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 ABSTRACT  

Neovascular ocular diseases (such as age-related macular degeneration, diabetic 

retinopathy and retinal vein occlusion) are characterized by common pathological processes that 

contribute to disease progression. These include angiogenesis, edema, inflammation, cell death 

and fibrosis. Currently available therapies target the effects of vascular endothelial growth factor 

(VEGF), the main mediator of pathological angiogenesis. Unfortunately, VEGF blockers are 

expensive biological therapeutics that necessitate frequent intravitreal administration and are 

associated with multiple adverse effects. Thus, alternative treatment options associated with lower 

side effects are required for disease management. This review introduces sphingosine 1-phosphate 

(S1P) as a potential pharmacological target for treatment of neovascular ocular pathologies. S1P 

is a sphingolipid mediator that controls cellular growth, differentiation, survival and death. S1P 

actions are mediated by five G Protein Coupled Receptors (S1P1-5 receptors) which are abundantly 

expressed in all retinal and sub-retinal structures. The action of S1P on S1P1 receptors can reduce 

angiogenesis, increase endothelium integrity, reduce photoreceptor apoptosis and protect the retina 

against neurodegeneration. Conversely, S1P2 receptor signaling can increase neovascularization, 

disrupt endothelial junctions, stimulate VEGF release, induce retinal cell apoptosis and 

degeneration of neural retina. The aim of this review is to thoroughly discuss the role of S1P and 

its different receptor subtypes in angiogenesis, inflammation, apoptosis and fibrosis in order to 

determine which of these S1P-mediated processes may be targeted therapeutically.  

Key words  

Sphingosine-1 phosphate, Neovascularization, VEGF blockers, Angiogenesis, Age-related 

macular degeneration, Diabetic retinopathy, Retinal vein occlusion. 
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INTRODUCTION  

 At least 2.2 billion people suffer from vision impairment, which in 1 billion cases can be 

attributed to a preventable or treatable cause. Diabetic retinopathy and age-related macular 

degeneration account for more than one third of these cases.[1] Neovascular ocular disease 

including diabetic retinopathy (DR), wet age-related macular degeneration (wet-AMD) and retinal 

vein occlusion (RVO) have different etiology but result in a similar cascade of pathophysiological 

events (Table 1). Pathological angiogenesis is key amongst these, and a hallmark of disorders that 

occurs in response to vascular endothelial growth factor (VEGF), a potent hypoxia-induced 

angiogenic mediator that triggers the formation of new permeable and unstable blood vessels.[2] 

Pathological angiogenesis can originate from retinal vasculature which supplies the inner retina 

and/or choroidal vasculature which supplies the outer retinal and retinal pigment epithelium (RPE). 

RPE is a monolayer of epithelial cells that represent the main structure of outer blood retinal 

barrier,[3,4] and prevents retinal invasion of neovascular tissue of choroidal blood vessels.[5] In 

neovascular ocular disease, angiogenesis is accompanied with disruption of RPE physical and 

metabolic barrier function (Table 1). This results in continuous leakage of blood or blood 

components to the surrounding tissues, leading to edema and/or hemorrhage, with possible 

progression to retinal detachment and irreversible apoptosis of photoreceptors and other retinal 

cells (Table 1). In addition to angiogenesis, chronic hypoxia causes chronic inflammation and 

over-production of reactive oxygen species in the retina, triggering cell death and fibrotic cascades 

(Table 1). Fibrosis in the posterior chamber of the eye has unique characteristics, being 

characterized by the occurrence of gliosis and epithelial to mesenchymal transition (EMT). Later 

sections describe the role of S1P in both gliosis and EMT.  
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Table 1. Common pathological events associated with different neovascular ocular diseases. Most 

of these have been shown to be affected by S1P signaling. 

Pathological event 

Occurrence in different neovascular ocular disease 

AMD DR RVO RP ROP Glaucoma 

Retinal and subretinal 

neovascularization 

[6,7] [7,8] [7,9]    

Macular edema [10] [7,10] [7,10]    

Disruption of RPE barrier 

function 

 [11]     

Apoptosis or degeneration of 

photoreceptors, RPE and 

other retinal cells 

[12,13] [14,15]  [16]   

Chronic inflammation [17] [18]  [19] [20]  

Ganglionic cell death and 

retinal neurodegeneration 

[21] [22]    [23,24] 

Retinal and extraretinal 

fibrosis 

[25] [26]     

