
Title First-principles calculation of carrier-phonon scattering in n-type
Si1−xGex alloys

Authors Murphy-Armando, Felipe;Fahy, Stephen B.

Publication date 2008-07

Original Citation MURPHY-ARMANDO, F. & FAHY, S. B. 2008. 'First-principles
calculation of carrier-phonon scattering in n-type Si1−xGex
alloys'. Physical Review B, 78, 035202. doi:10.1103/
PhysRevB.78.035202

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://link.aps.org/doi/10.1103/PhysRevB.78.035202 - 10.1103/
PhysRevB.78.035202

Rights ©2008 The American Physical Society

Download date 2024-05-08 00:26:06

Item downloaded
from

https://hdl.handle.net/10468/2673

https://hdl.handle.net/10468/2673


First-principles calculation of carrier-phonon scattering in n-type Si1−xGex alloys
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First-principles electronic structure methods are used to find the rates of inelastic intravalley and intervalley
n-type carrier scattering in Si1−xGex alloys. Scattering parameters for all relevant � and L intra- and intervalley
scattering are calculated. The short-wavelength acoustic and the optical phonon modes in the alloy are com-
puted using the random mass approximation, with interatomic forces calculated in the virtual crystal approxi-
mation using density functional perturbation theory. Optical phonon and intervalley scattering matrix elements
are calculated from these modes of the disordered alloy. It is found that alloy disorder has only a small effect
on the overall inelastic intervalley scattering rate at room temperature. Intravalley acoustic scattering rates are
calculated within the deformation potential approximation. The acoustic deformation potentials are found
directly and the range of validity of the deformation potential approximation verified in long-wavelength
frozen phonon calculations. Details of the calculation of elastic alloy scattering rates presented in an earlier
paper are also given. Elastic alloy disorder scattering is found to dominate over inelastic scattering, except for
almost pure silicon �x�0� or almost pure germanium �x�1�, where acoustic phonon scattering is predomi-
nant. The n-type carrier mobility, calculated from the total �elastic plus inelastic� scattering rate, using the
Boltzmann transport equation in the relaxation time approximation, is in excellent agreement with experiments
on bulk, unstrained alloys.
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I. INTRODUCTION

SiGe has been studied for many years as an ideal, proto-
typical, binary semiconductor alloy.1 Recently, its use in
complementary metal-oxide semiconductor �CMOS� tech-
nology has increased due to its versatility in heterostructure
devices, where transport properties are of key importance.2

As alloying, strain engineering and quantum confinement
change the electronic states and their coupling to the chemi-
cal or vibrational fluctuations in the active region of a device,
different physical mechanisms of the carrier scattering �e.g.,
alloy disorder, interface roughness, intervalley or intravalley
phonon scattering� may increase or decrease in importance.
While carrier mobility measurements in bulk systems pro-
vide much information about scattering mechanisms, they do
not always uniquely determine the separate contributions.1

Thus, it is of considerable practical and physical interest to
be able to theoretically predict the charge transport properties
of semiconductor devices from a knowledge of their atomic
structure only. Ideally, we would like to be able to do so with
a level of quantitative confidence comparable to that with
which we can now calculate structural and vibrational prop-
erties of atomic-scale structures.

Our aim in this paper is to present general, first-principles
electronic structure theory methods, by which carrier mobil-
ity can be calculated from a knowledge of atomic-scale
structure only, without phenomenological input. We will re-
strict our applications here to those required to give a com-
plete, first-principles calculation of carrier scattering in bulk
SiGe alloys, but we expect that some of the techniques and
scattering parameters for the SiGe system will be applicable,
with some modification, in other contexts. In particular, the
scattering parameters and deformation potentials may be of
interest in the study of transport in devices.

Theoretical work on elastic carrier scattering due to dis-
order in binary alloys has advanced greatly since the early

work of Nordheim.3 A notable example of these methods is
the coherent potential approximation, or CPA, in which the
scattering rates are calculated in terms of the scattering by
individual alloy constituents.4,5 By and large, these develop-
ments have treated the interaction of individual atoms with
the carrier states on a phenomenological basis.

The earliest theoretical study of the electronic transport
properties of pure silicon or germanium concentrated on in-
elastic scattering by acoustic phonons, using measured or
phenomenological values of the acoustic deformation
potentials.6 Ab initio calculations of physical properties, such
as the acoustic7,8 and intervalley9 deformation potentials, re-
quired to find the carrier scattering, have been previously
performed for Si and Ge, albeit using a model solid approach
or with the Harris functional. The first work10 to calculate
transport properties from ab initio electronic structure theory
obtained the elastic alloy scattering in SiGe, and included
inelastic phonon scattering phenomenologically. Subse-
quently, this approach was also applied to find the hole mo-
bility in SiGe11 and carrier mobilities in GeSn.12 More
recently,13 a full ab initio method has been applied to obtain
electron-phonon relaxation times in GaAs and GaP. Earlier
calculations performed with empirical methods1,14–16 had to
rely on often inaccurate experimental data, and were unable
to determine the relative strength of the different scattering
mechanisms.

Before the work of Ref. 10, alloy intervalley scattering
had either been deemed negligible,1 or could not be distin-
guished from intravalley scattering.14,16–19 The relative
strength of intra- and intervalley scattering is of particular
importance in understanding mobility in strained SiGe alloys
because strain lifts the degeneracy of the valleys and re-
moves certain scattering channels �in particular, intervalley
f-type scattering in Si-rich alloys and L-L scattering in Ge-
rich alloys�, which are available in the cubic system.
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In this paper we calculate from first principles the n-type
carrier scattering by phonons in an ideal, perfectly random
SiGe alloy. To give a complete treatment of the carrier scat-
tering in this system, we also present full details of the first-
principles calculation of elastic alloy scattering, first given
briefly in Ref. 10. Together, these provide a complete first-
principles description of n-type carrier scattering in this al-
loy, which is in excellent agreement with available experi-
mental data. The methods outlined here are not specialized
for SiGe, but can readily be used to calculate carrier mobility
for a range of conventional strained or unstrained semicon-
ductor alloys.

An important contribution of this paper is the set of cal-
culated parameters governing transport, which may be used
in further phenomenological calculations. Readers interested
in using these parameters should concentrate on Secs.
VII A 2 and VII A 3, in which the value of the calculated
intra- and intervalley electron-phonon coupling parameters,
respectively, are presented. The remaining sections describe
the method for calculating the parameters from first-
principles electronic structure theory.

In Sec. II, we review the relevant aspects of the conduc-
tion bands of SiGe alloys and their calculation, using density
functional theory �DFT� and the more accurate GW quasi-
particle theory.20 We then derive in Sec. III a general
expression10 for elastic alloy scattering in a weakly-
scattering binary alloy, which is suitable for use in the con-
text of first-principles supercell electronic structure methods.
While it is well known that the DFT band structure does not
necessarily reproduce the correct quasiparticle band structure
that is relevant for carrier dynamics, nevertheless the largest
error typically occurs in the band gap, rather than in the
conduction or valence band dispersions. For Si and Ge, the
DFT conduction-band dispersions and pressure dependence
of the band gap are generally in good agreement with
experiment.21,22 Indeed, this is the basis for using the DFT
approach to calculate the carrier scattering and an important
outcome from this work is the demonstration that the results
obtained for mobility in SiGe alloys are in good agreement
with experiment.

