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Abstract 

Introduction: The gut microbiota is involved in host physiology and health. Reciprocal 
microbiota-drug interactions are increasingly recognized as underlying some individual 
differences in therapy response and adverse events. Cancer pharmacotherapies are 
characterized by a high degree of interpatient variability in efficacy and side effect profile 
and recently, the microbiota has emerged as a factor that may underlie these differences.  

Areas covered: The effects of cancer pharmacotherapy on microbiota composition and 
function are reviewed with consideration of the relationship between baseline microbiota 
composition, microbiota modification, antibiotics exposure and cancer therapy efficacy. We 
assess the evidence implicating the microbiota in cancer therapy-related adverse events 
including impaired gut function, cognition and pain perception. Finally, potential 
mechanisms underlying microbiota-cancer drug interactions are described, including direct 
microbial metabolism, and microbial modulation of liver metabolism and immune function. 
This review focused on preclinical and clinical studies conducted in the last 5 years. 

Expert opinion: Preclinical and clinical research supports a role for baseline microbiota in 
cancer therapy efficacy, with emerging evidence that the microbiota modification may assist 
in side effect management. Future efforts should focus on exploiting this knowledge 
towards the development of microbiota-targeted therapies. Finally, a focus on specific drug-
microbiota-cancer interactions is warranted. 

 

Keywords: cancer therapy, chemotherapy, gut microbiome, gut-brain axis, immunotherapy, 
pharmacomicrobiomics, tyrosine kinase inhibitors  

  



 
 

Article highlights: 

• Gut microbiota-drug interactions are involved in cancer therapy efficacy and related 
adverse events. 

• Chemotherapy may transiently shift microbiota composition and short-chain fatty 
acid production. 

• Baseline microbiota composition and antibiotic exposure determine immunotherapy 
efficacy, and may also contribute to chemotherapy efficacy. 

• Supplementation with particular Bifidobacterium strains and Akkermansia 
muciniphila augment immunotherapy efficacy in preclinical models. 

• The gut microbiota is associated with cancer therapy-associated infection risk, and 
gastrointestinal and neurological adverse events. 

• Cancer therapies may interact with the gut microbiota through direct microbial 
metabolism, or indirectly through microbial effects on liver metabolism and the 
immune system. 

  



 
 

1. Introduction  

The human gastrointestinal tract is populated by a complex community of bacteria, archaea 
and eukarya, collectively known as the gut microbiota. These microbes have co-evolved with 
host species throughout evolution to produce an elaborate, symbiotic relationship [1]. The 
gut microbiota confers a wide range of benefits to the host, including improved energy 
harvest, strengthening gut integrity and barrier function, protecting against infection, and 
immune modulation [2]. The influence of the gut microbiota on cancer development is an 
important consideration with specific bacteria and general compositional alterations 
reported [3]. Microbial metabolism of the gastrointestinal contents is a key component of 
the symbiotic relationship between the gut microbiota and host. The substances consumed 
by the host organism, or released into the gut lumen by the host, provide essential 
nourishment for the microbes, shaping gut microbiota composition, and the products of 
microbial enzymes can then interact with host tissues, either locally at the gut epithelium or 
following absorption [4, 5]. In order to take full advantage of the vast range of substances 
that make their way into the gastrointestinal tract, a healthy gut microbiota exhibits a 
substantial enzymatic repertoire [6] capable of impacting the fate and activity of several 
drugs.  

The emerging field of pharmacomicrobiomics investigates reciprocal drug-microbiota 
interactions, including how the microbiota impacts a drug’s pharmacokinetic, 
pharmacodynamic and toxicity profile [7]. Microbial interactions with drugs occur via 
multiple routes (summarized in Figure 1), and are thought to influence at least some of the 
interpatient variability in drug treatment efficacy and side effect profile [8]. Orally-
administered therapies that are not readily absorbed in the upper gastrointestinal tract are 
more likely to induce localized microbial effects in the intestine due to the relatively high 
local drug concentration in the lumen. These compounds can also undergo direct 
transformation by bacteria prior to absorption and first-pass liver metabolism. 
Contrastingly, drugs administered both orally or parenterally may interact with the gut 
microbiota during excretion if the compound or associated metabolites are excreted via the 
biliary duct back into the gut lumen.  These microbial metabolites may be reabsorbed into 
host circulation or can have direct effects on host gut physiology [9, 10]. Furthermore, a 
wide range of drugs are known to affect microbiota composition, although the effects of 
these compositional changes on host health and function, as well as drug pharmacokinetics 
and pharmacodynamics, are understudied [7]. These compositional changes may lead to 
functional differences in the gut microbiota, which could in turn indirectly impact a drug’s 
action and fate by modifying hepatic and gut first-pass metabolism, immune function and 
the repertoire of metabolites available to host tissues. 

Cancer pharmacotherapies – a rapidly growing group of drugs that include traditional 
cytotoxic chemotherapy, immunotherapy, hormonal therapy and targeted therapies (for a 
complete updated list see [11] - are associated with a high degree of interpatient variability 
in efficacy and toxicity. While some of the variability between responders and non-
responders to cancer therapy can be explained by tumor heterogeneity and host genetics, 
emerging evidence supports a role of the gut microbiota in these differences, particularly in 
the case of cytotoxic chemotherapy and immunotherapy [3, 12].  Furthermore, drug-



 
 

microbiota interactions may underlie some of the adverse effects associated with these 
therapies [13].  

In this review, we move beyond a focus on the influence of the gut microbiota on cancer 
development per se to focus attention on the gut microbiota and cancer therapy. We 
reviewed literature from both preclinical and clinical studies assessing the role of the gut 
microbiota in cancer therapy efficacy and side effect profile, focusing on studies published 
in the last 5 years. Extensive searches were conducted both on Pubmed and google scholar 
between April and July 2021 using relevant search terms (“[onco* OR cancer] AND [chemo* 
OR immun* OR anti-cancer OR targeted OR “cancer therapy” OR “tyrosine kinase inhibitor”] 
AND [microbi* OR probiotic OR prebiotic OR bacteria]”), and the reference lists were 
examined for missing papers from all relevant papers and literature reviews identified in the 
initial search. Interactions between cancer therapies and the gut microbiota were first 
observed in colorectal cancer and have since formed the basis for investigations into cancer 
therapy and associated microbial interactions. Further, mounting evidence implicates the 
gut microbiota in cancer therapy efficacy and toxicity in cancers outside of the 
gastrointestinal tract which forms the basis of this review. Here we synthesize the available 
literature surrounding gut microbiota taxonomic and functional changes in response to 
cancer therapy, the impact of baseline microbiota composition and antibiotics on cancer 
therapy response, and the role of the gut microbiota in associated adverse events affecting 
the gastrointestinal tract, central and peripheral nervous systems and infection. Finally, we 
present the available evidence addressing the mechanisms by which the gut microbiota and 
cancer therapies may interact. 

2. Cancer therapies can alter gut microbiota composition and metabolite production 

The gut microbiota, the ecosystem of microorganisms including bacteria, viruses, archaea 
and fungi that inhabit the mammalian gastrointestinal tract, are critically involved in many 
processes essential to host health and function. The gut microbiota modulates gut function 
through fermentation of dietary fiber [14], synthesis of vitamins [15] and biosynthesis of 
molecules [16], as well as affecting gut motility and transit and conferring protection against 
pathogens [17]. Additionally the gut microbiota plays an important role in immune 
education[18, 19], host metabolism and circadian rhythm control [20, 21]. In line with its 
important role in host physiology and health, the gut microbiota has been implicated in 
wide range of disease, including inflammatory and autoimmune [22, 23], cardiometabolic 
[24] and neuropsychiatric [25, 26] conditions. Microbiota composition is typically analyzed 
using sequencing marker genes such as the 16S rRNA gene in bacteria or the internal 
transcribed spacer (ITS) in fungi. These genes, with both conserved and variable regions, 
allow for phylogenetic description of the gut microbiota, usually at a genus and sometimes a 
species level but are susceptible to bias [27], give only relative abundance measures [28] 
and provide no direct functional information. Increasingly, whole metagenome sequencing 
approaches are being employed, providing both high-resolution taxonomic and functional 
characterization [29]. Following sequence processing, the diversity of microbiota samples 
are assessed using measures of alpha diversity, the microbial diversity within a sample, and 
beta diversity, the microbial diversity between samples, as well as differential abundance 
analyses for bacterial taxa of interest. 



