and McKenna, 1996; Oldfield et al., 2005; Oldfield et al., 1998; Wolz 90 

and Kulozik, 2015). In these studies, the Arrhenius plots of protein denaturation rate constant 91 

were found to be linear within a certain temperature range, while there was a noticeable break 92 

in the plotted relationship at a temperature defined as the critical temperature (Tc) (Anema 93 

and McKenna, 1996; Oldfield et al., 1998; Tolkach and Kulozik, 2007; Wolz and Kulozik, 94 

2015). Tc has been generally found to be in the range 78-85°C (Anema and McKenna, 1996; 95 

Oldfield et al., 1998; Tolkach and Kulozik, 2007; Wolz and Kulozik, 2015). Denaturation of 96 

whey protein is, in fact, a two-step process involving unfolding of native protein, followed by 97 

aggregation of protein (Brodkorb et al., 2016; Mulvihill and Donovan, 1987; Petit et al., 98 

2011; Tolkach and Kulozik, 2007). Below Tc, the rate of protein denaturation is limited by 99 

the unfolding of the proteins, whereas at temperatures > Tc, the rate is limited by their 100 

aggregation (Brodkorb et al., 2016; Petit et al., 2011). Although reaction kinetics have been 101 

extensively applied to model thermal denaturation of whey proteins (Anema and McKenna, 102 
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1996; Oldfield et al., 2005; Oldfield et al., 1998; Wolz and Kulozik, 2015), modelling the 103 

viscosity changes of casein/whey protein systems due to heat treatment has not been the 104 

subject of previously published work. The objective of this study was to develop a model, 105 

which would allow quantification of the effect of heat treatment on the viscosity of MPC, 106 

obtained directly after ultrafiltration of skim milk, and thus allow determination of reaction 107 

kinetics of heat-induced denaturation.  108 

 109 

2.  Materials and Methods 110 

2.1. Preparation of milk protein concentrate  111 

MPC was produced by ultrafiltration (UF) of pasteurized skim milk at 12°C using 10 kDa 112 

molecular weight cut-off, spiral-wound, polymeric membranes and at a volume concentration 113 

factor of 5 in a local commercial dairy processing plant. The membrane filtration plant, 114 

operating under continuous mode, had a final UF retentate total solids (TS) content of 19.8% 115 

(w/w), pH=6.7 at 20 °C. The protein, fat, ash, and lactose contents were 87.3, 1.12, 7.04 and 116 

2.15% (w/w, dry basis), respectively. The protein composition of the liquid MPC was as 117 

follows: κ-casein 1.48%, w/w, αs2-casein 1.75%, w/w, αs1-casein 5.98%, w/w, β-casein 118 

5.55%, w/w, α-lactalbumin 0.52%, w/w, β-lactoglobulin 2.09%, w/w. The MPC liquid 119 

concentrate obtained directly after membrane filtration was subjected to a number of heat 120 

treatment temperatures as outlined in Fig. 1. Samples in triplicate were heated at 85, 100 or 121 

120 °C with holding times of 15, 30, 60 or 200 s, and immediately cooled to 45 °C using a 122 

pilot scale Microthemics tubular heat exchanger (MicroThermics, NC, USA).  123 

  124 

2.2. Viscosity measurements of milk protein concentrate 125 

Viscosity of MPC obtained directly after UF and post-heat treatment (Section 2.1) 126 

were measured at 45 °C using a controlled-stress rheometer (AR2000ex Rheometer, TA 127 
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Instruments, Crawley, UK), equipped with a concentric cylinder geometry and Peltier 128 

controlled heating system to replicate the temperature of the evaporation stage before spray 129 

drying. Measurements were performed over a shear rate ramp ranging from 10 1/s to 300 1/s 130 

over 5 min and held at 300 1/s for 5 min. Note: At a shear rate of 300 1/s, heat-induced 131 

viscosities were found to be constant for all samples over 5 min (Appendix Fig. A1). All 132 

measurements were carried out in triplicate. 133 

Viscosity was also measured as a function of temperature in the range from 55 to 75 134 

°C. The MPC liquid samples obtained after UF were subjected to storage under isothermal 135 

conditions in the concentric cylinder geometry of the rheometer at different temperatures of 136 