Inelastic scattering of carriers by phonons is discussed in
Sec. IV. We divide the inelastic phonon-scattering problem
into two different regimes: �a� scattering by optical and
short-wavelength acoustic phonons, where the phonon wave-
length is comparable to the interatomic distance and alloy
disorder is expected to strongly affect the phonon
spectrum,23 and �b� scattering by acoustic phonons, where
the phonon wavelength is long compared to the variation in
the random alloy potential. We find that interatomic forces
and the coupling of atomic displacements to the electronic
states can be well treated in either regime within the virtual
crystal approximation �VCA�.

The first regime requires the simulation of a sufficiently
large region of random alloy �several hundred atoms� to ac-
curately represent the various bonding arrangements between
Si and Ge atoms, which affect the high-frequency phonon
spectrum. We find that the random mass approximation rep-
resents the phonon spectra and the electron-phonon coupling
well in this high-frequency regime. These phonons govern
the inelastic intervalley carrier scattering, as well as optical
intravalley scattering.

In the second regime, the long-wavelength phonons are
well represented in the average mass approximation, where
all atomic masses are replaced by the average atomic mass,
and the electron-phonon interaction is treated within the de-
formation potential approximation. These phonons have
short wave vectors and low frequencies and give rise to
quasielastic intravalley scattering. We use a frozen phonon
supercell approach to calculate the deformation potentials for
long-wavelength acoustic phonons, which allows us to ob-
tain their wave vector dependence and demonstrate that the
deformation potential approximation is accurate in treating
intravalley acoustic scattering.

In Sec. V we give an expression for the total carrier mo-
bility, calculated using the Boltzmann transport equation in
the relaxation time approximation.

In Secs. VI and VII of the paper, we apply these methods
to random SiGe alloys and calculate the parameters deter-
mining the inelastic intravalley � and L scattering, f- and
g-type � intervalley scattering, and L intra- and intervalley
scattering. We present the acoustic, optical and intervalley
deformation potentials, and compare them, where available,
to previous theoretical and experimental results. Elastic alloy
scattering parameters have been given in Ref. 10. We then
calculate the n-type carrier scattering rate and find the carrier
mobility.

Elastic alloy disorder scattering dominates over phonon
scattering, except for almost pure silicon �x�0� or almost
pure germanium �x�1�. On the other hand, we find that
considering alloy disorder explicitly in the calculation of the
intervalley and optical phonon scattering makes very little
difference, compared to an average mass treatment, in which
alloy disorder is completely ignored.

II. CONDUCTION BAND MINIMA IN SiGe

Depending on alloy composition, the conduction band
minimum in Si1−xGex is either at the L-point or the �-point,
k= 2�

a0
�� ,0 ,0�, with �=0.83; if the alloy contains less than

85% Ge, the conduction band minimum is at the � valley,
otherwise it is at the L valley. Near Ge content x�0.85,
scattering between the nearly degenerate � and L valleys
becomes important. The � band has six equivalent valleys in

the �001�, �001̄�, �010�, �01̄0�, �100�, and �1̄00� crystallo-
graphic directions, while the L band has four equivalent val-

leys along the �111�, �1̄11�, �11̄1�, and �111̄� directions �see
Fig. 1�. Two distinct parameters characterize � intervalley

scattering: �001�→ �001̄� is g-type and �001�→ �100� is
f-type. The intervalley scattering between the L valleys re-
quires only one parameter, which we shall label LL. The
conduction bands in the � and L valleys display a quadratic
dispersion in k-vector near the band minimum at k�:

E�k� = E�k�� +
�2�k�

2

2ml
� +

�2�k�
2

2mt
� , �1�

where �k� and �k� are the components of k-k� parallel and
perpendicular, respectively, to k�. The surfaces of constant
energy are ellipsoids of revolution, with the axis of revolu-
tion parallel to the direction of the valley, k�, as shown in
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Fig. 1. We can consider the carriers in valley � as free elec-
trons with different effective masses, ml

� or mt
�, depending

on the direction of motion: the longitudinal mass ml for
transport along the longitudinal axis direction, k�, and the
transverse mass mt for transport along the transverse axes
perpendicular to k�.

Calculated and experimental values of the effective
masses are shown in Table I �details of the calculations are
given below�. Also shown are the calculated values of the
lattice constants and energy differences between important
symmetry points. The agreement generally between calcu-
lated and measured values is excellent, except for the values
of the band gap Eg.

Throughout this work we have used the VCA for the cal-
culation of various properties of the average alloy. In this
approximation, the ionic potential of an alloy atom at Ge
composition x is built from the average of the ionic poten-
tials of the alloy constituents, as

Vx
VCA = xVGe + �1 − x�VSi. �2�

The VCA proves very useful whenever the properties calcu-
lated do not depend strongly on alloy disorder.

III. ELASTIC ALLOY SCATTERING

In this section we derive an expression for the alloy scat-
tering rate from Fermi’s second golden rule and the T-matrix

formalism.25 If we consider two ideal crystal states, �k and
�k� of equal energy, the scattering rate between them will be
proportional to the T-matrix element squared, �	�k��T��k
�2
= �	�k���V��k
�2, where �V is the perturbing potential due to
the deviations of the actual alloy potential from the average,
perfectly periodic potential, and �k is the eigenstate of the
Hamiltonian with �V present. Thus, the elastic scattering
rate at valley � for the alloy becomes

R„E�k��… =
2�

�
	�



� d3k
�

�2��3 �	�k

�
�T��k�


�2

��„E�k�� − E�k
��… , �3�

where 	 is the volume of the system, and 
 labels the valley
into which scattering occurs. We now wish to find the depen-
dence of Eq. �3� on the alloy composition. SiGe can be seen
as a random substitutional alloy with two building blocks:
one corresponding to Ge sites, with probability x, and one to
Si sites, with probability �1−x�. We will make three assump-
tions about the alloy, which we shall test later: �i� that Si and
Ge are relatively weak scatterers in the alloy, thus allowing
us to consider that each site scatters the carriers indepen-
dently; �ii� that the alloy is completely random, and there is
no correlation between the atomic species on different sites;

and �iii� that the average of the scattering matrix T̄�k ,k��
=0. The last assumption is equivalent to the CPA,4,5 where
the average crystal does not scatter.

kx

ky

kz

g

f

k(-1,1,1)

LL

k(1,1,-1)
k(1,-1,1)

k(1,1,1)

FIG. 1. �Color online� The surfaces of constant energy in the �
valleys �upper panel� and L valleys �lower panel� for SiGe alloys.
The intervalley f-type and intervalley g-type scattering matrix ele-
ments are indicated by lines between the � valleys, and the inter-
valley LL scattering matrix elements by a line between two of the L
valleys.

TABLE I. Calculated and experimental properties of Si and Ge
used in this work. me is the free mass of the electron. All calculated
properties were computed from DFT bands, using the LDA, except
for �E�L, where we used the GW quasiparticle method. The calcu-
lated value of �E�L is given as a function of alloy composition x
and has been calculated within the VCA. Experimental values are
from Ref. 24, except where noted.

