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Modeling Managed Grassland Biomass Estimation
by Using Multitemporal Remote Sensing

Data—A Machine Learning Approach
Iftikhar Ali, Fiona Cawkwell, Edward Dwyer, and Stuart Green

Abstract—More than 80% of agricultural land in Ireland is
grassland, which is a major feed source for the pasture based
dairy farming and livestock industry. Many studies have been un-
dertaken globally to estimate grassland biomass by using satellite
remote sensing data, but rarely in systems like Ireland’s intensively
managed, but small-scale pastures, where grass is grazed as well
as harvested for winter fodder. Multiple linear regression (MLR),
artificial neural network (ANN) and adaptive neuro-fuzzy infer-
ence system (ANFIS) models were developed to estimate the grass-
land biomass (kg dry matter/ha/day) of two intensively managed
grassland farms in Ireland. For the first test site (Moorepark) 12
years (2001–2012) and for second test site (Grange) 6 years (2001–
2005, 2007) of in situ measurements (weekly measured biomass)
were used for model development. Five vegetation indices plus
two raw spectral bands (RED=red band, NIR=Near Infrared
band) derived from an 8-day MODIS product (MOD09Q1) were
used as an input for all three models. Model evaluation shows
that the ANFIS (R2

M oorepark = 0.85, RMSEM oorepark =
11.07; R2

Grange = 0.76, RMSEGrange = 15.35) has pro-
duced improved estimation of biomass as compared to the ANN
and MLR. The proposed methodology will help to better explore
the future inflow of remote sensing data from spaceborne sensors
for the retrieval of different biophysical parameters, and with the
launch of new members of satellite families (ALOS-2, Radarsat-
2, Sentinel, TerraSAR-X, TanDEM-X/L) the development of tools
to process large volumes of image data will become increasingly
important.

Index Terms—Biomass estimation, machine learning, managed
grassland, remote sensing, time series.

I. INTRODUCTION

GRASSLANDS are one of the major and crucial compo-
nents of the terrestrial ecosystem [1] and most prevalent

and widespread global land cover types. Grasslands cover about
40.5% of the Earth’s surface [2]–[4] and after forests, grasslands
are the major source (about 30%) of carbon sink [5], [6] and
thus play a very important role in regulating the global carbon
cycle [4]. The demand and consumption of dairy products are
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increasing globally [7], [8] and in order to meet this demand, an
equivalent growth in livestock has to be maintained.

Grasslands are the major feed source for grazing livestock,
and the amount of above ground biomass will determine the
pasture’s carrying capacity—the maximum number of animals
that can graze a pasture for a set period without harming it.
Grazed grass is the cheapest feed for livestock, and for that
reason it is very important to manage grasslands because better
management will result in low cost high quality grass. Based on
these management approaches, grasslands can be categorized
into broader management strategies: 1) unmanaged (natural)
and 2) managed (agricultural pastures) grasslands [9]. The term
“grassland management” in the context of this research includes
weed control, removing dead plants, mowing, clipping, assess-
ment of growth rate, grazing length, and utilization of grassland
[10].

Grassland biomass can be estimated by using both ground
based conventional methods and remote sensing technology.
Existing ground-based methods include:

1) Visual: the visual assessment by human eye (expert or
farmer), this method is spatially sparse with limited per-
formance [11].

2) Cut and dry (Clipping): grass is harvested from the pad-
dock and is dried and weighed to get the dry matter (DM)
yield.

3) Rising plate meter: both mechanical and electronic plate
meters work on the same principle, where the plate rises up
and down the shaft taking measurements of grass height
[12]–[14].

4) Field spectrometry: can also be used for above ground
biomass estimation where collected spectra are converted
into reflectance and calibration is performed from biomass
samples [15], [16].

Conventional ground based methods are subjective, time con-
suming and are feasible (or applicable) only for small scale
assessment and monitoring of grasslands [17].

