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Abstract

Hypotension or low blood pressure (BP) is a common problem in preterm neonates and has

been associated with adverse short and long-term neurological outcomes. Deciding when

and whether to treat hypotension relies on an understanding of the relationship between

BP and brain functioning. This study aims to investigate the interaction (coupling) between

BP and continuous multichannel unedited EEG recordings in preterm infants less than 32

weeks of gestational age. The EEG was represented by spectral power in four frequency

sub-bands: 0.3–3 Hz, 3–8 Hz, 8–15 Hz and 15–30 Hz. BP was represented as mean arterial

pressure (MAP). The level of coupling between the two physiological systems was esti-

mated using linear and nonlinear methods such as correlation, coherence and mutual infor-

mation. Causality of interaction was measured using transfer entropy. The illness severity

was represented by the clinical risk index for babies (CRIB II score) and contrasted to the

computed level of interaction. It is shown here that correlation and coherence, which are lin-

ear measures of the coupling between EEG and MAP, do not correlate with CRIB values,

whereas adjusted mutual information, a nonlinear measure, is associated with CRIB scores

(r = -0.57, p = 0.003). Mutual information is independent of the absolute values of MAP and

EEG powers and quantifies the level of coupling between the short-term dynamics in both

signals. The analysis indicated that the dominant causality is from changes in EEG produc-

ing changes in MAP. Transfer entropy (EEG to MAP) is associated with the CRIB score

(0.3–3 Hz: r = 0.428, p = 0.033, 3–8 Hz: r = 0.44, p = 0.028, 8–15 Hz: r = 0.416, p = 0.038)

and indicates that a higher level of directed coupling from brain activity to blood pressure is

associated with increased illness in preterm infants. This is the first study to present the non-

linear measure of interaction between brain activity and blood pressure and to demonstrate

its relation to the initial illness severity in the preterm infant. The obtained results allow us to

hypothesise that the normal wellbeing of a preterm neonate can be characterised by a non-

linear coupling between brain activity and MAP, whereas the presence of weak coupling

with distinctive directionality of information flow is associated with an increased mortality

rate in preterms.
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Introduction

Prematurity is the leading cause of death in children under the age of five [1] with more than 1

million children dying each year due to the complications of preterm birth. In addition, pre-

mature birth may also contribute to the development of different diseases in adulthood [2–4].

Hypotension, or low blood pressure (BP), is a common problem in preterm babies, particu-

larly in the first 72 hours after delivery. It may cause decreased cerebral perfusion, resulting in

impaired oxygen delivery to the brain [5]. The criteria which defines hypotension has not been

clearly set [1] and the decision on when and whether it should be treated remains disputed

resulting in considerable variability in practice [6], [7]. Treatment often involves administra-

tion of volume expanders and inotropes with dopamine as a first-line agent when the mean

arterial pressure (MAP) (in mm Hg) falls below the gestational age (GA) in weeks [8]. This

approach however is not supported by any robust scientific evidence [9]. At the same time,

excessive intervention in order to treat hypotension in preterm infants has been associated

with adverse outcomes, including brain injury [10]. Often, preterm infants with low BP have

no biochemical or clinical signs of shock, and thus may not require any treatment. In this

case a “permissive hypotension” approach, which implies careful observation without inter-

vention may well be appropriate [11]. The ability to assess brain activity as a surrogate marker

of adequate oxygen delivery may be an important adjunct to decision making in newborns

with low BP. As such, preterm infants whose brain function is potentially impacted by low BP,

may require treatment.

EEG and Near Infrared Spectroscopy (NIRS) are commonly used technologies to assess the

‘brain health’ of a newborn. EEG provides information about electrical cortical activity in the

neonate [7]; NIRS allows continuous monitoring of cerebral oxygen saturation in the brain.

Both methods are non-invasive and provide a real-time insight into brain function. Deciding

when and whether to treat hypotension relies on our understanding of the relation between

BP, oxygenation and brain activity. However, little is known about this relationship in preterm

infants as these signals are rarely recorded simultaneously and the extraction and investigation

of the complex measures of signal interaction and signal dynamics have not been explored.

Several studies have tried to establish the relationship between EEG activity and BP. Shah

et al. [12] identified that BP and EEG energy were associated with flow in the superior vena

cava in the first 12h of life. However, West et al. [13] found no association between superior

vena cava flow and EEG energy. Increased oxygen extraction has been related to spontaneous

activity transients observed in the EEG during the first 6h of life [14]. The levels of BP which

result in abnormal cerebral activity, as quantified by EEG spectral features and peripheral

blood flow measured with NIRS were studied in 35 very low birth weight infants in [5], where

it was reported that a low BP (below 23 mm Hg) caused an increase in EEG discontinuity and

a decreased relative power of the delta band (0.5–3.5 Hz). Changes in preterm EEG spectral

power with maturation were also observed in a study by Niemarkt et al [15]. Most of these

studies were performed on short EEG recordings utilizing only a single summary measure of

the BP and EEG computed from the whole recording.

Detection of relationships and the quantification of interactions between physiological sys-

tems can be carried out in different ways, with classical linear methods, coherence and correla-

tion being the most common [16]. Given two time series, the latter measures the level of linear

coupling in the time domain, whereas the former quantifies the interaction between signals in

the frequency domain. These measures capture linear relationships only and therefore fail to

detect nonlinear coupling between the signals.

In contrast, our study hypothesises that a nonlinear measure of interaction between BP and

EEG may be more sensitive to adverse health conditions than linear methods. In this work, the
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linear interaction between EEG and BP is quantified by classical coherence and correlation

measures, while nonlinear coupling is computed based on mutual information (MI). Hypothe-

sising that differences in coupling is indicative of preterm wellbeing, we test the association

between this dynamic coupling and an illness risk score. There are a number of different neo-

natal scoring systems [17]; we evaluated the clinical risk index for babies (CRIB II) [18]. CRIB

II is an improved version of CRIB and is used in neonatal intensive care for risk adjustment

[11] including neonatal mortality risk prediction [18]. Compared to other risk scores, CRIB II

(further referred to as CRIB) is found to have an improved discrimination power when assess-

ing mortality risk for very low birth weight infants (<1500g) [19].

