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Abstract—Electro-mechanical oscillations between intercon-
nected synchronous generators and oscillations in system fre-
quency are an inherent part of the operation of large power
systems. Very Low Frequency (VLF) oscillations are usually
classified as oscillations in the 0.01-0.1 Hz range. With the move
towards variable renewable energy sources and low-inertia power
systems, VLF oscillations are being observed with increasing
regularity in many small and island grids. If left undamped,
these can present a threat to system stability. However, finding
the root cause and source(s) of VLF oscillations is an extremely
challenging task for network operators. Recent work has identi-
fied a need for improved tools for identifying and characterising
VLF oscillations, in order to determine the combination of system
conditions that can be used as predictors for VLF events. A
suitable small signal model is also required in order to enable
verification of the root cause of VLF events and study of mitiga-
tion measures. Accordingly, this paper presents a new approach
for detrending and characterizing system frequency oscillations
using an adapted Zhou algorithm. The paper also describes a
method for applying this algorithm for the detection/location
of oscillations, and for their detrending and characterization.
Finally, an approach for relating detected oscillation events
to power system operating conditions for diagnostic purposes
is described. The effectiveness of the proposed approach is
demonstrated using a single frequency power system model, and
using system frequency oscillations recorded from the Irish power
system.

Index Terms—power system oscillations, detrending, nonsta-
tionary, common mode oscillations, damping, low inertia systems,
signal processing, wide area monitoring, power system monitor-
ing, power system stability, very low frequency oscillations.

I. INTRODUCTION

The phenomenon of electro-mechanical oscillations between
interconnected synchronous generators and oscillations in sys-
tem frequency are an inherent part of the operation of large
power systems [1]. Such oscillations in system frequency can
be a threat to system frequency stability, and present a danger
to system operation [2], and if left undamped can contribute
to the cause of system blackouts [3], [4].

Very Low Frequency (VLF) oscillations, also called com-
mon mode oscillations, are type of system frequency oscilla-
tion usually classified as having frequencies of between 0.01
and 0.1 Hz. It is a naturally occurring oscillation in a power
system but is normally well damped [5], however unstable
VLF oscillations are beginning to be observed more often,
particularly in certain small or islanded systems [6], [8].

Studies carried out by the Irish Transmission System Op-
erator (TSO), EirGrid, on such VLF oscillations occurring
within the Irish transmission grid have identified the potential
of type 3 wind turbines to mitigate the oscillations and provide
frequency control [9]. However, the study found only limited
correlation between the occurrence of VLF oscillations and
system level measures such as the time of year, demand, and
wind generation level, and concluded that a more sophisticated
tool for identifying such VLF oscillations within recorded
frequency data was required. Such a tool would enable grid
operators to perform a more detailed assessment of VLF
oscillations against system and machine level conditions in
order to carry out detailed studies into the root cause of such
oscillations [6].

Numerous existing operators and methods were examined
for their potential in the development of such a tool. The
potential of the Teager-Kaiser Energy Operator [10] for the de-
tection and analysis of oscillations in particular was examined
[11]. However it was found to provide insufficient distinction
between low magnitude oscillations and background noise in
the system and did not provide a sufficiently accurate measure
on the frequency of VLF oscillations, particularly when data
is gathered at a 1Hz sample rate.

Empirical mode decomposition [12] was also examined,
and while it shares a number of similarities with the Zhou
algorithm (in that it recursively detects local minima and
maxima of a signal [13]), the Zhou algorithm also includes
detrending capabilities and is designed for a power systems
application. Similarly, Fast Frequency Domain Decomposition
has been proposed as an oscillation monitoring method, but
does not perform the detrending or characterisation functions
necessary [14].

The Zhou algorithm, proposed by N. Zhou et. al. [15], is a
detrending algorithm designed to detrend oscillations in power
system frequency by locating maxima and minima points of
oscillation, interpolating envelopes and finding a trend. It has
proven to be very effective at detrending VLF oscillations in
power system frequency [16], but does not inherently offer the
characterisation of magnitude or frequency required.

Accordingly, this paper proposes an new approach for
detrending and characterizing system frequency oscillations
using an adapted Zhou algorithm. It also presents and demon-



strates a methodology for applying this algorithm in the detec-
tion and location of oscillations, including detrending, charac-
terization and relating found characteristics to power system
operating conditions for diagnostic purposes. The potential
of this approach for diagnosing the source of oscillations is
verified via the use of a single frequency model, and the
presented algorithm and method are applied to frequency
oscillations recorded on the Irish power system.

