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Abstract

In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies
signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host,
while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that
a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity
can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron
starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed
iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B.
breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut
pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the
genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen
protection that is correlated with iron acquisition.
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Introduction

Various beneficial or probiotic effects have been attributed to

strains belonging to the genera Bifidobacterium and Lactobacillus.

Probiotic bacteria have been used to treat, among others,

antibiotic-associated diarrhea, food allergies, atopic eczema,

inflammatory bowel disease and arthritis [1–6]. In addition,

several studies have inferred a role for probiotic bacteria as

antagonists of pathogenic bacteria [7,8]. Proposed mechanisms of

action include competition for the same attachment sites as

pathogenic bacteria, competition for nutrients, production of

growth-inhibitory compounds and stimulation of the immune

system [9–12]. Whether probiotics need to adhere to epithelial

cells of the human gut in order to exert their beneficial effect is still

a matter of debate, but close contact between the two is required at

some stage [13]. Bacterial adhesion to the gut epithelium is a

complex process in which host, bacterial and environmental

factors interact, and it is reasoned that adhesion and associated

probiotic activities are regulated by bacterial cell-to-cell commu-

nication systems.

Quorum sensing is a cell-to-cell communication system which

allows (pathogenic) bacteria to coordinate gene expression and

regulate virulence factor production in a cell density-dependent

manner [14–17]. Many Gram-negative pathogens (e.g. Pseudomonas

aeruginosa) use N-acylhomoserine lactones as signaling molecules

[18–21], whereas some Gram-positive bacteria use species-specific

oligopeptides [22,23]. A third cell-to-cell signal molecule is

autoinducer-2 (AI-2), produced by a variety of Gram-negative

and Gram-positive bacteria. AI-2 is therefore often called an

interspecies signaling molecule. A few well-known pathogens,

including Vibrio spp. and Salmonella, use AI-2 as a cue to sense

population density [24–27]. The key enzyme for AI-2 production

is LuxS, which is an essential part of the activated methyl cycle,

involved in recycling S-adenosylhomocysteine. More specifically,

LuxS catalyzes the cleavage of S-ribosyl-homocysteine to homo-

cysteine and 4,5-dihydroxy-2,3-pentanedione (DPD), which sub-

sequently leads to the production of AI-2 [28]. A wide range of

bacterial species produce AI-2, but evidence for the presence of

signal reception and signal transduction pathways in organisms
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besides Escherichia coli, Vibrio spp. and Salmonella is lacking [29].

While this lack of evidence is sometimes used to question the role

of AI-2 in interspecies signaling [30], an alternative explanation is

that other types of receptors and signal transduction pathways are

yet to be discovered [31].

Although the interspecies signaling molecule AI-2 is commonly

linked to virulence and pathogenicity [24–27], it has recently been

shown that the probiotic strain Lactobacillus acidophilus NCFM

harbors a functional luxS gene and produces AI-2 [32]. Whether

this signaling molecule plays a role in eliciting the beneficial traits

of probiotic bacteria remains to be determined. Indeed, it was

suggested that the ability to produce AI-2 affects attachment of L.

acidophilus to intestinal epithelial cells, as a mutation in luxS was

shown to result in decreased adherence to Caco-2 cells [32].

Additionally, luxS has been attributed a central metabolic role in

Lactobacillus reuteri 100–23 and Lactobacillus rhamnosus GG, and has

been shown to influence adherence, biofilm formation and

exopolysaccharide production in the latter [33–35]. In a recent

study [36] AI-2 production has been demonstrated for three

strains of Bifidobacteria and overexpression of luxS enhanced

biofilm formation by Bifidobacterium longum NCC2705.

In the present study we show that a functional luxS gene is

widespread in the genus Bifidobacterium and that this gene in

Bifidobacterium breve UCC2003 is involved in providing protection of

Caenorhabditis elegans against Salmonella infection, a property which is

linked to iron acquisition. Our data furthermore demonstrate that

a functional luxS gene is required for murine gastrointestinal

colonization by B. breve UCC2003.

Methods and Materials

Bacterial strains, plasmids and culture conditions
The Bifidobacterium strains used for the AI-2 biosensor assay are

listed in Table 1. These were cultured anaerobically at 37uC in

modified Columbia Broth (mCol). Galactose was used to replace

glucose as a carbon source since the latter has been reported to

possibly interfere with the AI-2 biosensor assay [37,38]]. All strains

were grown until they reached the stationary phase. All other

bacterial strains, as well as the plasmids used in this study, are

listed in Table 2. B. breve UCC2003 and derivative mutant strains

were routinely cultured in Reinforced Clostridial Medium (RCM),

supplemented with the appropriate antibiotics (10 mg ml21

tetracycline or 3 mg ml21 chloramphenicol). E. coli strains were

cultured in LB broth at 37uC, while the V. harveyi BB170 biosensor

strain was grown in Marine Broth at 25uC with agitation [38].

Where appropriate growth media contained tetracycline (Tet;

15 mg ml21), chloramphenicol (Cm; 10 mg ml21 for E. coli or 3 mg

ml21 for bifidobacteria), erythromycin (Em; 100 mg ml21 for E.

coli) or kanamycin (Km; 50 mg ml21 for E. coli). Recombinant E.

coli cells containing pORI19 were selected on LB agar containing

Em, and supplemented with X-gal (5-bromo-4-chloro-3-indolyl-b-

D-galactopyranoside) (40 mg ml21) and 1 mM IPTG (isopropyl-b-

D-galactopyranoside).