AMD is age related macular degeneration, DR is diabetic retinopathy, RVO is retinal vein 

occlusion, ROP is retinopathy of prematurity and RPE is retinal pigmented epithelium. 
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Angiogenesis, edema, inflammation, apoptosis and fibrosis contribute to the 

pathophysiology of DR, wet-AMD and RVO (Table 1). Current therapeutic options largely rely 

on the blockade of VEGF signaling with biological therapeutics (antibodies, recombinant fusion 

proteins or pegylated RNA aptamers). They are expensive, with limited stability and are 

administered by invasive intravitreal injections that can be associated with retinal detachment, 

subconjunctival hemorrhage, uveitis, and endophthalmitis.[27] It would therefore be beneficial to 

develop novel therapeutic agents with fewer limitations. The lipid mediator sphingosine 1-

phosphate (S1P) is involved in hypoxia-induced angiogenesis. Unlike VEGF, S1P can promote 

stable blood vessels formation, increase endothelial barrier integrity and positively impact the 

subsequent pathophysiological steps leading to neovascular ocular diseases. 

This review will provide a brief description of S1P metabolism, the distribution and 

function of S1P receptor subtypes in different retinal tissues, and will then more specifically focus 

on the documented effects of S1P and the sometimes opposing roles of various S1P receptor 

subtypes in the processes that contribute to neovascular disease pathogenesis. 

S1P PRODUCTION, METABOLISM AND RECEPTOR EXPRESSION IN 

OCULAR TISSUES 

Sphingolipids are lipid-based cell membrane components. In addition to their structural 

role, they modulate cellular proliferation, migration, differentiation, and survival.[28,29] They are 

synthesized by serine palmitoyl transferase (SPT) from palmitoyl CoA and serine as summarized 

in Figure 1. S1P is produced by phosphorylation of sphingosine by one of two sphingosine kinase 

isoforms, SphK1 and SphK2.[30] S1P can be de-phosphorylated by the action of two 

phosphatases, or degraded by S1P lyase to produce inactive metabolites (Figure 1).[31]  
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The regulation of S1P production and release in different body tissues is not yet completely 

understood. In plasma, S1P is mainly produced by red blood cells (RBCs), endothelial cells, and 

platelets. Once produced intracellularly, S1P is transported to the extracellular space leading to 

significantly higher plasma concentrations of the mediator (~1 μM) compared to interstitial fluid 

levels.[32] Most circulating S1P is not free, but bound to high-density lipoproteins (HDL), 

albumin, and to lower extent low-density lipoproteins (LDL).  

Under normal conditions, SphK2 is the main S1P-producing kinase in rat and mouse 

retina.[33,34] Under hypoxic or light-induced stress conditions, SphK1 but not SphK2 is 

upregulated leading to increased intracellular S1P levels in murine retina [33,35]. Little is known 

about the levels and role of potential S1P carriers in ocular tissues. Albumin can be found in fetal 

vitreous, the retina and lens.[36] LDL and HDL can be synthesized locally in the retina [37] or 

diffuse from the systemic circulation through RPE, although HDL diffusion was significantly 

lower than LDL in rat retina [38] Apolipoprotein E is synthesized by Müller glial cells in neural 

retina and transported to vitreous humor,[39] with no information describing retinal expression of 

apolipoprotein A4 or M.  

While S1P can act as an intracellular second messenger and as an extracellular mediator, 

the latter effects, mediated by five G-protein coupled receptors (S1P1-5) predominate.[35] S1P1-3 

receptors are expressed in almost every body tissue, while S1P4 and S1P5 expression is largely 

restricted to the lymphatic and nervous systems.[40,41] S1P receptor expression in retina varies 

depending on cell type and pathophysiological status (see Table 2 for a summary). Under healthy 

conditions, S1P1 receptors predominate in retina, while photoreceptors mainly express S1P2 

receptors (Table 2).[33,35] Retinal pigmented epithelium (RPE) cells show robust S1P1-3 receptor 

expression, with different subtypes predominating in different cell lines.[42,43] Retinal 
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vasculature endothelial cells, isolated from human donor tissues predominantly express S1P2 and 

S1P3 receptors (Table 2).[44] New single cell RNA sequencing (scRNA-seq) data show that S1P1 

and S1P3 genes are the most strongly expressed in retinal endothelial cells,[45] while 

choriocapillaris endothelial cells mostly express S1P1, followed by S1P3.[46] Muller glial cells 

express S1P1 and S1P3 receptors, with S1P3 receptor expression most evident in peripheral rather 

than foveal Müller glial cells.[47] S1P receptors densities are altered under pathological 

conditions. S1P2 and S1P3, but not S1P1 receptors, are upregulated following light-induced retinal 

damage.[33] Likewise, a 5-fold increase in the retinal S1P2 receptors expression is seen in response 

to hypoxia.[48] Recent reports also highlight the role of S1P2 receptors in laser-induced choroidal 

neovascular lesions (CNV).[49] Additionally, scRNA-seq reveal noticeable downregulation of 

both S1P1 and S1P3 receptor expression in the choroidal endothelial cells pooled from an AMD 

patient.[46] 

Growing evidence suggests that S1P plays a significant role in normal retinal development. 