The paper is structured as follows: Section II covers the
outline of the proposed method, Section III the characterising
adaptations made to the Zhou algorithm and the relation of
these characterisations to system conditions, Section IV covers
the verification and application of this method in a case study
where a a single frequency power system model is used to
simulate a system with an oscillatory behaviour.

II. OUTLINE OF PROPOSED METHOD

Single area power system frequency data is often measured
and stored as a continuous sequence of frequency data sam-
ples, denoted x(n), which forms the input to this algorithm.
Initially this continuous string of samples is split into time
windows, denoted xw(n),

xw(n) = x(k), x(k + 1)....x(k + T ) (1)

where k is a constant and the first sample of the window
and T is the length of the window in number of samples.
This windowing allows a rough location process to be carried
out, identifying which time windows within the data contain
oscillations. A Discrete Fourier Transform (DFT) of the form

Xw(f) =

∞∑
n=−∞

xw(n)e
−j2πfn (2)

is then applied to each time window where f is the sampling
frequency of the data, and Xw(f) is the frequency domain
representation of the window of system frequency data. This
frequency domain representation is used to identify if an
oscillation in system frequency occurs during each window,
by comparing the maximum value of the frequency domain
representation of the time window to a predetermined value
equivalent to a statistically significant oscillation. If the maxi-
mum value of the frequency domain exceeds what is required
to be considered an oscillation, then the associated time win-
dow is categorised as containing an oscillation. Consecutive
windows that are found to contain oscillations are adjoined
to give a rough start and end time for individual frequency
oscillation events.

With these rough start and end times established, the Zhou
detrending algorithm is applied to the system frequency data
between. This algorithm iteratively removes non-oscillatory
trends from the data, through a process of forming envelopes
around the oscillation, taking the average of these envelopes
and subtracting it from the oscillatory data. After the de-
trending process has been complete, the process of forming
the envelopes, and the envelopes themselves, are adapted to
provide a measure of the magnitude and frequency of the
oscillation over its course, allowing the characterisation of the

oscillation. This characterisation includes the points in time at
which the oscillation begins and ends, along with the points
at which the nature of the oscillation change.

By carrying out this process of locating, detrending and
characterising oscillations over an amount of data covering
a significant period of time, a number of oscillations can
be studied and characterised, and an indicative relationship
between system conditions and the occurrence and nature
of oscillations can be established. An assessment of what
power system conditions changed at or near the same time an
oscillation starts, ends or changes in nature is carried out. By
studying a large number of oscillations in this manner, trends
can be established as to what changes in system conditions
tend to precede the occurrence of oscillations, or the changes
that tend to change the nature of, or dampen oscillations. By
analysing these trends, an indication of relationships between
specific system conditions and oscillations can be developed,
allowing further, more in depth, analysis to be targeted at
specific components and conditions.

III. ADAPTED ZHOU ALGORITHM

A. Zhou Algorithm

The Zhou algorithm for non-linear trend identification and
detrending [15] follows five steps, four of which are repeated
iteratively. The first, non-iterative, initialization step of the
algorithm involves establishing the parameters for the trend
identification, the upper and lower frequency values, fh and
fl, between which the oscillation modes of interest lie.

With the parameters established, a sliding time window,
whose content is denoted yi[t], is used to find local minimum
and maximum values within the oscillation data. The width of
the sliding window is the inverse of the upper frequency limit
1
fh

. Local maximum and minimum points are defined as

ymin[k] =

{
yi[k]

∣∣∣yi[k] ≤ yi[t] for k − 1
2fh

≤ t≤k + 1
2fh

}
(3)

ymax[k] =

{
yi[k]

∣∣∣yi[k] ≥ yi[t] for k − 1
2fh

≤ t≤k + 1
2fh

}
(4)

In order to ensure that all local maxima and minima found
using this sliding window are the result of the oscillatory
signal, an additional constraint is added. If the slope of the
signal is positive for 80% of the samples proceeding a potential
maximum point, considering samples that are within half a
window width of the point, it is considered a true maximum
point. The same constraint is applied to the finding of local
minimum, with the preceding slope required to be negative.
With these constraints applied, the local maximum and mini-
mum are defined as follows, where y′i[t] is the differential or
slope of the signal yi[t]

ymin[k] =

{
yi[k]

∣∣∣∣∣yi[k] ≤ yi[t] for k − 1
2fh

≤ t ≤ k + 1
2fh

y′i[t] ≤ 0 80%of k − 1
2fh

≤ t ≤ 0

y′i[t] ≥ 0 80%of 0 ≤ k + 1
2fh

}
(5)



ymax[k] =

{
yi[k]