Materials and methods

Experimental design

An overview of the signal preprocessing, feature extraction and the modelling of the interac-

tion between brain activity and BP is shown in Fig 1. Measures of linear and nonlinear interac-

tion between EEG and BP are computed. The computed values of coupling are summarized as

the median across the whole recording for each newborn and then contrasted with the corre-

sponding CRIB values. A regression line is fitted using the least squares method. Spearman’s

Fig 1. Overview of linear and nonlinear modelling of interaction between EEG and BP signals.

https://doi.org/10.1371/journal.pone.0199587.g001
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rank correlation test (2-tailed) is used to conduct hypothesis tests on the correlation value. A

correlation with p< 0.05 is considered as statistically significant. Transfer entropy (TE) is also

computed, to provide an insight into the directionality of the interaction between EEG and

BP. The reliability of the obtained results is checked by testing an appropriate null hypothesis

for every computed measure of interaction using surrogates. This is done in order to define

whether a given empirical non-zero measurement of interaction is statistically different from

zero.

Dataset

The analysis is performed on a database of EEG data from 25 preterm infants < 32 weeks GA

(range: 23–30 weeks) recorded at the neonatal intensive care unit of Cork University Maternity

Hospital, Ireland. Clinical characteristics are provided in Table 1. The dataset included contin-

uous multichannel EEG, simultaneous registration of BP and CRIB II scores. A Viasys NicOne

video EEG machine (CareFusion Co., San Diego, USA) was used to record multi-channel EEG

according to the well-established (in clinical practice) international 10–20 system of electrode

placement, adjusted for neonates, with the analysis performed on the 8 bipolar channels: F4–

C4, C4–O2, F3–C3, C3–O1, T4–C4, C4–Cz, Cz–C3 and C3–T3. The duration of recordings

used in this study totals 957 hours (median = 37 hours, IQR = 24 to 48 hours). Fig 2 represents

Table 1. Clinical information, represented as median (IQR).

Subject # GA (weeks) BW (g) CRIB Apgar score 5 min Gender Umbilical cord pH Recording duration (hours)

1 24 670 17 6 M 6.85 55

2 24 740 13 9 F 7.18 48

3 23 540 14 7 F 7.22 49

4 28 1040 7 9 F 7.3 24

5 25 730 12 7 F 7.29 43

6 30 1450 6 5 M 7.02 68

7 26 950 12 6 F 6.96 39

8 31 960 7 9 F 7.23 37

9 25 620 12 6 F 7.34 39

10 26 860 10 8 M 7.12 24

11 26 980 10 8 M 7.24 39

12 30 730 10 10 M 7.32 24

13 24 1240 5 9 F 7.15 24

14 28 1330 4 4 F 7.08 24

15 30 1000 7 10 F 7.24 24

16 28 650 9 7 F 7.22 43

17 28 980 8 8 F 7.16 24

18 28 1060 6 1 M 6.9 83

19 29 1230 7 9 M 7.27 37

20 24 620 13 9 F 7.27 24

21 30 800 10 8 M 7.28 28

22 28 980 8 10 F 7.26 37

23 30 1530 3 8 F 7.1 24

24 23 580 14 6 F 7.24 48

25 28 680 8 8 M 7.32 48

Median

(IQR)

28

(25 to 29)

950

(680 to 1040)

9

(7 to 12)

8

(6 to 9)

64%

(F)

7.23

(7.12 to 7.27)

37

(24 to 48)

https://doi.org/10.1371/journal.pone.0199587.t001
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the duration and temporal location of each recording with the time of birth as a reference

point. The EEG data were sampled at 256 Hz (21 subjects) and 1024 Hz (4 subjects).

Continuous invasive systolic (SP) and diastolic (DP) pressure monitoring was simulta-

neously performed via an umbilical arterial catheter using the Philips Intellevue MP70

machine which provides processed BP output at a rate of 1 per second. All infants were nursed

supine. Positioning of the tip of the umbilical catheter in the descending aorta was confirmed

by chest radiograph. BP is known to be a slowly evolving signal (Fig 3) and all important fre-

quency components are within the 0–0.5 Hz band. Low frequency components of MAP were

previously investigated for premature infants (0.005 Hz to 0.16 Hz) in [20] and adult popula-

tion [21]. An example of a data segment is shown in Fig 3.

In this study the initial status of these preterm neonates is represented by the CRIB II score.

This score is defined on a scale between 1 and 27 and depends on: sex, birth weight, GA, base

excess and temperature at admission. Higher values are indicative of a greater risk of mortality

corresponding to lower GA, birth weight and temperature at admission. This study had full

ethical approval from the Clinical Research Ethics Committee of the Cork Teaching Hospitals.

Parental written, informed consent was obtained for all newborns recruited for EEG monitor-

ing studies. All data were anonymised.

Preprocessing and feature extraction: EEG and BP

In order to measure the coupling between physiological signals it is necessary to derive infor-

mative values (features) that characterise the measured data. Prior to EEG feature extraction,

the EEG signal is filtered to the range of 0.3–30 Hz and down-sampled to 64 Hz. The EEG was

segmented into 1-minute epochs with 1-second shift. Each epoch of EEG was transformed

into the frequency domain using the Discrete Fourier Transform (DFT). The power spectral

density Xl
cðf Þ for the lth epoch of the cth channel was subdivided into four frequency bands:

0.3–3 Hz, 3–8 Hz, 8–15 Hz and 15–30 Hz. This division slightly differs from the standard delta

(0.5–3.5 Hz), theta (4–7.5 Hz), alpha (8–12.5 Hz) and beta (13–30 Hz) frequency bands. This

Fig 2. Schematic representation of duration and temporal location of recordings. Each recording is represented

with respect to the time of birth (TOB) for each neonate.

https://doi.org/10.1371/journal.pone.0199587.g002
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was proposed as it better captures the brain dynamics [22], [23], [24] and accounts for rapid

maturation changes [25] in the premature brain. The power of each sub-band was then calcu-

lated:

Xl
cðbÞ ¼

Z f2ðbÞ

f1ðbÞ
Xl

cðf Þdf ð1Þ

where f1(b) − f2(b), for b = 1, 2, 3, 4 is one of the four frequency bands for lth epoch of channel

c. For every feature, the median value across all eight channels is calculated in order to reduce

the effect of focal artefacts.

The DP and SP recorded every second were used to calculate the mean arterial pressure

(MAP) as indicated in Fig 1. In clinical practice MAP is defined as the perfusion pressure of

organs in the body and is commonly used to determine the intervention criteria for preterm

neonates, including hypotension management [9]. At the same time both SP and DP are

known to be less robust to errors than MAP [26]. The MAP signal was synchronized with fea-

tures computed from the EEG by applying a moving average filter using the same epoch length

and shift which was used for the EEG signal namely 1 minute epochs with 1 second shift.

