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State Forecasting and Operational Planning for

Distribution Network Energy Management Systems
Barry Patrick Hayes, Member, IEEE and Milan Prodanovic, Member, IEEE.

Abstract—This paper describes the application of Advanced
Metering Infrastructure (AMI) data for developing energy fore-
casting and operational planning services in distribution net-
works with significant distributed energy resources. The paper
describes development of three services designed for use in dis-
tribution network energy management systems. These comprise
of a demand forecasting service, an approach for constraint
management in distribution networks, and a service for forecast-
ing voltage profiles in the LV network. These services could be
applied as part of an advanced distribution network management
system, in order to improve situational awareness and provide
early warning of potential network issues. The methodology and
its applicability is demonstrated using recorded SCADA and
smart meter data from an existing MV distribution network.

Index Terms—Distributed energy management systems, de-
mand forecasting, advanced metering infrastructure, power sys-
tem monitoring, distributed energy resources.

I. INTRODUCTION

D ISTRIBUTION networks have traditionally been de-

signed and operated as passive, radial systems, in which

power flows are relatively easy to predict and manage.

Recently, distribution networks have seen increasing pene-

trations of Distributed Energy Resources (DER), such as

small to medium-sized Distributed Generation (DG), demand-

responsive loads, electric vehicles, devices with storage capa-

bility, and microgrids. All relevant studies suggest that such

trends towards more actively-managed distribution systems are

set to continue, and that the integration of these technolo-

gies will lead to more frequent occurrences of problems in

the distribution network, such as congestions and excessive

voltage variations [1], [2]. This has led to research interest

in adapting network management techniques, previously only

used at the transmission level to distribution systems, such as

state estimation and short-term operational planning [3]–[6].

This paper discusses the application of AMI data for fore-

casting future network states, and the application of short-term

operational planning to distribution systems with significant

DER. The presented approach is designed to provide early

warning of potential network issues to the Distribution System

Operator (DSO), and allow for more optimal management of

embedded DER. In order to estimate the future operational

states of the distribution system, expected net demand profiles

(e.g. combined demand and photovoltaic (PV) generation) are

estimated using short-term load forecasting techniques. These

The authors are with the IMDEA Energy Institute, Avda. Ramón de
la Sagra, Móstoles Technology Park, Madrid 28935, Spain. Corresponding
author e-mail: barry.hayes@imdea.org.

forecasts, along with the expected network configuration, are

used to provide an assessment of the network operating state,

indicating one of the following: normal operation; a “warning”

state indicating that the network is close to operational limits;

or an “alarm” state, indicating that network constraints are

expected to be violated, unless corrective action is taken.

The capacity of embedded DER (e.g. demand-responsive

load) to allow for management of network constraints and

improvement of overall system reliability is also quantified.

The main contribution of this paper is the development of

three “services” which can be applied in short-term operational

planning of distribution systems. These can be summarised as

follows:

• Demand forecasting service: estimates hours/days-ahead

net demand (combined load and PV) profiles at the MV

distribution network substation level.

• Constraint management service: optimises allocation of

DER, such as demand-responsive loads. This service

maximises the amount of reserve available from DER for

use in overall system energy management, while meeting

all local network constraints.

• Voltage estimation service: uses historical AMI data to

forecast voltage profiles in the LV network hours/days

ahead. This service can be used to provide the DSO with

early warning of potential voltage issues.

The presented services are intended to improve situational

awareness and energy management at the local distribution

network level. The paper focuses on developing techniques for

short-term operational planning that can operate automatically,

with minimal intervention from the network operator. This is

expected to reduce the workload required to manage energy

resources in distribution systems, which are often complex,

diverse, and dispersed over large geographical areas. The

proposed methods are tested using recorded data from an

existing MV distribution network [7]. At this network, detailed

recordings of demand and local generation were available over

a continuous period of two years at both the MV substation

and end-user (e.g. home/factory) level.

The paper is structured as follows. Section II gives a

brief literature review and discussion of the current state of

the art, in order to put the contribution of this paper into

context. Section III presents the methodology, including the

development of each of the proposed services. Section IV gives

the results, and lastly, conclusions are drawn in Section V.