Detection of AI-2 production by Bifidobacteria
A stationary phase culture of a given Bifidobacterium strain was

centrifuged twice (5,000 g, 5 min, room temperature). Culture

supernatant was neutralized (pH 7.0) with 5 M NaOH to exclude

any possible pH effects, filter sterilized and subsequently diluted to

final concentrations of 20% (v/v) with sterile deionised milliQ

water. AI-2 levels were determined in a V. harveyi BB170 assay as

described previously [38]. Briefly, an overnight culture of the

reporter strain was diluted 1:5000 into fresh sterile, double

concentrated MB medium and 100 ml of this cell suspension was

added to the wells of a black 96-well microtiter plate (Perkin

Elmer). Subsequently, 100 ml of the appropriate sterile supernatant

dilution was added to the wells, the microtiter plates were

incubated at 30uC and bioluminescence was measured after

5 hours using the EnVision Multilabel Reader (Perkin Elmer).

Bioluminescence was expressed as the fraction of bioluminescence

measured in the positive control reaction.

Detection of luxS in bifidobacteria
An initial an extensive search of the NCBI Genome Project

database (http://www.ncbi.nlm.nih.gov/sites/

entrez?db = genome) provided the available sequences of luxS

homologs in bifidobacteria. Subsequently, a nucleotide BLAST

generated a series of additional sequences with high similarity to

the sequences found. A set of degenerate primers (59-CCC GGY

TAC ACA TCG ACT GCT C-39 and 59-GTG GTC GCG RTA

GTT GCC GC-39) was then designed, using the ClustalX software

package as an alignment tool. Extraction of total bifidobacterial

bacterial DNA was performed as described previously [39] while

PCRs were performed with the following conditions: initial

denaturation at 94uC for 3 minutes was followed by 30 cycles of

denaturation at 94uC for 30 s, primer annealing at 56uC for 30 s

and elongation at 72uC for 30 s. The PCR reactions were

terminated with a final elongation of 10 minutes at 72uC. The

obtained products were separated by electrophoresis on 1.5%

agarose gels and stained with GelRed (Biotium)

DNA manipulations
The general procedures used for DNA manipulation were

essentially those described previously [40]. Restriction enzymes

and T4 DNA ligase were obtained from Roche Diagnostics and

used according to the manufacturer’s instructions. PCRs were

performed using Taq PCR master mix (Qiagen GmbH). Synthetic

oligonucleotides were synthesized by MWG Biotech AG and are

listed in Table S1. PCR products were purified by using a High-

Pure PCR product purification kit (Roche). Plasmid DNA was

introduced into E. coli and B. breve by electroporation and large-

scale preparation of chromosomal DNA from Bifidobacterium spp.

was performed as described previously [41]. Plasmid DNA was

obtained from B. breve and E. coli using a QIAprep spin plasmid

miniprep kit (Qiagen GmbH). An initial lysis step was performed

using 30 mg/ml of lysozyme for 30 min at 37uC as part of the

plasmid purification protocol for B. breve.

Construction of B. breve UCC2003 insertion mutants and
complementation strains

Sequence data were obtained from the Artemis-mediated [42]

annotations of the B. breve UCC2003 genome [43]. Internal

fragments of luxS (Bbr_0540, 277-bp), bfeU (Bbr_0221, 440 bp) or

bfeB (Bbr_0223, 457 bp) were amplified by PCR using B. breve

UCC2003 chromosomal DNA as the template and the oligonu-

cleotide primers luxS-277-f-hindIII and luxS-277-r-xbaI,

221IMhd3 and 221IMxba or 223IMhd3 and 223Imxba, respec-

tively (Table S1). The generated PCR products were cloned into

pORI19, an Ori+ RepA2 integration plasmid [44] using the

unique HindIII and XbaI restriction sites that were incorporated

into the forward and reverse primer respectively. Ligations were

introduced into E. coli EC101 by electroporation. The expected

structure of the recombinant plasmids, designated pORI19-luxS,

pORI19-bfeU and pORI19-bfeB, was confirmed by restriction

mapping and sequencing. The tetW gene, amplified by PCR using

pAM5 plasmid DNA as the template [45] and primers tetWf and

tetWr (Table S1), thereby incorporating flanking SalI sites in the

Autoinducer-2 Production by Bifidobacteria

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e98111

http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome
http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome


Table 1. List of Bifidobacterium strains, with additional information on the source of isolation.

Species Strain** Source of isolation AI-2 production PCR*

Mean (%) SEM (%)