While other studies mainly analysed preselected short EEG epoch, the main strength of the

current work lies in the analysis performed on the long duration unedited multichannel EEG

recordings (total of 957hours). The artifacts were removed automatically. In particular, the

influence of EEG and MAP artefacts in our study was minimised using the following proce-

dures. The usual amplitude-based thresholding of EEG was performed to automatically

remove zero-signal and high amplitude artefact (e.g. eye blinking, electrode moved/discon-

nected). Also, the bipolar montage is used which is known to reduce the effect of many

Fig 3. Five minutes of mean arterial pressure (MAP) and 30 seconds of eight-channel raw EEG recording.

https://doi.org/10.1371/journal.pone.0199587.g003
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artefacts, e.g. ECG artefacts [27]. Spectral power features were extracted, which are known to

be robust to low-amplitude artefacts. Each feature is summarised as a median across eight

bipolar channels, thus making it robust to focal artefacts. Similarly, in order to get rid of arte-

facts in the BP signal, BP values less than 10 mmHg which occur when the pressure transducer

is briefly disconnected or moved, were removed. Sharp and non-physiological changes in

MAP were automatically eliminated by removing outliers in every 1-hour epoch. To remove

the artifacts which are caused by intervention (e.g. due to infusion given through the line) 10

minutes of MAP before and after each intervention are ignored. Synchronisation assures that

the segments which are ignored in EEG are also removed in BP and vice versa.

Interaction modelling between EEG and BP features: Correlation and

coherence

In this study, both linear and nonlinear measures of interaction of the previously synchronized

EEG and MAP features were calculated over a 30-minute moving window with a 30 seconds

shift. This window length allows one to focus on the short-term dynamics of both the EEG and

MAP signals. Correlation is a way to determine the extent to which two variables co-vary line-

arly and it is defined as:

rxy ¼
Cxy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CxxCyy

p ; ð2Þ

where Cxy is the covariance between signals x and y; Cxx and Cyy are the variance of signals x
and y respectively. This measure captures information on the time coupling and waveform

similarity between two signals. Correlation is sensitive to polarity and its values range from -1

to 1.

Unlike correlation which measures interaction in the time domain, the coherence measure

has an advantage of showing the similarity of two variables for a chosen frequency. At each fre-

quency f the coherence function Cohxy is defined by:

Cohxy fð Þ ¼
jSxyðf Þj

2

Sxxðf ÞSyyðf Þ
; ð3Þ

where Sxy(f) is the cross spectral density between x and y; Sxx(f) and Syy(f) are the auto-spectral

density of x and y, respectively. Calculation of cross spectral density allows coherence to

account for the possible lag between signals, whereas correlation is very sensitive to phase lag.

The calculation of coherence also involves squaring the signal, thus producing values in range

between 0 and 1.

Several window lengths were tried for the Welch periodogram computation. A segment

width of 400 seconds was chosen as it resulted in the presence of distinctive peaks in the coher-

ence plot. Every 30-minute window is then represented as a sum of coherence values within

the window.

In theory both the correlation and coherence between two unrelated sequences is equal to

zero. However, in practice where interaction is empirically measured from a finite number

of samples, a non-zero measurement is likely to result even if there is no relationship

between signals. In order to check whether a given empirical non-zero measurements of cor-

relation and coherence are statistically different from zero, a null hypothesis of no relation-

ship between signals is tested. The significance of interaction between the original signals is

then estimated against the distribution of interaction values obtained from shuffled surro-

gates. Surrogate data have been generated by the random permutation of the original values

Coupling between blood pressure and EEG in preterm neonates is associated with reduced illness severity scores
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of MAP and sub-band powers. In other words, after shuffling both the X and Y sequences,

instead of p(x | y), surrogate data is distributed as p(x). In the present study 100 shuffled

surrogates were generated for every 30-minute epoch, while leaving the order of epochs

unchanged. Fig 4 represents an example of the probability density function (PDF) of the null

hypothesis for correlation. We can see that insignificant values range from -0.4 to 0.4 and

therefore, should be ignored.

Interaction modelling between EEG and BP features: Adjusted mutual

information

Due to the likely complex relation between brain function and MAP, nonlinear methods

of interaction were included [28]. MI is an information theoretic measure of dependency

between two random variables defined as:

MIðX;YÞ ¼ HðXÞ þHðYÞ � HðX;YÞ; ð4Þ

where H(X), H(Y) are the Shannon entropies for sequences X and Y. After substitution of:

HðXÞ ¼ �
X

x
pðxÞlog2pðxÞ and HðYÞ ¼ �

X

y
pðyÞlog2pðyÞ; ð5Þ

the MI is obtained as follows:

MI X;Yð Þ ¼
X

x2X

X

y2Y
p x; yð Þlog2

pðx; yÞ
pðxÞpðyÞ

� �

; ð6Þ

where p(x), p(y) are the probabilities of an occurrence of a particular label, x, y, in the

sequences X, Y; p(x,y) = p(x)p(y|x), where p(y|x) is the probability that a label, y, occurs in

sequence Y, given another label, x, occurred in sequence X. It is easy to show that if the

Fig 4. Probability density function (PDF) of Pearson correlation coefficient for surrogates and real data.

Correlation for real data is quantified between MAP and EEG sub-energy (0.3–3 Hz) feature (yellow); correlation

between corresponding randomly permuted surrogates of MAP and sub-band energy (0.3–3 Hz) feature (black).

https://doi.org/10.1371/journal.pone.0199587.g004
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sequences X and Y are independent, then p(y|x) = p(y), and the ratio term p(x,y)/(p(x)p(y))
becomes 1 and the MI(X, Y) becomes 0.

In a similar manner to other information measures, the most common way for calculating

MI from empirical data is to use histogram binning (labelling) in order to estimate the proba-

bility density distribution. The choice of the number of bins into which the two sequences

(X, Y) are subdivided is important and may significantly affect the results. If there are too few,

then it might be impossible to distinguish any structure in the distribution. Too many bins

might result in occupation numbers of 0 which provides no meaningful information. Fig 5

illustrates an example of results of data labelling. The MAP trace is quantized into 5 labels

whereas the trace of EEG delta-band powers is converted to 21 different labels.

In order to minimise the effect of the choice of the number of labels, the MI was calculated

as an adjusted mutual information (AMI), which unlike conventional MI corrects the effect

of agreement between two sequences which happens solely due to chance [29]. In particular,

AMI accounts for the fact that MI tends to increase as the number of different labels increases,

regardless of the actual amount of interaction between two sequences. This behaviour can be

observed on Fig 6, where higher values of MI and lower AMI correspond to a higher number

of labels into which the sequences are binned. After reaching some optimal number of labels,

the values of AMI start to decrease, penalising the high MI caused by a higher number of labels

only. Therefore, binning into an unreasonably high number of labels will result in very low val-

ues of AMI implying the absence of shared information between the two sequences beyond

that of chance alone. The main advantage of AMI is that for the chosen number of bins, AMI

measures the interaction that is adjusted for random chance; the conventional MI measure

increases with the increase of random interactions which are caused by the high number of

bins.