S1P1-3 receptors loss leads to significant defects in the retinal vascular network of post-natal 

mice.[50] Additionally, S1P has essential functions in photoreceptor development, proliferation, 

differentiation and survival.[51] A link between sphingolipids and ocular disease was first 

suspected following the observation of ocular abnormalities in sphingolipidoses, a group of 

lysosomal storage disorders characterized by build-up of certain sphingolipids in which retinal 

degeneration, neovascularization and blindness are common manifestations.[52,53] Hereditary 

and sensory autonomic neuropathy type 1 (HSAN1) is characterized by a mutated SPT. The 

defective enzyme synthesizes deoxysphingolipids lacking the hydroxyl group at C1, which is 

essential for synthesis of other sphingolipids. Deoxysphingolipids are cytotoxic, suggesting the 

involvement of these mediators in the neuropathy of HSAN1.[54] Deoxysphingolipids are also 
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seen in macular telangiectasia. Patients with this condition have normal SPT, but significantly 

lower serum serine levels, resulting in the use of alanine instead of serine as a substrate for SPT, 

ending in formation of deoxysphingolipids. Deoxysphingolipid serum levels in these patients is 

positively correlated to the disease severity.[55,56]  However, a role for S1P and its receptors in 

these diseases has not been reported and they will not be discussed further in this review. 
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Table 2. S1P receptors expression in different tissues of the ocular posterior segment. 

Posterior 

segment 

structure 

Experimental 

condition 

(cell line/ 

animal used) 

Dominant 

receptor 

expression 

Other receptors 

expressed 

Detection 

method 
References 

Retina 

Adult Sprague 

Dawley rat 

eye tissue 

S1P1 

- S1P3 has the highest 

expression after S1P1 

- S1P2, and S1P5 had 

minimal expression 

qRT-PCR [33] 

Post-natal 

mice eye 

tissue 

S1P1  

- S1P3 has the highest 

expression after S1P1 

-S1P2 had minimal 

expression 

qRT-PCR [33] 

Photoreceptors 

661W 

photoreceptor 

cell line 

S1P2  

- S1P1 and S1P3 were 

detected in significantly 

lower levels 

- S1P4 and S1P5 were 

detected in negligible 

concentrations 

qPCR [35] 

RPE 

ARPE-19 cell 

line 

S1P2 

- S1P5 and S1P1 exhibit 

higher expression after 

S1P2 

qPCR [57] 
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- S1P3 was barely 

detected while S1P4 was 

not detected. 

ARPE-19 cell 

line 

S1P3  

- S1P1, S1P2, S1P4 and 

S1P5 were all expressed 

at lower levels.  

Semi 

quantitative 

RT-PCR 

[43] 

Primary 

human RPE 

S1P1, S1P2, 

S1P3  

- S1P4 almost 

undetectable 

 - S1P5 has minimal 

expression  

RT-PCR [42] 

RPE-choroid 

Adult Sprague 

Dawley rats 

S1P3 - qRT-PCR [33] 

Retinal 

vasculature 

endothelial 

cells  

Primary 

Human 

Retinal 

Endothelial 

Cells (HREC) 

isolated from 

donor tissue 

S1P2  

- S1P3 was expressed in 

slightly lower but 

comparable levels to 

S1P2. 

- S1P1 was expressed in 

significantly lower 

levels.  

- S1P4 and S1P5 were 

not significantly 

expressed  

qRT-PCR [44] 
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Optic nerve  

Post-natal 

mice eye 

tissue 

S1P3  

- S1P1 has the highest 

expression after S1P3. 