More advanced and spatially extensive grassland monitoring
methods include the use of remotely sensed data. Remote sens-
ing data can be acquired from sensors (optical and/or radar)
mounted on different platforms [18], for example in the case of
airborne remote sensing the sensor is mounted on aircraft, heli-
copters or unmanned aerial vehicles while in case of satellite re-
mote sensing the sensor(s) is mounted on a spacecraft. Airborne
remote sensing is good for cloud free data acquisition at a small
scale, as the aircraft can fly under the cloud cover at an optimal
time for data collection. Airborne remote sensing data have been
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used for vegetation change detection [19] and discrimination
[20] at a local scale. Similarly, for grassland monitoring, Curran
and Williamson [21] have used airborne multispectral scanner
data for the mapping of leaf area index, while in another study
Darvishzadeh et al. [22] used hyperspectral airborne imagery.
Despite the advantages (timely and flexible in acquisitions, high
spatial resolution) of airborne remote sensing data, the approach
is still considered expensive [23] for consistent large scale ap-
plications, and impractical for the development of operational
tools. At present, in order to overcome these limitations, satel-
lite remote sensing remains the best available alternative, where
sensors with different microwave wavelengths (TerraSAR-X,
Radarsat), spectral bands (Landsat, QuickBird, Hyperion), res-
olution and revisit time can be used operationally. Data from
both optical and SAR instruments are being used for grassland
related investigations [24], [25].

Since the launch of Landsat-1 in 1972, satellite remote sens-
ing data have been used for agricultural activities e.g., biomass
estimation [26], soil moisture [27], water consumption [28],
discrimination of different crop types [29], and monitoring of
agricultural drought [30]. With the development of satellite sen-
sors with high spatio-temporal resolution and wide area cov-
erage, agriculture remote sensing has moved a step further
towards “precision agriculture” whereby growth rates can be
monitored [31], [32], inter and intra field variability mapped
[33], poor/underperforming areas identified [34], and decision
support systems developed [35]–[38].

Over the past 40 years a number of methods have been devel-
oped for grassland biomass estimation based on satellite remote
sensing data, and the technology is now mature enough for the
monitoring of detailed grassland management activities. Based
on a review of past work, satellite driven grassland biomass es-
timation methodologies can be categorized into three broader
groups: 1) using vegetation indices (VIs), 2) biophysical simu-
lation models, and 3) machine learning algorithms [39].

A. Use of Vegetation Indices for Grassland Biomass
Estimation

The use of satellite driven VIs in combination with in situ
measurements [40], [41] for the development of regression mod-
els for grassland biomass estimation is the most popular and
well-studied approach [42]–[50]. Many researchers have inves-
tigated the application of different VIs derived from satellite
imagery (e.g., QuickBird, MODIS, Landsat) and developed dif-
ferent regression models (e.g., linear, power, logarithmic, mul-
tiple linear) for grassland biomass estimation [17], [51]–[53].
Very high accuracies of the vegetation index based regression
models for biomass estimation have been reported in the lit-
erature [17], [54]–[60], but their major limitation is that these
models are site specific and do not have the capability to learn
the highly non-linear and complex patterns in the data.

B. Use of Biophysical Simulation Models for Grassland
Biomass Estimation

The LINGRA simulation model has been designed for the
prediction of grassland (perennial rye grass) productivity in

Europe [61], [62]. In a recent study, Maselli et al. [63] used the
C-Fix parametric model for grassland gross primary production
in combination with in situ measurements and remote sensing
data. This approach of data assimilation has frequently been
used for crop (i.e., wheat, rice, maize) monitoring [64]–[66],
but has not been fully explored yet for grassland monitoring.

C. Use of Machine Learning Algorithms for Grassland
Biomass Estimation

Unlike crops [67]–[70] and forests [71] the number of studies
on the use of machine learning algorithms for remote sensing
based grassland biomass estimation is limited [72]. Xie et al.
[73] and Yang et al. [74] reported the successful application
of an artificial neural network (ANN) approach for grassland
yield estimation based on utilization of satellite driven VIs. In
another study Clevers et al. [75] used a support vector machine
approach for grassland biomass estimation based on airborne
remote sensing data.

