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Slyne, Dr. Christian Blümm, Dr. Séamus McGettrick and Dr. Marco Ru�ni who

developed the control plane and the software-defined networking (SDN) platform

that were integrated with the physical layer of the experimental testbed. Lastly, a

special note of thanks must also be extended to Dr. René Bonk of Nokia Bell Labs
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Abstract

Fibre-to-the-Premises (FTTP) is currently seen as the ultimate in high-speed trans-

mission technologies for delivering ubiquitous bandwidth to customers. However,

as the deployment of network infrastructure requires a substantial investment, the

main obstacle to fibre deployment is that of financial viability. With this in mind,

a logical strategy to o↵set network costs is to optimise the infrastructure in order

to capture a greater amount of customers over larger areas with increased sharing

of network resources. This approach prompted the design of a long-reach passive

optical network (LR-PON) in which the physical reach and split of a conventional

PON is significantly increased through the use of intermediate optical amplification.

In particular, the LR-PON architecture e↵ectively integrates the metro and access

networks enabling the majority of local exchange sites to be bypassed resulting in a

substantial reduction in field equipment requirements and power consumption. Fur-

thermore, the extension in physical reach and split can be coupled with an increased

information capacity through the use of time- and wavelength division multiplex-

ing (TWDM) which serve to exploit the large bandwidth capabilities o↵ered by

single-mode fibre.

In this project, reconfigurable TWDM LR-PON architectures which dynamically

exploit the wavelength domain are proposed, assembled and characterised in order

to establish an economically viable ‘open access’ environment that is capable of

concurrently supporting multiple operators o↵ering converged services (residential,

business and mobile) to support diverse customer requirements and locations. The

main investigations in this work address the key physical layer challenges within

such wavelength-agile networks. In particular, a range of experimental analysis has

been carried out in order to realise the critical component technologies which include

low-cost, 10G-capable, wavelength-tuneable transmitters for mass-market residential

deployment and the development of gain-stabilised optical amplifier nodes to support

the targeted physical reach (≥ 100km) and split (≥ 512). Finally, the feasibility of

the proposed dynamically reconfigurable LR-PON configurations as a flexible and

cost-e↵ective solution for future access networks is verified through full-scale network

demonstrations using an experimental laboratory test-bed.
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1

Introduction

“The fundamental problem of communication is that of reproducing at one point

either exactly or approximately a message selected at another point.”

- Claude E. Shannon (1948)[1]

We live in an age of information. Just as the industrial revolution of the 19th

century saw the transition to remarkable new manufacturing processes, the digital

revolution which began at the end of the twentieth century has seen a radical shift

from analogue to digital electronics which has redefined global telecommunications

and technology. In particular, four years after the first report of laser action in a

semiconductor by Robert Hall and his team at General Electric [2], the introduction

of optical fibre by Charles K. Kao and George Hockham of Standard Telecommuni-

cation Laboratories Ltd. in 1966 launched a new era for fixed-line communications

infrastructure [3]. Today, over fifty years later, optical fibre has been deployed

throughout the world as the primary transmission medium in core and metropoli-

tan (metro) networks connecting businesses and communities while long-haul and

submarine fibre cables connect countries and continents as shown in Fig. 1.1 [4].

Figure 1.1: Global submarine fibre-optic cable map [4].
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1. Introduction

Information is now a resource comparable in value to that of oil having become a

cornerstone of global economics. Over the last decade, the increasing demand for

bandwidth is primarily due to an ever-growing level of online services such as high-

definition TV, video conferencing, online gaming, social media and cloud computing.

In fact, as shown in Fig. 1.2, the Cisco Visual Networking Index (VNI) has forecasted

that global internet-protocol (IP) tra�c will nearly triple from 96 exabytes1 per

month in 2016 to 278 exabytes in 2021 [5]. As a result, the e�ciency and speed of

information transfer from source to destination has become of critical importance.

In particular, the bandwidth that can be delivered to customers at the edge access

network is one of the most fundamental performance parameters as it correlates

directly with productivity and wealth creation [6, 7].

Figure 1.2: Compound annual growth rate forecast for internet protocol tra�c according
to the Cisco visual networking index, 2016 [5].

Fibre-to-the-Premises (FTTP) is currently the ultimate in high-speed transmission

technologies for delivering ubiquitous bandwidth to customers, and when installed

has the potential to deliver the envisaged bandwidth requirements for all users ir-

respective of geographic location for the foreseeable future [8]. Notably, standards

for multi-gigabit speed passive optical networks (PONs) are now nearly 10 years

old [9, 10], with new standardisation and research e↵orts focussed on developing

next generation access solutions with increased capacity through the aggregation of

wavelength channels [11] each supplying a higher bandwidth (>10Gb/s) to a larger

amount of customers over wider areas using a longer physical reach [12, 13].

11 exabyte = 1 × 1018 bytes 2



1.1. Context of the Study

Recent Growth in Fibre-to-the-Premises Deployment:

As shown in Fig. 1.3, the latest figures obtained from the Organisation for Economic

Co-operation and Development (OECD) indicate that the deployment of FTTP

is now actively underway in many countries around the world with governments

and network operators investing in optical access infrastructure to ensure economic

viability for the future.

Figure 1.3: OECD: Annual growth of fibre subscriptions, December 2016-2017 [14].

Despite the recent annual growth of fibre subscriptions, the transfer of communica-

tion services to a fully end-to-end optical network has progressed more slowly than

expected as major financial investment is required with considerable time needed to

complete the necessary work. As a result, many countries have chosen to incremen-

tally update their communications infrastructure using intermediate configurations

such as Fibre-to-the-Cabinet (FTTC) which reduces deployment costs by utilising

copper or wireless technologies as a interim solution [15]. In addition, the deploy-

ment of digital subscriber line (DSL) services such as asymmetric DSL (ADSL) and

very-high-bit-rate DSL (VDSL) has extended the lifetime of twisted-pair copper ca-

bles, however, with a limited bandwidth-distance product only those close to the

cabinets can be guaranteed a decent quality of service (QoS). This physical media

limitation has led to the creation of a digital divide, where broadband services are

severely limited for rural communities in remote areas served by long cables. Con-

sequently, the implementation of future access networks should now be focussed on

the e�cient use of fibre infrastructures and network resources rather than just the

simple increase of the available bandwidth per customer.

3
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1. Introduction

1.2 Background

Historically, the most e↵ective way to reduce operational and capital expenditure

(OPEX, CAPEX) in telecommunications networks is to maximally share the infras-

tructure and information capacity among as many customers as possible. Using this

approach, the most e↵ective configuration for FTTP is the passive optical network

(PON); a point to multi-point tree-like topology which uses passive optical splitters

to enable a single ‘feeder’ fibre to serve multiple customers via an optical distribution

network (ODN).

Figure 1.4: Conventional structure of a passive optical network (PON).

One of the main advantages o↵ered by the PON architecture is the ability to share

network costs among the end users; however, the growth in bandwidth resulting

from increased online services is such that traditional price decline (which occurs in

every industry as product volumes increase) may not be su�cient to keep the costs

of network growth in line with the revenue required by operators [16]. The finan-

cial margins are further restricted by the current high-cost of optical components

and the expensive, power-hungry electronic equipment located in the local exchange

(LE) sites. Nevertheless, a logical strategy to further o↵set network costs is to op-

timise the infrastructure in order to capture a greater amount of customers over

larger areas with increased sharing of network resources. This approach prompted

the design of an alternative architecture known as a long-reach PON (LR-PON)

in which the physical reach and/or the split of a conventional PON is significantly

increased through the use of intermediate optical amplification [12]. Notably, the

LR-PON architecture e↵ectively combines the access and metro networks into a

single all-optical system enabling the majority of LE sites to be bypassed result-

ing in a substantial reduction in the number of required equipment interfaces and

4



1.2. Background

network elements thus providing a cost-e↵ective access solution with a lower power

consumption. Furthermore, the extension in physical reach and split can be cou-

pled with an increased information capacity through the use of hybrid multiplexing

techniques such as time-division multiplexing and dense wavelength-division multi-

plexing (TDM-DWDM) which exploit the large bandwidth capabilities o↵ered by

single-mode fibre [17].

Motivation

In the past, large scale optical communication projects such as ‘PIEMAN’ [18] have

successfully demonstrated the advantages of increasing the physical reach, split and

capacity of access networks through in-line optical amplification and hybrid multi-

plexing schemes (i.e. TDM-DWDM). However, the physical layer design was cen-

tred around what has become known as the “lollipop” or “tree-structured” LR-PON

model. This configuration typically maintains a long feeder fibre (up to 90km) be-

tween the metro/core (M/C) node and the amplifier node (AN) located at the old

local exchange (LE) or central o�ce (CO) site and then a relatively short (up to

20km) optical distribution network (ODN). This configuration has been shown to

work well for urban areas where the customer base is densely distributed; how-

ever, in sparsely populated rural areas, the communities to be served can be much

smaller than the achievable LR-PON split, hence, the conventional tree-structured

LR-PON would be considerably underutilised leading to a direct increase in the

cost per customer. To this end, new architectures must now be identified, which are

advantageous for establishing economically viable and energy-e�cient optical access

solutions to ensure the future economic viability of rural communities.

A further issue in today’s networks is that of ‘stranded capacity’ in which net-

work bandwidth cannot be used for reconfigurable service provision because the

physical layer e↵ectively blocks access to it. Notably, this issue can be directly ad-

dressed through the dynamic exploitation of the wavelength domain; however, this

requires the realisation of low-cost remotely tuneable sources and receivers which

are supported by a wavelength-agile physical layer and e�cient bandwidth allocation

algorithms. Nonetheless, the introduction of reconfigurable optical access networks

will be a revolutionary step that will enable di↵erent wavelengths to be dynamically

allocated to various service providers or even to heterogeneous services (i.e. residen-

tial, business, wireless fronthaul). Moreover, while the capacity of each wavelength

5



1. Introduction

channel could be shared among multiple optical network units (ONUs) as in con-

ventional TDM-PONs, any channel could also remain unshared, being modulated

in any format with assignment to a single ONU, thus enabling the provision of ded-

icated point-to-point services over a shared fibre infrastructure. However, it should

be noted that these considerations require a ‘clean-slate’ approach to the architec-

tural design by universal application of optical technologies throughout the fixed

network eliminating traditional demarcations of core, metro and access. Thus the

essential concept is to establish a complete end-to-end architecture exploiting the

bandwidth and flexibility o↵ered by wavelength agile LR-PONs and a flat optical

core to produce an economically viable and energy e�cient optical network which

will be the foundation for communications for the long term future.

In this work, we study and successfully demonstrate the physical layer feasibil-

ity of two distinct DWDM-TDM LR-PON configurations capable of simultaneously

delivering all currently foreseen and future services including 10Gb/s residential,

100Gb/s business and wireless fronthaul to all users independent of their geograph-

ical location [19, 20]. A high-level illustration of these architectural configurations

is presented in Fig. 1.5. These new architectures far exceed the capability of cur-

rently deployed optical access networks in many ways. Firstly, the physical reach

was increased significantly compared with the typical distance of 20km for today’s

widely deployed G-PON systems to over 100km. Additionally, the realisation of

dynamically reconfigurable DWDM channels dramatically increases the capacity

and bandwidth e�ciency when compared to single wavelength systems. Finally, as

demonstrated in Chapter 6, a single LR-PON system will serve at least 512 ONUs

rather than the 32 (or 64) of today’s optical access systems.

Figure 1.5: High-level network concept proposed for urban and rural deployment.

6



1.3. Research Objectives

1.3 Research Objectives

The main objective of this project was to study and solve the critical physical

layer challenges facing the realisation of cost-e↵ective dynamically reconfigurable

DWDM-TDM LR-PON architectures. In particular, the research tasks addressed in

this work include:

• Analysis of innovative low-cost tuneable lasers targeted for mass deploy-

ment in customer premises equipment.

• Investigation of high gain, low-noise optical amplifiers capable of sup-

porting dynamic multi-channel tra�c over the targeted physical reach

and split.

• Assembly and evaluation of an advanced experimental testbed to demon-

strate the feasibility of dynamically reconfigurable LR-PONs for future

high capacity access networks.

With respect to the tuneable transmitters required for the customers premises equip-

ment, a consequence of the strict tolerance placed on the accuracy and precision of

the transmission wavelength within DWDM systems coupled with the need for a

wide tuning range (>10nm) demands a greater design and fabrication complexity

for tuneable diode laser technologies, hence, cost becomes a critical factor [21].

Consequently, to maintain the feasibility of the proposed network strategy, inno-

vative tuneable laser technologies must be investigated which have been driven by

the potential for appreciable cost savings through an increased yield, a lower power

consumption and a simplified fabrication processes.

Furthermore, in order to support the targeted reach and split ratio of the pro-

posed LR-PON physical layer, the amplifier nodes (ANs) must be carefully designed.

For instance, erbium-doped fibre amplifiers (EDFAs) have emerged as suitable can-

didates for deployment in optical access networks due to their ability to provide

a high gain and a relatively low noise figure across a wide band of channels [22].

However, their relatively slow gain dynamics attributed to a long upper state life-

time (∼ 10ms) indicates the potential for saturation induced gain transients. This

behavior can have a negative impact on the determination of the decision threshold

at the receiver leading to unrecoverable errors in received data; therefore, devices

7



1. Introduction

with active gain stabilisation controls must be studied in order to optimise the link

performance.

Finally, the feasibility of the proposed LR-PON configurations must be verified

through a physical layer demonstration. This requires the assembly of an exper-

imental testbed within which all of the required technologies are present. These

include the integration of 10G-capable burst-mode subsystems such as forward er-

ror correction (FEC) operating in conjunction with an innovative linear burst-mode

receiver (LBMRx) and the overlay of a dedicated point-to-point 100G channel for

business customers. Moreover, for the first time, the physical integration of software

defined networking (SDN) to manage access and core network is targeted to enable

two service use cases which include the provision of an end-to-end service restora-

tion in the case of a primary link failure and the realisation of dynamic bandwidth

allocation through wavelength assignment.

All of the work contained in this thesis was carried out within the Photonic

Systems Group of the Tyndall National Institute, University College Cork, Ire-

land. The activities were funded by Science Foundation Ireland (SFI) (grants

12/IA/1270, 12/RC/2276 and 10/CE/I1853) and the European Union large-scale

integrated project DISCUS (grant CNECT-ICT-318137).

1.4 Thesis Overview

Chapter two presents the fundamental physical concepts, properties and limita-

tions of fibre-optic transmission systems alongside the methods by which the per-

formance of these systems are evaluated. This is followed by a detailed synopsis

outlining the evolution of optical access networks is presented in chapter three. In

particular, the network configurations standardised by organisations such as the

International Telegraph Union Telecommunication Standardisation Sector (ITU-

T) and the Institute of Electrical and Electronic Engineers Standards Association

(IEEE-SA) are presented and discussed before the proposal of a new end-to-end ar-

chitecture aimed at bridging the ‘digital-divide’ based on the combination of a flat

optical core and a LR-PON.

Chapter four motivates the main challenges facing the realisation of low-cost

tuneable lasers for use within the optical network units of wavelength agile PONs. In
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1.4. Thesis Overview

particular, driven by the potential for appreciable cost savings through an increased

yield, the potential for a lower power consumption and simplified fabrication pro-

cesses, two progressive tuneable laser technologies including a MEMS-VCSEL and a

10G-capable monolithically integrated transmitter based on a single-growth slotted

Fabry-Pérot laser are presented and investigated in detail.

Chapter five presents the physical layer design strategy and subsystem analysis

of two distinct TDM-DWDM LR-PON topologies. These include a ‘tree-structured’

topology with a single amplifier node which is suitable for deployment in densely

populated urban areas and a novel chained amplifier node (‘open-ring’) architecture

for deployment in sparsely populated rural regions. Specifically, the feasibility of

each design is examined through a link power and OSNR budget in order to ensure

the performance of the upstream and downstream links are within the operating

range of the corresponding transceivers. Subsequently, the optical amplification

requirements are investigated in order to design the amplifier nodes with a par-

ticular emphasis on erbium-doped fibre amplifiers (EDFAs) due to their desirable

performance parameters. However, their relatively slow gain dynamics can result

in saturation-induced crosstalk in multi-channel systems, hence, devices with ac-

tive gain stabilisation circuitry are studied in order to ensure the integrity of the

high-dynamic range burst-mode tra�c.

In chapter six, the reconfigurable LR-PON architectures proposed in Chapter

5 are assembled and investigated through comprehensive network demonstrations

using an advanced experimental test-bed. Both configurations use EDFAs as in-line

amplifiers, however, through a collaboration with researchers from Nokia Bell Labs

in Stuttgart, an alternative tree-structured configuration using SOAs was also inves-

tigated in an attempt to extend operation outside the C-band. Notably, the work

presented in this chapter substantially extends previous demonstrations of evolu-

tionary optical access networks in relation to the size of the system demonstrated,

the level of reconfigurability and integration with the higher control and service

layers. The findings obtained from the work presented in Chapters four, five and

six resulted in the publication of a number of high impact conference and journal

articles which are catalogued within the ‘List of Publications‘.

Finally, chapter seven concludes this thesis with an overview of the main re-

search contributions alongside suggestions for future work.
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2

Fibre-Optic Transmission
Impairments and Performance

Evaluation

‘Sand from Centuries Past: Send Future Voices Fast’

- Charles K. Kao., Nobel Lecture, 2009.

This chapter presents an overview of the main physical phenomena associated with

optical fibre communication systems alongside a description of the transmission

performance evaluation techniques used throughout this work.

In section 2.1, the chapter begins with a brief overview of the development of opti-

cal fibre before moving on to discuss the primary sources of linear (loss, dispersion,

crosstalk) and non-linear (Kerr nonlinearities, inelastic scattering) signal distortions

acquired during transmission in section 2.2. In particular, to compensate for the

fibre propagation loss in long distance links and branching losses in access networks,

in-line optical amplifiers can be used in order to avoid costly optical-electrical-optical

(OEO) regeneration. For these reasons, general concepts common to all optical am-

plifiers, such as gain saturation and signal degradation due to amplifier noise, are

described in section 2.2.2. This is followed by a detailed discussion on the implica-

tions of optical receiver noise mechanisms in section 2.3, with an emphasis on shot,

thermal and beat-noise. Finally, section 2.4 presents an overview of the main per-

formance evaluation methods used to investigate the feasibility of an optical trans-

mission link through bit error rate analysis. For instance, the di↵erence in behavior

between a power-limited system and an OSNR-limited system is also discussed in

section 2.4.1.
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2. Transmission Impairments and Performance Evaluation

2.1 Optical Fibre

Today the majority of the world’s long-distance voice and data tra�c is carried over

optical fibre cables [23]. Unlike, traditional copper cables which utilise electrical

impulses to transmit information, optical fibres transfer data that has been encoded

in light. To motivate the concept of optical communications, the following sections

present a brief outline of the structure and development of optical fibre which has

revolutionised global telecommunications.

Structure:

In essence, an optical fibre is a cylindrical dielectric waveguide fabricated using

low-loss materials such as silicon dioxide, SiO2, also known as silica. Within an

optical fibre, light captured from an optical source is guided within the core of

refractive index, n1, which is surrounded by a cladding layer of lower refractive index,

n2. The cladding layer is typically covered in a protective acrylate bu↵er coating

that is applied during the manufacturing process in order to provide physical and

environmental protection. For field deployment, further shielding is provided by a

strengthening material contained within an outer covering known as a jacket which

is typically made from polyvinyl chloride (PVC). For instance, Fig. 2.1 presents an

image of a fibre-optic patch cord which is equipped with connectors at either end to

enable convenient connectivity between telecommunication equipment.

Figure 2.1: Single-mode fibre patch cord with magnified ceramic ferrule showing the
fibre cross section.

Development:

The foundations for the development of optical fibre can be traced to the mid-1850s

when Irish physicist John Tyndall’s famous ‘light-pipe’ experiment demonstrated

that light could be confined within a falling stream of water through the physical

12



2.1. Optical Fibre

phenomenon known as total internal reflection (TIR). Based on Tyndall’s work,

Kapany and Hopkins of Imperial College London invented the first actual fibre

optical cable in 1952 using unclad glass which was then used to develop a fibrescope

to convey optical images along a flexible axis [24]. A decade later, Charles Kao and

George Hockham working with Standard Telephones and Cables discovered that the

main source of attenuation in optical fibre was caused by impurities in manufacturing

[3]. Kao and Hockham also identified a critical and theoretical specification for long-

range optical communication devices requiring no more than 20dB of optical loss per

kilometre which prompted the need for a purer form of glass to help reduce light loss.

This target was overcome by Kapron, Keck and Maurer of Corning Glass Works in

1970 who successfully developed a fused glass fibre with a loss of ≤20dB/km [25] by

doping titanium into the fibre core. From this point, fibre optic research progressed

rapidly and by 1985 single-mode glass fibres made from highly purified silicon dioxide

(also known as silica, SiO2) derived largely from sand were routinely produced with

extremely low losses (≤ 0.2dB/km).

Optical Carrier Propagation:

Optical fibres are typically classified as multi-mode or single-mode fibres, where

the concept of a ‘mode’ typically refers to the spatial distribution of light which is

localised in the vicinity of the core through the process of total internal reflection

and which propagates through the fibre in the z-direction with a well-defined phase

velocity (vp = !��). That is, where the z and time dependence of the optical carrier

are given by the phase condition ei(�z−!t), where ! is the angular frequency and

� is the e↵ective propagation constant which is ultimately determined from the

boundary conditions defined by the fibre geometry [26].

�(!) = !

vp
= !

c
neff(!) (2.1.1)

where, neff is the e↵ective index which accounts for the refractive index of both

the core and cladding. It should be noted that an optical mode will cease to be

guided within the core when neff ≤ n2; therefore, the mode is said to reach a cut-o↵

when neff = n2. In practice, optical fibres for telecommunications are designed to

satisfy the weakly guiding approximation using a step-index (top hat) profile, where
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(n1 − n2)�n1 � 1 which implies that neff ≈ n1 [27].

The multi-mode fibre (MMF) variant of telecommunications fibre has a relatively

large core diameter (≈ 50µm) which results in the propagation of multiple spatial

modes. This larger core size simplifies connections by making it much easier to

capture light from a transmitter thus allowing source costs to be reduced. However,

due to the frequency dependent characteristics of the core material, the propagation

of multiple modes exhibits varying group velocities and di↵erent group delays which

results in modal dispersion during transmission [28]. Consequently, over long dis-

tances a substantial delay can develop between the fastest and slowest mode which

ultimately limits the bandwidth capability. Despite this inherent limitation, MMF

can be applied in short reach communications with an attenuation co-e�cient of

approximately 3.5dB/km and a typical bandwidth-distance product of 500 MHz.km

at 850nm with the ability to achieve 10Gb/s per fibre up to 300m [29].

Alternatively, single-mode fibre (SMF) has a core diameter between 8 and 10.5µm

which facilitates the transmission of a single fundamental spatial mode. As this type

of fibre is free from modal dispersion, the fidelity of each light pulse can be main-

tained over much longer distances compared with MMF; therefore, it is more suitable

for long-reach communication applications. Low-loss, step-index silica SMF (also

known as standard SMF) is the most common fibre variant deployed throughout

the world; its physical specifications are documented by the International Telecom-

munications Union (ITU) within the G.652 recommendations for the purpose of

standardisation [30]. An illustrated cross-section of a step-index single-mode optical

fibre is presented in Fig. 2.2.

Figure 2.2: Illustrated cross section of a step-index single-mode fibre.
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The Information Signal:

In practice, the digital information signal can be encoded onto the optical carrier in

the transmitter by varying the carriers intensity (I), frequency (!c) or phase (�) to

represent a ‘1’ or a ‘0’ using a technique known as modulation [31].

Intensity (or amplitude) modulation (IM/AM) is the most-common format in

fibre-optic communications as it is one of the most straightforward ways of encoding

a carrier signal with information. In turn, the simplest form of IM is known as on-o↵

keying (OOK) in which the information is represented by the carrier as a sequence

of high and low light intensities which are represented by a train of optical pulses.

In general, a high intensity (pulse) represents a ‘1’ while a low intensity (no pulse)

signifies a ‘0’. At the receiver side, the process of demodulation is also relatively

straightforward requiring a photodetector to convert the optical signal back into an

electrical signal through direct detection (DD) where a decision circuit then identifies

bits as either ‘1’ or ‘0’ by comparing the amplitude of the electric signal with respect

to a decision threshold as illustrated in Fig. 2.3.

Figure 2.3: Conceptual block diagram of a basic optical communication system using
intensity modulation and direct detection.

In this thesis, the primary modulation format of interest is non-return-to-zero on-o↵-

keying (NRZ-OOK), where the optical power does not return to zero between two

successive ‘1’ bits. Instead, it occupies the full timeslot, T = 1�B, where B signifies

the bit-rate and both ‘1’ and ‘0’ symbols occur with equal probability (50%) regard-

less of the state of the preceding bit. An illustration of the NRZ-OOK modulation

waveform is presented in Fig. 2.4.
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Figure 2.4: Illustration of an NRZ-OOK modulation signal.

For system performance evaluation, a pseudorandom binary sequence (PRBS) is

typically used as a general-purpose test pattern. PRBS is can be denoted as 2n − 1
or PRBS-n, where n indicates the shift register length used to create the pattern.

Each PRBS pattern contains every possible sequence of n bits, except the state which

corresponds to all zeros. Consequently, each NRZ-OOK PRBS test pattern has an

associated power spectral density (PSD) that indicates the frequency distribution

of the power in the pattern. In particular, for NRZ-OOK, by assuming an ideal

rectangular modulating signal with amplitude, A, and bit rate B; the normalised

PSD envelope of a monochromatic optical carrier with a frequency fc encoded with

NRZ-OOK can be determined as [32]:

SNRZ
c (f) = A2

8B
[sinc2(f − fc

B
) + sinc2(f + fc

B
)] + A2

8
[�(f − fc) + �(f + fc)] (2.1.2)

Figure 2.5: Spectral envelope of a monochromatic optical carrier modulated at 10Gb/s
with NRZ-OOK.
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Knowledge of the spectral profile of a modulated signal ultimately leads to improve-

ments in system design. For instance, the result shown in Fig. 2.5, indicates that

the spectrum of a modulated optical carrier contains many frequency components

with most of the energy contained within the spectral region fc ±B. Consequently,

even in the ideal case of a monochromatic optical carrier, the signal will have an

appreciable spectral width. Furthermore, it is clear that there is substantial low-

frequency content that can be attributed to long sequences of consecutive identical

digits (CIDs) in the data signal. These features introduce significant challenges for

clock and data recovery (CDR) units located at the receiver which must extract

timing information in order to process the data synchronously. In practice, further

encoding or scrambling is often used to increase the transition frequency in order to

format the data into a more manageable form.

2.2 Transmission Impairments

Optical fibre o↵ers several distinct advantages over alternative transmission media,

including a superior bandwidth capability, low-loss and high link reliability through

immunity to moisture and external electromagnetic interference (EMI). However,

as with any transmission medium apart from a vacuum, the propagation of light

through optical fibre is beset with several limitations which become more evident as

the transmission distance is increased.

Fibre-optic transmission impairments can be categorised into three groups: lin-

ear, non-linear and noise. These impairments can accumulate within the fibre and

any interaction between these processes can lead to deterministic (predictable) or

stochastic (random) outcomes. The main sources of linear impairment include at-

tenuation (or loss), chromatic dispersion (CD), polarisation mode dispersion (PMD)

and adjacent channel crosstalk. Alternatively, the main source of non-linear im-

pairments in optical fibres are a consequence of Kerr nonlinearities which include

self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave mix-

ing (FWM) in addition to inelastic scattering processes such as stimulated Brillouin

scattering (SBS) and stimulated Raman scattering (SRS).
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2.2.1 Linear Signal Distortions

In a dielectric† medium such as optical fibre, the electric polarisation, �P , is frequency

dependent and does not respond instantaneously to an applied electric field [26].

This inherent delay results in the dissipation of the electromagnetic energy within

the medium which manifests as a loss of signal power at the waveguide output.

Consequently, the relative permittivity, ✏r, of a ‘lossy’ dielectric is generally given

as a complex function which is dependent on frequency;

✏r(!) = ✏Real
r (!) + i✏Imr (!) (2.2.1)

where, ✏Real
r is the real part of the dielectric permittivity, ✏Imr (!) represents the

imaginary part of the dielectric permittivity and i =√−1.
This phenomenon also has consequences for the refractive index of the dielectric

material, n, as both quantities are related through the following expression:

n = c

v
= 1√

µ0✏0
.

√
µ✏

1
=
�

µ0µr✏0✏r
µ0✏0

=�✏r(!), where, µr = 1 (2.2.2)

where, µ0, µr, ✏0, ✏r represent the free-space and relative magnetic permeability and

electric permittivity respectively.

In turn, Eqn. 2.2.2 implies that the refractive index can also be considered as a

complex function which is dependent on frequency according to:

n(!) = n(!) + i(!) ≡�✏r(!) (2.2.3)

where, n signifies the real part of the refractive index (= c�v) and  represents

the imaginary part of the refractive index which is often termed the extinction

coe�cient. In practice, the complex nature of the frequency dependent refractive

index has implications for the propagation constant (�) which is used to describe

the phase of the guided carrier wave as it propagates through the fibre.

�(!) = !

c
n(!) = !

c
(n(!) + i(!)) (2.2.4)

†Insulator that can be polarised by an E-field 18
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Attenuation in Silica-Based Optical Fibre:

As with any physical medium apart from a vacuum, the dielectric fibre waveguide

demonstrates an intrinsic loss of power when an optical signal is transmitted through

it. By minimising extrinsic factors such as bending losses [33], the main sources of

attenuation within glass optical fibre for low intensity operation can be attributed

to material absorption and elastic scattering. Notably, pure silica glass has two

intrinsic absorption mechanisms in the ultraviolet (↵UV ) and infrared (↵IR) regions

which leave a low absorption window between 800 and 1700nm.

A major source of extrinsic absorption in optical fibre is due to the presence hy-

droxyl (OH−) ions from water vapour which is bonded to the glass structure during

the manufacturing process (↵OH−) producing absorption peaks at ∼ 1383nm, 950nm

while combination of the overtones with the fundamental silica resonance result in

visible peaks at 1240nm, 1130nm and 880nm. These peaks can be seen in the atten-

uation spectrum of low-loss optical fibre presented in Fig. 2.6. An additional source

of extrinsic loss in silica fibre is due to transition metal ion impurities (↵Im) which

include iron (Fe2+), copper (Cu2+) and chromium (Cr3+) which are also dissolved

within the glass during the manufacturing process. Consequently, the total absorp-

tion coe�cient of the fibre (↵Abs) is given by the sum of the intrinsic and extrinsic

absorption contributions:

↵Abs = ↵UV + ↵IR + ↵OH− + ↵Im (2.2.5)

For low intensity operation, optical scattering is best described in terms of elastic

phenomena where photons interact with spatial variations in the material dielec-

tric constant (✏r), such that the photons alter their propagation direction, phase,

and polarisation, without energy loss such that the photon frequency after scatter-

ing remains the same. Linear scattering can be categorised into two major types:

Rayleigh and Mie scattering; both resulting from non-ideal physical properties of

the manufactured fibre.

Rayleigh scattering is the dominant intrinsic loss mechanism in the low-absorption

window of the fibre between the UV and IR absorption regions. It results from ran-

dom inhomogeneities in the material density which are much smaller than the wave-

length of the light. The subsequent elastic scattering produces an attenuation, ↵R,

proportional to the inverse fourth power of wavelength (∝ 1��4) which significantly
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impacts shorter wavelengths [34, 35]. Alternatively, Mie scattering can occur for

material inhomogeneities that are comparable in size to the wavelength of the light

(i.e > ��10). Such irregularities include fibre diameter fluctuations, the presence

of air bubbles and appreciable index variations in the core-cladding interface. For-

tunately, due to a well-established and carefully controlled manufacturing process,

conventional silica-based glass fibres are largely free of such material instabilities;

therefore, attenuation due to Mie scattering is typically negligible (i.e. ↵Mie ≈ 0)

with the total attenuation due to the elastic scattering contribution, ↵R, attributed

to Rayleigh scattering. As a result, the total attenuation coe�cient within silica op-

tical fibre which is attributed to the combination of material absorption and linear

scattering can be expressed as,

↵Tot = ↵Abs + ↵R (2.2.6)

The first low-loss optical fibre was manufactured by the Nippon Telegraph and Tele-

phone (NTT) Public Corporation, Japan in 1979 [36]. Figure 2.6 presents the atten-

uation spectrum for a low-loss single mode fibre with the wavelength transmission

bands for single-mode fibre as specified by the International Telecommunications

Union (ITU) within supplement 39 of the G Series recommendations [37].

Figure 2.6: Attenuation spectrum of the first low-loss single-mode fibre (1979) with
highlighted transmission bands for optical communications (Reproduced from [36]).

20



2.2. Transmission Impairments

A description of the six ITU wavelength bands (O,E,S,C,L and U) which comprise

the spectrum between 1260nm to 1675nm are presented in Table 2.1. It should be

noted that long-haul transmission initially took advantage of the O and C-bands with

subsequent extension into the L-band in order to take advantage of the dispersion

and low-loss properties of the fibre respectively. In this thesis, the experiments and

simulations utilise the C-band (1535 - 1565nm), unless otherwise stated, where a

minimum loss of ↵dB < 0.2dB/km can be achieved when appropriate manufacturing

processes are employed.

Band Description Range Bandwidth

O-Band Original 1260 - 1360nm 100nm (17.5THz)

E-Band Extended 1360 - 1460nm 100nm (15.1THz)

S-Band Short-Wavelength 1460 - 1530nm 70nm (9.4THz)

C-Band Conventional 1530 - 1565nm 35nm (4.4THz)

L-Band Long-Wavelength 1565 - 1625nm 60nm (7.1THz)

U-Band
Ultra-Long
Wavelength 1625 - 1675nm 50nm (5.5THz)

Table 2.1: Wavelength transmission bands for single-mode fibre communications [37]

Propagation Loss:

The overall throughput of an optical fibre can be quantified in terms of the input

optical power, P (0), and the output power, P (L) observed after light propagates a

distance, L, along the fibre length:

P (L) = P (0)e−↵L (2.2.7)

where, ↵ is the total attenuation coe�cient for the fibre which has units of Neper

per meter [Np�m]. The Neper is a logarithmic unit which uses the base e; however,

it is usually more convenient to express the fibre attenuation coe�cient in decibels

per kilometre [dB/km] which uses a logarithmic unit to the base 10 and is related

to the linear scale according to the following expression:
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↵dB

↵
= 10log10e ≈ 4.343 (2.2.8)

In optical communications, optical signal power is generally represented using the

logarithmic decibel scale which is referenced to a value of one milliwatt (1mW ).

Absolute power measurements referenced to 1mW are denoted by the unit dBm.

PdBm = 10log10(PmW

1mW
) (2.2.9)

Figure 2.7: Propagation Loss in Optical Fibre for an Attenuation Coe�cient of 0.2dB/km
(∼ 0.046 Np/km) Corresponding to Transmission around 1550nm Using a Launch Power
of 1mW (0dBm).