- S1P2 was expressed in 

minute amounts.  

qRT-PCR [33] 

qRT-PCR is quantitative reverse transcriptase polymerase chain reaction, qPCR is quantitative 

real-time polymerase chain reaction and RT-PCR is reverse transcriptase polymerase chain 

reaction 

The altered expression and differential effects of various S1P receptor subtypes under 

stress conditions offers unique opportunities to target these receptors with selective agonists or 

antagonists in ocular disorders. The following sections describe the role of individual S1P receptor 

subtypes in the relevant pathological processes. In this context, it is worth bearing in mind the 

uncertain specificity of the pharmacological agents used in the studies described in this review.[58] 

Better characterized clinical candidates, or clinically used S1P receptor drugs have been developed 

primarily for the management of multiple sclerosis (MS).[59,60] These include approved S1P 

receptors modulators fingolimod (FTY720), siponimod (BAF312) and ozanimod (RPC1063). 

Fingolimod binds to all S1P receptors except S1P2, siponimod and ozanimod are selective S1P1 

and S1P5 modulators.[61] To the best of our knowledge, these agents have not been used to 

characterize the role of S1P signaling in ocular pathophysiology. Ocular pathologies and macular 

edema are associated with fingolimod therapy in MS patients,[62] but may result from MS 

progression rather than fingolimod treatment.[63] 

ANGIOGENESIS  
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Angiogenesis is the process by which new blood vessels develop from pre-existing ones. 

The process is carefully regulated by a balance of stimulatory (e.g., VEGF, hypoxia inducible 

factor (HIF), transforming growth factor- (TGF-)) and inhibitory signaling, which maintains a 

minimal turnover of endothelial cells. In adults, physiological angiogenesis is transient and only 

occurs during menstrual cycle and wound healing.[64] Under specific conditions (e.g., hypoxia, 

inflammation, acidosis), quiescent endothelial cells show massive proliferation and migration in a 

phenomenon called “the angiogenic switch”, where the influence of angiogenesis activators 

exceeds that of the inhibitors.[64]. The vessel formation is then initiated by the release of pro-

angiogenic mediators and growth factors.[65] These factors trigger transcriptional responses in the 

endothelium, with specialized endothelial cells becoming “tip cells” which guide vessel branching 

toward the angiogenic stimulus. This is followed by enzymatic (e.g., metalloproteineases) lysis of 

the basement membrane and extracellular matrix, while other endothelial cells proliferate and 

follow the lead of the tip cells. These cells differentiate into stalk cells responsible for lumen 

formation, basement membrane deposition, growth and quiescence of new endothelial cell and 

expression of intercellular junction proteins. This is accompanied by migration of pericytes and 

vascular smooth muscle cells to support the young blood vessels. Once blood is flowing in the new 

vessel, fluid shear forces act as an inhibitor of angiogenesis, a process in which S1P1 receptors 

play a key role.[66]  

Under pathological conditions (e.g., diabetic retinopathy), persistent tissue hypoxia results 

in sustained release of angiogenic stimulators and exhaustive endothelium activation.[67] This 

triggers erosion of basement membrane in multiple locations, substantial tip cell formation and 

continuous endothelial proliferation and migration. Due to the high concentration of angiogenic 

mediators, endothelial activation occurs even in newly formed vessels. This leads to fragile 
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endothelium with no time for maturation and subsequently no ability to restore blood flow,[64] 

further exacerbating hypoxia, leakage of blood components to the surrounding tissues and release 

of more angiogenic mediators in a vicious cycle that contributes to disease progression in many 

pathologies including neovascular ocular disease.[68] 

ROLE OF S1P IN RETINAL AND CHOROIDAL ANGIOGENESIS AND 

BLOOD VESSEL INTEGRITY 

While S1P can be described as a hypoxia-induced pro-angiogenic mediator, this 

oversimplifies its complex role in vascular growth and stability.[69,70] The effect of S1P in 

angiogenesis is mediated mainly via S1P1 and S1P2 receptors, which are both highly expressed in 

retinal endothelium. The number and integrity of the vessels formed in response to this lipid 

depend on which receptor subtype is principally involved. To add further complexity, the nature 

of the endothelial response to S1P depends on which carrier protein (albumin, apolipoprotein A4, 

or M) presents the lipid to its target receptor.[71] Similar observations were made in RPE cells.[49] 

Finally, it is important to note that S1P1 receptors are an essential component of fluid shear stress 

sensing and can be activated in the absence of S1P.[66] 

S1P1 receptors  

S1P1 receptors trigger a distinctive and controlled angiogenic pattern where only a limited 

number of blood vessel sprouts are formed.[66,72–74] These sprouts undergo full maturation and 

acquire the characteristic of mature endothelium forming a competent vascular network.[66,75,76] 