The objective of this paper is to estimate the biomass of man-
aged grasslands where weekly grass growth (kg DM/ha/day)
is recorded on a regular basis. Three different methods were
used for grassland biomass estimation, namely: Multiple Linear
Regression (MLR), ANNsand Adaptive-Neuro Fuzzy Inference
Systems (ANFIS). To the best of our knowledge only a few
studies [73], [74] have reported on the application of ANN with
remote sensing data for grassland biomass estimation; and there
has been no work published to date on the application of ANFIS
using satellite imagery for grassland biomass estimation. After
the publication of Jang [76] research, where the framework of
ANFIS was introduced, this modeling approach has been used
in various disciplines [77]–[84]; and some studies reported the
performance comparison between ANN and ANFIS, but not
previously in the context of deriving biophysical parameters
from a satellite image. It is evident from a number of previous
studies that in some cases ANN performs better than ANFIS
[85], but in most of the cases ANFIS performs as well as/or bet-
ter than the ANN [86]–[96]. This trend of model performance
varies between application domains, and performance also de-
pends upon a number of factors e.g., the quality and size of
datasets and underlying problem formulation. This paper will
explore some of these issues in more depth for two Irish sites
with differing data inputs.

II. MATERIALS AND METHODS

A. Study Sites

The Moorepark and Grange study sites are Teagasc (the Irish
agriculture and food development authority) research farms
located in the south (50◦ 07′ N, 08◦ 16′ W) and north east
(53◦ 30′ N, 06◦ 40′ W) of Ireland respectively (see Fig. 1).
Teagasc research farms in Ireland have been closely monitored
for many years, providing a valuable source of grassland
biomass (intensively managed grassland), meteorological and
farm management data. This study uses in situ data of weekly
biomass (kg DM/ha/day) from 2001 to 2012 for Moorepark
(area: 100 ha) and from 2001 to 2005 and 2007 for Grange
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Fig. 1. Two Teagasc research farm study sites (Blue stars: Moorepark and Grange) where weekly in situ data are collected.

(area: 71.3 ha). For Moorepark, annual mean temperature
ranges from 9.4 to 10.1◦C and for Grange it is 8.8 − 11◦C,
while the annual average rainfall varies between 854 and
1208 mm for Moorepark and between 601.5 and 1065.8 mm
for Grange study site (see Fig. 2).

B. Data Used

1) Remotely Sensed Data: A time series (46 images per
year) of 250 m MODIS Terra surface reflectance 8-day compos-
ite (MOD09Q1), and 500 m MODIS Terra surface reflectance
8-day composite (MOD09A1) images were freely downloaded
from the NASA Land Process Distributed Active Archive
Center (https://lpdaac.usgs.gov/lpdaac/get_data/glovis) for
the Moorepark study site from 2001 to 2012 and for the
Grange study site from 2001 to 2007. For accurate estimation
of the grass growth index based on satellite data, the date of
ground truth data collection and satellite image acquisition

are required in order to establish a true correlation between
the observed biophysical parameters and satellite driven
vegetation indicators. The day of pixel composite information
was extracted from the MOD09A1 product as suggested by
Guindin-Garcia et al. [97] and applied to the 250m product,
which was used for the model development.

2) Field Data: Both the test sites consist of managed grass-
land pasture fields, and different grassland related biophysical
parameters have been recorded for many years. In this study the
grassland weekly biomass (kg DM/ha/day) values have been
used. For the Moorepark test site, 12 years (2001–2012) of in
situ measurements of grassland biomass are used, while for
Grange 6 years (2001–2005 and 2007) of field data are ana-
lyzed. Biomass (DM) for each paddock is calculated by cutting
and drying a grass strip of approximately 1 m wide and 3 m
long (see Fig. 3) from which biomass and growth rate for the
whole farm are calculated. Fig. 4 shows a summary of ground
data collected for both the test sites.
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Fig. 2. Meteorological profiles of annual average temperature and annual maximum and total precipitation for Moorepark and Grange study sites.

Fig. 3. In situ data collection for each individual paddock using the clipped method, where a strip of grass approximately 1 metre wide and 3 metres long is cut
and dried to estimate the biomass (kg DM/ha/day).

C. Data Preprocessing and Study Design

Both MODIS products were downloaded in HDF file format
and a Python script was written to extract the reflectance values
five VIs were calculated as shown in Table I:

Calculated VIs were filtered using the Savitzky–Golay algo-
rithm, which is widely used to smooth high frequency variability,
such as the spiky nature of the time series of VIs. This process
was implemented in Python in order to smooth out noise in the
time series and fill gaps resulting from cloud-induced missing
data. Principal Component Analysis (PCA) was then applied to
reduce the data dimensionality and variable dependencies. Fig.
5 shows the systematic workflow of this approach.