The AMI for two sequences (X, Y) is computed as:

AMI X;Yð Þ ¼
MIðX;YÞ � E½MIðX;YÞ�

maxðHðXÞ;HðYÞÞ � E½MIðX;YÞ�
; ð7Þ

Fig 5. One hour of MAP and delta-band energy and its corresponding labels (dashed line). The shift of a 30 min

window is 30 sec, which results in 120 values per hour.

https://doi.org/10.1371/journal.pone.0199587.g005
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with the expected value of the MI is defined as:

E MIðX;YÞ½ � ¼
X

x2X

X

y2Y

Xminðax ;byÞ

nxy¼maxð1;axþby � NÞ

nxy

N
log

N � nxy

axby

 !

�
ax!by!ðN � axÞ!ðN � byÞ!

N!nxy!ðax � nxyÞ!ðby � nxyÞ!ðN � ax � by þ nxyÞ!
: ð8Þ

Here ax and by are partial sums of the contingency table; ax = ∑x2X nxy, by = ∑y2Y nxy, with nxy

as the number of labels common in X and Y. AMI equals 1 when X and Y are identical (i.e. per-

fectly matched). For independent X and Y sequences the values of AMI is close to 0 (small neg-

ative values can also occur).

In this study, the MAP signal was binned into a number of labels that is equal to the range

of integer MAP values. This number of labels prevents the artificial creation of dynamics in the

MAP signal when the MAP fluctuates insignificantly (within 1 mmHg). The sub-band EEG

energy was binned into 35 bins. This number has been chosen as the one that maximizes the

values of AMI across all neonates.

MI is a symmetric measure (MI(X, Y) = MI(Y, X)) and unlike correlation or coherence it

quantifies both linear and nonlinear dependences. An example is shown in Fig 7, where the

correlation, AMI and conventional MI are computed between MAP and EEG feature for

one newborn. It can be seen that higher levels of both positive and negative correlation result

in higher values of AMI and MI, where AMI values are shown to be more conservative as

opposed to conventional MI.

Understanding AMI through simulation studies and surrogates. Conventional MI has

already been extensively tested and previously applied to biomedical signals, EEG in particular

[30], [31], while AMI is a relatively new measure [29]. In order to check the statistical signifi-

cance of the measures of interaction based on the MI concept, surrogate tests are conducted in

Fig 6. The effect of the number of labels on AMI and MI values. Interaction is calculated between MAP and the EEG

power in the 0.3–3 Hz sub-band for one preterm infant. Every value is obtained as a mean across all epochs for a given

number of labels.

https://doi.org/10.1371/journal.pone.0199587.g006
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practice [32], [33]. The surrogates are obtained by random permutation (shuffling) of the

data, which preserves the frequency of the labels but destroys the coupling between the two

sequences. The resultant measure of MI is indicative of interaction by chance only. By repeat-

ing the random shuffling (100 times in this work), the distribution of the chance-derived MI

values is constructed and the statistical test is performed to assess whether the real MI value

belongs to the distribution of the MI values obtained by chance. As the AMI measure explicitly

accounts for chance, i.e. increasing the number of labels (bins) will not increase the value of

AMI, therefore, there is no need to check the statistical significance of the obtained results

with respect to chance. In order to illustrate this characteristic of AMI, artificial data were gen-

erated, which allows for the control of the different parameters, such as the level of noise and

correlation between data while measuring the level of coupling. Two artificial sequences were

simulated as a sum of sinusoids with and without random noise added (Fig 8). The surrogate

test was performed on these sequences and presented in Fig 9.

Fig 7. A scatter plot of conventional mutual information (MI), adjusted mutual information (AMI) and Pearson

correlation. This plot represents measures of interaction between MAP and EEG (0.3–3 Hz) sub-band energy

computed for each 30 min window from one preterm.

https://doi.org/10.1371/journal.pone.0199587.g007

Fig 8. Trace of artificially generated toy data. y0 = 2.8 � sin(2π � 1000) + 1.2 � sin(2π � 3000x) + 0.2 � sin(2π � 500x) in

blue and y = y0 + N(0,1) in green. Pearson correlation coefficient between y0 and y is equal to 0.91.

https://doi.org/10.1371/journal.pone.0199587.g008
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It can be seen from the histograms in Fig 9 that the level of coupling measured by AMI

for sequences with random interaction (surrogates) is centred on zero whereas the AMI

values the for correlated data (red) is centred on 0.15. This confirms that AMI accounts for

chance and that non-zero AMI values measure the inherent level of interaction in the two

sequences. Fig 9 also shows the same plot for real data from the database (green). For every

30-minute window, AMI is calculated for the original sequence of MAP and EEG feature

values and for permuted sequences. The distributions of the AMI values for both the real

data and the toy data are clearly separated from corresponding surrogates, which implies

the reliability of the calculated measure and indicates the presence of non-random interac-

tions in the real data.

It can be seen from Fig 9 that AMI values are quite conservative, even for strongly corre-

lated data. In order to check the sensitivity of the AMI measure to random noise and establish

an intuitive connection with correlation, different noise levels were added to the artificially

generated toy data as follows: y = y0 + N(0, n), where n is the standard deviation of random

samples drawn from a Gaussian distribution (see Fig 10). A zero coupling baseline was set by

measuring the interaction between two Gaussian independent and identically distributed

(IID) processes. It can be seen from Fig 11, that the coupling of the two IID processes is cen-

tered around zero. This result shows an absence of interaction between two random sequences

as measured by both AMI and correlation. We can also observe (Fig 11) that high levels of

noise have a greater impact on AMI than correlation, where an AMI of 0.2 corresponds to a

correlation coefficient of 0.8. Comparing Figs 11 and 9, it also can be seen that the operating

range of AMI values for real data from 0.05 to 0.25 (Fig 9) corresponds to Pearson correlation

coefficients of about 0.5–0.8 (Fig 11, dashed line). This justifies rather low and conservative

values of AMI obtained even for clearly correlated data.