55, 60, 65, 70 or 75 °C. To avoid water evaporation during the measurement, three drops of 137 

tetradecane were added on top of the sample immediately after loading. Samples were rapidly 138 

heated to the controlled temperature and subsequently viscosity was recorded at a constant 139 

shear rate of 300 1/s over 5 min. The rate of viscosity increase due to heat treatment was 140 

represented as the slope of the curve at the time when viscosity initially increased (i.e., the 141 

rate > zero) (see Appendix Fig. A2). At 55 and 60 °C, a slight decrease in viscosity over time 142 

indicated thinning behaviour of the MPC liquid concentrate (Appendix Fig. A2 A and B); 143 

therefore, a linear fit was applied at the time (>100 s) when viscosity over time was observed 144 

to be linear. In Appendix Fig. A2 C, D, and E, a linear fit was applied at the time when 145 

viscosity initially increased. The rate of viscosity increase due to heat treatment was 146 

represented as the slope of the fitted curve (Appendix Fig. A.2 F). All measurements were 147 

carried out in triplicate. 148 

 149 

2.3.  Polyacrylamide gel electrophoresis  150 

Protein profiles of MPC before and after thermal treatment (as defined in Section 2.1) 151 

were determined by polyacrylamide gel electrophoresis (PAGE) (Buggy et al., 2017). The 152 
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samples were dissolved to create reducing and non-reducing conditions in a lithium dodecyl 153 

sulphate (LDS) buffer, pH 8.4 with 10 µL of the sample added to wells in a 12% Bis-Tris Nu-154 

PAGE Gel and electrophoresis was carried out using an X-Cell Surelock electrophoresis unit 155 

(Novex Technologies). The samples were prepared to contain 1 µg protein per µL of sample 156 

buffer solution. After electrophoresis, the gels were stained overnight using 0.05% (w/v) 157 

Coomassie brilliant blue R-250 in 25 % (v/v) isopropanol and 10 % (v/v) acetic acid. After 158 

staining, the gels were de-stained using a 10 % (v/v) isopropanol and 10 % (v/v) acetic acid 159 

solution until a clear background was achieved. 160 

 161 

  2.4.  Modelling viscosity increase during heat treatment by reaction kinetics  162 

The rate of protein denaturation was calculated using the following reaction kinetics 163 

model (Kehoe et al., 2011): 164 

���
�� = −��	


�  (1) 165 

where n is the reaction order,  kT ((%)1-n/s) is the overall rate constant of protein denaturation 166 

at temperature T (K), Cp (%, w/w) is the native protein content of the concentrate prior to heat 167 

treatment, t (s) is the holding time. Models were constructed based on zero (n=0), first (n=1) 168 

and second (n=2) order reaction kinetics (see Appendix A, B and C). 169 

Heating milk proteins at high temperature causes irreversible protein denaturation 170 

leading to aggregation and increases in concentrate viscosity (Anema et al., 2014; Souza et 171 

al., 2015). In this study, the increase rate of viscosity was assumed to be a linear response to 172 

the rate of protein denaturation.  173 

��
�� = −

���
�� = ��	


�  (2) 174 

where η (mPa.s) is the viscosity of the concentrate, α (mPa.s/%) is the coefficient 175 

representing response of the viscosity to protein denaturation. At a constant temperature, T, 176 
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viscosity increase due to heat treatment time is shown in Table 1. Further details of equation 177 

derivations in Table 1 are described in Appendix A, B and C.  178 

 179 

2.5.  Arrhenius relationship between the rate of viscosity increase and heat treatment 180 

temperature 181 

An Arrhenius plot involving the logarithm of relative rate of viscosity increase and 182 

the inverse of heat treatment temperature 1/T (1/K) was used to investigate the effect of 183 

temperature on the viscosity rate constant and its response to heat treatment. The relative rate 184 

of viscosity increase at time zero was defined as follows: 185 

��,� = ��
����

�
��

  (3) 186 

where ɳ0 (mPa.s) is the viscosity of the concentrate at the initial time zero.  187 

For low temperature heat treatments (65, 70 and 75 °C), the initial rate of viscosity 188 

increase, 
��
�����, was determined from the slope of viscosity as a function of time at time t0 189 

when viscosity initially increased. Note that the negative rates of increase in viscosity at 50 190 

and 60 °C were due to temperature-induced thinning behaviour and were disregarded.  191 

For high temperature heat treatments (85, 100 and 120 °C), the relative rate of 192 

viscosity increase from time zero was calculated from the second order model as follows: 193 

��,� = ��
����

�
��
= ����� − 1� ��	�  (4) 194 

where the parameters of the model are described in Table 1. 195 

 196 

2.6.  Effect of protein content on the viscosity of milk protein concentrate  197 

The MPC liquid concentrate described in Section 2.1 (19.8% TS and 17.3%, w/w, 198 

protein) was diluted to 13.8% TS (12.1 % w/w, protein) with a dilution factor of 0.7. The 199 

diluted concentrate was then heat treated at 120 °C with holding times of 15, 30 and 60 s, and 200 
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immediately cooled to 45 °C using a pilot scale Microthemics tubular heat exchanger. 201 

Subsequently, the post-heat treatment MPC samples were concentrated back to their original 202 