D. Model Development

1) Multiple Linear Regression Model: The MLR approach
is used where there is more than one predictor variable, and to

find linear relationships between the dependent and independent
variables [103]. Five VIs and two raw bands (RED, NIR) were
used as independent predictor variables for grassland biomass
(kg DM/ha/day). The model formulation is as follows:

Yi = β0 + β1Xi1 + · · · + βkXik + εi (1)

where
Yi = model reponse
β0 = intercept
β1 , . . . , βk = slopes or regression coefficients
Xi1 , . . . , Xik = predictor variables
εi = independent variables that are normally

distributed with 0 mean and constant
variance.

2) Artificial Neural Networks Model: ANNs belong to the
family of machine learning algorithms, where the computational
models have a great ability to adapt, learn and generalize the
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Fig. 4. Weekly biomass measurements for (A): Moorepark 12 years in situ measurements, (B) Grange 6 years in situ measurements: the black line represents
the weekly biomass (kg DM/ha/day) value for each year, and red dotted lines show 12 and 6 years average biomass (kg DM/ha/day).

TABLE I
LIST OF VEGETATION INDICES USED

Vegetation Index Acronyms Formula Description Reference

Normalized Difference Vegetation
Index

NDVI
NIR − RED
NIR + RED

is widely used for the separation of green
vegetation and background soil brightness with
values ranging from −1 to +1, where, -1
represents non-vegetative and +1 vegetative area.

[98]

Enhanced Vegetation Index–2 EVI2 2.5
(

NIR − RED
NIR + 2.4RED + 1

)
is a modified form of NDVI—highly sensitive to
vegetation, capable of decoupling canopy
background signal, and reduces the atmospheric
influence.

[99]

Soil Adjusted Vegetation Index SAVI (1 + L)
(

NIR − RED
NIR + RED + L

)
in case of low vegetation cover soil noise causes a
poor estimation of vegetation biomass. In order to
overcome this limitation SAVI is used—to
minimize the contribution of soil background
signals by using a soil adjustment factor L. Huete
(1988) suggested a value of L = 0.5 in most
conditions.

[100]

Modified Soil Adjusted
Vegetation Index

MSAVI
1
2

[(2NIR + 1) −
√

(2NIR + 1)2 − 8(NIR − RED)] is a modification of SAVI which has a modified soil
adjustment factor L, pixels with negative values
represents non-vegetative area and pixels with
positive values represent vegetative area.

[101]

Optimised Soil Adjusted
Vegetation Index

OSAVI
NIR − RED

NIR + RED + X
also belongs to the SAVI family of vegetation
indices, in order to minimize the background soil
noise, here the factor X is crucial for the
minimization of background soil noise, Rondeaux
et al. (1996) found an optimized value of
X = 0.16.

[102]

complex and complicated patterns hidden in the data. ANN
works like a biological neuron where the information flows in
are processed by the neuron and the results flow out [104]. This
gives the neuron an ability to react based on previously learned
patterns. Scientists replicate this by creating a structure that

processes information like a biological neuron does, except this
approach is mathematically driven [105], [106]. Fig. 6 shows
the example of a single biological (A) and artificial neuron (B).

A single processing unit (an artificial neuron) computes the
weighted sum of input data sets and there is always an activation
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Fig. 5. Study design and methodological workflow scheme.

Fig. 6. (a) Biological neuron, (b) unit artificial neuron.

function, which gives the output of the unit. The mathematical
representation of an artificial neuron (n1) at an instance (i1)
and its activation function [105] are given by

n1 (i1) =
n∑

j=1

vj1dj + b1 (i1) (2)

where, d1 , . . . , dn are inputs, v1 , . . . , vn are associated connec-
tion weights and b1 is the bias value, with the activation function
sigmoid (3)

Φ (x) =
1

1 + e−x
. (3)

Other possible activation functions could be linear or hyper-
bolic tangent functions.

For this study, a feed-forward back propagation neural net-
work algorithm [105] was used, where individual neurons (pro-
cessing units) are arranged in layers where the first layer takes
inputs and last layer produces output(s). Neurons in each layer
are connected to all the neurons in the next layer and infor-
mation flows in the forward direction (hence “feed forward”),
while there is no connection among the neurons in the same
layer. Fig. 7 shows the structure of the multilayer feed-forward
back propagation algorithm.