II. STATE OF THE ART

Increasing penetrations of DER have led to a requirement

for improved observability and situational awareness in distri-
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bution systems. State Estimation (SE) is an important tool in

this context. SE has been a critical part of the operation and

management of transmission systems for many years, it has

not been widely implemented at the distribution level, due to a

lack of monitoring and communications infrastructure, and due

to the fact that most distribution systems have been operated

passively. Recently, there has been significant research interest

in decentralised SE methods [8]–[14] and algorithms for

Distribution System State Estimation (DSSE), e.g. [15]–[20].

In this paper, the DSSE algorithm described in [21] is used to

calculate the network states.

A number of studies have investigated advanced Distri-

bution Management Systems (DMS), designed to optimise

energy management in distribution networks [22]–[24], and

in particular, the use of DER for energy management, both

within the distribution network, and contributing to overall

grid energy balancing [25]–[28]. These DER may be in the

form of demand-responsive loads, or other resources, such

as controllable DG, electrical vehicles or storage devices. In

distribution systems, the application of DER for energy man-

agement typically involves the aggregation of highly-dispersed

resources at the end-user level, applied via direct control

of DER (e.g. switching of smart appliances), or indirectly

through a user response to a price signal [27], [28]. The

work presented in this paper is focused on the application

of DER to energy management at the distribution network

level. It is assumed that a certain amount of “manageable”

energy resources are available at each network node. However,

the enabling communications infrastructure, or the electricity

market mechanisms required to implement specific ‘demand

response actions, are out of scope of this paper.

The estimation, or prediction of load profiles is particularly

important for operational planning in distribution systems.

Load estimation techniques have been applied in distribution

systems in [29]–[38], in order to provide inputs to DSSE,

with the aim of enhancing observability where the number

of real measurements available in the network is insufficient.

The widespread introduction of smart meters means that an

unprecedented amount of detailed historical data on user

loads is becoming available. This data can be used to better

understand and model the behaviour of distribution network

loads, allowing to improve load estimation techniques. Several

papers have explored the use of LV smart meter data for this

application [39]–[42]. In this paper, models are developed

for forecasting load and DG behaviour at the distribution

substation level using recorded smart meter data, in order to

support DSO short-term operational planning.

III. METHODOLOGY

This section describes the proposed methodology for state

forecasting and short-term operational planning in distribution

networks. The approach focuses on developing “services”,

which are designed to be scalable and applicable in any

given distribution system. A flowchart representation of the

overall approach is shown in Fig. 1, with the three proposed

services highlighted. Each service is described in detail in the

subsections below.

Fig. 1. Flowchart representation of overall methodology, with proposed
services highlighted.

A. Demand Forecasting Service

The forecasting of future network states requires high-

quality estimates of demands and DG output profiles at each

network node. In this paper, various methods were tested and

compared for the short-term load forecasting of the “net de-

mand” (i.e. load and DG combined) at the distribution substa-

tion level for this purpose. A number of techniques have been

previously applied for short-term load forecasting, including

auto-regressive and neural network based models [43]–[46].

Most previous work in the area of short-term load forecasting

applies to large, aggregated loads, e.g. prediction of regional

or national demands. Recently, there has been interest in load

forecasting at much more localised level for smart grid applica-

tions, e.g. [39]–[42]. For local-level load estimation, demands

are highly variable and difficult to predict with accuracy. The

presented methodology focuses on short-term load forecasting

at secondary (MV/LV) distribution substations, with few tens

to hundreds of customers.

1) Description of Data Set: The analysis in this paper

uses recorded demand and rooftop-mounted PV output data

from MV/LV substations in the case study network (see

Section IV-A for details of the network). The data set com-

prises of 24 months of continuous recordings of hourly con-

sumption and production at 46 MV/LV substations, made up

of aggregated smart meter recordings. 12 of the substations

have significant PV installed in the LV networks, and PV

production is recorded separately to by the smart metering

system. Weather data for the area of interest (historical and

forecast information) was obtained by request from the Danish

Meteorological Institute [47]. For the analysis, the entire data

set was split into model training data (50%), and model

validation data (the remaining 50% of the recordings, making

12 months of out-of-sample data).

2) Selection of Load Estimation Model: Several forecasting

models were applied to estimate the net demand at 46 indi-

vidual demand points, where a separate model is trained and

tested for each individual MV node. The above data were used

to estimate both demand and PV output using the following

load forecasting techniques:

• NAIVE: A “naive” load forecast is made by simply
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taking the same hour, previous day demand value. For

weekends, the same hour from the most recent weekend

day is taken instead.

• ARX: Linear Auto-Regressive eXogenous (ARX) model.

• NN: Non-linear Neural Network (NN) model.