TS (19.8% TS) using forward osmosis (FO) membrane system (FO Mode Micro pilot unit, 203 

evapEOs, Ederna SAS, Toulouse, France). The FO system was equipped with e+ membranes 204 

that allowed water to permeate from the liquid MPC across the membrane to the draw 205 

solution (25 L, H2OsTM, E326, H2O, Ederna SAS, Toulouse, France). Both liquid MPC and 206 

draw solution were continuously circulated until TS content of the liquid MPC reached 207 

19.8% (w/w). The temperature during filtration was controlled at 20°C using a Huber cooling 208 

system (Pilot ONE, Offenburg, Germany).  209 

Viscosity of MPC obtained after FO concentration were measured using a shear rate 210 

ramp ranging from 10 to  300 1/s over 5 min and held at 300 1/s for 5 min at 45 °C using a 211 

controlled stress rheometer equipped with a concentric cylinder geometry and Peltier- 212 

controlled heating system. All measurements were carried out in triplicate. Viscosity 213 

measurements of MPC heated at 12.1% (w/w) protein were then compared to those heated at 214 

17.3% (w/w) protein. Finally, the model of heat induced viscosity described in Section 2.4 215 

(Table 1) was used to estimate the effect of protein content on the viscosity of MPC at 12.1% 216 

(w/w, protein). Since the MPC liquid concentrate was diluted by the factor of 0.7, the rate 217 

constant of viscosity response k
120

C
0, P=12.1%

 in the second-order kinetic model was assumed to 218 

be equal to 0.7⋅k
120

C
0, P=17.3%

 where C
0, P=12.1% 

and C
0, P=17.3% 

are the initial levels of native milk 219 

proteins in the concentrates containing 12.1 and 17.3% (w/w) total protein, respectively.     220 

 221 

2.7.  Statistical analysis and parameter estimation 222 

Heat induced viscosity data were analysed using one-way analysis of variance 223 

(ANOVA), with post hoc Tukey analysis using SPSS statistics software (SPSS V.18, IBM, 224 

New York, US). 225 
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The parameters of the model described in Section 2.4 and 2.5 were estimated by 226 

minimising the sum square difference between the viscosity values at different heat 227 

treatments predicted by the model (Eq. 5 or Eq. 6 in Table 1) and the measured ones using a 228 

nonlinear estimation programme written in Matlab (The Mathworks, Inc., Natick, USA). In 229 

the model, R2 which is defined in Appendix D, was used to evaluate the goodness of fit of the 230 

model. 231 

 232 

3.  Results and discussion 233 

3.1.  Effect of heat treatment on the protein profile of milk protein concentrate  234 

SDS-PAGE protein profiles of MPC samples under non-reducing and reducing 235 

conditions before and after heat treatment are shown in Fig. 2. Whey protein bands can be 236 

observed for the control (unheated) and are also present, although more faint, for the samples 237 

subjected to heat treatment regimes of 85 and 100 °C for 30 s under non-reducing conditions. 238 

However, higher heat treatment temperatures/times resulted in complete loss of native β-lg 239 

and α-la bands in the non-reducing SDS-PAGE gel (Fig. 2; lanes 4-9). Furthermore, the 240 

presence of aggregated protein material in the stacking gel of the non-reducing SDS-PAGE 241 

gel indicated that temperatures ≥ 85 °C resulted in the formation of large disulphide-linked 242 

protein aggregates. Many previous studies (Anema and McKenna, 1996; Oldfield et al., 2005; 243 

Oldfield et al., 1998; Petit et al., 2011) have reported the rapid denaturation of whey proteins 244 

at temperatures greater than 78 °C. Loss of native whey protein indicated by SDS-PAGE 245 

analysis (non-reducing lanes, Fig. 2) revealed the large extent of irreversible protein 246 

denaturation at high heat treatment temperatures (i.e., 80–120 °C). These high heat treatment 247 

temperatures are typical of those used in the manufacture of MPC ingredients, which are used 248 

not only to comply with microbiological specifications but also to impart certain functionality 249 

requirements for the end-user.  250 
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 251 

3.2.  Effect of heat treatment on the viscosity of milk protein concentrate  252 

The apparent viscosity of MPC samples, taken after indirect tubular heating decreased 253 

with increasing shear rate (Appendix Fig. A3 A). However, the ratio of heat-induced 254 

viscosities to that of the unheated control sample were shown to be relatively constant over 255 

different shear rates (Appendix Fig. A3 B), indicating that the effect of heat-induced viscosity 256 

was independent of shear rate. Furthermore, the viscosity was shown to increase with 257 

increasing heat treatment temperature and holding time (Fig. 3 and Appendix Table A1). The 258 

viscosity values of all heat treated MPC samples were significantly (P < 0.05) greater than 259 

that of the control sample (Fig. 3). MPC heat treated at 120 °C for 15 to 30 s had significantly 260 

(P < 0.05) higher viscosity than those heated at 85 °C and 100 °C over the same time period. 261 