Back propagation is a form of supervised learning algorithm
where the input dataset consists of training samples and desired
outputs. In back propagation, learning occurs every time an
input training sample is fed to the net, and the output of this
exercise is compared with the desired results and an error (or
deviation from original results) is calculated. The value of error
is a quantitative measure, which shows how far away the output
is from the desired value. Using the calculated errors, the back
propagation-training algorithm then follows the backward pass
through the layers from output layer to the input layer in order to
adjust the weights, with the ultimate objective being to minimize
the error.

3) Adaptive Neuro Fuzzy Inference Systems Model: ANNs
have the power of learning patterns, while on the other hand
fuzzy logic has the capabilities of reasoning. ANFIS is a fusion
or hybrid model that integrates the positive aspects of both
ANNs and fuzzy logic in order to construct a robust model that
will associate the independent (input values) variables with the
dependent (target values) variables with minimum estimation
error.

A five layers ANFIS was first introduced by Jang [76], with
the capability to incorporate linguistic knowledge (expert opin-
ion) and human like reasoning based on a training data set and
a set of IF-THEN fuzzy rules. A unit format for defining fuzzy
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Fig. 7. Structure of multilayer feed–forward back propagation algorithm.

Fig. 8. (a) Type-3 fuzzy reasoning and, (b) equivalent ANFIS.

rules is:

IF 〈Antecedent〉 THEN 〈Consequent〉

For illustration purpose, ANFIS architecture with two inputs
(x1 , x2) and one output (Of ) is shown in Fig. 8. The corre-
sponding two fuzzy IF-THEN rules of Takagi and Sugeno’s
type [107] can be expressed as follows:

Rule 1: IF x1 is Y1 and x2 is Z1 ,

THEN f1 = p1x1 + q1x2 + r1

Rule 2: IF x1 is Y2 and x2 is Z2 ,

THEN f2 = p2x1 + q2x2 + r2 .

Fig. 8(a) shows the type-3 (two inputs and one output)
fuzzy reasoning and Fig. 8(b) shows the corresponding ANFIS
architecture.

The functionality and corresponding mathematical formula-
tion of each layer is as follows [76]:

Layer 1: Fuzzy layer: Every node in this layer is fixed and
adaptive and membership (μ(◦)) of each label (Yi, Zi) is cal-
culated by using (4) and (5)

U 1
i = μYi

(x1) , for i = 1, 2 (4)

U 1
i = μZi

(x2) , for i = 1, 2 (5)

where x1 and x2 are inputs and i is the node and Yi and Zi are
the linguistic labels. μYi

(x1) is a membership function of Yi

which gives the degree of membership of x1 to be part of Yi (6).
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TABLE II
FEATURES OF INPUT DATA, PERFORMANCE EVALUATION CRITERIA AND ARCHITECTURE AND PARAMETERS USED IN THE ANFIS AND ANN MODELS

Data

Standardization: 0 Mean, 1 Std
Reduction: PCA
Division: 70%—Training

30%—Testing/validation
Performance evaluation criteria
R2 : Correlation coefficient
RMSE: Root Mean Square Error
ANN
Number of layers: 4
Neural net algorithm: Feed-forward backpropagation
Number of neurons: Input layer: 7, hidden layer neurons: 15, Output layer: 1
Initialization: Weights: random, biases: random
Training algorithm: Levenberg—Marquardt
Activation functions: Log-sigmoid
ANFIS
Number of layers: 5
Type: Sugeno-type
Input membership function type: Generalized bell-shaped membership function
Learning rule Hybrid learning algorithm

The parameters {ai, bi , ci}, referred to as premise parameters,
determine the shape of the membership function

μYi
(x1) =

1

1 +
[(

x1 −ci

ai

)2
]bi

. (6)

Layer 2: Product layer: Every node in this layer is labeled
N2 , the outcome of this layer is the product of incoming signals
and is given by

wi = μYi
(x1) × μZi

(x2) , for i = 1, 2 (7)

where wi is the output of layer 2.
Layer 3: Normalization layer: The third layer, labeled as

N3 , is called the normalization layer

w̄i =
wi

w1 + w2
, for i = 1, 2 (8)

where the ratio of each weight to the total weight is calculated,
i.e., ith node calculates the ratio of the ith rule’s firing strength
(8).

Layer 4: Defuzzify layer: Every node in this layer is adaptive
and it is called the defuzzification layer (labeled as N4 (9))

D4
i = w̄i fi = w̄i (pix1 + qix2 + ri) (9)

where w̄i is the output of layer 3, and the set of parameters
{pi, qi , ri} is referred to as consequent parameters.