 
 

The bulk of research investigating the role of the gut microbiota in cancer therapy response 
has focused on colorectal cancer, as it is associated with substantial changes in gut 
microbiota composition [30] and occurs in the region of the gastrointestinal tract with the 
highest gut microbiota density and diversity [2] . Several bacteria, including Fusobacterium 
nucleatum [31], colibactin-associated Escherichia coli [32] and enterotoxigenic Bacteroides 
fragilis [33], have been associated with poorer outcomes in colorectal cancer. The role of 
these  bacterial strains in interpatient variability in therapy response and resistance, as well 
as the relationship between several drugs not traditionally used for cancer prevention and 
colorectal cancer risk (such as metformin [34] and aspirin [35, 36]), underscores the 
importance of the gut microbiota in colorectal cancer prevention and therapy.  The 
interaction between specific gut microbes, therapy response, and colorectal cancer risk and 
progression has been studied extensively (discussed in recent reviews [30, 37]) and this 
research has improved our understanding of the prevention and management of colorectal 
and other gastrointestinal cancers.  

In a recent reanalysis of multiple cohorts relative to healthy controls, patients with non-
gastrointestinal cancers exhibit altered gut microbiota composition as well as reduced alpha 
diversity [38]. While these effects may be partially explained by systemic physiological 
changes associated with cancer, multiple longitudinal studies indicate that the initiation of 
cancer therapies can have effects both on microbiota composition, and the fecal and serum 
metabolome in patients with cancer (summarized in Table 1).  This is in line with in vitro 
work, which has shown that chemotherapeutic agents and other antimetabolic drugs inhibit 
the growth of representative human gut bacterial strains, affecting key species related to 
healthy status and short-chain fatty acid (SCFA) production [39]. SCFAs are key microbial 
metabolites that have been implicated in gastrointestinal health and function, immune 
regulation and host metabolism [40], and may reduce carcinogenesis and tumor progression 
in some cancers [41]. 

The bulk of available clinical literature focuses on chemotherapeutic agents which induce 
changes in gut microbiota composition in the short-term, with less consistent evidence of 
long-term microbiota alterations sustained after treatment completion. Recent work 
indicates that chemotherapy is associated with reduced fecal SCFA acid content [42, 43], as 
shown in in vitro models [39]. While these studies provide interesting preliminary evidence 
that chemotherapies transiently alter gut microbiota composition, small sample sizes, 
sample heterogeneity and difficulties in the interpretation of fecal SCFA data [44] limit the 
conclusions that can be drawn.  Additional longitudinal studies with larger sample sizes 
investigating the effects of specific drugs on gut microbiota composition and function are 
needed to determine which chemotherapeutic drugs modify the gut microbiota. Future 
research should focus on identifying the mechanisms underlying chemotherapy-induced gut 
microbiota alterations, which likely differ based on route of drug administration (while most 
chemotherapeutic drugs are administered intravenously an increasing number can be 
administered orally), specific drug pharmacokinetics, and excretion. Interestingly, a recent 
study demonstrated that some chemotherapeutic agents may exert antimicrobial effects 
through prophage induction [45] although further research is required to determine the 
generalizability of these results.   



 
 

Only a small number of studies have examined the effects of immunotherapies on gut 
microbiota composition. Compared to healthy controls, patients treated with immune 
checkpoint inhibitors (ICIs) exhibit reduced abundance of healthy commensal species [46] as 
well as fecal SCFA content [47], but the one study that has examined changes in gut 
microbiota composition in cancer patients before and after ICIs (combined with 
chemotherapy) reported no significant alterations [46]. These taxonomic differences may be 
due to the tumor itself rather than the subsequent therapy. Examination of serum 
metabolomic profile in patients treated with ICIs for non-small cell lung cancer found that 
acetate and 3-hydroxybutyrate were enriched in responders [48]. Additional studies 
examining the effects of ICIs alone on gut microbiota composition and function are required 
to confirm these findings, especially since other immunomodulatory drugs are typically 
associated with changes in gut microbiota composition [49]. Moreover, programmed cell 
death protein 1 (PD-1), a key target of ICIs, is known to play a role in host immune 
regulation of the gut microbiota [50].  

Small-molecule inhibitors of indoleamine 2,3-dioxygenase (IDO1) have also been explored in 
recent clinical trials as an adjunctive immunomodulatory therapy in some cancers. IDO1 can 
be induced in subsets of antigen-presenting cells promoting immune tolerance to tumor 
antigens and in preclinical models, IDO1 inhibition promotes an anti-tumor immune 
response [51].  Further, IDO inhibitors have been shown to accentuate the effects of 
chemotherapy and ICIs, although results are not consistent across different cancers and 
clinical trials [52, 53]. Although many questions remain, IDO1 inhibitors are likely to interact 
with the gut microbiota as they mostly comprise tryptophan mimetics.  Several bacterial 
taxa metabolize tryptophan, altering host tryptophan availability and metabolism, through 
the expression of tryptophanase and other bacterial enzymes [54].  1-methyl-tryptophan, 
one of the first IDO inhibitors assessed for anticancer effects, has been shown to impair the 
antimicrobial and immunoregulatory effects of IDO1 in vitro [55], and may therefore 
increase the risk of infection. While most IDO1 inhibitors cannot be processed by 
tryptophanase, some microbes sense these mimetics as an amino acid, inducing 
tryptophanase expression [56], which many deplete tryptophan available in the gut. Some 
of these IDO1 inhibitors are metabolized by the gut microbiota; for example, in vitro 
modelling predicted that epacadostat treatment would produce one primary drug 
metabolite, but three have been detected in patient plasma [57]. Preclinical and human 
fecal incubation experiments have identified one of these metabolites as microbially 
dependent [58]. Further work is required to determine how IDO inhibitors may affect gut 
homeostasis and microbiota composition. 

Other cancer therapies, including tyrosine kinase inhibitors and hormone therapies, may 
also impact microbiota composition. Tyrosine kinase inhibitors are small molecule drugs 
administered orally with highly variable bioavailability as absorption can be modified by 
fatty food consumption and drugs that alter gastrointestinal pH, such as proton pump 
inhibitors [59]. Osimertinib, an epidermal growth factor receptor-tyrosine kinase inhibitor 
(TKI), has been shown to alter microbiota composition in patients with non-small cell lung 
cancer [60]. This is in line with preclinical work that has shown multiple TKIs alter  
microbiota composition in mice [61]. Androgen deprivation therapy for the treatment of 
prostate cancer may also alter microbiota composition [62] and alter serum levels of 3-
formyl indole [63], a microbially-derived metabolite involved in intestinal homeostasis and 



 
 

mucosal immune reactivity. The effect of hormone-based therapies on the  microbiota is not 
surprising, as the microbiota can modify host neuroendocrine function [64] and gut 
microbiota composition exhibits subtle sex differences [65]. However, compositional or 
functional alterations of the gut microbiota has currently not been reported following 
hormone therapy for the treatment of breast cancer. 

Overall, while there is no indication of a common signature of cancer therapies on the gut 
microbiota, there is evidence that some cancer therapies can shape both microbiota 
composition and function. Furthermore, there is emerging evidence that cancer is 
associated with an altered microbiota composition prior to any therapy initiation and 
further research is required to determine whether this baseline gut microbiota is cancer-
promoting or the consequence of altered host physiology. This is important as differences in 
microbiota composition can impact treatment efficacy and alter the risk of adverse events, 
discussed in more detail below. These therapy-induced differences in gut microbiota 
composition are likely through direct interactions between drug compounds or metabolites 
and bacterial strains, either  through compounds exerting specific antimicrobial effects or 
through bacterial drug metabolism. Additionally, gut microbiota composition and function 
may be indirectly modulated by cancer therapies via their direct effects on immune 
signaling. Patients who are exposed to multiple therapies over the course of their 
experience with cancer may respond differently depending on the order in which they are 
exposed to different drug classes and the recovery time between trialing different therapies. 
Furthermore cancer patients, especially older patients with comorbidities and those with 
advanced and intractable cancers, will often experience polypharmacy [66] which may 
further complicate the interaction between the gut microbiota and therapy efficacy. 
Additional research into the effects of specific cancer drugs on patient gut microbiota 
composition and function are needed to fully evaluate the extent of these effects, the 
mechanisms underlying them, as well as their consequences for patient health and 
treatment outcomes. 