Dispersion in Optical Fibres:

As demonstrated in Eqn. 2.2.4, when an optical signal is launched into a fibre, the

frequency components of the signal will propagate with di↵erent speeds due to the

frequency dependence of the refractive index, this e↵ect is known as dispersion. In

an amplitude modulated system, dispersion leads to the temporal broadening of the

optical pulses which ultimately limits the achievable transmission bandwidth and

physical reach due to intersymbol interference (ISI) where adjacent pulses interfere

with each other up to a point where they are indistinguishable from each other.
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The primary sources of pulse broadening in fibre-optic communications include inter-

modal dispersion, chromatic dispersion and polarisation-mode dispersion. Notably,

the main advantage of single-mode fibre is that intermodal dispersion is absent as

only the fundamental mode is allowed to propagate. Moreover, the experiments

in this thesis were carried using bit rates ∼ 10Gb/s and transmission distances ∼
100km which are far below the threshold for which the impact of polarisation-mode

dispersion becomes appreciable [26]; hence, its contribution to pulse broadening is

assumed to be negligible. Consequently, the primary source of pulse broadening

considered in this work is a result of chromatic dispersion which is a consequence of

the frequency dependence of the refractive index.

Chromatic Dispersion:

Chromatic dispersion (CD) refers to the temporal broadening of an optical pulse

during propagation due to the frequency dependence of the refractive index, n(!),
as discussed previously. This property causes di↵erent spectral components of an

optical pulse to propagate along the fibre with slightly di↵erent group velocities,

vg. In practice, the amount of CD can be determined through the derivative of the

relative group delay, ⌧g, with respect to the vacuum wavelength, �, which is typically

specified in units of picoseconds per nanometer [ps�nm]:

CD = d⌧g
d�
= d

d�
( L
vg
) [ps�nm] (2.2.10)

where, the relative group delay, ⌧g, is the time taken for the constituent wavelengths

of the optical pulse to propagate through a distance L with a group velocity, vg,

which represents the propagation speed of the pulse envelop.

As v−1g = d��d!, by definition, where �(!) is the frequency dependent propaga-

tion constant; Eqn. 2.2.10 can be re-written as,

CD = L d

d�
(d�
d!
) = −2⇡cL

�2

d

d!
(d�
d!
) = −2⇡cL

�2
.�2 (2.2.11)

where, �2 = d2��d!2 is known as the group velocity dispersion (GVD) parameter.
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In fibre-optic communications, it is usually more convenient to define a dispersion

parameter, D�, which is expressed in units of picoseconds per nanometer per kilo-

metre [ps/(nm.km)]:

D� = d

d�
(d�
d!
) = d

d�
( 1
vg
) = −2⇡c

�2
�2 [ps�(nm.km)] (2.2.12)

For practical purposes, the dispersion parameter, D�, of optical fibre is usually

extrapolated using the following well-known expression [38, 39]:

D� = S0

4
(� − �4

0

�3
) [ps�(nm.km)] (2.2.13)

where, S0 signifies the dispersion slope (S0 = dD��d�) which governs higher-order

dispersion e↵ects and �0 is the zero-dispersion wavelength. For standard single mode

fibre, �0 lies around 1310nm and S0 is approximately 0.092 ps�(nm2 ⋅km) [40]. The
dispersion parameter for standard SMF as specified in Eqn. 2.2.13 is presented in

Fig. 2.8.

Figure 2.8: Dispersion parameter as a function of transmission Wavelength for Standard
Single-Mode Fibre.
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Ultimately, chromatic dispersion in optical fibre places a limit on the maximum dis-

tance that a signal can be transmitted before requiring regeneration. This limit can

be estimated by determining the transmission distance at which a pulse has broad-

ened by one bit interval, Tb. For instance, the amount of temporal pulse broadening,

�T , accumulated over a fibre length, L, can be determined by considering the optical

spectral width (��),

�T = �D��.��.L (2.2.14)

For transmission at a bit rate, B, if an optical pulse has been broadened by one bit

period (i.e. �T = Tb = 1�B), the corresponding transmission distance known as the

dispersion length can be determined as:

B.�T = B.(�D��.��.L) = 1 ⇒ L = 1

B.�D��.��
(2.2.15)

For an externally modulated NRZ-OOK signal, the spectral width, �f , can be

estimated as ∼ 1.2B [41]. By converting this relation into the wavelength domain†

the dispersion length for 10Gb/s transmission at 1550nm in a standard single mode

fibre where �D�� ≈ 17 [ps/(nm.km)] can be estimated as,

LD = c

1.2B2�D���2
≈ 61.21km (2.2.16)

This estimated limit is close to the 70km observed in practice for a 1dB power-

penalty which indicates the increase in optical power required to maintain the same

signal quality as that in the absence of dispersion [41]. It should also be noted

that the dispersion limit is inversely proportional to the square of the bit rate.

Consequently, as the bit rate is increased, not only will the frequency content of

the signal increase but the timeslots will become narrower resulting in an increased

sensitivity to broadening of adjacent pulses. This feature indicates that chromatic

dispersion is one of the most significant performance limiting phenomena in fibre-

optic communications.

†f = c
�
⇒�f = �− c
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Out-of-band Crosstalk and Filter-Induced Signal Distortions:

In WDM systems, wavelength selective components such as demultiplexers and op-

tical bandpass filters are used to isolate channels for re-routing or detection. While

the insertion losses (IL) of these wavelength selective components can be kept rel-

atively low, narrow channel spacing coupled with poor channel isolation can result

in power from an adjacent channels being present in that of the target channel.

This leaked power e↵ectively acts as noise on the target channel and is known as

out-of-band (or inter-channel) linear crosstalk [42]. Alternately, filter-induced signal

distortions can arise if the signal passes through a chain of wavelength selective com-

ponents which may narrow the bandwidth enough to produce clipping of the signal

spectrum. However, as this work concentrates mainly on wavelength agile access

network applications where the overall number of employed filters/multiplexers is

limited to a few (i.e. <5), such impairments do not represent a major issue and for

this reason they are no longer taken into account. However, for further information

on these topics the reader is referred to [43], [44] and [45].

2.2.2 Loss Compensation Through Optical Amplification

As discussed in section 2.2.1, inherent attenuation in optical fibre leads to propaga-

tion loss which ultimately limits the achievable physical reach of fibre-optic trans-

mission links. To overcome this inherent attenuation, in-line optical amplification

can be employed within the system to boost the power of the transmitted signals

in order to ensure that they are above the detectability threshold of the associated

optical receivers. Notably, one of the main advantages of optical amplification is

that it avoids signal regeneration through optical-electrical-optical (O-E-O) conver-

sion which is not financially or practically viable for WDM applications in which

multiple channels are transmitted over the fibre. Moreover, optical amplifiers o↵er

several advantages over regenerators which include insensitivity to the bit rate or sig-

nal formats alongside the ability to amplify multiple WDM channels simultaneously;

hence, a system using optical amplifiers can be more easily upgraded.

The various utilisation strategies for optical amplifiers within a fibre-optic link

[46] are demonstrated within Fig. 2.9. For instance, at the transmitter side, a

booster amplifier can be used to ensure a su�ciently high launch power while in-
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line amplifiers compensate for loss in the field deployed fibre. Lastly, at the receiver

side, a pre-amplifier can be used to exploit the sensitivity of the optical detector. In

the following section, the main aspects of optical amplification are discussed with

respect to their impact on the transmission performance.

Figure 2.9: Illustration of the utilisation strategy for optical amplifiers within a fibre-
optic link.

Optical Gain and Saturation:

The large-signal gain provided by an optical amplifier is defined as the ratio of the

output power, Pout, to the input power, Pin, of the propagating continuous-wave

signal:

G = Pout

Pin
(2.2.17)

where, the equivalent relation in decibel units is given by,

GdB = Pout [dBm] − Pin [dBm] (2.2.18)

In general, the gain provided by a particular active material can be determined

through the evolution of optical power through that material.

dP

dz
= g(!)P (z) (2.2.19)

where, P is the optical power at a distance z from the input (z = 0) and g(!) is the
frequency and power dependent material gain coe�cient per unit length which can

be modelled as a homogeneously broadened two-level system [47]:
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g(!) = g0
1 + (! − !0)2T 2

2 + P �Psat
(2.2.20)

with the peak gain, g0, frequency of incident signal, !, transition frequency, !0,

dipole relaxation time, T2 and input saturation optical power, Psat which in the

steady state leads to a reduction in the gain to half of its small-signal value.

When the incident optical frequency is tuned to the gain peak (i.e. ! = !0), the

gain co-e�cient is then given by,

g(!) = g0
1 + P �Psat

(2.2.21)

Substituting Eqn 2.2.21 into Eqn. 2.2.19, the evolution of power along the amplifier

is then given by

dP

dz
= g0P (z)
1 + P �Psat

This equation can be solved by separating the variables and integrating over the

length of the gain medium as follows,

� P (L)
P (0) (

1

P (z) + 1

Psat
)dP = g0� L

0
dz (2.2.22)

By recognising that P (0) = Pin, P (L) = Pout = GPIn and G0 = eg0L (unsaturated

gain); the solution to Eqn. 2.2.22 is given by,

Pout

PSat
= G

G − 1 loge(G0

G
) (2.2.23)

⇒ Pout = G

G − 1 loge(G0

G
).Psat (2.2.24)

In contrast to the input saturation power, PSat, the output saturation power of

optical amplifiers, POut
s , is typically specified by the output power for which the

gain has dropped by a factor of 2 (i.e. G = G0�2).
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⇒ POut
s = G0loge(2)

G0 − 2 .Psat (2.2.25)

Figure 2.10: Optical gain as a function of the output power for G0 = 30dB and P
Out
s ≈

+10dBm.

Noise Contribution from Optical Amplifiers:

The main disadvantage of optical amplification is the generation of optical noise

due to amplified spontaneous emission (ASE). ASE is the product of a quantum

e↵ect known as spontaneous emission which is attributed to the spontaneous decay

of excited states of atoms or ions within an active material; therefore, it is an

unavoidable e↵ect. When ASE appears outside the wavelength region of the signal, it

can be filtered out using an optical filter; however, when it lies within the wavelength

region of the signal, it constitutes noise which cannot be separated from that signal.

Consequently, if multiple amplifiers are concatenated within a fibre-optic link, the

ASE contribution can accumulate within the link and result in serious degradation

of the optical signal-to-noise ratio (OSNR) which can dictate the signal quality at

the receiver. The total ASE power at the output of an optical amplifier within an

optical bandwidth, Bref , considering both possible polarisation modes for a given

value of gain, G, is given by the following relation [48]
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PASE = 2SASEBref = 2.nsp(G − 1)h⌫Bref (2.2.26)

where, SASE = nsp(G − 1)h⌫ represents the ASE power spectral density [W �Hz]
for a single polarisation mode which incorporates Planck’s constant (h ≈ 6.626 ×
10−34 [Js]), the optical frequency, ⌫, for which the product h⌫ gives the energy of

one photon at the signal frequency, the amplifier gain, G, and the spontaneous-

emission factor, nsp, which is a function of the atomic populations of the ground,

N1, and excited states, N2, of a two-level system as demonstrated in Eqn. 2.2.27.

nsp = N2 −N1

N1
(2.2.27)

Subsequently, the OSNR at the output of an optical amplifier is defined as the ratio

of the average optical signal power, Pout, to the ASE power, PASE, which is typically

measured within an optical reference bandwidth, Bref , of 0.1nm (∼ 12.5GHz for

wavelengths in the region of 1550nm).

OSNR = Pout

PASE
= GPin

2.nsp(G − 1)h⌫Bref
(2.2.28)

In practice, a common way to characterise the performance of an optical amplifier is

through its associated noise figure, NF , which is a measure of the amount of optical

noise added to the signal following amplification [48]:

NF ≈ PASE

2h⌫BrefG
+ 1

G
≡ 2nsp

G − 1
G
+ 1

G
≈ 2nsp, when G� 1 (2.2.29)

From Eqn. 2.2.29, it should be noted that in the case of an ideal amplifier (nsp =

1), the NF maintains a minimum value of 2 which suggests that although an optical

amplifier improves the signal strength it will also degrade the signal-to-noise ratio,

SNR, by at least a factor of 2 (i.e. 3dB); this feature of phase insensitive amplifiers

in the region of high gain is known as the quantum limit [49]. In practice, the noise

figure of optical amplifiers depends on the technology used and typically exhibit
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values above this quantum limit, i.e. nsp > 1 . For instance, semiconductor optical

amplifiers (SOAs) providing 20dB gain typically demonstrate values in the region of

6.5dB as demonstrated in Fig. 2.11.

Figure 2.11: Measured gain and noise figure as a function of the input power to a CIP
SOA-S-C-14-FCA using a wavelength at 1550nm.

For practical purposes, the gain and NF values of commercial amplifiers are typically

specified within the product datasheet. Using the expression for NF presented in

Eqn. 2.2.29, the OSNR at the output of an optical amplifier (given by Eqn. 2.2.28)

can be re-written as:

OSNR = GPin(NF G − 1)2h⌫Bref
≈ Pin

NF h⌫Bref
, for G� 1 (2.2.30)

As both OSNR and NF are typically specified in decibel (dB) units; it is usually

convenient to re-write Eqn. 2.2.30 as,

OSNR [dB] = 10log10(OSNR)
≈ Pin [dBm] + 30���������������������������������������������������������������������������������

10log10(Pin[W ])
−NF [dB]�����������������������������������

10log10(NF )
−10log10(h⌫Bref) (2.2.31)

Notably, Eqn. 2.2.31 indicates that for a given signal frequency, ⌫, the OSNR at

the output of an optical amplifier for an optical reference bandwidth, Bref , can
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determined from the input power, Pin, and the associated NF. Consequently, in

order to improve the OSNR, the launch power must be increased or the length of

the fibre span has to be reduced; however, it should be noted that the fibre launch

power is ultimately limited by degradations due to nonlinear impairments which are

briefly discussed in the following section.

2.2.3 Non-Linear Signal Distortions

Fundamentally, the origin of nonlinearity lies in the anharmonic motion of bound

electrons under the influence of an intense electric field. Consequently, the electric

polarisation, �P , has a general relation which is comprised of a linear component,�PL, and a nonlinear component, �PNL, as defined in Eqn.2.2.3.

�P = ✏.�(1)e
�E����������������������PL

+ ✏.�(2)e
�E. �E + ✏.�(3)e

�E. �E. �E + ...��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������PNL

In practice, the dominant contribution to �P is provided by the linear dielectric

susceptibility, �(1)e , it’s value determines the refractive index, n, and the attenuation

coe�cient, ↵. Moreover, the second order susceptibility, �(2)e , is responsible for

Pockels e↵ect and second harmonic generation in materials which lack inversion

symmetry at the molecular level [50]. However, as silica is composed of symmetric

O-Si-O molecules, �(2)e �→ 0; hence, optical fibres do not tend to exhibit nonlinear

e↵ects related to second order susceptibility [50]. Nonetheless, electric quadrupole

and magnetic dipole moments as well as defects within the fibre core can contribute

to second harmonic generation in optical fibre under certain conditions. As these

processes are beyond the scope of this work they will not discussed further; however,

for additional information the reader is referred to [51] and [52].

Notably, the lowest-order nonlinear e↵ects observed in optical fibre are primar-

ily attributed to the third order susceptibility, �(3)e which is responsible for third

harmonic generation (THG), four wave mixing (FWM) and non-linear refraction.

As the processes that produce THG and FWM in optical fibres have a relatively

low e�ciency, the majority of nonlinear e↵ects are a result of non-linear refraction

which is a consequence of the intensity dependence of the refractive index which is

also known as the Kerr-e↵ect defined in Eqn. 2.2.32 [53].
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n(!, I) = nL + nNL.I = nL + nNL.
P

Aeff
(2.2.32)

where, nL is the linear refractive index, nNL is the nonlinear refractive index which

is ≈ 2.63×10−20 [m2�W ] for silica fibres in the region of 1550nm [54], I is the optical

intensity [W �m2], P [W ] is the optical power and Aeff [m2] is the e↵ective area

of the fibre core over which the optical power is assumed constant (Aeff ∼ 85µm2

for standard SMF). Furthermore, as the propagation of light within optical fibre is

limited by attenuation, the majority of the nonlinear interactions take place within

the initial region of the fibre link. For convenience, this region, known as the e↵ective

length, Leff , is modelled as a the distance over which the power is assumed to be

approximately constant [55].

Leff = ∫
L
0 P (z)dz

Pin
= 1

Pin
� L

0
Pine

−↵zdz

= � L

0
e−↵zdz = 1 − e↵L

↵
≈ 1

↵
, for L >> 10km (2.2.33)

where, L represents the physical length of the fibre and ↵ gives the fibre loss in

Neper per kilometre [Np/km]. For instance, a fibre link with a loss coe�cient of

0.2dB/km and a physical length of 100km has a corresponding e↵ective interaction

length of ∼ 21.5km.

Kerr Nonlinearities:

The intensity dependence of the refractive index presented in Eqn 2.2.32 gives rise to

multiple non-linear e↵ects which include self-phase modulation (SPM), cross-phase

modulation (XPM) and four-wave mixing (FWM).

The intensity dependent refractive index causes an induced phase shift in the

propagating pulse that is proportional to the temporal variation of its own intensity;

this process is known as self-phase modulation (SPM). Consequently, the various

wavelength components within the pulse will undergo di↵erent phase shifts which

in turn gives rise to a frequency chirp (i.e. a temporally varying instantaneous
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frequency across the pulse).

In practice, for an unchirped input pulse, the SPM-induced chirp is inherently

positive in that the leading edge causes the refractive index to increase resulting

in a shift to lower frequencies (red-shift) while the falling edge causes a decrease

in refractive index producing a shift towards longer frequencies (blue-shift). This

self-induced frequency chirp a↵ects the propagating pulse through GVD [50]; hence,

transmission over long distances (� 10km) can produce substantial pulse broad-

ening which ultimately limits the achievable bit rate. Moreover, unlike chromatic

dispersion, the nonlinear SPM induced chirp cannot be easily compensated as these

amplitude distortions are dependent on the signal power. However, in an anomalous

dispersion regime (�2 < 0,D� > 0), the interplay between SPM and GVD can produce

a lower level of pulse broadening than in the case of GVD alone, therefore, a cer-

tain level of SPM can actually be advantageous for fibre-optic communications [56].

Nonetheless, SPM is ultimately a power limiting nonlinear process in single-mode fi-

bres for long distance transmission [57], hence, in order to prevent appreciable pulse

broadening and distortion attributed to SPM for a given length of fibre the launch

power must be controlled.

Alternatively, in a multichannel system, the intensity dependence of the refrac-

tive index can also produce a non-linear phase shift which depends not only on

the power of an individual channel but also on the power of the other channels

propagating within the fibre; this nonlinear phenomenon is known as cross-phase

modulation (XPM) [58]. In standard SMF, the XPM-induced nonlinear phase mod-

ulation is translated into intensity fluctuations through chromatic dispersion which

can result in a severely degraded channel performance; thus, XPM is exhibited as an

inter-channel crosstalk mechanism which e↵ectively limits the number of wavelength

channels that can be transmitted simultaneously through a single fibre.

It is important to recognise that chromatic dispersion also causes di↵erent wave-

length channels to propagate with di↵erent group velocities such that their relative

position changes along the fibre, that is to say the channels walk-o↵ from each other

as they propagate. However, as XPM can only occur when pulses overlap in the time

domain, the di↵erence in group velocity for channels with a wide spectral separation

will be large enough such that the temporal overlap of optical pulses is short and the

impact of XPM is negligible. Nonetheless, as the channel spacing is decreased the

di↵erence in group velocity between adjacent channels may become low enough such
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that the overlap is long enough to enable the XPM e↵ects to accumulate; hence, a

higher value of dispersion can be beneficial to suppress XPM-induced crosstalk [59].

In practice, the walk-o↵ length, Lw, given in Eqn. 2.2.34 can be used to provide an

indication of the XPM e�ciency; it signifies the length of fibre required for inter-

acting pulses separated by a channel spacing, ��, to walk-o↵ from each other [60]

as demonstrated in Fig. 2.12.

Lwo ≈ �t

D���
[m] (2.2.34)

where, D� is the fibre dispersion parameter and �t represents the time duration that

characterises the intensity changes in the propagating optical signals. In the case of

NRZ-OOK signals, the changes in optical intensity correspond to distinct rising or

falling edges, therefore, �t represents the edge duration.

Figure 2.12: The walk-o↵ length [km] for NRZ-OOK transmission at 10Gb/s as a func-
tion of the channel spacing for wavelengths within the low-loss spectral region of standard
single-mode fibre [D� ≈ 17 ps/(nm.km), �c ∼ 1550nm].

It should be noted that the validity of Eqn. 2.2.34 relies on the assumption that the

wavelength spacing between channels, ��, is su�ciently larger than the bandwidth

of the individual channels (a factor of 4 between the two is typically large enough

for this purpose [61]) and that the portion of the fibre length which is not dispersion

compensated, is su�ciently larger than the walk-o↵ length, Lwo. Nonetheless, it
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is clear that the impact of XPM induced-crosstalk is more substantial for systems

employing narrow channel spacing and/or fibre with a low dispersion parameter.

For a fixed number of channels operating at the same bit rate in standard single-

mode fibre, the impact of XPM can be reduced by increasing the channel spacing

and/or reducing the per-channel launch power. In practice, it is di�cult to analyt-

ically estimate the impact of XPM due to the number and nature of the variables

involved; therefore, complex numerical simulations are required which must con-

sider the signal envelopes of all channels propagating in the fibre. As this analysis

is beyond the scope of this thesis it will not be discussed further; however, for more

information the reader is directed to [62], [63] and [50].

An additional consequence of refractive index modulation induced by high inten-

sity light during multichannel transmission involves the induction of a phase mod-

ulation on all transmitting channels which can provoke beating between the signals

based on certain phase matching conditions [64, 65]. This process results in the

generation of sidebands at new frequencies and a reduction of power in the original

channels. A further damaging consequence of this process involves the generation of

light at a frequency which coincides with one or more of the allocated transmission

channels; these mixing products manifest as noise and lead to a greater degradation

of the signal quality. This nonlinear phenomenon is generally known as Four-Wave

Mixing (FWM) as it accounts for the parametric interaction of four photons with

angular frequencies, !1, !2, !3 and !4 within a non-linear medium. Moreover, as the

quantum states of the molecules are unchanged with respect to the beginning and

end of this process, the conservation of energy and momentum holds between the

annihilated and created photons. Notably, in standard SMF, chromatic dispersion

decreases the FWM e�ciency considerably as the di↵erence in phase velocity causes

the phase matching condition to be satisfied only over a short transmission distance.

As a result, FWM only becomes significant for small WDM channel spacing, i.e. less

than 50GHz, and low dispersion fibre [66], neither of which are utilised within this

work.

Stimulated Inelastic Scattering:

A second class of non-linear interactions are governed by stimulated inelastic scatter-

ing where the optical field transfers some of its energy to the transmission medium.

In particular, this phenomenon refers to stimulated Brillouin scattering (SBS) and
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stimulated Raman scattering (SRS).

Stimulated Brillouin scattering (SBS) is a well-known non-linear process that

occurs when the electric field of a high-intensity transmitted signal interacts with

the acoustic vibrational modes of the fibre material to generate an acoustic wave via

electrostriction [67] which in turn modulates the refractive index and scatters the

incident light. The scattered (Stokes) light is reflected backwards with respect to

the incident (pump) light with a downshifted frequency as energy and momentum

must be conserved during each scattering event. This change in frequency for the

Stokes wave is known as the Brillouin shift which attains a value of approximately

11GHz for transmission in the region of 1550nm [50]. Notably, as the Brillouin

shift is significantly smaller than the typical DWDM channel spacing (50GHz), SBS

should not produce an appreciable amount of interchannel cross-talk; however, above

a critical power threshold (which depends on the chosen modulation format), the

reflected power no longer increases linearly with launch power and a significant

amount of the transmitted light is redirected back towards the transmitters; hence,

SBS serves to limit the per-channel power that can be launched into the fibre [68].

In practice, SBS is a narrowband e↵ect and the spontaneous Brillouin gain has

an intrinsic bandwidth, �⌫SBS, of less than 100MHz in silica fibre [69]; hence, the

SBS threshold strongly depends on the linewidth of the carrier. While directly

modulated lasers will exhibit linewidths much greater than �⌫SBS, the induced

frequency chirp may interact with the chromatic dispersion to produce undesired

signal distortions, hence, external modulation is generally preferred for dense WDM

(DWDM) systems. Notably, in this work, the primary modulation format used is

non-return-to-zero on-o↵ keying (NRZ-OOK) for which the spectrally broadened

sidebands contribute negligibly to SBS; however, the carrier component which con-

tains half of the total signal energy will readily undergo SBS. Moreover, it should

be noted that commercially available narrow-band DFB lasers that are traditionally

used in DWDM network experiments have continuous-wave linewidths in the region

of 10MHz which is well within �⌫SBS. Consequently, in order to mitigate the e↵ect

of SBS, the linewidth of the laser is typically broadened by applying a frequency

sinusoidal dither to the bias supplied of the laser in order to induce a low-frequency

phase modulation [70]. This dither frequency is usually set below the low frequency

cut-o↵ of the photodiode in order to ensure it is outside the receiver bandwidth.

Nonetheless, it should also be noted that dithering cannot infinitely increase SBS
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threshold without additional penalties since at some point induced phase modulation

of the signal will be converted to amplitude modulation by fibre dispersion.

Unlike SBS, which generates an acoustic pressure wave due to electrostriction,

stimulated Raman scattering (SRS) occurs in an optical fibre when a high-intensity

incident (pump) wave having exceeded an associated power threshold is inelastically

scattered by the silica molecules. This phenomenon converts the pump photons to a

lower frequency (Stokes photons) with the energy di↵erence transfered to an optical

phonon which describes the quantised energy of a molecular vibration. As the SRS-

induced frequency shift is dictated by the band of vibrational energy states of the

silica molecules within the fibre; scattering can occur in both propagation directions.

For standard SMF, the Raman gain bandwidth which exceeds 10THz (≈80nm) with

the maximum gain occurring when the frequency downshift is approximately 13THz

(∼104nm) while there is another gain peak near 15THz (∼120nm) [71].

The power threshold associated with SRS is defined as the input pump power

at which the Stokes power becomes equal to the pump power at the fibre output.

Assuming a Lorentzian gain spectrum, this critical power threshold has been an-

alytically determined by Smith et al. [68] for the worst-case scenario, where the

polarisation of the pump and Stokes waves (which both propagate in the forwards

direction) have been maintained along the length of the fibre. For instance, the SRS

power threshold for a single channel launched into a span of 100km is approximately

+30dBm (∼1W); hence, it is clear that SRS is not a limiting factor for single-channel

systems as launch powers are typically below +10dBm (10mW). However, in a WDM

system, SRS can severely degrade the link performance by transferring energy from

shorter wavelength channels to higher wavelength channels within the Raman gain

bandwidth as the fibre itself acts as an amplifier. As a consequence of this process,

the shortest transmission wavelength is the most depleted as it can contribute gain

to multiple channels at higher wavelengths. For the network architectures considered

in this project, the input power per channel is much lower than the SRS threshold,

and the total bandwidth of the WDM channels in each transmission direction is

approximately 13nm. Moreover, the channels were not co-polarised as they origi-

nated from di↵erent uncorrelated sources, hence SRS-induced impairments are not

present.
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2.3 Noise Considerations

Aside from distortions induced by the physical properties of the transmission medium;

undesired random fluctuations in the signal (noise) can corrupt the fidelity of the

information content, especially at low amplitude levels where the receiver has a

greater di�culty in decoding the signal information. Consequently, as the noise

level rises there is a increasing probability that bits may be misinterpreted which

produces errors in the received data. In order to understand the impact of noise

and distortion on the design of fibre-optic communication systems, it is crucial to

understand the process of signal detection and receiver performance quantification.

Figure 2.13: Illustration of the direct detection and decision process within a WDM
system whose channels are impaired by ASE following optical amplification.

The first element of an optical receiver is the photodetector which is used to convert

the transmitted optical signal back into the electrical domain prior to amplification

and processing. As the optical signal is typically weakened during transmission

through the fibre, the photodetector must have very high performance requirements

which include a high sensitivity at the wavelength range of interest, a minimal noise

contribution and a su�cient bandwidth (i.e. a suitable response time) to handle the

desired data rate. In practice, it is also favourable for a photodetector to maintain

a relative insensitivity to temperature over a wide operating range, a low-power

consumption and manufacturing cost with a form factor that is compatible with

fibre optic packaging.
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Photodetectors are primarily comprised of light sensitive semiconductor mate-

rials known as photodiodes. Photodiodes are square-law detectors whose output is

proportional to the square of the electric field (∝ �E2�); hence, the electrical output

is directly proportional to the power of the incident light with no direct dependence

on the phase or polarisation.

�isig(t)�∝ Pin �⇒ �isig(t)� = R.Pin (2.3.1)

where, �isig(t)� is the time averaged current [A] generated by a steady state inci-

dent optical power, Pin [W] and R is the wavelength-dependent responsivity of the

photodiode [A/W] which is given as [26]:

R = �isig(t)�
Pin

≡ ⌘q

h⌫
≈ ⌘ �µm

1.24
(2.3.2)

with ⌘ signifying the quantum e�ciency of the material which is dependent on the

bandgap, q is the magnitude of the charge carried by a single electron ≈ 1.602 ×10−19
[C], h is Planck’s constant ≈ 6.626× 10−34 [Js] and ⌫ is the frequency of the incident

light [Hz] where h⌫ gives the energy [J] of one incident photon.

As the interaction of photons with the semiconductor material of the photodiode

is a statistical process, the linear relation presented in Eqn 2.3.1 is only valid for

time averaged quantities as it does not account for the undesired random fluctuations

(noise) in the photocurrent present around the mean value. For noise processes that

can be described using Gaussian statistics, the variance of the photocurrent noise,

�2
n, can be estimated through the autocorrelation function of �in(t)� which is related

to the noise spectral density, Sn(f), by the Wiener-Khinchin theorem [26]:

�in(t)in(t + ⌧)� = � ∞
−∞ Sn(f)e2⇡if⌧df

��→
⌧ → 0

�i2n(t)� = � Be

Sn(f)df = �2
n (2.3.3)

If the noise is measured just after the photodiode, the equivalent noise bandwidth

of the receiver, Be, is equal to the intrinsic bandwidth of the photodiode whose
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value depends on the design. However, if the noise is measured at the output of

the receiver, the transfer function of the entire receiver module, H(f), must be

considered to account for other components such as amplifiers and the low-pass

filter which is used to remove high frequency electrical noise. It is also worth noting

that the value of Be is generally di↵erent to the 3dB bandwidth, B3dB, which is

typically quoted in the receiver specifications. For instance, in this analysis, the

electronic circuitry is assumed to have a first-order low-pass characteristic as given

by the following transfer function, H(f) [72]:
H(f) = 1

1 + i f
B3dB

(2.3.4)

The relationship between Be and B3dB for the low-pass filter response can then be

determined as,

Be = � ∞
0
�H(f)�2df = ⇡

2
B3dB (2.3.5)

In general, the value of �2
n depends on the associated noise mechanism. However, if

multiple noise sources are present, each exhibiting Gaussian statistics, the total noise

contribution can be determined as the sum of all the individual noise mechanisms.

�2
tot = N�

n=1
�2
n (2.3.6)

The performance of an optical receiver is dependent on the electrical signal-to-noise

ratio (SNR) which is defined as the ratio of the peak electrical power for the detection

of a ‘1’ bit to the associated noise variance which serves as a measure of the signal

quality [73].

SNR = �isig,1(t)�2
�2
tot

(2.3.7)

It is important to recognise that Eqn. 2.3.7 is only valid for signals whose extinction

ratio (ER), Psig,1�Psig,0, is large enough such that isig,1(t)� isig,0(t). In general, the

quality-factor (Q-factor) gives a more accurate analysis of the signal quality as it
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includes the noise statistics for the ‘0’-bit; this parameter will be discussed later in

section 2.4.

2.3.1 Receiver Noise Mechanisms:

The inherent noise mechanisms in optical receivers are shot noise and thermal noise;

however, it is important to note that optical noise such as amplified spontaneous

emission (ASE) accumulated within the transmission link of optically amplified sys-

tems can further degrade the signal quality following conversion to electrical beat-

noise at the receiver; therefore, the signal performance also has a dependence on the

received OSNR.

Shot Noise:

The generation of electron-hole pairs within a photodiode is a statistical process due

to the discrete quantum nature of photons which arrive at the receiver in a random

fashion. For instance, within any given time interval, there will be random fluctu-

ations in the number of charge carriers generated as photons impact the surface of

the photodiode; these fluctuations produce undesired variations in the photocurrent

known as quantum noise or shot noise which was first studied by Walter Schottky

in 1918 [74]. Notably, due to the random nature of these independent reception

events, shot noise is generally described using Poisson statistics; however, a Gaus-

sian distribution can be used as a valid approximation considering the large number

of photons (102 ∼ 103 photons/pulse) involved in the process. As the spectral den-

sity of shot noise is practically constant over a wide frequency band (< 100GHz), it

approximates white noise; therefore, Eqn. 2.3.8 holds for the majority of integrated

circuit designs of practical interest [75],

Sshot(f) = q�isig(t)� (2.3.8)

Using Eqn. 2.3.3, the noise variance can then be determined as

�2
shot = � Be

q�isig(t)�df = 2q�isig(t)�Be (2.3.9)
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with the corresponding SNR for a shot-noise limited system given by

SNR = �i2sig,1(t)�
�2
shot

= �isig,1(t)�
2qBe

= ⌘Psig,1

2h⌫Be
(2.3.10)

which utilises the definition of responsivity from Eqn. 2.3.2 to demonstrate that

SNR increases linearly with the received optical signal power.

Thermal Noise:

In an electric conductor at a finite temperature, the random thermal agitation of

electrons appears as an electronic noise commonly known as thermal noise; however,

it is also known as Johnson noise or Nyquist noise in honour of the scientists who

first studied it [76, 77].

In optical receivers, thermal noise can be modelled as a stationary Gaussian

process with a spectral density, Sth(f), which is added by a load resistor, RL, con-

nected to the photodiode in the receiver front-end. For all bandwidths of interest,the

two-sided spectral density, Sth(f) approximates a white noise process for a given

temperature (T ) with a frequency independence up to ∼ 1THz [26] given by

Sth(f) = 2kBT

RL
(2.3.11)

where, kB is the Boltzmann constant which has a value of ≈ 1.3806 × 10−23 [J/K].

The corresponding thermal noise variance is determined using Eqn. 2.3.3,

�2
th = �i2th� = � Be 2kBT

RL
df = 4kBT

RL
Be (2.3.12)

Equation 2.3.12 presents an interesting result in that it does not depend on the

signal; hence, it is the same for both ‘1’ and ‘0’ levels. In practice, an optical

receiver contains many electrical components such as amplifiers which contribute

to the thermal noise variance; therefore, Eqn. 2.3.12 can be modified to include

the corresponding noise factor, Fn, which represents the level of noise added to the
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signal from the additional receiver components.

�2
th = 4kBT

RL
Be.Fn (2.3.13)

For a system dominated by thermal noise, the SNR can be estimated as

SNR = �i2sig,1(t)�
�2
th

= �i2sig,1(t)�RL

4kBTBeFn
= (R2P 2

sig,1)RL

4kBTBeFn
(2.3.14)

where the performance varies as P 2
sig; however, it should be recognised that the SNR

can also be improved by increasing RL; hence, most receivers use a high-impedance

front end.