B. adolescentis LMG 10502T Adult, intestine 226 12 +

LMG 10733 Adult, intestine 128 5 +

LMG 10734 Adult, intestine 155 9 +

LMG 11579 Bovine, rumen 138 7 +

LMG 18897 Human, faeces 126 5 +

LMG 18898 Human, faeces 135 16 +

B. angulatum LMG 11039T Human, faeces 129 2 -

LMG 11568 Sewage 126 12 -

B. animalis subsp. animalis LMG 10508T Rat, faeces 237 4 +

LMG 18900 Rat, faeces 250 11 +

B. animalis subsp. lactis LMG 25734 Yoghurt (Yogosan) 242 7 +

LMG 25755 Yoghurt (Teddi) 207 4 +

LMG 25756 Food supplement (Hygiaflora) 175 3 +

LMG 25757 Food supplement (Friendly bifidus) 320 16 +

LMG 11580 Chicken, faeces 124 6 +

LMG 18314T Yoghurt 165 3 +

LMG 18906 Rabbit, faeces 171 5 +

LMG 23512 Human, faeces 284 10 +

LMG 24384 Milk 272 23 +

B. bifidum LMG 25758 Pharmaceutical preparation (Infloran Berna) 208 4 +

LM 381 Food supplement (Friendly bifidus) 447 20 +

LM 588 Food supplement (Biodophilus) 216 4 +

LMG 11041T Breast-fed infant, faeces 149 3 +

LMG 11582 Adult, intestine 152 12 +

LMG 11583 Adult, intestine 210 7 +

LMG 13195 Infant, intestine 121 5 +

B. breve LMG 25761 Food supplement (Yakult bifiel) 265 4 +

UCC2003 (LMG 11040) Nursing stool 496 41 +

LMG 11084 Blood 218 4 +

LMG 11613 Infant, intestine 132 18 +

LMG 13194 Infant, intestine 447 37 +

LMG 13208T Infant, intestine 378 14 +

LMG 23729 Infant, faeces 224 4 +

B. catenulatum LMG 11043T Adult, intestine or faeces 205 4 -

LMG 18894 Sewage 173 20 -

B. dentium LMG 10507 Human, faeces 126 7 +

LMG 11045T Dental caries 140 3 +

LMG 11585 Dental caries 141 11 +

B. gallicum LMG 11596T Adult, intestine 137 3 +

B. longum subsp. infantis LMG 25762 Pharmaceutical preparation (Probiotical) 209 4 +

LMG 8811T Infant, intestine 248 7 +

LMG 11570 Infant, intestine 152 10 +

LMG 11588 Infant, faeces 180 5 +

LMG 13204 Infant, intestine 169 5 +

LMG 18901 Infant, faeces 119 5 +

LMG 23728 Infant, faeces 335 13 +

B. longum subsp. longum LMG 25765 Yoghurt (Lactoferrin) 260 9 +

LMG 25766 Food supplement (Lola) 269 9 +

Autoinducer-2 Production by Bifidobacteria

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e98111



Table 1. Cont.

Species Strain** Source of isolation AI-2 production PCR*

Mean (%) SEM (%)

LMG 11047 Human 121 4 +

LMG 11589 Calf, faeces 197 5 +

LMG 13196 Infant, intestine 120 7 +

LMG 13197T Adult, intestine 207 5 +

LMG 18899 Adult, faeces 189 19 +

B. pseudocatenulatum LMG 10505T Infant, faeces 189 6 +

LMG 11593 Sewage 169 17 +

LMG 18903 Human, faeces 134 4 +

LMG 18910 Sewage 161 7 +

B. scardovii LMG 21589T 50-year-old woman, blood 257 5 +

LMG 21590 44-year-old woman, hip 260 6 +

For each strain, the relative levels of AI-2 production (means +/- SEM) in the diluted supernatant are given compared to AI-2 levels produced by the biosensor itself
( = 100%). Data presented are mean +/- SEM from triplicate experiments. In addition, the results for the PCR assay with primers directed against luxS are shown. (* +, PCR
positive result, -, PCR negative result; ** T, type strain of the species).
doi:10.1371/journal.pone.0098111.t001

Table 2. Bacterial strains and plasmids used in this study.

Strain or plasmid Relevant information Reference or source

Strains

V. harveyi BB170 AI-2 biosensor strain (luxN::Tn5) [38]

E. coli

OP50 C. elegans normal food source Caenorhabditis Genetics
Center, University of
Minnesota, USA

EC101 Cloning host [44]

DH5a AI-2 negative control strain

B. breve

UCC2003 Wild Type

UCC2003PK1 UCC2003 harbouring pPKCM [43]

UCC2003-luxS Insertion mutant in luxS (Bbr_0541) This study

UCC2003-luxS [pBC1.2luxS] Complemented strain This study

UCC2003-bfeU Insertion mutant in bfeU (Bbr_0221) This study

UCC2003-bfeB Insertion mutant in bfeB (Bbr_0223) This study

S. enterica subsp. enterica serovar Typhimurium

NCTC 13348 Infecting agent Health Protecting Agency
Culture Collections, UK

Plasmids

pPKCM pCIBA089-ColE1-Cmr [43]

pBC1.2 pBC1-pSC101-Cmr [45]

pORI19 Emr, repA2, ori+, cloning vector [44]

pAM5 pBC1-puC19-Emr [45]

pBC1.2luxS pBC1.2 harboring luxS (for complementation) This study

pORI19-luxS pOR19 harboring internal fragment of luxS This study

pORI19-luxS-tet pORI19 harboring internal fragment of luxS + Tetr This study

pORI19-bfeU pOR19 harboring internal fragment of Bbr_0221 This study

pORI19-bfeU-tet pORI19 harboring internal fragment of Bbr_0221+ Tetr This study

pORI19-bfeB pOR19 harboring internal fragment of Bbr_0223 This study

pORI19-bfeB-tet pORI19 harboring internal fragment of Bbr_0223+ Tetr This study

doi:10.1371/journal.pone.0098111.t002
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amplicon, was cloned into the SalI-cut pORI19-luxS, pORI19-

bfeU and pORI19-bfeB plasmids to generate plasmid pORI19-tet-

luxS, pORI19-tet-bfeU and pORI19-tet-bfeB. The latter plasmids

were introduced into E. coli EC101 harboring pNZ-M.BbrII-

M.BbrIII to facilitate methylation [41], and the resulting

methylated pORI19-tet-luxS, pORI19-tet-bfeU and pORI19-tet-

bfeB were then introduced into B. breve UCC2003 by electropo-

ration and subsequent selection on RCA plates supplemented with

the tetracycline. Site-specific recombination in potential tet-

resistant mutant isolates was confirmed by colony PCR using

primer combinations tetWFw and tetWRv to verify tetW gene

integration, and primers luxS-Fw, Bbr_0221-Fw and Bbr_0223-

Fw (upstream of the luxS, bfeU and bfeB gene fragments selected,

respectively), each in combination with pORI19For to confirm

integration at the expected chromosomal position. For the

construction of the complementation construct pBC1.2luxS, a

DNA fragment encompassing luxS, including its native promoter

region was generated by PCR amplification from chromosomal

DNA of B. breve UCC2003 using Pfu DNA polymerase (Agilent)

and primer combination luxS-compl-f-xbaI and luxS-compl-r-

xbaI (Table S1). The luxS-containing amplicon was digested with

XbaI, and ligated to similarly digested pBC1.2. The ligation was

introduced into E. coli EC101 by electroporation. For all cloning

experiments, the plasmid content of a number of transformants

was screened by restriction analysis and the integrity of positively

identified clones was verified by sequencing.