3. Baseline microbiota composition affects cancer therapy efficacy 

One of the greatest concerns for modern cancer research is addressing the high interpatient 
variability in response to cancer therapies. While host genetics [67] and tumor 
heterogeneity [68] have been shown to underlie some of the differences between 
responders and non-responders to various cancer therapies, there is substantial variance 
that remains unexplained. Differences in microbiota composition have been identified as an 
important predictor of patients’ response to therapy, particularly in the case of 
immunotherapy. 

3.1. Immunotherapy 

Multiple recent systematic reviews indicate that gut microbiota composition and function 
differs between responders and non-responders to ICIs.  A systematic review of studies 
assessing 16S microbiota composition concluded that while no specific commensal 
bacterium was associated with ICI efficacy, an intact  microbiota with high levels of bacterial 
diversity and high ratios of responder-associated bacterial species is associated with better 
patient outcomes [69].  A recent meta-analysis of metagenomic studies investigating the 



 
 

role of the microbiota in ICI response revealed that Faecalibacterium, Barnesiella 
intestinihomonis and microbial vitamin B metabolism are enriched in patients who 
responded well to immune checkpoint inhibition [70]. Similarly, a recent study examining 
the role of the  microbiota in combined ICI therapy response found that overall  microbiota 
composition was similar between responders to ICI monotherapy and combined therapies, 
with metagenomic analyses identifying Bacteroides stercoris and Parabacteroides distasonis 
as associated with treatment response in advanced melanoma patients undergoing 
combined CTLA-4 and PD-1 blockade [71]. 

These taxonomic differences may be associated with differences in metabolomic profiles as 
well: patients with non-small cell lung cancer who responded to nivolumab, an anti-PD-1 
monoclonal antibody, exhibited increased fecal SCFAs and terpenes compared to non-
responders [72] while a study in metastatic melanoma patients revealed high levels of fecal 
anacardic acid in ICI responders [73], which inhibits cancer cell growth in vitro [74] and has 
been shown to stimulate neutrophils and macrophages [75]. 

Two recent phase 1 clinical trials investigating whether fecal microbiota transfer (FMT) can 
confer ICI responsivity have provided preliminary evidence that microbiota compositional 
differences may underlie observed interpatient differences. The first induced two partial 
and one complete clinical response to anti-PD-1 therapy by FMT from two anti-PD-1 
responding patients into ten patients with anti-PD-1-refractory metastatic melanoma. FMT 
was associated with increased immune cell infiltration and favorable changes in gene 
expression in the tumor microenvironment [76]. The second study also examined the effect 
of adjunctive FMT from responding patients into 15 patients with anti-PD-1-refractory 
melanoma and provided clinical benefit to six of the patients. Responders to anti-PD-1 
following FMT exhibited increased CD8+ T cell activation and fecal abundance of taxa 
associated with ICI responders [77]. Recent preclinical work has indicated that FMT from 
both responders and non-responders is able to modulate the tumor microbiota in the case 
of pancreatic adenocarcinoma which underlies changes in T cell activation and tumor size 
reduction [78], but additional studies are required to determine if these effects will 
generalize to other cancers. There has been increasing interest in the tumor microbiota over 
the last few years as we have developed the capacity to characterize the bacterial strains 
present: recent studies indicate that these bacteria may also interact with drugs directly at 
the tumor site and are associated with therapy response [78, 79, 80]. While most of the 
clinical data available has focused on PD-1 blockade, similar effects been shown for 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibition in mice. Tumors in germ-
free and antibiotic-treated mice are resistant to anti-CTLA-4 therapy, but this resistance can 
be reversed by supplementation with live Bacteroides fragilis, immunization with 
Bacteroides fragilis polysaccharides or adoptive transfer of Bacteroides fragilis-specific T 
cells [81]. 

Furthermore, there is emerging evidence that previous drug exposure effects on gut 
microbiota composition may also alter ICI response. Derosa and colleagues showed that 
exposure to TKIs (most frequently sunitinib or axitinib) prior to immunotherapy initiation 
shifted microbiota composition, enriching Alistipes senegalensis and Akkermansia 
muciniphila relative to healthy controls [61], bacterial strains that have previously been 
associated with anti-PD-1 therapy responders [82]. They then went on to systematically 



 
 

assess the effects of TKIs (sunitinib, axitinib and cabozantinib) on microbiota composition in 
mice, and showed similar increases in Alistipes senegalensis and Akkermansia muciniphila as 
those observed in clinical samples [61]. Interestingly, mitogen-activated protein kinase 
inhibition have been shown to induce immunotherapy resistance in both mice and humans 
via altering the immune profile of the tumor microenvironment [83], which may be related 
to gut microbiota changes.  

In summary, there is substantial evidence for a relationship between microbiota 
composition and ICI efficacy and assessment of pre-treatment microbiota composition can 
be used to predict treatment outcomes. Emerging clinical data support preclinical evidence 
that show differences in microbiota composition underlie interpatient differences in 
response to ICIs. The importance of baseline microbiota for ICI efficacy is most likely related 
to unique contributions of bacterial strains to antitumor immune response, although further 
work is required to demonstrate this relationship in clinical populations. FMT and probiotic 
approaches may provide an avenue for reversing ICI resistance and could be used as 
adjunctive measures to improve responding patients’ outcomes and reduce treatment 
times.   

3.2. Chemotherapy 

Similar to immunotherapy, recent studies indicate that baseline microbiota composition 
may also relate to patients’ response to chemotherapy. In a study examining patients with 
multiple cancer types receiving either chemotherapy or chemotherapy combined with ICIs, 
responders exhibited higher levels of alpha diversity and were enriched for several specific 
bacterial species that reduced tumor size when provided to mice, including Bacteroides 
xylanisolvens, Bacteroides ovatus, Prevotella copri and multiple Alistipes species, while non-
responders were enriched with species from the Firmicutes phylum [46]. In another small 
study, chemotherapy response in patients with advanced lung cancer was associated with 
enriched Streptococcus mutans and Enterococcus casseliflavus, while non-responders 
exhibited increased abundance of Leuconostoc lactis and Eubacterium siraeum [84]. 
Furthermore, fecal microbiome composition at diagnosis was associated with prognosis of 
early breast cancer, and the microbiota of patients with aggressive cancer both before and 
following chemotherapy was enriched with several species previously associated with 
primary resistance to ICIs [85]. Similarly, differences in baseline microbiota composition has 
been observed between responders and non-responders to chemoradiotherapy [86, 87], 
where increased diversity is also associated with increased tumor infiltration and more 
favorable responding [86]. 

This preliminary work suggests that gut microbiota composition may also be an important 
factor in interpatient variability in chemotherapy efficacy. Additional research identifying 
the specific taxonomic and functional differences that predict treatment response to each 
chemotherapeutic agent would provide invaluable insight into the potential for microbiota 
modification as an adjunctive therapy in patients undergoing chemotherapy. Furthermore, 
these studies may guide selection of chemotherapeutic agents in the future as cancer 
therapies become increasingly personalized. 



 
 

3.3. Concomitant drug therapies: effects of antibiotics and other drugs that modify 
gut microbiota 

Infections are one of the most common complications experienced by cancer patients [88].  
Subsequently, many cancer patients will receive either oral or intravenous antibiotics as part 
of their treatment plan, either prophylactically or in response to infections. Substantial 
clinical research has examined the effects of antibiotics on ICI efficacy in solid tumors. Two 
recent meta-analyses examining the effect of antibiotic exposure shortly before or during 
treatment with ICIs on treatment efficacy concluded that antibiotic treatment was 
associated with decreased overall survival  as well as progression-free survival [89, 90]. Of 
note, while some cancer therapies are associated with prophylactic antibiotic 
administration, they are also administered in the context of infection, which may also 
contribute to reduced overall survival. A recent retrospective study examining the impact of 
antibiotics on ICI efficacy in patients with advanced non-small cell lung cancer showed that 
negative outcomes were only associated with antibiotics in patients with high levels of PD-1 
expression [91]. This suggests that antibiotic exposure may only impair ICI efficacy in 
patients with cancers sensitive to ICIs, and that limiting antibiotic use may not overcome 
primary ICI resistance. Since these interactions are not limited to a specific class of 
antibiotics, it is likely that antibiotic-induced alterations to the  microbiota at least partially 
explain these effects. 