Quantity Units Calculated Exp.

ml
��Si� me 0.95 �0.980.04�

mt
��Si� me 0.19 �0.190.01�

ml
L�Si� me 1.89

mt
L�Si� me 0.13

ml
���Ge� me 0.91

mt
���Ge� me 0.19

ml
L�Ge� me 1.68 �1.640.03�

mt
L�Ge� me 0.0816 �0.08190.0003�

a0�Si� Bohr 10.1723 10.26

a0�Ge� Bohr 10.5503 10.69

Eg�Si� eV 0.46 1.17a

Eg�Ge� eV 0.23 0.744a

�15c→X1c�Si� eV −1.98 −2.1 a

�15c→L1c�Si� eV −1.06 −1.3,−1 a

�7c→X5c�Ge� eV 0.37 0.41a

�7c→L1c�Ge� eV −0.048 −0.146 a

�E�L eV 0.16�x−0.87��x+7.32�
aReference 20 and references therein.
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The scattering amplitude for each site i is given by

Ti�k,k�� = 	�k�Ti��k�
 = 	�k�Vi��k�
 , �4�

where Vi is the change in potential due to an impurity at site
i. The total scattering amplitude is thus,

T�k,k�� = 	�k�T��k�
 = �
i=1

N

Ti�k,k�� , �5�

with N as the total number of sites. Let Ti�k ,k��= T̄�k ,k��
+�Ti�k ,k��, where T̄�k ,k�� is the average of Ti�k ,k�� over
the entire system, and �Ti�k ,k�� is the variation from the
average. The average of the square of the scattering ampli-
tude over the ensemble of configurations of the random alloy
is then given by

	�T�k,k���2
 = �
i=1

N

�
j=1

N

	�Ti
��k,k���Tj�k,k��
 , �6�

in which we have used the assumption that the average T̄
=0. The quantity 	�Ti�k ,k���Tj�k ,k��
 is the covariance be-
tween Ti and Tj, which vanishes unless j= i, since we have
assumed that the contribution from different sites are statis-
tically independent. As a result, the average of the square of
the total scattering amplitude is

	�T�k,k���2
 = �
i=1

N

	��Ti�k,k���2
 = N	��Ti�k,k���2
 , �7�

with 	��Ti�k ,k���2
 as the variance of Ti�k ,k��, which is the
same for all sites.

In SiGe, the sites are either occupied by Si or Ge, so that
Ti is equal to TA= 	�k�VA��k�
, with A=Si or Ge. The vari-
ance of this binary substitutional alloy can then be expressed
in terms of the scattering produced by the substitution of an
atom of one type for another:

	��Ti�k,k���2
 = x�1 − x��TSi − TGe�2. �8�

Each site i in a SiGe alloy occupies a volume equal to
a0

3

8 , that
is, half of the volume of an fcc primitive cell, with a0 as the

lattice constant. The volume of the system is then 	=N
a0

3

8 ,
and the scattering rate becomes

R„E�k�…� =
2�

�
x�1 − x�

a0
3

8 �


� d3k
�

�2��3 �	V�

�2

��„E�k�� − E�k
��… , �9�

where we have defined

	V�

 = N�TSi
�
 − TGe

�
� = N	���VSi��

 − N	���VGe��

 .

�10�

In the last equation we have removed the reference to the
wave-vector k, since the matrix elements do not depend
strongly on them when k is in valley � and k� is in valley 
.
The reason for this is that the potential is short-ranged in
comparison to the wavelength of the carriers. The potential
VA is that of a perturbation caused by the substitution of an

atom of the periodic host by a type-A atom, and � is the
exact eigenstate in the presence of the perturbing potential
that satisfies the boundary condition �k�r�→�k�r�, for �r� far
away from the type-A atom. We can replace the integral over
k
� in Eq. �9� by one over the energy E
�k��, yielding

R�E� =
2�

�
x�1 − x�

a0
3

8 �



�	V�

�2�
�E� , �11�

where �
�E� is the density of states �DOS� per spin per unit
volume in the final valley 
 at the carrier energy E. Both
intravalley �
=�� and intervalley �
��� terms are included
in the total scattering rate.

The periodic host is represented in the VCA. We calculate
the potential VA by placing one A-type atom as a substitu-
tional defect in a supercell of N−1 VCA host atoms. DFT is
used to compute the single-particle electronic states ��
 and
to relax the atomic structure around the defect atom in the
supercell. The CPA correction to the VCA band dispersion is
calculated, and found to be small.26

Note that the use of the wave function � is important in
correctly calculating the scattering matrix element. The sim-
pler form of first Born approximation, where � is replaced
by the undistorted Bloch wave function �, will not apply
because the Si and Ge potentials are substantially different
from the average host atomic potential near the ion and, as a
result, the electronic wave function � is quite different from
� there. Moreover, the relaxation of the shells of atoms
around the Si or Ge atom also distorts the wave function �,
compared with the Bloch state.

We use the ellipsoidal approximation in Eq. �1� to obtain
the density of states per spin in valley 
 at the carrier energy
E:

�
�E� =
ml


mt

E − Ec




2�2�3
��E − Ec


� , �12�

where ��a� is a unit step function �0 if a�0, 1 otherwise�,
Ec


 is the conduction band minimum energy, and ml

 and mt




are the longitudinal and transverse effective masses, respec-
tively, for valley 
.

Two technical complications arise in finding the appropri-
ate matrix element 	����V��

 from a finite supercell: �a�
The degenerate or nearly degenerate band states in the host
supercell are mixed as a result of breaking the translational
symmetry of the host by the A-type defect. Therefore, no
eigenstate of the Hamiltonian satisfies the boundary condi-
tion �
�r�=�
�r� in the limit of �r� far away from the A-type
atom. This problem is solved by defining a state as the linear
combination of the nearly degenerate energy eigenstates ��i

which has the largest overlap with the state ��

, as ex-
plained in Ref. 10. �b� In a supercell, the zero of the potential
is arbitrary and a physically well-defined way must be devel-
oped to compare the potential in the supercell with N host
atoms and that with one type-A atom and N−1 host atoms.

A. Mixing of nearly degenerate states

The method for including the mixing of nearly degenerate
states has been treated in Ref. 10. Here we present how to
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obtain the scattering parameters directly from the band-
structure calculations. It should be remarked that the choice
of M in Eqs. �3� and �5� of Ref. 10 depends on the particular
system under consideration, and is affected by the size of the
supercell and by which bands fold into the � point in the
Brillouin zone of the supercell. In our case, for instance,
there is a range in composition where the �, L and � valleys
cross, and are almost degenerate in energy, but well sepa-
rated from other bands. Therefore, in the 64-atom supercell
case, we consider M =17 to include the 6 X eigenstates, the
6 �-points, k= 2�

a0
�� ,0 ,0�, etc., with �= 1

2 , the 4 L states,
and 1 � state. The 128-atom supercell will require an M
=49, since there are other bands folding into the � point with
energies close to the conduction band minimum.

However, we should note that too big an M would recover
the first Born approximation ��

= ��

. As we commented
above, the correct state �
 is distorted near the defect atom.
This is not substantially altered by mixing the M low-lying
conduction band states since each of these states will exhibit
a similar distortion near the defect atom. However, if M is
large enough to include all bands, then ��

 in Eq. �3� of Ref.
10 becomes equal to ��

.