• LMS: Linear regressive model using the Least Mean

Squares (LMS) algorithm.

• NARX: Non-linear Auto-Regressive eXogenous (NARX)

model.

Fig. 2 compares the results for 24 hour-ahead forecasting.

The demand forecasting performance in each case is expressed

as the average Mean Absolute Percentage Error (MAPEave),

calculated over all 46 nodes for the 12 months of validation

data:

MAPEave =
1

N

N
∑

n=1

(

1

Tn

Tn
∑

t=1

∣
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∣

∣

∣

)

(1)

where N is the total number of demand nodes, Tn is the total

number of time steps in the recorded data at node n, At and Ft

are the actual and forecasted demands recorded at each time

step t. It can be seen from Fig. 2 that the “NARX” model

demonstrates the best overall performance for this application.

The NARX model was selected for all further analysis in this

paper, and is described below. Due to space limitations, the

other models (LMS, ARX and NN) are not discussed in detail,

the reader is instead referred to the literature on load estimation

in [43], [45], [46], [48], [49].
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Fig. 2. Comparison of 24-hour ahead forecasting errors at 46 individual MV
distribution network demand points.

3) Description of NARX Model: The NARX model is

expressed as:

yt+1 = F (ut, ut−1, ..., ut−di, yt, yt−1, ..., yt−do) (2)

where the next value of the output signal (e.g. the kW load),

yt+1, is regressed using previous load measurement values yt,
yt−1, ... and input signals ut, ut−1, ..., (e.g. weather, time-

related and historical load variables). The function F repre-

sents a neural network, where the weights for each connection

in the network are trained in MatLab using the Levenberg-

Marquardt back-propagation algorithm. The number of time

delays in the input and output layers are denoted di and do
respectively. These can be adjusted to allow for different fore-

casting horizons, e.g. hour-ahead, day-ahead etc. For example,

to calculate the 24 hour-ahead forecast, yt24, for a given node

(assuming that all of the required variables are available from

the previous 24 hours), (2) is re-formulated as:

Fig. 3. Structure of the NARX net demand forecasting model.

yt24 = F (ut−24, ut−25, ..., ut−48, yt−24, yt−25, ..., yt−48)
(3)

The structure of the proposed NARX model for forecasting

net substation demand is illustrated in Fig. 3. The input signals

ut are specified as follows:

• three weather forecast variables: temperature and dew

point (both measured in ◦C), and solar irradiance in

W/m2, which was used to estimate the impact of PV

on net demand1.

• three time-related variables: these consist of variables for

hour of day Ht = [1, 2, ..., 24], day of the week Dt =
[1, 2, ..., 7], and a variable Wt = 1 or 0, where 1 indicates

a working day, and 0 indicates a non-working day, such

as a weekend or bank holiday.

• three historical demand variables which have a strong

correlation with the demand profile: the recorded demand

at the same hour demand of the previous day, the same

hour of the previous week, and the previous 24-hour

average demand level.

The proposed NARX model in Fig. 3 forecasts the net

demand, i.e. the combined demand consumption and PV

production profile at each node. It was found that directly

forecasting the net demand using the NARX model produced

the same level of accuracy as creating separate NARX fore-

casts of demand and PV at each MV/LV substation (see the

results of the demand forecasting in Section IV-B).

The average NARX training time for each network node

was around 1.3 seconds (using a standard PC with a 2.6 Ghz

microprocessor). The best results were obtained using a feed-

forward NARX model, comprised of an input layer with 9

neurons (one for each input variable), one hidden layer with 10

neurons, and an output layer with one neuron. Detailed results

of the demand forecasting service are given in Section IV-B.

B. Network State Forecasting and Analysis

The future states of the network can be estimated using

the forecasted power injections at each node, along with

the expected network configuration, Fig. 1. A short-term

1Other weather variables, such as precipitation and wind speed were
recorded and analysed, but it was found that these did not have a significant
impact on net demand.
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planning approach, similar to the standard procedures used by

Transmission System Operators (TSOs) for hours/days-ahead

operational planning is proposed in this context. The input

data should include expected network configuration changes

due to e.g. scheduled maintenance on distribution system

components, or other expected changes to substation running

arrangements etc.). Network analysis, including power flows,

contingency and fault analysis, is carried out for the relevant

time-frame (e.g. peak hour day-ahead), in order to estimate

the future network state. Appropriate warnings and alarms are

issued if constraint violations are predicted, providing early

warning of potential issues to the DSO.