Other microbiota-modifying drugs have been associated less consistently with 
immunotherapy clinical outcomes. Proton pump inhibitors, commonly prescribed for 
gastroesophageal reflux, are known to decrease microbial diversity and alter microbiota 
composition [92], and may therefore interact with ICI efficacy.  In a large cohort of patients 
with non-small cell lung cancer receiving anti-PD1 pembrolizumab, proton pump inhibitors 
were associated with poor ICI performance and reduced overall survival [93].  However, 
large-scale retrospective analyses of patients with multiple cancers [94] or hepatocellular 
carcinoma [95] did not detect interactions between proton pump inhibitors and ICI efficacy. 
Retrospective assessment of other drugs known to modify the microbiota, including 
nonsteroidal anti-inflammatory drugs, statins, opioids, anti-vitamin K, levothyroxine, vitamin 
D3, antiarrhythmics, metformin and phloroglucinol, do not appear to interact with ICI 
efficacy [94]. 

The relationship between antibiotic use and chemotherapy efficacy is less clear. Antibiotic 
treatment increases survival time in patients with advanced cancer [96] and tumor-bearing 
mice [79] undergoing gemcitabine-containing treatment. Conversely, antibiotic treatment 
has been associated with reduced progression-free survival and overall survival in both 
hepatocellular carcinoma [97] and esophageal cancers [98]. Trials comparing the effects of 
antibiotics on immunotherapy and chemotherapy outcomes have shown that antibiotic-
induced reductions in overall survival and progression-free survival appear limited to 
patients undergoing immunotherapy [99, 100].  

There has been less focus on the effect of antibiotics on other cancer therapies.  One 
preclinical study showed that tumor endothelial cells were more sensitive to TKIs foretinib, 
crizotinib and cabozanitinib when derived from mice treated with antibiotics rather than 
healthy control mice [101], supporting the idea of a tumor microbiota underlying some of 



 
 

the effects of antibiotic treatment. Further, the antitumor efficacy of a neoantigen cancer 
vaccine was amplified when mice underwent prolonged antibiotic exposure [102]. Overall, 
the current literature supports further investigation into the role of antibiotics in cancer 
therapy efficacy, and additional work is needed to determine whether the effects due to 
antibiotic exposure are through changes to gut microbiota composition or drug-drug 
interactions. 

3.4. Effect of prebiotics and probiotics 

Preclinical work has provided support for several candidate probiotic strains in improving 
cancer therapy efficacy, and emerging clinical data reinforces the use some of these strains 
for improving patient outcomes. So far research in the context of cancers outside of the 
gastrointestinal tract has focused on particular Bifidobacterium strains and Akkermansia 
muciniphila, which are enriched in immunotherapy therapy responders and induce 
favorable anticancer immune responses in preclinical models [103].  

In preclinical rodent models specific Bifidobacterium strains have been shown to augment 
the anti-tumor effects of anti-PD-1 immunotherapy or chemotherapy by enhancing immune 
cell function and tumor infiltration [104, 105, 106]. Of note, there are no clear genetic 
differences between Bifidobacterium strains that work synergistically with cancer therapies 
(Bifidobacterium bifidum K57, K18 and MG31) and those that do not (Bifidobacterium 
bifidum BO6, R71 and CKDB001), and interaction with immunotherapy appears to be due to 
specific strain effects on host immune priming [104]. Furthermore, a recent study assessing 
the benefit of probiotic yoghurt supplemented with Bifidobacterium animalis alongside TKI 
therapy in patients with metastatic renal cell carcinoma found no difference in clinical 
benefit rate between patients consuming probiotics and controls [107]. Additional work 
determining which Bifidobacterium strains augment specific cancer therapies in preclinical 
models will provide a better basis for translating these early findings into effective clinical 
practice. 

Akkermansia muciniphila, an intestinal microbe that degrades mucin and improves 
metabolic and immune health in both rodents and humans [108, 109], has recently been 
identified as enriched in ICI responders in two studies investigating the role of the  
microbiota in anti-PD1 efficacy [82, 110]. Furthermore, this bacterium may also be enriched 
in prostate cancer patients on oral androgen receptor axis-targeted therapies [111]. 
Akkermansia muciniphila supplementation increases intestinal concentrations of multiple 
metabolites including SCFAs and spermidine which have previously been associated with 
cancer therapy efficacy [112]. One preclinical study has shown that Akkermansia 
muciniphila potentiated the effects of immunotherapy in mice bearing melanoma and 
colorectal cancer [113]. While the clinical evidence for a causal relationship between 
Akkermansia muciniphila and ICI efficacy is still lacking, the preliminary evidence available 
supports further investigation into the benefits of this potential, next-generation probiotic, 
especially in light of its effectiveness in a range of human conditions associated with 
dysfunctional metabolism and immune signaling. 

Of note, there is emerging evidence that untargeted probiotic use may impair ICI efficacy: 
conventional probiotics were associated with 70% reduced responding to ICIs in a small 



 
 

group of melanoma patients [114] and in a larger study of melanoma patients commercial 
probiotics were associated with reduced microbial species diversity, inferior ICI response 
and reduced survival [115]. It should be noted that these intriguing results have been 
presented only at conferences and have not at time of writing undergone peer-review. 
Conversely, a retrospective analysis of patients with advanced non-small cell lung cancer 
treated with ICIs indicated that probiotic therapy with Clostridium butyricum MIYAIRI 588 
increased both progression-free survival and overall survival, even in patients who received 
antibiotics [116].  Further work is required to determine whether there are specific 
probiotics that can potentiate cancer therapy efficacy. 

4. The gut microbiota is associated with cancer therapy side effects 

Despite substantial improvements in clinical efficacy and survival rates, most cancer 
therapies are associated with wide-ranging side effects impacting nearly all organ systems. 
Similar to treatment efficacy, these adverse effects exhibit dramatic interpatient variability. 
The most common adverse effects associated with cancer therapies are gastrointestinal 
symptoms [117], which are often associated with changes in microbiota composition and 
sometimes directly the result of microbiota-drug interactions. Furthermore, there is 
emerging evidence that the  microbiota may modulate infection risk [118] as well as 
behavioral and neurological side effects [119, 120] experienced by cancer patients.  

4.1. Gastrointestinal adverse effects and toxicities 

The gastrointestinal epithelium is a site of substantial cell turnover and proliferation, and 
therefore commonly experiences off-target side effects of cancer therapies, many of which 
aim to slow or halt rapid cell proliferation. However, these drug-related adverse effects can 
be ameliorated or exacerbated by the resident  microbiota.  Furthermore, some drug-
related gastrointestinal adverse effects are due to microbial transformation of drug 
metabolites during their excretion into the gastrointestinal tract. 

Chemotherapy is commonly associated with nausea, gastrointestinal mucositis, and 
diarrhea. Chemotherapy-induced mucositis dramatically alters  microbiota composition and 
is hypothesized to result from microbial interactions with drug metabolites, bile acid 
synthesis and barrier function [121]. For example, irinotecan, a common chemotherapeutic 
used in colon cancer, is limited in use due to associated severe mucositis and diarrhea, 
which is largely dependent on bacterial β-glucuronidase activity. Other factors that predict 
irinotecan toxicity include hereditary mutations in the conjugation pathway such as Gilbert’s 
syndrome [122]. In mice, carboplatin-induced intestinal mucositis was found to be causally 
related to Prevotella copri abundance: targeted antibiotic treatment reducing P.copri 
reduced intestinal mucosal injury while P.copri supplementation exacerbated the effects of 
carboplatin treatment [123]. 

Probiotic treatments have been shown to reduce chemotherapy-induced intestinal damage 
for some chemotherapeutic agents in preclinical models. A recent systematic review 
concluded that probiotics, predominantly comprised of single or multiple strains of 
Lactobacilli and Bifidobacteria, are effective in the treatment of some common 
radiotherapy- and chemotherapy-induced gastrointestinal symptoms, with most studies 



 
 

focusing on diarrhea [124]. Recent preclinical work has shown that intestinal mucositis 
induced by platinum-based chemotherapeutic agents and associated diarrhea can be 
ameliorated using prebiotics comprised of multiple bacterial strains (including Clostridium 
butyricum, Bacillus mesentericus, Streptococcus faecalis and multiple Lactobacilli and 
Bifidobacteria) [125, 126, 127]. 