Depending on the symmetry of the valley, the eigenvalues
of the matrix in Eq. �4� of Ref. 10 will split in different ways.
From these splittings we can obtain the inter- and intravalley
scattering parameters for the � and L valleys. If we diago-
nalize the part of the matrix belonging to the � valley, the six
originally degenerate eigenvalues split into threefold, two-
fold, and nondegenerate eigenvalues. From these, the scatter-
ing parameters can be obtained as follows:

V� =
1

6
�E1 + 2E2 + 3E3� , �13�

V�g =
1

6
�E1 + 2E2 − 3E3� , �14�

V�f =
1

6
�E1 − E2� , �15�

where Ei is the i-fold degenerate eigenvalue. Likewise, the
four degenerate eigenvalues from the L valley split into a
threefold and a nondegenerate eigenvalue. The scattering pa-
rameters are obtained from

VL =
1

4
�E1 + 3E3� , �16�

VLL =
1

4
�E1 − E3� . �17�

The parameters for the �−L scattering are obtained from the
matrix elements between these two valleys, that is, from the
elements in Eq. �4� of Ref. 10 in which � belongs to the �
valley and 
 to the L valley, in the following way:

V�L = 1

24 �
���,
�L

�	���dVred��

�2. �18�

B. Potential zero shift

The expression for the scattering matrix Ti in Eq. �4�
assumes that the perturbing potential Vi, due to the substitu-
tion of atom A at site i, tends to zero at large distance from
site i. In a supercell calculation, the zero of potential energy
is not physically well defined. In practice, the average of the
local potential Vloc�r� over the supercell is usually set to
zero. However, in order to calculate properly the scattering
T-matrix from Eq. �4�, we must shift the zero of the local
potential in the lattice containing a type-A atom, so that far
from this atom it matches the corresponding potential in the
periodic VCA host lattice.

To do this, we define the difference potential, �Vloc
A �ri�

=Vloc
A �ri�−Vloc

VCA�ri�, on the fast-Fourier-transform grid points
ri in an N-atom supercell. Here, Vloc

A �r� is the local potential
in the supercell containing one type-A atom �at the origin�
and N−1 VCA atoms, and Vloc

VCA�r� is the potential in a su-
percell of the same dimensions, containing N VCA atoms in
a perfect diamond lattice. We then define the average poten-
tial difference at distances greater than ra as

	�Vloc�ra�
 =
1

Ngrid�ra� �
i,�ri��ra

�Vloc
A �ri� , �19�

where Ngrid�ra� is the number of grid points for which �ri�
�ra �Note that the distance �ri�, defined here, is the distance
to the nearest image of atom A in the periodically repeated
system defined by the supercell; alternatively, we assume
that grid points ri lie within the Wigner-Seitz cell for the
supercell.�. For supercells with 16 atoms or more, we find
that 	�Vloc�ra�
 converges to a fairly constant value for large
ra, less than the Wigner-Seitz radius. This value is the re-
quired shift of the potential, to be subtracted from electronic
eigenvalues for the system with one type-A atom, before the
calculation of the reduced Hamiltonian in Eq. �5� of Ref. 10.
Note that nonlocal parts of the atomic pseudopotentials are
short-ranged and do not contribute to the average potential
shift at large distance from atom A. Note also that the inter-
valley ���
� scattering parameters obtained in Eq. �4� of
Ref. 10 from the reduced Hamiltonian, do not depend on the
shift of the average potential in the supercell.

Figure 2 shows 	�Vloc�ra�
 as a function of ra for a Si

-30
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<

∆V
lo
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r a

) >
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eV

]

FIG. 2. �Color online� Averages of the potential difference �Eq.
�19�� for distances greater than ra from a Si atom �squares� or a Ge
atom �diamonds� in a VCA �x=0.5� 64-atom supercell.
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atom or a Ge atom in a 64-atom supercell, where the VCA
host has composition, x=0.5. By construction, 	�Vloc�ra�

=0 at ra=0. All atomic positions have been relaxed in the
supercell containing the Si �or Ge� atom to minimize the
total energy of the system and the oscillations in 	�Vloc�ra�

for ra�2 Å are largely associated with the resulting relax-
ation of atoms from their ideal diamond lattice positions.

IV. INELASTIC SCATTERING BY PHONONS

A. Alloy phonon modes

In this section, we outline the methods used to calculate
the phonon modes of the random alloy. We use density func-
tional theory to calculate the forces in the alloy. The inter-
atomic force constants in silicon and germanium are very
similar and the differences in vibrational spectra arise prin-
cipally from the difference in the atomic masses of silicon
�mSi� and germanium �mGe�. �We will directly test this ap-
proximation for SiGe in Sec. VII A 2, below.� Following the
approach of de Gironcoli and Baroni,23 we will approximate
the interatomic forces in the random alloy within the virtual
crystal approximation. Using the random mass approxima-
tion, we then find the dynamical matrix of the alloy for an
explicit random distribution of atomic masses.

We represent the short-wavelength and optical phonon
spectrum and electron-phonon coupling in the alloy with that
of a large supercell, containing Ns primitive diamond �fcc,
two-atom� unit cells, with periodic boundary conditions. The
supercell is a parallelepiped region, �r=�1A1+�2A2

+ ��3A3�0��i�1�, with sides defined by the vectors A1, A2,
and A3. Germanium and silicon atoms are randomly distrib-
uted, each diamond lattice site being occupied by germa-
nium, with probability x, or silicon, with probability 1−x. In
the fcc Brillouin zone, there are Ns wave vectors q that sat-
isfy periodic boundary conditions on the supercell; i.e.,
exp�iq ·A j�=1, for j=1,3.

Thus, we calculate the interatomic force constants for the
VCA periodic diamond structure, in which every atom has
the ionic pseudopotential Vx

VCA, defined in Sec. II. For each
wave vector q, which satisfies periodic boundary conditions
on the supercell, we calculate the 6�6 force constant matrix

C̃�,�,��,���q� for the VCA diamond structure, where � and ��
index the atom within the fcc unit cell ��=1,2� and � and ��
label the Cartesian direction of motion ��=1,3�. This is cal-
culated using the density functional perturbation theory
method, as specified in Gonze and Lee.27

For an ordered diamond lattice, in which every atom has
mass m, the eigenvalues of the dynamical matrix, D�q�
= C̃�q� /m, are the square of the phonon frequencies ��,q, �
=1,6, for momentum q. The eigenvectors u�,��� ,q� of D�q�
give the displacement u��� ,q�exp�iq ·R� /m of atom �
within the fcc unit cell at position R for the � branch phonon
mode of momentum q. In an infinite, ordered diamond lat-
tice, the interatomic force constants between atom � in the
unit cell at Ra and atom �� in the unit cell at Rb are given by

�2E

�r�,�
a � r��,��

b = C�,�,��,���Rb − Ra�

=
Vcell

�2��3�
BZ

C̃�,�,��,���q�

�exp�− iq · �Rb − Ra��d3q , �20�

where E is the total energy of the lattice, r�
a is the displace-

ment from equilibrium of atom � in the unit cell at Ra, Vcell
is the volume of the diamond primitive unit cell, and the
integral, �BZd3q, is over all wave vectors in the fcc Brillouin
zone.