Interestingly, heat-induced viscosity levelled off in MPC samples heated at 120 °C for 262 

extended holding times (i.e., 30 to 200 s; Fig. 3). The results indicated that once protein 263 

denaturation and aggregation occurred due to the high temperature (i.e., 120 °C), holding the 264 

product for longer did not significantly (P > 0.05) increase the viscosity.  265 

 266 

3.3.  Modelling the viscosity increase due to protein denaturation  267 

The heat treatment temperatures described in Section 3.1 were all ≥ 85 °C, where the 268 

protein denaturation rate was considered to be limited by their aggregation rate (Brodkorb et 269 

al., 2016; Petit et al., 2011). The viscosity of the MPC at time zero (ɳ0 = 8.45 mPa.s) was 270 

measured prior to heat treatment. The parameters and their 95% confidence intervals 271 

estimated by first- and second-order reaction kinetic models are shown in Table 2. The 272 

second-order model had a better fit compared to the first-order model, with an R
2
 value of 273 

0.91 and 0.87, respectively. Estimated rate constants (kTC0) at 100 and 120 °C were 274 

significantly higher (2.65 and 18.9 fold, respectively), compared to at 85 °C. The zero–order 275 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 

model indicated a linear response between viscosity and time at a constant temperature T 276 

(Appendix Fig. A4). However, since the experimental viscosity data showed a non-linear 277 

response to heat treatment time (Fig. 3), the zero–order model was not suitable (R2=0.55) and 278 

therefore disregarded. A number of previous studies (Anema, 2016; Anema and McKenna, 279 

1996; Oldfield et al., 2005; Oldfield et al., 1998; Wolz and Kulozik, 2015) have examined the 280 

reaction kinetics involved in whey protein denaturation and aggregation based on the level of 281 

residual native whey protein using first- and second-order kinetics. However, the present 282 

study has shown that by measuring viscosity and its response to thermal treatment a second-283 

order model can be applied to predict increases in product viscosity during high temperature-284 

short time thermal processing. In addition, the response of MPC viscosity to heat treatment 285 

was also carried out at shear rates of 100 and 200 1/s (Appendix Fig. A5) and indicated 286 

similar trends in the response of the measured and predicted heat-induced viscosities at the 287 

two different shear rates. This shows the robustness of the model, indicating that the shear 288 

rate used during viscosity measurement is not a factor in predicting heat-induced viscosity. 289 

 Viscosity of MPC heat treated (120 °C for 15, 30 or 60 s) at two different protein 290 

concentrations (i.e., 12.1 or 17.3%, w/w) are shown in Fig. 4. Thermal treatment of the MPC 291 

sample with a protein content of 12.1% (w/w) at 120 °C and subsequently concentrated to a 292 

protein content of 17.3% (w/w) had a significantly lower viscosity, compared to MPC heated 293 

at 120 °C at 17.3% (w/w) protein across all holding times (Fig. 4). In fact, protein 294 

denaturation rate was found to increase with increasing total protein concentration (Law and 295 

Leaver, 1997; Wolz and Kulozik, 2015). Values of denaturation rate of α-la and β-lg were 296 

found to increase by 84 and 92% when doubling concentration of total protein in skim milk 297 

heated at 80 °C (Law and Leaver, 1997). Wolz and Kulozik (2015) proposed that high protein 298 

content of concentrates induced a faster thermal denaturation, most likely due to the increased 299 

probability of collisions between whey protein molecules. Our results confirmed promotion 300 
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of protein aggregation at high protein content resulting in large heat-induced viscosity of 301 

MPC. Overall, the model developed in this study showed it was possible to predict heat-302 

induced viscosity in relation to the initial protein content of the MPC.  303 

 304 

3.4.  Heat-induced viscosity changes in the protein unfolding temperature range (55-75 305 

°C) 306 

Viscosity measurements of MPC liquid concentrate measured at 55, 60, 65, 70 and 75 307 

°C are shown in Fig. 5. Over this temperature range, the rate of protein denaturation was 308 

relatively low and limited by the rate of unfolding (Brodkorb et al., 2016; Petit et al., 2011). 309 

A decrease in viscosity was observed with increasing temperature from 55 to 70 °C, 310 

confirming a negative correlation between viscosity and temperature (Fig. 5A). A slight 311 

decrease in viscosity (by < 4.5% of their initial values) was also found when MPC was 312 

measured at 55 and 60 °C as a function of time, as shown by the negative values in the slope 313 

of the curve (Appendix Fig. A2 A and B) and in the rate of viscosity increase (Fig. 5B). Non-314 