Beat-Noise in Optically Amplified Systems:

As outlined in section 2.2.2, optical amplification is used to compensate for the

inherent attenuation, ↵dB, within optical fibre; however, it also degrades the OSNR

through the addition of amplified spontaneous emission (ASE) which represents

a source of Gaussian optical noise generated by quantum fluctuations in the gain

medium. Subsequently, at the receiver, square-law (direct) detection results in the

co-polarised ASE field, EASE,∥(t), beating with the field of the optical signal, Esig(t),
and the beating of the ASE with itself producing undesired fluctuations in the

photocurrent which serves to further degrade the SNR. For instance, when only the

contribution of ASE noise is considered, the photocurrent generated by the receiver

can be written as,

irx(t) = R(�Esig(t) +EASE,∥(t)�2 + �EASE,⊥(t)�2)
= R�Esig(t)�2�����������������������������������������������

Information
Signal

+2R.Re{Esig(t).E∗ASE,∥(t)}����������������������������������������������������������������������������������������������������������������������������������������������������������������������
Signal-ASE
Beat Noise

+R(�EASE,∥(t)�2 + �EASE,⊥(t)�2)�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
ASE-ASE
Beat Noise

(2.3.15)
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where, Re{}, indicates the real part of a complex quantity, ∗ signifies the complex

conjugate, R is the responsivity of the photodiode [A/W] and E⊥ASE(t) represents
the orthogonally polarised portion of the ASE which does not beat with the signal.

If the bandwidth of the optical filter, Bopt, preceding the photodiode significantly

exceeds both the signal bandwidth and the electrical bandwidth of the receiver, B3dB,

the signal-ASE and ASE-ASE beat noise variances can be approximated as [26]

�2
sig−ASE = 4R2Psig,1SASEBe (2.3.16)

�2
ASE−ASE = 4R2S2

ASEBoptBe (2.3.17)

where, R is the responsivity of the receiver [A/W], G is the gain of the optical am-

plifier, SASE represents the power spectral density of the ASE which is co-polarised

with the signal (as specified in Eqn. 2.2.26), Be is the noise equivalent bandwidth

of the receiver and Bopt is the bandwidth of the optical filter centred on the signal

wavelength. In practice, the ASE-ASE beat noise generated by wavelengths outside

the region of the signal can be suppressed using an optical bandpass filter, as evident

in Eqn. 2.3.17; therefore, in a beat-noise limited system, the inherent signal-ASE

beat noise is considered as the dominant optical contribution to the SNR degrada-

tion. In this scenario, the receiver’s noise performance can be fully characterised by

the OSNR as shown in Eqn. 2.3.18

SNR = �i2sig,1(t)�
�2
sig−ASE

= R2P 2
sig,1

4R2Psig,1SASEBe
= Psig,1

4SASEBe
= OSNR(Bref

Be
) (2.3.18)

where,

OSNR = Psig,avg

PASE
= Psig,avg

2SASEBref
= Psig,1

4SASEBref
(2.3.19)

in accordance with Eqn. 2.2.26 and 2.2.28; with Psig,1 = 2.Psig,avg.
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Accounting for Multiple Noise Contributions:

Equations 2.3.10, 2.3.14 and 2.3.18 have considered scenarios for which a certain

noise mechanism (shot, thermal and beat) is dominant; however, in some practical

cases all of the noise sources discussed in this section are contributing to the overall

degradation of the signal. Since these noise mechanisms have been approximated

as statistically independent Gaussian functions, the overall noise can be determined

through the summation of the contributing current variance values; hence, the total

SNR is given by

SNRtot = �i2sig,1(t)�
�2
tot

= RPsig,1

�2
shot + �2

th + �2
signal−ASE + �2

ASE−ASE

(2.3.20)

However, the shot noise current variance specified in Eqn. 2.3.9 must be modified

to account for the received ASE power (PASE) as follows,

�2
shot = 2q[R(Psig,1 + PASE)]Be (2.3.21)

2.4 Transmission Performance Evaluation

As the SNR only accounts for the statistics of the ‘1’-bit level, an alternative metric

known as the quality factor (Q-factor, Q) is commonly used to include the current

noise variance associated with the ‘0’ level under the conventional approximation of

Gaussian noise statistics with an optimised decision threshold (Id) [78].

Q = I1 − I0
�1 + �0

= R(P1 − P0)
�1 + �0

(2.4.1)

where, P1,0 and I1,0 are the noise-free average optical powers and signal currents for

the ‘0’ and ‘1’ bits respectively, and �0,1 are the associated noise standard deviations.

Under the assumption that the signal has a high extinction ratio (i.e. Psig,1�Psig,0 �
1) using NRZ-OOK modulation, the relation between Q and SNR for a systems lim-

ited by thermal-noise and beat-noise can be determined:
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Thermal Noise Limited: �1 = �0 = 2�th

Q ≈ I1
2�th

⇒ Q2 ≈ I21
4�2

th

≈ SNR

4
⇒ Q ≈

�
SNR

2
(2.4.2)

Beat-Noise Limited: �sig−ASE = �1 (� �0)

Q ≈ I1
�sig−ASE

≈√SNR ≈
�

OSNR.Bref

Be
(2.4.3)

where Eqn. 2.3.7 and 2.3.18 have been used to establish the relationship between

Q and SNR, with I1 = �isig,1(t)�. Furthermore, if the system noise is Gaussian, the

Q-factor can be used as a convenient way of expressing the bit error rate (BER)

which constitutes the ultimate measure of transmission performance in communica-

tion systems. Notably, the BER is statistically defined as the time-averaged fraction

of misinterpreted bits (errors) contained in a stream of n bits. Moreover, for long

averaging times, as the number of transmitted bits increases, the quality of the esti-

mate improves and the BER approaches the true probability of having a detection

error for an individual bit, P (e). However, while it is important to transmit enough

bits through the systems such that the BER is an accurate estimate of P (e), the
practicalities of such a measurement for a high performance transmission link can

be unreasonable. For instance, in order to measure a BER of 1 × 10−15 with a 95%

confidence level by counting the generated errors at a bit rate of 10Gb/s requires

a measurement time of approximately 3.5 days [79]. As a result, the Q-factor is

a representation of system performance based on the observation of the mean and

standard deviation of the electrical signal at the receiver rather than counting indi-

vidual errors. It should also be noted that the reliability of a transmission system

is not achieved by maintaining the BER at an extremely low level in order to avoid

all bit errors. Instead, if the data rate can be kept below a tolerable BER threshold,

the use of forward error correction (FEC) through digital signal processing (DSP)

can to ensure that the system performs virtually error-free, i.e. reaching a BER

≤ 1 × 10−12 [80].

47



2. Transmission Impairments and Performance Evaluation

BER = 1

2
[P (1�0) + P (0�1)] ≈ 1

2
erfc� Q√

2
�

������������������������������������������������������
Gaussian Noise

Statistics

(2.4.4)

where, P (1�0) represents the probability of deciding a ‘1’ when a ‘0’ is received,

P (0�1) signifies the probability of deciding a ‘0’ when a ‘1’ is received where the

factor of 1/2 accounts for equal probability of either a ‘1’ or ‘0’ to occur and erfc(z)
is the complimentary error function = (2�√⇡) ∫ ∞z e−t2dt.

Figure 2.14: Bit error rate as a function of the Q-factor.

As demonstrated in Fig. 2.14, the Q-factor is generally represented in decibel units,

[dB], using, QdB = 20log10(Q), where the factor of 20 is used as Q is defined with

respect to the mean and standard deviation of the electric signal (i.e. current or

voltage) at the receivers decision block as opposed to the electrical power used in the

SNR calculations. In practice, the BER is generally measured using a bit error rate

tester (BERT) as a function of the average received optical power (Prx); however,

for links limited by beat-noise it can be more meaningful to measure the BER with

respect to the received OSNR. With this in mind, Eqn. 2.4.4, 2.4.2 and 2.4.3 can
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be used to establish the relationship between BER, Q and SNR for systems limited

by thermal noise and beat-noise respectively:

Thermal Noise Limited: BER ≈ 1

2
erfc�

√
SNR

2
� (2.4.5)

Beat-Noise Limited: BER ≈ 1

2
erfc�

�
OSNR.Bref

2Be
� (2.4.6)

At this point, it is important to recognise that the exact relationship between BER,

Q and SNR is ultimately dependent on the detection scheme with the preceding

analysis assuming direct detection governed by Gaussian noise mechanisms with an

optimised decision threshold and a high signal extinction ratio. As a consequence,

should these conditions be violated the performance analysis may be estimated in-

accurately.

2.4.1 System Characterisation and Penalties

The performance of a fibre optic communication link is typically characterised by

deliberately stressing the receiver in order to manipulate the Q-factor by inducing

the e↵ects attributed to the various noise mechanisms presented in section 2.3.1; this

concept is illustrated in Fig. 2.15. For instance, when the received signal maintains

a relatively high value of OSNR (∼ 30dB), the channel performance is ultimately

determined by the level of thermal noise which is intrinsic to the receiver. As such

a system is e↵ectively power-limited, characterisation is achieved by monitoring the

BER as the average received optical power, PRx, is adjusted through the application

of a controlled amount of attenuation. Alternatively, for systems employing opti-

cal pre-amplification, PRx is generally well above the minimum receiver sensitivity;

therefore, the performance of the signal is governed by the level of beat-noise which

depends on the amount ASE power, PASE, present at the receiver. These OSNR-

limited systems are generally characterised by recording the BER in response to the

addition of a controlled amount of ASE in order to manipulate the received OSNR.
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Figure 2.15: Illustration of the main fibre-optic system characterisation processes: (a)
stressing the receiver sensitivity, (b) Stressing the received OSNR.

As outlined within the previous sections of this chapter, optical signals can su↵er

from multiple sources of impairment including loss, dispersion during transmission

through a given fibre-optic link. Subsequently, following reception, these impair-

ments are evident through a power or OSNR penalty which represents a horizon-

tal displacement of the BER curve (without alteration of its shape) with respect

to the equivalent ‘back-to-back’ measurement which only considers the combined

performance of the transmitter and the receiver. For example, the concept of a

performance penalty is presented in Fig. 2.16 which presents the analytically sim-

ulated BER as a function of (a) the average received optical power, PRx, and (b)

the received OSNR for a power-limited and OSNR-limited system respectively using

di↵erent values of the transmitter ER which describes the extent of digital modula-

tion on the optical carrier through the ratio of the optical power at the ‘1’-bit level

(Psig,1) to the optical power at the ‘0’ bit level (Psig,0).

ER = Psig,1

Psig,0
⇒ Psig,1 = ER.Psig,0, Psig,0 = Psig,1

ER
(2.4.7)

In comparison to the e↵ects of other system impairments such as chromatic dis-

persion and non-linear distortions the e↵ects of extinction ratio (ER) are relatively

simpler to describe analytically; hence, it is used here for convenience in order to

demonstrate the system characterisation concepts; however, in principle, the same

methods can also be applied to any of the above impairments with no di↵erence
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whatsoever. It is also important to note that Eqn. 2.4.2 and 2.4.3 which de-

scribe the BER for thermal and beat-noise limited systems cannot be used here

as their derivation assumed an infinitely high extinction ratio, which does not hold

in practice; therefore, the Q-factor was re-calculated in both cases to account for

the statistics of the ‘0’-bit level. These calculations are presented in Appendix A.

(a) (b)

Figure 2.16: Analytical simulation of the BER performance for a (a) power limited and
an (b) OSNR limited transmission link for various values of extinction ratio (ER).

Using the data presented in Fig. 2.16, the corresponding power and OSNR penalties

were calculated with respect to a target BER value of 1.1×10−3 using the curve gen-

erated with the highest extinction ratio (30dB) as a reference. This value of BER

was chosen as it represents the required performance threshold of the Reed-Solomon

RS(248,216) FEC algorithm that has been selected for use within the DISCUS exper-

imental test-bed in accordance with recent 10G PON standards [81]. The associated

penalty curves are presented in Fig. 2.17.

For high values of ER (i.e. ≥15dB), both system types perform similarly with

a negligible penalty (<1dB) observed with respect to the reference value. On the

other hand, when the ER is reduced to values representative of those achieved by

the modulators employed within this work (≤ 15dB), the penalty curves di↵er sig-

nificantly. In particular, it is evident that OSNR penalty rises much faster than

the power-limited case. This behavior can be attributed to the fact that the noise
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variances and the associated Q-factor for both cases have very di↵erent character-

istics. In particular, for the power limited case the Q-factor is linearly proportional

to the received power, Prx. In other words, if the Q-factor needs to be increased

by a certain amount in order to compensate for the e↵ect of a given impairment,

it should be su�cient to increase the received input power PRx by an equivalent

amount. Alternately in the case of an OSNR-limited system, the Q-factor exhibits

a more complex relation to the received OSNR. For instance, it can be seen that

the numerator is linearly proportional to the OSNR while the denominator depends

on the square root of the OSNR. In short, this is the fundamental reason behind

the di↵erent penalty profile exhibited in Fig. 2.17. Consequently, it is important

to note that the concept of penalty could be deceptive if the associated system

noise-limitation is not specified.

Figure 2.17: Performance penalty measured at a BER value of ≈ 1.1−3 for a power
limited system and an OSNR-limited system for various values of extinction ratio.

2.5 Summary

This chapter has presented the fundamental transmission impairments of a fibre-

optic communication link alongside the main techniques used to evaluate the signal

performance. For instance, the primary sources of signal deterioration have been

presented and classified as linear (attenuation, chromatic dispersion etc.), non-linear
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(Kerr e↵ects, stimulated scattering) and noise. In addition, optical amplifiers are

presented as a regeneration-free solution to compensate for the inherent attenuation

of the signal power, with details presented on the general concepts of optical gain, G,

and saturation alongside the associated noise figure, NF , attributed to the genera-

tion of amplified spontaneous emission (ASE) which can lead to signal degradation

though a reduction in the optical-signal-to noise ratio (OSNR).

Following reception, the main noise mechanisms which contribute to the degra-

dation of the electrical signal-to-noise ratio (SNR) signal are presented and discussed

followed by the introduction of a parameter known as the signal quality factor (Q)

which accounts for the impact of the noise statistics on both bit (‘1’ and ‘0’) levels.

Finally, the bit error rate (BER) was shown to represent the ultimate measure

of system performance evaluation where link characterisation is achieved by de-

liberately stressing the receiver over its range of operation in order to induce the

associated system defining noise mechanisms, namely thermal and beat-noise for

power and OSNR-limited systems respectively. This process enables the impact of

signal degradation to be captured through a performance penalty which is deter-

mined with respect to a back-to-back BER measurement; however, in order to avoid

inconsistencies, it has been shown that it is crucial to include information on the

type of system being considered (i.e. power or OSNR-limited) as the same penalty

value can have a significantly di↵erent impact and interpretation. For these reasons,

it is crucial to incorporate a performance margin when designing an optical commu-

nications system in order to account for any unforeseen penalties and the possibility

of incremental upgrades such as increasing the physical reach or split.
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3

The Evolution of Optical Access

“The day will come when the man at the telephone will be able to see the distant

person to whom he is speaking” - Alexander Graham Bell (1906)

This chapter presents an overview of the development history of optical access net-

works alongside the technology requirements facing the realisation of dynamically

reconfigurable long-reach passive optical networks (LR-PONs) which target a cost-

e↵ective Fibre-to-the-Premises (FTTP) solution capable of supporting multiple ser-

vice scenarios (residential, business) and a wide-range of geo-types (urban, rural).

In section 3.1, the chapter begins by highlighting the increasing demand for band-

width in the access portion of the network while motivating the need for Fibre-to-

the-premises (FTTP) technologies. Subsequently, section 3.2 outlines the evolution

of optical access networks and the corresponding standardisation e↵orts, beginning

with a description of the widely deployed gigabit-capable PONs. This is followed in

section 3.2.2 by an overview of the ‘next-generation’ (NG) PON configurations which

target line rates of 10Gb/s; these include the IEEE 10GE-PON, the FSAN/ITU-

T XG-PON and the recently standardised NG-PON2 which has introduced WDM

to the access network. By considering the limitations in today’s access solutions,

section 3.3 motivates the concept of a dynamically reconfigurable long-reach PON

(LR-PON) which employs time- and wavelength-division multiplexing to increase

the information capacity and bandwidth e�ciency alongside in-line optical amplifi-

cation which extends the physical reach and split far beyond that of current access

configurations in order to maximise sharing of network resources (i.e. infrastruc-

ture and bandwidth). Finally, section 3.3.4 highlights the key enabling technologies

required to establish such a system. These include, low-cost tuneable transmit-

ters, high dynamic range burst-mode optical amplifier nodes and the realisation of

innovative 10G burst-mode subsystems such as forward error correction (FEC).
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3.1 Driving Fibre-to-the-Premises

Present day communication networks are facilitated by a hierarchical structure con-

sisting of core, metropolitan (metro) and access networks as illustrated in the simpli-

fied model presented Fig. 3.1. The core network represents the central or backbone

portion of the infrastructure which carries tra�c between cities, countries and con-

tinents in order to interconnect the primary distribution points known as nodes.

Subsequently, wide-ranging regional systems known as metro networks provide in-

terconnectivity between the core nodes and the central o�ce (CO) or local exchange

(LE) sites which connect the customers to service providers through the access net-

work.

Figure 3.1: Illustration of a modern telecommunication network hierarchy.

In recent years, the development of online services such as video conferencing, video-

on-demand (VoD), high-definition television (HDTV), voice-over internet protocol

(VoIP), e-learning and online gaming have necessitated the continual upgrade of

access network technologies in order to keep up with the increasing bandwidth de-

mands presented in Table 3.1. For instance, residential customers now require an

access solution that can provide high-speed broadband o↵ering ‘triple-play’ services

(i.e. voice, data and video) while corporate users require a high-capacity, low-latency

infrastructure through which they can connect their local access networks (LANs) to

the core. With this in mind, it is clear that e�cient high-speed broadband commu-

nication networks are essential for thriving modern communities. In fact, whether
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it is for social or business purposes, our lives now revolve around devices (e.g. com-

puters, smart phones, televisions, tablets, smart watches, game consoles, e-readers.

etc.) which expect a continual and seamless connection to the internet. This thirst

for data is pushing the physical media dependent limitations of traditional copper-

infrastructure and driving network operators to consider optical access networks in

an attempt to meet the growing demands from both business and private customers.

Online Service Required Bandwidth

[Mb/s]

Telephone (VoIP) < 0.5

Music Streaming (High Quality) < 0.5

Standard Definition (SD) Video 3 - 4

High Definition (HD) Video 5 - 8

Ultra-High Definition (UHD) Video 25

Video Calling (SD/HD) 0.5/1.5

HD Teleconferencing (Group) 6

HD Online Gaming (Multiplayer) 5-10

Web Browsing and Email 1

Social Media (excl. video content) 3

Table 3.1: Estimated bandwidth requirements of typical broadband services [82].

It is important to note that the current level of worldwide interconnectivity would

not have been possible without the development of optical fibre which is now the

dominant transmission medium within the metro and core networks. In fact, ac-

cording to Corning Incorporated, one of the worlds leading innovators in materi-

als science, more than 2 billion kilometres of optical fibre is now deployed around

the world, linking businesses, communities, countries and continents together [83].

Moreover, as shown in Fig. 3.2, the latest results from the Organisation for Economic

Co-operation and Development (OECD) indicate that fibre-based access infrastruc-

tures including the Gigabit PON (G-PON) [84] and the Ethernet PON (E-PON) [85]

are now a significant presence, particularly in Asia where Japan and Korea report

deployment figures >75%.
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Figure 3.2: Percentage of fibre connections in total broadband subscriptions, December
2017 [14].

As outlined in Chapter 1, the deployment of optical fibre requires a substantial

investment, hence many countries have opted for an incremental upgrade to their

existing legacy infrastructure while some still lack applications to take full advan-

tage of the bandwidth o↵ered by optical fibre. As a consequence, the demand for

a short-term upgrade to an all-fibre network cannot justify the financial invest-

ments required; hence, a fibre-to-the-cabinet (FTTC) access configuration utilising

a copper-based ‘last-mile’ infrastructure providing DSL services is still a dominant

presence globally. However, as indicated in Fig. 3.3, using DSL technology to sup-

port the delivery of high-speed broadband (≥30Mb/s) requires the costly installation

of fibre terminals within hundreds of meters from the subscribers.
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Figure 3.3: Theoretical performance of DSL technologies (Reproduced from [15]).

To avoid the expense and time required for cable installation, a number of wireless

technologies including WiMax (Worldwide Interoperability for Microwave Access)

[86] and Long-Term Evolution (LTE) [87] have been proposed to provide broadband

services alongside satellite solutions [88]. However, it should be noted that in order to

make the deployment of terrestrial wireless technologies feasible, base stations must

be strategically located in order to capture a su�ciently large number of customers.

This inevitably leads to more remote areas with less e↵ective coverage than more

densely populated regions with reduced bandwidth capability and quality of service.

Moreover, even within areas of good coverage, wireless bandwidth availability can

be dependent on the number of active users and the spectrum available in that

particular area. Alternatively, despite the extensive coverage capabilities, satellite-

enabled broadband requires a considerable investment to cover the equipment and

installation costs. In addition, it is subject to congestion limitations and appreciable

latency issues due to the long transmission distances involved (i.e. ∼36,000km for

a geostationary orbit) making it unsuitable for certain broadband services such as

business applications and online gaming.

To demonstrate the capabilities of the main access technologies in use today, the

maximal line rates and reach are presented in Table 3.2. It should be noted that due

to physical media limitations and network congestion, the peak bit-rates may not be

achievable at the maximum range; hence, the reported values are purely indicative

of the maximum specified within the respective standards. Nonetheless, from these
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figures, it is evident that copper and wireless access solutions will not be capable of

supporting the increasing demand for higher bit-rates or bridging the digital divide

that exists between dense urban areas and sparse rural communities. Consequently,

in order to address the current access bottleneck and facilitate the e�cient delivery

of ubiquitous high-speed broadband for the foreseeable future, network operators

must focus on the delivery of Fibre-to-the-Premises (FTTP).

Technical Maximum Values

Technology
Downstream

[Mb/s]

Upstream

[Mb/s]

Reach

[km]
Connection

ADSL2+ 24 1 5 Twisted Pair

VDSL23 100 40 1 Twisted Pair

G.fast 1000 1000 0.1 Twisted Pair

CATV4 200 100 2-100 Coaxial Cable

WiMax 70 30 60 Wireless

LTE 100 30 3-6 Wireless

Satellite 30 10 ∼36,000 Wireless

E-PON 1250 1250 20 FTTP

G-PON 2500 1250 20 FTTP

Table 3.2: Comparison of various access technologies [89].

3.2 The Evolution of Optical Access Networks

The initial concept for a PON emerged in the 1980’s when single-mode fibre (SMF)

technology was seen as the new way forward for optical communications through

the many significant advantages it o↵ered over multi-mode fibre (MMF) including

lower-loss, dispersion and bandwidth [90, 91, 92]. Subsequently, over the last two

decades various iterations of the PON have been standardised by the Institute of

Electrical and Electronic Engineers (IEEE) alongside a collaborative e↵ort between

the Full Service Access Network (FSAN) a customer driven working group and the

International Telecommunications Union standardisation sector (ITU-T).

3with vectoring [93] 60 4 Cable Television/Cable Modem

http://standards.ieee.org/
https://www.fsan.org/
https://www.itu.int/en/ITU-T/Pages/default.aspx
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Figure 3.4: The baseline configuration of G-PON and E-PON.

Today, the G-PON and the E-PON are the most widely deployed optical access

technologies with G-PON currently the dominant choice in North America while

Asia has seen significant E-PON deployment in countries such as Japan and Korea.

Moreover, in the last decade, a large-scale deployment using a mix of E-PON and

G-PON has been undertaken in China which is recognised as the worlds largest

FTTP market [94].

G-PON E-PON

Standard ITU-T G.984 [84] IEEE.802ah [85]

Downstream (DS) [Gb/s] 1.24416 or 2.48832 1.25

Upstream (US) [Gb/s] 1.24416 or 2.48832 1.25

Multiplexing Method US: TDMA
DS: TDM

US: TDMA
DS: TDM

Protocol Ethernet over ATM/IP or
TDM

Ethernet

Linecode
Non-Return-to-Zero

(NRZ) 8B/10B

Wavelength Plan [nm] US: 1260-1360
DS: 1480-1500

US: 1260-1360
DS: 1480-1500

ODN Loss Budget Min Loss: 10dB
Max Loss: 25dB

3 Min Loss: 10dB
Max Loss: 24dB

4

Split 64 32

Reach [km] 20 20

Average Bandwidth per
User

19.5Mb/s or 39Mb/s 39Mb/s

Transmission Structure Asymmetric Symmetric

3Class B (Attenuation Range) 41000BASE-PX20

Table 3.3: Comparison of current-generation PON standards

61



3. The Evolution of Optical Access

Although G-PON and E-PON possess underlying technological di↵erences, they

have both drawn a strong influence from the FSAN/ITU-T broadband PON (B-

PON) recommendations [95] with respect to wavelength plan and framework of the

optical distribution network (ODN). In particular, their performance is primarily

governed by time-division multiplexing (TDM) in order to optimise sharing of the

fibre infrastructure. The basic strategy of a TDM-PON involves the use of a single

wavelength communication channel in each transmission direction. These wave-

lengths are combined through wavelength division multiplexing (WDM) to enable

single-fibre operation as illustrated in Fig. 3.5. In the downstream (DS) direction,

the optical line terminal (OLT) located at the head end of the network broadcasts

encrypted data in continuous-mode (CM) which is received by every optical network

unit (ONU) at the access edge. Each ONU then accepts or rejects the data based

on the identifier (ID) contained within the received frame header. Conversely, in

the upstream (US) direction, the ONUs cannot transmit data in CM as the signals

would converge and overlap at the splitting locations; therefore, to avoid data col-

lision a time division multiple access (TDMA) scheduling protocol is used which

assigns transmission windows to each ONU. In this way, a given ONU only trans-

mits when it is allocated a timeslot and it needs to transmit; this process is known

as burst-mode (BM) transmission. The size and frequency of the allocated times-

lots are based on the tra�c volumes required across all ONUs; hence, the available

upstream bandwidth is distributed fairly among all end users depending on their

requests.

Figure 3.5: Illustration of TDM and TDMA operation [Tx - transmitter, Rx - receiver].
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3.2.1 Long-Reach PONs

One of the main advantages o↵ered by PONs is the ability to share network costs

among the end users (subscribers); however, the growth in bandwidth demand re-

sulting from increased online services is such that the price decline of electronics and

optical technology alone will not be su�cient to keep the costs of network growth

in line with the revenue required by operators; therefore, radical new architectures

may be necessary to change the end-to-end cost structure of networks and massively

reduce the cost of bandwidth provision [96, 97].

A logical strategy to further o↵set network costs is to optimise the infrastructure

in order to capture a greater amount of customers over larger areas with increased

sharing of network resources. This concept has been of interest since the 1990’s [98]

with more recent e↵orts focussed on expanding the physical reach of G-PON and

E-PON via mid-span optical amplifiers [99]. Notably, this concept has since been

standardised by ITU-T within the G.984 series of recommendations [100, 101] which

specify a maximum logical reach of 60km using a configuration commonly known as

a long-reach (LR) PON. It is important to note that in this context the term passive

does not strictly mean unpowered, but is related to the absence of active electronic

routing elements within the deployed field infrastructure. In practice, the achievable

transmission distance of a LR-PON depends on a number of factors which include

the wavelength plan, the transmitter (Tx) and receiver (Rx) specifications and the

targeted split-ratio; however, advanced network configurations have demonstrated a

total physical reach up to 100km and beyond through integration of the metro and

access networks [12].

Figure 3.6: Illustration of network simplification through node consolidation using a
long-reach PON to integrate the metro and access networks.
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Optical Amplifier Technologies:

To facilitate the increased physical reach and split targets of LR-PONs, several

optical amplifier technologies have been proposed which utilise optical fibre or semi-

conductor material as their active media. Notably, for operation in the C-band

(1530 - 1565nm), Erbium-doped fibre amplifiers (EDFAs) o↵er a key solution due to

their overall performance quality in terms of low noise figure (NF), high gain, high

achievable output power and the ability to provide these characteristics in a system

with a large number of WDM channels within the low-attenuation spectral region

of SMF. They also have the added advantage of being a mature technology in opti-

cal networks making them attractive for deployment in an access architecture [102].

Although, the majority of fibre-amplifiers deployed to date are EDFAs; alternative

fibre technologies have been investigated to realise operation outside of the C-band.

For instance, to enable reach extension in legacy PON technologies such as G-PON,

Praseodymium-Doped Fluoride fibre amplifiers (PDFAs) have shown potential to

support upstream signal amplification as their gain spectrum lies within the O-band

(1260 - 1360nm) [103] while Thulium-doped fluoride fibre amplifiers (TDFAs) o↵er

the ability to amplify wavelengths within the S-band (1460-1530nm) which is com-

patible with the downstream transmission window [104]. These novel technologies

are not taken into account in this work; however, for further information the reader

is referred to [105].

Alternatively, semiconductor optical amplifiers (SOAs) are a promising cost-

e↵ective amplifier technology based on mature III-V material technologies and fab-

rication techniques suitable for mass production with commercial devices readily

available from multiple vendors worldwide. Unlike doped-fibre amplifiers (DFAs)

and Raman amplifiers, SOAs are pumped electronically via an applied current;

therefore, a separate pump laser is not required. Notably, Indium-Phosphide (InP)

based SOAs can be designed to provide gain within any wavelength window of

SMF (1200nm - 1700nm) by varying the composition of the active material [106].

Although, SOAs do not provide the same gain, saturation output power or noise-

figure as fibre-based amplifiers they present a significantly lower physical footprint

with low power consumption, potential for monolithic integration with other com-

ponents and short excited state lifetimes (∼100ps) making them highly suitable for

burst-mode applications. Based on these properties, SOAs have been considered for

deployment within reach extenders for single-channel G-PON systems [107, 108].
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In this thesis, the capabilities of EDFAs and SOAs will be examined as potential

technologies to support LR-PON operation. In particular, within Chapter 4 an

SOA has been monolithically integrated with a modulator and a discretely tuneable

three-sectioned slotted Fabry-Pérot (3s-SFP) laser is examined and presented as a

potential candidate for deployment in low-cost, wavelength-agile ONUs. Further-

more, within Chapter 5, the dynamics of commercial EDFAs which employ active

gain-stabilisation via dynamic pump control will be examined as candidates to sup-

port high-dynamic range burst-mode transmission.

3.2.2 Next-Generation PONs

With the continuous increase in bandwidth demand generated by consumer and

business applications over the last decade, the need for a new, higher capacity ac-

cess architecture is more than obvious. For instance, while it is expected that

technologies such as G-PON and E-PON will meet the broadband requirements for

residential customers in the short-to-medium term; in the long-term, they will strug-

gle to deliver emerging bandwidth heavy multimedia services such as UHD TV, 3D

TV, cloud computing and multi-player HD online gaming. Moreover, it is antici-

pated that the highest bandwidth demands will come from business users and mobile

backhaul which are expected to require sustained, symmetric and low-latency data

rates of 1Gb/s and beyond. As a result, the higher bandwidth capabilities of optical

access networks represents an attractive, lower cost option compared to a leased line

or dedicated point-to-point Ethernet connection [109]. Consequently, network oper-

ators must now consider which optical access platform will allow them to adapt most

cost e↵ectively as future bandwidth demand and applications evolve. In particular,

they expect next-generation PON technologies to enhance bandwidth and service

support capabilities while supporting coexistence with their existing equipment and

outside plant. With this in mind, the IEEE and the FSAN/ITU-T collaboration

began work on the next-generation of PON technologies which targeted bit rates of

10Gb/s and beyond. Both organisations focussed a smooth evolution from existing

technologies to converged optical access networks capable of supporting residential,

business and mobile backhaul. Notably, since the ODN infrastructure represents

approximately 70% of total investments in FTTP networks, it was crucial that the

next-generation of IEEE and FSAN/ITU-T standards were backwards compatible,

enabling operators to re-use their existing infrastructure [110].
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10G-EPON

The standardisation of the IEEE 10Gb/s Ethernet PON (10G-EPON) began in

September 2006 following a call for interest (CFI) [111] and ended in late 2009

with the publication of the IEEE 802.3av-2009 specifications [9]. In addition to

increasing the channel bandwidth from 1Gb/s to 10Gb/s, a primary objective of the

IEEE 802.3av task force included the realisation of backwards compatibility with the

mass-deployed legacy 1G-EPON systems (including the RF video overlay) in order

to ensure a return on investment (ROI) for the network operators. Further system

upgrades include the implementation of a new line coding technique with a lower

overhead (∼ 3.125%), upgraded DBA mechanisms, specifications for 10G burst-mode

transmission, forward error correction (FEC) and new security considerations [112].

To enable the coexistence of 10G-EPON with legacy E-PON systems, the 1Gb/s

and 10Gb/s downstream channels are separated through wavelength division mul-

tiplexing, with 1Gb/s transmission limited to 1480–1500nm band (�DS = 1490nm)

and 10Gb/s transmission using 1575–1580nm band (�DS = 1557nm). In the up-

stream direction, the 1Gb/s and 10Gb/s wavelength bands overlap; the 1Gb/s band

spreads from 1260 to 1360nm (�US = 1310nm) while the 10Gb/s band lies between

1260 and 1280nm (�US = 1270nm). It is important to note that the upstream chan-

nels of 10G-EPON and E-PON have been strategically allocated to take advantage of

the low-chromatic dispersion region of SMF. However, as di↵erent ONUs may have

di↵erent line rates (1Gb/s or 10Gb/s) both upstream channels must be separated

in the time domain using a technique known as dual-rate TDMA. The 10G-EPON

wavelength allocation scheme is illustrated within Fig. 3.7.

Figure 3.7: Wavelength map of 10G-EPON and legacy E-PON systems.
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Alongside the work being undertaken by the IEEE taskforce, the FSAN/ITU-T

collaboration established a road map for the evolution optical access technologies

with next-generation PONs (NG-PONs) separated into a medium and long-term

solutions known as NG-PON1 and NG-PON2 [113]. The first working group was

tasked with an evolutionary upgrade of the G-PON standard with a primary focus

on increasing the bit rates to 10Gb/s using technologies capable of coexisting with

the deployed G-PON systems over the legacy fibre infrastructure. The objective

of the second group involved the investigation of all other systems capable of out

performing NG-PON1 in terms of ODN compatibility, bandwidth, capacity and cost-

e�ciency [110]. This included the realisation of new ODNs and technologies that

were not available in the expected time horizon which were completely independent

of G-PON standards [114].

Figure 3.8: The FSAN/ITU roadmap for the standardisation of next-generation optical
access networks (Reproduced from [114]).

NG-PON1 (XG-PON)

The FSAN group began to gather options for NG-PON1 in early 2008; these can-

didates are explained further in [115]. Of the technologies considered for standard-

isation, the emerging system known as XG-PON (or XG-PON1), utilised an asym-

metric 10Gb/s DS, 2.5Gb/s US configuration which was considered the optimum

compromise between cost and complexity. Notably, at the time of investigation,

the development of a 10Gb/s burst-mode capable Tx for deployment in the ONUs

67



3. The Evolution of Optical Access

located at the customers premises posed a substantial financial obstacle. Moreover,

a burst-mode OLT Rx capable of operating at 10Gb/s presented a significant tech-

nological challenge with an unknown time-frame for commercialisation; hence, the

asymmetric configuration was selected for standardisation.