To find the vibration modes of the supercell, allowing for
the explicit random distribution of silicon and germanium
atoms, let us label the 2Ns atoms in the supercell with the
index �. For each atom, let R� be the position of the dia-
mond unit cell in which it is located and �� be its index
within that cell. Thus, � can be considered as a composite
index ��� ,R�� and summations over � can be considered as a
sum over the Ns values of R in the supercell and over �
=1,2. The mass of atom � is m�, which is the mass of either
a silicon atom or a germanium atom. In the supercell with
periodic boundary conditions, the interatomic force matrix is
given by

C�,�,��,��
SC =

1

Ns
�
q

C̃��,�,���,���q�exp�− iq · �R� − R���� ,

�21�

where the summation �q is over the Ns wave vectors q that
satisfy periodic boundary conditions on the supercell. The
dynamical matrix for the supercell with periodic boundary
conditions is then

D�,�,��,��
SC =

1

m�m��

C�,�,��,��
SC . �22�

Diagonalization of DSC yields eigenvalues �l
2 and normal-

ized eigenvectors ul,�,�, for l=1,6Ns. The vibrational fre-
quencies of the supercell are �l and the displacement of atom
� in mode l is ul,� /m�.

For the very long-wavelength acoustic modes, the explicit
distribution of silicon and germanium atoms has relatively
little effect on the modes. In this limit, we can, not only treat
the forces between atoms within the VCA, but also make the
“average mass” approximation, viz. that each atom has a
mass, m̄=xmGe+ �1−x�mSi, equal to the average atomic mass
in the alloy. Thus, the long-wavelength acoustic modes can
be well represented by the corresponding modes of a perfect
diamond lattice �without disorder� and intravalley electron
scattering by acoustic phonons is well described within this
picture of the alloy.

Due to the restriction of periodic boundary conditions on
the supercell, the low-frequency, long-wavelength modes rel-
evant for acoustic intravalley scattering are not well repre-
sented, even in supercells of several hundred atoms, which
are quite adequate to represent the high-frequency phonon
modes. For this reason, we calculate the acoustic intravalley
scattering using the analytical approach of Herring and
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Vogt,6 which is based on the deformation potential model of
coupling between electrons and long-wavelength acoustic
modes. We calculate the deformation potential parameters
from first principles, using a “frozen phonon” method �see
Sec. IV C, below�. In addition, this method allows us to di-
rectly verify the applicability of the deformation potential
model for the phonon wave vectors relevant in intravalley
carrier scattering.

B. Intervalley and optical phonon scattering

We now consider the scattering of carriers due to their
coupling to the phonons of the alloy. The scattering rate due
to absorption and emission of a phonon of energy ��l is
given by

Ri→f =
2�

�
�

k,n,l,
�	f �Vel-ph�i
�2��Ef − Ei� , �23�

where  indicates sum over emission and absorption pro-
cesses, 	f �V�i
 is the matrix element of the electron-phonon
interaction between initial and final states, �i
= �nk
 � �nl
 and
�f
= �mk�
 � �nl1
, respectively. Here, �nk
 is the Bloch
electronic state of momentum k in band n for the VCA po-
tential and �nl
 is the vibrational state of the alloy with nl
phonons in mode l. The energy of the initial state is

Ei = �nk + �
l�

nl���l� �24�

and that of the final state is

Ef = �mk� + �
l�

nl���l�  ��l. �25�

At temperature T, the average value of nl is given by the
Bose-Einstein distribution,

nl = n���l� = �e��l/kBT − 1�−1, �26�

where kB is the Boltzmann constant. The electron-phonon
interaction in the system of Ns diamond unit cells is28

Vel-ph = �
l=1

6Ns

�
�=1

2Ns  �

2m��l
�alul,� + al

†ul,�
� � ·

�Ve

�r�

, �27�

where al and al
† are the phonon destruction and creation op-

erators, respectively, for mode l and
�Ve

�r�
is the derivative of

the electronic potential with respect to the displacement of
ion �.

Electronic disorder is weak in SiGe and we calculate
�Ve

�r�

using the VCA for the ionic potential. Writing the composite
index � in the form �� ,R�, as defined in Sec. IV A, and
bearing in mind that the electronic Bloch state �nk�r�, which
is normalized in the supercell region of Ns diamond unit
cells, satisfies the equation

�nk�r + R� = eik·R�nk�r� , �28�

the electronic matrix element can be written as

	mk��
�Ve

�r�

�nk
 = e−i�k�−k�·R	mk��
�Ve

�r�,0
�nk
 = e−i�k·R 1

Ns
Hk�knm

� ,

�29�

where �k�k�−k is the change in momentum of the elec-
tron state in the scattering process. Here, Hk�knm

� is a Carte-
sian vector, whose � component Hk�knm

�� is the matrix ele-
ment of the change in the potential due to the displacement
of atom � in direction � in the diamond unit cell at the origin,
R=0. This matrix element is the first-order Hamiltonian in
Eq. �61� of Ref. 29, and can be obtained directly from den-
sity functional perturbation theory, using the VCA ionic po-
tential.

The phonon absorption term �containing al� in the
electron-phonon interaction can then be formulated as

 �

2�l
	mk���

�=1

2Ns ul,�

m�

·
�V

�r�

�nk


=
1

Ns

 �

2m̄�l
�
�=1

2

X̃l���k� · Hk�knm
� , �30�

where we have defined

X̃l���k� � �
R

 m̄

m�R
ul,��,R�

e−i�k·R

Ns

, �31�

with m̄ as the average atomic mass, and R summed over the
Ns primitive cells in the supercell. Notice that if there was no
disorder and the phonon momentum ql was well defined for

each mode l, X̃l���k�=0 unless �k=ql. In the disordered

alloy, X̃l���k� gives the spatial Fourier transform of the
atomic displacements of atom � in the unit cell for phonon
mode l. Defining

Fm,n
k�k�E� � �

l=1

6Ns ��
�=1

2

X̃l��k� − k� · Hk�kmn
� �2

��E − ��l� ,

�32�

the carrier scattering rate from �nk
 into all �mk�
 by phonon
absorption is

Rnk
− ��nk� =

2�

Ns
�
m,k�

�Fm,n
k�,k��mk� − �nk�

2m̄��mk� − �nk�

�n��mk� − �nk����mk� − �nk� , �33�

where ��a� is a unit step function �0 if a�0, 1 otherwise�.
The scattering rate by phonon emission is

Rnk
+ ��nk� =

2�

Ns
�
m,k�

�Fm,n
k�k��nk − �mk��

2m̄��nk − �mk��

��n��nk − �mk�� + 1����nk − �mk�� . �34�

The total scattering rate is the sum of phonon absorption and
emission rates:

Rnk��nk� = Rnk
− ��nk� + Rnk

+ ��nk� . �35�
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For optical and intervalley scattering, Fn,m
k�,k�E� has a weak

dependence on k� and k near the conduction band valley
minima, where the carriers are concentrated. Therefore, in
calculating the optical phonon and intervalley scattering, we
will approximate

Fn,m
k�,k�E� � F
��E� , �36�

where k is in the � valley of band n and k� is in the 
 valley
of band m. Replacing 1

Ns
�k→

Vcell

�2��3 �d3k, where Vcell is the
volume of a primitive diamond unit cell, and using the para-
bolic approximation given in Eq. �12� for the density of
states in valley 
, the scattering rate into valley 
 for carriers
of energy E in valley � due to phonon absorption is

R�→

− �E� =

Vcell
�mt


�2ml



�22�m̄

� �
E

�

dE�
E� − Ec


F
��E� − E�
E� − E

n�E� − E� .