S1P-mediated enhancement of endothelial integrity is abolished in S1P1-knockdown 

endothelium,[76] while S1P1 gene deletion increases tip cell formation in the retinal vasculature, 

leading to hyper-sprouting, which is associated with disrupted intercellular junctions, reduced 

capillary perfusion and hypoxia in surrounding retinal tissues, with VEGF over-expression in 
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retinal endothelium.[66] Similar results are obtained in postnatal mice retinas by administering the 

S1P1 antagonist W146.[74] Conversely, S1P1 receptor overexpression reduces the number of tip 

cells and vessel branch points in retinal vasculature of mice embryos,[66] while S1P1 receptor 

activation with the S1P1 agonist SEW2871 results in angiogenesis characterized by fewer but 

longer blood vessel branches and reduces the VEGF angiogenic effect on human umbilical vein 

endothelial cells (HUVEC) or mouse microvascular endothelial cells.[74] As pathological 

neovascularization is characterized by higher VEGF levels, the ability of S1P1 receptor activation 

to antagonize VEGF angiogenic effect is of pathological relevance.[74] Finally, the levels of cell 

junction proteins are reduced following S1pr1 silencing by siRNA, targeted S1pr1 gene deletion 

in endothelial cells, or VEGF stimulation.[74] 

In conclusion, while S1P1 receptor stimulation is generally pro-angiogenic, it results in the 

formation of fewer blood vessel sprouts, that develop competent endothelium. This can restore 

blood flow to the hypoxic retina without resulting in edema or hemorrhage (Figure 2). 

S1P2 receptors 

S1P2 receptors activate an angiogenetic response similar to that of VEGF,[77] in which 

continuous, uncontrolled blood vessel sprouting occurs in response to hypoxia. Consequently, 

vascular maturation is defective due to the sustained endothelial cell proliferation and migration. 

This results in leaky vascular architecture, with interrupted adherens junctions and inadequate 

blood flow (Figure 2). Indeed, hypoxia upregulates S1P2 receptors in retinal endothelium and leads 

to formation of blood vessel sprouts with leaky basement membranes and limited perfusion.[48] 

In S1P2 knockout mice, hypoxia-induced angiogenesis is characterized by formation of competent 

blood vessel sprouts that have comparable blood flow to the mature vasculature.[48] Similar 

results are seen with an S1P2 receptor antagonist, as laser-induced choroidal neovascularization is 
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reduced after intravitreal injection of JTE013.[49] The effect of S1P2 receptors on angiogenesis 

may vary in different endothelial cell types, as JTE013 administration increases S1P-mediated 

abdominal subcutaneous angiogenesis in mice.[78] In addition to angiogenic effects on retinal 

vasculature, S1P2 activation with albumin-bound S1P results in disruption of barrier integrity and 

increased RPE permeability. Preincubation of RPE with JTE013 results in the repair of disrupted 

epithelium and reduced vascular leakage. Additionally, RPE shows increased VEGF release in 

response to S1P, an effect which is inhibited by  JTE013, whereas the S1P1/3 receptor antagonist 

VPC23019 has no effect.[49]  

The net effect of S1P on vascular endothelium depends on the balance between S1P1 and 

S1P2 receptors. In vivo evidence show predominant expression of S1P2 receptors in mouse CNV 

lesions,[49] upregulation of S1P2 and S1P3 receptors in light-induced damage in rat retinas,[33] 

and upregulation of S1P2 receptors in a mouse model of retinal ischemia.[48] Additionally, S1P2 

knockout mice show enhanced retinal vascularization with normal vascular morphology following 

ischemic insult compared to S1P2+/+ mice[48]. Likewise intravitreal injection of S1P2 antagonist 

JTE013 significantly reduced CNV lesion areas in mice.[49] This evidence explains why 

administration of anti-S1P antibodies reduces choroidal neovascularization and vessel 

leakage.[44,79] an action thought to be mediated by S1P2 receptors. The type of S1P carrying 

molecules may also matter, as ApoM-bound S1P elicits a favorable activation of S1P1 receptors 

resulting in reduced vascular leakage and increased expression of junction proteins in RPE, while 

albumin-bound S1P results in S1P2-mediated disruption of cellular junctions, increased vascular 

leakage and reduced endothelial integrity (Figure 2).[49]  

Relationship between S1P and VEGF signaling 
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VEGF affects S1P signaling in different ways. It increases S1P production by upregulating 

SphK expression in endothelial cells,[72] and also increases SphK activity in retinal endothelial 

cells (RECs).[80] While both actions raise intracellular S1P concentration, most of the intracellular 