Newtonian shear thinning behaviour of micellar casein concentrate was previously reported 315 

to be affected by both concentration and temperature, but less pronounced at temperatures 316 

above 60 °C (Appendix Fig. A2) (Sauer et al., 2012). Therefore, increase in viscosity 317 

observed in this study for the viscosity-time profiles at 65, 70 and 75 °C was due to protein 318 

denaturation/aggregation (Fig. 5). The rate of increase in viscosity by protein 319 

denaturation/aggregation was represented as the slope of the curve at the time when viscosity 320 

began to increase (Appendix Fig. A2 C, D and E). This rate of increase in viscosity, as a 321 

function of temperature is calculated and shown in Fig. 5B and Appendix Table A2. The 322 

negative rates of increase in viscosity at 50 and 60 °C due to shear thinning behaviour were 323 

disregarded and only the positive rates at 65, 70 and 75 °C were further considered for the 324 

Arrhenius plot in the unfolding-limited temperature range. 325 
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  326 

3.5.  Temperature dependence of viscosity increase due to protein denaturation 327 

The Arrhenius relationship is commonly used to describe temperature dependence on 328 

protein denaturation rate (Anema and McKenna, 1996; Oldfield et al., 2005; Oldfield et al., 329 

1998; Wolz and Kulozik, 2015). In this study, the Arrhenius relationship was extended 330 

further to describe the relationship between temperature and the rate of increase in viscosity 331 

(Fig. 6). The slope of ln	(��,�)	as a function of 1/T represents the activation energy, Ea, 332 

indicating the changing rate of increase in viscosity as a response to temperature. 333 

Interestingly, the Arrhenius plot showed two regions in which the Ea differed. Estimated Ea 334 

was 99.0 kJ/mol and 442 kJ/mol in the high and low temperature regions, respectively. The 335 

critical temperature (Tc) was determined as the intersection point of the two fitted linear plots 336 

of ln	(��,�), as a function of 1/T.  337 

The sharp deviation in the Arrhenius plot was found at Tc equal to 77.9 °C (Fig. 6) and 338 

was similar to that of β-lg denaturation (78 °C), described by Tolkach and Kulozik (2007) 339 

and Blanpain-Avet et al. (2016). The deviation from the linear model in the Arrhenius plot is 340 

due to a shift from the protein unfolding-limited rate to the aggregation-limited rate at Tc 341 

(Petit et al., 2011). In fact, Anema and McKenna (1996) showed a significant change in the 342 

Arrhenius plot at a Tc of ~80 °C for denaturation of α-lac and 85 °C for the denaturation of 343 

different variants of β-lg. Similarly, Oldfield et al. (1998) indicated that whey protein (β-lg 344 

and α-lac) denaturation showed a break in the Arrhenius plot at approximately 80 to 90 °C.  345 

  The relationship between the protein denaturation rate and temperature is also 346 

presented by the activation energy (Ea) (Anema and McKenna, 1996; Oldfield et al., 1998; 347 

Petit et al., 2011). Ea values obtained from this study compared to previous literature are 348 

shown in Appendix Table A3. Previous studies used powder ingredients such as, rehydrated 349 

whole milk, skim milk and β-lg dispersions by described by Anema and McKenna (1996), 350 
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Oldfield et al. (1998) and Tolkach and Kulozik (2007), respectively. Differences in Ea values 351 

may be explained by differences in protein ingredients and their thermal history during 352 

manufacture. 353 

Future work may examine the correlation between protein aggregation and heat-354 

induced viscosity based on the level of protein-protein interactions, particularly between β-lg 355 

and κ-casein. In addition, an extension of the model taking into account pH, minerals and 356 

calcium ion activity would be useful in understanding the mechanisms responsible for heat-357 

induced changes in viscosity of MPC systems. 358 

 359 

5.  Conclusion 360 

Modelling the reaction kinetics of milk protein denaturation using viscosity data from 361 

the thermal treatment of MPC proved successful. Therefore, the effect of thermal heat 362 

treatment regimes on milk protein viscosity can be predicted and used to set limits both in 363 

terms of heat treatment temperature and holding times. In order to effectively model this data 364 

the viscosity changes due to protein denaturation a second-order reaction model proved 365 

superior over zero- or first-order reaction models. Furthermore, the use of an Arrhenius plot 366 

to profile the rate of viscosity increase in response to temperature confirmed the transition of 367 

protein denaturation behaviour from the unfolding to the aggregation state. This study could 368 

be used to simulate and/or optimise the effect of heat treatment in order to minimise protein 369 

denaturation and to avoid increases in product viscosity during evaporation in MPC 370 

manufacture, helping to improve process efficiency and product quality.  371 

 372 

 373 

 374 

 375 
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Appendices 376 

Appendix A  377 

Zero order reaction kinetics 378 

From Eq. 1, the rate of protein denaturation follow zero order reaction (n = 0) could be 379 

written as  380 

���
�� = −��  (A1) 381 

At a constant temperature T, Eq. (A1) could be rewritten as 382 

	
 = −	���  (A2) 383 

where C0 (%, w/ w) is the initial native protein level (at t = 0) of the concentrate subjected to 384 

heat treatment. 385 

At the constant temperature T, Eq. (2) could be integrated as follows 386 

� ���
� = � ���� =�

� � �����
�   (A3) 387 

The viscosity η of the concentrate at the time t in Eq. (A3) could be solved as: 388 

