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We use first-principles electronic structure methods to show that the piezoresistive strain gauge factor of
single-crystalline bulk n-type silicon-germanium alloys at carefully controlled composition can reach values of
G = 500, three times larger than that of silicon, the most sensitive such material used in industry today. At
cryogenic temperatures of 4 K we find gauge factors of G = 135 000, 13 times larger than that observed in Si
whiskers. The improved piezoresistance is achieved by tuning the scattering of carriers between different (� and
L) conduction band valleys by controlling the alloy composition and strain configuration.
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I. INTRODUCTION

The piezoresistive effect was first reported in metals by
Lord Kelvin in 1856,1 but did not find an application until
80 years later in strain gauges.2 With improvements in the
semiconductor electronics manufacturing processes, and the
discovery in the 1950s that silicon and germanium have a very
large piezoresistive effect,3 the field of piezoresistive sensors
started to flourish. Today, these sensors have a considerable
market share of all microelectromechanical systems (MEMS)-
based sensors, with applications that include strain gauges,
accelerometers, pressure, force, and inertial sensors, atomic
force microscopy, and even data storage.4

Nowadays, as applications require ever more sensitive
sensors, research to find materials with larger piezoresistive
factors is as active as ever. The sensitivity of a piezoresistive
sensor is determined by the strain gauge factor, given by
G = 1

R
dR
dε

, where R is the resistance and ε the strain. The
largest ambient temperature G found for single crystalline bulk
silicon is G = 170,3,5 and for germanium G = 100.6 The state
of the art material in the industry is poly-silicon, with G < 10,
which can be improved to G � 20 by using p-type poly-SiGe.7

Recently, gauge factors of G � 1000 were reported for silicon
oxycarbonitride polymer-derived ceramic5 and a G = 843 for
a silicon-metal hybrid.8 A lot of excitement was produced by
the report of giant piezoresistivity in silicon nanowires,9,10 with
the latest room temperature value reported being G = 280.11

The earliest work hinting at a higher piezoresistive effect
in n-type SiGe alloys of high Ge compositions was performed
by R. W. Keyes in 1957.12 He found a piezoresistive effect
15% larger than in pure Ge at a Ge composition of x = 0.96.
Unfortunately, at that time the scattering parameters and band-
structure of the alloys were unknown, and the suggested effect
for the larger piezoresistance was attributed to a large change in
deformation potentials with composition, and the possibilities
for SiGe as a piezoresistive element have not been further
explored.

In this work we use ab initio theoretical methods13–16

to explore the parameter space in alloy composition, strain
configuration, and current direction to determine the best
possible strain gauge factors for single crystalline n-type bulk
silicon-germanium alloys. We find ambient temperature gauge
factors as high as G = 500, which are a factor of three larger
than the maximum possible for single-crystalline silicon, and

over five times that of germanium. At cryogenic temperatures
of 4.2 K we find gauge factors between 12 000 and 130 000,
1.2 to 13 times higher than those reported for Si whiskers.17

Ab initio methods are powerful predictive tools that can
compute the behavior of materials without the need of fitting
parameters, allowing us to realize the concept of materials by
design.18 In our previous studies13–15 we calculated the mobil-
ity of silicon germanium at all compositions and found excel-
lent agreement with experiments. These calculations yielded
previously unknown scattering and transport parameters that
were used to predict the mobility in strained Ge19 and strained
SiGe alloys.16 Similar ab initio methods have also been used
to calculate the electron-phonon scattering parameters in Ge,20

GaAs, and GaP,21 with excellent agreement with experiments.

II. CALCULATION AND RESULTS

We calculate all the relevant carrier scattering parameters
from first principles. The acoustic electron-phonon scattering
is calculated using density functional theory (DFT) and
the frozen phonon method15 accounting for the effects of
strain on the matrix elements.16 The intervalley and optical
electron-phonon scattering is calculated with density func-
tional perturbation theory, considering the effects of alloy
disorder within the random mass approximation.15,16 Alloy
disorder scattering is calculated using the supercell approach
and DFT as reported in Ref. 13. The band energies as a
function of strain are calculated using the GW approximation.
The conductivity as a function of composition and strain
is calculated with the Boltzmann transport equation under
the relaxation time approximation. We concentrate on n-type
doping regimes at which ionized impurity scattering is negli-
gible, viz., n < 1016 cm−3. We corroborate this assumption by
including ionized impurity scattering as in the Brooks-Herring
approach22–24 in the calculation of the mobility. The effective
masses for electrons are taken from the calculated energy
distribution of the conduction band valleys. All details of the
numerical methods used to find the n-type mobility in strained
and unstrained alloys are given in detail in Refs. 13, 15, and 16
and the various numerical convergence parameters used in this
work are the same as used there.