∣∣∣∣∣yi[k] ≥ yi[t] for k − 1
2fh

≤ t ≤ k + 1
2fh

y′i[t] ≥ 0 80%of k − 1
2fh

≤ t ≤ 0

y′i[t] ≤ 0 80%of 0 ≤ k + 1
2fh

}
(6)

With ymin and ymax established, the third step of the
Zhou algorithm is to form upper and lower envelopes of
the signal. These envelopes, denoted Xupper[t] and Xlower[t]
are found by interpolating ymax[k] and ymin[k] respectively,
using the Piecewise Cubic Hermite Interpolation Polynomial
(PCHIP) [17]. To ensure these envelopes fully encompass the
signal, any samples that lie outside the two envelopes are
considered outliers, and are added to either ymax[k] or ymin[k]
appropriately. The interpolation process is then repeated with
the outliers included in ymax[k] and ymin[k], forming new
envelopes. This process is repeated until the entirety of the
signal is contained within the envelopes.

With the upper and lower envelopes established, the trend
of the signal can be found as

Xtrend[t] =
Xupper[t] +Xlower[t]

2
(7)

With Xtrend[t] found, the oscillation signal can be de-
trended by subtracting the trend from the original signal.
This detrending process of finding local maxima and min-
ima, forming envelopes, trend identification and subtraction
is repeated iteratively, until the trend found to be present
can be considered insignificant, and the signal is completely
detrended.

B. Adaptations to Zhou Algorithm

The second and third stages of the Zhou algorithm were
utilized and adapted to provide a measure of oscillation
frequency and magnitude in addition the detrending process,
allowing for characterization of the oscillation. As part of the
last iteration of the Zhou algorithm for detrending process, the
local maxima and minima of the now detrended oscillation,
denoted ymax,dt[k] amd ymin,dt[k] respectively, along with
the upper and lower envelopes encompassing the oscillation,
denoted Xupper,dt[t] and Xlower,dt[t] respectively, will have
been found for the detrended oscillation. As the trend of the
oscillation is now negligible and the oscillation is centered
around zero, the magnitude of the oscillation is found by
summing the absolute value of the two envelopes for there
entire length,

A[t] = |Xupperdt[t]|+ |Xlowerdt[t]| (8)

where A[t] is the amplitude of the oscillation with time. The
Rate of Change of Magnitude (RoCoM) of the oscillation,
denoted A′[t] is also found by differentiating the amplitude
with respect to time

A′[t] =
d

dt
A[t] (9)

The frequency of the oscillation can also be found over
its course by considering the maximum and minimum points
found by the Zhou algorithm. The frequency of the oscillation
is measured at each zero crossing of the oscillation by finding

the time difference between the maxima or minima point
preceding the zero crossing and the maxima or minima point
proceeding the zero crossing, with double this time difference
to be equivalent of one full oscillation, denoted T [i].

T [i] = 2S(n2 − n1) (10)

where S is the sample rate of the data in seconds, n1 is the
sample number for the preceding maxima or minima point
and n2 is the sample number of the proceeding maxima or
minima point. The inverse of this time difference is then taken
to form the measurement of frequency for that zero crossing,
F [i] = 1

T [i] .
This allows for the frequency of the oscillation to be

measured every half cycle of the oscillation, where i denotes
the half cycles of the oscillation.

By performing these additional steps after the detrending
process of the Zhou algorithm, the magnitude and frequency
of the oscillation can be found over its course, which allows
for the characterisation of said oscillation.

C. Relation of Oscillation Characteristics to System Condi-
tions

By examining the characterization provided by the adapta-
tions to the Zhou algorithm, instances, or points of interest,
at which the nature of the oscillation changes to be identified.
This includes determining accurate start and end times for
the oscillation, points at which the RoCoM changes abruptly
and where there is a change in the frequency of oscillation.
By identifying these instances, a profile for an oscillation can
be built, consisting of its start and end time, along with the
instances its nature changes.

This identification of points of interest is carried out by the
examining of the amplitude, RoCoM and frequency charac-
teristics (A[t], A′[t] and F [i]) of an oscillation, and involves
assessing the values of these three characteristics both at the
point being examined and in comparison to the characteristics
of the whole oscillation.