S1P is transported to the extracellular space to act on S1P1-5 receptors in autocrine and paracrine 

manners. VEGF specifically upregulates S1P1 receptor expression in aortic endothelial cells, 

potentiating nitric oxide/Akt signaling, but has no effect on S1P2 or S1P3 receptor expression, 

suggesting that under hypoxic conditions, these endothelial cells might be more sensitive to S1P1 

signaling.[81] Yet, S1P1 activation with SEW2871 blocks VEGF-induced sprouting in HUVECs 

and mouse microvascular endothelial cells, while the S1P1 antagonist W146 increases VEGF-

induced angiogenesis.[74] This suggests that upregulation of S1P1 receptors in response to VEGF 

can lessen the overall angiogenic response to VEGF under pathological conditions.  S1P results in 

increased VEGF expression in RPE cells, a response that is diminished after S1P2 blockade with 

JTE013.[49] Additionally, S1P can transiently activate VEGFR2 receptors in bovine aortic 

endothelial cells in a tyrosine kinase inhibitor-sensitive manner, resulting in eNOS 

phosphorylation and activation.[82] SphK inhibition decreases VEGF-mediated RECs 

proliferation, migration and vascular leakage, indicating that S1P release is involved in VEGF-

mediated angiogenesis.[80]  

S1P ROLE IN OCULAR INFLAMMATION AND RELEASE OF 

INFLAMMATORY MEDIATORS 

Inflammatory processes also play a role in AMD, DR and RVO pathophysiology. Indeed, 

the lower incidence of retinopathy among diabetic patients on salicylate therapy for rheumatoid 

arthritis, and the significant effect of corticosteroid therapy on reducing macular edema and 

neovascularization in DR highlight the therapeutic relevance of anti-inflammatory drugs in 
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progression of DR.[83] Retinal ischemia is known to induce the expression of potent inflammatory 

cytokines including monocyte chemotactic protein‐1 (MCP‐1) and macrophage inflammatory 

protein‐1α (MIP‐1α),[84] resulting in leukocyte infiltration and macrophage recruitment. 

Activated macrophage and microglia secrete inflammatory molecules such as TNF-α and 

interleukins,[85] which subsequently trigger a complex chain of cellular and vascular responses, 

the details of which are outside the scope of this review. Levels of MCP-1 are markedly increased 

in vitreous of patients with DR [86,87] and RVO.[87] Furthermore, markedly elevated IL-8 levels 

are detected in the vitreous fluid of DR and RVO patients,[87,88] higher IL-6 levels are also 

detected in the vitreous of DR patients,[86] and complement system activation is reported in 

AMD.[89] Which highlight the significant role of inflammatory response in neovascular ocular 

diseases.  

In addition to its role in vascular integrity, S1P signaling can modulate inflammation. For 

instance, S1P reduces vascular leakage, neutrophils infiltration and lung edema after intratracheal 

administration of lipopolysaccharide.[90] But S1P also increases the production of inflammatory 

cytokines such as IL-8 and IL-6 among others.[43] S1P increases cyclooxygenase-2 (COX-2) 

expression and prostaglandin production via S1P2 receptors in renal mesangial cells.[91] 

Fingolimod suppresses inflammation in an uveoretinitis model,[92] and inhibits leukocyte 

infiltration when administered as a single dose before induction of ocular inflammation.[93] 

Fingolimod-treated MS patients show a lower incidence of ocular inflammation compared to other 

MS patients.[94] It is unclear whether the ocular anti-inflammatory effects of fingolimod are due 

to its agonist or functional antagonist activity.[61,95] S1P increases IL-8, but not IL-6, production 

by RPE cells in a Pertussis toxin sensitive manner, suggesting S1P1 receptor involvement.[43] 

However, another study suggests a role for S1P2 receptors, as S1P-induced production of IL-8 and 



18 

 

CCL2 in RPE cells is decreased by JTE013, but not by S1P1 or S1P3 antagonists.[49] These 

apparently contradictory reports suggest that further work is needed to assess the role of different 

S1P receptors in retinal inflammation. 