Transcriptome analysis of B. breve UCC2003 and
UCC2003-luxS during in vitro growth

In order to compare global transcription patterns of the B. breve

UCC2003-luxS insertion mutant with the B. breve UCC2003 WT

strain, cells grown to early exponential phase were collected and

resuspended in DEPC-treated water. Cell disruption, RNA

isolation, RNA quality control, cDNA synthesis and indirect

labeling were performed as described previously [43]. DNA

microarrays containing oligonucleotide primers representing each

of the 1,864 annotated genes in the genome of B. breve UCC2003

were obtained from Agilent Technologies (Palo Alto). Labeled

cDNA was hybridized using the Agilent gene expression hybrid-

ization kit (number 5188–5242) as described in the Agilent two-

color microarray-based gene expression analysis v4.0 manual

(publication number G4140-90050). Following hybridization,

microarrays were washed as described in the manual and scanned

using Agilent’s DNA microarray scanner G2565A. The scans were

converted to data files with Agilent’s Feature Extraction software

(version 9.5). DNA microarray data were processed as previously

described [46,47]. Differential expression tests were performed

with the Cyber-T implementation of a variant of the t test [48]. A

gene was considered differentially expressed between a mutant and

the WT when a transcription ratio of 2 relative to the result for the

WT was obtained, with a corresponding p-value equal to or less

than 0.01. The transcriptional array data from a dye-swap

biological replicate experiment has been deposited in the GEO

database under accession number GSE49880.

Iron chelator assays
The MIC for the iron chelators 2,2-dipyridyl, ciclopirox

olamine and phenanthroline was determined according to the

European Committee on Antimicrobial Susceptibility Testing

(EUCAST) standard broth microdilution protocol, with minor

modifications [49]. Instead of Mueller-Hinton broth, RCM was

used. A two-fold dilution series of 2,2-dipyridyl, ciclopirox olamine

and phenanthroline, ranging from 1000 mM to 2 mM was tested.

To assess whether DPD complementation could restore growth of

the UCC2003-luxS insertion mutant in the presence of the iron

chelators, MICs were also determined in the presence of 50 mM

and 100 mM DPD.

Murine colonization experiments
Experiments with mice were approved by the University

College Cork Animal Experimentation Ethics Committee and

experimental procedures were conducted under license from the

Irish Government (license number B100/3729). Seven-week-old

female, BALB/c mice were housed in individually vented cages

(Animal Care Systems) under a strict 12 h light cycle. Mice (n = 7

per group) were fed a standard polysaccharide-rich mouse chow

diet and water ad libitum. Mice were inoculated by oral gavage (109

cfu of B. breve UCC2003PK1, B. breve UCC 2003-luxS or a mixture

of B. breve UCC2003PK1 and B. breve UCC 2003-luxS in 100 ml of

PBS). Fecal pellets were collected at intervals during 18 days to

enumerate bacteria. Eighteen days after inoculation, mice were

sacrificed and their intestinal tracts quickly dissected. The small

intestine, cecum and large intestine were harvested for determi-

nation of colony forming units (cfu) (serial dilution plating on RCA

agar plates with appropriate antibiotics).

C. elegans colonization experiments
C. elegans N2 (glp-4; sek-1) was propagated under standard

conditions, synchronized by hypochlorite bleaching, and cultured

on nematode growth medium using E. coli OP50 as food source

[50,51].To prepare conditioning plates, WT B. breve UCC2003, B.

breve UCC2003-luxS, B. breve UCC2003-luxS [pBC1.2luxS], B.

breve UCC2003-bfeU or B. breve UCC2003-bfeB were grown

anaerobically RCM at 37uC until reaching stationary phase.

500 ml of the cell suspension was spread on a nematode growth

medium (NGM) plate and dried for 3 h at 37uC [52]. Condition-

ing plates were used directly after preparation by transferring fresh

hypochlorite-treated nematodes to these plates. After conditioning

for 72 h, worms were washed three times with M9 buffer

supplemented with 1 mM sodium azide to prevent expulsion of

the intestinal load and to remove surface-attached bacteria [53].

The number of nematodes was then determined microscopically

and nematodes were lysed in phosphate-buffered saline containing

400 mg 1.0 mm silicon carbide beads (BioSpec Products, Inc.) and

mechanically disrupted using a pestle. Subsequently, the worm

lysates were serially diluted, plated on RCA and incubated

anaerobically at 37uC. After 48 h, CFU were determined and the

number of bacteria per nematode was calculated [54].

In vivo gene expression analysis by qRT-PCR
A synchronized C. elegans nematode population was transferred

to conditioning plates (as described above), and after 72 h

incubation at 25uC, RNA isolation of in vivo grown WT B. breve

UCC2003 was performed as described previously, with slight

modifications [43]. After collection of the nematodes, total RNA

was quickly isolated following the protocol of the TRIzol reagent

(Invitrogen) and purified using the RNeasy minikit (Qiagen)

including an on-column DNase digestion with RNase-free DNase

(Qiagen). Next, qScript cDNA Supermix (Quanta Biosciences) was

used to obtain cDNA. After development of forward and reverse

primers for the reference genes and the genes of interest and after

testing their specificity, real-time PCR (CFX96 Real Time 116 6

System, Bio-Rad) was performed using the iQ SYBR Green

Supermix (Bio-Rad). The expression levels of the genes of interest

were normalized using 5 reference genes, namely, atpD, rpoB, ldh,

pdxS and gluC, by geometric averaging of multiple internal control

genes with the GeNorm software package [55]. Primers were

designed using Primer-Blast and are listed in Table S1. To ensure

Autoinducer-2 Production by Bifidobacteria
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the specific amplification of Bifidobacterium RNA, primers were also

BLASTed to the C. elegans and E. coli OP50 genome.