�37�

Similarly, the scattering rate into valley 
 for carriers of
energy E in valley � due to phonon emission is

R�→

+ �E� =

Vcell
�mt


�2ml



�22�m̄

� �
Ec




E

dE�
E� − Ec


F
��E − E��
E − E�

�n�E − E�� + 1� .

�38�

C. Intravalley acoustic scattering

We calculate the acoustic phonon contribution to intraval-
ley carrier scattering, following the deformation potential
theory approach of Herring and Vogt,6 as outlined in Fis-
chetti and Laux.1 In this section, we describe the calculation
of the deformation potentials needed to compute the scatter-
ing of acoustic phonons in the � and L valleys, using a
frozen phonon approach. We do not use the density func-
tional perturbation theory approach of Ref. 27 because we
find numerical instability in some of the parameters calcu-
lated, resulting in an extreme sensitivity to Brillouin zone
sampling, for very long wavelength perturbations.

We need two deformation potentials for each valley in
question: �d, the dilation deformation potential, and �u, the
uniaxial deformation potential.6 In the deformation potential
approach, the effect of a long-wavelength acoustic phonon
on the states in valley � is assumed to be equivalent to a
slowly-varying potential,

V��r� = �d
�Tr���r�� + �u

��k̂� · ��r� · k̂�� , �39�

where ��r� is the local strain tensor at r and k̂� is a unit
vector parallel to the k-vector of valley �. The strain tensor
is obtained by

�ij�r� =
1

2
� ��Ri

�rj
+

��Rj

�ri
� , �40�

where �Ri is the ith Cartesian component of the atomic dis-
placement vector at r.

For the � valley along the x direction, k̂�= �100� and for

the L valley along the �111� direction, k̂�= �111� /3. Taking
displacement of the atoms due to a phonon of momentum q
and frequency � as

�R�r� = �R0 sin�q · r − �t� , �41�

we find that the matrix element �at t=0� coupling electron
states �k
 and �k�
, each in valley �, is

Hk�k = 	k��V��r��k


=
1

2
��d�R0 · q + �u�k̂� · �R0��q · k̂���

���k−k�,q + �k�−k,q� . �42�

For longitudinal phonons, we have �R0 �q, and for transverse
phonons, �R0�q.

If the states, �k
 and �k+q
, are degenerate in energy for
�R0=0, then, for small �R0 and q, the phonon causes an
energy splitting of these states,

�E = 2�Hk+q,k� = Cq�R0, �43�

where the constant C is determined by the phonon strain
tensor and the acoustic deformation potentials. The sign of
Hk+q,k is obtained from the matrix element

Mk,k+q = 	k��+
	�+�k + q
 − 	k��−
	�−�k + q
 , �44�

where ��+
 and ��−
 are the wave functions corresponding to
the upper and lower eigenvalues resulting from the splitting
due to the frozen phonon, respectively. In Table II, we give
phonon directions and polarizations which allow us to calcu-
late deformation potentials for the � and L valleys, along
with the associated values of C in Eq. �43�.

We calculate this splitting directly in DFT, using elon-
gated supercells, as follows: We take phonon wave vectors
q= 4�

Na0
�0,1 ,0� along the �010� direction and q= 4�

Na0
�0,

−1,1� along the �01̄1� direction, where N is an integer and a0
is the cubic lattice constant. For q in the �010� direction, the
transverse mode atomic displacement is in the �001� direc-

TABLE II. Details of the frozen phonons used to calculate
acoustic deformation potentials, �d and �u, for the � and L con-
duction band minima. The values of C=�E / �q�R0� from Eq. �43�
for longitudinal and transverse phonons are given in columns three
and four, respectively, in terms of the deformation potentials.

Valley Direction of q Longitudinal Transverse

� �010� 010 ��d+�u�
� �001� 010 ��d�
L �111� 010 � 1

3�u�

01̄1 ��d�
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tion. For a given phonon wave vector q, we choose the
smallest supercell in which q is compatible with periodic
boundary conditions. Defining the primitive diamond Bra-
vais lattice basis vectors,

a1 = �0,
1

2
,
1

2
�a0,

a2 = �1

2
,0,

1

2
�a0,

a3 = �1,0,0�a0, �45�

we use a supercell with basis vectors, A1=Na1, A2=a2, A3

=a3, for the phonon with q= 4�
Na0

�0,1 ,0� and a supercell with
A1=a1, A2=Na2, A3=a3 for q= 4�

Na0
�0,−1,1�. Atomic dis-

placements specified by the acoustic phonon in Eq. �41� �for
t=0� are made from the ideal diamond lattice positions
within the supercell and the self-consistent DFT electronic
potential is calculated. If k� is the Bloch momentum of the
valley minimum, then we calculate the band energies in the
supercell for Bloch momentum k=k�−q /2 and find the
splitting �E between the eigenstates, ��k�+q /2
+ �k�

−q /2
� /2 and ��k�+q /2
− �k�−q /2
� /2. In these calcula-
tions, we use the VCA potential Vx

VCA for all atoms in the
supercell.

Since there are two atoms in the diamond unit cell �at
equilibrium positions, r�, �=1,2�, then the pure acoustic dis-
placement, u�R

ac �m�R0 sin�q · �R+r���, and the pure optical
displacement, u�R

opt��−1��m�R0 sin�q · �R+r���, are
coupled for a general phonon wave vector and polarization,
and the low-frequency �acoustic� vibrational mode is a mix-
ture of both. Thus, in general we need to find the acoustic
and optical components of the restoring forces on the atoms
in the unit cell for both optical and acoustic frozen phonon
displacements. Diagonalizing the resulting 2�2 dynamical
matrix, we obtain the correct mixture of the optical and
acoustic displacements in the acoustic mode �and in the op-
tical mode�.

We note that, for the high-symmetry phonons considered
here, the phonons are either pure longitudinal or pure trans-
verse, so that the full 6�6 dynamical matrix D�q� does not

need to be solved. Moreover, for q � �01̄1�, the optical and
acoustic displacements completely decouple by symmetry.
The deformation potentials for the � valley are insensitive,
by symmetry, to the mixture of optical displacements in the
acoustic mode, but those of the L valley are quite sensitive.
We note that an admixture of the optical mode in an infinite
wavelength acoustic phonon is equivalent to a change in the
equilibrium internal atomic displacement parameter for a
strained crystal. The sensitivity of the L valley electronic
levels to the internal atomic displacement parameter has
been emphasized by Van de Walle and Martin.7

Deviations from the deformation potential approximation
for short-wavelength acoustic phonons can be seen directly
from the q-dependence of �E. For a given type of phonon,
�E is linearly proportional to q for small q. For larger q, we
will see deviations from linearity. The long-wavelength de-
formation potentials can be found from the linear term ob-

tained in a polynomial fit of the calculated �E /�R0 vs q.
Another method for obtaining �u from Eq. �39� is to

strain a primitive cell so that previously degenerate valleys
break their degeneracy. The difference in energy between the
valleys is then proportional to �u. This method has been
previously used by van de Walle and Martin7 to obtain �u

�

for Si and �u
L for Ge. Since �d can only be obtained from an

absolute shift in band energies, the shift in potentials must be
obtained using a supercell heterostructure with a strained re-
gion next to an unstrained one.