In transmission network operation, the overall status of the

system is often described according to the “operating state”

categories (e.g. secure, alert, emergency, in extremis) origi-

nally proposed in [50]. A similar idea is applied to distribution

network operation in [51], where the overall network state is

described in one of three categories, which are used to direct

DSO decisions around corrective actions.

• Normal: Normal network operation, no action required.

• Insecure: Network operating close to allowed limits,

potential for violation of system constraints. In this case,

the DSO could apply market-based incentives to adapt

network production/consumption to the network situation.

• Emergency: Network constraints are violated, direct load

management or DG curtailment is required to return

network to a secure operating state.

In this paper, an “operating state” approach is used to

provide a simple, qualitative estimate of the future network

state. Based on this assessment, decision around taking actions

to resolve potential network constraints can be proposed and

tested ahead of time. The analysis could also be extended to

include the regulations around reliability and quality of supply.

In many countries and regions, financial penalties are applied

to the DSO in the event that network end-users are discon-

nected. The penalties typically vary according to the number

and length of time for which customers are disconnected from

the network. These penalties could be incorporated into the

analysis according to the approach in [52], [53], allowing the

DSO to prioritise certain corrective actions, based on the risk

associated with each network contingency.

C. Constraint Management using Distributed Energy Re-

sources

While the majority of existing distribution networks are op-

erated radially, with few options for reconfiguration, there has

been much interest in active distribution network management

in recent years, e.g. [1]–[6]. With the large-scale integration

of DER, it is expected that the frequency and severity of

network constraint problems will increase, and that methods

which have previously only been applied at the transmission

level, such as constraint management, may become relevant to

some distribution systems.

In this section, a general methodology for distribution sys-

tem constraint management using embedded DER is proposed.

In any distribution system, the type of network constraint

issues, and the extent of the required constraint management

depends on the network characteristics, the mix of embedded

DER, and the local regulatory and market environment, which

can make it difficult to generalise the problem. In the analysis

below, it is assumed that we have a meshed distribution

network, and that some “demand response” capability at the

end-user level is available for use in constraint management

by the network operator. This demand-responsive part of load

is considered simply as negative load, without considering

the underlying communication and control technologies and

market mechanisms required to enable the demand response

actions.

In [6], it was demonstrated that the network location of

each demand-responsive load has an impact on its ability to

contribute to the management of system constraints, and the

improvement of overall system energy balancing and relia-

bility. Hence, when considering the application of demand re-

sponse, it is important to consider the contribution of each load

to both local network constraints and overall network energy

balancing. The following describes a method for optimising

the application of demand-response loads in a distribution

system, in order to provide the maximum contribution to

energy balancing, whilst also managing local network con-

straints. This approach could be applied by operators of active

distribution networks in order to design demand response

schemes, and provide the appropriate incentives to encourage

the development of demand response at the optimal network

locations. The problem is formulated as an Optimal Power

Flow (OPF), in which the objective function is to minimise

the amount of load adjustment required to satisfy the network

constraints:

min

Nloads
∑

n=1

Cn · Pn,init(1−Ψn) (4)

where Nloads is the number of network load buses where

demand response can be applied, Pn,init is the initial active

power of bus load n in MW, and Ψn represents the load

adjustment factor, or the portion of the initial MW load at

bus n which is available for deferral. Cn is the cost of load

adjustment assigned to the demand-responsive load at bus n,

in cost units per unit MW. In the analysis presented in this

paper, C is not given a monetary value. Instead it is set to an

arbitrary value of 1.0 per MW for all of the loads. However,

if required, this can be adjusted to allow prices to be set for

the various demand response services that can be offered in a

given network.

A full AC-OPF is applied assuming balanced, steady-state

conditions, subject to the power flow balance constraints. The

OPF needs to satisfy bus voltage constraints (5), line thermal

constraints (6), and contraints on the load adjustment factors

at each DSM-enabled bus (7):

Vmin,n ≤ Vn ≤ Vmax,n (5)

|Sk| ≤ |Smax,k| (6)

Ψmin,n ≤ Ψn ≤ Ψmax,n (7)
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where Vmin,n and Vmax,n are the minimum and maximum

allowed voltages at each network bus n (including non-load

buses), Sk is MVA power flow through network branch k,

and Ψmin,n and Ψmax,n are minimum and maximum load

adjustment factors for each load at bus n (based on the

proportion of demand-responsive load available).