Layer 5: Output layer: All the incoming signals are summed
in order to compute the overall output (10), i.e.,

Of = output =
2∑

i=1

w̄ifi =
∑2

i=1 wifi∑2
i=0 wi

=
w1f1 + w2f2

w1 + w2
.

(10)
Table II shows the list of parameters used for in ANN and

ANFIS models.
4) Performance Evaluation Criteria: Root mean square er-

ror (RMSE) and coefficient of determination (R2) were used

TABLE III
MODELS DEVELOPMENT AND EVALUATION

Model development

Moorepark (R2 ) Grange (R2 )

Training Testing Training Testing
MLR 0.31 0.21 0.39 0.29
ANN 0.65 0.54 0.71 0.54
ANFIS 0.88 0.78 0.80 0.74

Model evaluation on entire data set
Moorepark Grange

R2 RM SE R 2 RM SE

MLR 0.29 25.08 0.38 24.02
ANN 0.63 18.05 0.59 20.43
ANFIS 0.85 11.07 0.76 15.35

as bench marks for the performance assessment of all models
(MLR, ANN and ANFIS). The mathematical formulations of
these statistical error/performance criteria are as follows [108]:

R2 =
∑n

i = 1

(
Oi − Ōi

)2 −
∑n

i = 1 (Oi − Pi)
2

∑n
i = 1

(
Oi − Ōi

)2

(11)

RMSE =

√√√√ 1
n

n∑
i = 1

(Pi − Oi)
2 (12)

where n is the number of observations; Pi is predicted/estimated
value; Oi is actual/observed value and Oi is the mean of ob-
served values. The ideal performance of the underlying model
gives a value of RMSE close to zero and the value of R2 should
be close to 1.

III. RESULTS AND DISCUSSION

Three different biomass estimation models, including both
statistical (MLR) and machine learning (ANN and ANFIS)
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Fig. 9. Scatter plots for the accuracy comparison of MLR, ANN and ANFIS estimated grassland biomass versus in situ biomass for the Moorepark test site.

Fig. 10. Plots of observed and modeled time series by using MLR, ANN and ANFIS for Moorepark study site. The shaded regions Z1 (2003), Z2 (2005), Z3
(2009) and Z4 (2011) were selected for more detailed analysis (see Fig. 11).

approaches, were used to estimate intensively managed grass-
land biomass. These three models were used for both afore-
mentioned study sites (see Section 2.1); and grassland biomass
estimation models were developed where five VIs plus two spec-
tral bands (RED, NIR) were used as input features. Firstly, the
12-year time series for Moorepark was used for model (MLR,
ANN and ANFIS) development, with the dataset randomly di-
vided into training (70%) and testing (30%) subsets (see Table
II). The evaluation of the models was performed on the entire
datasets (see Table III).

Fig. 9 shows the results for Moorepark study site. The first
approach to estimating grassland biomass in this study was
with the MLR, which has been demonstrated to be very ro-
bust when the relationship between datasets is linear. How-
ever, as shown in Fig. 9, the value of coefficient of determi-
nation for MLR is very low (R2 = 0.29) and the value of
RMSE (RMSE = 25.08) is high compared to the ANN model

(R2 = 0.63, RMSE = 18.05), suggesting a non-linear rela-
tionship between the variables. To date the use of machine
learning algorithms for grassland biomass estimation is not
very widespread. Two studies [73], [74] have compared the
performance of the MLR and ANN, and in every case ANN
outperformed the MLR; and the results generated by this study
endorsed these findings.

The literature review suggests that the application of ANFIS
is very powerful for estimation and prediction tasks [77]–[79],
[81], but the use of ANFIS for spaceborne earth observation
applications is only in its infancy [109], [110] and in these
studies a high overall accuracy of ANFIS against ANN was
reported. This outcome can also be seen here, as the ANFIS
model gave better estimation results (R2 = 0.85, RMSE =
11.07) than both MLR and ANN (see Fig. 9).

Fig. 10, which gives an overview of the performance of the
three models, shows that the ANN model was able to identify the
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Fig. 11. Zoomed view of Fig. 10 highlighted parts (Z1, Z2, Z3 and Z4).