Infection assays in the C. elegans model
C. elegans survival experiments were performed as described

earlier, with slight modifications [56]. Synchronized nematodes

(L4 stage) were suspended in a medium containing 95% M9

buffer, 5% brain heart infusion broth, and 10 mg/ml cholesterol

(Sigma-Aldrich). Then, 250 ml of this nematode suspension was

transferred to the wells of a 24-well microtiter plate. Stationary

phase cultures of E. coli OP50, B. breve UCC2003, B. breve

UCC2003-luxS, B. breve UCC2003-luxS [pBC1.2luxS], B. breve

UCC2003-bfeU or B. breve UCC2003-bfeB were centrifuged,

resuspended in the assay medium, and standardized to 106 CFU/

ml. Next, 250 ml aliquots of these standardized suspensions were

added to each well. Subsequently, 500 ml of the assay medium was

added to each well to obtain a final volume of 1 ml per well, and

the microtiter plates were incubated at 25uC to allow colonization

of the nematode gut. After 24 h incubation, an overnight culture

of S. Typhimurium NCTC13348 was standardized as described

above, and 250 ml of the suspension was added to the wells to

establish gastro-intestinal infection. Nematodes not being admin-

istered any bifidobacteria were used as a control. Sterile assay

medium was added to non-infected nematodes to correct for

spontaneous mortality, not caused by S. Typhimurium infection.

Finally, the plates were incubated at 25uC and the fraction of dead

nematodes was determined after 24 h and 48 h by counting the

number of dead worms and the total number of worms in each

well, using a dissecting microscope.

Statistical data analysis
Statistical data analysis was carried out using the SPSS Statistics

17.0 software package. To assess if means were statistically

significantly different from one another, a non-parametric Mann-

Whitney U test was performed (significance level 0.05%).

Results

A functional luxS gene is widespread amongst
bifidobacteria

The availability of whole genome sequences of various

Bifidobacterium spp. revealed the presence of the AI-2 synthase-

encoding gene luxS in these strains. To verify if a functional luxS

gene is widespread amongst bifidobacteria, phenotypic and

genotypic experiments were performed. Using Vibrio harveyi

BB170 as a biosensor, we demonstrated that all (n = 59)

Bifidobacterium spp. strains tested produce AI-2 during stationary

phase planktonic growth (Table 1). Using primers based on

conserved regions of the luxS gene we showed that this gene is

present in nearly all (n = 55) species investigated, except Bifido-

bacterium angulatum and Bifidobacterium catenulatum (Table 1). How-

ever, homologs of luxS have been found in all currently available

genome sequences of Bifidobacterium spp. (img.jgi.doe.gov), includ-

ing those of the two species mentioned above. Inspection of the

luxS DNA sequence from the currently available genome

sequences of Bifidobacterium angulatum DSM 20098 (JCM 7096)

and Bifidobacterium catenulatum LMG 11043 suggests that negative

PCR results were due to sequence differences at the PCR primer

locations. A map comparing the genomic context of luxS in

different Bifidobacterium genomes is provided in Figure 1 and shows

that the organization of luxS and its neighboring genes is conserved

in the genus Bifidobacterium. In particular, the presence and relative

genomic position of four genes, encoding a serine O-acetyltrans-

ferase, alanine racemase, DNA primase and triphosphohydrolase,

are highly conserved (Fig. 1).

In B. breve UCC2003, inactivation of luxS by insertional

mutagenesis (creating a strain designated as B. breve UCC2003-

luxS) resulted in a drastic and significant decrease (p#0.05) in AI-2

production (Fig. 2), thus providing further evidence that luxS is

crucial for AI-2 production in wild type (WT) UCC2003. This was

substantiated by providing a functional luxS gene on a plasmid in

trans in the luxS-insertion mutant (strain B. breve UCC2003-luxS

[pBC1.2luxS]), which restored AI-2 production to WT levels

(Fig. 2).

Impact of luxS inactivation on gene expression in B. breve
UCC2003

To investigate the impact of luxS inactivation on gene expression

in B. breve UCC2003, comparative transcriptome analysis between

in vitro grown WT B. breve UCC2003 and B. breve UCC2003-luxS

was carried out. The microarray analysis showed that 1.47% of the

genes (27/1843) were significantly upregulated in B. breve

UCC2003-luxS, while 5.70% (105/1843) were significantly

downregulated (2-fold cut-off, p#0.01) compared to the WT.

Consistent with previous studies on the role of LuxS in lactobacilli

[32–35] the microarray analysis suggest that the role of LuxS in B.

breve is metabolic. Interestingly, the microarray analysis also

showed that the transcription of a cluster of six genes, which

encode a predicted iron-uptake system (see below) and which had

previously been shown to be induced under iron-starvation

conditions [57], is downregulated in B. breve UCC2003-luxS

(Table 3), suggesting that the luxS mutation affects the mutant’s

ability to acquire iron.

LuxS affects iron metabolism in B. breve UCC2003
To explore the possible link between luxS and iron metabolism,

the tolerance of the B. breve strains towards iron chelators that

specifically chelate ferrous iron (2,2-dipyridyl), ferric iron (ciclo-

pirox olamine), or both (phenanthroline) was determined. Minimal

inhibitory concentration (MIC) values were considerably higher

for B. breve UCC2003 and B. breve UCC2003-luxS [pBC1.2luxS]

than that obtained for B. breve UCC2003-luxS (Table 4),

demonstrating that the insertion mutant is more susceptible to

ferrous and ferric ion chelators than WT B. breve UCC2003.