Similar to the design of 10G-EPON, a primary requirement for XG-PON in-

cluded the realisation of co-existence with the widely deployed G-PON technology

in order to enable a seamless upgrade of individual customers without the need to

introduce any changes in the ODN or disrupt services for existing customers. To

facilitate this coexistence strategy, the recommendations for XG-PON included an

updated wavelength plan which utilised WDM to facilitate two wavelength bands;

this updated wavelength plan is identical to the plan proposed for 10G-EPON sys-

tems shown in Fig. 3.7. Notably, the physical layer convergence of FSAN/ITU-T

and IEEE specifications allows for the shared and convergence of 10G technolo-

gies including chips, optics and hardware platforms with the aim of driving cost

reductions. In this way, carriers have a choice of 10G PON technologies with the

advantage of a single physical layer [116]. A side-by-side comparison of the IEEE

and FSAN/ITU-T next-generation 10G PON technologies is presented in Table 3.4.

10G-EPON XG-PON

Standard IEEE 802.3av [9] ITU-T G.987 [10]

Downstream [Gb/s] 10.3125 9.95328

Upstream [Gb/s] 1.25 or 10.3125 2.48832

Multiplexing Method US: TDMA
DS: TDM

US: TDMA
DS: TDM

Linecode 64B/66B Scrambled NRZ

Wavelength Plan [nm] US: 1260-1280
DS: 1575-1580

US: 1260-1280
DS: 1575-1580

ODN Loss Budget Min Loss: 15dB
Max Loss: 29dB

6 Min Loss: 16dB
Max Loss: 31dB

7

Split 64 64

Reach [km] 20 20
Average DS Bandwidth

per User 161 Mb/s 155 Mb/s

Transmission Structure Symmetric or
Asymmetric Asymmetric

6High Power Budget (PR30/PRX30), 7Nominal2 Class

Table 3.4: Comparison of next-generation PON standards.
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The ITU-T published the standards for XG-PON within the G.987 series of recom-

mendations in 2010; this was followed by the world’s first XG-PON field trial by Ver-

izon and Huawei Technologies Ltd. in Taunton, MA. [117]. It should also be noted

that the 10G symmetric XG-PON variant (known as XG-PON2 or XGS-PON) has

recently been standardised within the ITU-T G.9807 series recommendations [118].

Interestingly, this approach was initially considered as too complex with respect to

delivering cost-e↵ective component technologies for US transmission; however, the

standardisation was strongly motivated by business users who require a sustained,

low-latency symmetric bandwidth [119].

NG-PON2: TWDM-PON

Following the development of the XG-PON standard, FSAN began work on the

second iteration of the next-generation PON strategy (i.e. NG-PON2) which in-

volved the consideration of new fibre architectures that could take advantage of

the maturing WDM technologies in order to further enhance capabilities of the ac-

cess network and address the anticipated market [120]. For instance, the original

NG-PON2 strategy considered the deployment of passive wavelength splitters such

as arrayed waveguide gratings (AWGs) within the ODN instead of the traditional

power splitters [121]. However, it soon became clear that the NG-PON2 should be

backwards compatible with legacy PON systems due to the substantial investments

made to date in power splitter based fibre infrastructure. Furthermore, network op-

erators requested that NG-PON2 must be able to co-exist with previously deployed

systems such as G-PON and XG-PON in order to facilitate progressive migration of

existing subscribers and the addition of new subscribers with minimal disruption of

services. Subsequently, in April 2012, the time and wavelength division multiplexed

(TWDM) PON configuration was chosen as the primary solution for NG-PON2 as

it was most compatible with the preferential high-volume residential application. It

should be noted that the proposed system also enables extensive re-use of XG-PON

technology by e↵ectively stacking multiple XG-PONs through WDM. Moreover, in

an attempt to mitigate the operational expenditure, network operators requested a

limitation on the number of equipment variants resulting in the need for ‘colourless’

ONUs which incorporate tuneable transceivers in order to reduce inventory costs

and establish flexibility with respect to service provision [122].
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The NG-PON2 standards were finally published in 2015 within the ITU-T G.989

series of recommendations [11]. An overview of the main physical layer specifications

is presented in Table 3.5. In particular, the baseline architecture, uses four wave-

length channels with a fixed 100GHz spacing between 1596 and 1603nm to achieve

an aggregated capacity of 40Gb/s (4 × 10Gb/s) in the DS direction. Alternately,

in the US direction, four wavelengths with a bit rate of 2.5Gb/s or 10Gb/s can be

used to establish an aggregated capacity of 10Gb/s or 40Gb/s respectively. Notably,

to address the wavelength control capabilities of the various ONU-Tx technologies

currently available, the US wavelength band for the TWDM-PON is specified using

three distinctions: wide (1524 - 1544nm), reduced (1528 - 1540nm) and narrow (1532

- 1540nm) where channel spacings of 200GHz, 100GHz and 50GHz are supported.

NG-PON2

Standard ITU-T G.989 [11]

Downstream [Gb/s] 4 × 2.48832 or 9.95328

Upstream [Gb/s] 4 × 2.48832 or 9.95328

Multiplexing Method US: TDMA
DS: TDM Point-to-Point WDM

Linecode Scrambled NRZ Vendor Specific

Wavelength Plan [nm] US: 1524-1544
DS: 1596-1603

7 1524 - 16258

1603 - 16259

ODN Loss Budget Min Loss: 20dB
Max Loss: 35dB

10 Min Loss: 20dB
Max Loss: 35dB

10

Split 64 64

Reach [km] 40 40

Average Bandwidth per
User

39Mb/s or 156Mb/s 1.25Gb/s - 10Gb/s

Transmission Structure
Symmetric or
Asymmetric Symmetric

7Wideband Option, 8Expanded Spectrum, 9Shared Spectrum, 10Class E2 (Optical Path Loss)

Table 3.5: Overview of the NG-PON2 specifications.

It should be noted that to facilitate the demanding bandwidth requirements for busi-

ness and backhaul services, the NG-PON2 recommendations also include a point-

to-point (PtP) WDM overlay allowing access to unshared bandwidth. In practice,

the ONUs for PtP WDM require similar low-cost tuneable Tx and Rx elements
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as for TWDM-PON with the main di↵erence being the continuous-mode operation

for PtP WDM as opposed to burst-mode for the TWDM-PON. Notably, within

the proposed baseline architecture, eight PtP channels between 1603 and 1625nm

are considered to allow full coexistence with legacy PON technlogies. However, de-

pending on demand, a network operator may choose to support additional WDM

channels via unused spectrum anywhere between 1524nm and 1625nm as shown in

Fig. 3.9.

Figure 3.9: NG-PON2 wavelength map (Note: Coexistence with legacy PON systems).

At present, one of the most challenging aspects of the NG-PON2 configuration is

the realisation of low-cost wavelength agile technologies with precise tuning and con-

trol functionality for deployment within the customers premises equipment. While

tuneable transceivers are widely used in carrier networks, current modules don’t nec-

essarily meet all of the NG-PON2 performance specifications and are too expensive

for mass-market residential deployment. In fact, according to [123], the ONU tech-

nology accounts for approximately 20% of the total PON investment costs; therefore,

the development of such components is of critical importance in order to maintain

the financial viability of the proposed configuration. This issue is currently be-

ing addressed by photonic systems research groups worldwide with investigations

currently focussed on directly modulated tuneable lasers (DMLs) [124] and pho-

tonic integrated circuits (PICs) which have demonstrated advantages with respect

to potentially low-cost fabrication techniques [125]. In addition, to compliment the

introduction of tuneability in the physical layer, the transmission convergence (TC)

layer must be modified in order to specify the techniques required to manage and

control the multiple wavelengths present in the system [126].
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The introduction of WDM within the recent NG-PON2 standard o↵ers a significant

innovation with respect to legacy PON systems o↵ering an appreciably higher ca-

pacity with options available depending on the use case (i.e. residential, business).

However, on closer inspection, this system represents an incremental step forward

rather than a revolutionary one. This rate of progression is largely attributed to the

compelling need for network operators to drive down equipment and operational

costs for new systems in order to stimulate the market and allow the new tech-

nology to establish itself without adding confusion to the landscape. Furthermore,

since there is limited short or medium term demand for 10Gb/s residential services

it is expected that in the long-term there will be a minor amount of XG-PON de-

ployment followed by more extended deployments of NG-PON2 as its capabilities

best match the need to upgrade G-PON networks; hence, it is expected that most

network operators are expected to go directly to NG-PON2 and skip XG-PON [127].

3.3 Beyond Next Generation Access

As 10G PON has matured commercially in recent years and TWDM-PON has been

standardised for NG-PON2, the bandwidth o↵ered by a PON system has increased

immensely. Nonetheless, network operators concerns have now turned towards e�-

cient utilisation of PON resources (infrastructure, bandwidth), value-added service

provisioning, and return-on-investment improvement [128]. For instance, a number

of large-scale EU research projects (e.g. PIEMAN [129] and SARDANA [130]) have

established the feasibility of innovative FTTP architectures which extend the physi-

cal reach (≥ 100km) and split (≥ 512) alongside a significantly increased information

capacity (32�× 10Gb/s) through the use of hybrid time and wavelength multiplex-

ing techniques [13, 131]. Nonetheless, the implementation of a static wavelength

assignment strategy within these systems ultimately restricts the dynamic provi-

sion of bandwidth to end users; hence, the resulting concept of ‘stranded capacity’

presents a major limitation of current optical access solutions. Furthermore, the

‘tree-structured’ physical layer proposed by the PIEMAN project employs a long

backhaul (∼ 90km) to support a relatively short distribution network (∼10km). It

should be noted that this strategy is only suitable for urban deployment where a

dense distribution of subscribers is required in order optimise infrastructure utilisa-

72



3.3. Beyond Next Generation Access

tion and minimise the cost per customer. Consequently, when FTTP is rolled out

on a large scale the architecture must be as economically viable as possible for the

wide range of geo-types that occur in a typical country-wide networks.

3.3.1 Bridging the Digital Divide

Ideally, all users and all communities should have equal access to high speed broad-

band so that there is no division of service availability due to customer location.

However, many countries still exploit old copper transmission technology and have

created a digital divide between those with good copper access close to the oper-

ator’s electronic infrastructure and those located in more remote areas connected

via much longer copper lines. Moreover, despite the recent annual growth of fibre

subscriptions detailed within the latest report on broadband coverage published by

the European Union (EU) [132], rural areas continue to be sparsely covered as they

are not considered a viable business case by network operators. The resulting lack

of infrastructure and connectivity in these regions has lead to repercussions for busi-

nesses, schools, healthcare providers and government agencies with many countries

now experiencing a significant growth in urbanisation as a result. Furthermore, the

recent growth of teledensity in urban areas, fueled by mobile technology has further

increased the digital divide. To illustrate this point, the latest figure demonstrating

level of rural broadband coverage in Europe using next-generation access (NGA)

technologies is presented in Fig. 3.10. The data shown encompasses VDSL, DOC-

SIS 3.0 and FTTP technologies capable of supplying download speeds of at least

30Mb/s. The latest information indicates that by mid-2017, 92.4% of rural EU

homes were passed by at least one fixed broadband technology; however, less than

50% (46.9%) had access to high-speed next generation services.

The main challenges for the provision of telecommunication services to rural

communities are driven by technological and economic considerations. For example,

a lower population density will require network coverage over a larger geographical

area in order to capture a su�cient number of customers and optimise resource

utilisation; this has direct implications on the required infrastructure and the cost

per customer. In addition, unreliable or complete lack of energy sources still presents

a significant barrier in remote areas while the requirement to maintain a su�cient

backup system raises the operational costs significantly.
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Figure 3.10: Rural High-Speed Broadband Coverage, Europe, 2017 (Reproduced from
[132])

The disparity between rural and urban connectivity in the Republic of Ireland is

evident from Fig. 3.11 which illustrates the availability of high-speed broadband

(≥30Mb/s) in the second quarter of 2017. As of September 2017, just 65% of the 2.3

million premises around the country have access to high-speed broadband. However,

by the end of 2018 it is expected that 77% will be covered with 90% coverage forecast

for 2020. The image and corresponding data presented within Fig. 3.11 are taken

from the Department of Communications, Climate Action and Environment which

presents the data as part of the National Broadband Plan (NBP) [133]. The NBP is a

government driven initiative that targets download speeds of 70Mb/s per user with a
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minimum of 40Mb/s generally available and 30Mb/s in harder to reach rural areas in

accordance with the Digital Agenda for Europe (DAE)[134]. The DAE was outlined

by the European Commission in 2010 and it is aimed at boosting Europe’s economy

by delivering sustainable economic and social benefits from a digital single market.

The main objectives of the DAE include the provision of universal download speeds

of 30Mb/s for all citizens with 50% of European Union (EU) households subscribing

to speeds of 100Mb/s by 2020.

Figure 3.11: Status of High-Speed Broadband in the Republic of Ireland, 2017 (Repro-
duced From [133])

With particular respect to FTTP deployment, the latest data for coverage by coun-

try within the EU is presented in Fig. 3.12 [132]. The EU average for FTTP

coverage reached 26.8% as of mid-2017, with eleven countries (incl. Ireland) re-

porting coverage levels below the EU average. Moreover, the EU average for rural

FTTP availability is just above 10%, with coverage in Ireland at 1.2% as fixed-line

and wireless technologies such as VDSL and LTE continue to be preferred due to

the substantial economical and technological requirements for the deployment of a

rural fibre infrastructure.
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Figure 3.12: Comparison of (a) National and (b) Rural Fibre-to-the-Premises Coverage
Within the EU as of Mid-2017 (Reproduced from [132])

The implementation of future access networks should now be focussed on the e�-

cient utilisation of fibre infrastructures and network resources rather than just the

simple increase of the available bandwidth per customer. To this end, new architec-

tures must now be identified, which are advantageous for establishing economically

viable and energy-e�cient optical access solutions. In particular, to ensure the

future economic viability of rural communities, the development of an alternative

fibre architecture with improved infrastructure utilisation is essential to facilitate

the delivery of high-speed broadband (≥30Mb/s) and mobile telephony to sparsely
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populated areas in accordance with the DAE [134]. To this end, the fundamental

concept adopted by the EU FP7 project DISCUS was to exploit the two fundamen-

tal advantages of optical technology: (i) the potential to o↵er a large bandwidth

and (ii) the ability to supply this over long distances to all parts of the network. In

particular, when this strategy is applied to the access network, the outome specifies

an architecture that is long enough to directly reach the core nodes.

3.3.2 EU FP7 Integrated Project DISCUS

In 2012, the large-scale integrated project DISCUS (DIStributed Core for ubiquitous

bandwidth supply to all Users and Services) was funded by the 7th EU framework

program for Research and Innovation (2007 - 2013) in the field of information and

communication technologies for future networks (ICT-2011.1.1). Projects funded

from this category of the framework targeted the development of future broadband

(fixed and mobile) networks with an energy e�cient, secure and robust infrastructure

that will use the available spectrum flexibly and e�ciently in order to meet the

objectives set by the digital agenda for Europe in 2010 [134].

The main goal of the DISCUS project was to define and develop a new radical

architectural concept through a ‘clean-slate’ approach to enable an integrated opti-

cal access network which addresses the primary challenges (i.e. financial viability,

power consumption, capacity scaling etc.) arising from an FTTP enabled future.

These objectives demanded an innovative end-to-end design in order to establish

an ‘open access’ environment capable of concurrently supporting multiple opera-

tors o↵ering converged services (i.e. residential, business and mobile) in order to

account for diverse customer requirements and geographic locations [8, 135]. In par-

ticular, the physical layer strategy focussed on substantially reducing the number

of required electronic systems such as signal regenerators through the realisation of

an optically amplified fibre infrastructure while at the same time minimising the

cost per customer through optimal sharing of the network resources (i.e. infras-

tructure and bandwidth). As a result, the baseline DISCUS architecture presented

in Fig. 3.13 involves the amalgamation of a dynamically reconfigurable time- and

wavelength-division multiplexed LR-PON with a flat optical core which is arranged

into islands of transparency. The primary constraint placed on this architecture is

that it needs to evolve from today’s network solutions and be capable of adopting
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new technologies as they become available. While the starting point is a generic

reference architecture, the design strategy must be capable of evolving according to

the insights gained throughout the duration of the project; these include technolog-

ical developments and results from cost and business models, power consumption

models, service and tra�c models, and regulatory and policy studies.

Two distinct LR-PON configurations, namely the ’tree-structured’ (urban) and

’open-ring’ (rural) systems which will be described further in later chapters, were

conceived as potential candidates for the network demonstration. However, in the

remainder of this chapter, the preliminary access configuration is motivated along-

side the technology required to overcome the foreseen physical layer challenges. It

is important to note that the design and demonstration of the DISCUS architec-

ture was carried out in collaboration with several project partners: Trinity College

Dublin (Ireland), Nokia Bell Labs (Stuttgart, Germany), Huber+Suhner Polatis Ltd.

(UK), Aston University (UK), III-V Labs (France), Telefonica (Spain), Telecom

Italia (Italy) and KTH (Sweden).

Figure 3.13: DISCUS: High-level physical layer concept based on a flat optical core and
a dynamically reconfigurable LR-PON.
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3.3.3 Long-Reach Optical Access

Considering Fig. 3.13, the enhanced physical reach a↵orded by th LR-PON archi-

tecture enables the majority of LE sites to be bypassed with fibre terminations (i.e.

OLTs) concatenated into a small number of metro/core (M/C) nodes, each covering

large areas. This approach can produce significant cost savings on infrastructure

and equipment but it also has the potential to significantly reduce the power con-

sumption, hence, the economic requirements compliment the sustainability drivers.

Moreover, as a reduction of cost from the backhaul and core networks can also help

to balance the cost required for the ODN deployment, tra�c can be kept the optical

domain using in-line optical amplification in order to bypass the intermediate elec-

tronic switching and processing units traditionally located at the LE sites. When

this strategy is coupled with the inclusion of a reconfigurable optical switch within

the M/C nodes, the resulting system o↵ers the potential to enable a congestion-free,

wavelength transparent network interface where the aggregated data from the far-

reaching access network (≥ 100km) can be processed by the OLTs and redirected

back towards the access section or it can be handed over to the core.

Recent studies have shown that the proposed DISCUS architecture has the poten-

tial to reduce the number of nodes carrying out electronic switching and processing

by almost two orders of magnitude [136]. For instance, a test scenario undertaken

for the U.K. core network demonstrated that the number of exchange sites could

be reduced from ∼5,600 to approximately 75 [137]. A similar study for the Irish

network demonstrated that 1100 exchange sites could be reduced to around 18, this

result is illustrated in Fig. 3.14 [138].

Figure 3.14: (a) Ireland with all 1100 exchange sites, (b) Ireland with 18 M/C nodes.
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3.3.4 Technology Evolution and Physical Layer Challenges

In order to support the proposed network architecture, innovative technologies will

be required. In this thesis, the technology evolution focuses on the following areas:

low-cost tuneable transmitters, high dynamic range burst-mode optical amplifier

nodes, 10G-capable burst-mode subsystems and the convergence of heterogeneous

wavelength services over the PON infrastructure.

Low-Cost Wavelength-Agile Transmitters:

A critical component technology required to realise wavelength-agile ONUs are tune-

able lasers. However, the strict tolerance placed on the accuracy and precision of

the transmission wavelength coupled with the need for a wide tuning range (>10nm)

and a relatively high output power (> +3dBm) ultimately demands a greater design

and fabrication complexity. As a result, the primary challenge facing the mass-

deployment of tuneable lasers in the access network is that of cost. With this in

mind, DISCUS has selected a tuneable laser design based on a multi-section Fabry-

Pérot cavity with integrated slots [139]. Notably, this slotted Fabry-Pérot (SFP)

laser only requires a single epitaxial growth stage and uses feature sizes that can be

reached with standard deep-UV optical lithography. This relatively simple fabrica-

tion process o↵ers major advantages over alternative structures by greatly reducing

the fabrication complexity while also increasing the potential yield. Moreover, as

these lasers do not explicitly need cleaved facets to form the laser cavity they can

be employed to integrate monolithically with other electro-optical devices. For in-

stance, in this project, a tuneable three-sectioned SFP laser has been integrated with

an electro-absorption modulator (EAM) and an SOA, thus creating a single device

capable of providing a tuneable light source with the potential for high-speed, low-

chirp modulation alongside a boosting/gating function to facilitate the generation

of optical bursts. A detailed investigation of this device which was developed and

fabricated by researchers in the III-V Materials and Devices Group of the Tyndall

National Institute is presented in Chapter 4.
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High Dynamic-Range Optical Amplifier Nodes:

The amplifier nodes (ANs) represent a critical feature of the DISCUS architecture as

they extend the optical power budget of the physical layer to realise a longer physi-

cal reach (≈100km) and higher split (≤512). This approach e↵ectively integrates the

metro and access portions of the network enabling the fibre infrastructure to bypass

the majority of LE sites required for todays networks thus reducing both power con-

sumption and equipment costs significantly [13]. As in conventional metro DWDM

network design, the preferred option to further minimise cost is to use a single multi-

channel amplifier within the AN for each transmission direction; however, it must be

noted that the choice of amplifier technology will ultimately dictate the wavelength

plan. For example, to support operation in the C-band (1530 - 1565nm), Erbium-

doped fibre amplifiers (EDFAs) o↵er a key solution due to their overall performance

quality in terms of low noise figure (NF), high gain, high achievable output power

and the ability to provide these characteristics in a system with a large number of

channels. From a practical perspective, using a C-band wavelength plan for the DIS-

CUS architecture has a significant advantage with the wide availability of mature

components and technologies such as optical amplifiers and wavelength multiplex-

ers. With respect to the wavelength allocation between the transmission bands,

interleaving of the US and DS channels can be considered; however, in this work

the short wavelength side of the C-band (1528.77 - 1544.53nm) has been allocated

to the DS channels and the long wavelength side (1548.51 - 1564.27nm) has been

allocated to the US channels.

Figure 3.15: Wavelength plan of legacy PON systems alongside the proposed transmis-
sion bands for the DISCUS TDM-DWDM LR-PON [140].
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Notably, due to their relatively slow gain dynamics, EDFAs are typically designed to

operate with continuous tra�c in conventional metro and core networks. Moreover,

as illustrated in Fig. 3.16, the fast input power variation (< µs) produced by high

dynamic range burst-mode tra�c (≥ 15dB) can generate significant burst envelope

distortions due to saturation-induced gain transients that can be attributed to the

lengthy excited state lifetime of the Er+3 dopant ions (∼ 10ms) [141].

Figure 3.16: Illustration of saturation-induced optical gain transients from an EDFA-
based amplifier node.

Unless suitable mitigation strategies are employed, these signal distortions (∼ µs) can
result in significant performance degradation and/or sync loss, or even damage to the

OLT-based burst-mode receiver (BMRx) which typically sets its gain and extracts

a decision threshold from a short (tens of nanoseconds) preamble. In recent years,

the development of reconfigurable optical add and drop multiplexers (ROADMs) to

support dynamic WDM systems has driven the evolution of EDFA transient control

circuitry that may also provide a solution for supporting burst mode tra�c in the

long-reach, high-split architectures proposed within DISCUS. For instance, a num-

ber of gain stabilisation techniques have been reported for burst-mode operation

of EDFAs by using electro-optic feedback [142, 143]. The suitability of commer-

cial gain-stabilised EDFAs for deployment within the optical amplifier nodes of dy-

namically reconfigurable TDM-DWDM LR-PON architectures is evaluated within

Chapter 5.

10G Burst-Mode Subsystems:

A critical aspect of the upstream link is the implementation of an e�cient time-

division multiple access (TDMA) protocol in order to share the available bandwidth
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between the users assigned to a specific wavelength. Here, each user generates bursts

of data during the allocated timeslots which are scheduled by the PON protocol [81].

Within a LR-PON, the varying propagation distances between each ONU and the

assigned OLT suggest that if the same average optical power was launched from each

ONU at the access edge, the bursts arriving at the OLT will exhibit di↵erent levels of

transmission impairments including loss, OSNR, chromatic dispersion and bit-phase.

Consequently, to support the envisaged architecture, the OLT-based BMRx must

o↵er a high optical sensitivity alongside the ability to adjust the electronic gain and

dc-o↵sets within a guard interval of a few tens of nanoseconds before synchronising

the phase of the signal within a short preamble at the start of each burst. It is

important to note that throughout this thesis, a ‘loud’ packet (LP) represents the

burst arriving at the OLT with the highest power while the incident burst with the

lowest power is referred to as a ’soft’ packet (SP).

At present, the majority of existing OLTs employ BMRx technology consisting

of a limiting amplifier. This approach uses an limiting amplifier to make a hard

decision whether the input signal represents a 0 or 1 through comparison against

a threshold and the resulting output signal takes on two corresponding levels. Al-

ternatively, a linear burst-mode receiver (LBMRx) linearly amplifies its input such

that the average or peak amplitude equals a reference. This results in equalisation

of the burst amplitudes with preservation the signal shape which is critical for the

implementation of signal processing functions such as electronic dispersion compen-

sation (EDC) [144] and forward error correction (FEC) [145] as illustrated in Fig.

3.17.

Figure 3.17: Linear burst-mode receiver concept with electronic dispersion compensation
(EDC) and forward error correction (FEC).
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For this project, an innovative 10G-capable AC-coupled LBMRx prototype devel-

oped by researchers in Tyndall’s Photonic Systems Group (PSG) [146] was inte-

grated with a field-programmable gate array (FPGA) incorporating a custom PON

protocol and the Reed-Solomon (RS) FEC decoding functions. In Chapter 5, the

resiliency of an RS(248, 216) error correction algorithm realised within the OLT-Rx

is evaluated through a collaborative research e↵ort which uses emulated optical tran-

sients imparted on bursts transmitted from two time-division multiplexed ONUs to

introduce strongly correlated and localised errors [147]. Moreover, the transmission

performance of the 10G burst-mode link for two distinct TDM-DWDM LR-PON

variants designed and assembled for the DISCUS physical layer testbed are pre-

sented in Chapter 6 [19].

Point-to-Point Overlay of 100Gb/s DP-QPSK:

The development of future access networks will be driven by the need to dynamically

provide access to core capacities (i.e. 100Gb/s or higher) to any point within the

network [148]. In turn, this requires that the LR-PON must have the capability to

o↵er such capacities without disrupting the on-going (TDM) tra�c to and from the

conventional (i.e. residential) customers attached to that network. While various

encoding systems have been studied for 100Gb/s optical transmission signals [149],

dual-polarisation phase shift keying (DP-QPSK) was chosen for deployment within

the DISCUS architecture as it is the most commonly adopted solution for 100G in

long haul and metro optical channels [150]. In particular, DP-QPSK is an advanced

phase-modulation format that transmits 2-bit signals represented by four phases on

two orthogonally polarised light beams at the same carrier frequency. In other words,

it enables allows four bits of data to be encoded and sent as one optical symbol.

Notably, the DP-QPSK signaling scheme reduces the e↵ective symbol rate to one

quarter of the system bit rate. While a DP-QPSK transmitter and coherent receiver

are relatively complex and costly to implement, the lowered symbol rate permits

the use of electrical and optical components with lower operating bandwidths (i.e.

25GHz as opposed to 100GHz) and improves the system immunity to factors that

significantly limit transmission including chromatic dispersion.

In this work, a commercial DP-QPSK transponder was used to generate and

receive 100G point-to-point tra�c sent over the LR-PON physical layer. As service
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demonstration over this channel is beyond the scope of this project, the task is

limited to studying the performance of the channel at the physical layer. Notably,

in this converged service scenario, the performance of phase modulated signals can be

heavily influenced by non-linear crosstalk from co-propagating on-o↵ keying (OOK)

channels [151]. The results of this analysis are presented as part of the network

demonstrator characterisation in Chapter 6.

3.4 Summary

This chapter reviews the evolution of optical access networks from the widely de-

ployed single channel E-PON and G-PON systems to the next-generation 10G-

capable configurations which include 10G-EPON, XG-PON and the recently stan-

dardised NG-PON2. From this study, it is evident that despite the incremental

steps taken by these standards to address the ever-growing demand for bandwidth,

network operators will be forced to look beyond this current range of access archi-

tectures in order to find a cost-e↵ective, ‘future-proof’ solution capable of delivering

ubiquitous bandwidth over larger areas to a higher number of customers. In fact,

these requirements have already prompted the design of an alternative configuration

known as a ‘long-reach’ (LR) PON which supports a physical reach ≥ 100km and

a split ≥ 512 while also reducing capital and operational expenditure through node

consolidation.

While large-scale research projects such as PIEMAN [18] have successfully demon-

strated the physical layer feasibility of LR-PONs whose information capacity has

been increased significantly through hybrid time- and wavelength-division multi-

plexing (32 x � x 10Gb/s); the proposed physical layer is only suited to urban

deployment where customers are densely distributed to achieve maximum utilisa-

tion while the static use of the wavelength domain restricts bandwidth e�ciency by

introducing stranded capacity. With this in mind, the EU FP7 integrated project

DISCUS was funded to address the current physical layer limitations and technology

gaps by embracing innovative architectures and emerging industry trends. In partic-

ular, the main objective of DISCUS was to exploit the two fundamental advantages

of optical technology: (i) the potential to o↵er a large bandwidth and (ii) the ability

to supply this over long distances to all parts of the network. It is important to

85



3. The Evolution of Optical Access

note that when this strategy is applied to the access network, the outcome specifies

an architecture that is long enough to directly reach the core nodes. However, in

order to realise the proposed configuration, several technological challenges must

be addressed, these include the development of low-cost tuneable transmitters for

deployment in mass-market residential ONUs and the realisation of burst-mode ca-

pable optical amplifier nodes to support multichannel, heterogeneous tra�c. These

technologies will be investigated further in the following chapters with the results of

the DISCUS physical layer experimental testbed presented in Chapter 6.
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Low-Cost Tuneable Transmitters
for Wavelength Agile PONs

This chapter presents an investigation into the development of two innovative tune-

able laser technologies targeted for mass deployment in the customer premises equip-

ment of wavelength-agile PONs.

In section 4.1, the chapter begins with a brief history of the laser and an overview

of the basic structure of semiconductor diode lasers before moving on to discuss the

main wavelength tuning mechanisms in section 4.2. Subsequently, section 4.3 moti-

vates the concept of reconfigurable optical access networks which require wavelength-

agile transmitters to dynamically exploit the substantial information capacity o↵ered

by optical fibre through wavelength division multiplexing. This is followed by an

outline of the performance requirements and development challenges facing the real-

isation of low-cost tuneable lasers for mass-market access deployment in section 4.4.

Consequently, driven by the potential for appreciable cost-savings, the main tech-

nologies of interest examined in this chapter include a novel vertical cavity surface

emitting laser (VCSEL) which achieves tuneability through thermal actuation of a

curved top mirror and a monolithically integrated transmitter based on a discretely

tuneable slotted Fabry-Pérot ridge waveguide laser. In particular, the tuneable VC-

SELs presented in section 4.5 employ a short cavity structure in conjunction with a

flexible surface micro-machined Bragg reflector in order to increase the free-spectral

range and achieve wide-band continuous tuning (i.e. ≥ 40nm) through electronic

manipulation of the cavity length. Alternatively, the edge-emitting 10G-capable in-

tegrated transmitter introduced in section 4.6 uses an ‘o↵-the-shelf’ multi-quantum

well (MQW) wafer structure with a single epitaxial growth process alongside stan-

dard photolithography techniques to achieve appreciable cost savings when com-

pared with commercial grating-based solutions.
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4.1 Light Amplification by Stimulated Emission

of Radiation

The term ’laser’ is an acronym of the words Light Amplification by Stimulated

Emission of Radiation. In fact, having been postulated by Albert Einstein in his

1917 paper entitled ‘On the quantum theory of radiation’ [152], stimulated emission

describes the process by which an incoming photon of a specific frequency interacts

with an excited atomic electron (or other excited molecular state), causing it to

drop to a lower energy level with the creation of an additional photon that matches

the input photon in wavelength, phase, and polarisation in accordance with the

well-known relation,

�E = E2 −E1 = hf (4.1.1)

where, �E is the di↵erence in energy between the upper, E2 and lower E1 , f is

the frequency of the emitted photon and h is Planck’s constant which has a value

of approximately 6.626 × 10−34 [Js].

(a) (b) (c)

Figure 4.1: Electronic transitions between the conduction and valence bands: (a) exci-
tation via absorption, (b) spontaneous emission, (c) stimulated emission.

Four decades after Einstein’s work, the first laser was constructed by Theodore H.

Maiman at Hughes Research Laboratories in Malibu, California, using a cylinder of

synthetic ruby whose ends were silver-coated to make them reflective and able to

serve as a Fabry-Pérot resonator while photographic flashlamps were used as the

laser’s pump source [153]. From here, research and development on lasers grew

exponentially and by 1962, the first stimulated emission from a Gallium-Arsenide
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(GaAs) diode at 840nm was reported by R. N. Hall et al. [2] as well as by some

other groups. By 1970, at the dawn of fibre-optic communications, Zhores Alferov

had developed and fabricated more sophisticated laser structures with optical and

electrical confinement layers. Moreover, he achieved continuous-wave lasing at room

temperature from an Aluminium-Gallium-Arsenide (AlGaAs) diode laser [154]. Fol-

lowing this work, optical fibre communications became the primary driving force

behind diode laser development, particularly in the second half of the 70s and at

the beginning of the 80s, where attention began to focus on emission in the region

of 1310nm and 1550nm using Indium Phosphide (InP) based structures to address

the zero-dispersion and low-loss spectral regions of single-mode fibre respectively.

Figure 4.2: Basic laser configuration based on a Fabry-Pérot cavity.

The Lasing Mechanism

On a fundamental level, all lasers are comprised of a resonant cavity of length, L,

which is bounded by facets with reflectivities of R1 and R2 respectively. These cav-

ities are inherently passive with a loss of ↵ per unit length. However, the cavities

also contain an active region which is capable of providing optical gain, g, through

stimulated emission induced by confined photons that have been generated sponta-

neously following the external excitation of the material. Within such a cavity, the

change in optical power after one complete round trip, �Prt, can be written as

�Prt = R1R2e
(�g−↵)2L (4.1.2)

where � signifies the confinement factor of the guided optical mode. In practice, due

to optical leakage at both end facets alongside scattering and absorption within the

cavity, the power of the confined light will eventually decrease as photons leave the
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cavity through emission or absorption. However, if enough optical gain is available

to compensate for the round-trip losses (i.e. �Prt ≥ 1) the laser is said to be above

threshold, gthr, and the intensity of the light oscillation in the cavity can begin to

build up with the emission of highly coherent light.

gthr = �g = 1

2L
loge( 1

R1R2
) + ↵ (4.1.3)

4.2 Tuneable Semiconductor Lasers

Following the development of InP single-mode laser diodes capable of emission

around 1310nm and 1550nm in the late 1970’s and early 1980s [155, 156], the de-

velopment of wavelength-tuneable laser diodes was primarily driven by the increas-

ing demand on information capacity within optical communications systems where

the application of advanced transmission techniques such as WDM are essential

[157, 158].