For instance, if we have a scenario where there a thermal

constraint (6) at line k in a meshed distribution network, the

demand response action could be potentially be applied at

any location in the network where demand-responsive load

is available. The effectiveness of any individual bus depends

on its location in the network relative to the constraint. It

is possible to compare the effectiveness of various buses

for relieving the constraint. For example bus i may be E%

more effective than bus j at relieving constraint k, where this

“effectiveness”, Ek is expressed as:

Ek(%) = 100×

(

∆Pi,init(1−Ψi)

∆Pj,init(1−Ψj)

)

(8)

In general, it is desirable to minimise the total amount of

load deferral, and the logical solution is to prioritise bus(es)

with a higher value of Ek to relieve the constraint. In a large

distribution network, where various combinations of deferrable

loads could potentially be used to satisfy multiple constraints,

a systematic method is needed to carry out this demand-

response allocation.

The OPF formulation in (4)-(7) allows the user to consider

the embedded demand response resources at each network

node, as well as all of the local network constraints, when

applying demand response actions. The applicability of this

approach is illustrated by example in Section IV-C of this

paper.

D. Voltage Estimation and Forecasting in LV Network

Recorded AMI data from smart meters and other sensors in

the LV network can be applied to provide estimates of the volt-

ages in the LV network, where no direct voltage measurements

are available. The approach described below demonstrates the

application of the demand forecasting methods described in

Section III-A to provide a probabilistic estimate of voltage

profiles in the LV system, warning the network operator if

limits are expected to be violated. Fig. 4 shows a section of a

typical radial LV network, where recordings of consumption

and production are available at the MV substation by means

of SCADA measurements, and through AMI in the form of

smart meter measurements at each individual end-user. It is

assumed in the analysis that the smart meters only log kW

active power consumption and production at each end-user at

regular intervals, and do not have any voltage or power quality

measurement capabilities.

The objective of the estimation is to determine the expected

range of voltages at each node along the main LV feeder

V1, V2, ... , VN , Fig. 4. In Section III-A, forecasts of demand

and production are made at the MV substation level. The

proportion of the estimated demand and production at each LV

node (this may correspond to e.g. group of nearby residential

customers, or a factory) is obtained from the AMI data. This

is calculated using the total contribution from each load group

recorded in the previous working day (or the previous week-

end/holiday where appropriate)2. The voltage at each node

of interest can be estimated by using the forecasted demand

and consumption with a standard network state estimation

algorithm (this paper uses the SE developed in [21]). In order

to simplify the analysis, it is assumed that the loads are

balanced across the three phases, and the loads are represented

as constant active/reactive power demands, with no voltage

dependency.

Fig. 4. Estimation of LV network node voltages using energy demand and
production forecasts.

Rather than giving a point estimate of the voltages, a

probabilistic estimate is made, which takes into account the

historical error distribution of the demand forecasting. The

demand forecasting error vector for bus n is given by:

en = At − Ft for t = 1, 2, ..., T (9)

where T is the total number of available actual and forecasted

data points at that bus. This demand forecasting error varies

according to hourly and seasonal factors (see results in Sec-

tion IV-B). In order to create confidence intervals around the

forecast, the percentile errors for each hour and for each month

are applied to each forecast. For example, the 90% confidence

interval for a single point demand forecast yt is given by:

C90 = −π95 ≤ yt ≤ π95 (10)

where π95 is the 95th percentile of en. The advantage of using

a non-parametric approach with percentiles is that the method

is independent of the probability distribution of the demand

forecasting errors. However, it is assumed that sufficient

historical data (e.g. at least several months of hourly data)

is available in order to estimate the error percentiles with a

reasonable degree of accuracy.

This analysis can be used to forecast the range of possible

voltage profiles ahead of time in parts of the LV network where

no sensors are available. This can be used to provide early

warning of voltage issues at the end-user level, and allow the

network operator to consider pro-active measures such as: (i)

adjustment of settings on reactive compensation equipment;

(ii) changing tap settings on HV/MV transformers (on-load) or

MV/LV transformers (off-load); or (iii) application of demand-

response measures, or (iv) direct control/disconnection of

load and/or DG. The estimation of LV network voltages is

demonstrated using recorded AMI data from the case study

network in Section IV-D.