The calculation of the scattering rate is accomplished fol-
lowing Herring and Vogt:6 using Eq. �39� to calculate the
squared matrix element along symmetry directions of the
phonon wave vector and interpolating these with spherical
harmonics to obtain its angular dependence. The relaxation
times �or scattering rates� are calculated, inserting our defor-
mation potentials into Eqs. �49� and �50� of Ref. 6. Experi-
mental values of the elastic constants for Si and Ge are used,
linearly interpolated with respect to Ge composition x to ob-
tain those of the alloy.

V. EXPRESSION FOR TOTAL MOBILITY

Finally, to calculate the total mobility due to all the scat-
tering processes we apply a formula similar to that used in
Ref. 1, derived from the Boltzmann transport equation in the
relaxation time approximation:

�� =
4

9

eNv
�

n�kBT
� 1

ml
� +

2

mt
��

��
Ec

�

�

dEeEF−E/kBT�E − Ec
�����E����E� , �46�

where ���E� is the sum of the different contributions to the
scattering, namely, the alloy, intra- and intervalley and opti-
cal phonon scattering of a valley of type � �=� or L�,

1

�
=

1

�ac
+ Ralloy + Rintervalley, �47�

�ac is the acoustic phonon relaxation time, and Ralloy and
Rintervalley are the elastic alloy and phonon intervalley scatter-
ing rates, respectively. Nv

�=6 and Nv
L=4 are the number of

valleys in the � and L bands, �� is the electronic density of
states, and n� is the density of carriers in all valleys of type
�,

n� = 2Nv
�mt

�ml
�� kBT

2��2�3/2
eEF−Ec

�/kBT, �48�

where EF is the Fermi energy.
Numerically, Eq. �46� does not have to be integrated up to

infinity, thanks to the decaying exponential due to the
Boltzmann distribution. 10 kBT represents a good upper limit
of integration. The total mobility is obtained by summing
over the bands as follows:

� = �
�

r���, �49�

where
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r� =
n�

n
�50�

and n=��n� is the total carrier concentration.

VI. DETAILS OF ELECTRONIC STRUCTURE
CALCULATIONS

Density functional theory total energy calculations are
performed with the ABINIT code.30,31 We use the local density
approximation �LDA� for exchange and correlation. FHI

pseudopotentials �available in the ABINIT website31� are used
for all calculations in this paper. The calculation of the vari-
ous parameters requires different cell sizes, k-point densities
and energy cutoffs, which are described below. We use an
energy cutoff of 18 hartree for the expansion of wave func-
tions in all our calculations. The calculation of the electronic
band dispersion has been performed as in Ref. 10.

A. Inelastic intervalley and optical scattering calculation

The intervalley and optical phonon scattering matrix ele-
ments Hkk�nm

� and the dynamical matrices are obtained in a
diamond primitive unit cell, using the response function
method,29 available in the ABINIT code.30,31 The modes and
frequencies for the random alloy using random mass ap-
proximation are calculated in a 512-atom supercell with ba-
sis vectors,

A1 = 4a0�1,0,0� ,

A2 = 4a0�0,1,0� ,

A3 = 4a0�0,0,1� . �51�

The phonon density of states is validated against a 1000-
atom supercell, while all other calculations are performed
using a 512-atom supercell. In calculating the function
F
��E�, the delta function in Eq. �32� is replaced
with a finite-width Gaussian: ��E−��l�→exp��E
−��l�2 /2�2� /2��2, where �=3 cm−1, is chosen to be
comparable to the typical separation between high-frequency
mode frequencies �l in the finite supercell.

B. Frozen phonon calculation

In the frozen phonon calculations, we use the long super-
cells defined in Sec. IV C to obtain the energy splittings and
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FIG. 3. �Color online� Calculated elastic alloy scattering param-
eters with relaxed and unrelaxed atomic positions around the per-
turbing atom �Ge�, for the X and L points for pure silicon.
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FIG. 4. Phonon dispersion for zincblende structure SiGe, calcu-
lated with full DFT �solid line�, using VCA interatomic forces and
correct Si and Ge atomic masses �dashed line�, and using VCA
interatomic forces and the average atomic mass of Si and Ge for
both atoms �gray line�.
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FIG. 5. Calculated phonon density of states for a 16-atom ran-
dom alloy with composition x=0.5 using VCA forces and the ran-
dom mass approximation �thick line�, and using a full DFT calcu-
lation of the relaxed geometry and dynamical matrix �thin line�.
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FIG. 6. �Color online� Calculated phonon density of states of
Si1−xGex at Ge composition x= 1

2 for a disordered alloy, using the
random mass approximation �solid line� and the average mass ap-
proximation �dashed line� in a 1000-atom supercell with periodic
boundary conditions.
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wave functions due to phonon wave-vector q in different
directions. We use supercells of N=24, 32, 48, and 64 atoms
for the different lengths of q, with a k-point grid of 6�4
�6. The amplitudes of atomic displacement defined in Eq.
�41� we use are ��R0�=1.25�10−3a0, 2.5�10−3a0, and 2.5
�10−2a0, yielding a perfect linear dependence of Hk,k+q on
�R0 within that range.

VII. RESULTS

A. Scattering parameters

1. Elastic scattering parameters

The elastic alloy scattering matrices have been calculated
from first principles and have been given in Ref. 10. In this
section we show that atomic relaxation near the Si or Ge
atom in the supercell is found to have an important effect on
the scattering factors; in some cases the scattering intensity is

twice as large as that calculated keeping all atoms in their
ideal diamond lattice positions, as can be seen in Fig. 3 for a
Ge atom in a pure Si supercell.

2. Intervalley phonon scattering parameters

Figure 4 shows the phonon dispersion for zincblende
Si0.5Ge0.5 calculated in various approximations. We see that
the phonon dispersion calculated with VCA interatomic
forces is extremely close to that found from a full LDA cal-
culation. This result suggested the use of random mass ap-
proximation to calculate the phonon frequencies and modes
in a random alloy. We also test the use of random mass
approximation against a full calculation of a 16-atom random
alloy, shown in Fig. 5. While there are some minor differ-
ences, the approximation yields good peak positions and in-
tensities.

Figure 6 shows the density of states of a disordered
Si0.5Ge0.5 alloy calculated using random mass approximation
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FIG. 7. Calculated density of states and Fnm

functions for the different phonons: �g, �f , L
−L, �−L, and optical L using random mass ap-
proximation at Ge composition x=0.5. The val-
ues calculated using the average mass approxima-
tion are shown in dashed lines.