Gastrointestinal adverse events are some of the most common side effects associated with 
immunotherapy and the most frequent cause of emergency visits for patients receiving ICIs 
[128]. There is emerging evidence that ICI-induced colitis is associated with baseline  
microbiota: patients with metastatic melanoma treated with ipilimumab were less likely to 
develop colitis if their baseline microbiota composition was enriched with bacteria 
belonging to the Bacteroidetes phylum, and the development of colitis was associated with 
reduced bacterial genetic pathways associated with polyamine transport and vitamin B 
biosynthesis [129] and pre-immunotherapy antibiotic exposure was associated with greater 
incidence of treatment-induced colitis in patients with advanced melanoma [130]. 
Additionally, a recent case-study where ICI-induced colitis was successfully treated by FMT 
in two patients [131] has provided further support that the  microbiota is involved in ICI-
induced gastrointestinal adverse events.  Furthermore, ICI-induced mucositis in murine 
models has been reversed by probiotic supplementation with Bifidobacterium breve [132], 
combined Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium lactis and 
Bifidobacterium breve [133], and Lactobacillus reuteri [134]. A recent study examining the 
role of the  microbiota in combination immunotherapy therapy in advanced melanoma 
patients identified that Bacteroides intestinalis and increased intestinal interleukin 1β 
expression were associated with ICI-induced toxicity, and in a preclinical mouse model of 
combined immunotherapy treatment-associated subclinical colitis was reduced by both an 
IL-1 receptor antagonist and antibiotic treatment, and exacerbated by Bacteroides 
intestinalis supplementation [71]. Trials combining prophylactic use of anti-TNF agents with 
ICIs are underway both in an attempt to reduce gut toxicity and to increase antitumor 
effects [135]. Anti-TNF therapies may reduce gut toxicity via effects on the gut microbiota, 
as they have been shown to modulate microbiota composition in preclinical studies of 
autoimmune conditions [136]. 

Common clinical toxicities associated with TKI therapy include nausea and diarrhea [137]. 
Small studies have shown that microbiota composition is associated with TKI-induced 
diarrhea in patients with metastatic renal cell carcinoma [138], advanced hepatocellular 
carcinoma [139], and breast cancer [140]. Furthermore, in the latter study baseline 
microbiota could predict TKI-induced diarrhea [140] and a recent clinical trial found that 
FMT from healthy donors successfully treated TKI-induced diarrhea in patients with 
metastatic renal cell carcinoma with no serious adverse events observed [141]. 

In conclusion, there is substantial evidence across a range of cancer therapies with 
gastrointestinal adverse events are associated with an altered gut microbiota, and therefore 
suggest that these events may be ameliorated through microbiota modification using FMT 
or supplementation with some probiotic strains.  However, recent meta-analyses of clinical 
trials using probiotics for cancer therapy-induced diarrhea concluded that there is limited 
low-certainty evidence for probiotics preventing or reducing the incidence and severity of 



 
 

diarrhea [142, 143], and additional work is required to determine if the promising effects 
observed in preclinical models can be translated to patient populations. 

4.2. Infection risk 

Increased risk of infection is a common complication in cancer, particularly in hematological 
malignancies where chemotherapy regimens are used to ablate cancer cells in the bone 
marrow leading to immunocompromise. Across multiple small studies in patients with non-
Hodgkin lymphoma [144], acute myelogenous leukemia [145] and myeloid lymphoma [146], 
lower microbial alpha diversity was associated with increased risk of infection both during 
chemotherapy regimen and following neutrophil recovery. However, the relationship 
between microbial alpha diversity and risk of infection is unclear, as patients who developed 
infections during intensive chemotherapy in the latter two studies were treated with 
carbapenem which further reduced alpha diversity [145, 146]. A recent study examining the 
effect of autologous FMT in a small group of acute myeloid leukemia patients receiving both 
chemotherapy and antibiotics showed that FMT restored both microbiota alpha diversity 
and several microbial communities depleted by therapy and did not induce infectious 
complications [147]. Overall, preliminary evidence indicates that the gut microbiota may be 
involved in infection risk following intensive chemotherapy, although microbial diversity 
may function as a biomarker of antibiotic use in response to therapy-related infections [145, 
146]. Further research is required to determine the therapeutic potential of the gut 
microbiota for infection management in patients undergoing chemotherapy. 

4.3. Central and peripheral neurological and behavioral adverse effects and 
toxicities 

A subset of cancer patients undergoing various cancer therapies report behavioral and 
neurological impairments that reduce their quality of life, including impaired cognition 
[148], increased incidence of mood and anxiety disorders [149], and increased pain and 
fatigue [150]. While most of the findings are associated with more traditional cytotoxic 
chemotherapy regimens in cancer patients and survivors, there is emerging evidence that 
more novel immunotherapies and targeted cancer therapies may have similar behavioral 
effects [151, 152]. The emergence of the FACT-ICM questionnaire may help to standardize 
patient reported outcomes with immunotherapy including fatigue and could be combined 
with sequential microbiome sequencing [153]. Chemotherapeutic agents are able to interact 
directly with the central and peripheral nervous systems, reducing cell division of support 
cells throughout the nervous system and neuronal stem cell populations in the 
hippocampus which is important in memory and executive function [154]. Furthermore, 
these agents are known to activate both peripheral and central inflammation, and are 
associated with reduced neurotransmitter release and loss of dendrites and dendritic spines 
[155]. 

There is increasing evidence for microbiota involvement in several behavioral conditions 
through modification of neuroactive metabolite availability, as well as actions on the vagus 
nerve and immune system. The microbiota has been linked to altered cognition, anxiety-like 
behavior, depression-like behavior, pain behavior and fatigue – all behaviors affected by 
cancer therapies – in numerous models [156]. Several experts in the field have identified the 



 
 

microbiota as a potential site for intervention in cancer therapy-induced behavioral 
impairment [119, 157]. A recent systematic review of the human literature concluded that 
microbiota composition was associated with fatigue, anxiety, depression, sleep quality, 
cognitive impairment and peripheral neuropathy in patients undergoing chemotherapy 
[158]. However, this was based on two cross-sectional and one longitudinal study and 
additional research is required to confirm these associations.  

This is in line with the evidence from preclinical animal models where platinum-containing 
chemotherapy-induced behavioral impairments and peripheral neuropathy are related to 
microbiota composition and can be modified through interventions targeting the 
microbiota. Germ-free or antibiotic-treated mice exhibit reduced mechanical hyperalgesia 
following treatment with oxaliplatin, and this protection can be reversed by FMT from 
conventional animals [159]. Paclitaxel-induced peripheral neuropathy was related to gut 
microbiota composition in mice, and paclitaxel sensitivity and resistance could be 
transferred to naïve mice by FMT [160]. Cognitive impairments induced by paclitaxel in mice 
have been shown to be related to microbiota composition and colonic crypt depth [161], 
and some of the paclitaxel-induced behavioral impairments can be mitigated by co-housing 
with healthy mice [162]. While antibiotic treatment did not prevent paclitaxel-induced 
behavioral impairments, FMT from paclitaxel-treated mice into naïve mice reduced 
locomotion in an open field and increased hippocampal cytokine expression [162]. 
Furthermore, a multi-strain probiotic SLAB51 (containing Streptococcus thermophilus, 
Bifidobacterium longum, B. breve, B. infantis, Lactobacillus acidophilus, L. plantarum, L. 
paracasei, L delbrueckii subsp. bulgaricus and L. brevis) prevented paclitaxel-induced 
mechanical and cold hypersensitivity and protected against paclitaxel-induced reduction in 
nerve fibers in mice [126]. 

Overall, there is strong preliminary evidence that behavioral and neurological impairments 
associated with platinum-based chemotherapies may be at least partially explained by 
chemotherapy-induced changes in the gut microbiota (potential mechanisms illustrated in 
Figure 2). Further research investigating the role of the gut microbiota in neurological and 
behavioral impairments associated with other cancer therapies is required. 

5. Underlying mechanisms – direct and indirect effects of the gut microbiota on cancer 
therapies 

While there is clear evidence that the gut microbiota plays a role in both cancer therapy 
efficacy and some adverse events, our understanding of the mechanisms by which microbes 
exert these effects is less well elaborated. Bacteria can exert their effects on drugs that 
enter the gut directly, by interactions with the drug or its excreted metabolites. Indirectly, 
the microbiota both modulates hepatic enzymatic activity and produces microbial 
metabolites that can modify host physiology. Specific to cancer therapies, some of these 
metabolites are known to modulate immune function. 

5.1. Direct microbiota-drug interactions 

The microbiota is collectively able to metabolize and utilize a wide range of substrates 
consumed by the host. This enzymatic capacity also enables the metabolism and 



 
 

modification of several drugs and associated metabolites that enter the gastrointestinal 
tract, either because they were administered orally, or excreted via the biliary tract. Seminal 
in vitro experiments have demonstrated that a wide range of human gut microbes are able 
to chemically modify medicinal drugs, including agents used in cancer treatment [163].  