We consider two types of strain (expressed in Miller index
notation): (i) an ideal pure uniaxial strain in the [111] direction,
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FIG. 1. (Color online) Diamond lattice structure shown along the
[111], [110], and [112] directions.

and (ii) a cantilever-type strain in the [111] direction, relaxing
in the [112] direction, with zero strain in the [110] direction
(see Fig. 1). Type (ii) strain is found in cantilevers used in
strain gauges and atomic force microscopes. We also consider
uniaxial strain in the [100] direction, and find gauge factors
similar to those of pure Si and Ge, and are not treated here.
We calculate the gauge factor G for varying strain and Ge
composition, and for current flowing in the [111] and [110]
directions. Figures 2(a) and 2(b) show the most dramatic
results for cases (i) and (ii), namely, with current in the [111]
and [110] directions, respectively. In Fig. 2(a) we observe
that the maximum gauge factor is achieved at x = 0.895 at
zero pre-strain, with G = 400. For the more realistic case
(ii), shown in Fig. 2(b), the gauge factor at zero pre-strain
reaches G = 150, increasing to G = 508 at x = 0.88 with
0.2% compressive pre-strain. The latter type of strain can be
achieved by growing the active Si1−xGex on a SiGe substrate
of lower Ge content. At cryogenic temperatures of 4 K and
zero pre-strain and current in the [111] direction, type (ii) strain
produces a very narrow peak of G = −28 000 at x = 0.87, and
drops to G = −12 000 between 0.875 < x < 0.98. For current
along the [110] direction, the gauge factor reaches G = 80 000
at x = 0.87 for a pre-strain of 0.001%, and G = −135 000 at
x = 0.869 for a pre-strain of 0.014%. The gauge factor for Ge
at 4 K for type (ii) strain is G = 7000.

III. DISCUSSION

The large piezoresistive effect in this material can be
understood by the different conductivity regimes available in a
strained SiGe alloy. The conductivity in n-type Si1−xGex can
be described by an effective mass theory for the movement
of the carriers. At Ge compositions x < 0.87, conductivity
occurs through six degenerate conduction band valleys, located
in the � crystallographic line along the Cartesian axes in
reciprocal space. At compositions x > 0.87 there are four
conduction band valleys located at the L crystallographic point
in the Brillouin zone in reciprocal space, in the [111], and
equivalent directions.25 Each of these valleys have anisotropic
energy-momentum dispersions: The effective mass along the
axis of the valley is larger than perpendicular to it.25 This
means that for each valley, the conductivity perpendicular to
the direction of the valley will be higher than parallel to it.
When all the valleys are degenerate, the total conductivity is
an average of that of each valley, and is therefore isotropic.
Strain along the axis of one of the valleys breaks this isotropy
by lifting the degeneracy of the valleys. The room temperature
conductivity of Si is 2 1

2 smaller than that of Ge. In the alloy,
as the Ge composition increases, the conductivity is reduced
even further by alloy scattering of the carriers, and is lowest
at x = 0.87, where the 10 conduction valleys are degenerate
and intervalley scattering is therefore stronger.15 Beyond this
point the conductivity rapidly increases to reach that of Ge.

The piezoresistive effect is due to a change in conductivity
produced by an applied strain. The gauge factor is defined as
the fractional change in resistance with strain, and is related to
the fractional change in conductivity,26

G = 1

R

dR

dε
� 1

ρ

dρ

dε
= − 1

σ

dσ

dε
, (1)

where ρ and σ are the resistivity and conductivity, respectively.
The conductivity is related to the mobility μ as

σ = enμ, (2)

where n is the total carrier density and e the electron charge.
The mobility can be further decomposed into the sum of the

FIG. 2. (Color online) Room temperature piezoresistive strain gauge factor G vs Ge composition x and [111] strain. (a) Strain applied in
the [111] direction, with current in the [111] direction. (b) Cantilever-type stress, with strain applied in the [111] direction (clamped in the
[110] direction and relaxed in the [112] direction), with current in the [110] direction.