Figure 4.3: InGaAsP bandgap energy as a function of the lattice constant with various
binary III-V compound semiconductors (Reproduced from [159])
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A schematic of a generic tuneable laser is presented in Fig. 4.4 in order to demon-

strate the main elements which must be aligned and translated in order to pro-

duce a wavelength-tuneable, single (longitudinal) mode laser. In practice, these

elements can be combined in di↵erent ways to create unique physical structures,

each possessing their own advantages and disadvantages [160]. At present, the main

tuneable semiconductor laser assemblies include distributed feedback (DFB) laser

arrays [161], distributed Bragg reflector (DBR) [162], external-cavity lasers (ECLs)

[163] and vertical-cavity surface-emitting lasers (VCSELs) tuned via micro electro-

mechanical systems (MEMS) [164].

Figure 4.4: Schematic of a generic tuneable laser illustrating the main tuning mechanisms
alongside a single-mode lasing spectrum defined by the achievable side-mode suppression
ratio (Reproduced from [160]).

Tuning Mechanisms

In general, laser tuneability can be achieved electronically, thermally or mechanically

where the mode number (m) and wavelength (�) depend on the e↵ective index (neff )

and the e↵ective cavity length (L) as shown in Eqn. 4.2.1.

m�

2
= neffL (4.2.1)

with the fractional variation of one or all of these parameters contributing to the

adjustment of the lasing wavelength:
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⇒ ��

�
= �neff

neff
+ �L

L
− �m

m
(4.2.2)

With respect to the first two terms on the right hand side of Eqn. 4.2.2, elec-

tronic, thermal or mechanical tuning may apply; however, depending on the device

in question, appreciable variations in either of these processes may disturb the lasing

resonance conditions by influencing the mode selection mechanism causing abrupt

mode jumps (or mode-hops). It is also important to note that these wavelength-

tuning mechanisms generally a↵ect the optical cavity gain, so that the optical power

varies during tuning. Equally, the optical power control by the laser current a↵ects

the device temperature and thus the emission wavelength. Moreover, for telecom-

munication applications such lasers are often packaged with a thermoelectric cooler

(TEC), a monitoring photodiode (MPD) and a wavelength locker (WL) in order to

facilitate temperature, power and wavelength control respectively. Furthermore, as

the tuneability of many devices may require the precise and simultaneous adjust-

ment of multiple tuning currents [165], the handling convenience with respect to

device packaging is drastically influenced.

4.3 Wavelength Agile PONs

With the introduction of wavelength division multiplexing (WDM) to the access

network through the ITU-T NG-PON2 standard [11] attention has turned to the

development of “colourless” components to reduce the manufacture and stockpiling

of wavelength specific linecards. In particular, this approach has highlighted two

feasible options for ONU transmitters: reflective devices or tuneable lasers. As

shown in Fig. 4.5, the former case involves reflective semiconductor amplifiers (R-

SOAs) [166] or hybrid R-EAM-SOAs [167] which can be seeded through carrier

distribution using spectrally sliced ASE or centrally located laser banks. However,

as the same fibre path is typically used for the unmodulated carrier and the upstream

signal, hence, interference with Rayleigh backscattered or Fresnel reflected signals at

the same transmission wavelength can give rise to the interferometric conversion of

laser phase noise to intensity noise thus degrading the signal quality at the receiver

92



4.3. Wavelength Agile PONs

[168, 169, 170]. Furthermore, as these reflective devices will typically have a residual

polarisation dependance, the inherent birefringence in optical fibre may compromise

the carrier conditions at the input. Moreover, the di↵erential loss incurred from the

passive splitters in the optical distribution network (ODN) can result in di↵ering

levels of gain saturation within the SOA sections as well as an increased power ratio

(or dynamic range) between optical bursts in the upstream direction [171].

Figure 4.5: Illustration of the backscattering and reflection mechanisms in a carrier
distributed PON.

While reflective transmitter solutions might be applicable in standard reach WDM-

PONs, it is widely recognised that the wavelength layer of future access networks

should be based on tuneable lasers. In particular, the envisaged physical reach

(≥100km) and split ratios (≥ 512) of LR-PONs will require lasers with a relatively

high output power and low linewidth to address the increased loss and dispersion

attributed to such systems. Furthermore, these lasers will require a high-level of

tuning precision and wavelength stabilisation in order to maintain the integrity of

the set transmission channel thus avoiding inter-channel crosstalk.

To demonstrate the typical requirements for these tuneble lasers, the main optical

interface parameters for tuneable ONU transmitters deployed within a reconfigurable

point-to-point (PtP) wavelength-division multiplexed (WDM) PON in accordance

with the recent ITU-T G989.2 (NG-PON2) recommendations are presented in Table
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4.1. Notably, the channel tuning time has been divided into three classes: (1) < 10µs,
(2) 10µs − 25ms, (3) 25ms − 1s; this approach is taken in order to define di↵erent

use cases with respect to the employed wavelength control scheme. In particular,

two wavelength control mechanisms are allowed; these include centralised control

through OLT-ONU interactions and self-control in which the ONU is completely

responsible for the control of the transmission wavelength. It is also important to

note that the specifications outlined in Table 4.1 must be met through the tuning

process to avoid any rogue behavior which may cause the wavelength to drift outside

the allocated spectral window and interfering with neighboring channels.

Item Unit Value

Operating Wavelength Band [nm]
1524 - 1544 (Wideband)

1528 - 1540 (Reduced Band)
1532 - 1540 (Narrow Band)

Minimum Channel Spacing (��) [GHz] 50

Maximum Channel Spacing (��) [GHz] 200

Maximum Spectral Excursion [GHz] ±12.5 (�� = 50GHz)±25 (�� = 200GHz)

Wavelength Channel Tuning Time -
Class 1: < 10µs

Class 2: 10µs - 25ms
Class 3: 25ms - 1s

Maximum Tuning Granularity [GHz] ChannelSpacing/20 ≈ 2.5

Mean Channel Launch Power (Max) [dBm] +9.0 (Unamplified OLT-Rx)

Mean Channel Launch Power (Min) [dBm] +4.0 (Unamplified OLT-Rx)

Minimum Extinction Ratio [dB] 6

Minimum Side-mode Suppression Ratio [dB] 30

Table 4.1: The Main Optical Interface Parameters for an ONU Transmitter in a TWDM-
PON PON for a Linerate of 9.95328 Gbit/s in the Upstream Direction in Accordance with
the ITU-T G989.2 (NG-PON2) Recommendations [172].
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4.4 Challenges Facing Low-Cost Tuneable Lasers

for Optical Access

From the specifications provided in Table 4.1, the strict tolerance placed on the accu-

racy and precision of the transmission wavelength coupled with the need for a wide

tuning range (>20nm) and a relatively high output power (> +3dBm) ultimately

demands a greater design and fabrication complexity. Therefore, at present, the

primary challenge facing the mass-deployment of tuneable lasers in the access net-

work is that of cost. In practice, monolithic integration has successfully addressed

the challenging design processes necessary for tuneable transmitter assemblies by

achieving the desired multicomponent functionality on a single chip resulting in a

reduced form factor, power consumption and packaging complexity. Nonetheless, the

main disadvantage of these devices (which are typically variants of the DBR laser)

is their intricate fabrication processes which require multiple epitaxial growths with

narrow tolerance steps in order to create the grating structures which have lead to

high production costs. Currently, the price of 10G-capable tuneable transceivers for

optical communications is somewhere in the three-digit US dollar range which is far

too high, especially for mass-market residential deployment where the current price

bench-mark has been set by G-PON with ONUs typically ≤ $100 [173] employing

well-established distributed feedback (DFB) lasers with a cost in the region of $10-
20. Consequently, to achieve economic feasibility, the price of tuneable lasers would

have to drop below 10% of their current price [21].

In order make tuneable lasers more a↵ordable for deployment in optical access

networks, the most logical step is to remove sub-components from the laser package

where possible. For instance, as illustrated in Fig. 4.6, one option would be to

remove the thermistor and the thermo-electric cooler (TEC). Not only would this

action significantly reduce the packaging costs, but it would also mitigate the power

consumption considerably as in a typical design it may consume up to ∼1W. Notably,

uncooled operation of five-section SG-DBR and DS-DBR lasers has been successfully

demonstrated in [174] and [175] respectively. However, in addition to their relatively

complex fabrication processes which include multiple epitaxial growths with strict

tolerance steps, these devices require advanced material substrates that are capable

of stable operation over a wide temperature range (≤ 90°) [176].
An additional cost-saving option involves the removal of the wavelength locker
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from each laser package, however, in its absence, appreciable thermal variations may

lead to rogue wavelength behaviour in which the set value drifts outside the allo-

cated channel window and interferes with adjacent channels through interferometric

crosstalk. Consequently, the use of an open-loop control scheme would require ex-

tensive calibration e↵orts on a device-by-device basis in order to realise the full

tuning map which must consider all currents and temperatures. However, as e↵ects

associated with laser-aging may compromise the validity of the associated calibra-

tion table [177], this approach is currently viewed as cost-prohibitive. On the other

hand, a closed-loop wavelength control could be realised on a systems level using

a centrally located wavelength referencing tool alongside an appropriate protocol

adaptation in order to provide dynamic feedback to each active ONU through the

downstream channels. It should be noted that this technique has been successfully

demonstrated in [178] where a tuning accuracy of ≤ ±5GHz has been achieved.

Figure 4.6: Illustration of a typical tuneable laser ‘butterfly’ package highlighting the
various sub-components required.

To further mitigate fabrication costs, certain optical parameters (i.e. linewidth)

could be relaxed depending on the application (i.e. direct or coherent detection)

while attempts could also be made to reduce the costly calibration e↵orts through

utilisation of device specific current injection equations as demonstrated in [162].

These generic equations can be extracted from a fully detailed device character-

isation before being applied to di↵erent laser chips of the same device structure.

While it is clear that the use of these equations cannot o↵er the high-end perfor-
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mance o↵ered by calibrated lasers due to the small di↵erences from chip-to-chip

which can be attributed to imperfect manufacturing techniques, the resulting op-

eration may still be suitable for PON applications if used alongside an appropriate

closed-loop wavelength control scheme. Nonetheless, to address the cost challenges

currently facing the realisation of tuneable transmitters for mass-deployment in op-

tical access networks, research has begun to focus on more innovative solutions

which utilise alternative structures and low-cost fabrication techniques. With this

in mind, the following sections present an investigation into the feasibility of two

such devices including a vertical-cavity surface emitting laser (VCSEL) which incor-

porates a flexible surface micro-machined Bragg reflector and a novel monolithically

integrated transmitter that is comprised of a discretely tuneable slotted Fabry-Pérot

ridge waveguide laser, an absorptive modulator and an SOA whose main advantage

lies in its low-cost,re-growth free fabrication process.

4.5 Widely Tuneable MEMS-VCSELs

Lead by Technische Universität Darmstadt in Germany, the specific targeted re-

search project (STREP) ‘SUBTUNE’ (widely tuneable VCSELs using sub-wavelength

gratings) was sponsored in 2008 by the European Commission under the 7th EU

Framework Programme (FP7) [179]. The primary goal of this project was to tar-

get the development of innovative vertical cavity surface emitting lasers (VCSELs)

which incorporate a micro-machined movable Bragg-mirror to achieve wide tuneabil-

ity alongside a high output power and a high suppression of lateral and longitudinal

sidemodes for application in communication and sensing systems. In particular, the

main contribution of this work involved characterising these devices and assessing

their suitability for use in fibre-optic communication systems. The results of this

investigation are presented in the following sections.

VCSEL Concept and Design

By considering the lasing resonance condition and the free-spectral range, ��FSR,

of a typical laser cavity as shown in Eqn. 4.5.1 and 4.5.2 respectively; it is evident

that the continuous tuning capabilities become much larger as the cavity length (L)

is minimised such that the mode integer, m, is as small as possible.
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m�

2
= neffL (4.5.1)

��FSR = �m − �m+1 = �2
c

2neffL
(4.5.2)

where, �c represents the centre wavelength of the tuning range. This ‘short-cavity’

concept is exploited in VCSELs where the direction of the light emission is vertical

rather that parallel to the substrate as is the case for conventional ‘edge emitting’

diode lasers. This vertical emission structure is highly advantageous as it maintains

a smaller footprint while facilitating on-wafer testing and production of two dimen-

sional arrays which o↵er the potential of an increased yield alongside an improved

packaging flexibility with respect to edge emitters.

While fixed-wavelength VCSELs have been successfully demonstrated at wave-

lengths of 1.3µm [180], 1.55µm [181] and 2µm [182], novel concepts for tuneable

VCSELs incorporating micro-electro-mechanical systems (MEMS) targeted for oper-

ation within the C-band (1530 - 1565nm) have been primarily influenced by the work

of Prof. Connie J. Chang-Hasnain [183]. As shown in Fig. 4.7, the MEMS-VCSEL

structure studied in this work is comprised of an electrically pumped semiconductor

cavity (also known as a ‘half-VCSEL’) which is embedded between two highly reflec-

tive (>99%) distributed Bragg reflectors (DBR) forming a plane-concave resonator

geometry. It should be noted that a high reflectivity is necessary for these devices as

the thin active region provides a relatively small round trip gain. The half-VCSEL

is fabricated with two n-type InP heat and current spreading layers, each with a

thickness of approximately 800nm, sandwiching the compressively strained active

region with AlGaInAs quantum wells alongside a buried tunnel junction (BTJ) con-

taining two highly doped lattice matched layers p+ AlGaInAs and n+ GaInAs for

current confinement and a flat dielectric DBR which is embedded in a gold (Au)

electroplated substrate. In practice, the Au-substrate not only acts as the bottom

electrical contact but it also serves as a surface for heat extraction. The second

DBR is then deposited on top of the wafer with tailored strain gradients using low

temperature plasma enhanced chemical vapour deposition (PECVD) which assumes

a concave shape after etching a sacrificial layer beneath the mirror. As these micro-

machined mirror membranes are fabricated directly on top of the half-VCSEL, these
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devices o↵er the potential for high-e�ciency mass production in contrast to other

two step processes that required wafer-bonding [184] or gluing [164]. Notably, the

radius of curvature of the top DBR is a critical parameter which must be carefully

designed in conjunction with the diameter of the BTJ and the flat DBR at the bot-

tom of the structure. in order to create a stable semi-confocal cavity of length L,

The resulting resonant cavity, based on a ‘two-chip’ VCSEL concept, supports only

a single longitudinal mode with a high side-mode suppression ratio (SMSR) within

the VCSELs free-spectral range (FSR) [185, 186]. As the intricacies of the design

and fabrication processes are beyond the scope of this thesis, the reader is referred

to [179] and [187] for further details.

Figure 4.7: (L) Scanning electron microscope image and (R) a schematic of the MEMS
tuneable VCSELs developed during the EU STREP SUBTUNE (Reproduced from [187]
and [188]).

The Electro-Thermal Tuning Mechanism:

A fully fabricated MEMS-VCSEL, as schematically shown in Fig. 4.7, has an optical

cavity length of

L = LDBR,b +LSC +Lair +LDBR,t (4.5.3)

where, LDBR,b and LDBR,t are the penetration depth into bottom and top DBR

sections respectively, LSC is the semiconductor section and Lair is the air gap. No-

tably, sending a current through the flexible top DBR membrane induces a thermal

expansion via Joule heating (PHeat) and thus an extension of the air gap, �Lair,

and the total cavity length, �L, proportionally to the heating power which shifts

the lasing wavelength to longer values, ��ET , in accordance with Eqn. 4.5.1.
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��ET ∝�Lair ∝ PHeat = I2MEMSRMEMS (4.5.4)

where RMEMS is the electrical resistance of the electrode deposited on top of the

membrane (≈ 20⌦). It should also be noted that the threshold current and the

maximum output power of the VCSEL are influenced by the deflection of the top

DBR membrane as it adjusts the gain conditions associated with the relative overlap

of the antinode of the electric field with the quantum wells in the active region.

4.5.1 Device Characterisation

The tuneable VCSELs were provided (on-chip) by the Walter Schottky Institut and

TU-Darmstadt in Germany. As the VCSELs were provided unpackaged, the chip

was placed on a temperature controlled sub-mount that was maintained at 25°C
during operation while two pairs of carefully placed electrical probes supplied the

injection currents to the half-VCSEL and the flexible DBR membrane respectively.

The optical output from the VCSEL was then captured using a lens-ended fibre

whose position was manipulated using an XYZ translational stage and passed to an

power meter or optical spectrum analyser (OSA) for analysis. The resulting fibre-

coupled power-voltage-current (LVI) curves at di↵erent tuning currents (IMEMS) are

presented in Fig. 4.8.

Figure 4.8: L-I-V curves measured for various MEMS tuning currents
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For the chosen device, the half-VCSEL demonstrated a threshold voltage of approx-

imately 0.8V for the entire range of MEMS bias currents; however, the threshold

current was observed to vary by approximately 8mA across the VCSELs tuning

range, dropping from 14mA at a tuning current of 30mA (∼ 1580nm) to a minimum

of 6mA for a tuning current of 18mA (∼1555nm) where the corresponding mirror

deflection provides a maximum fibre-coupled output power of 0.4mW (∼ -4dBm) at

the thermal rollover. This variation in threshold current is attributed to the detun-

ing of the MEMS-DBR, the spectral distribution of the material gain, and the shift

of the optical standing wave relative to the QW active region [189].

Figure 4.9: (L) Evolution of the peak wavelength as a function of MEMS tuning current
showing linear behaviour as a function of the square of the tuning range. (R) Optical spec-
tra captured across the tuning range for a half-VCSEL bias of 16mA, showing continuous
single-mode operation.

As shown in Fig. 4.9, a bias current of 16mA supplied to the half-VCSEL was

observed to provide a good compromise between output power and the achievable

tuning range. In this case, lasing was achieved when the tuning current was varied

between 0mA and 32mA with a corresponding single-mode, mode-hope free tun-

ing range of approximately 45nm (1540nm - 1585nm) where the output wavelength

was directly proportional to the square of the tuning current as shown in Fig. 4.9

in accordance with Eqn. 4.5.4. Two sample lasing spectra are provided in Fig.

4.10 to demonstrate the side-mode suppression ratio (SMSR) with respect to the

higher-order transverse modes which attains values between 30 and 50dB cross the

achievable tuning range. Furthermore, it can be inferred that there are slight ge-
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ometric asymmetries in the plane-concave resonator as the eigenfrequencies of the

orthogonal transverse-electric (TE) states of the axial mode have split. This fre-

quency separation is primarily attributed to a variation in the radius of curvature

on the flexible DBR membrane [190]. Nonetheless, the laser maintains a su�ciently

high polarisation-mode suppression ratio (PMSR) ≥30dB. Furthermore, from the

greatly suppressed transverse modes we can also infer that the phase fronts of the

fundamental mode have an e↵ective match to the resonator structure. However,

with an appropriately engineered radius of curvature for the membrane through a

higher precision controlling the parameters of the PECVD, a better match can be

ensured to achieve values similar to those reported in [187].

Figure 4.10: Sample optical spectra (with indicated polarisation modes) produced by
two di↵erent MEMS tuning currents when the bias current supplied to the half-VCSEL is
fixed at 16mA.

4.5.2 Wavelength Stability Under Fixed Bias Operation

A critical observation made during the initial characterisation of the device was that

the output wavelength and power from the unpackaged VCSEL varied considerably

with time, even under temperature control. This prompted a further investigation

into the wavelength stability of the VCSEL under fixed bias operation from which

an overall wavelength drift of up to 2nm (≈ 250GHz) was observed over the course

of 60 minutes as depicted by the black curve in in Fig.4.11(a).
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Figure 4.11: Analysis of the VCSEL wavelength stability with time. (a) comparison of
the wavelength drift with and without the wavelength control loop. (b) change in tuning
current required to maintain the VCSEL within the set wavelength tolerance of ±0.15nm
(≈ 18.5GHz).

Notably, the wavelength exhibited instabilities on two timescales: a steady drift to

longer wavelengths on the order of minutes and sub-second oscillations around the

lasing wavelength. These variations are attributed to multiple sources including (i)

resonance oscillations from residual air currents (ii) release of material stress and

(iii) significant mechanical vibrations passing through the contact probe tips [191].

In particular, environmental reverberations can severely impact on device operation

creating an e↵ect referred to as ‘optical microphoning’. As the top DBR needs a

relatively large displacement range (on the order of micrometers) in order to achieve

wide wavelength tuneability, it requires a certain amount of flexibility in the support

beams. Consequently, adjusting the beam sti↵ness to reduce these instabilities may

be possible with material design considerations done on a per-application basis.

However, as the VCSEL was characterised in an unpackaged state, proper packaging

using wire bonds to deliver the current and packaging of the devices in a fibre

coupled configuration could also aid stability. In order to actively compensate for

drifts in the set peak wavelength during this characterisation, a computer controlled

feedback loop was designed using the instrument control software ‘LabVIEW’. As

illustrated in Fig. 4.12, the custom program actively tracked the peak emission

wavelength by interacting with an OSA before numerically comparing it with a

target value and adjusting the tuning current accordingly in order maintain the

wavelength peak within a predefined tolerance of ±0.15nm (≈ ± 18.5GHz). This
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value was chosen to accommodate the relatively slow speed of feedback loop and the

resolution bandwidth of the OSA (0.1nm). However, in a real deployment scenario,

a control loop based on a wavelength locker could be utilised to provide faster

feedback and more accurate control [192]. The temporal wavelength variation of

the tuneable VCSEL with active stabilisation is compared to the case without the

feedback control loop in Fig. 4.11(a) while the changes in tuning current required

to maintain the wavelength within the set tolerance is shown in Fig. 4.11(b).

Figure 4.12: Illustration of the control loop used to maintain the lasing wavelength
within a specified tolerance around a target peak value.

4.5.3 Performance Evaluation for Transmission at 10Gb/s

To evaluate the suitability of the MEMS-tuneable VCSEL for fibre-optic communi-

cations, the temperature controlled continuous-wave (CW) output from the VCSEL

was externally modulated at 10.3125Gbit/s with non-return to-zero on-o↵ keying

(NRZ-OOK) using a reflective electro-absorption modulator monolithically inte-

grated with a semiconductor optical amplifier (R-EAM-SOA) as shown in Fig. 4.13.

An external modulator was required for this work as a previous study on these

VCSELs found that the generated heat could not dissipate fast enough for high

modulation frequencies resulting in a low-pass behavior with a characteristic cut-o↵

frequency f3dB ≈ 215Hz [187]. Nonetheless, the modulation signal was produced

using the pulse-pattern generator (PPG) from an Agilent N4901B Serial Bit Error
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Rate Tester (BERT) with a 27 − 1 pseudo-random binary sequence (PRBS) that

was superimposed on a reverse DC bias which was subsequently adjusted for both

wavelength and transmission distance in order to optimise the frequency chirp and

achieve the minimum BER. In a real deployment scenario, adjusting the modulator

bias for the exact distance may not be feasible for cost and complexity reasons; there-

fore, this analysis simply serves to examine the optimum performance capabilities

of the system.

Figure 4.13: Experimental setup used to determine the capability of the MEMS-tuneable
VCSEL as a ‘colourless’ transmitter within an optical network.

In order to avoid the generation of overshoots and unwanted patterning on the op-

tical eye [171], a variable optical attenuator (VOA) was used to optimise the optical

input power to the R-EAM-SOA which had a net round-trip gain of approximately

14dB. Subsequently, at the receiver (Rx) side, a tuneable optical bandpass filter

(TBF) with a 3dB passband of approximately 0.5nm (≈ 62.5GHz) was used to re-

move the excess out-of-band ASE produced by the SOA while a VOA was used to

adjust the average power, PAvg
Rx , entering the commercial 12.5GHz PIN-based optical

Rx. Following reception, a linear electrical amplifier with an e↵ective gain of 14dB

was used to increase the voltage swing of the electrical signal for use with the error

detector (ED) which had a minimum sensitivity of 50mV peak-to-peak.
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The BER performance of the system was investigated for back-to-back (BtB) and

transmission over 50km of standard single-mode fibre using the internal clock recov-

ery of the BERT where the optimum decision threshold and delay with respect to

the received signal were found at each measurement step. In addition, a commer-

cially available ECL (ANDO AQ8201-13) was used to determine the optimum EAM

bias at the chosen test wavelengths while it also provided a reference from which

the performance of the MEMS-tuneable VCSEL could be compared.

Figure 4.14: BER analysis for the externally modulated MEMS-VCSEL compared to a
reference ECL for both back-to-back and over 50km of single-mode fibre at a wavelength
of (a) 1540 nm and (b) 1570 nm.

The data presented in Fig. 4.14 demonstrates that the externally modulated MEMS-

VCSEL consistently achieved bit error rates less than 10−9 (i.e. ≤ 1 error per 1x109

bits transmitted) across a 30nm wavelength tuning range (1540 - 1570nm) with a

minimum power penalty of approximately 0.2dB observed between the VCSEL and

the ECL in both the back-to-back and 50km cases. However, it is evident that

the VCSEL data has a slight scatter around the applied fit. These performance

deviations are primarily attributed to intensity noise from the unpredictable sub-

second variations in the output of the VCSEL due to the instability of the DBR

membrane. While this behaviour averages to some extent, it is clear that there

is still an appreciable discrepancy between the experimental VCSEL structure and

a commercial continuous-wave laser. Nonetheless, the random variations were not

large enough to prevent successful transmission (BER ≤ 1x10−9) at 10Gb/s.
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4.5.4 Overview of the MEMS-Tuneable VCSEL

The MEMS-tuneable VCSELs developed during the course of the EU funded project

SUBTUNE successfully demonstrated a noteworthy continuous tuneability which

encompassed the entire C-band (1530 - 1565nm) with a transmission capability of

at least 50km at 10Gb/s through external intensity modulation which is compatible

with the targets of the latest PON standards [140]. Moreover, as the performance

of the un-packaged devices demonstrated in this work was so promising, some of

the project partners continued their collaborative e↵orts in an attempt to further

enhance the performance capabilities of these devices. It should be noted that based

on the results demonstrated in this work, further device iterations have since been

developed which have altered the half-VCSEL structure which has been encapsulated

with low dielectric constant (k) polymer material Benzocyclobutene (BCB) in order

to reduce the parasitic capacitance and enable direct modulation at speeds of up to

10Gb/s across a continuous-tuning range of 85nm (1522 - 1607nm) [193, 194].

The main advantages of these VCSELs compared to conventional edge-emitting

distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers include

the potential for a higher yield per-wafer, a smaller threshold and driving currents

which correspond to lower power consumption, a smaller footprint, wafer-level test-

ing, e�cient fibre coupling (due to the circular-symmetric Gaussian beam profile)

and a much shorter cavity length enabling a substantially larger FSR. However,

it is important to note that without any external mechanism these lasers are only

thermally tuneable over a few nanometers. Moreover, a significant concern with

using MEMS is that their long-term mechanical reliability has yet to be proved,

hence, many manufacturers are now involved in these reliability tests, both at their

own labs and in trials with systems manufacturers. Nonetheless, a significant chal-

lenge facing these devices prior to commercialisation is the development of a reliable

cost-e↵ective packaging strategy that will suppress the excessive DBR membrane

vibrations which became apparent during the course of the detailed characterisation

process undertaken in this work. Furthermore, to guarantee the signal fidelity in

optical networks employing a narrow channel spacing (i.e. ≤ 50GHz), the integration

of a wavelength locker will provide tighter control, which, as outlined earlier, will

result in increased development costs.
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4.6 Single-Growth Monolithically Integrated

Tuneable Transmitter

As outlined earlier in this chapter, monolithic integration eliminates the challeng-

ing design and fabrication processes necessary for hybrid transmitter assemblies by

achieving the desired multicomponent functionality on a single chip resulting in a

reduced form factor, power consumption and cost. Today, monolithically integrated

tuneable lasers are typically variants of the distributed Bragg reflector (DBR) laser,

such as the sampled grating [195], super structure grating [196] and digital super-

mode DBR lasers [197]. Other types of tuneable laser such as the modulated grat-

ing Y-branch (MG-Y) laser are based on interferometric principles using Y-couplers

[198]. Alternatively, various types of tuneable external cavity lasers (ECLs) have

been designed [163], while a promising device based on a vertical-cavity surface

emitting laser (VCSEL) using a surface micro-machined, electro-thermally actuated

upper mirror has been shown to achieve a continuous single-mode tuning range of

102nm [187]. Nonetheless, the main disadvantage of these devices is their complex

fabrication process which includes multiple epitaxial growths requiring high toler-

ance steps for creating the grating structures which can lead to high production

costs. However, by taking inspiration from the cleaved coupled-cavity (C3) lasers

demonstrated in [199] and the Y-laser presented in [200], designs for potentially low-

cost discretely tuneable lasers have been developed over the course of last decade

by etching slots into Fabry-Pérot (FP) ridge waveguide lasers [201]. In particular,

the slots are etched through the upper waveguide in order to introduce reflections

within the laser cavity which serve to perturb the primary longitudinal mode. This

strategy results in mutually coupled FP cavities for which the e↵ective mode spacing

is given by:

��i = �2

2ngLi
, i = 1, 2, 3, ... (4.6.1)

where ng is the group index and Li is the length of each section. In contrast to slotted

lasers with periodic perturbations within the sections [202], the devices considered in

this work have no perturbations within the sections to act as gratings. Instead, the

section lengths are di↵erent so as to produce distinct sets of frequency combs with
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di↵erent mode spacings; hence, by injecting currents into each section the local gain

and refractive index can be altered to control the overall gain and phase resonances

thus providing tuneability. The basic structure of a three-sectioned slotted Fabry-

Pérot (3s-SFP) laser used in this work is illustrated in Fig. 4.15. Here, two single

1µm-wide slots are etched into the ridge to separate the laser cavity into three

independently injected active sections.

Figure 4.15: Cross-section of a three-sectioned slotted Fabry-Pérot laser.

Tuning Mechanism:

With careful device design, an overlap of the resonance peaks at the same wave-

length implies that the other resonances do not overlap within the tuning range,

hence, single-mode lasing is achieved at this wavelength. Fine tuning of the selected

resonance can then be achieved by varying the bias applied to one or all sections

simultaneously. Alternatively, by coarsely tuning the active sections, the previously

overlapping resonances will misalign and a di↵erent combination of resonances over-

lap resulting in a mode-hop. In this way, even a small index variation can produce a

relatively large wavelength change; this is known as the Vernier e↵ect. It should be

noted that this is a simplified explanation of the tuning process for these SFP lasers

and that the actual tuning mechanism is more complex as the resonance conditions

are also influenced by gain changes within each section as a function of the applied

bias. As the intricacies and predictability of this process are beyond the scope of

this thesis, the reader is directed to [203] for further information.
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Figure 4.16: Illustration of the Vernier tuning e↵ect for a three-sectioned slotted Fabry-
Pérot laser where each section has a di↵erent mode spacing in accordance with its length
(i.e. ��F ≠��M ≠��B).

The primary advantage of these SFP lasers over alternative structures is that they

require only a single epitaxial growth process and standard photolithography tech-

niques. This approach significantly reduces the fabrication complexity thereby in-

creasing reliability while also reducing cost. Moreover, as these lasers do not explic-

itly need cleaved facets to form the laser cavity they can be employed to integrate

monolithically with other electro-optic devices such as modulators or semiconductor

optical amplifiers (SOAs) through the implementation of deeply etched facets.

In this work, we present the first iteration of a 10G-capable optical transmitter

consisting of a discretely tuneable 3s-SFP laser that has been monolithically inte-

grated with an absorptive modulator and an SOA using foundry-compatible fabri-

cation methods that o↵er the potential for low-cost mass production. The following

section briefly outlines the transmitter design and fabrication processes undertaken

by the III-V Materials and Devices Group within the Tyndall National Institute,

while section 4.6.1 - 4.6.5 presents the primary characterisation results alongside

the impact of inter-section crosstalk and the continuous-mode (CM) transmission

performance at 10Gb/s using NRZ-OOK. Finally, in section 4.6.6, an innovative

time-resolved chirp measurement technique is used to determine the wavelength

stability of the transmitter under modulation as well as various SOA gating condi-

tions in order to examine the implications for the set carrier frequency during the

generation of optical bursts.
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Figure 4.17: Optical microscope image of the monolithically integrated transmitter with
a total length of approximately 1.4mm incorporating a three-sectioned discretely tune-
able slotted Fabry-Pérot ridge waveguide laser (614µm), modulator (80µm) and an SOA
(675µm).

Device Design and Fabrication

The integrated transmitter chip was fabricated using a single epitaxial growth pro-

cess and standard lithography techniques with a standard o↵-the-shelf AlInGaAs/InP

structure from a global wafer supplier comprised of multiple quantum wells on an

n-doped substrate. As shown in Fig. 4.17, the length of the laser was defined us-

ing deeply (5µm) etched facets. The light produced by the laser is guided using a

surface ridge with three separately contacted sections of slightly di↵erent lengths,

210µm, 192µm and 212µm, each divided by a shallow etched slot as shown in Fig.

4.18 (c) and (d). These partially reflective 1µm-wide slots with a depth of 1.85µm

are defined in the same step as the ridge waveguide. Therefore, they present no

additional complexity in the fabrication process. During operation, reflections from

these slots cause interference and by varying the drive current to each section, the

gain and index of each section of the laser can be controlled such that single-mode

lasing is achieved. The integrated modulator is an in-line absorbing section with a

length of 80µm that is accessed through a ground-signal-ground (GSG) contact pad

for which no e↵ort was made to reduce the pad capacitance in this initial imple-

mentation. The input facet of the modulator section was separated from the laser

output by 15µm using a deep etch (5µm) with an angle of 7° with respect to the

ridge in order to mitigate back reflections while the output facet was separated from

the 675µm long SOA section with a shallow, 1µm-wide angled slot. As shown in

Fig. 4.18 (a) and (b), the output facet of the integrated SOA was lithographically
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etched with an angle of 7° with respect to the ridge to reduce undesirable optical

feedback. It is important to note that the use of lithographic etching in the fab-

rication process eliminates cleave errors and ensures that the dimensions of all the

elements on the wafer are well controlled. Since all the integrated components op-

erate at the same band gap, the fabrication process is completely regrowth-free and

foundry-compatible which is expected to greatly reduce the cost of the devices.

Figure 4.18: (a) Scanning electron Microscope (SEM) image of a deeply etched facet
which is angled with respect to the ridge for reduced optical feedback in the SOA section
(b) facet view of the ridge, (c) a shallow slot etched into the ridge waveguide of the laser
section and (d) tilted view of an etched slot.

As shown in Fig. 4.19, this first generation monolithically integrated transmitter

chip was characterised in an unpackaged state using a probe station which consisted

of a temperature controlled sub-mount, a 40GHz GSG RF probe, a multi-contact

DC wedge probe and a lensed single-mode fibre (SMF) into which the light was

coupled via free-space alignment using an XYZ translational stage.
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Figure 4.19: Microscope view of the probe station setup showing the integrated trans-
mitter chip, RF GSG probe, multi=contact DC probe and the lensed fibre.