These oscillation profiles can then be related to changes in
the operation of the power system or its components. Changes
in system conditions & operation that occur simultaneous
to, or proceeding, a found change in oscillation nature are
recorded, along with the nature of the change. By applying this
process over extended periods of time to a power system that
experiences sporadic or regular frequency oscillations, trends
can be established, wherein a change in system operation
or conditions repeatedly precedes a change in the nature of
an oscillation. The identification of such a trend provides a
statistical indication of how said system condition or operation
interacts with system frequency oscillations. This statistical
indication can then be used to enable and guide more in-depth,
targeted studies.

This principle of relating characteristic changes in oscil-
lation nature to changes in system conditions, along with the
adaptations to the Zhou Algorithm, are explored in more detail
via two case studies in Section IV below.



IV. VERIFICATION THROUGH CASE STUDY

To verify the potential of the adapted algorithm and relation
method for aiding in the analysis of system frequency oscilla-
tions it will be applied to power system experiencing system
frequency oscillations simulated using a single frequency
model. For this case study, the proposed detrending, charac-
terising and relation method were implemented in Python 3.7
[18].

1) Power System Model: For the purpose of testing the
developed algorithm a simple power system Single Frequency
Model (SFM) was built in the Matlab Simulink program. It
consists of eight generators of varying properties connected
to a load, which is represented at a single point, forming a
power system with a single frequency that varies in response
to changes in the system. Each generator is under a frequency
feedback droop control.

2) System Model: This power system model first finds the
net system power difference in MW as

∆PMW = GMW −DMW (11)

where GMW is the total generation in the power system and
DMW is the total demand for power in the system. This is
used to calculate the net torque of the system

Tnet =
∆PMW

frad
(12)

where frad is the frequency of the power system during the
previous timestep in rads−1. The angular acceleration of the
system turbines is calculated using the total system inertia
provided by active turbines, denoted Itotal,

α =
Tnet

Itotal
(13)

and the current system frequency is found by integrating this
value of angular acceleration, and converted into Hz.

fHz =
frad
2 · π

=

∫
αdt

2 · π
(14)

The integrator used to perform this function has an initial
value of 314.16rads−1, the equivalent of 50Hz. Despite this
initial condition there is a transient on starting the simulation,
however issues are avoided by allowing enough time to pass
for the transient to clear before starting any testing. With the
system frequency value calculated, it is used as an input to
the control of generators within the model and exported as an
output of the model. The system demand varies with time, and
is created by summing a number of ramping values and white
noise.

3) Generator Model: Each of the eight generators within
the Single Frequency Model (SFM) use the same generator
model, which consists of three parts, the governor, turbine and
frequency response droop control. The maximum generation,
provided inertia and time constants vary between generators
to represent typical real world generators, Table I.

The governor and turbine are modeled as a delay transfer
function system in a model proposed by M. Gupta [19],

Ggov(s) =
1

Jg · s+ 1
(15)

Gturbine(s) =
1

Jt · s+ 1
(16)

wherein Jg and Jt are the time constants of the governor
and turbine respectively.

The set-point of each generator governor is set by a series
of functions so as the total generation roughly matches the
total demand,

Each generator has a defined power output set point which
is subject to a droop frequency control system, where the
set-point is adjusted based on the system frequency, before
forming the input to the governor. The droop constant and
dead-band are those used in the Irish power system [20].

The power output of the turbine transfer function is sub-
jected to a saturation function to ensure that it does not
exceed the maximum or minimum generation limits, and is
then considered the power output of the generator. The power
generated by each generator, and the inertia they provide,
are summed to provide the system totals for the calculations
of system conditions. A generator is only considered to be
providing inertia if it is generating power.

Generators 5-8 have a constant power set-point, and gener-
ators 1-4 vary their set-points in a planned manner to roughly
mirror the large, expected, changes in system demand, with
the droop control of the system correcting any imbalances.

TABLE I
GENERATOR TIME CONSTANTS, INERTIA AND GENERATION LIMITS

Value
Generator

Jg Jt MaxGen(MW ) Inertia(MWs)

Gen1 10.556 10.89 800 2.0

Gen2 1.556 0.0089 700 0.0

Gen3 20.556 0.0089 700 1.0

Gen4 20.556 5.089 600 1.5

Gen5 20.556 0.0089 400 1.0

Gen6 20.556 5.089 400 0.7

Gen7 20.556 0.0089 400 0.3

Gen8 20.556 5.089 400 1

4) Simulating system frequency oscillations: To use this
model to test the developed algorithm, system frequency
oscillations were introduced through Generator “Gen1”. When
the governor set-point of the generator increased above 400
MW, the generator entered a “rough running” region [21] and
an oscillation is added to the governor output. It is sinusoidal in
nature and has a magnitude proportional to how much greater
than 400 MW the Governor set point currently is. This causes
an oscillation in generator output which grows as the generator
output gets further into the rough running region of operation
and is limited by the saturation function to not exceed the
limits of the generator. This oscillation in generator power
output then drives an oscillation in system frequency.