Glucuronidation by uridine diphosphate-glucuronosyl transferase in the liver is a primary 
pathway by which a number of xenobiotics are excreted into the gut lumen as waste, by 
increasing their solubility. Once in the gut bacterial β-glucuronidases remove the conjugated  
glucuronides, often reactivating the substance, although this enzymatic activity can be 
modified by a range of host and environmental factors [164]. Of note, a number of anti-
cancer agents, including axitinib, epirubicin and irinotecan, are predicted to interact with 
bacterial β-glucuronidases [165]. The adverse gastrointestinal effects observed in irinotecan 
treatment depend on microbial β-glucuronidases that reactivate the drug in the gut [166, 
167], and bacterial-specific β-glucuronidase inhibition which can prevent intestinal toxicity 
while maintaining antitumor efficacy in mice, dramatically improving survival rates [168]. Of 
note, irinotecan does not appear to exert any effects on human microbiota composition 
when studied independently of the host in ex vivo biofermenter experiments [169]. 
Similarly, abiraterone acetate, an inhibitor of androgen biosynthesis used in the treatment 
of prostate cancer, has been recently shown to be metabolized by the microbiota in ex vivo 
bioreactor experiments [62], although the specific bacterial strains and enzymes involved 
remains unknown. Furthermore, there is increasing evidence that the bacteria in the tumor 
microenvironment may mediate therapy response by metabolizing chemotherapeutic 
agents that reach the tumor [79]. 

Studies of fluoropyrimidine chemotherapy toxicity in Caenorhabiditis elegans models have 
implicated their food source, Escherichia coli, as a primary mechanism by which 
chemotherapy toxicity can be modified. Escherichia coli rapidly evolve bacterial resistance 
to fluoropyrimidine chemotherapies, and most loss-of-function mutations reduced drug 
toxicity observed in the cohabiting C. elegans [170]. Increasing dietary serine and thymidine 
enhances fluoropyrimidine toxicity in C. elegans by interactions with E. coli: thymidine 
promotes microbial conversion of prodrug into toxic metabolites while serine alters E. coli 
metabolism, reducing nucleotides available to the host [171]. This latter study indicates that 
diet-microbiota interactions may shift drug pharmacodynamics without direct drug-
microbiota interactions, however further work is needed to determine whether similar 
effects will occur in more complex host-microbiota interactions.  

Investigation into the role of direct microbial metabolism of cancer drugs and their related 
metabolites has focused predominantly on cytotoxic chemotherapy, with limited 
investigation into tyrosine kinase inhibitors and other orally administered anti-cancer 
therapies. Further work is required to determine the relative contribution of direct microbial 
metabolism in the relationship between the gut microbiota and cancer therapy efficacy, and 
adverse events for a number of anti-cancer drugs. Furthermore, the presence of microbes in 
the gastrointestinal tract that can transform and detoxify cancer drugs may play a role in 
shaping the gut microbiota by protecting more sensitive taxa [172], which may subsequently 
shape host physiology and therapy response. 



 
 

5.2. Microbiota interactions with liver metabolism 

The liver is a key site for drug metabolism: the portal vein drains from the gastrointestinal 
tract into the liver, ensuring that orally administered drugs absorbed by the gut are 
appropriately modified for safe circulation around the body. While parenterally 
administered drugs avoid this first-pass metabolism, the liver can still exert effects on their 
bioavailability by second-pass metabolism, as a fraction of venous blood travels through the 
liver via the portal vein. Liver metabolism can be modified by the microbiota in preclinical 
models, most likely via modulation of the nuclear receptors (there is evidence for microbial 
interactions with the farnesoid X receptor [173], pregnane X receptor [174], and aryl 
hydrocarbon receptor [175]) that regulate the expression of a number of drug-metabolizing 
enzymes and transporters [176]. Germ-free status is associated with a downregulation of 
genes related to xenobiotic metabolism with corresponding reductions in protein levels of 
cytochrome P450 3a [177], a major drug-metabolizing enzyme, resulting in increased drug 
plasma concentrations and half-life [178]. In a more recent study, recolonization of germ-
free mice normalized hepatic cytochrome P450 3a11 and multidrug resistance protein 1 
expression to conventional levels [179].  Similarly, genetic deletion of the pregnane X 
receptor also reduced cytochrome P450 family 3 gene expression and dampened hepatic 
transcriptome changes in response to microbial depletion with antibiotics [174]. Of note, 
the role of the gut microbiota in liver metabolism is particularly pronounced in male mice, 
with limited differences observed in females, suggesting that there may be a role of steroid 
hormones in some of these sex-specific effects [174, 177]. 

A recent small clinical study in healthy volunteers indicated that the microbiota may also 
regulate liver metabolism in humans: 7 days of antibiotics reduced the activity of 
cytochrome P450 1a2, 2c19 and 3a, and reductions in alpha diversity were associated with 
increased drug and metabolite content in fecal samples [180].  Overall, while these 
preliminary studies are promising, further work is required to determine whether the 
compositional changes in the gut microbiota associated with cancer therapy can then lead 
to changes in liver metabolism, or if microbiota-dependent changes in liver metabolic 
activity can alter cancer therapy efficacy or toxicity. 

5.3. Indirect modulation by microbial metabolites 

One of the primary mechanisms by which the gut microbiota interacts with the host is 
through the production of metabolites, which can act locally on the gut epithelium or at 
distal sites and organs if absorbed into the blood. These metabolites then exert their effects 
in the host either as signaling molecules or metabolic substrates, affecting almost every 
organ system [181]. While a vast range of microbial metabolites may exert effects on host 
physiology, the bulk of research has focused on the role of SCFAs and tryptophan 
metabolism in host response to cancer therapies. 

SCFAs are uniquely produced by the gut microbiota via the fermentation of fiber and are 
involved in a number of important physiological processes in the host, including gut 
epithelial health and function and immune function.  Furthermore, they have been shown to 
have antitumorigenic effects in a number of gastrointestinal cancers [40]. SCFA content has 



 
 

been shown to be associated with chemotherapy [42] and immunotherapy [48, 182, 183] 
response in a number of clinical cohorts. In preclinical models, supplementation with 
butyrate [184] and acetate [185] have been shown to improve chemotherapy outcomes. 
Conversely, in a recent study in mice treated with CTLA-4 blockade butyrate worsened 
therapeutic response [186]. These effects may be due to SCFA effects on regulatory T cells, 
which suppress the antitumor immune response [187]: both butyrate and propionate 
supplementation increased generation of extrathymic regulatory T cells in healthy mice 
[188]. Overall, while there are interesting clinical associations between SCFAs and cancer 
therapy response, there is limited evidence of causality. Additional interventional studies 
supplementing SCFAs alongside cancer therapies are required to determine whether these 
metabolites potentiate or dampen the effects of various cancer therapies.  

Tryptophan metabolites are another key group of microbially derived metabolites known to 
exert effects on host physiology, with actions on gut health and function, and the immune 
system [189, 190, 191]. Patients with cancer exhibit altered tryptophan metabolism, with 
relatively high levels of kynurenine [192, 193], and tryptophan metabolites have been 
shown to exert cytostatic effects on cancer cells in vitro [194, 195]. In patients with renal cell 
cancer and with melanoma changes in the kynurenine/tryptophan ratio predict response to 
ICIs [196]. While the potential of tryptophan metabolites as adjunctive treatments alongside 
cancer therapies has not yet been examined, the use of IDO inhibitors alongside ICIs has 
shown some promise, as discussed above. A recent study has shown another 
immunomodulatory metabolite, inosine, can enhance ICI efficacy in four different murine 
cancer models by altering T cell expression [197].   

5.4. Microbial modulation of the immune response 

Finally, the gut microbiota may interact with cancer therapies through effects of specific 
bacteria on the immune system. The microbiota modulates the bioactivity of 
immunomodulators [198], and emerging preclinical evidence indicates that this may be 
through direct effects of specific taxa on subsets of immune cells. For example, both 
oxaliplatin and cisplatin are less effective in germ-free and antibiotic-treated mice and this 
appears due to reduced pro-inflammatory response in the tumor microenvironment [199]. 
Additionally, oxaliplatin efficacy was potentiated through cotreatment with bacterial ghosts 
– empty cell walls from Gram-negative bacteria – in a murine model of cancer [200]. 
Further, the anticancer agent cyclophosphamide stimulates an anticancer immune response 
by inducing translocation of some species of Gram-positive bacteria into secondary 
lymphoid tissues, stimulating a T helper 17 cell response that is absent in germ-free and 
antibiotic-treated mice [201]. These findings provide a mechanistic underpinning for the 
importance of baseline microbiota composition in immunotherapy response: specific 
microbial taxa may prime specific immune cell populations to improve or worsen the 
anticancer immune response. 