Fig. 12. Scatter plots for the accuracy comparison of MLR, ANN and ANFIS estimated grassland biomass verses in situ biomass for Grange test site.

start of the season more reliably than the MLR, this was further
improved by the ANFIS model. The ANFIS also produced a
closer seasonal curve fit with minimum residuals compared to
the MLR and ANN, but there are still some spurious spikes
that are not present in the field data and some features are not
replicated.

Fig. 11 shows examples where peaks (higher biomass values)
were not reached and underestimation is observed in four cases
(Z1, Z2, Z3 and Z4). The reason for these anomalies is not yet
clear, but one potential cause could be saturation of the satellite
data, as in all four cases (Z1, Z2, Z3 and Z4) the overall general
behavior of the estimated/modeled biomass curve is comparable
for the three models (MLR, ANN, ANFIS). For example, in
the case of Z1 all three models have overestimated the biomass

during the start of the season, underestimated the higher biomass
values (during summer) and again at the end of the season
overestimation is observed (see Fig. 11 (Z1)). A similar trend
is shown in Fig. 11 (Z2 and Z3) where higher biomass values
are under estimated, while at the end of the season ANFIS has
improved (reduced) the overestimation as compared to the MLR
and ANN. In the case of Z4 the overall trend of the estimated
pattern of MLR, ANN and ANFIS is comparable and ANN
and ANFIS have identified the start of the season quite well,
although ANFIS has minimized the estimation error, but still it
has failed to reach the peak (higher biomass values) during the
mid of the season, and the anomalies at the end of the season
are similar for ANN and ANFIS. Fig. 11 shows that ANFIS
has produced an improved estimation as compared to the MLR
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Fig. 13. Plots of observed and modeled time series for Grange study site.

Fig. 14. Year wise residual plots for Grange study site.

and ANN but still in some cases it has underestimated the high
biomass values.

To further explore the functional relationship between the
input feature space and the in situ data, and also to explore
the performance of the models, the same approach was ap-
plied to the Grange study site. Again the results show that
the ANFIS model was the most accurate among the three
models, with a higher value of coefficient of determination
(R2 = 0.76) and low RMSE (RMSE = 15.35), followed

by ANN (R2 = 0.59, RMSE = 20.43) and MLR (R2 =
0.38, RMSE = 24.02) (see Table III; Fig. 12).

Machine learning methods require large data sets in order to
better understand the patterns hidden inside the data, which
could be a reason for the higher accuracy achieved for the
Moorepark study site. Another reason for the lower accuracy
at the Grange test site could be that it is under more in-
tense grazing practices, indicated by the biomass curves for
Grange (see Fig. 4(B)) being more complex and variable, with
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Fig. 15. Year wise residual plots for Moorepark study site.

considerable inter annual variation compared to the Moorepark
in situ data (see Fig. 4(A)).

The issue of underestimation at higher biomass values was
also observed at the Grange study site in some time periods,
although better estimation at the start of the season can be seen
in Fig. 13. In order to further analyze the effect of complexity
on the models’ performance, residual boxplots for each year
were created for the Grange study site as shown in Fig. 14. The
2002 and 2005 residual boxplots show the highest variability
and wide spread, especially for 2005 which is the most com-
plex and nonlinear part of the Grange time series. By contrast,
the Moorepark 12-year average and individual yearly biomass
curves are quite consistent and similar in data range (min–max
values; see Figs. 4 and 15).

A. Selection of Input Variables

As machine-learning models are generally data driven and
require a large amount of data for better performance all five

VIs along with two spectral bands (RED, NIR) were used as
input variables to the PCA, and resulting principal component
features were used as an input to the models. Various different
combinations of inputs were tested and it was shown that the
best accuracy was achieved by using all VIs as input variables
for both statistical and ANN models.