TABLE III. Calculated electron-phonon scattering matrix elements Hk,k�
�,� �defined in Sec. IV B�, with � as the Cartesian component, for

the intervalley and optical scattering at the � and L valleys in Si1−xGex as functions of alloy composition x. The intravalley optical phonon
matrix element is labeled opL. Scattering by optical phonons with the � valleys is forbidden by symmetry. All quantities are in 109 eV /m.

Scattering phonon Hkk�
�=1,�=1 Hkk�

�=1,�=2 Hkk�
�=1,�=3 Hkk�

�=2

�g 0 0 −22.734−4.598x+1.429x2 H�g
�=1ei�3/4

�f �−9.80348+0.48752x�i −22.377−5.86x+1.88x2 −H�f
�=1 −�H�f

�=1��

LL −2.09−5.746x+2.293x2 0 0 HLL
�=1

opL 5.83+12x−3.05x2 −HopL
�=1 −HopL

�=1 −HopL
�=1

�−7.35−6.95i�+ �−8.11+2.6i�−
�L +�0.31−4.73i�x− −H�L

�=1 −�1.78−3.62i�x+ −�H�L
�=1��e−i�5/8

−�0.05−1.26i�x2 +�0.26−0.75i�x2
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in a 1000-atom supercell. The DOS of an alloy with an av-
erage mass m̄=xmGe+ �1−x�mSi is also shown. The disor-
dered DOS compares well to previous calculations and
experiment.23 Notice that at very low frequencies the average
mass density of states mimics that of the disordered super-
cell, justifying the argument presented in Sec. IV C for the
use of an average mass to calculate the intravalley phonons.

We calculate the inelastic intervalley and optical phonon
scattering rates from first principles for random alloys for Ge
compositions of x=0, 0.25, 0.5, 0.75, and 1. The VCA
electron-phonon matrix elements Hkk�

� are shown in Table III,
as functions of x. To calculate the mobility, the intervalley
scattering rates are interpolated in x for every value of energy
E. Figure 7 shows the spectral resolution of the electron-
phonon interaction F�E� ��see Eq. �32�� for a Ge composition
of x=0.5, with and without using random mass approxima-
tion. The inverse mobility shown in Fig. 9 is calculated using
random mass approximation, but we should note that, using
the average mass approximation, the contribution of the op-
tical and intervalley scattering is reduced by only 6% in the
mobility, which amounts to a 1% reduction in the total mo-
bility at Ge composition x=0.5.

3. Intravalley phonon scattering parameters

We calculate the deformation potentials �u and �d from
first principles with the method described above for the �
and L valleys at Ge compositions of x=0, 0.25, 0.5, 0.75, and

1. Results are shown in Table IV, interpolated as functions of
x. Table V compares our calculated deformation potentials
with calculations by Van de Walle8 and with experiment.
Figure 8 shows the calculated C ·Mk,k+q from Eqs. �42� and
�44� for different values of q in the directions specified in
Table II for the L valley in pure Ge. The “d” line corresponds

to a longitudinal phonon with q in the �01̄1� direction. The
line labeled “u” represents 3C ·Mk,k+q for a transverse pho-
non with q along the �010� direction, for convenience. We
can observe the deviations from the deformation potential
approximation as q increases.

The intravalley phonon scattering rate is very important in
determining the mobility in pure silicon or germanium, as
can be inferred from Fig. 9. Equations �49� and �50� in Ref.
6 show the dependence of the scattering rate on the square of
the deformation potentials �u and �d, as well as on their
product. It is therefore crucial to calculate these as accurately
as possible, since minor errors influence the mobility consid-
erably.

B. Mobility

In Fig. 9 we present the contributions to the inverse mo-

TABLE IV. Calculated deformation potentials at the � and L
valleys in Si1−xGex as functions of alloy composition x. All quanti-
ties are in eV.

Symbol Function

�u� 4.2139x3−6.7029x2+3.4409x+8.7726

�d� −0.029−0.6642x

�uL 1.1733x3−3.4080x2+3.1747x+16.035

�dL −2.6917x3+3.8022x2+0.1701x−7.5456

TABLE V. Deformation potentials for the conduction band ex-
trema in Si and Ge. All values are in eV.

Present work Van de Wallee Experiment

�u
��Si� 8.77 9.16 8.60.4 a

�d
��Si� −0.029 1.13 5b

�u
L�Si� 16 16.14

�d
L�Si� −7.55 −6.04

�u
��Ge� 9.73 9.42

�d
��Ge� −0.67 −0.6

�u
L�Ge� 16.98 15.13 16.20.4 c

�d
L�Ge� −6.27 −6.6 −12.3 d

aReference 34.
bReference 35.
cReference 36.
dReference 37.
eReference 8.
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FIG. 8. Calculated phonon intravalley matrix element “d:”
C ·Mk,k+q=�d�q�, and “u:” 3C ·Mk,k+q=�u�q� for the L valley in Ge
as a function of phonon momentum �q�, with q in the directions
specified by Table II, interpolated with a polynomial fit. The linear
term yields the deformation potentials �see Eq. �42��.
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bility of the different scattering processes calculated from the
Boltzmann transport equation in the relaxation time approxi-
mation �see Sec. V�. It can be observed that the elastic alloy
scattering is the most important contribution hampering the
mobility for most of the range of compositions, except at
pure Si or Ge, where acoustic scattering is of much greater
significance. Acoustic phonon �intravalley� scattering domi-
nates over intervalley and optical phonon scattering, except
around the �−L valley crossover; here, where the two val-
leys are very close in energy, both the elastic and inelastic
interband �−L scattering become important, as shown by
the peaks at x�0.85.

Figure 10 shows the calculated total mobility as a func-
tion of alloy composition, compared to experiment. The
agreement is excellent with Glicksmann17 and Amith33 who
used single-crystalline samples, while the mobility is higher
than that of Busch and Vogt,32 as was expected since they
used polycrystalline samples and did not subtract the ionized
impurity scattering contribution.

VIII. CONCLUSION

We present the first full ab initio calculation, the disor-
dered phonon n-type intervalley scattering parameters, and
the acoustic deformation potentials for SiGe alloys as func-
tions of alloy composition, using supercell methods to nu-
merically represent the alloy scattering problem.

We find that, while disorder plays a crucial role in elastic
alloy scattering, it does not affect the overall strength of the
phonon scattering substantially, in spite of the loss of phonon
momentum conservation. This result points out that, in spite
of the fact that alloy disorder is essential in reproducing the
three optical peaks in the phonon density of states, as found
by de Gironcoli et al.,23 an average mass model for the pho-
non structure is sufficient for obtaining the correct contribu-
tions of optical and intervalley phonon scattering to the car-
rier mobility.

We test the validity of the deformation potential approxi-
mation by calculating them at different phonon wave vectors,
and find it to be good for scattering wave vectors dominant at
room temperature. Optical and intervalley parameters, as
well as the acoustic deformation potentials, are presented as
functions of alloy composition in Tables III and IV, respec-
tively.

We use our calculated scattering parameters in the Boltz-
mann transport equation to find the n-type mobility at room
temperature. The resulting mobilities are in excellent agree-
ment with experiment, in particular near the �−L band
crossing region. The ab initio methods developed here are
broadly applicable to a wide range of semiconductor alloys.
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