6. Conclusion 

As research into the role of the gut microbiota in cancer carcinogenesis and prognosis 
continues, increasing preclinical and clinical evidence also demonstrates a strong, 
reproducible association between gut microbiota composition and function, and cancer 



 
 

therapy efficacy, toxicity and related adverse events, with recent studies focusing on 
immunotherapy. The data regarding cancer therapy effects on gut microbiota composition 
so far is sparse and inconsistent between studies. This is most likely due to small sample 
sizes, lack of longitudinal assessment, and patient, tumor and therapy heterogeneity. 
Indeed, baseline microbiota composition is an important predictor of patient response to 
cancer therapies. Furthermore, the gut microbiota has been implicated in therapy-related 
adverse effects involving the gut, and central and peripheral nervous systems, as well as 
infection risk in cancer patients undergoing intensive chemotherapy among others. 
Currently, it is difficult to discriminate between the toxic effects of cancer drugs alone and 
toxic effects of drug-microbiota interactions: future research should focus on identifying 
biomarkers that signal when adverse reactions and toxicities may be managed by 
microbiota-targeted interventions. While assessment of specific cancer therapy-gut 
microbiota interactions have identified some of the mechanisms by which the gut  
microbiota can modify cancer therapy efficacy and toxicity, substantial additional research is 
required to determine the drug-microbiota interactions for each drug class and to 
determine whether these interactions are modified by the physiological changes evoked by 
cancer in the host.   

7. Expert Opinion 

This literature highlights the strong association between the gut microbiota and cancer 
therapy efficacy and related adverse events. Most of the research to date has focused on 
chemotherapeutic and immunotherapeutic drugs, although the microbiota has also been 
implicated in some of the observed effects of tyrosine kinase inhibitors and adjunctive 
therapies. While the relationship between the gut microbiota, cancer therapy and tumor 
response has been well-documented in the case of colorectal and other gastrointestinal 
cancers, the role of the gut microbiota in cancer therapy more generally is increasingly 
apparent. 

The clinical evidence highlights that baseline gut microbiota composition and function is a 
key predictor of immunotherapy response, and preclinical experiments have shown that 
modification of the  microbiota with antibiotics or probiotics can both worsen or enhance 
therapy efficacy. While these findings are promising and imply that the gut microbiota may 
be modified to augment cancer therapies, the challenge for future research is to develop 
targeted therapeutics to potentiate therapy response and reduce the risk of gut microbiota-
related adverse events. While phase I trials of fecal microbiota transfer (FMT) for ICI-
refractory cancers have shown some success in increasing therapy efficacy, and systematic 
reviews have shown FMT is well-tolerated in other conditions [202, 203], some concerns 
remain regarding safety in immunocompromised cancer patients. Furthermore, these phase 
I trials have been conducted using fecal material from ICI responders which may be 
logistically challenging to procure in sufficient quantities for routine therapy. Therefore, 
probiotic and symbiotic strategies that aim to enrich specific taxa may provide a more 
practical avenue for intervention. Furthermore, modification to the gut microbiota may 
have the potential modulate the tumor microbiota which may enhance treatment efficacy. 
Novel technologies include using probiotics to deliver ICIs to the tumor microenvironment 
[204, 205] and engineered bacterial strains that excrete compounds to stimulate an anti-
tumor immune response [206, 207]. Further work understanding the relationship between 



 
 

the tumor microbiota and gut microbiota is required to understand how these communities 
interact. 

It is likely that gut microbiota modification will need to be highly personalized to be 
effective: gut microbiota composition differs across the lifespan and by sex, diet [208], 
geography [209] among other host and environmental factors [210]. This will require 
phenotyping the microbiota to a species or strain level, as bacteria within the same genus 
can have variable effects on a disease process [12]. In fact in the case of cancer therapy, 
sequencing alone may not be sufficient: Lee and colleagues recently showed that genetic 
differences do not underlie differences in the effects of Bifidobacterium strains on 
immunotherapy response [104], suggesting that metabolomics or other analyses may also 
be necessary. While sequencing and multi-omics costs have reduced dramatically over the 
last decade, this remains a key issue for implementation in clinical practice and will limit the 
utility of microbial modifications [211]. Therefore, the success of these potential therapies 
will depend on further innovation to reduce the cost of microbiota phenotyping and future 
research should address how to identify patients who would benefit from specific 
microbiota modifications quickly and cost-effectively. 

Finally, while substantial work has been performed investigating the role of the gut 
microbiota in cancer therapy efficacy and related adverse events, this field is still in its 
infancy. So far research has focused on the effects of whole drug classes across multiple 
cancers. For example, studies to date have examined the interactions between any cytotoxic 
chemotherapy and the gut microbiota which has yielded inconsistent results. This is 
unsurprising as cytotoxic chemotherapy comprises several different drug classes or drug 
combinations with unique pharmacokinetics and pharmacodynamics that are likely to 
exhibit unique interactions with the gut microbiota. Increasingly patients with lung and 
upper gastrointestinal cancers are treated with first line combinations of cytotoxic 
chemotherapy and ICIs and  little is known about the microbiome in this setting [212]. 
Additionally, most cancer pharmacotherapies are used in combination with radiotherapy 
and surgery which also alter gut microbiota composition and function and it is likely that 
some differences result from treatment interactions. The heterogeneity of cancers adds 
another layer of complexity: since the relative contribution of a drug’s mechanisms of action 
are unique for different cancers, it is likely that the relative contribution of the  gut 
microbiota to cancer therapy efficacy will also depend on the specific cancer investigated. 
Comprehensive assessment of the role of the gut microbiota in the actions of different 
drugs and drug combinations are essential to advance this field of study. 

Taken together with research streams that emphasize the influence of gut microbiota on 
cancer development and strategies to therapeutically target the gut microbiota of patient 
with cancer, understanding the complex interactions between  the gut microbiota and 
cancer therapy is an important avenue of research to fully deliver on the promise inherent 
in this field. It is likely that longitudinal analyses will be needed to fully understand the 
contribution of the gut microbiome to the variability in cancer development, progression 
and response to treatment. Additional clinical potential exists in the development of 
microbiota-directed interventions to support the efficacy or limit the side effects associated 
with current cancer treatment options, and several trials are underway examining the 
potential of various probiotics as adjunctive therapies [213]. However, many unanswered 



 
 

questions remain and a key challenge to delivering on this potential is a superior 
understanding in granular detail of the mechanisms underpinning these observations and 
the identity of the key microorganism(s) involved. Translational efforts connecting basic and 
clinical studies will be essential to fill in these knowledge gaps and expedite the emergence 
of the gut microbiome as a precision medicine tool to support the optimal clinical 
management of cancer patients. 
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Table 1: Selected clinical studies assessing the associations between gut microbiota and drug-based cancer therapies in cancers outside of the 
gastrointestinal tract 

Study Malignancy Therapy Sample 
size 

Design, 
Duration 

Microbiota 
methods 

Effect of therapy on microbiota 

Chemotherapy 
El Alam et 
al., 
2021[214] 

Cervical, 
vaginal or 
vulvar cancer 

Chemoradiotherapy 58 Longitudinal 
(baseline, at 1, 3 
and 5 weeks of 
therapy, and at 
12 weeks (follow-
up)) 

16S rRNA 
sequencing 

Therapy decreased both alpha and beta diversity 
throughout, which returned to baseline levels at follow-up. 
Therapy increased Proteobacteria and reduced Clostridiales 
with post-treatment increases in Bacteroides species. 

Papanicolas 
et al., 
2021[215] 

Non-
haematological 
malignancies 

Multiple 
chemotherapeutic 
agents 

19 Longitudinal 
(baseline, 7-12 
days following 
chemotherapy 
initiation and at 
the end of the 
first cycle) 

16S rRNA 
sequencing 

Therapy increased alpha diversity 7-12 days after 
treatment initiation.  Therapy increased the variance in 
microbiome composition observed over time relative to 
healthy controls. 

Zidi et al., 
2021[42]  

Breast cancer 5-fluorouracil-
epiribucine-
cyclophosphamide 

8 Longitudinal 
(baseline, and at 
the end of the 
second and third 
cycles) 

Untargeted 
metabolomics 

In patients that responded to therapy, chemotherapy 
increased some amino acids which was not observed in 
non-responders.  In non-responders treatment reduced 
butyrate levels. 