4.6.1 Laser Section

To examine the relation between the tuning currents and the peak transmission

wavelength, a coarse calibration of the transmitter was performed by varying the

bias currents supplied to each section of the SFP laser in steps of 5mA and exam-

ining the resultant spectra using an optical spectrum analyser (OSA). The results

of this calibration, shown in figures 4.20 and 4.21 indicate a discrete tuning range

of approximately 12nm between 1551 and 1563nm which has been defined using

a side-mode suppression ratio (SMSR) threshold of 30dB as required by the NG-

PON2 standard (G.989.2) [172]. Moreover, as outlined in [204], the primary mode

spacing within these lasers is determined by the overall length of the laser cavity

(∼ 614µm) with every third mode being preferentially selected due to the sectioning

of the cavity. This corresponds to a mode spacing of roughly 200GHz; however, a

smaller spacing can be achieved by increasing the length of each section and vice

versa. Nonetheless, due to the Vernier e↵ect, only a single mode from the sets of cav-

ity modes can be aligned; therefore, any unintended variations in the actual length

of the sections will result in a shift in the tuning map with respect to the applied

current. It is also important to note that the resonance conditions are dependent

on the refractive indices of the individual sections which in turn are temperature

dependent, therefore, the achievable modes are not strongly predictable at present.

As a result, the information presented in Fig. 4.20 is included purely for indicative

purposes. However, for further information on the tuning mechanisms of these lasers

the reader is directed to [203].
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Figure 4.20: Coarse tuning map recorded using 5mA steps [Modulator bias = -1.0V,
SOA bias = 30mA and T = 20°C].

As the applied tuning currents also manipulate the gain within each section of the

laser, there will be an appreciable peak-power variation across the tuning range.

For instance, in the device reported in this work, the power variation across the

specified tuning range was measured to be approximately 7.5dB, hence, it is expected

that the integrated SOA could be used to equalise the power between the di↵erent

selected lasing wavelengths. Lastly, in order to fill in the spectral gaps evident in

Fig. 4.21, fine-tuning can be accomplished by adjusting the granularity of the tuning

currents and by varying the chip temperature as demonstrated in [205]. However,

it should be noted that this mechanism is limited since a significant variation in the

refractive index can alter the resonance conditions causing the present lasing mode

to hop to a di↵erent mode. Nonetheless, to demonstrate the single-mode operation

of the transmitter, the spectral profile of 10 arbitrarily chosen tuning settings are

presented in Fig. 4.22, which exhibit a positive detuning from the material gain

peak (∼ 1542nm), where the modulator and SOA sections are biased at -1.0V and

30mA respectively while the sub-mount temperature is set at 20°C.
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Figure 4.21: Coarse Calibration: SMSR of the achieved lasing modes plotted against
the peak wavelength [Modulator bias = -1.0V, SOA bias = 30mA and T = 20°C].

Figure 4.22: Coarse calibration: Optical spectra of 10 discrete lasing modes with SMSR> 30dB [Modulator bias = -1.0V, SOA bias = 30mA and T = 20°C].

4.6.2 Modulator Section

As outlined in section 4.6, the modulator section fabricated within this test device

was simply an 80µm-long absorbing section accessible through a GSG contact pad.

This approach was taken in order to examine the feasibility of integrating the 3s-SFP
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laser with other electro-optic components and to investigate the potential high-speed

capabilities of the envisaged transmitter. However, in the absence of quantum well

intermixing (QWI) [206], the trial modulator structure exhibited an undesirably high

level of loss (∼ 20dB, as detailed in Section 4.6.3). Moreover, when this feature was

combined with the fibre coupling loss, an external optical amplifier was required

during the characterisation process in order to achieve powers comparable with

commercial devices (+5dBm). Nonetheless, to determine the modulation capability

of this section, the small-signal frequency response was recorded for various laser

tuning settings using a vector network analyser (VNA) and a calibrated high-speed

photoreceiver whose response was removed from the total system response through

calibration. It should also be noted that the response of the cabling between port

1 of the VNA and the tip of the GSG probe was also removed through calibration

in order to isolate the frequency response of the transmitter chip. An illustration of

the experimental setup is provided in Fig. 4.23.

Figure 4.23: Illustration of the measurement setup used for the frequency response
measurement.

A VNA enables the electrical performance of high-frequency electrical systems to be

determined through examination of the network scattering parameters (S-parameters)

which describe the behaviour of linear electrical systems when undergoing various

steady-state stimuli by electrical signals that lie within the radio frequency (RF)

band (3Hz - 3THz). For example, the S-parameter conventions which describe the

relationship between the incident, transmitted and reflected waves for a 2-port sys-

tem are shown in Fig. 4.24 while the corresponding matrix is given in Eqn. 4.6.2.
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Figure 4.24: The S-Parameter conventions for a two-port device-under test.

������
b1

b2

������ =
������
S11 S12

S21 S22

������
������
a1

a2

������ (4.6.2)

From Eqn. 4.6.2, the equations which describe the relationship between the am-

plitude of the signal and the S-parameters at both of the network ports can be

determined as

b1 = S11a1 + S12a2 (4.6.3)

b2 = S21a1 + S22a2 (4.6.4)

In the case of a source located at port 1, the forward S-parameters, S11 and S21 are

determined when port 2 is terminated by an ideal load which is equal to the charac-

teristic impedance (Z) of the test system; by convention, this value is typically 50⌦.

Moreover, in accordance with the maximum power transfer theorem (also known

as Jacobi’s law), b2 will be completely absorbed, hence, there will be no reflection

(i.e. a2 = 0). Consequently, S11 is known as the forward reflection coe�cient or

the impedance and S21 gives the forward transmission coe�cient, both of which

are typically complex valued. Alternatively, by placing the source at port 2 and

terminating port 1 with an ideal load (i.e. a1 = 0), the reverse S-parameters, S22

and S12 can be measured which represent the output reflection coe�cient (reverse

impedance) and the reverse transmission coe�cient respectively.

In this work, the primary parameter of interest in relation to the integrated

modulator section is that of the forward transmission coe�cient (S21) from which

the scalar logarithmic gain (gdB) can be determined and plotted as a function of the

applied frequency to demonstrate the small-signal frequency response. From this
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data, the 3dB bandwidth can be determined easily.

gdB = 20log10�S21� [dB] where,S21 = b2
a1
�
a2=0

(4.6.5)

The frequency response of the chip for four arbitrarily chosen laser tuning settings

are presented in Fig. 4.23, where the modulator was biased at -1.0V and the SOA

section was biased at 30mA. It should be noted that due to the low output power

from the chip, the integrated SOA section was operating within the linear regime,

hence it did not influence these measurements. With this in mind, it can be seen that

the 3dB bandwidth of the modulator section lies between 5.5 and 6.5GHz depending

on the laser tuning settings, which is su�cient for 10Gb/s modulation albeit with a

power penalty. However, alongside the use of QWI, we believe that the performance

of the modulator section can be significantly improved in future iterations through a

reduction in the parasitic capacitance of the RF contact pads through the addition

of a low-k dielectric polymer as demonstrated in [207].

Figure 4.25: Normalised small-signal frequency response of the integrated transmitter
for four arbitrary lasing modes [SOA bias = 30mA, T = 20°C].
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4.6.3 SOA Section

The integration of an SOA section within the transmitter was originally targeted

not only to compensate for the intrinsic loss of the modulator but also to provide

a gating function necessary for burst-mode operation as demonstrated in [208]. As

shown in Figure 4.18(a), the output facet of the 675µm-long SOA section was angled

at 7° with respect to the ridge waveguide to reduce unwanted reflections. However,

due to the absence of an anti-reflection (AR) coating, a residual facet reflectivity is

responsible for producing FP modes in the amplified spontaneous emission (ASE)

spectrum of the SOA section as shown in Fig. 4.26.

Figure 4.26: ASE spectrum of the integrated SOA section for an applied bias of 30mA
indicating an appreciable level of optical feedback [Laser Bias = 0mA, 0mA, 0mA, Mod-
ulator bias = 0V, T = 20°C].

In accordance with the model presented in [209], which does not take into account

the roughness of the inductively coupled plasma (ICP) etch, this residual facet

reflectivity was estimated to be approximately 0.02 [210]. It should be noted that

we have assumed the same reflectivity for both facets as they were formed during

the same etch step and have the same physical properties (i.e. tilt angle, depth). In

addition, the ripple observed to encompass the amplitude of the FP modes indicates

that the 80µm-long modulator section (separated from the SOA using a shallow

1µm-wide etch) is contained within the ASE resonance cavity, resulting in a total

length of 756µm. Nonetheless, as the presence of the FP modes served to degrade
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the attainable SMSR, it ultimately placed a limit on the achievable output power

from this test device. As a result, it is clear that further structural optimisation is

required for this integrated SOA section in future iterations of this transmitter. For

instance, in addition to the use of an AR coating, a modified facet employing tapers

or mode expanders may further minimise any undesired optical feedback [211]. In

order to achieve a better understanding of the performance of the integrated SOA

section, the single-pass gain was determined using a modified Hakki-Paoli technique

as proposed by L. D. Westbrook in [212].

Estimating the Single-Pass Gain of the Integrated SOA:

The Hakki-Paoli method outlined in [213], is one of the most widely recognised

techniques used to estimate the gain of semiconductor laser diodes and optical am-

plifiers if the form of the emission spectrum (below threshold in the case of a laser

diode) takes the form of cavity resonances whose transmission can be described by

the product of the spontaneous emission and the transmission of the Fabry-Pérot

resonator which is given by

T = (1 −R1)(1 −R2)eg0L
(1 −√R1R2eg0L)2 + 4√R1R2eg0L sin

2(2⇡neffL
� ) (4.6.6)

where, R1 and R2 are the facet reflectivities, L is the cavity length, neff is the

e↵ective refractive index of the guided mode, � is the emission wavelength and g0 is

the net modal gain which can be expressed as a function of the confinement factor

(�), the material gain (gm) and the waveguide loss (↵)

g0 = �gm − ↵ (4.6.7)

Assuming that the edge facets have equal reflectivity (i.e. R1 = R2), the ratio

(r) of a maximum transmission at 2⇡neffL�� = m⇡ to an adjacent minimum at

2⇡neffL�� = (2m + 1)⇡�2 can be derived from Eqn. 4.6.6 as

r = Tmax

Tmin
= (1 +Reg0L)2(1 −Reg0L)2 (4.6.8)
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Hence, the net modal gain (g0) can be derived as

g0 = 1

L
�loge(

√
r − 1√
r + 1) + loge(

1

R
)� (4.6.9)

At this point it is important to recognise that the Hakki-Paoli analysis assumes an

infinitely narrow resolution bandwidth (RBW) for the spectrometer. Consequently,

the e↵ect of a finite passband serves to reduce the measured transmission ratio with

a corresponding decrease in the net modal gain. While this e↵ect could be reduced

through the utilisation of a very small RBW it would also reduce the signal-to-

noise ratio (SNR). To address this issue, a consequent modification was proposed by

Westbrook in [212] which allows for the use of a larger RBW (wider passbands) thus

improving the SNR with no loss of accuracy in determination of the modal gain.

The di↵erence between the idealised Hakki-Paoli measurement and the Westbrook

technique can be seen schematically in Fig. 4.27.

Figure 4.27: Illustration of the idealistic Hakki-Paoli approach compared with the West-
brook method which considers the impact of a finite resolution bandwidth.

In practice, the passband can be well-approximated by a rectangle, therefore, it

allows for the calculation of r′ which is defined as the ratio of the maximum to the

minimum transmission as measured by a spectrometer with a specified passband B

in accordance with Eqn. 4.6.10.
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r′ = �
�max+B

2

�max−B
2

T (�) d�
� �min−B

2

�min−B
2

T (�) d�
(4.6.10)

where �max and �min represent the wavelengths at the maximum and minimum o

the resonator transmission respectively. The result of this calculation is presented

in Fig. 4.28, which plots r′ as function of the normalised passband, B���, where
�� signifies the wavelength di↵erence between two adjacent resonances. Notably,

this data permits the direct conversion of a measured ratio for a given RBW to the

modal gain in the form RegL where R is the facet reflectivity and L is the length of

the device. Moreover, it should be noted that r′ is in fact the parameter which is

directly obtained from the measurements.

Figure 4.28: Calculation of the transmission ratio, r′, as a function of the normalised
passband, B���, for values of the reflectivity-gain product, Re

gL, ranging from 0.02 to
0.6.

For the device-under-test, the SOA bias that provided the optimum trade-o↵ be-

tween output power and SMSR was found to be around 30mA. The corresponding

single-pass gain shown within Fig. 4.29 was then determined using Eqn.4.6.11 in

accordance with the Westbrook technique shown in Fig. 4.28 through measurement

122



4.6. Single-Growth Monolithically Integrated Tuneable Transmitter

of the transmission ratio, r′, from the respective ASE spectrum captured using an

OSA with a RBW of 0.1nm. Notably, at this bias, the gain available to the lasing

wavelengths within the specified tuning range (1551- 1562nm) was estimated to be

between 10.2dB and 12.7dB.

G = eg0L → GdB = 10log10(eg0L) (4.6.11)

Figure 4.29: ASE spectrum and the corresponding single-pass gain generated by the
integrated SOA section for an applied bias current of 30mA [SOA Length = 675µm, Facet
Reflectivity = 0.02, OSA RBW = 0.1nm, T = 20°C].

Using a Gaussian field approximation and assuming an angular alignment accuracy

≤ 0.15° with zero lateral o↵set, the coupling loss between the chip and the lensed fibre

can be as much as 5dB [214]. Taking this value into account and using the estimated

gain of the SOA at a test wavelength of 1557.37nm (≈ 11.1dB), which exhibited

a peak fibre-coupled power of -17.5dBm in Fig. 4.22, the power at the output

of the modulator can be estimated as -23.6dBm. Additionally, the typical peak

power achievable from a discrete 3s-SFP laser is in the range of +5dBm to -5dBm

depending on the selected mode, hence by assuming a minimum peak output power

of -5dBm, the loss of the modulator section within this test device can be estimated
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to be 18.6dB. This value suggests that the loss of the modulator section in dB is

three or four times the typical value reported for monolithically integrated electro-

absorption modulators (EAMs) [195, 215]. Nonetheless, by considering a structural

optimisation of the modulator section (e.g. through QWI) in order to achieve an

insertion loss representative of a typical value (≈ 5dB), the same SOA section should

provide a su�cient level amplification at 30mA to achieve a peak output power of

roughly +1dBm. However, by accounting for modulation and including a typical

fibre coupling loss for packaged devices of 2dB, the achievable output power from

the chip would be further reduced by 5dB. Consequently, a larger gain provided by

an increased SOA bias could allow higher output powers to be reached such as those

required by current PON standards, provided that the residual facet reflectivity is

improved with the inclusion of an AR coating. However, as demonstrated in [216],

the presence of thermal crosstalk within monolithically integrated devices has the

potential to compromise the integrity of the transmission wavelength, hence, it must

be investigated.

Figure 4.30: Estimating the insertion loss of the integrated modulator section.

4.6.4 Temperature Dependence and Inter-section Crosstalk

The discrete nature of the lasing modes obtained from the monolithically integrated

transmitter demands a novel strategy for local wavelength identification coupled

with a technique for fine tuning and stabilisation in order to reach and maintain the
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wavelengths specified by the ITU-T DWDM spectral grid [217]. In particular, as the

global temperature plays an important role in defining the resonance conditions of a

3s-SFP laser, the influence of a temperature variation on the set lasing wavelength

was studied using two distinct tuning settings for which the peak was monitored as

the sub-mount temperature was varied. The corresponding results are shown in Fig.

4.31. It is important to recognise that depending on the tuning settings, the temper-

ature variation can cause either a linear variation of the wavelength with temperature

or a mode-hop. Moreover, if the mode-hop regions are excluded, the temperature

dependence of the lasing wavelength can be quantified as approximately 0.17nm/°C.
This value is relatively high when compared with the corresponding value obtained

for other test devices (∼ 0.11nm/°C), which may be caused by a discrepancy in the

material structure. Nevertheless, this dependence can be exploited to complement

the tuning achieved by the applied bias currents in order to fine tune and stabilise

the wavelength to a desired ITU-T channel through the use of a feedback control

loop and an appropriate wavelength referencing strategy.

Figure 4.31: Temperature dependence of the lasing wavelength.

In order to examine the impact of inter-section crosstalk, the peak transmission

wavelength of an arbitrary tuning setting was monitored using an OSA while the bias

supplied to the integrated modulator and SOA sections were varied for a fixed sub-
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mount temperature of 20°C. The results of this analysis are presented in Fig. 4.32.

Notably, the peak wavelength was largely independent of the DC voltage applied

to the modulator section; however, increasing the bias current supplied to the SOA

section produced an undesirable shift in the peak that occasionally resulted in abrupt

mode-hops. As the tuning e�ciency observed here is very low, this information

suggests that localised heating produced by the SOA section may be shifting the

laser cavity closer to the SOA, hence, the resulting cavity misalignment may be

the reason for the induced mode-hop; however, a residual optical reflection within

the cavity may also be a contributing factor. Nonetheless, a thermal interaction

between the SOA and laser sections is an undesirable e↵ect that serves to complicate

the calibration and tuning of the integrated transmitter in terms of wavelength

and output power. However, it is important to recognise that thermal cross-talk

is a common feature of all monolithically integrated tuneable transmitters [216]

and, as outlined previously, bias currents can be found for this test device which

provide an optimum trade-o↵ between wavelength tuning SMSR and output power

for continuous-mode operation. The e↵ect of thermal cross-talk on the wavelength

stability will be further analysed dynamically in section 4.6.6 which accounts for the

pulsed SOA bias current used to emulate burst-mode operation.

Figure 4.32: The impact of crosstalk between the transmitter components, captured by
varying the applied modulator and SOA bias for a fixed laser tuning bias (22mA, 28mA,
22mA) and sub-mount temperature (20°C).
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4.6.5 Transmission Performance Evaluation

To evaluate the transmission capability of the integrated transmitter, the BER per-

formance was investigated for various tuning settings under intensity modulation at

10Gb/s. The corresponding experimental setup is illustrated below in Fig. 4.33.

Figure 4.33: Experimental setup: 10G continuous-mode transmission tests.

At the transmit side, a pulse-pattern generator (PPG) was used to produce a pseudo-

random binary sequence (PRBS-7) for NRZ-OOK modulation at 10.3125Gb/s with

a peak-to-peak voltage swing of 1V (±500mV). This signal was supplied through

a bias-tee to the RF GSG probe connected to the modulator section. The voltage

swing supplied by the PPG to the modulator was then optimised in order to achieve

the best compromise between the extinction ratio (ER) and eye crossing point; this

process is shown in Fig. 4.34 for a lasing mode located at 1557.37nm. Notably,

the observed reduction in the crossing point can be attributed to an appreciable

level of non-linear absorption introduced by the modulator section in response to

the increased level of reverse bias. Moreover, as the insertion loss of the trial mod-

ulator structure resulted in an appreciably low fibre coupled output power from the

unpackaged chip, a gain-stabilised erbium-doped fibre amplifier (EDFA) was used

to boost the power of the signal launched into the transmission fibre for all the test

wavelengths to a value close to +5dBm which is comparable with devices specified

for current PON standards [172]. At the receiver (Rx) side, a tuneable bandpass

filter (TBF) with a 3dB passband of 0.5nm was used to remove the excess out-

of-band amplified spontaneous emission (ASE) while a variable optical attenuator
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(VOA) was used to control the average power of the signal entering the commercial

12.5GHz PIN-based photo-receiver (Rx). An electrical amplifier with an e↵ective

gain of 14dB was then used to optimise the electrical signal from the Rx for use with

the error detector (ED) which has a minimum sensitivity of 50mV peak-to-peak.

Figure 4.34: 10G NRZ-OOK eye crossing point and extinction ratio as a function of the
applied modulator bias for a typical lasing mode.

Multiple lasing modes with an SMSR ≥ 30dB were tested in back-to-back at 10Gb/s,

five of which are presented in Fig. 4.35(a). These results demonstrate successful

error-free transmission with a residual sensitivity variation of ∼ 0.5dB is present

around the forward error correction (FEC) threshold of 1.1×10−3 [80]; this can be

attributed to a slight di↵erence in the ER achieved for each mode. In addition

The performance of the transmitter was also examined using 20km and 50km of

standard SMF; the results of this analysis are presented in Fig. 4.35(b) using a

test wavelength at 1557.37nm (SMSR ≈ 34dB). It should be noted that as the bias

applied to the integrated modulator section has been adjusted to optimise the signal

quality for each transmission length, the penalty observed in Fig. 4.35(b) may

appear exaggerated. For instance, the performance quoted for commercial devices

typically involves optimising the applied bias for a certain transmission distance

and comparing the resulting BER performance with the back-to-back measurement

taken at the same bias. In this case, the penalty would appear smaller, but only

because the back-to-back performance is not optimised. In addition, adjusting the
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modulator bias for the exact distance in a real deployment scenario may not be

feasible in large volume, low-cost transmitters, hence it is important to note that the

results presented here simply serve to indicate the entire transmission performance

capabilities of the transmitter. Nonetheless, based on these initial results, it is

expected that future iterations of the integrated transmitter which incorporate an

optimised modulator design to enable an improved output power will be capable

of achieving error-free transmission in the absence of dispersion compensation for

fibre lengths which encompass the typical physical reach targeted by current PON

standards [172].

Figure 4.35: (a) Back-to-back transmission performance of 5 lasing modes using an opti-
mised modulator bias, (b) transmission performance comparison at 1557.37nm optimised
modulator bias [Back-to-Back, 20km, 50km].
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4.6.6 Dynamic Wavelength Stability:

Signal Modulation and Optical Burst Generation

To investigate the dynamic wavelength stability of the integrated transmitter, a

time-resolved chirp measurement technique was employed using a programmable

optical bandpass filter as a frequency discriminator as shown in the corresponding

experimental setup which is presented in Fig. 4.37. The basic theoretical back-

ground for the measurement process is presented here; however, for a more detailed

description the reader is referred to Appendix B which is expanded from [218].

Definition of Frequency Chirp:

The electric field of an intensity modulated optical signal can be denoted by

Ein(t) =�Pin(t).ei!ct.ei�(t) (4.6.12)

where, Pin and � represent slowly varying power and phase functions that can be

associated with carrier-induced index changes and !c(t) represents the angular car-
rier frequency [rad/s]. The corresponding instantaneous frequency is given by the

di↵erential of the overall phase over time

!(t) = d

dt
�!ct + �� = !c + d�

dt
(4.6.13)

The frequency chirp is then defined as the instantaneous frequency shift around !c

in accordance with Eqn. 4.6.14

�! = d�

dt
⇒ �f = 1

2⇡

d�

dt
(4.6.14)

where, ! = 2⇡f , with f representing the linear frequency [Hz].

Chirp Measurement Method:

In this experiment, a programmable optical filter based on high-resolution liquid-

crystal-on-silicon (LCoS) technology was employed as a frequency discriminator with

a transfer function, H(!), designed to be linear in magnitude to the frequency, !p,
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around the carrier frequency, !c, with a transmission amplitude T0 and di↵erential

coe�cient c1:

H(!p) = T0[1 ± c1(!p − !c)] (4.6.15)

As outlined in [218], c1 is typically complex and dependent on frequency where

the imaginary part gives the chromatic dispersion of the filter. However, in this

work, the use of a programmable filter enables c1 to be set as a real value that is

defined by the frequency discriminator bandwidth (fBW = !BW �2⇡) which specifies

the frequency range bounded by transmission values of 0.1 and 0.9 where the centre

carrier frequency has a transmission of 0.5.

c1 = 0.9 − 0.1(0.5)2⇡fBW
(4.6.16)

This approach enables the sensitivity of the measurement to be adjusted in order

to capture chirp traces with amplitudes ranging from a few GHz to approximately

100GHz. Consequently, by adjusting the filter profile, as shown in Fig. 4.36, two

optical power waveforms P+ and P− can be obtained when the filter slope is positive

and negative respectively. The derivation of these relations is presented within

Appendix B.

Figure 4.36: Optical filter profiles used for frequency discrimination [P-Filter: Filter
with positive slope, N-Filter: Filter with negative slope].
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P+ ≅ T 2
0Pin�1 + 2c1d�

dt
� (4.6.17)

P− ≅ T 2
0Pin�1 − 2c1d�

dt
� (4.6.18)

From Eqn. 4.6.17 and 4.6.17, two additional values can be obtained

PAM = P+ + P−
2

= T 2
0Pin (4.6.19)

PFM = P+ − P−
2

= 2T 2
0Pinc1

d�

dt
(4.6.20)

where, PAM is the amplitude modulation, PFM gives the power profile produced by

carrier-induced frequency variations and Pin represents the optical power incident

on the filter. The frequency chirp as specified in Eqn. 4.6.14 can then be derived as

�⌫ = 1

2⇡

d�

dt
= 1

4⇡c1

PFM

PAM
(4.6.21)

Figure 4.37: Experimental setup: Time-resolved chirp measurement using a pro-
grammable optical filter.
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Chirp Contribution from the Modulator Section:

The chirp contribution from the modulator section was examined at 10Gb/s with

NRZ-OOK modulation using two distinct data patterns. The first consisted of alter-

nating 1’s and 0’s in order to examine the impact of high frequency data transitions

on the carrier frequency while the second pattern contained a lower frequency con-

tent consisting of an alternating sequence of 64 1’s followed by 64 0’s. For example,

the peak-to-peak chirp (�⌫pp) obtained from four di↵erent laser tuning settings using

the high frequency test pattern are presented in Table 4.2. In each case, the reverse

bias applied to the modulator has been set with the optimum value for back-to-back

CM transmission while the voltage swing was set at ±500mV as this was found to

provide the optimum ER as demonstrated in Fig. 4.34. The corresponding PAM

and chirp traces at a set centre frequency of 192.5THz (1557.36nm) are presented

in Fig. 4.38 for an applied modulator bias of -1.2V. Notably, the chirp dynamics

demonstrate positive frequency deviation at the leading edge of the pulse followed

by a negative deviation on the trailing edge indicating that the chirp is positive for

this value of reverse bias.

Peak
Wavelength

[nm]

Modulator
Bias [V] �⌫pp [GHz]

1551.59 -1.0 3.45

1555.92 -1.1 2.99

1557.37 -1.2 1.96

1562.49 -1.4 3.69

Table 4.2: Chirp contribution from
the modulator section using the high
frequency NRZ-OOK test pattern.

Figure 4.38: PAM and chirp traces for 10G
NRZ-OOK modulation using the high fre-
quency test pattern for an applied modulator
bias of -1.2V. [�peak ≈ 1557.37nm, SOA Bias
= 30mA, ER ≈ 7.5dB]
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The subsequent results obtained using the low frequency test pattern are presented

in Fig. 4.39. Here, �⌫pp is presented as a function of the applied modulator bias

where the laser and SOA sections have been maintained at fixed values. In particular,

there is an appreciable increase in �⌫pp as the value of reverse bias applied to the

modulator section is increased beyond -1.3V.

Figure 4.39: Peak-to-peak chirp contribution from the modulator section using the low
frequency test pattern [61x1 + 64x0] for a fixed laser (22mA, 28mA, 22mA) and SOA Bias
(30mA).

For comparison with the results presented in Fig. 4.38, the chirp trace obtained

using the low frequency pattern for an applied modulator bias of -1.2V is presented

in Fig. 4.40(a). From these results, it is evident that the chirp dynamics are more

complex for the low frequency test pattern due to the presence of an adiabatic

contribution which may be the result of optical feedback as discussed in Section 4.6.3.

Nonetheless, the chirp dynamics clearly exhibit a negative frequency excursion at the

trailing edge of each pulse which suggests a positive chirp as observed for the high

frequency pattern at the same modulator bias. Alternately, for a larger modulator

bias of -1.5V, as shown in Fig. 4.40(b), the chirp demonstrates a substantial negative

frequency excursion at the leading edge of the pulse alongside a subtle positive

deviation the trailing edge. Notably, this feature increases as the reverse bias is

increased further, resulting in the trend observed in Fig. 4.39. This response also

suggests that the sign of the chirp has flipped from positive to negative; however,
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as a detailed analysis of the chirp dynamics falls beyond the scope of this work, this

investigation is left for further study.

(a) (b)

Figure 4.40: PAM , PFM and chirp traces for 10G NRZ-OOK modulation using the low
frequency test pattern for an applied modulator bias of (a) -1.2V (ER = 7.5dB) and (b)
-1.5V (ER = 9.1dB) [Laser Bias: S1 = 22mA, S2 = 28mA and S3 = 22mA (�peak ≈
1557.37nm), SOA Bias = 30mA].

This behavior can be an advantageous as negatively chirped pulses undergo compres-

sion due to chromatic dispersion within standard SMF [219, 220]. In other words,

pulses exhibiting the type of chirp demonstrated in Fig. 4.40(b) are desirable for

networks requiring transmission over a longer physical reach. It is also important

to note that this value of bias (-1.5V) corresponds to the setting required to op-

timise the signal performance for transmission over 50km of fibre in Fig. 4.35(b).

Moreover, the observed peak-to-peak frequency deviation (≤ 6GHz) is well within

the maximum spectral excursion of ±12.5GHz targeted by current PON standards

for systems employing a 50GHz channel spacing [172].

Carrier Frequency Deviation Induced By Dynamic Operation of the Integrated SOA:

For upstream transmission within a dynamic TDM-DWDM PON, each ONU is re-

quired to transmit data within an allocated timeslot in order to avoid data collisions

over the shared network infrastructure. These packets of data can be successfully

generated using an SOA to carve the required optical envelopes [19]. Compared
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to other methods used to generate optical bursts, the use of a gating SOA has the

advantage that the laser can be left in the on-state, which simplifies the problem

of maintaining the wavelength stability. For instance, the main approach used to

generate optical bursts within single-channel PONs involves gating the bias of di-

rectly modulated lasers (DMLs), however, this process introduces an appreciable

frequency drift that is currently a significant performance limiting issue for the cur-

rent multi-channel PON standards [140, 221].

The wavelength stability of the integrated transmitter for burst-mode operation

was investigated using the time-resolved chirp measurement technique also used to

examine variations in the unmodulated carrier frequency induced by the dynamic

performance of the integrated SOA. As shown in Fig. 4.37, a programmable function

generator (FG) was connected to the SOA section of the transmitter to facilitate

the generation of the burst envelopes. In addition, a load resistance was connected

in series with the SOA section in order to match the output impedance (50⌦) of the

FG and maximise the power transfer to the device. The voltage-current (V-I) profile

obtained from the SOA section under di↵erent operating conditions is presented in

Fig. 4.41.

Figure 4.41: V-I Profile of the integrated SOA section demonstrating a thermally induced
threshold shift with injected light at 1556.51nm [Laser Bias = 25mA,30mA, 40mA].

These results show that with injected light, the threshold voltage of the SOA section

is increased from roughly 650mV to approximately 800mV due to depletion of the
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excited carrier density by stimulated emission and an appreciable thermal influence

that can be attributed to the laser section. It is also important to note that the

reverse bias applied to the modulator section did not have an observable impact on

the V-I profile of the neighboring SOA section and hence we can assume that there

is negligible electrical crosstalk between these components. The voltages applied

to the SOA in order to generate the burst envelopes were 1.33V (VHigh) and -0.9V

(VLow). The value of VHigh was chosen as it corresponds to a bias current of 30mA

which provided the best trade-o↵ between SMSR and output power during the DC

characterisation while the value of VLow was chosen in an attempt to maximise the

on/o↵ power ratio of the SOA section through the application of a reverse bias.

For DC operation, the extinction provided by the SOA section under these bias

conditions was measured to be approximately 27dB. For the purpose of this analysis,

a square wave signal with a rise/fall time of 5ns and a duty cycle of 50% was applied

to the SOA section and its frequency was varied coarsely from 100Hz to 100kHz.

While it should be recognised that these gating conditions are unlikely to occur in

a real deployment scenario, they represent extreme cases that can help in analysing

the internal behavior of the transmitter. The corresponding deviation of the carrier

frequency was measured using optical filters similar to that presented in Fig. 4.36.

However, for these measurements the passband (fBW ) was increased to 100GHz.

Figure 4.42: Peak-to-peak carrier frequency deviation induced by a square-wave gating
signal with a 50% duty cycle applied to the SOA Section. (�c ≈ 1556.51nm)
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The measured peak-to-peak frequency deviation is presented in Fig. 4.42 as a func-

tion of the applied SOA gating frequency. This data indicates that the deviation is

fairly constant (< 8GHz) for gating frequencies above 10kHz which is comparable

with typical burst durations of 125µs as required by current PON standards [140].

However, as the gating frequency is decreased the carrier frequency deviation begins

to increase rapidly reaching a value of approximately 22GHz for a gating frequency

of 100Hz. This trend is in line with the assumption that thermal crosstalk associated

with the bias applied to the SOA section can be significant enough to perturb the set

carrier frequency as initially presented in Fig. 4.32, which examined the wavelength

stability of the transmitter for a constant SOA bias. However, the timescales of the

heat transfer between the SOA and the laser sections are extremely important in

order to understand the dynamic operation of this monolithically integrated trans-

mitter. For instance, as shown in Fig. 4.43, the frequency deviation presents fast

transients at the leading and trailing edges of the gating signal with timescales below

1µs for burst durations up to around 50µs. We believe that this fast wavelength

deviation might not be related to heat transfer, which is usually a slower e↵ect, and

might be due to the residual cavity interaction between the SOA and the laser. For

bursts durations above 100µs the heat transfer becomes the dominant factor causing

the large wavelength deviations measured dynamically in Fig. 4.42 and statically in

Fig. 4.32.

Figure 4.43: Frequency deviation induced by a 10kHz square-wave signal with a 50%
duty cycle applied to the SOA section. [Centre filter frequency = 192.605THz (1556.51nm),
fBW = 100GHz]
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These results suggest that for typical PON burst durations of up to 125µs, the heat

generated by the SOA section in the ON state does not have the time to transfer

substantially into the laser section, maintaining a relatively small wavelength drift

of around 8GHz. This is an interesting result as it represents a highly desirable

feature for low-cost tuneable transmitters for use in wavelength agile PONs and

shows the advantages of an integrated transmitter employing a separate SOA section

to perform the burst gating function. Moreover, directly modulated lasers (DMLs)

which are presently of high interest for deployment in ONU transmitters of next-

generation PONs have been shown to exhibit an appreciable burst-mode induced

frequency drift of up to 62GHz for burst durations of 128µs [221]. Nonetheless,

further investigations are essential in order to better understand the heat transfer

in the proposed integrated structure in order to improve the overall performance of

this device in future iterations.

4.6.7 Overview of the Monolithically Integrated

Transmitter

This section has outlined the initial progress towards developing a potentially low-

cost monolithically integrated tuneable 10G transmitter consisting of a slotted Fabry-

Pérot laser, an absorptive modulator and an SOA targeted for deployment within

the ONUs of wavelength-agile PONs. The transmitter structure is primarily driven

by the substantial cost savings that can be achieved through the use of e�cient re-

growth free fabrication techniques that facilitate monolithic integration, by defining

lithographically the various components.