Fig 9. Probability density function of adjusted mutual information. AMI for real data (MAP and sub-band energy)

(green) and its permuted surrogates (black); toy data (artificially created correlated signals) (red) and its permuted

surrogates (grey). Distributions of surrogates are clipped.

https://doi.org/10.1371/journal.pone.0199587.g009
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Directionality of interaction: Transfer entropy

MI does not contain any directional information as it is a symmetric measure, where MI(X, Y) =

MI(Y, X), and therefore it is not effective at predicting future events from the data or deriving

the causality between two sequences. Transfer entropy (TE) is an extension of MI which takes

into account the direction of informational flow, under the assumption that the underlying pro-

cesses can be described by a Markov model [34]. TE allows the quantification of the exchange

of information between two sequences, for each direction, by means of an introduced time lag

in either one of the sequences. TE from a sequence X to another sequence Y is the amount of

uncertainty reduced in future values of Y by knowing the past values of X, given past values of Y.

The amount of information transferred from sequence X to sequence Y is denoted as TE(X!Y)

Fig 10. Artificially generated data with different levels of noise added.

https://doi.org/10.1371/journal.pone.0199587.g010

Fig 11. Effect of noise on AMI and correlation (green, bold). Baselines of zero coupling (blue) for both measures are

represented as Pearson correlation and AMI between two Gaussian independent and identically distributed processes.

https://doi.org/10.1371/journal.pone.0199587.g011
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and is computed as follows:

TEðX!YÞ ¼
X

ytþu ;y
dy
t ;xdx

t
pðytþu; y

dy
t ; xdx

t Þ log
pðytþujy

dy
t ; x

dx
t Þ

pðytþujy
dy
t Þ

 !

: ð9Þ

Here pðytþujy
dy
t ; x

dx
t Þ ¼ pðytþu; yt; xtÞ=pðyt; xtÞ and pðytþujy

dy
t Þ ¼ pðytþu; ytÞ=pðytÞ, t is the point

in time and u indicates the prediction time, e.g. yt+u is the value of Y at time t + u. Values ydy
t

and xdx
t are dy - and dx- dimensional delay vectors. If the two processes are mutually indepen-

dent there will be no transfer of information, therefore p(yt+u| yt) = p(yt+u| yt, xt) and TE(Y!X) =

TE(X!Y) = 0.

Binning of data for computation of TE is no longer sensible as it ignores the neighbourhood

relations in the continuous data and destroys the information about the absolute values of the

original data [35] which is crucial for TE calculation. Examples where TE estimation fails due

to the use of binned time series were previously reported in [36]. In [37] the estimation of TE

was only properly obtained when using continuous data as opposed to its binned version. This

problem has been solved by using the Kraskov-Stogbauer-Grassberger (KSG) nearest-neighbor

based TE estimator for continuous data [38]. KSG is an improved box kernel estimator, which

uses dynamically altered kernel width r which depends on the number of nearest neighbors.

TE can be written using the representation of four Shannon entropies as:

TEðX!YÞ ¼ S ydy
t ; xdx

t

� �
� S ytþu; y

dy
t ; xdx

t

� �
þ S ytþu; y

dy
t

� �
� S ydy

t

� �
; ð10Þ

Every Shannon entropy (S(.)) is then estimated by the nearest-neighbor technique and the

KSG estimator. The nearest-neighbor technique uses the statistics of the distance between

neighboring data points in the embedding space. The KSG estimator uses a fixed number of

neighbors for the search in the highest dimensional space and then projects the resulting dis-

tances to the lower dimensional space as the range to look for neighbors [38]. After adapting

this technique to the formula with Shannon entropies, TE can be rewritten as:

TEðX!YÞ ¼ cðKÞ þ hc nyt
dy þ 1

� �
� c nytþuyt

dy þ 1
� �

� cðndy
yt n

dx
xt
Þit; ð11Þ

where ψ is a digamma function and h.it indicates an averaging over different time points. In

this work the number of nearest neighbours was chosen to be K = 4, as recommended in [38]

to balance bias, which decreases for larger K, and variance, which tends to increase for larger

K. In order to find an embedding dimensions for MAP and EEG features we have used the

measure of active information storage (AIS), which defines the past information of the process

that can be used to predict its future [39]. AIS AX for the sequence X is defined as the expected

MI between the past state of the process Xd
t (as d!1) and its next state Xt+1:

AXðdÞ ¼ MIðXd
t ;Xtþ1Þ: ð12Þ

Here d is an embedding dimension, which captures the underlying state of the process X for a

Markov process of order d. TE was estimated using an open source toolbox JIDT [40]. When

conducting statistical analysis for TE results, it is necessary to take into consideration the cho-

sen values of the embedding dimensions e.g. the length of history we are checking in Y when

trying to predict X. The reliability of TE(Y!X), is tested against TEðYs!XÞ; where Ys is a permuted

surrogate, created by shuffling vectors ydy
t [40], [41],[42]. As a result, the obtained surrogates

preserve pðxtþ1jx
dx
t Þ, but not pðxtþ1jx

dx
t ; y

dy
t Þ.
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Results

The results of the association between CRIB scores and the computed measures of coupling

are presented in Table 2. Insignificant values of correlation were defined using the 95% CI

obtained using the bootstrap method (random sampling with replacement).

Correlation and coherence

No statistically significant association was found between the CRIB scores and the level of lin-

ear coupling between MAP and all four EEG sub-band energies measured using both correla-

tion and coherence.

Adjusted mutual information

Fig 12 shows the association between the AMI, using sub-band energy 0.3–3 Hz, and the CRIB

scores. As expected, a low MAP correlates with high CRIB scores, Fig 12C, where higher risks

of mortality are associated with lower MAP values (r = -0.503, p = 0.01). This association could

be indirectly associated to gestational age, as CRIB scores and MAP are both dependent on the

GA. At the same time, the higher CRIB scores were not correlated with changes in any of the

EEG energy bands (0.3–3 Hz: r = 0.24, p = 0.2; 3–8 Hz: r = 0.08, p = 0.7; 8–15 Hz: r = -0.12,

p = 0.6 and 15–30 Hz: r = -0.2, p = 0.3). It can also be seen from Fig 12A that the CRIB score

has marginally higher correlation with the developed measure of interaction between signal

dynamics, AMI, than with MAP (r = -0.57, p = 0.003 vs r = -0.503, p = 0.01). A statistical test of

the equality of the two correlation coefficients obtained from the same sample, with the two

correlations sharing one variable (CRIB) did not show significant difference between them.

The level of correlation between the CRIB score and the AMI for MAP with other EEG sub-

Table 2. Correlation coefficient and 95% CI (in brackets) between CRIB score and coupling measures (correlation, coherence, AMI and TE) between MAP and four

EEG sub-band powers.