Addition of the AI-2 precursor DPD to the growth medium

partially restored growth of the insertion mutant in the presence of

the chelators, thereby supporting the notion that LuxS is directly

or indirectly involved in iron acquisition (Table 4). In order to

confirm the involvement of the predicted iron-uptake genes in iron

acquisition two additional mutant strains, B. breve UCC2003-bfeU

and B. breve UCC2003-bfeB, were constructed that harbor an

insertion in the predicted iron-uptake genes, bfeU (Bbr_0221) and

bfeB (Bbr_0223), respectively. As expected, both of these mutants

were found to be more susceptible to the three iron chelators as

compared to the parent strain B. breve UCC2003 (Table 4).

The presence of luxS is required for murine
gastrointestinal colonization

To verify whether a functional luxS gene is required for gut

colonization in a competitive environment, the gut colonization

capacity of B. breve UCC2003 and B. breve UCC2003-luxS was

tested in BALB/c mice. In conventional BALB/c mice with a

resident microbiota (i.e. in a competitive environment), WT B.

breve UCC2003 was able to colonize the gastrointestinal tract, as

was shown by plating of fecal samples (16105 CFU/g feces

retrieved 15 days after last administration; Fig. 3). Viable count
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determinations of the contents of the small intestine, large intestine

and cecum of individual mice confirmed these findings (Table 5).

In contrast, the luxS insertion mutant was unable to stably colonize

the murine gastrointestinal tract. To examine whether the

presence of the WT was able to rescue the luxS mutant’s impaired

ability to colonize, co-administration experiments were carried

out. When equal numbers of B. breve UCC2003 and B. breve

UCC2003-luxS were administered simultaneously, only the WT

was able to colonize the gastrointestinal tract, once more

confirming that a functional luxS gene is required for successful

colonization of the gastrointestinal tract in a competitive

environment (Fig 3).

B. breve UCC2003, B. breve UCC2003-luxS or B. breve
UCC2003-luxS [pBC1.2luxS] colonize the C. elegans gut

Having established that UCC2003-luxS could not colonize the

murine gastrointestinal tract we sought another model to examine

the potential role of luxS in providing a host-protecting effect

against pathogen infection. We initially determined the coloniza-

tion capacity of B. breve UCC2003, B. breve UCC2003-luxS or B.

breve UCC2003-luxS [pBC1.2luxS] under monoxenic conditions

in the gut of the nematode Caenorhabditis elegans [58]. When

administered separately, the average number of WT B. breve

UCC2003 able to colonize the C. elegans gut was about 16103

CFU/nematode. The numbers for the insertion mutant B. breve

UCC2003-luxS (1.206103 CFU/nematode) and for the comple-

mented strain B. breve UCC2003-luxS [pBC1.2luxS] (0.826103

CFU/nematode) were not significantly different thereby identify-

ing this model as appropriate for infection studies. However,

simultaneous administration of a mixture of equal numbers of both

WT and B. breve UCC2003-luxS revealed that the WT had a

competitive advantage, as the average number of CFU recovered

were approx. twice as high for the WT (0.816103 CFU/

nematode) as for B. breve UCC2003-luxS (0.436103 CFU/

nematode) (p,0.05, n = 3). In order to investigate the importance

of the iron-regulated genes for B. breve UCC2003 when grown

under gastrointestinal conditions in which iron is limited, qRT-

PCR experiments were performed whereby the transcription levels

of the iron regulated genes was compared between in vitro and in

vivo (i.e. in the C. elegans gut) grown B. breve UCC2003. These

experiments showed that bfeU (encoding a high affinity iron

permease), bfeO (Bbr_0222, encoding a secreted protein with iron-

binding domain) and Bbr_0226 (encoding an ABC-type trans-

porter) exhibit a significantly higher level of transcription when B.

breve UCC2003 was grown under in vivo conditions relative to in

vitro conditions, indicating that in the C. elegans gut iron levels are

limiting (Fig. 4). These findings are in full agreement with

previously obtained in vivo transcriptome data (GEO database

accession no. GSE27491), showing that six of the seven genes of

this iron-regulated cluster also exhibit increased transcription in

the murine gut relative to in vitro conditions [43].

Figure 1. Comparison of the luxS genetic loci of B. breve UCC2003 with corresponding luxS loci from other sequenced
bifidobacteria. Each solid arrow indicates an open reading frame. The lengths of the arrows are proportional to the length of the predicted open
reading frame. The colour coding which is indicative of putative function, is indicated within the arrow. Orthologs are marked with the same colour
while the amino acid identity of each predicted protein is indicated as a percentage relative to its equivalent protein encoded by B. breve UCC2003.
doi:10.1371/journal.pone.0098111.g001

Figure 2. Luminescence signal of the V. harveyi BB170 biosensor strain in the presence of sterile and neutralized supernatant of B.
breve UCC2003, the insertion mutant B. breve UCC2003-luxS and the complemented strain B. breve UCC2003-luxS [pBC1.2luxS]. Data
obtained with E. coli DH5a (a strain not producing AI-2) and a medium-only control are included as reference. Data shown are means 6 SEM. (*,
luminescence is significantly lower than than produced with supernatant of B. breve UCC2003, p,0.05, compared to WT; n = 3).
doi:10.1371/journal.pone.0098111.g002
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B. breve confers protection against Salmonella infection
In order to examine the potential role of luxS in providing a

host-protecting effect against pathogenic bacteria, an in vivo

Salmonella infection experiment in the C. elegans model was

adopted. A positive influence of bifidobacterial administration on

the longevity of Salmonella-infected nematodes has previously been

described [59]. The relative survival of Salmonella-infected C. elegans

worms that were administered B. breve UCC2003, B. breve

UCC2003-luxS or B. breve UCC2003-luxS [pBC1.2luxS] is shown

in Figure 5. Relative survival of infected nematodes that were fed

UCC2003 was significantly higher than survival of the infected

nematodes that had not received B. breve UCC2003 (p#0.05).