B. Comparison of Three Models Performance on Both
Study Sites

In terms of performance evaluation of the three models
(see Fig. 16), it is evident that the distribution of interquartile
range (IQR) of MLR (IQRMoorepark = 39.98, IQRGrange =
26.72) and ANN (IQRMoorepark = 17.99, IQRGrange =
22.37) residuals is quite large for both the test sites as compared
to the distribution of IQRof ANFIS (IQRMoorepark = 7.78,
IQRGrange = 10.2). For both the study sites ANFIS has less
variability than the MLR and ANN, and the overall spread (min–
max whisker range) of ANFIS for both the sites is small and
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Fig. 16. Variations in residual for all three models (MLR, ANN, ANFIS) estimations. The boxplots show the spread, lower quartiles, medians and upper quartiles.
The lines are drawn from the box (1.5 times the interquartile range from the nearer quartile).

symmetrical around zero. However the ANFIS scatter plots
for both Moorepark (Fig. 9) and Grange (Fig. 12) are more
unreliable for the higher biomass values. For example, for
Moorepark underestimation is evident for the values > 60 kg
DM/ha/day, similarly for Grange, large over and underestima-
tion errors can be seen for the values > 100 kg DM/ha/day.

Studies show that whenever ANN and MLR are used for
grassland biomass estimation ANN has always out-performed
the traditional statistical approach. For example, Xie et al. [73]
used a single Landsat ETM + image for above ground grass-
land biomass estimation and showed the superior performance
of ANN (R2 = 0.817) against MLR (R2 = 0.591). Similar
findings were reported by Yang et al. [74] where MODIS driven
VIs from July–September 2005 were used to model the grass
yield estimation, and ANN models were found to be more ac-
curate (R2 = 0.56 − 0.71) compared to the statistical models
(R2 = 0.54 − 0.68). The results of the current study have en-
dorsed this trend of high performance for ANN against MLR.
With respect to ANFIS and ANN, it has also been established in
both non-remote sensing and remote sensing applications that
the former generates more reliable results e.g., Rajesh et al.
[110] indicated the higher classification performance of AN-
FIS (overall accuracy: 86.01%) compared to the ANN (overall
accuracy: 83.62%).

C. Advantages and Limitations of Proposed Methodology

ANFIS not only integrates the strengths of ANN and fuzzy
logic, but also overcomes some of the disadvantages of each ap-
plied separately and produces better results in terms of smooth-
ness and adaptability. The presented framework of ANFIS mod-
eling allows multiple inputs to produce a single output, how-
ever to achieve a higher level of accuracy a larger amount of
data might be required to drive the model, with the model
performance also dependent on the data quality and study design
[111], [112].

IV. CONCLUSION

In this paper, the estimation capabilities of the ANFIS ap-
proach are compared against the ANN and more commonly

used MLR modeling techniques. Although well established
in other scientific fields (engineering, expert systems) the
potential of ANFIS modeling in remote sensing is not yet
fully explored, although as demonstrated by this research it
is a technique that holds promise for future studies. Five
MODIS derived VIs and two spectral bands (RED, NIR)
along with the in situ measurements were used for model
training and testing; and their performance was evaluated
using R2 and RMSE. For both the study sites, ANFIS
(R2

Moorepark = 0.85, RMSEMoorepark = 11.07; R2
Grange =

0.76, RMSEGrange = 15.35) produced better estimations
of biomass compared to the ANN (R2

Moorepark = 0.63,

RMSEMoorepark = 18.05; R2
Grange = 0.59, RMSEGrange =

20.43) and MLR (R2
Moorepark = 0.29, RMSEMoorepark =

25.08; R2
Grange = 0.39, RMSEGrange = 24.02). However,

there are some occasions when the model data underestimates
the actual biomass peak (a common feature of VI driven biomass
models); one potential reason for this underestimation could be
the effect of saturation of the satellite signal or vegetation index
value and further work is required to understand these anoma-
lies. Nevertheless, these results show significant promise for the
use of a hyper-temporal time series of satellite imagery as input
to modeling for an effective tool for grassland monitoring and
management.

With the launch of members of satellite families (ALOS-2,
Radarsat-2, Sentinel, TerraSAR-X, TanDEM-X/L) the volume
of data for such modeling studies will increase markedly, and
concepts of big data are becoming more relevant in the remote
sensing domain. As machine-learning models are considered to
be data driven models, more data heralds higher accuracy. To
date, grassland-modelling activities over 12 years have not been
reported in the literature, but the scope for such long term stud-
ies will increase significantly over the coming years. In addition
to demonstrating the potential of such long time series studies,
this work has also highlighted the potential for complex mod-
eling approaches such as ANFIS in the field of remote sensing.
With the passage of time and availability of high quality spec-
tral, spatial and temporal resolution data, these models will get
further refined, more robust and applicable to other biophysical
parameter retrieval tasks.
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