2This approach is preferred to attempting the forecasting of load and DG at
the individual user, or group of individuals, since accurate demand forecasting
becomes increasing difficult as the level of aggregation decreases [5], [21],
[48].
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IV. RESULTS

A. Description of Case Study Network

The services described in this paper are demonstrated using

an existing distribution network, which is the test network

from the SmartHG EU project [7]. The MV network comprises

of a 48-bus, 10kV system with a weakly-meshed structure,

Fig. 5. The network has a peak demand of 3.2 MW, which

is made up primarily of suburban/rural residential customers

(77% of total demand). The remainder of the network demand

is comprised of factories, and some district heating and street

lighting loads. There is also significant embedded PV gener-

ation, at the 12 locations in the network indicated in Fig. 5.

Recordings of demand consumption and PV production from

both the MV SCADA and LV smart metering systems were

available throughout the network for a continuous period of 24

months. This network is a new, well-designed MV distribution

system with significant network capacity for further addition

of load and DER. In order to create more scenarios where

the network is operated close to its physical limits, requiring

active management of network issues from the DSO, the active

and reactive power demands throughout the entire network

were scaled by a factor of 1.5, and the penetration of PV was

increased by a factor of 2.

Fig. 5. Schematic of MV distribution case study network.

The AMI data acquisition rate is 1 hour, and all demand

forecasts shown were made 24 hours ahead of time. Day-

ahead forecasting is expected to be relevant for DSOs, since

in many control centres, AMI data only becomes available

to the operator on the next day [35]. Hence, the objective

is to use the previous days’ AMI data to predict and plan for

network issues for the current day. The presented methodology

could be modified to consider a different AMI acquisition rate

(e.g. 15 minutes), or a different demand forecasting horizon by

modifying the time delays in (2)-(3), Section III-A3. All of the

presented analysis is carried out at the fundamental frequency

(50 Hz). While the impacts from harmonic injections may be

significant in networks with high DER penetrations, harmonic

analysis is beyond the scope of this paper.

B. Load and DG Forecasting Results

A sample of the typical results obtained using the NARX

demand forecasting model are shown in Fig. 6, where the time

series for 24 hour-ahead forecasting are compared at each time

step to the subsequently recorded AMI values. Fig 6, gives

a sample of the results where demand consumption and PV

production are forecast separately and subtracted from each

other (“Demand - PV”), and also the “Net demand” approach,

using a the NARX model described in Section III-A3.

The results are compared in Table I at all nodes where

embedded PV is installed, showing that a similar level of

accuracy is obtained with both approaches, with the differ-

ence between in errors less than 1% at all buses. Using the

combined “Net demand” NARX model simplifies the demand

forecasting significantly, since it is not required to carry out

separate forecasts for demand and PV. The average MAPE

achieved across all MV/LV substations in the network for 24

hour-ahead forecasting was 8.27%.
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Fig. 6. Samples of time series of actual and forecasted demand and PV at
individual substation (Bus 11): a) Separate forecasting of demand and PV
production; b) Net demand forecasting.

TABLE I
COMPARISON OF SEPARATE DEMAND AND PV FORECAST WITH NET

DEMAND FORECAST RESULTS

Bus
Demand-PV

(MAPE %)

Net demand

(MAPE %)

Difference

(%)

(4) 5.79 6.16 + 0.37

(6) 7.12 6.85 - 0.27

(11) 7.71 7.78 + 0.07

(12) 8.98 8.90 - 0.08

(14) 9.48 8.84 - 0.64

(17) 8.15 8.55 + 0.40

(19) 7.30 7.42 + 0.12

(24) 9.32 9.56 + 0.24

(26) 10.16 10.93 + 0.77

(32) 5.93 5.96 + 0.03

(33) 10.86 10.80 - 0.06

(46) 8.47 8.50 + 0.03
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The daily and monthly variation of the net demand fore-

casting error (averaged across all substations in the network)

is given in Fig. 7. These results show that forecasting errors are

slightly higher during the peak hours from 07:00-10:00 in the

morning and 16:00 to 20:00 in the evening (Fig. 7a). It is also

clear that the demand forecasting errors are significantly higher

during the summer months (Fig. 7a), which is expected, since

at this time demands are low and PV output is high, making the

resulting net demand difficult to predict with accuracy. These

results have important implications for using the demand

forecasts for forecasting the future states of the network, and

implementing the distribution energy management services

described in this paper. This higher level of uncertainty during

certain time periods is incorporated in the analysis of voltage

profiles presented in Section IV-D.
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Fig. 7. Net demand forecasting error boxplots showing: a) hourly variation;
b) monthly variation.