This tuneable transmitter was developed by the III-V Materials and Devices

Group of the Tyndall National Institute using an ‘o↵-the-shelf’ AlInGaAs/InPMQW

structure on an n-doped substrate and following a coarse calibration it demon-

strated a discrete single-mode tuning range of approximately 12nm between 1551

and 1563nm with an SMSR ≥ 30dB. Using an external amplifier to counteract the ex-

cess insertion loss introduced by the trial modulator structure and the fibre coupling

loss attributed to the experimental setup, error-free (BER ≤ 1E-12) transmission was

achieved using NRZ-OOK modulation at 10Gb/s with a PRBS-7 pattern for fibre

lengths up to 50km which encompasses the physical reach targeted by the latest PON

standards. Furthermore, in order to determine the inherent wavelength stability of
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the transmitter, a time-resolved chirp measurement technique was used to exam-

ine deviations in the set carrier frequency induced by modulation and the dynamic

operation of the integrated SOA section. Notably, the modulator section demon-

strated a chirp contribution of < 6GHz for NRZ-OOK modulation at 10Gb/s using

test patterns with high and low frequency content. Furthermore, the application

of a gating function to the SOA section to emulate the generation of optical bursts

was found to shift the unmodulated carrier frequency of a typical lasing mode by ≤
8GHz when the gating period was comparable with typical PON bursts durations

of 125µs which is faster than the thermal response time of the transmitter material.

These recorded values are significantly better than those currently achievable from

ONU transmitters utilising DMLs in the absence of active chirp compensation [124];

however, despite the challenges facing future iterations of this device, the experi-

mental results presented in this work ultimately serve to highlight the advantages

o↵ered by monolithic integration coupled with low-cost, re-growth-free fabrication

processes.

4.7 Summary and Conclusions

The work presented in this chapter has motivated and addressed the main chal-

lenges facing the realisation of low-cost tuneable lasers for use within the optical

network units of wavelength-agile PONs. In particular, driven by the potential for

appreciable cost savings through an increased yield, a lower power consumption and

simplified fabrication processes, two innovative tuneable laser technologies includ-

ing a MEMS-VCSEL and a monolithically integrated 3s-SFP laser were examined

in detail.

Having been assigned the task of characterising and assessing the transmission

performance of unpackaged, widely-tuneable MEMS-VCSELs developed and fab-

ricated by our project partners in the EU project SUBTUNE [179], the primary

contribution of this work was the recognition and evaluation of the wavelength insta-

bility attributed to the flexible surface DBR membrane. This undesirable behaviour

which may have multiple sources including the release of material stress was shown

to severely compromise the integrity of the set transmission wavelength; hence, a

LabVIEW-based feedback loop using an optical spectrum analyser was developed to

actively control the output wavelength. Subsequently, having successfully stablised
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the set wavelength to ≤ ±0.25nm (≤ ± 31.25GHz), the transmission performance of

the MEMS-VCSEL was examined through external intensity modulation at 10Gb/s

using an R-EAM-SOA. Notably, the wavelength-stabilised unpackaged VCSEL com-

pared favourably with that of a commercial ECL for fibre lengths up to 50km which

encompass the physical reach targeted by the latest PON standards [140].

Alternatively, a detailed investigation was carried out on an unpackaged proto-

type transmitter developed by the III-V Materials and Devices Group of the Tyndall

National Institute as part of the DISCUS project. The potentially low-cost transmit-

ter was comprised of a single-growth monolithically integrated discretely tuneable

3s-SFP laser, a 10G-capable absorption modulator and an SOA. Notably, the de-

vice demonstrated a discrete tuning range of roughly 12nm (1551- 1563nm) with an

SMSR ≥ 30dB alongside an achievable extinction ratio in excess of 8dB under inten-

sity modulation at 10Gb/s using NRZ-OOK. However, the key contribution from

this work involved the evaluation of the inherent wavelength stability of the trans-

mitter under dynamic operation (e.g. modulation and optical burst generation).

This analysis was accomplished using an innovative time-resolved chirp measure-

ment technique (outlined in Appendix B) which used a programmable optical filter

as a frequency discriminator in order to allow for adjustment of the measurement

sensitivity.

Notably, the chirp measurements demonstrated that the integrated transmitter

exhibited an appreciable level of inherent wavelength stability under NRZ-OOK

modulation at 10Gb/s (≤6GHz) and optical burst generation (≤8GHz) for packet

lengths comparable to that required by the latest PON standards [222]. For instance,

the results obtained for the former case which are presented in section 4.6.6 serve to

validate the use of external modulation in order to facilitate 10Gb/s transmission

over distances targeted by LR-PONs (i.e. ∼ 100km). In addition, the measured level

of wavelength deviation induced for optical burst generation achieved by applying a

gating function to the integrated SOA is particularly noteworthy. For example, the

results presented in section 4.6.6 highlight the advantage of monolithic integration

over alternative technologies such as DMLs where the process of self-heating can

result in substantial shifts in the carrier frequency [221].
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5

Physical Layer Design and
Subsystem Analysis

This chapter presents the physical layer design strategy and subsystem analysis for

the optical access architectures proposed under the European Framework 7 (FP7)

Integrated Project (IP) DISCUS. The main objectives of this work are to address

the principal design guidelines of the physical layer which targets the development

of novel end-to-end optical access architecture based on dynamic TDM-DWDM LR-

PON in order to deliver ubiquitous broadband irrespective of geographic location.

In section 5.1, the chapter begins with an overview of the physical layer design pro-

posed by the DISCUS project whose respective feasibility is examined using a linear

power and OSNR model which is described in Appendix C. This model is used to

estimate the achievable physical reach and split for the respective architectures using

optical amplifier gain as the main processing variable. Subsequently, section 5.2 ex-

amines the amplification strategy required to support the nominated architectures.

In particular, commercial erbium-doped fibre amplifiers (EDFAs) with active gain

stabilisation are examined in section 5.3 to assess their ability to support dynamic

tra�c from optical distribution networks supporting at least 40 (bidirectional) dense

wavelength division multiplexed (DWDM) channels. Finally, section 5.4 presents the

key enabling burst-mode subsystems realised for the DISCUS experimental test-bed

which include a 10G-capable linear burst-mode receiver (LBMRx) and forward error

correction (FEC) that has been implemented using field programmable gate arrays

(FPGAs). In particular, the performance of the FPGA-based FEC algorithm is

tested in section 5.4.4 by measuring the pre- and post-FEC BER as a function of

the relative delay and amplitude of emulated residual EDFA transients with respect

to incident optical bursts.
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5.1 Physical Layer Design Strategy

The fundamental design strategy adopted by the DISCUS project was to exploit

the two fundamental advantages of optical technology: (i) the potential to o↵er a

large bandwidth and (ii) the ability to supply this over long distances to all parts

of the network. When this approach is applied to the access network, the outcome

specifies an architecture that is long enough to directly reach the core nodes. With

this in mind, the following sections present the LR-PON configurations considered

by DISCUS with the objective of economically bridging the ever growing digital

divide between densely populated urban areas and sparse rural communities.

5.1.1 Urban Access: The ‘Tree-Structured’ LR-PON

The architecture proposed for deployment in urban areas is shown schematically in

Fig. 5.1. This tree-structured (or “lollipop”) configuration is similar to the systems

previously demonstrated by researchers at British Telecom (BT) [223], the Photonic

Systems Group in University College Cork [17] and the EU project PIEMAN [13]. In

particular, the architecture is based on a single amplifier node (AN) which targets

a total physical reach ≥ 100km and a split > 500 within the optical distribution

network (ODN). Moreover, the proposed configuration utilises two-fibre-working

in the backhaul section where separate fibre links are used for downstream (DS)

and upstream (US) transmission. In addition, a distance of ≥ 80km between the

metro/core (M/C) node and the AN located at a strategically selected local exchange

(LE) site allows for dual parenting of the local exchange as a protection scheme by

accounting for distances representative of a realistic geographical distribution [224].

On the other hand, single-fibre-working is deployed within the ODN (≤ 20km)

to minimise infrastructure deployment by facilitating bi-directional transmission.

Notably, this approach has become the conventional practice for FTTP networks as

optimal sharing of minimal infrastructure presents an obvious economic advantage.

For instance, the size and location of the splitter closest to the customer premises has

a direct impact on utilisation and the ODN costs. As a result, the LR-PON concept

illustrated in Fig. 5.1 for dense urban areas would typically target 32-way splitters

at the drop point (DP) location with 4-way splitters employed at the primary-cross-

connect point (PCP) while at the addition of a 4x4 star coupler at LE site gives the

total split of 512. Moreover, by locating the first splitting stage of the ODN within
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the AN, a resiliency connection for the backhaul section can be established with a

back-up M/C node to facilitate a loop-back path to the primary node in the event

of a failure such as a fibre break.

Figure 5.1: Tree-structured LR-PON physical layer proposed for urban areas.

The LR-PON configuration presented in Fig. 5.1 has been used as an example

to calculate the US and DS power and OSNR budget presented in Fig. 5.2, the

details of which can be found in Appendix C. In particular, the model has been

used to examine the feasibility of a LR-PON with a physical reach of 100km which

is comprised of an 80km backhaul section, a 20km ODN and a total split of 512.

To support these physical layer targets, multi-channel erbium-doped fibre amplifiers

(EDFAs) are an obvious candidate due to their high gain capabilities (30-40dB),

inherently low noise figure (typically 5-6 dB for commercial modules), moderate

cost and o↵-the-shelf availability. EDFAs also have the advantage of being mature

components in optical networks which makes them attractive for deployment in

an access scenario [225]; however, it should be noted that the useable spectrum is

limited to the C and L bands (i.e. 1520nm - 1620nm).

Another crucial aspect of the amplifiers used in the US links is that they need

to operate with high dynamic range burst signals. Today’s EDFAs are typically

designed to operate with continuous tra�c in conventional metro and core net-

works. However, for access applications, the power ratio of US bursts arriving from

an ODN with a large di↵erential loss has the potential to generate significant am-
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plitude distortions due to saturation-induced gain transients. These transients can

compromise the transmission performance in single-channel or multichannel systems

unless suitable mitigation strategies are employed [226, 227]. With this in mind, the

requirement to support dynamic channel reconfiguration in WDM networks contain-

ing reconfigurable optical add and drop multiplexers (ROADMs), has driven recent

developments in EDFA transient control circuitry [228] that may also provide a

solution for supporting burst-mode tra�c in the proposed DISCUS architectures.

The power and OSNR budgets presented in this work are calculated under the

assumption that the linear burst-mode receiver (LBMRx) technology developed by

the Photonics Systems Group of the Tyndall National Institute will be employed

within the optical line terminal (OLT) [146]. The LBMRx requires 15dB OSNR at a

dynamic range of 20dB to achieve BER ≈ 10−3 at 10Gb/s which enables restoration

of the signal quality to a BER ≤ 10−12 when applying forward error correction (FEC)

[145]. Burst-mode electronic dispersion compensation (EDC) is also assumed [144] to

compensate for chromatic dispersion on the fibre lengths considered here. Therefore,

in this initial study we have used 15dB as the minimum (end-of-life) OSNR target for

US transmission. Moreover, in this case and in all following cases (unless otherwise

stated), all distribution arms are investigated in terms of losses, optical amplifier

input powers and OSNR figures.

Figure 5.2: (a) Downstream and (b) upstream optical power and OSNR budget for the
proposed urban ‘tree-structured’ architecture (Physical Reach = 100km, Split = 512).
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The results presented in Fig. 5.2(a) indicate that the system performance in the DS

direction is expected to be mainly limited by the low power arriving at the ONU

receiver, rather than OSNR degradation. For instance, in order to overcome the

high loss of the ODN (20km, 512-split), the DS amplifier requires a gain of 38dB

launching approximately +16.5dBm of power per-channel (representative of the typ-

ical achievable values if SBS mitigation techniques are employed [13]) to achieve a

worst-case incident power at the ONU-Rx of approximately -31dBm. Although this

required launch power is quite high, the first splitting stage of the ODN which is

located within the AN (x4,IL ≈7dB) serves to reduce the non-linearity concerns

such that the minimum per-channel power launched into the distribution fibre is

roughly +8dBm. In addition, it is expected that a band filter (IL ≈1.5dB) may

also be required at the output of the EDFA in order to remove the out-of-band

ASE which may interfere with the US signals through back-reflections. While this

inclusion would lower the achievable power margin at the ONU-Rx, it would also

serve to further reduce any signal degradation attributed to nonlinear impairments.

It is also important to note that the required launch power from the DS amplifier

is continuous, hence, there are no statistical averaging e↵ects. As a result, the total

aggregate launch power needed to support a system with 40 channels is approxi-

mately +32.5dBm. This value is larger than most widely-deployed amplifiers today,

however, considering that it does not require fast gain stabilisation, it is achievable.

Moreover, the cost of such an EDFA would be shared by all users of the network.

Furthermore, while it is evident that the worst-case received power at the ONU is

quite low (≈ -31dBm), it may be possible to support such a link through the use of

an APD-based ONU-Rx whose sensitivity can support a BER below the targeted

FEC threshold of 1.1×10−3 [80].

Conversely, the results presented in Fig. 5.2(b) suggest that the US link is

primarily OSNR limited. This limitation can come from both the ODN, where there

is a large loss due to the high split from the backhaul section where fibre lengths of

80km can also introduce considerable loss before the amplifier in the M/C node. In

addition, based on the modelling parameters used, the non-uniform loss in the ODN

presents a burst-to-burst dynamic range (DR) that could be up to 12.5dB for a 512-

split. This means that, while the majority of the channels present instantaneously

an average nominal power (PNom) which lies in the middle of the DR, there is the

possibility that some channels present the highest power in the dynamic range.
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However, due to statistical multiplexing, it is very unlikely that all channels will

present the maximum burst power, so it may be possible to use EDFAs with a lower

aggregate output power. Nonetheless, careful design of the gain and consideration

of the NF of both amplifiers is necessary in order to maintain the OSNR above

the minimum required value of 15dB. For instance, in this US case study, optical

amplifiers with a 5.5dB noise figure and a gain of approximately 36dB and 20dB are

required for the AN and the M/C node amplifiers respectively. It should be noted

that although the per-channel launch power from the AN amplifier is relatively high

(≈ +12dBm), a variable optical attenuator (VOA) has been included to mitigate the

actuation of non-linear impairments in the 80km backhaul link.

Overall, the results of the power and OSNR model indicate that the proposed

physical layer for densely populated urban areas can support a split of 512 with

a total physical reach of 100km in both transmission directions. However, in the

worst-case scenario which sees the maximum path loss there is negligible margin.

5.1.2 Rural Access: The ‘Open-Ring’ Architecture

A major area where DISCUS goes beyond the state-of-the-art of previous projects

is to tackle up front the issue of the digital divide, where current broadband roll

out and performance favours citizens living in dense urban areas and neglects those

living in sparse rural regions. For instance, while the tree-structured model (similar

to that shown in Fig. 5.1) has been shown to work well for urban areas it is not

optimal for rural communities where the splitting portion of the network needs to

be distributed over larger geographical areas. In fact, the primary di�culty for

fibre deployment in rural zones is that the communities to be served can be much

smaller than the total achievable split which would mean that conventional LR-

PON designs can be considerably underutilised which leads directly to an increased

cost per customer. Moreover, the longer distances required between splitter nodes

and customers requiring extended cable lengths with a higher fibre count increases

the costs even further. Consequently, a central focus in DISCUS was therefore to

develop alternative physical layer designs and fibre splitter layouts that improve the

utilisation, reduce costs and are more suitable for deployment these regions.

To account for these physical layer challenges, the architecture proposed within

DISCUS for rural fibre deployment is based on a ring configuration that has been
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inspired by the topology of today’s metro networks. This ’open-ring’ LR-PON con-

figuration which is dual-parented on two geographically separated M/C nodes of a

flat optical core employs two fibre paths with counter-propagating tra�c to connect

a chain of ANs. Each AN is located at a strategically selected LE site with access

to electrical power which maintain full wavelength availability while supporting a

single fibre-working ODN carrying both US and DS wavelength bands in all distri-

bution fibres. The main advantage of this configuration is that it distributes the

overall customers between multiple nodes in order to e�ciently achieve a lower den-

sity of customers ports. Moreover, this architecture has the added benefit of directly

reusing deployed fibre while in the event of a fibre cut or of a failure in the primary

M/C node (or in an AN), the tra�c can be routed to the protection M/C node,

hence providing the same intrinsic resilience as metro ring networks.

Figure 5.3: Alternative LR-PON ‘open-ring’ architecture proposed for rural areas.
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As shown in Fig. 5.3, in order to provide access to the primary and protection

paths, part of the total ODN split (4x4) is employed within each AN connecting two

DS drop ports and two US add ports. As a result, each AN requires four optical

amplifiers; two are located after the US add points to compensate for the ODN loss

and to boost the signals prior to transmission towards the next AN while the other

two amplifiers are located after the DS drop ports in order to boost the power of

the DS channels before entering the high-loss ODNs.

The entry points for the US channels consist of 1x2 couplers with an asymmetric

80/20 coupling ratio in order to help the power budget by reducing the add loss (80%

port introduces ∼1dB) in the US direction. Similarly, the exit ports from the open-

ring fibres for the DS channels also utilise 1x2 asymmetric 80/20 splitters where

the 20% port is used to drop the DS channels towards the ODN while the lower

loss 80% port is used to minimise the loss of the path forwarded to the next node.

Moreover, in the path of the DS channels dropped towards the ODNs, a band filter

is required to remove the US channels added by previous nodes, as their presence

would waste the achievable output power of the DS amplifier while they may also

interfere with local US tra�c due to Rayleigh backscattering and reflections in the

ODNs. It should be recognised that although there is wavelength mixing between US

wavelengths from the local ODN and the ODN of the preceding ANs, there will be no

US wavelength collisions as they are avoided through deployment of an appropriate

TDMA protocol. For instance, in the open-ring configuration, all the ANs in the

chain form a single LR-PON controlled by a single instance of the protocol where

only 1 ONU is transmitting an US burst at any instant of time. Finally, although

they are not explicitly shown in the figure, power and management units would

also be required in this design and the management unit could communicate with

the M/C node using an ONU. Notably, this is also true for the urban LR-PON

architecture.

To examine the initial feasibility of the ‘open-ring’ configuration, the power and

OSNR budget was calculated for an architecture similar to that presented in Fig.

5.3; however, the system under investigation was designed with four chained ANs,

each separated by 30km of fibre supporting an ODN with a physical reach of 20km

consisting of 128 users (4x2x16) giving a total of 512 users (128x4). In addition,

the modelled AN chain is supported by a 10km feeder fibre which connects to the

primary M/C node resulting in a total physical reach of 120km. For the purpose of
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this analysis the US and DS performances have been calculated for an ONU located

in the ODN of the fourth AN which is the furthest from the primary M/C node and

hence the respective signal propagates through the largest number of amplifiers.

Moreover, the gain of the in-line amplifiers are set to compensate for the loss in the

fibre and components of each link between the ANs, which in this case for a 30km

fibre link is approximately 20dB.

Figure 5.4: (a) Downstream and (b) upstream optical power and OSNR budget for the
proposed rural ‘open-ring’ architecture for a physical reach of 120km and a total split of
512 supported by 4 chained amplifier nodes spaced by 30km.

As shown in Fig. 5.4(a), the maximum per-channel launch power from each in-line

amplifier in the DS link is calculated as +3dBm which corresponds to an aggregate

power of +19dBm for a system comprised of 40 channels which is well within the

power range available for commercial EDFAs. Nonetheless, the primary limiting

factor in the DS link is the relatively low optical power available at the ONU-Rx

which is attributed to the high loss of the ODN. Consequently, the booster EDFA

at the drop point of AN 4 must be capable of supplying a gain of at least 27dB and

a total average power of approximately +25.5dBm in order to launch a per-channel

power of +9.5dBm. This will ensure a minimum power of roughly -30dBm at the

ONU-Rx in the worst-case scenario which can be supported using an APD-based

ONU-Rx and FEC.
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Alternately, in the US direction, Fig. 5.4(b), the maximum per-channel output

power is approximately 0dBm, which translates to a total output power of +16dBm

for a 40 channel system. While this is an achievable aggregate power, statistical

considerations can be used to account for the nature of the burst-mode tra�c such

that the total output power of the chained EDFAs can be designed around the

nominal channel power, which in this case is around -5.4dBm. As a result, the

total (mean) output power required for each in-line amplifier would then be roughly

+10.6dBm, which is well within the power range available for commercial fast gain-

stabilised EDFAs. Nonetheless, as these amplifiers carry both US and DS tra�c,

they must be dimensioned for both up- and downstream channels. For instance,

within the specific case analysed here, the mean DS channel output power is ∼8.4dB
higher than the nominal US channel power, hence, the total aggregate output power

for 40 channels up- and down-stream is around +19.6dBm, which is also within

the power range available for commercial fast gain-stabilised EDFAs. Another key

consideration is that the in-line amplifiers carrying the live DS could su↵er from

residual gain transients induced by the dynamic nature of the US channels, however,

it is expected that the continuous behaviour of the DS channels will clamp the

available optical gain thus mitigating this e↵ect.

Finally, it is evident that the primary cost-penalty of the open-ring architecture

compared to the tree-structured model proposed for urban access is due to the higher

number of amplifiers per customer due to the smaller split of each ODN. As a result,

the number of chained ANs should be kept as low as necessary in order to serve the

targeted rural area. Nonetheless, the feeder fibre and inter-node fibres remain highly

shared as with the urban model, therefore, they should not add significantly to the

cost per customer. Furthermore, due to the distributed amplification scheme, a lower

output power is required from the amplifiers which could be highly advantageous if

cheaper, lower power, optical amplifiers can be employed. However, while the ODN

split and physical reach can be traded o↵ where each factor of two reduction in split

can provide ∼10km increase in the physical reach. Moreover, the longest path length

from an M/C node through the chain to the furthest ONU is kept less than 125km

as increasing the round trip delay time while meeting XG-PON delay targets may

add significantly to PON overheads and reduce payload e�ciency. Similarly, the

total split across all aggregated ODNs in the chain is limited to ≤ 1024, hence, it is
expected that there will be no more than three or four amplifier nodes per chain.
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5.2 Optical Amplification Scheme

Following the power and OSNR budget analysis, it is clear that the optical amplifiers

are key enabling technologies for the LE and M/C nodes which must be carefully

designed in order to support the long reach and the high number of users targeted

by the DISCUS architecture [8]. In particular, a key parameter of the amplifiers

is the NF which must be as low as possible in order to maintain the OSNR of

the US link within acceptable levels. Moreover, the amplifier technology must also

provide a high gain and high output power in order to overcome the high splitting

loss of the distribution network and the link loss in the backhaul section of the long

reach passive optical network (LR-PON). As in conventional metro DWDM network

design, the preferred option to minimise cost and operational complexity would be to

use a single multi-channel amplifier for each direction in the AN if feasible. For this

reason, the remainder of this chapter is focussed on investigating the suitability of

modern EDFA technology for deployment in dynamically reconfigurable LR-PONs.

Amplifier Node Specifications:

Table 5.1 summarises the specifications of the amplifiers required for the ANs of

both proposed LR-PON architectures. The exact specifications are relative to the

configurations analysed in the previous section using the power and OSNR model

presented in Appendix C.

Gain

[dB]

NF

[dB]

Total Output Power

[dBm]

Urban Configuration

Downstream 38 5.5 +32.5

Upstream 36 5.5 +28

Rural Configuration

Inline Amplifiers 20 5.5 +19.6

Downstream Drop
Amplifier (AN 4) 27 5.5 +25.5

Table 5.1: Specifications for the amplifier nodes required for the proposed urban and
rural LR-PON configurations based on the results of the power and OSNR model.
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5.2.1 Erbium-doped Fibre Amplifiers

Since their realisation in 1987, EDFAs have revolutionised optical communications

[229]. Their ability to provide large optical gain (> 20dB) which is independent of

the data rate alongside a relatively low noise figure (< 6 dB) and a high polarisation

insensitivity across the C-band (1530-1565nm) has been studied extensively and used

alongside wavelength-division multiplexing (WDM) technology to establish high-

capacity, long-reach optical networks.

In its simplest form, an EDFA consists of a silica glass host in the form of a

single-mode fibre core which has been doped (∼ 1%) with active Er3+ ions that can
be optically pumped using semiconductor lasers at 980nm or 1480nm [230, 231] to

establish a gain medium which is typically shorter than 50m. Notably, the pump

light can be combined in the same direction as the signal (co-propagating) or op-

posite to the signal direction (counter-propagating) using a wavelength selective

coupler (often referred to as a wavelength division multiplexer or WDM). The rea-

son to use a WDM combiner instead of a simple optical coupler is to reduce the

combination loss. Finally, in order to prevent oscillations and excess noise due to

unwanted reflections in the assembly, optical isolators are included at either side of

the gain medium as shown in Fig. 5.5.

Figure 5.5: Illustration of a single-stage (forward pumped) erbium-doped fibre amplifier.

Principle of Operation:

The energy levels and associated spontaneous lifetime of an Er3+-doped fibre are

illustrated in Fig. 5.6. Notably, the surrounding crystalline field causes a Stark
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splitting of the Er3+ orbitals while site-to-site variations of the field due to the

amorphous nature of the glass results in an inhomogeneous broadening of the tran-

sition bands. This property allows for pumping at a wavelength near 1480nm in

order to excite the erbium ions directly to the metastable I413�2 state which enables

amplification in the spectral range from 1525nm to 1570nm. Alternately, the I413�2
state can also be populated by erbium ions having undergone a non-radiative tran-

sition (e.g. heat generation) from the I411�2 state following excitation by photons of

light around 980nm. Subsequently, amplification occurs when the excited state ions

decay from the metastable state back to a lower energy level via stimulated emis-

sion of photons at the signal wavelength. However, the excited state ions also decay

spontaneously with the generation of photons that subsequently undergo amplifi-

cation via stimulated emission to generate amplified spontaneous emission (ASE).

As outlined in Chapter 2, ASE serves to degrade the optical signal-to-noise ratio

(OSNR) which can impair the signal performance at the receiver; hence, a low noise

figure (NF) is desirable. Nonetheless, the excited erbium ions can also decay to

a lower energy level through non-radiative mechanisms which involve interactions

with phonons of the glass, thus, reducing the e�ciency of the amplification process.

Figure 5.6: Illustration of the energy level structure of Er
3+ ions in a glass host.

The success of EDFAs can be attributed to the commercial availability of reliable

pump lasers whose output power is enough to stimulate gain from the medium.

In fact, the wavelength of the pump ultimately determines the performance of the

EDFA. For instance, as the carrier lifetime in the metastable state, I413�2, is on the
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order of 10ms (which is four orders of magnitude longer than the carrier lifetime

in the I411�2 state), almost all of the carriers will be accumulated in the metastable

state with constant optical pumping at 980nm, hence, the three-level system can

be simplified into two levels for most of the practical applications. Alternatively,

for pumping at 1480nm, pump photons directly excite carriers from the ground

state to the top of the metastable state, therefore it is a more e�cient process;

however, stimulated emission at the pump wavelength leads to a degradation of the

noise figure while the achievable inversion level is usually lower. Furthermore, if

the pump is injected in the backwards direction (counter-propagation), it will be

absorbed along the length of the fibre resulting in a relatively low level of inversion

at the input side. As a result, the NF will be degraded due to the low signal gain

available at the input with respect to the backwards propagating ASE. Alternately,

injecting the pump in the forwards direction (co-propagation) will provide a high

signal gain at the input with respect to the ASE, resulting in a lower NF.

5.2.2 EDFA Gain Dynamics

In practice, the gain dynamics of EDFAs are considered to be relatively slow as a

result of the comparatively long lifetime of the metastable state. Consequently, for

transmission of high-speed data, the EDFA gain remains undisturbed by the signal

modulation, hence, if the average input power remains constant the induced crosstalk

will be negligible in multichannel systems [232]. This property is a critical advantage

of EDFAs and is the reason why steady-state models have been extensively used to

predict network performance and guide the design of EDFAs [233]. Nonetheless, one

of the key issues facing the realisation of reconfigurable LR-PONs is the dynamic

characteristics of EDFAs whose gain can fluctuate significantly for variations in input

power associated with channel add/drop events, the burst-mode nature of the US

tra�c, fibre cuts or components failures [234].

To illustrate the nature of these power excursions, Fig. 5.7 presents a trace cap-

tured using an oscilloscope showing optical transients with an appreciable overshoot

of approximately 11.3dB at the output of a commercial EDFA in the absence of

active gain control for a dynamic optical signal at 1550.12nm whose input varies by

approximately 15dB with a repetition frequency of 500Hz (T = 2ms).
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Figure 5.7: Data captured from an oscilloscope showing transients from a commercial
EDFA in the absence of active gain control for a dynamic optical signal at 1550.12nm.

Consequently, a time-dependent model of EDFA gain dynamics is required to un-

derstand the transient behaviour resulting from the change in saturation levels that

can produce significant inter-channel crosstalk in DWDM systems. As outlined in

the previous section, for pump wavelengths at 980nm or 1480nm, EDFAs can be

modelled as a two-level system despite the fact that pumping at 980nm results in a

fast non-radiative interaction (⌧ ≈ 1µs) before populating the metastable I413�2 state
with excited carriers. Notably, the two-level model serves as a good approxima-

tion for pump powers less than 1W at 980nm, which is generally true in practice

[235]. With this in mind, an overview of the two-level time-dependent gain model

developed by Sun et. al [227] is presented in Appendix D alongside the resulting an-

alytical formula which describes the inherent transient response of these amplifiers

[236].

It is clear from the results demonstrated in Fig. 5.7 that the gain dynamics of ED-

FAs must be controlled in order to suppress these undesirable power excursions. In

practice, such behaviour has the potential to compromise the performance of receiver

subsystems resulting in corrupted data while in extreme cases these transients may

result in physical damage to components such as photodiodes. As a result, various

EDFA gain control techniques have been established for dynamic network applica-

tions over the last twenty years. A brief overview of these techniques is presented

in the following section.
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5.2.3 Gain Control Techniques

In the literature, many gain control strategies have been proposed to suppress EDFA

transients; these can generally be classified into three categories from the viewpoint

of the operating principle: active pump control [237], active input power monitoring

[228] and all-optical gain control schemes [238]. Nonetheless, within all of these

strategies, the fundamental idea is to maintain the relative balance between the

pump power and the total input power in order to maintain a constant amplifier

gain. For instance, gain-controlled amplification of burst-mode signals has been

investigated by introducing dummy power signals during intervals between bursts

to maintain a constant input power to the EDFA [239] however K. Okamura et al.

revealed substantial results in 2005 based on a fast feedback pump control scheme

[240]. Here, the optical powers at the input and output of the EDFA were continu-

ously monitored using photodiodes in order to generate an error signal based on the

required and actual gain values (e(t) = GReq.PIn − POut). The error signal was then

used by a linear control circuit (⌧eff < 1µs) to adjust the pump power and correct the

gain as necessary. This scheme produced negligible packet envelope distortions and

a negligible power penalty (back-to-back) for 25µs bursts carrying data at 2.5Gb/s

when compared with operation under a fixed pump bias (power penalty = 2.9dB).

In the same year, similar results were published by Otani et. al [241] using an

AGC-EDFA with fast feedback control for 10Gb/s signals with optical burst lengths

of 333µs (f = 3kHz). As the response time of the control loop was significantly

faster than the excited state lifetime of the Er3+ ions (≈10ms) the experiment was

successful in mitigating the gain transients and the saturation-induced crosstalk re-

spectively, thus highlighting the benefits of gain-controlled EDFAs for multichannel

signal amplification.

Figure 5.8: Schematic of a single-stage, forward-pumped EDFA configuration with active
gain stabilisation via dynamic pump control.
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To address the impact of significant channel variations within reconfigurable net-

works, Y. Horiuchi et al. of Fujikura Ltd. presented an ‘ultra-fast’ AGC-EDFA

comprised of a hybrid feed-forward/feedback pump control circuit, a gain equalising

filter (GEQ) and a high-speed variable optical attenuator (VOA) [242]. The feedback

loop was introduced to compensate for any inaccuracies in the feed-forward control

while the VOA (whose response time was less than 1µs) was added to compensate

for di↵erences between the required and the actual gain values at the EDFAs output.

A 39-channel add/drop analysis was carried out at various test wavelengths across

the C-band to characterise the control scheme and the results demonstrate a max-

imum gain excursion of 1.2dB (settling time ≈ 20µs) following a ‘drop’ event while

an ‘add’ event produced a gain excursion of 0.7dB (settling time < 3µs). Notably,

the response of the feed-forward control loop in the hybrid configuration presented

in [242] can be improved even further through the addition of an optical delay line

(ODL) using standard single-mode fibre (SSMF) as demonstrated in [228]. This

approach e↵ectively compensates for delays within the control circuit as well as the

slow response of the Er3+ ions to a change in pump current.

From these investigations, it is evident that by using a combination of well-

designed feedback and feed-forward control loops it is possible to build broadband

WDM EDFAs with excellent transient suppression which provide flat gain over a

large dynamic gain range with low noise contributions and a high saturation output

power. These EDFAs have been shown to provide stable gain performance under a

variety of conditions allowing them to address most applications and functions in

modern optical networks.

5.3 Analysis of Residual Transients from

Gain-Controlled EDFAs

The EDFAs identified as candidates for deployment within the proposed DISCUS

architectures are commercial modules that have been developed for application in

reconfigurable optical add/drop multiplexers (ROADMs) in flexible metro networks.

Due to the nature of this application, the gain control circuitry has been designed

to reduce the transients introduced by a fluctuation in the channel loads. Notably,

the timescale of the add-and-drop events in these types of networks are typically

on the order of milliseconds which is much longer than the timescale of the TDMA
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tra�c fluctuations in a PON. Nonetheless, despite not being designed specifically for

burst-mode applications, these amplifiers provide a simple and e↵ective solution for

transient reduction. In particular, the devices examined in this analysis are Oclaro

PureGainTM 2800 EDFAs. These modules operate across a wavelength range of

approximately 35nm (1529nm - 1564nm) with an input power threshold of -29dBm,

a maximum output power of +19dBm, a typical noise figure < 5.5dB and a variable

gain between 16dB and 30dB which has been optimised for optimal flatness (∼0.5dB)
at a set-point of 20dB. These performance parameters were selected in accordance

with the specifications required for the in-line amplifiers of the proposed ‘open-ring’

LR-PON configuration which have been derived from the associated optical power

budget as indicated in Table 5.1. The typical gain and noise figure performance

of these EDFAs is presented in Fig. 5.9 as a function of the average input power

under automatic gain-control (AGC) for a maximal set-point gain of 30dB using a

continuous-wave source at 1550.12nm.

Figure 5.9: Gain and noise figure of a commercial dual-stage EDFA operated in auto-
matic gain control (AGC) with a setpoint value of 30dB for a signal at 1550.12nm

In accordance with the theory presented in [236], the output power is a key factor

with respect to the gain transients, since higher powers can place a greater stress

on the pump laser(s) while also creating higher gain saturation in the erbium-doped

fibre. As a result, the following measurements are performed at the maximum output

power (∼ +19dBm), sub-dividing the total power equally between the channels.
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Furthermore, while this work presents experimental results obtained from the Oclaro

PureGainTM amplifiers, it is reasonable to expect that the findings and conclusions

presented in the following sections can be extended to similar devices that have been

developed by other manufacturers.

Experimental Setup Description:

The experimental setup used to analyse the residual transient contribution from the

gain-controlled (GC) EDFAs is illustrated within Figure 5.10. In order to emulate

the dynamic tra�c from a fully loaded system, a wavelength selective switch (WSS)

was used to spectrally slice the amplified spontaneous emission (ASE) generated

by an EDFA which was subsequently amplified by two semiconductor optical am-

plifiers (SOAs). Besides providing gain to boost the power of the ASE, the SOAs

are deployed in order to dynamically adjust the power of the ASE channels through

adjustment of their respective bias currents using an arbitrary function generator

(AFG) in order to emulate dynamic network tra�c. Moreover, the wavelength

groups allocated to each SOA are interleaved using the functionality of the WSS

to assign alternating channels to specific ports. Subsequently, the optical power of

each channel is then equalised through the controlled application of attenuation on

a channel-by-channel basis using a remote, custom-designed instrumentation algo-

rithm in order to flatten the optical spectrum.