(EEG 0.3–3 Hz & MAP) vs CRIB (EEG 3–8 Hz & MAP) vs CRIB (EEG 8–15 Hz & MAP) vs CRIB (EEG 15–30 Hz & MAP) vs CRIB

Correlation NS NS NS NS

Coherence NS NS NS NS

AMI r: -0.57

(-0.78, -0.22)

NS r: -0.42

(-0.68, -0.03)

NS

TE (EEG to MAP) r: 0.428

(0.11, 0.68)

r: 0.44

(0.21, 0.66)

r: 0.416

(0.13, 0.67)

NS

TE (MAP to EEG) NS NS NS r: -0.436

(-0.68, -0.17)

Correlation coefficients were determined to be significant when their 95% CI excludes zero.

https://doi.org/10.1371/journal.pone.0199587.t002

Fig 12. The relationship between CRIB, MAP and EEG energy. (A) CRIB score and AMI between MAP and EEG

energy (0.3-3Hz); (B) MAP and AMI; (C) CRIB score and MAP. Every point on the scatter plots represents 1 newborn.

https://doi.org/10.1371/journal.pone.0199587.g012
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band energies was significant only for 8–15 Hz sub-band (3–8 Hz: r = -0.3, p = 0.13; 8–15 Hz:

r = -0.42, p = 0.04 and 15–30 Hz: r = -0.36, p = 0.08). There is also a statistically significant cor-

relation between AMI and MAP for two sub-bands only (0.3–3 Hz: r = 0.41, p = 0.04; 3–8 Hz:

r = 0.35, p = 0.09; 8–15 Hz: r = 0.38, p = 0.06; 15–30 Hz: r = 0.54, p = 0.004). Increase in MAP

was associated with increasing GA (p = 0.001, r = 0.6) and an increase in EEG (15–30 Hz) spec-

tral power (r = 0.541, p = 0.005).
When considering data recorded during the first 24 hours of life of the preterm (Fig 2),

the association between AMI for the sub-band energy 0.3–3 Hz and the CRIB score has

improved with respect to the values computed from the whole recordings (r = -0.57, p = 0.003

vs r = -0.651, p = 0.001).

Directionality of interaction: Transfer entropy

While AMI is focused on the detection of the significant coupling between sequences, transfer

entropy (TE) also detects the direction of coupling. As represented in Fig 13, no association

was found between TE (MAP to EEG (0.3–3 Hz)) and CRIB score (r = -0.089, p = 0.672),

however the transfer of information in the opposite direction, from EEG (0.3–3 Hz) to MAP,

showed an association with CRIB scores (r = 0.428, p = 0.033). Results of TE for the other

three EEG sub-band powers are represented in Table 2. From Fig 14 it can be seen that TE of

real data is separated from its corresponding surrogates. This indicates the reliability of the

obtained TE values. At the same time TE from MAP to EEG are lower than corresponding val-

ues of TE from EEG to MAP.

Discussion

Nonlineal relationship between MAP and EEG sub-band powers

The main finding of the present study is related to nonlinear measures of interaction between

cerebral activity and MAP for preterm neonates. A statistically significant association of the

CRIB scores with AMI is observed for low frequency (0.3–3 Hz) sub-band energy of EEG.

Maturational features for neonatal EEG vary across gestational ages. Most of the preterm EEG

power is known to be concentrated in the lower frequencies. Delta (0–3.5 Hz) activity is a

major characteristic of the preterm EEG that evolves as the infant matures and disappears

between 38 and 42 weeks of gestation [25].

The obtained correlation of CRIB with AMI is higher than that of CRIB with MAP (r = -0.57,

p = 0.003 vs r = -0.503, p = 0.01), although the difference was not statistically significant. How-

ever, it is worth emphasising that AMI is independent of the absolute values of both MAP and

EEG energy and measures only the coupling between signal dynamics. Thus, the measure of

Fig 13. The relationship between the CRIB score and interaction between MAP and EEG energy. (A) CRIB score

vs TE from MAP to EEG (0.3–3 Hz); (B) CRIB score vs TE from EEG (0.3–3 Hz) to MAP.

https://doi.org/10.1371/journal.pone.0199587.g013
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dynamic interaction correlates with the median MAP per baby. We found lower levels of cou-

pling at lower values of MAP. This indicates that low BP affects the interaction measured by

AMI as do poor CRIB scores. Additionally, the results of simulation and surrogate tests which

were used to detect random coupling, support the reliability of the obtained AMI values.

From Fig 2 it can be seen that every preterm neonate has different duration and timing of

the recordings. When considering EEG and BP data during first 24 hours after birth, an associ-

ation between AMI (0.3–3 Hz) and CRIB score has improved (r = -0.57, p = 0.003 vs r = -0.651,

p = 0.001). This results indicate that the coupling between cerebral activity and BP is more sen-

sitive to the risk index of the preterm during the first hours of life.

Linear relationship between MAP and EEG sub-band power

In order to measure the linear association between MAP and brain activity, coherence and

Pearson correlation were applied. Unlike the nonparametric Spearman’s rank correlation coef-

ficient, which measures monotonic association between two variables, Pearson correlation

measures linear coupling. To remove insignificant correlations known to occur because of

chance, we used a surrogate data procedure by contrasting with shuffled surrogates. Linear

measures of interaction such as correlation and coherence have been previously applied to

adult physiological signals [43] including NIRS, EEG, ECG and BP where the analysis has

been conducted on preselected 5-minute epochs from 19 subjects. In our work after discarding

insignificant correlation coefficients (Fig 4) using surrogate tests, both correlation and coher-

ence measures have indicated that these linear measures of interaction between brain activity

and MAP failed to find an association with the underlying illness severity scores of the preterm

infant.

Brain function is known to be a complex system of nonlinear processes and therefore it is

likely that nonlinear methods would be more appropriate when measuring the interaction

Fig 14. The distribution of TE values for real data and randomly permuted surrogates. TE is quantified from MAP

to EEG (0.3–3 Hz) for real data (yellow) and corresponding randomly permuted surrogates (black). TE from EEG (0.3-

3Hz) to MAP for real data (green) and its randomly permuted surrogates (red).

https://doi.org/10.1371/journal.pone.0199587.g014
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between EEG and MAP. The results of this study showed that a nonlinear method of coupling

between MAP and EEG features measured using AMI is more sensitive to noise compared

with the linear correlation method (Fig 11). According to [44] nonlinear measures are indeed

very sensitive to noise and linear methods sometimes present better properties in this sense

[45]. However, both linear and nonlinear approaches assess different aspects of the interdepen-

dence between the signals and provide a more comprehensive picture of the analysed data.

Therefore, it is a good practice to use both methods to ensure that all the information available

from the signals has been obtained and properly analysed with statistical and reliability tests

(surrogates).