C. Constraint Management using Distributed Energy Re-

sources

This section demonstrates the approach for distribution sys-

tem constraint management described in Section III-C using

an example scenario applied to the case study MV network. A

peak demand scenario is simulated, which results in a thermal

overload constraint on Line 3-4 (highlighted in Fig. 5). It is

assumed that there is some demand-response capability at each

node in the distribution system, and that the system operator

can apply this to resolve the system constraints, either by direct

control of load/DER, or indirectly through end-users’ response

to a price signal. At each MV node, up to 10% of the total

demand is manageable, e.g. can be deferred at the peak hour

to enable constraint management.

Each bus in the network can be ranked according to its

effectiveness in relieving the constraint according to (8). This

ranking is shown for the first 10 buses in Table II, where the

effectiveness E3−4 at each bus is compared to the network

average effectiveness. As expected, buses located close to the

constraint and directly downstream are the most effective in

relieving the constraint.

TABLE II
BUS RANKINGS IN ORDER OF EFFECTIVENESS IN RELIEVING

CONSTRAINT AT LINE 3-4

Bus Rank Effectiveness, E3−4 (%)

(4) 1 111.51

(5) 2 110.03

(6) 3 109.64

(9) 4 109.18

(8) 5 109.18

(7) 6 108.10

(12) 7 108.00

(11) 8 107.94

(10) 9 107.70

(13) 10 106.83

(...) ... ...

Network Average - 100.00

Two constraint management cases are investigated:

• Case (i): Demand response is applied at all nodes equally,

reducing the load at all MV nodes in the network pro-

portionally until the constraint is removed.

• Case (ii): The OPF formulation described by Equations

(4)-(7) is used to find the optimal allocation of demand

response resources required to remove the network con-

straints.

The total adjustment required in each case is given by:

Ptotal (kW ) =

Nloads
∑

n=1

Pn,init(1−Ψn) (11)

The results are given in Table III, where the fifth column

shows the “Total adjustment required” in each case, calculated

using (11). Case (ii) provides a more optimal solution, since

the total load adjustment required to remove all of the network

constraints is approximately 20% lower in this case.

TABLE III
RESULTS OF CONSTRAINT MANAGEMENT USING DER

Case
MV nodes
adjusted

Initial peak

demand

(kW)

Final

adjusted
demand

(kW)

Total

adjustment
required

(kW)

(i) All 4578.9 4149.9 429.0

(ii) 4-20, 24-26 4578.9 4232.7 346.2

It is obvious to expect that load deferral in the nodes nearest

the feeder where the constraint occurs will have a greater

effect on removing the constraint violation, and that these

should be prioritised in a demand-response action. The OPF

formulation presented in Section III-C of this paper provides

the network operator with a systematic method of quantifying

the effect of implementing demand response at each node, and

optimising the overall allocation. In the example shown, the

approach is demonstrated using a thermal line constraint, but

the methodology also includes voltage constraints (Equation
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(5)), and could be easily extended to include other constraints,

e.g. fault levels or stability limits. For simplicity, it is assumed

in the analysis that the power factor of each MV load remains

constant as load is disconnected. It is shown in [6] that this

analysis can be extended by using more detailed, voltage-

dependent models of the end-user loads, and to model the

effects of demand-response on the network more accurately.

D. Voltage Estimation and Forecasting in LV networks

This section shows the results obtained for day-ahead esti-

mation of LV network voltages. In Fig. 8, a schematic diagram

of one of the LV feeders from the case study network is shown.

Each of the LV nodes 3-6 has residential customers connected

downstream, with a and the majority of users have PV capacity

installed. The results of the probabilistic voltage estimation

approach described in in Section III-D are shown in Fig. 9 and

Fig. 10, for a typical winter weekday and a typical summer

weekday, respectively. Confidence intervals of 50%, 90%, and

99% are calculated according to (9)-(10).

Fig. 8. Residential network used to demonstrate day-ahead voltage estimation
at LV, showing locations of installed PV capacity in each load group.
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Fig. 9. Day ahead estimates voltage profiles on residential LV feeder for
winter day, with confidence intervals at 50%, 90%, and 99%: a) LV node 3
(V3); b) LV node 6 (V6).

For the winter day case, the voltage there a significant

drop in the voltage during the morning peak at 08:00-10:00 is

forecasted. This effect is much more pronounced at the end of

the feeder (V6) than at the node nearer to the feeder head, V6.