Administration of the luxS insertion mutant resulted in a

significantly decreased survival of infected nematodes compared

to those that had received WT B. breve UCC2003, whereas

administration of the complemented strain resulted in a signifi-

cantly increased survival compared to those nematodes that had

not received treatment and to those that had received the luxS

mutant (p#0.05). Similar to UCC2003-luxS, B. breve UCC2003-

bfeU and B. breve UCC2003-bfeB each exhibit a significantly

decreased ability to confer protection to Salmonella-infected

nematodes as compared to the WT B. breve UCC2003, thereby

confirming the importance of iron acquisition in gut pathogen

protection (Fig. 6). Furthermore, as both B. breve UCC2003-bfeU

and B. breve UCC2003-bfeB colonized C. elegans to a similar level as

the WT, this decreased protective effect is not due to decreased

ability to colonize the nematodes. Collectively this data indicates

that luxS (and its gene product) is a prerequisite for B. breve

UCC2003 to confer protection against Salmonella infection, and

that this protection can be correlated with iron acquisition.

Discussion

Members of the genus Bifidobacterium are recognized as being

numerically dominant representatives of the microbiota of healthy

breast-fed infants [60,61]. Colonization of the newborn infant gut

commences during and after birth by microbes from the mother

and the environment. A succession in the gut colonization of

healthy vaginally-delivered infants has been reported, whereby

initial colonization is by facultative anaerobes that include

enterobacteria, staphylococci and streptococci. Once available

oxygen in the gut is consumed the newly created anaerobic

environment supports establishment of strict anaerobes of the

genera Clostridium, Bacteroides and Bifidobacterium [62]. While this

microbiota is recognized as optimal for healthy infants, an in depth

understanding of molecular players involved in gut colonization

and host protection by such bacteria, in particular Bifidobacterium

sp., remains to be elucidated. The intricacies of host-microbe

interactions in early life cannot be underestimated and the precise

mechanisms by which elements of the infant gut microbiota

contribute to health maintainence and promotion in early life are

only beginning to emerge [63,64].

The bacterial interspecies signaling molecule AI-2 is now well

recognized for its role in the regulation of virulence factor

production in pathogenic Gram-negative and Gram-positive

bacteria [65]. These virulence-associated features include biofilm

formation, toxin production, adherence to epithelial cells, motility

as well as the metabolism of heavy metals and carbon [24–26]. In

Table 3. Relative normalized gene expression levels of a cluster of iron regulated genes as expressed in vitro in B. breve UCC2003-
luxS compared to B. breve UCC2003.

Locus tag and gene name Annotation Fold Downregulation

Bbr_0221 (bfeU) Conserved hypothetical membrane spanning protein with iron permease FTR1 family
domain

3.321

Bbr_0222 (bfeO) Conserved hypothetical secreted protein 5.384

Bbr_0223 (bfeB) Conserved hypothetical membrane spanning protein 1.996

Bbr_0224 Permease protein of ABC transporter system 5.389

Bbr_0225 Permease protein of ABC transporter system 1.730

Bbr_0226 ATP-binding protein of ABC transporter system 3.147

doi:10.1371/journal.pone.0098111.t003

Table 4. MIC values of 2,2-dipyridyl, ciclopiroxolamine and phenanthroline for B. breve UCC2003 WT and various mutants, and for
B. breve UCC2003-luxS supplemented with DPD (50 mM and 100 mM).

Component (mM)

2,2-dipyridyl ciclopirox olamine phenanthroline

B. breve UCC2003 1000 125 250

B. breve UCC2003-luxS 250 31.25 62.5

B. breve UCC2003-luxS [pBC1.2luxS] 1000 125 250

B. breve UCC2003-luxS + DPD (50 mM) 500 62.5 125

B. breve UCC2003-luxS + DPD (100 mM) 500 62.5 125

B. breve UCC2003-bfeU 500 15.63 125

B. breve UCC2003-bfeB 500 31.25 125

doi:10.1371/journal.pone.0098111.t004
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addition, the AI-2 synthase LuxS plays an important role in

central metabolism, more specifically in the detoxification and

recycling of S-adenosylhomocysteine [28]. Interestingly, all

Bifidobacterium strains sequenced to date harbor a luxS gene and

our investigations demonstrating that all tested bifidobacterial

strains, representing 11 species of this genus, were capable of

producing AI-2 is consistent with previous finding of [36] who

detected AI-2 production for two Bifidobacterial species. In this

respect it seemed intriguing that a gut commensal, dominant in the

infant microbiota, would produce a molecule that potentially

promotes the production of virulence factors in (opportunistic)

gastrointestinal pathogens.

To further investigate this, B. breve UCC2003 was chosen as a

representative of probiotic bifidobacteria. This strain, in addition

to producing high levels of AI-2 in the biosensor assay, is a

generally accepted model for the genus Bifidobacterium [8,66].