S1P ROLE IN PHOTORECEPTORS APOPTOSIS AND 

NEURODEGENERATION 

Retina, being a part of the CNS, comprises full neuronal circuits to acquire, convert and 

transfer electrical activity of photoreceptors to the brain, which is known as neural retina. Neural 

retina is a multilayered interconnected structure composed of five cell types, these are 

photoreceptors, bipolar cells, ganglion cells, horizontal cells, and amacrine cells.[96] 

Neurodegeneration in retinal diseases usually refer to apoptosis of retinal ganglionic cells and 

photoreceptors which leads to significant and progressive loss in visual function [24]. Retinal 

neurodegeneration is evident in diabetic retinopathy,[15] and neovascular AMD,[21] although the 

exact mechanism of neurodegeneration is not fully elucidated. Nevertheless, hypoxia-associated 

distorted retinal blood flow in these diseases is suggested to be the main reason to trigger neuronal 

death.[24]  The role of S1P signaling in normal development of CNS is thoroughly reported, as 

sphingosine kinase null mice embryos suffered from neuronal tube defects with massive apoptosis 

in neuroepithelium.[97] Additionally, S1P signaling is involved in nerve growth factor mediated 

neurite extension,[98] and neuronal excitability.[99] S1P is required for development, 

differentiation and proliferation of photoreceptors in rat retinas.[51]  

Under stress-induced photoreceptors and retinal ganglionic cells apoptosis, S1P can elicit 

different responses.[100,101] On one hand, S1P promotes cellular proliferation and reduces 

photoreceptor apoptosis.[102] Decosahexanoic acid (DHA, a mediator of photoreceptor survival 

and differentiation) increases intracellular S1P levels by upregulating SphK, and the protective 
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effects of DHA are blocked after SphK inhibition.[51] Similarly, action of S1P on S1P1 receptors 

increases the survival of and mitigates the damage to retinal ganglionic cells following optic nerve 

injury,[103] and the selective S1P1 receptor agonist CYM-5442 reduces retinal ganglionic cell 

damage after endothelin-1 induced vasoconstriction.[104] On the other hand, S1P acts as a pro-

apoptotic mediator that can intensify the degenerative response in photoreceptors.[10] an action 

that is suggested to be mainly mediated by S1P2 receptor activation.[35]  

Under pathological conditions in the retina as hypoxic and oxidative stress, or optic nerve 

injury, S1P2 receptors are upregulated while S1P1 receptors are down-regulated.[33,103] This 

makes the role of S1P1 receptors in ganglionic cell and photoreceptor survival is less obvious under 

pathological conditions.[103] At variance with the trophic effect of S1P1 receptors, S1P/S1P2 

signaling elicits a detrimental effect on neuronal cells.[103]  

S1P ROLE IN FIBROSIS, GLIOSIS AND EPITHELIAL TO 

MESENCHYMAL TRANSITION (EMT) 

Fibrosis is a reparative process that occurs in response to tissue injury, where the injured 

tissue is replaced by non-functional, collagen rich fibrous matrix. Outside the CNS, fibroblasts are 

the main players in fibrosis, as they migrate to the injured location, proliferate, synthesize and 

deposit extracellular matrix proteins.[105] As retina is considered a part of the CNS, the fibrotic 

response in the posterior chamber utilizes different mechanisms and cellular incorporation 

compared to that seen in non-CNS tissues.[106] Retina has a scarce fibroblast population; instead 

the fibrotic response is mainly mediated by RPE and Müller glial cells. RPE and glial cells are 

quiescent and non migratory under normal condition. Under inflammatory conditions or tissue 

injury, these cells undergo specific trans-differentiation to acquire fibroblast-like phenotype in 

processes known as EMT or gliosis. During EMT, RPE cells lose their epithelial traits and acquire 
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mesenchymal/fibroblast like phenotype, becoming invasive, migratory, lacking tight junction 

proteins and expressing mesenchymal markers.[107]. The fibrocontractile nature of transformed 

RPE can result in retinal detachment and severe vision impairment ending in further disease 

exacerbation. Similar transitional events occur in Müller cell gliosis, where Müller glial cells 

transdifferentiate to a fibroblast-like phenotype, release trophic mediators, and acquire 

proliferative and migratory properties.[108,109] Again, this transition to fibrocontractile structure 

results in gliotic scar tissue formation, which further exacerbates retinal damage.[110] While 

multiple cytokines and several proinflammatory signals can trigger a fibrotic response, there is 

growing evidence that TGF- is one of the most important cytokines that contribute to EMT 

[111,112] and gliosis.[113], as it is detected at higher levels in the vitreous of patients with 

DR.[114]  

S1P signaling generally triggers fibrotic events in neovascular ocular disease. 