Directionality of interaction

The detection of the presence of a dominant direction for the coupling between physiological

systems can also provide an insight into their mutual interdependency. TE was previously

used for establishing directed information structure between brain regions [46]. In the area of

cardiovascular physiology this technique was utilized to define causal relationships that explain

sources of variability in the regulation of cerebral hemodynamics [47]. In this study, the TE

measure is used to provide an indication of the causal relationship of processes that occur

between brain activity and MAP with respect to the illness risk of the preterm infant. The TE

results passed the surrogate test which indicates that the directionality in the MAP and EEG

sequences is present beyond the level of chance. The higher values of TE from EEG to MAP

in comparison with the opposite direction indicate greater information transfer from EEG

to MAP. The strength of this directionality apart from being greater, also correlates with the

CRIB II scores for the first three EEG sub-band powers as shown in Table 2. This may indicate

that sicker preterm infants have a higher level of information flow from brain activity to MAP

for a wide range of frequencies (lower than 15 Hz).

The neuronal activation followed by hemodynamic changes has been previously reported

in [48], [49]. At the same time it has been reported in [50], [51] that changes in cerebral oxy-

genation assessed by NIRS are likely to precede changes in EEG; in [50], the causality is repre-

sented by higher TE values from NIRS to EEG. Unlike the previous study where the EEG was

recorded using only the C3-C4 channel, in this study eight bipolar EEG channels were incor-

porated, which enables a better coverage of the preterm brain [25]. Additionally, in our study

the EEG was analysed through four sub-band energies from long duration unedited signals,

whereas a single root mean square measure of EEG energy was used in [50]. Moreover, the

interaction between EEG and MAP was explored in the context of CRIB scores, whereas in

[50] the interaction was measured between EEG and NIRS under a sedation protocol. These

differences make it difficult for a direct comparison of the results. The physiological mecha-

nism of autoregulation for premature babies is not fully understood and to the best of our

knowledge this is the first study to investigate the interaction and the directional information

flow between MAP and EEG for preterm neonates. Therefore, in order to have a better under-

standing of physiological mechanism of connectivity between brain and MAP further studies

are warranted.

General discussion

The results obtained in this study allow us to hypothesise that the stronger coupling between

brain activity and MAP, as quantified by AMI, is related to the physiological status of a pre-

term (Fig 12A). At the same time, stronger directionality in the interaction is associated with

an increased risk of mortality (Fig 13B). This hypothesis is schematically represented in Fig 15

based on the cerebral autoregulation curve. Here, the functioning cerebral autoregulation
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plateau which represents normal physiological wellbeing, corresponds to a stronger interaction

between EEG and MAP (higher AMI values) and weaker EEG-to-MAP directionality (TE

values). If it is argued that the overall status of the infant is affected by hypotensive periods,

then the problem becomes one of comparing the MAP with some lower threshold, such as

MAP = GA. However, there is not one common threshold for every infant. In this work, it is

proposed for a particular infant, that when the MAP falls below this unknown threshold that

the dynamic (rather than static) interaction changes. Therefore, identifying the change in

slope of the autoregulation curve, through the proposed measures of dynamic interaction, can

be used as a proxy for identifying the threshold.

The area of hypotension remains one of the most challenging in the newborn care. Its

diagnoses and subsequent management for the very preterm infant remains controversial

[6], [7]. Several studies have attempted to determine normal ranges of BP for the newborn.

However, such definitions are not consistent and vary between studies [1], and increase with

increasing GA [12], which complicates the diagnosis of hypotension and efficiency of treat-

ment processes. It is known that hypotension may cause decreased cerebral perfusion and a

number of studies have previously attempted to establish the relationship between BP and

brain perfusion. Unfortunately there is still no direct ways to measure cerebral blood flow

and as a result NIRS and EEG are usually utilized as surrogate measures of brain health,

where EEG has been shown to be a good predictor of early neonatal outcome [52]. In order

to better understand the interrelation between brain function and BP, some studies have

also incorporated measures of cardiac output [12], [13]. In this study we hypothesise that

during periods of low BP, EEG activity would change, which may lead to a change in cou-

pling between BP and brain activity and therefore may be indicative of newborn wellbeing.

Fig 15. Schematic representation of the coupling between EEG and MAP using the autoregulation curve. The

plateau of the autoregulation curve is used as a benchmark of normal brain function. The MAP and EEG are

represented by the sequence of states denoted with letters. A higher level of interaction is implied by a longer overlap in

the sequences (same patterns). When the MAP falls below an unknown threshold, the dynamic interaction between

EEG and MAP changes. A higher risk of mortality which is represented with higher CRIB scores is shown to be

associated with a smaller interaction between EEG and MAP and a stronger directionality of this interaction (from

EEG to BP).

https://doi.org/10.1371/journal.pone.0199587.g015
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The association between BP and EEG activity in neonates is complex and can be influenced

by blood supply to the brain as well as autoregulatory mechanisms. It was previously

reported that cerebral autoregulation is poorly developed in the preterm and is influenced

by many factors [53]. This is supported by a study [54] where forty preterm infants were

assessed but no statistically significant relationship between BP and cerebral electrical activ-

ity was identified. Similar to (12, 53) we observed an increase in MAP with increasing GA

(r = 0.61, p = 0.001). At the same time an increase in EEG (15–30 Hz) spectral power was

also associated (r = 0.54, p = 0.005) with increasing MAP. No changes in absolute spectral

powers were associated with the GA. In contrast, other studies reported changes in absolute

and relative spectral powers with increased postmenstrual age (maturation) (15, 41, 42).

There may be a number of reasons for this. It is known that relative power, which is not con-

sidered in the current study, is better at capturing the maturational changes in the preterm

brain than absolute power, as this measure is more sensitive to the changes in EEG disconti-

nuity. Another reason could be related to different EEG processing routines and to proce-

dures which were used to select EEG segments. For instance, in [55] spectral analysis was

performed on only eight 4-second epochs from each recording. Study [56] has also analysed

preselected short EEG epochs with a duration of only 10-seconds. In contrast, in our study,

spectral analysis was performed on the continuous multi-channel unedited EEG recordings

from 25 subjects with a total duration of 957 hours.

Quantitative analysis of EEG data can provide valuable information about cerebral activity.

However, analysis of EEG contaminated by artefacts may lead to spurious results. In this study

the process of EEG and BP artefact identification was addressed in several stages as described

in the “Preprocessing and feature extraction: EEG and BP” section. Even if the some artefacts

survive the previous “filters”, the median across temporal measures of interaction is computed

across the entire subject recording (median per subject of 37 hours, IQR = 24 to 48 hours),

ensuring the coupling measures are robust against extreme values which may possibly have

been caused by artefacts.