Transcriptome analysis of B. breve UCC2003-luxS versus

UCC2003, grown under in vitro conditions, revealed that the role

of LuxS is primarily metabolic. These findings are supported by

the fact that no AI-2 signal transduction pathways have previously

been described in bifidobacteria and that a protein with high

similarity to the known AI-2 receptor LuxP has not been identified

from the genome of B. breve UCC2003. UCC2003-luxS was shown

to be more sensitive to various iron chelators, and unable to

colonize the murine gastrointestinal tract, while this mutant also

conferred less protection against Salmonella infection in a C. elegans

nematode model. These data demonstrate that LuxS plays a

crucial role for bifidobacteria in their ability to establish themselves

as gut commensals, which also includes their beneficial effect

pertaining to pathogen protection/exclusion. Furthermore, our

results show that LuxS activity is involved in iron acquisition, and

we propose that this property gives B. breve UCC2003 a

competitive advantage in iron-limited environments such as the

gastrointestinal tract. The importance of iron acquisition mediated

nutritional immunity in gut pathogen protection was further

demonstrated by the fact that two additionally constructed

mutants harboring insertions in either of two presumed iron-

uptake genes proved to have a decreased ability to confer

protection against Salmonella infection in the C. elegans model. In

addition and as expected, these mutants were more susceptible to

the iron chelators as compared to the parent strain B. breve

UCC2003. It has previously been shown that LuxS affects genes

Figure 3. Murine colonization trial. CFU g21 feces of B. breve
UCC2003 (dark blue) and B. breve UCC2003-luxS (red) administered
individually, or simultaneously {a mixture of equal numbers of B. breve
UCC2003 (pale blue) and B. breve UCC2003-luxS (pink)}. Administration
started at day 0 and was continued for 3 consecutive days. Data shown
are mean 6 SEM. (n = 7).
doi:10.1371/journal.pone.0098111.g003

Table 5. Murine colonization experiments.

LOG CFU retrieved after

Single strain administration Simultaneous administration

B. breve UCC2003 B. breve UCC2003-luxS B. breve UCC2003 B. breve UCC2003-luxS

Small intestine 6.3960.09 1.7661.15 * 5.9460.43 BDL

Cecum 6.8760.06 2.8460.67 * 6.9660.43 BDL

Large intestine 6.5161.34 0.8561.15 * 6.5260.43 BDL

LOG CFU of B. breve UCC2003 or B. breve UCC2003-luxS, retrieved from the murine small intestine, cecum and large intestine (15 days after the last administration). Data
are shown for single strain administration as well as for the simultaneous administration of equal numbers of both strains. Numbers shown are means 6 SEM. BDL:
below detection limit. (*, significantly lower than WT; p,0.05, n = 7).
doi:10.1371/journal.pone.0098111.t005

Figure 4. Relative normalized expression levels (obtained with
qRT-PCR) of the iron regulated genes in B. breve UCC2003
retrieved from C. elegans gut, compared to in vitro grown B.
breve UCC2003. Data shown are means 6 SEM. (*, p,0.05, compared
to in vitro expression levels; n = 3).
doi:10.1371/journal.pone.0098111.g004
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involved in iron metabolism in Porphyromonas gingivalis [67], Vibrio

vulnificus [68], Mannheimia haemolytica [69] and Actinobacillus pleur-

opneumoniae [70], while it was also demonstrated that iron

availability increases the pathogenic potential of several gastroin-

testinal pathogens including S. Typhimurium, Citrobacter freundii, E.

coli [71] and Listeria monocytogenes [72,73]. Our results are consistent

with the notion that bifidobacteria confer gut pathogen protection

by nutritional immunity. This in turn suggests that LuxS/AI-2 can

be versatile in various bacterial species and conditions. Since the

colonization capacity of a (putative) probiotic bacterium is

considered to be a prerequisite to exert its beneficial effects, the

observation that AI-2-expressing B. breve UCC2003 outcompetes

an isogenic derivative lacking this capacity contributes to the

elucidation of molecular players and mechanisms of colonization

requirements and probiotic effects [74].

Indeed, one application where administration of bifidobacterial

strains may positively influence health is in the prevention of

necrotizing enterocolitis (NEC) in premature infants. The precise

causative agent of NEC is unknown; however, the preterm infant

microbiota has been found to be dominated by pathogenic genera

with Proteobacteria and Enterobacteriaceae dominating rather than

characteristic species belonging to Bacteroidetes, Clostridium and

Bifidobacterium [75–77]. The dominance of potentially pathogenic

bacteria may increase the risk of infection in this vulnerable group.

Neonatal nurseries in Finland, Italy and Japan have been routinely

and successfully using probiotics as prophylaxis against NEC for

over a decade, without ever reporting any adverse effects. Despite

the safe use of practice and numerous randomized clinical trials that

indicate that probiotics can reduce the incidence of NEC by at least

30% [78–80], clinical guidelines by the American Society for

Parenteral and Enteral Nutrition (A.S.P.E.N) express the view that

there is currently insufficient data to recommend the use of

probiotics in infants at risk of NEC [81]. Integral to the resistance to

adopt probiotics as a prophylaxis against NEC in premature infants

is the lack of knowledge on the mechanism of action [82]. While the

data presented here is merely one molecular mechanism and one

probiotic attribute that is conserved among all bifidobacteria, this

research provides a key insight into a mechanism of gut pathogen

protection conferred by bifidobacteria that is of clinical relevance.
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Figure 5. Relative survival of Salmonella-infected C. elegans
nematodes to which B. breve UCC2003 WT and various mutants
were administered (24 h{black bar} and 48 h{white bars} after
Salmonella infection). Data shown are means 6 SEM. Control:
infected nematodes that have not been administered any bifidobac-
teria. (* = significantly increased or decreased survival as compared to
Salmonella-infected C. elegans nematodes to which B. breve UCC2003
WT was administered, p,0.05; n = 3).
doi:10.1371/journal.pone.0098111.g005

Figure 6. Relative survival of Salmonella-infected C. elegans
nematodes to which B. breve UCC2003 WT or mutants
UCC2003-bfeU or UCC2003-bfeB were administered (24 h
{blue bars} and 48 h {white bars} after Salmonella infection).
Data shown are means 6 SEM. Control: infected nematodes that have
not been administered any bifidobacteria. (* = significantly different as
compared to the control, p,0.05; n = 3).
doi:10.1371/journal.pone.0098111.g006
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