Administration of an anti-S1P antibody reduces collagen precipitation in sub-retinal structures 

after rupture of Bruch’s membrane in a mouse model of CNV.[44] Likewise, locally injected anti-

S1P monoclonal antibodies can alleviate conjunctival scarring following glaucoma filtering 

surgery.[115] S1P increases the production of contractile actin fibers and facilitates collagen 

deposition by RPE in vitro, one of the mesenchymal characteristics of EMT,[42] but the exact 

mechanism and S1P receptor subtype involved has not been reported. Migration of Müller glial 

cells in vitro is significantly increased by exogenously added S1P. Additionally, inhibition of 

SphK1, the main isoform in Müller glial cells, abolishes filopodia formation and cellular 

migration, suggesting that both endogenous and exogenous S1P amplify glial cell migration. S1P 

mediated actions are reduced by pre-treatment of Müller glial cells with the S1P3 antagonist BML-

241, suggesting that the effects are primarily mediated by S1P3 receptors.[109]. Likewise, SphK1-
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null mice show diminished gliosis and slower progression of Sandhoff disease, a central 

neurodegenerative disease. Similar results are obtained by S1P3 receptor gene deletion.[116]  

Although the relationship between S1P and TGF- signaling in neovascular ocular disease 

is not yet reported, there is established evidence of crosstalk between S1P and TGF- in renal 

mesangial cells.[117]. TGF- increases SphK1 in endometriotic stromal cells [118], human 

fibroblasts,[119] and in human kidney podocytes.[120] SphK1 upregulation in kidney is associated 

with protective rather than detrimental effects, as SphK1 deficient mice develop more drastic 

streptozocin induced nephropathy.[120]  

CONCLUSION  

 S1P is a promising therapeutic target that modulates angiogenesis, inflammation, apoptosis 

and fibrosis associated with neovascular ocular diseases. S1P/S1P1 signaling can induce formation 

of competent blood vessel sprouts, increase retinal perfusion and reduce cell apoptosis and 

neurodegeneration. Blocking S1P2 receptors achieves similar beneficial outcomes, while S1P3 

receptor antagonism or S1P1 activation can inhibit gliosis. Under hypoxic conditions, SphK1 and 

S1P2 are upregulated; this can be accompanied by S1P1 downregulation, resulting in increased S1P 

production and predominant signaling through S1P2 receptors. Therefore, inhibition of SphK1, 

S1P1 activation and S1P2/S1P3 antagonism might be used to attenuate retinal damage in ocular 

neovascular disease. Recent clinically approved S1P receptor modulators include siponimod and 

ozanimod; both can selectively activate S1P1 receptors (along with S1P5 receptors, which are less 

prevalent in ocular tissue). Evidence to date suggests that S1P receptor modulation plays important 

roles in the pathogenesis and treatment of neovascular ocular diseases. However, the role of these 

agents in the progression of neovascular ocular disease should be elucidated in preclinical models 
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to inform future clinical trials involving S1P receptor modulators already approved for other 

conditions. 
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FIGURE LEGEND  

Figure 1.  

Schematic representation of synthesis and metabolism of sphingolipids, with special emphasis on 

S1P and the 5 receptor subtypes it can activate (S1P1-5 receptors) as well as the G proteins they are 

coupled to. Specific S1P receptor modulators discussed in this review are listed at the bottom of 

the figure (blue and red circles indicate agonist and antagonist activities, respectively). This figure 

was created by the authors, using the software Biorender. 

Figure 2.  

Summary of S1P-mediated effects on angiogenesis. Top: S1P1 receptor activation by S1P reduces 

proangiogenic factors release in response to hypoxia (most importantly VEGF) leading to fewer 

tip cell formation and fewer branching points per unit area. This leads to formation of fewer vessel 

branches. S1P1 receptors also increase intercellular junction proteins expression and perivascular 

cells coverage of newly formed sprouts. This leads to formation of competent blood vessels with 

normal blood flow that restore tissue perfusion (red areas) and downregulate the angiogenic signal. 

Bottom: Hypoxia results in over-expression of SphK1 and S1P2 receptors. This receptor subtype 

increases VEGF release and tip cells number resulting in increased vessel branching per unit area. 

The formed branches have defective expression of intercellular junction proteins and irregular 

perivascular cells coverage. This leads to formation of leaky endothelium with diminished blood 

flow which further exacerbate tissue hypoxia (blue areas). Due to sustained angiogenesis, further 

branching of the new sprouts occurs leading to further leaking and hemorrhage. The net effect of 

these two opposite signals depends on relative receptors densities and specific receptor 

upregulation in response to hypoxia. Although their abundance in the eye is not known, the balance 
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of S1P carrier proteins may also play a role, as ApoM-bound S1P and Albumin-bound S1P 

preferentially activate S1P1 and S1P2 mediated cascades, respectively. This figure was created by 

the authors using elements from the Servier medical arts database. 
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