035205-2



GIANT PIEZORESISTANCE IN SILICON-GERMANIUM ALLOYS PHYSICAL REVIEW B 86, 035205 (2012)

contributions by the mobility of each valley,

μ =
∑

i

riμi, (3)

where ri = ni/n and μi are the relative carrier population and
mobility of valley i. Assuming that the total carrier population
remains constant under strain, the gauge factor expressed as a
function of the mobility of each valley becomes

G = − 1

μ

∑
i

(
μi

dri

dε
+ ri

dμi

dε

)
. (4)

As the relative energy between valleys changes with strain,
so does the relative carrier population of each valley and
the intervalley scattering rate, the latter strongly affecting the
mobility of each valley. A number of factors may conspire to
produce a very high G factor, such as

(1) at least one valley i with high mobility μi (which
depends on the current direction),

(2) a large variation in relative occupation ri with strain,
(3) a valley with high relative occupation, and
(4) a large variation in intervalley scattering (and therefore

in mobility) with strain,
(5) the opposite of all of the above for all other valleys in

which the change in mobility and occupation with strain is of
opposite sign, and

(6) a low total mobility.
These factors are present in pure Si and Ge, where the

relative occupation and intervalley scattering of the � valleys
in Si, and the L valleys in Ge can be changed.3 The lower total
mobility of Si is one of the reasons the gauge factor is larger
than in Ge. In SiGe alloys there are two additional advantages:
(a) the total mobility is much lower due to the presence of alloy
scattering, and (b) there are 10 valleys to play with, which
means that there is an extra variation in intervalley scattering
and in relative carrier occupation. We will now illustrate how
these factors produce the large gauge factor in type (i) strained
SiGe.

The lowest total mobility in SiGe occurs at compositions
around x = 0.87, when all 10 conduction band valleys are
nearly degenerate. However, all the other factors in Eq. (4) are
not as favorable as at other compositions. The best combination
for this type of strain occurs at x = 0.895. At this composition
at zero strain, the four L valleys are degenerate, 32 meV below
the six � valleys. Type (i) strain removes the degeneracy of the
L valley into triply (L3) and singly (L1) degenerate valleys,
and leaves the six � valleys degenerate. At room temperature,
the relative occupation of the L3, L1, and � valleys is
0.44, 0.15, and 0.41, respectively. Tensile (compressive) strain

lowers the L3 (L1) valleys relative to both the L1 (L3) and
� valleys. For a current flowing in the direction of the strain,
which coincides with the low conductivity direction of valley
L1, the relative mobility μi/μ of each valley is the following:
1.9, 0.1, and 0.33 for the L3, L1, and � valleys, respectively.
The room temperature total mobility at x = 0.895 is 0.13 that
of pure Ge, or 0.38 that of pure Si. The factor dri

dε
is 97, −53,

and −44, and dμi

dε
/μ is 553, −36, and −8 for the L3, L1,

and � valleys, respectively. Adding up all these factors in
Eq. (4) yields the gauge factor G = 400 at x = 0.895 and zero
pre-strain in Fig. 2. In this case, most of the gauge factor is
due to the L3 valley terms. The L1 and � terms have the
opposite sign, and therefore reduce the gauge factor, but are
very small in comparison. We also note that both the change in
occupation and intervalley scattering, viz., the first and second
terms in Eq. (4), contribute substantially to G, with 185 and
245, respectively.

At very low temperatures, because the Fermi distribution
is so sharp, the gauge factors are much larger. However, they
also vary abruptly with both strain and alloy composition,
remaining high for a very narrow range of strains. Doping may
reduce the temperature dependence and sensitivity to strain, at
the cost of lowering the gauge factor.27

IV. CONCLUSION

To conclude, we have used computational ab initio methods
to explore the strain-composition-current parameter space
in silicon-germanium alloys to find the largest possible
piezoresistive effect. We found room-temperature strain gauge
factors as large as 500, and as high as 135 000 at cryogenic
temperatures. The room temperature gauge factor is 300%
larger than that for single crystalline silicon, and twice as
large as the latest value reported in nanowires. We should note
that to achieve such large gauge factors in SiGe, the alloy
composition must be controlled to within 3%. In addition,
gauge factors are not constant at all ranges of strain, especially
at low temperatures. The effects of doping to stabilize the
temperature dependence of the gauge factor should also be
considered. However, we hope that the gauge factors reported
here together with the compatibility of silicon germanium
with the current fabrication technology will provide a new and
cheap way to improve the sensitivity of piezoresistance-based
sensors.
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