� = �� + � �����
� = �� + ���  (A4) 389 

where ɳ0 (mPa.s) is the viscosity of the concentrate at the initial time. 390 

 391 

Appendix B 392 

First order reaction kinetics 393 

From Eq. 1, the rate of protein denaturation assumed to follow first order reaction (n = 1) 394 

could be written as  395 

���
�� = −��	
  (B1) 396 

At a constant temperature T, Eq. (B2) could be rewritten as 397 

	
 = 	�exp	(−���)  (B3) 398 
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where C0 (%, w/ w) is the initial native protein level (at t = 0) of the concentrate subjected to 399 

heat treatment. 400 

At the constant temperature T, Eq. (2) could be integrated as follows 401 

� ���
� = � ��	
�� =�

� � ��	�exp	(−���)���
�   (B3) 402 

The viscosity η of the concentrate at the time t in Eq. (B4) could be solved as: 403 

� = �� + � ��	�exp	(−���)���
� = �� + 	�(1 − exp	(−���))   (B5) 404 

where ɳ0 (mPa.s) is the viscosity of the concentrate at the initial time. 405 

Eq. (B5) could be rewritten as follows 406 

� = �� + (�$ − ��)(1 − exp	(−���))  (B6) 407 

and �$ = �� + 	�        (B7) 408 

where ɳm (mPa.s) is the maximal viscosity at temperature T due to heat treatment (the 409 

asymptotic viscosity as t approaches infinity). 410 

 411 

Appendix C 412 

Second order reaction kinetics 413 

The rate of protein denaturation assumed to follow second order reaction (n = 2) could be 414 

written as  415 

���
�� = −��	


%  (C1) 416 

At a constant temperature T, the concentration of native protein CP at time t could be 417 

rewritten as 418 

	
 = ��
&'()���

  (C2) 419 

where C0 (%, w/ w) is the initial native protein level (at t = 0) of the concentrate subjected to 420 

heat treatment.  421 

At the constant temperature T, Eq. (2) could be integrated as follows 422 
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� ���
� = � ��	
�� =�

� � �� ��
&'()���

���
�   (C3) 423 

The viscosity η of the concentrate at the time t in Eq. (C3) could be expressed as: 424 

� = �� + � �� ��
&'()���

�� = �� + 	� �1 − &
&'()���

��
�   (C4) 425 

where ɳ0 (mPa.s) is the viscosity of the concentrate at the initial time. 426 

The viscosity η in Eq. (C4) could be rewritten as follows 427 

� = �� + 	� �1 − &
&'()���

� = �� + (�$ − ��) �1 − &
&'()���

�  (C5) 428 

and �$ = �� + 	�        (C6) 429 

where ɳ0 (mPa.s) is the viscosity of the concentration at the initial time, ɳm (mPa.s) is the 430 

maximal viscosity at temperature T due to heat treatment (the asymptotic viscosity as t 431 

approaches infinity). 432 

 433 

Appendix D  434 

Criterion for goodness of fit of the model 435 

R2 is a statistical analysis of how close the fitted model to data is. The R2 is defined as: 436 

*% = 1 − ++,-.
++/0/

    (D1) 437 

where SSres and SStot are the regression sum of squares and the total sum of squares of the 438 

data, respectively.  SSres and SStot are defined as: 439 

11234 = ∑(67 − 87)    (D2) 440 

and 11�9� = ∑(67 − 6:)    (D3) 441 

where yi, 6: and fi are the measured data, the mean of the measured data and the predicted 442 

value by the model, respectively. 443 

  444 
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Appendix Table A1. Apparent viscosity (shear rate 300 1/s; 45 °C) of MPC subjected to 445 

different heat treatments. 446 

Sample ID Heat treatment Viscosity (mPa.s) 

1(*) -  8.45±0.89a  

2 85°C×30s 11.53±1.78b 

3 85°C×60s 13.63±1.1b 

4 85°C×200s 15.47±0.02c 

5 100°C×30s 14.09±0.13c 

6 100°C×60s 16.54±0.95d 

7 100°C×200s 17.35±0.33de 

8 120°C×15s 16.67±0.43d 

9 120°C×30s 20.11±0.44e 

10 120°C×60s 19.51±0.66de 

11 120°C×200s 20.06±0.17e 

aValues presented are the means of data ± standard deviations of triplicate measurements; 447 

values within a column not sharing a common superscript differ significantly (P< 0.05). 448 