The outputs of the single frequency model are the system
frequency and the set-points of the generator governors, before
the droop control is applied, both taken as a continuous string
of measurements

The resulting system frequency output of the model is
shown in figure 1 with the plot starting after the model startup
transient has cleared, 1000s into the full simulation.

Fig. 1. Simulated system frequency from SFM.

5) Testing & verification of method: To test the method
proposed in this paper the system frequency output of the
single frequency model is used as the input to the developed
method. The Fourier transform process windows the simulated
system frequency data into 600s windows, and identified
which windows contained oscillations in system frequency and
combines sequential windows. Seven windows were found to
have a FFT magnitude greater than the set limit, which were
separated into two continuous oscillations, the first shown in
figure 2. This provided the initial identification and rough
location of the oscillations within the frequency data.

The detrending process is then carried out with the Zhou
detrending algorithm shown in Section III.A applied to the os-
cillations, followed by the proposed characterisation methods.
Local maxima and minima of the oscillation are found, upper
and lower envelopes interpolated from them and the trend of
the oscillation found by averaging the two envelopes. This
trend is then subtracted from the oscillation and the process
is repeated iteratively.

The first of the identified oscillations, with the first iteration
of maxima, minima, envelopes and trends is shown in Fig. 2,
and the detrended oscillation can be seen in Fig. 3.

With the oscillation detrended, the magnitude and frequency
of the oscillation is characterised using the methods outlined
in Section III.B. From the resulting magnitude and frequency
characteristics, points of interest are found in the manner de-
scribed in Section III.C. These consist of when the oscillation
starts, ends and when the nature of the oscillation changes.

Fig. 2. First Continuous oscillations identified in SFM frequency.

Fig. 3. First Detrended SFM oscillation.

The magnitude characteristics of the oscillation with these
identified points of interest are shown in Fig. 4.

1

2

3

4

5

6

Fig. 4. Magnitude characteristic and identified points of interest

Six points of interest are identified: where the oscillation
begins, four points where the RoCoM of the oscillation
changes suddenly, and where the oscillation ends.



With the points of interest of the oscillations established,
a python script was created to relate these points to changes
in system conditions, as described in Section III.C. The only
considered system condition is the governor set-points, pre
droop, as it is the only controlled system condition.

With this method of characterisation and relation applied to
the frequency output of the SFM, Generator 1 was correctly
identified as the generator driving oscillations. Also identified
was an approximate range of set-point values for which the
Generator 1 drives oscillations, above 476.49 MW. While this
is not exactly the value for which Generator 1 does drive
oscillations, a larger sample size would likely further refine
the estimate.

V. CONCLUSION

This paper presents an approach for identification and char-
acterisation of VLF oscillations, based on an adapted Zhou al-
gorithm. It can be used to aid diagnosis of VLF oscillations, by
identifying instants when the nature of the oscillation changes
and correlating them with changes to component operation.
By applying this process to a large number of oscillations
an indicative profile can be built, providing insights in to the
influence system components have over VLF oscillations.

The effectiveness of this approach was demonstrated using
a Single Frequency Model of a power system, consisting
of a group of eight generators and a load. It was shown
that the generator causing system frequency oscillations and
the responsible operating conditions could be successfully
identified.

One limitation of the presented approach is that it does not
verify the accuracy of the method when estimating frequency,
and the maximum/minimum could be distorted by noise or
oscillation interaction. This will be addressed in further work
by comparing the running estimated VLF oscillation frequency
with expected values. In addition, the model used in Sec-
tion IV-1 was specifically developed for this work. Future work
will apply the method using an open model, such as the IEEE
10-machine 39-bus system, in order to better allow others to
duplicate results.

Evidence to date has indicated VLF oscillations in the Irish
system are not directly linked to simple measure such as time
of year, demand, wind, or inertia, but are instead driven by
unit commitment and dispatch of synchronous generators [6].
At the time of writing, the approach developed in this paper
is being integrated with existing system frequency analysis
tools used within EirGrid, the Irish national transmission grid
operator, in order to aid in diagnostics and ongoing studies of
VLF oscillations [6].
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