Holm-Bonferroni correction for the multiple comparison (n = 5) showed that in order

to be significant at alpha level of 0.05, the first-ranked (smallest) p value needs to be smaller

than 0.01. After the correction is applied, the association of AMI between MAP and EEG 0.3–

3 Hz and CRIB score remained statistically significant which is the main result of the study

(Table 2). This study, however, is of exploratory nature and aims at open-ended hypothesis

generation. Several researchers have recently argued that p values lose their meaning in explor-

atory analyses due to an unknown inflation of the alpha level [57], [58]. This allows p values to

serve as a guide for the hypothesis to be tested in further confirmatory research.

The results of the paper indicate that the physiological reaction to the changes of BP is asso-

ciated with lower risks of the preterm. This finding can potentially contribute towards the gen-

eration of a hypothesis in the field of hypotension management and the interrelation between

cerebral activity and BP for preterm neonates. Two channels of EEG are now routinely used in

infants who are suspected of having brain injury. Therefore, we anticipate that a module in a

bedside monitor incorporating the algorithm to compute and visualise the measure of interac-

tion between BP and cerebral activity would be feasible, providing a real time decision support

for more efficient management of hypotension in preterm neonates.

Limitations

Preterm cortical activity can be characterised by a number of maturation features [25], such as

continuity, sleep states and others. In this study we assessed the first days of life of the preterm

only, where every infant was represented by a single summary measure (median across the
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recording). As a result, this did not allow us to investigate the possible impact of cyclical activ-

ity, such as sleep states, on the coupling across time.

In order to better represent the population of preterm neonates, further confirmatory

research should be conducted on a larger cohort of preterm neonates with a wider range of

CRIB II scores. This, however, may be a challenging task, as a continuous multichannel long

EEG recordings are very difficult to obtain for the population of preterm neonates. These

babies are extremely vulnerable and any intervention should be agreed with neonatologist. At

the same time neonates with high CRIB II score are very sick and it is difficult to get a permis-

sion for such an intervention.

Conclusions

This is the first study that investigates the relationship between short-term dynamics in BP

and EEG energy in the preterm on a large dataset of continuous multi-channel unedited EEG

recordings. The coupling between EEG and BP is computed using both linear and nonlinear

measures for 25 preterms. Our findings suggest that nonlinear measures of interaction are

more suitable when measuring coupling between the complex system of brain function and

BP. The results are tested with surrogate reliability tests and contrasted with the preterm well-

being represented by the CRIB II score. The results reported in this study have indicated that a

higher risk of mortality for the preterm is associated with a lower level of nonlinear interaction

between EEG and MAP which is measured by AMI. The computation of the proposed mea-

sure of interaction is independent of absolute values of MAP and GA-based thresholds. It has

been shown that higher CRIB scores are also associated with higher levels of information flow

from EEG-to-MAP as measured by TE. This allows us to hypothesise that normal wellbeing of

a preterm neonate can be characterised by a strong nonlinear coupling between brain activity

and MAP, whereas the presence of weak coupling with distinctive directionality of information

flow may be associated with an increased risk of illness severity in preterms.
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23. Tokariev A, Palmu K, Lano A, Metsäranta M, Vanhatalo S. Phase synchrony in the early preterm EEG:

Development of methods for estimating synchrony in both oscillations and events. NeuroImage. 2012;

60: 1562–1573. https://doi.org/10.1016/j.neuroimage.2011.12.080 PMID: 22245347

24. Tolonen M, Palva JM, Andersson S, Vanhatalo S. Development of the spontaneous activity transients

and ongoing cortical activity in human preterm babies. Neuroscience. 2007; 145: 997–1006. https://doi.

org/10.1016/j.neuroscience.2006.12.070 PMID: 17307296

25. Pavlidis E, Lloyd RO, Mathieson S, Boylan GB. A review of important electroencephalogram features

for the assessment of brain maturation in premature infants. Acta Paediatr. 2017; 106: 1394–1408.

https://doi.org/10.1111/apa.13956 PMID: 28627083

26. Weindling AM. Blood pressure monitoring in the newborn. Arch Dis Child. 1989; 64: 444–447. PMID:

2730111

27. Yamada T, Meng E. Practical Guide for Clinical Neurophysiologic Testing: EEG. Lippincott Williams &

Wilkins; 2012.

28. Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. In:

Cambridge University Press. http://www.cambridge.org/ie/academic/subjects/physics/nonlinear-

science-and-fluid-dynamics/synchronization-universal-concept-nonlinear-sciences

29. Vinh NX, Epps J, Bailey J. Information Theoretic Measures for Clusterings Comparison: Variants, Prop-

erties, Normalization and Correction for Chance. J Mach Learn Res. 2010; 11: 2837–2854.

30. Na SH, Jin S-H, Kim SY, Ham B-J. EEG in schizophrenic patients: mutual information analysis. Clin

Neurophysiol Off J Int Fed Clin Neurophysiol. 2002; 113: 1954–1960.

31. Jeong J, Gore JC, Peterson BS. Mutual information analysis of the EEG in patients with Alzheimer’s dis-

ease. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2001; 112: 827–835.

32. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: detecting and evaluating

dependencies between variables. Bioinforma Oxf Engl. 2002; 18 Suppl 2: S231–240.

33. Roulston MS. Significance testing of information theoretic functionals. Phys Nonlinear Phenom. 1997;

110: 62–66. https://doi.org/10.1016/S0167-2789(97)00117-6

34. Ragwitz M, Kantz H. Markov models from data by simple nonlinear time series predictors in delay

embedding spaces. Phys Rev E. 2002; 65: 056201. https://doi.org/10.1103/PhysRevE.65.056201

PMID: 12059674

35. Wollstadt P, Sellers KK, Rudelt L, Priesemann V, Hutt A, Fröhlich F, et al. Breakdown of local informa-

tion processing may underlie isoflurane anesthesia effects. PLOS Comput Biol. 2017; 13: e1005511.

https://doi.org/10.1371/journal.pcbi.1005511 PMID: 28570661

36. Pompe B, Runge J. Momentary information transfer as a coupling measure of time series. Phys Rev E.

2011; 83: 051122. https://doi.org/10.1103/PhysRevE.83.051122 PMID: 21728505

37. Wibral M, Pampu N, Priesemann V, Siebenhühner F, Seiwert H, Lindner M, et al. Measuring Informa-

tion-Transfer Delays. PLOS ONE. 2013; 8: e55809. https://doi.org/10.1371/journal.pone.0055809

PMID: 23468850
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