  449 
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Appendix Table A2 Relative rate of viscosity increase (��,�) of MPC as a function of 450 

temperature. 451 

T (°C) ��,� (relative unit) 

55 (-7.02±0.89)×10-5a 

60 (-4.37±0.33)×10-5a 

65 (1.71±0.46)×10-5a 

70 (2.70±0.03)×10-4a 

75 (1.57±0.51) ×10-3b 
aValues presented are the means of data ± standard deviations of triplicate measurements; 452 

values within a column not sharing a common superscript differ significantly (P< 0.05). 453 

  454 
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Appendix Table A3. Activation energy of whey protein denaturation (taken from Anema 455 

and McKenna (1996); Anema (2016), Oldfield et al. (1998); Tolkach and Kulozik (2007)),  456 

Model system Protein Tc 

(°C) 

Activation   energy ((kJ/mol) Source 

Unfolding Aggregation  

Reconstituted 

whole milk 

β-lg A - 263.49 

(70-85 °C) 

51.14  

(100-115 °C) 

Anema and 

McKenna 

(1996)  β-lg B - 296.46 

(70-85 °C) 

33.87  

(100-115 °C) 

 α-lac - 195.11 

(70-80 °C) 

57.51  

(85-115 °C) 

Skim milk β-lg A - 285.5 

(70-90 °C) 

58.5  

(95-130 °C) 

Oldfield et al. 

(1998) 

 β-lg B - 296.7 

(70-90 °C) 

44.0  

(95-130 °C) 

 α-lac - 203.3 

(70-80 °C) 

52.9  

(85-130 °C) 

Reconstituted 

β-lg powder 

β-lg 78 313.9 80.8 Tolkach and 

Kulozik (2007) 

Reconstituted 

whole milk 

Native 

whey 

protein 

85 287.14 61.39 Anema (2016) 

MPC liquid 

concentrate 

- 78.7 477.0 

(65-75 °C) 

51.8 

(85-120 °C) 

Current study 

Tc is the critical temperature in the Arrhenius plot, defining the aggregation-limited and the 457 
unfolding-limited range. 458 
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 459 

 460 

Appendix Fig. A1 Typical apparent viscosity and shear rate as a function of time at 45 °C of 461 

liquid MPCs subjected to different heat treatments . Measurements were performed over a 462 

shear rate ramp ranging from 10 1/s to 300 1/s over 300 s and held at 300 1/s from 300 to 463 

600s. At a shear rate of 300 1/s, viscosity was found to be constant over 300 s.  464 
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 465 

 466 

Appendix Fig. A2. Viscosity of liquid MPC as a function of time (A - E) and its relative rate 467 

of viscosity increase (��,�) (F). The samples were measured at 55 (A), 60 (B), 65 (C), 70 (D) 468 

or 75 °C (E) for 5 min at a constant shear rate of 300 1/s. Symbols indicate experimental data 469 

points while lines correspond to the linear fit of the data.  470 

 471 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

24 
 

 472 

Appendix Fig. A.3. Heat-induced viscosity of liquid MPC as a function of shear rate (A) and 473 

its relative value to the control sample (η/η0) (B), where η and η0 are the viscosity of the 474 

sample subjected to the heat treatment and that of the unheated sample, respectively.    475 
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 476 

Appendix Fig. A.4. Fitted model viscosity of liquid MPC to heat treatment under zero-order 477 

reaction kinetics. Symbols (□), (o) and (×) indicate experimental data points while dashed 478 

dotted (− ⋅), dashed (− −) and solid () lines represent the fitted model at 85, 100 and 120 479 

°C, respectively. Bars present standard errors of the triplicate measurements. 480 
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 482 

 483 

Appendix Fig. A5 Modelled viscosity of liquid MPC to heat treatment at the shear rate of 484 

100 1/s (A) and 200 1/s. Symbols indicate experimental data points while solid lines 485 

represent the second-order models. Bars present standard errors of the triplicate 486 

measurements. In the model, the ratio ηm/η0 at a specific shear rate was considered to be 487 

constant (2.44). Values of η0 at different shear rates were obtained from the measurement 488 

while the rate constants of viscosity response to temperature were obtained from Appendix 489 

Table A3. 490 

 491 

  492 
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Figure legends 576 

Fig. 1. Schematic diagram describing heat treatment of liquid milk protein concentrates 577 

Fig. 2. Non-reducing and reducing sodium dodecylsulfate polyacrylamide gel electrophoresis 578 