For the summer weekday case (Fig. 10), significant voltage

rise is forecasted during the middle of the day (12:00-16:00),

when demand is low and output from PV is high. The forecast

uncertainty is particularly high during this time, Fig 10b.
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Fig. 10. Day ahead estimates voltage profiles on residential LV feeder for
summer day, with confidence intervals at 50%, 90%, and 99%: a) LV node 3
(V3); b) LV node 6 (V6).

This approach can provide early warning of voltage issues

and allow the network operator to avoid the occurrence of

voltage excursions by adjusting control settings as discussed

in Section III-D. In the example provided, it is assumed

that the voltage setpoint at the on-load tap changing primary

HV/MV transformer is 1.02 per unit. The MV/LV transformers

have no on-load tap-changing capability, and there is no

reactive compensation equipment installed in the part of the

LV network considered. In networks which have capacitor

banks or other voltage regulation installed, these elements

should be included in the system model, along with their

voltage control set points, in order to correctly forecast the

voltage changes caused by their actions.

V. CONCLUSIONS

This paper described the application of AMI data to demand

forecasting and operational planning services in distribution

networks with significant DER. The main contributions are the

development of three services, suitable for use in an advanced

distribution network management system. These can be used

to improve situational awareness and reduce network operator

workload by automating a number of the tasks involved in

short-term network planning. Each service is designed to

function independent from the distribution network type and

control scheme, and could be applied in either centralised or

de-centralised energy management systems. Some conclusions

on each individual service are provided below.

The demand forecasting service uses short-term load fore-

casting techniques to estimate demand and DG profiles at each

MV substation in the distribution network. The availability of

high-quality estimates at the MV substation level is important

for short-term operational planning and situational awareness

in the distribution network. However, the estimation of MV

substation-level loads is a difficult problem, due to the inherent

variability in smaller, disaggregated load profiles, and most

of the available literature on short-term load forecasting is

focused on the estimation of much larger demand groups (e.g.

tens to hundreds of MWs). In this paper, a NARX model

for forecasting of net demand at each distribution network

substation was proposed, and it was demonstrated that it
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provides a sufficient level of accuracy for the application. It

uses both historical load data and local weather forecasts to

estimate the demand, considering the impact on demands from

embedded PV. The outputs of the load forecasting service can

be applied for short-term planning, and are used as inputs

to the other two services described in the paper. One of the

limitations of the approach is that it only considers solar PV,

and not other forms of DG, such as wind or dispatchable DG.

However, solar PV is the most important DG technology in

terms of its impact on substation-level demands in many cur-

rent distribution networks, and is expected to be an important

issue in the future. In the case of wind DG, this is typically

installed in wind farms with larger overall capacities, rather

than embedded at LV, and traditional wind power forecasting

approaches should give better results than the “net demand”

approach described here. In the case of dispatchable DG, this

does not represent a forecasting problem as such, and its

network impact can be estimated relatively easily once the

rules around its scheduling and dispatch are known by the

DSO.

A number of previous studies have examined the use of

embedded DER and demand-responsive loads for the provision

of energy balancing services and the improvement of system

reliability. However, most of the work in this area does

not consider the importance of the location of the energy

resources within the distribution network on the effectiveness

of such demand-response actions. This paper applies an OPF

formulation to optimise the allocation of DER in managing

network constraints. The example shown in Section IV-C

demonstrates that the network location of DER has an im-

portant influence on the effectiveness of demand-response

actions in relieving network constraints. It is demonstrated that

the presented constraint management service provides a more

optimal management of the available resources. The proposed

OPF tool can be applied to any distribution system and any set

of network constraints, and can also be used to calculate the

maximum reserve available (e.g. for use in energy balancing

or grid ancillary services) from all embedded DER within a

distribution system.

Finally, the third service presented provides a means of

forecasting voltage levels along LV feeders, where no direct

voltage measurements are available. It is shown that the

estimates of net demand obtained in Section III-A along with

historical smart meter data, can be used to make a probabilistic

estimate of the voltages in the LV networks. The approach is

demonstrated in this paper using actual recordings from the

case study network. It is shown that the approach provides

early warning of potential voltage issues, and could be used a

basis for implementing control and optimisation schemes for

management of voltage in LV networks with significant DER.

Further work in this area will extend the LV voltage estima-

tion and forecasting approach to incorporate three-phase LV

network models and detailed, voltage-dependent load models

in the analysis.
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