Hueso et al., 
2020[43] 

Acute myeloid 
leukemia 

Induction 
chemotherapy (7 
days cytarabine and 
3 days idarubicin or 
daunoribucin) 

15 Longitudinal 
(baseline, during 
aplasia and after 
haematological 
recovery) 

16S rRNA 
sequencing 

Treatment reduced alpha diversity and beta diversity with 
no recovery over time.  Increased Enterococcaceae 
abundance. Reduced faecal SCFA concentrations following 
treatment 
All patients were receiving antibiotics alongside 
chemotherapy 

Patrizz et al., 
2020[216] 

Glioma Temozolomide 53 Longitudinal 
(baseline, 
following 
chemoradiation) 

16s rRNA 
sequencing 

No therapy effects on alpha or beta diversity. 
Verrucomicrobia, Akkermansiaceae and Akkermansia 
abundance trend to decrease following treatment. 
No effect of Akkermansia abundance on progression-free 
survival 

Terrisse et Breast cancer Multiple 76 Longitudinal Metagenomics Adjuvant chemotherapy modified beta diversity of faecal 



 
 

al., 2021[85] chemotherapeutic 
agents 

patients 
(46 for 
longitudi
nal) 

(baseline, 
following 
chemotherapy) 

composition, and increased health-related strains, and 
reduced some strains associated with poor prognosis.  No 
effect on Akkermansia muciniphila.  The functional 
pathways influenced by chemotherapy included increased 
L-ornithine biosynthesis, glycolytic intermediates, L-
glutamate degradation, lipid biosynthesis and ketogenesis. 

Tong et al., 
2020[217] 

Ovarian cancer Carboplatin and 
paclitaxel ; cisplatin 
and paclitaxel 

18 Longitudinal 
(baseline, post-
operative and 
samples after the 
first to fifth cycle 
of chemotherapy) 

16S rRNA 
sequencing 

Therapy altered gut microbiota composition, reducing 
abundance of Enterobacteriaceae, Klebsiella and 
Enterobacter and increasing abundance of Bacteroides, 
Bilophila, Collinsella, Faecalibacterium and Coprococcus. 
Abundance of Bifidobacterium, Akkermansia, Desulfovibrio, 
Enterococcus and Dorea were significantly associated with 
lymph node metastasis  

Zwielehner 
et al., 
2011[218] 

Multiple 
cancers 

Multiple 
chemotherapeutic 
agents 

17 Longitudinal 
(baseline and 5-9 
days following 
chemotherapy 
initiation) 

Targeted PCR 
and 
metagenomics 

Therapy reduced alpha diversity as well as diversity of 
Clostridium clusters IV and XIVa compared to healthy 
controls.  C. difficile colonization was observed in a subset 
of patients receiving both chemotherapy and antibiotic 
treatment. 

Montassier 
et al., 
2014[219] 

Non-Hodgkin’s 
lymphoma 

Bone marrow 
transplant 
conditioning 
chemotherapy 
(high-dose 
carmustine, 
etoposide, aracytin 
and melphalan) 

8 Longitudinal 
(baseline and 7 
days following 
chemotherapy 
initiation) 

16S rRNA 
sequencing 

Therapy reduced alpha diversity and significantly altered 
microbiota composition.  Therapy was associated with 
reduced Faecalibacterium and increased Escherichia. 
All but 1 patient were on prophylactic antibiotics for the 
duration. 

Other therapies 
Chi et al., 
2020[63] 

Prostate 
cancer 

Androgen 
deprivation therapy 

20 Longitudinal 
(baseline, and 3 
and 6 months 
after treatment 
initiation) 

Untargeted 
metabolomics 
on serum 

Therapy reduced 3-hydroxybutyric acid and 3-formyl 
indole. 

Cong et al., 
2020[60] 

Non-small cell 
lung cancer 

Targeted Therapy: 
Osimertinib 
(epidermal growth 
factor receptor-

8; 21 
healthy 
controls 

Longitudinal 
(baseline, and 
then 
approximately 

16S rRNA 
sequencing 

Therapy enriched Sutterella, Peptoniphilus and 
Anaeroglobus and depleted Clostridium XIVa. 
No significant differences in alpha diversity or microbiota 
composition between patients and healthy controls; no 



 
 

tyrosine kinase 
inhibitor) 

every 6 weeks 
over 1 year) 

difference in microbiota composition in patients across 1 
year of therapy. 

Daisley et 
al., 2020[62] 

Prostate 
cancer 

Androgen 
deprivation therapy 
with Abiraterone 
acetate 

68 Cross-sectional 16s rRNA 
sequencing 
and PICRUSt 

Androgen deprivation therapy depletes Corynebacterium 
species.  Oral abiraterone acetate enriches Akkermansia 
muciniphila.  Abiraterone acetate is associated with an 
increased in inferred bacterial biosynthesis of vitamin K2. 

Hesshiki et 
al., 2020[46] 

Multiple 
cancers 

Chemotherapy or 
combined 
chemotherapy and 
immunotherapy 

26 Longitudinal 
(baseline, and 
after the first and 
second cycles of 
chemotherapy) 

Shotgun 
metagenomics 

No effect of treatment on alpha or beta diversity.  No 
differentially abundant taxa, functional pathways or 
modules. 
Significant differences between cancer patients and 
healthy individuals from the Human Microbiome Project. 

Vernocchi et 
al., 2020[47] 

Non-small cell 
lung cancer 

Anti-PD1 11 (4 
non-
responde
rs); 8 
healthy 
controls 

Cross-sectional Metagenomics 
and 
untargeted 
metabolomics 

SCFAs were enriched in healthy controls.
Commensal bacteria including Akkermansia muciniphila, 
Rikenellaceae, Bacteroides, Peptostreptococcaceae, 
Mogibacteriaceae and Clostridiaceae were more abundant 
in healthy controls than cancer patients. 

 



 
 

Figure legends: 

 

Figure 1. Microbial contributions to cancer drug metabolism and therapeutic response.  

Following oral administration, a drug’s pharmacokinetics will determine the potential for direct drug-
microbiota interactions. Drugs that are absorbed rapidly by the gastrointestinal tract will undergo 
first-pass metabolism by the gut epithelium and liver before entering the systemic circulation, while 
poorly-absorbed drugs may undergo substantial microbial modification prior to absorption and host 
metabolism. Oral drugs that reach systemic circulation, as well as drugs administered intravenously, 
can experience second-pass hepatic metabolism where drugs or related metabolites undergo 
conjugation and subsequently reach the gut lumen via biliary excretion. In the gut lumen, microbes 
can inactivate or reactivate drugs and their related metabolites, or produce toxic compounds that 
lead to drug-related adverse events.  Additionally, drugs and their metabolites can exert effects of 
gut microbiota composition and function, enriching or depleting specific taxa and altering 
community dynamics.  This leads to altered host metabolite availability, impacting both hepatic 
function and host physiology more generally, and can regulate immune function. Overall, diverse 
microbiota composition is typically associated with cancer therapy responding, while lower diversity 
and antibiotics use is associated with poor therapy response. 

  

Figure 2. The microbiota-gut-brain axis, behaviour and chemotherapy. 

The microbiota-gut-brain axis comprises a complex communication system between the gut and 
nervous system that regulates brain health and function, and has been implicated in some of the 
effects of chemotherapy on the brain.  Platinum-based and other chemotherapeutic agents are 
known to induce neurological adverse events, associated with reduced dendritic complexity and 
neurogenesis in the brain, and increased inflammation and reduced neurotransmitter content across 
both central and peripheral nervous systems (grey boxes) associated with changes in attention, 
learning and memory, and feelings of fatigue and malaise.  Additionally, chemotherapeutic agents 
induce nausea, vomiting and diarrhoea and are associated in mucositis in the gastrointestinal tract 
(green boxes).  The gut microbiota metabolises a wide range of substrates in the gut lumen into 
neuroactive and immunomodulatory metabolites, including neurotransmitters, short-chain fatty 
acids (SCFA) and tryptophan metabolites that then exert effects throughout the nervous system and 
may modulate the effects of chemotherapy. Additionally, there is emerging evidence that 
chemotherapeutic agents act on gut microbiota composition to alter metabolite production that 
may also impact host physiology. Chemotherapeutic agents may exert their effects on the nervous 
system through known interactions with key aspects of the microbiota-gut-brain axis.  

  



 

  

 

 



 
 

 