(SDS-PAGE) protein analysis of liquid MPC before and after thermal heat treatment (AP: 579 

aggregated protein; β-lg : β-lactoglobulin).   580 

Fig. 3. Viscosity of liquid milk protein concentrates before and after thermal heat treatment 581 

using an indirect tubular heat exchanger. Viscosity measurements were performed at a shear 582 

rate of 300 1/s at 45 °C. Error bars were obtained from triplicate trials. Modelled viscosity of 583 

liquid MPC as a function of heat treatment temperature and holding times under (A) first-584 

order reaction kinetics and (B) second-order reaction kinetics. Symbols indicate experimental 585 

data points and solid lines represent the fitted model.  586 

Fig. 4. Viscosity of milk protein concentrate heat treated at 120 °C for 15, 30 or 60 s at 587 

17.3%, w/w, protein (×) or 12.1%, w/w, protein (○). The sample diluted to 12.1%, w/w, 588 

protein was concentrated back to 17.1%, w/w, protein prior to viscosity analysis. Symbols 589 

and the solid line () represent the experimentally measured data points and the second-590 

order reaction kinetics model, respectively. Modelled parameters are shown in Table 1. Error 591 

bars represent standard deviations of triplicate measurements. 592 

Fig. 5. Viscosity of liquid MPC as a function of time (A) and its relative rate of viscosity 593 

increase (��,�) as a function of temperature (B). Liquid MPC was obtained after ultrafiltration 594 

and heated at 55 (o), 60 (□), 65 (+), 70 (∆) or 75 °C (×) for 5 min at a constant shear rate of 595 

300 1/s. Bars represent standard errors of triplicate values. 596 

Fig. 6. Arrhenius plot for the logarithm of relative rate of viscosity increase ln	(��,�) as a 597 

function of 1/T. ��,� is defined in Eq. (3). Symbols indicate experimentally determined data 598 

points while lines correspond to the linear regression fit of the data. In the aggregation-599 

limited temperature area, ��,� was calculated from Eq. (4) while in the unfolding-limited 600 
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temperature area, ��,� was determined from the slope of viscosity as a function of time (see 601 

Fig. 5B). Tc is the critical temperature in the Arrhenius plot, defining the aggregation-limited 602 

and the unfolding-limited regions. 603 
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Tables 1 
Table 1. First- and second-order reaction kinetics as a function of the modelled viscosity response to heat treatment 2 
  First order Second order 

Rate of protein denaturation ���
�� = −��	
  

���
�� = −��	
�  

Rate of viscosity change 
  

��
�� = − ���

��   
��
�� = − ���

��   

Heat induced viscosity as a function of time (t) 
at  temperature (T) 
 

� = �� + ��� − ����1 − exp	�−����� 
(Eq. 5)  

� = �� + ��� − ��� �1 − �
�������

   

(Eq. 6) 

kT is the overall rate constant for protein denaturation at temperature T (K); Cp (%, w/w) is the native protein concentration of the concentrate; t 3 
(s) is the time; C0 (%, w/w) is the initial native protein concentration; η (mPa.s) is the viscosity of the concentrate; ɳ0 (mPa.s) is the viscosity of 4 
the concentrate at time zero prior to heat treatment; ɳm (mPa.s) is the maximum viscosity due to heat treatment; α (mPa.s / %) is the coefficient 5 
representing response of viscosity to protein denaturation. Details of equation derivations in Table 1 are described in Appendices B and C. 6 
 7 
  8 
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Table 2. Parameters of viscosity response to heat treatment estimated using first- and second-order reaction kinetics 
Model parameters First order Second order 

Maximum viscosity due to heat treatment η
m
 (mPa.s) = 19.77±0.60 η

m
 (mPa.s) = 20.6±0.84 

Rate constant of viscosity response at 120 °C k
120 

(1/s) = (9.65±2.4)×10-2a k
120

C
0 
(1/s) = (19.1±0.90) ×10-2a 

Rate constant of viscosity response at 100 °C k
100  

(1/s) = (2.03±0.67) ×10-2b k
100 

C
0 
(1/s) = (2.68±1.16) ×10-2b 

Rate constant of viscosity response at 85 °C k
85

(1/s) = (7.52±2.55) ×10-3c k
85

 C
0
 (1/s) = (1.01±0.4) ×10-2c 

 R
2
= 0.87 R

2
= 0.91 

± 95% confidence interval. 
η

m
 (mPa.s) is the maximum viscosity due to heat treatment.  

kT is the overall rate constant of protein denaturation at temperature T (K)  
Co (%, w/w) is the initial native protein concentration  
Values of the rate constant within a column not sharing a common superscript differ significantly (P< 0.05). 
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Fig. 2.  15 
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Fig. 3.  18 
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Fig. 4. 22 
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Fig. 6.  28 
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Highlights 

• Heat treatment (≥75°C) caused a significant increase in viscosity of MPC 

• A model was developed to describe the effect of heat treatment on MPC viscosity   

• Second-order kinetics proved a good fit for viscosity response to heat treatment 

• The Arrhenius plot showed the transition from protein unfolding to aggregation  

 