Figure 5.10: Experimental setup used to characterise the residual EDFA gain transients.
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An example of an optical spectrum at the input of the GC-EDFA under test is shown

in Fig. 5.11. Here, a spectral gap has been carved into the ASE spectrum (red trace)

using the WSS in order to load the probe channel (blue trace) at 1530.33nm. This

probe channel is generated by a tuneable laser and combined with the spectrally

sliced and flattened ASE using a 90/10 coupler. The second output port of that

coupler is then used to monitor the spectrum at the input of the EDFA using an

optical spectrum analyser (OSA). The setup can hence emulate an arbitrary set of

dynamic DWDM wavelengths and allow analysis of the residual gain transient on

any probe wavelength in the C-band. The timing of the dynamic (ASE) channels is

controlled using the AFG and the two SOAs, which together with the WSS allows

the power of two groups of channels to be controlled independently.

Figure 5.11: Data captured from an optical spectrum analyser demonstrating the emu-
lation of a system with 80 DWDM channels between 1529.16nm and 1563.86nm.

At the output of the EDFA under test, a tuneable bandpass filter filter (TBF) is used

to separate the probe wavelength from the dynamic ASE channels and the power

of the probe wavelength is adjusted using a variable optical attenuator (VOA). The

probe wavelength is then detected by a photodiode (PD) and a real-time oscilloscope

is used to acquire the trace. For instance, Fig. 5.12 shows the residual power

excursion induced on a probe channel located at 1530.33nm when the background

ASE channels (1529.16 - 1563.86nm) are modulated with a square wave signal with

a repetition rate of 100Hz (T = 10ms) producing an add/drop ratio of roughly 19dB.
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Figure 5.12: Data captured from an oscilloscope demonstrating a residual gain transient
imparted on the output power of a probe channel located at 1530.33nm.

When a number of channels are dropped, the EDFA gain control circuitry detects the

input power change and adjusts (reduces) the current of the EDFA pump to retain

the required gain. However, there is a delay of several microseconds between the

detection of the input power change and the reduction in the population inversion of

the amplifier due to the subsequent pump current reduction. During this time the

surviving channel experiences a sudden power surge called an overshoot. Once the

gain of the EDFA is adjusted, the power of the probe channel drops. The opposite

situation happens when a number of channels are added within the network. In

this case the surviving channel power drops due to insu�cient gain available from

the EDFA and an undershoot is observed. Notably, even in the case of an ideal

control system, there is always some residual gain error that cannot be resolved by

the EDFA photodiodes. In general, even a very slow change in the total input power

causes a permanent gain change at the probe frequency (due to spectral hole burning

and redistribution of the spectral gain). This localised gain error is referred to as

a gain o↵set and needs to be treated separately from the fast transients (over- and

undershoot). This o↵set can be managed by using more accurate gain flattening

filters however, reducing the fast transient requires more sophisticated strategies

such as that presented in [228].

To compliment the trace presented in Fig. 5.12, the results presented in Fig.

5.13 outline the peak-to-peak transient and the corresponding o↵set measured us-
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ing various probe wavelengths ranging from 1530.33nm to 1563.86nm with a dy-

namic background (ASE) spectrum extending over the entire C-band to emulate

80 (50GHz-spaced) wavelength channels. In particular, the power of each channel

was equalised such that the total input power to the EDFA under test is near the

nominal input power (≈ −1dBm). However, as outlined previously, the power of

the ASE channels is actively controlled using the SOAs such that the ratio between

high power and low power at the input to the EDFA represents an add/drop event

of all the ASE channels which achieves a value of approximately 19dB. In addition,

the periodic time of the dynamic events which switches between the high and low

input power was set at 10ms (100Hz) in order to allow su�cient time for the gain

to recover so that the transient dynamics can be examined in full.

Figure 5.13: Analysis of (a) the peak-to-peak transient and (b) the gain o↵set, measured
as a function of the probe channel wavelength with the dynamic ASE channels extending
from 1529.16nm to 1563.86nm (c).

It is important to note that the procedure used here represents the extreme worst

case in terms of the gain transient induction; however, the results can be used to

e↵ectively provide an upper bound to the maximum power excursions to be expected

from these devices. Moreover, in a real deployment scenario, events where such a

variation in input power could occur would be extremely unlikely and typically not
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allowed by the protocol; nonetheless, it may facilitate an examination of the link

resiliency in the event of a fibre cut or equipment failure.

Nonetheless, the results presented in Fig. 5.13 clearly show that the shorter probe

wavelengths are more strongly impacted by the residual gain transients with the

probe wavelength at 1530.33nm demonstrating a peak-to-peak power excursion of

approximately 2.3dB and a gain o↵set of up to 0.6dB. This feature can be attributed

to the fact the primary gain peak of the EDFA is located around 1532nm. Nonethe-

less, the large variation of the saturation-induced power excursion with wavelength

suggests the longer wavelength portion of the C-band (1546.92nm - 1564.86nm) is

more suitable to host the US channels which operate in burst-mode. Using this

approach, the peak-to-peak transients and gain o↵set were measured for dynamic

ASE channels extending from 1546.92nm to 1563.86nm which encompasses roughly

half of the C-band which is capable of supporting 40 (50GHz-spaced) wavelength

channels; the associated results are presented within Fig. 5.14. As in the previous

case, the GC-EDFA was operated at the set-point of 20dB in order to achieve opti-

mal flat gain across the wavelength range of interest, however, due to the reduction

in the number of emulated active channels the EDFA (i.e. 80 → 40) the amplifier is

not at the maximum output power. As a consequence, the amplitude of the residual

transients should be less than those presented in Fig. 5.13 using equivalent probe

channel wavelengths.

Figure 5.14: Analysis of (a) the peak-to-peak power excursion and (b) the gain o↵set
measured as a function of the probe channel wavelength with the dynamic ASE channels
extending from 1546.92nm to 1563.86nm as shown in (c).
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In the results presented in Fig. 5.14, the controlled input power variation of the ASE

channels corresponds to approximately 16dB; however, the worst case peak-to-peak

power excursion is now reduced to 1.1dB at a probe wavelength at 1546.92nm, while

the gain o↵set is maintained below 0.2dB. Notably, the same test was performed on

the short wavelength side of the C-band (1529.16-1546.12nm) showing as expected

maximum transients almost twice as large in dB scale.

5.3.1 Evolution of Residual Transients in Chained EDFA

Links

While the preceding analysis focuses on a single EDFA, the proposed DISCUS LR-

PON architecture actually employs multiple, concatenated EDFAs. Even in the

simplest configuration with one amplifier node (i.e. the urban ‘tree-structured’ con-

figuration) there are two EDFAs in the US path, one in the AN and one at the

input of the M/C node. Both these EDFAs can introduce transients caused by the

active US channels. As a result, the concatenation of optical transients is a note-

worthy characteristic to be examined. Similar measurements to those presented in

the previous sub-section have been performed for a chain of EDFAs. The link is

constituted by 1 to 5 GC-EDFAs working at the nominal gain of 20dB with 20dB

loss between each device in order to simulate a fully gain compensated link similar

to that required in the ‘open-ring’ configuration proposed for rural access in 5.1.2.

Figure 5.15: Illustration of the chained EDFA configuration used to investigate the
evolution of residual transients in systems with concatenated amplifiers.

The peak-to-peak transients measured as a function of the number of chained EDFAs

and for an input power variation of 16dB with a repetition period of 10ms (100Hz)

are shown Fig. 5.16. The measurements presented here have been performed for

dynamically switched ASE channels on the long wavelength side of the C-band be-
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tween 1546.92nm and 1563.86nm using a probe wavelength at 1550.12nm as shown

in Fig. 5.14(a). The results indicate that the transients accumulate linearly (with

respect to the logarithmic scale) when travelling through multiple amplifiers with a

maximum peak-to-peak transient of approximately 4.4dB measured after transmis-

sion through 5 chained EDFAs. This is an important result as it is not obvious that

the cascaded EDFAs are essentially independent and more importantly the transient

suppression controls of the EDFAs are not a↵ected by transients introduced by the

previous amplifiers.

Figure 5.16: (a) Residual transient profiles and (b) the evolution of the peak-to-peak
power excursion measured as a function of the number of chained EDFAs for a probe
channel located at 1550.12nm in response to dynamically switching the ASE channels
(1546.92nm - 1563.86nm) with a repetition rate of 100Hz.

In the preceding analysis, a relatively low repetition frequency of 100Hz (T = 10ms)

was used to vary the input power of the ASE channels in order to establish the

performance boundaries of the EDFAs under test by allowing adequate time for the

EDFA gain to return to the steady-state between switching events. Nonetheless,

in a real deployment scenario, the bursty nature of US tra�c in accordance with

the applied TDMA protocol will produce input power variations on a timescale of

microseconds. With this in mind, the evolution of the residual transient produced

by a chain of up to five GC-EDFAs has been examined for a probe wavelength

at 1550.12nm when switching frequencies of 10kHz (T = 100µs) and 100kHz (T

= 10µs) are applied to control the input power of the ASE channels (�P ≈ 16dB)
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which encompass the targeted US wavelength band (1546.92nm to 1563.86nm). The

corresponding results are presented in Fig. 5.17. As outlined previously, this proce-

dure represents the worst case in terms of the gain transient induction. Moreover,

in practice, events where such a variation in input power could occur would be typ-

ically not be allowed by the protocol. Nonetheless, from these measurements it is

evident that there is a marked reduction in the peak-to-peak power excursion as the

repetition period is reduced below 100µs, which roughly corresponds to the time

scale of the fast part of the captured gain transient shown in Fig. 5.12. Moreover,

as the repetition rate increases the EDFA gain does not have time to fully recover

between switching events and hence the amplitude of the transients is reduced.

Figure 5.17: Residual transient profiles induced on a probe channel located at 1550.12nm
by dynamically switching the upstream wavelength band (1546.92nm - 1563.86nm) with
a repetition rate of (a) 100kHz and (b) 10kHz with (c) the corresponding peak-to-peak
power excursion measured as a function of number of chained EDFAs.

The results presented in this section clearly indicate the importance of emulating

a realistic burst tra�c pattern for the characterisation of the EDFA performance.

In addition, it should be noted that designing a burst-mode link and the optical

amplifiers based on the worst case tra�c pattern might not be the optimal solution

as it will lead to an over-specification of the EDFAs performance; moreover, such

events are likely to be extremely rare (i.e. fibre cut, equipment failure) or possibly

not allowed by the protocol (i.e. burst scheduling).
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In practice, the performance impact of residual EDFA transients will likely de-

pend on the architecture of the burst-mode receiver (BMRx) that is deployed in the

OLT. For instance, the outcome will depend on whether it is a limiting or linear

BMRx, how the power of the burst is measured and if the gain is continuously ad-

justed or fixed after an initial measurement within the burst preamble. Moreover,

any mechanism that contains memory of a preceding burst (e.g. charge and dis-

charge on a capacitor) can spoil the initial conditions at the start of a new packet

resulting in unacceptable requirements on the length of the guard time and the

preamble. In particular, due to the high number of ONUs connected to an OLT,

high tra�c e�ciency is required; therefore, the OLT-based BMRx must remove all

memory of a preceding packet within a short guard time (≤ 25.6ns) while adjusting
its gain and DC o↵sets within a preamble on the order of a few tens of nanoseconds.

To demonstrate such a receiver, the following section presents an overview of the

innovative 10G-capable linear burst-mode receiver (LBMRx) technology developed

within the Tyndall National Institute, Cork. Subsequently in section 5.4.4, the im-

pact of residual optical transients is examined with respect to the performance of the

10G LBMRx in conjunction with burst-mode forward error correction (BM-FEC)

which has been implemented on field programmable gate arrays (FPGAs) in order

to optimise the available power budget within the DISCUS testbed [147].

5.4 10G Burst-Mode Subsystems

The low-cost requirements of the ONU (outlined in Chapter 4) suggest that the

chosen tuneable transmitter technology which generates C-band wavelengths might

not have a chirp characteristic optimised for the long physical reach and high bit

rates targeted by LR-PONs; therefore, dispersion compensation is required [144].

While dispersion compensating fibre (DCF) can be used, DCF is bulky, costly and

has a large insertion loss. Furthermore, the incident bursts may have undergone

di↵ering levels of impairments to due to the appreciable di↵erential reach of the

ODN; therefore, electronic dispersion compensation (EDC) can provide a superior

solution as it has no insertion loss, negligible physical volume (a small chip), minimal

additional power consumption as well as a reduced CAPEX and inventory cost.

Notably, the implementation of BM-EDC requires a linear burst-mode receiver

(LBMRx), which is used to preserve the signal shape by linearly amplifying its input
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such that the average or peak amplitude equals a reference in order to keep the

burst-to-burst amplitude variation at the output of the LBMRx as small as possible

to simplify the interface with clock and data recovery chips or analogue-to-digital

(A/D) converters. This amplification mechanism requires the ability to adjust the

LBMRx gain over a continuous range of values across the input dynamic range

according to the strength of the incoming burst, unlike switching between a few

discrete gain settings as undertaken in [243] and [244]. Furthermore, it is essential

that the LBMRx can handle incoming bursts without requiring overly large guard

times (the minimum allowable time between bursts, mainly required to reset the

LBMRx after the end of a burst and prepare it for the next burst) and preambles

(the data pattern at the start of the burst required for adjusting the gain and dc-

o↵sets of the LBMRx).

5.4.1 Linear Burst-Mode Receiver

Within the DISCUS project, a 10G-capable AC-coupled linear burst-mode receiver

(LBMRx) with fast gain adaptation based on 0.25µm Silicon-Germanium (SiGe)

Bipolar and Complementary Metal–Oxide–Semiconductor (BiCMOS) technology

developed by researchers within Photonic Systems Group of the Tyndall National

Institute is proposed for deployment within the OLT-Rx. This advanced receiver

configuration has been successfully shown to support a burst-to-burst dynamic range

of ≥ 22.7dB with guard times as short as 25.6ns with a worst-case OSNR of 15dB

at a BER of 1.1 × 10−3. This value represents the pre-FEC threshold required to

achieve error-free transmission assuming Reed-Solomon RS(216,248) encoding as

widely used in 10G-PON standards today [80]. As the realisation of the LBMRx is

beyond the scope of this work, the reader is referred to [146] for detailed informa-

tion on the internal architecture including the circuit design and initial performance

evaluation. Moreover, a brief overview of the packaging assembly of the LBMRx is

presented in Appendix E.

Packaged LBMRx Characterisation:

The experimental setup illustrated in Fig. 5.18 was used to characterise the per-

formance of the LBMRx. In particular, a pulse pattern generator (PPG) loaded
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with a custom data pattern was used to produce two 10µs-long data packets at

10.3125Gb/s. Using this repeating data pattern, the output from a commercial

ECL was modulated with NRZ-OOK using an electro-absorption modulator (EAM)

which provided an extinction ratio (ER) of approximately 8dB. Furthermore, using

a trigger signal generated at the start of the pattern, a drive signal produced by an

AFG connected to a booster SOA was used to carve an alternating series of ‘loud’

and ‘soft‘ packets (LP, SP), each with a total length of 103168 bits separated by a

guard time of 25.6ns (264 0’s) where the power of the packets was set by adjusting

VLoud and VSoft to manipulate the dynamic range. An optical bandpass filter with a

3dB bandwidth of 0.5nm was used to remove the out-of-band ASE noise generated

by the optical amplifiers. Each packet included a preamble with a total length of

≈ 150ns to enable the LBMRx to adjust its gain for the incoming packet and to

account for the settling of a transient across the coupling capacitors. The remainder

of the packet consisted of a 101392-bit payload containing pseudo-random binary

sequence (PRBS-7) data and a 32-bit end of burst (1010...) sequence. Moreover,

prior to the arrival of each burst, a 10ns-wide pulse was sent to the LBMRx using

a second AFG in order to trigger the receivers gain settings to return their nominal

values.

Figure 5.18: Illustration of the experimental set-up used to characterise the LBMRx.

For this analysis, the BER was selectively measured on the SP payloads using a
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synchronised error detector (ED) as this represents the most stressful condition for

the LBMRx. An example of the generated optical signal with a dynamic range of

15dB is presented in Fig. 5.19(a) while Fig. 5.19(b) presents the corresponding

equalised output from the LBMRx.

Figure 5.19: Traces captured from a sampling oscilloscope of optical bursts with a 15dB
dynamic range carrying NRZ-OOK data at 10Gb/s Arriving at the OLT-Based LBMRx
(blue trace) and the corresponding output of the LBMRx showing the equalised packets
(green trace).

Prior to these measurements, it was found that the photodiode in the LBMRx

subassembly was not high enough in comparison to the heat-sink level which in

turn blocked the lensed fibre and preventing it from being lowered further, hence,

the fibre was welded at a non-optimum distance from the photodiode resulting in

a coupling loss of roughly 2dB. This loss was determined by comparing the post-

packaging characterisation results with the initial measurements recorded using a

probe station setup. Nonetheless, a sensitivity of approximately -20dBm is measured

at a BER of 1.1 × 10−3 when the LBMRx is operated in burst-mode with the BER

for powers below -14dBm measured on the SP while maintaining the LP power at

-2dBm (Fig.5.20(a)). The burst-mode curve measured at low powers presents less

than 0.5dB power penalty (at FEC threshold) in comparison to the continuous-
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mode case (not shown in Fig. 5.20(a) for clarity); this penalty is attributed to the

transient from the AC-coupling capacitors as indicated in [146].

With respect to Fig. 5.20(b), the power of the LP and SP were maintained

at -2dBm and -17dBm respectively to achieve a dynamic range of 15dB while the

OSNR, measured using the OSA, was degraded through the controlled addition of

ASE noise from an EDFA using a variable optical attenuator (VOA). From these

results, it can be seen that to achieve a BER of at least 1.1×10−3 for the SP requires

an OSNR of approximately 15dB which is in line with the assumptions made during

the power and OSNR budget analysis. However, the error floor seen at high OSNR

values is attributed due to the thermal noise of the LBMRx at the SP power as

shown in Fig. 5.20(a).

Figure 5.20: Performance of the packaged LBMRx assembly: (a) BER as a function of
the power of the SP when the LP power is maintained at -2dBm.(b) BER of the SP as a
function of OSNR for an incident dynamic range of 15dB (LP = -2dBm, SP = -17dBm).

5.4.2 Forward Error Correction

In addition to the realisation of a high-speed LBMRx which is capable of handling

high-dynamic range (≥ 15dB) burst-mode tra�c, the LR-PONs configurations pro-

posed in 5.1 will require innovative digital signal processing (DSP) functions such as

electronic dispersion compensation (EDC) and forward error correction (FEC) on
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a burst-by-burst basis in order to mitigate the varying channel impairments while

improving the overall transmission quality within a link impaired by noise [245].

As outlined in section 5.1, the implementation of burst-mode forward error cor-

rection (BM-FEC) plays a crucial role for the proposed architectures as it allows

optimisation of the available power and OSNR budget a↵orded by the operating

range of the OLT-based LBMRx. The implementation of FEC typically involves

the addition of redundant information which is encoded with the data stream prior

to transmission using a suitable error correcting algorithm. At the receiver end, a

decoder processes the data stream and uses the redundant bits to detect and correct

transmission errors. Consequently, in order to achieve the desired transmission per-

formance, each network component must be carefully designed as burst-mode FEC

can be a↵ected by strongly correlated an localised errors within the burst which can

be introduced by the transient behaviour of network components such as EDFAs

[246]. For instance, as outlined previously, the occurrence of residual EDFA tran-

sients can lead to a burst of bit errors which violates the assumption of a Gaussian

noise distribution that governs the theoretical performance of Reed-Solomon FEC

[247] which is actively deployed within the current generation of PON standards

[81, 140].

Reed-Solomon Forward Error Correction:

Reed-Solomon (RS) codes are linear block (non-binary) codes that are typically

specified as RS(n, k) where an encoder at the transmit side takes k data symbols of

s-bits each and adds parity (also known as redundancy) symbols to make an FEC

block with a total of n symbols where n ≤ 2s − 1. Notably, within each FEC block,

there are n − k = 2t parity words, where t signifies the maximum number of symbol

errors that can be corrected within a block.

Figure 5.21: Illustration of a Reed-Solomon FEC Block (also known as a Codeword)
Consisting of k Data Symbols and 2t Parity Symbols.
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Notably, when an RS decoder corrects a symbol, it replaces a compromised symbol

with the correct one regardless if the error was caused by one bit or by all of the bits

within that symbol; this property o↵ers a significant resilience against burst errors

which makes RS codes preferential for use in communication systems. Nonetheless,

the number of correctable errors is ultimately dependent on the dimensions of the

code used, RS(n,k), and by adding more parity words to the signal more errors can

be corrected. However, this process is limited as the encoded bit rate (Be) must

increase relative to the uncoded bit rate (Bu) in order to account for the associated

FEC overhead (↵FEC) which is given by

↵
FEC
= n

k
− 1 ≡ Be

Bu
− 1 (5.4.1)

where, the proportion of the data-stream that is useful (non-redundant) is tradi-

tionally known as the FEC code rate, Rc,

Rc = k

n
= Bu

Be
(5.4.2)

In general, a lower value of Rc indicates a higher potential for successful error cor-

rection; however, it also impacts the overall implementation and cost severely. As

a result, the analysis within this work considers the RS(248,216) code which was

targeted for use within the DISCUS project in accordance with current PON stan-

dards [81]. This algorithm encodes a block of 216 data symbols into a block of 248

symbols by adding 32 parity symbols, where each symbol is a group of 8 bits. When

a block of 248 symbols is received, the RS(248,216) algorithm uses the 32 parity

symbols for correcting up to 16 corrupted symbols within the received block. No-

tably, the RS(248,216) code is the truncated version of the RS(255,239) code which

in turn allows for a more convenient block length where the shortened block of 248

FEC words is padded at the encoder with 7 leading zero symbols which are not

transmitted but are instead reinserted at the receiver prior to decoding. While the

ITU-T G.987.3 XG-PON standard (2014) specifies the use of RS(248,216) for DS

transmission (10Gb/s) and RS(248,232) for US transmission (2.5Gb/s), in this work,

the RS(248,216) code is utilised for both transmission directions with a symmetric

Bu of 10Gb/s in order to maintain a consistent FEC threshold of approximately

1.1×10−3 with ↵
FEC
≈ 14.8% and Rc ≈ 0.87 in accordance with Eqn. 5.4.1 and 5.4.2.
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Nonetheless, as shown in Fig. 5.22, a key criterion for the evaluation of the intrin-

sic error correcting performance of RS codes is the theoretical relationship between

the decoded (post-FEC) BER and the coded (pre-FEC) BER which can be mathe-

matically computed with the assumptions that the errors occur independently from

each other and that the probability of incorrect decoding equals zero (i.e. the de-

coder never fails) [80]. For instance, if the BERpre−FEC represents the probability

that a certain bit will be received with error, the expression 1 − BERpre−FEC will

signify the probability of receiving a correct bit. Subsequently, within an 8-bit

symbol, the probability of receiving concurrently correct bits can be determined as

(1−BERpre−FEC)8; hence, the probability of receiving a symbol error (Psym) can be

written as

Psym = 1 − (1 −BERpre−FEC)8 (5.4.3)

By re-arranging the terms in 5.4.3, the pre-FEC BER can be written as a function

of Psym

BERpre−FEC = 1 − (1 − Psym)1�8 (5.4.4)

The probability of generating an uncorrected symbol given the probability of receiv-

ing a corrupted symbol and assuming uniformly distributed errors along the FEC

block is given by Eqn. 5.4.5, which accounts for all possible outcomes of picking i

unordered outcomes from a total of n possibilities [80].

Pu =
n�

i = 1+t
i

n
�n
i
� P i

sym�
Symbol
Errors

(1 − Psym)n−i�����������������������������������������������������������������
Correct
Symbols

(5.4.5)

where, i signifies the word index, n represents the total number of FEC words within

one FEC block, 2t is the number parity symbols within one FEC block and �ni� is a
binomial co-e�cient. Finally, using Eqn. 5.4.5, the post-FEC BER can be written

as a function of Pu using an analogous approach to that used to derive Eqn. 5.4.4.

BERpost−FEC = 1 − (1 − Pu)1�8 (5.4.6)
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Figure 5.22: Theoretical performance of the RS(248,216) FEC algorithm.

The BER improvement realised through FEC is typically quantified in terms of the

coding gain, GC . For instance, in power limited systems, GC is used to signify the

increase in receiver sensitivity a↵orded by the application of FEC; while, in OSNR

limited systems the GC represents the e↵ective improvement in OSNR sensitivity.

As BER is related to the Q-factor, the GC is often expressed as the ratio of the

Q-factors for the post-FEC and pre-FEC data as shown in Eqn. 5.4.7.

GC [dB] = 20log10(Qpost−FEC

Qpre−FEC
) (5.4.7)

where, Q [dB] = 10log10(Q2) = 20log10(Q). Notably, for systems impaired by Gaus-

sian noise statistics, this relation can then be re-written as a function of the post-

FEC and pre-FEC BER as follows:

GC [dB] = 20log10�erfc−1(2BERpost−FEC)
erfc−1(2BERpre−FEC) � (5.4.8)

where,

BERpost−FEC = 1

2
erfc(Qpost−FEC√

2
), BERpost−FEC = 1

2
erfc(Qpost−FEC√

2
)
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Using the data presented in Fig. 5.22, the theoretical performance threshold for the

RS(248,216) code which provides a post-FEC BER of 1 × 1012 is determined to be

approximately 1.1 × 10−3. As a result, using 5.4.8, the corresponding value of GC

can be estimated to be 7.2dB.

5.4.3 FPGA Implementation of Burst-Mode FEC

Forward error correction is usually implemented on application specific integrated

circuits (ASICs); however, as flexibility and development costs are crucial for PON

deployment field-programmable gate arrays (FPGAs) have emerged as a potentially

cost-e↵ective technology to address certain DSP challenges. For instance, the ONUs

and OLTs designed for use in the experimental testbed were realised by researchers

within the Optical Access Team of the Tyndall National Institute using commer-

cially available VC709 development boards which are equipped with Xilinx Virtex-7

XC7VX690T FPGAs [248]. Although the development of these units was not part of

the work undertaken for this thesis, an brief overview of their structure is presented

here for context as they were deployed within the physical layer testbed which is

demonstrated in Chapter 6.

Figure 5.23: FPGA architecture of the implemented ONU and OLT. Arrows indicate
the data flows in upstream and downstream directions (Image Reproduced from [248])

As shown in Fig. 5.23 the ONU and OLT were comprised of the following build-

ing blocks: a pseudo-random data generator (DATATx), a data receiver (DATARx)

for analysis of network performance, an RS encoder (ENC) and decoder (DEC)

for error correction using the RS(248,216) coding technique, a gigabit transceiver
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(GTH) to serialise and de-serialise the transmitted and received data respectively,

a frame synchroniser (SYNC) used to determine the boundary of deserialised data,

a communication unit (COM) to mange the exchange of information between the

ONUs/OLTs and the control station and the FPGAs and a central controller which

is used to configure the functions of all the blocks through a custom graphical user

interface (GUI).

Although the ONUs and OLT contain the same FPGA architecture, their re-

spective building blocks are used di↵erently in accordance with the nature of the

transmission direction (i.e. burst-mode upstream, continuous-mode downstream)

which in turn leads to di↵ering frame structures. However, as the design of the

FPGA architectures goes beyond the scope of this work, it is not discussed further,

hence, for additional details on the development of the FPGA-based DSP blocks

including the implementation of the burst-mode frame synchroniser and the time-

multiplexed RS decoder, the reader is referred directly to [248].

Notably, the ONU requires two additional components which are external to

the FPGA; the first is a standard small form-factor pluggable (SFP+) transceiver

supporting 10Gb/s on-o↵-keying transmission using an externally modulated laser

which can be tuned to ITU-T DWDM grid wavelengths across the C-band. The

second additional component is a discrete SOA which is actively controlled by the

FPGA in order to carve the optical envelopes which emulate multiple ONUs al-

located to the same US wavelength through the TDMA protocol. The OLT also

has an SFP+ transceiver, identical to the unit found in the ONU; however, only

the transmitter section is used here as the LBMRx has been connected with the

development board through a commercial clock and data recovery (CDR) unit. The

recovered and re-timed signal at the output of the CDR module was then sent to

the frame synchroniser which was the first processing block implemented in the FP-

GAs. Subsequently, a group of 8 interleaved RS decoders was used to process 8

symbols simultaneously at the FGPA clock rate of 161.133MHz to achieve a bit rate

of 10.3125Gb/s.

The performance of the BM-FEC was characterised in back-to-back using optical

bursts with equal amplitude (dynamic range of 0dB), the corresponding results are

presented in Fig. 5.24. Notably, the measured FEC threshold compared favorably

with the theoretically expected value of 1.1×10−3; therefore, in accordance with the

theory it can be assumed the error distribution is uniform within the burst.
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Figure 5.24: Comparison between measured and theoretical upstream FEC performance
with burst dynamic range of 0dB and CDR preamble duration of 1µs.

5.4.4 FEC Performance of Upstream Channels Impaired

by Optical Transients

Through a collaborative research e↵ort, the performance impact of optical tran-

sients on US burst-mode tra�c was evaluated using the FPGA-based ONUs and

OLTs developed for use within the DISCUS experimental testbed. As shown in the

experimental setup presented in Fig. 5.25, the optical power transients within the

optical bursts are emulated by driving a discrete SOA with a waveform represen-

tative of the residual optical power excursion generated by a chain of GC-EDFAs

within a LR-PON US link. In comparison to generating the residual transients

directly through a link of concatenated amplifiers as shown in section 5.3.1, this

approach has the advantage of being able to vary the amplitude of the residual

transients which corresponds to a change in the number of chained amplifiers by

simply scaling the waveform that drives the SOA. Moreover, the generation of emu-

lated residual optical transients can be synchronised with the transmitted bursts in

order to examine the e↵ect of these transients as a function of their position with

respect to the bursts. To achieve this, the OLT FPGA was used to provide an elec-

trical trigger to the AFG while also controlling the ONUs through the implemented

DS protocol as outlined in [248].
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The waveform used to reproduce the profile of the residual optical transient

was measured at the output of a chain of 5 GC-EDFAs using a continuous-wave

probe channel located at 1550.12nm using the technique demonstrated in section 5.3

when the background channels consisting of spectrally sliced ASE located between

1546.12nm and 1563.86nm have been gated with a repetition period of 20µs to

produce dynamic events every 10µs. Furthermore, in order to equally e↵ect the

data packets from both ONUs, the duration of the optical bursts was set to 5µs

which is equal to half of the time period between the switching events. This concept

is illustrated in Fig. 5.26 which demonstrates the profile of the residual transient

alongside the time-multiplexed bursts from both ONUs.

Figure 5.25: Experimental setup used for residual EDFA transient emulation and FEC
performance evaluation.

Figure 5.26: Illustration to demonstrate the duration of the emulated transient profile
compared with the duration of optical bursts transmitted by two time-multiplexed ONUs
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From the concept presented in Fig. 5.26, it is clear that the transient delay must

be swept between 0 and 10 µs in order to test all possible alignments of the opti-

cal transients and the bursts. These considerations led us to the characterisation

presented in Fig. 5.27, where the measured pre- and post-FEC BER for the two

ONUs is plotted with varying transient delay and with a transient amplitude of

5.2dB. This particular value of amplitude has been experimentally determined in

order to be close to the minimum transient amplitude before the FEC degradation.

In particular, the measured pre-FEC BER of both ONUs always stays below the

FEC threshold, hence the post-FEC BER of both ONUs is expected to be lower

than 1 × 10−12. However, for a transient delay close to 0 the post-FEC BER of

ONU1 clearly raises above 1 × 10−12, while for a transient delay close to 5µs the

post-FEC BER of ONU2 increases. This degradation of the FEC performance oc-

curs because the optical transients introduce correlated and localised errors within

the bursts which are beyond the correcting capability of the FEC algorithm. Hence,

Fig. 5.27 demonstrates that, in US PON links a↵ected by optical transients, the

verification of a pre-FEC BER lower than the FEC threshold is not su�cient for

assuring the correct FEC performance. In these cases, the post-FEC BER must also

be characterised in order to verify the correct FEC behaviour.

Figure 5.27: Measured burst-mode FEC performance with fixed transient amplitude of
5.2dB and with the delay varied with respect to the upstream bursts.
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The measurements presented in Fig. 5.27 have been used to identify the following

transient delays which represent the two worst cases for the FEC degradation: 0.1µs

for ONU1 and 5.2µs for ONU2 (b). These two cases, which correspond to an ‘Add

Event’ aligned with the start of the burst, have been analysed in Fig. 5.28 (a) and

(b) respectively, where the measured pre- and post-FEC BER of both ONUs has

been plotted as a function of the emulated transient amplitude.

Figure 5.28: Measured burst-mode FEC performance for two ONUs when the amplitude
of the emulated EDFA transients is varied with transient delays of (a) 0.1µs and (b) 5.2µs.

The pre-FEC BER of both ONUs can be seen to increases with the transient am-

plitude. This behaviour is expected considering that the increase of the transient

amplitude leads to the increase of the number of errors within the burst. Moreover,

a maximum performance margin of approximately 5dB can be estimated by con-

sidering solely a pre-FEC BER below the FEC threshold. However, for transient

amplitudes larger than 4dB the post-FEC BER begins to increase above 1 × 10−12
even though the pre-FEC BER is lower than the theoretical threshold of 1.1× 10−3.
This feature indicates an appreciable degradation of the FEC performance due to a

significant amount of localised errors which compromises the correcting capability

of the employed RS algorithm. Nonetheless, it should be noted that the minimal

performance margin of 4dB presented in Fig. 5.28(b) is roughly 1dB higher than

the worst-case power excursion demonstrated previously in Fig. 5.17. This obser-

vation suggests that the residual transients induced in a real deployment scenario

whose channels are controlled by an appropriate PON protocol should not impact

the transmission performance.
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It is also important to recognise that the di↵erence of approximately 0.3dB be-

tween the performance margins measured for ONU1 and ONU2 is expected to be

within the fabrication tolerances of the di↵erent SFP+ transmitters employed in

the ONUs. However, the di↵erence of approximately 1dB between the pre- and

post-FEC performance margins could be particularly relevant when designing PON

architectures within the strict optical power budget of the current PON standards.

As a result, this work also serves to highlight the relevance of characterising the

post-FEC BER in US TDM channels as a function of the temporal distribution of

the errors within the burst as demonstrated in [248].

5.5 Summary and Conclusions

Through the objectives of the DISCUS project, the work presented in this chapter

has outlined the physical layer design strategy of two distinct wavelength-agile LR-

PON architectures aimed at economically bridging the ever growing ‘digital divide’

between urban and rural communities with the aim of providing ubiquitous broad-

band services through advanced FTTP architectures. Moreover, it should be noted

that the physical layer of the ‘tree-structured’ (single AN) and ‘open-ring’ (chained

AN) designs introduced here have since been assembled as part of a full-scale testbed

demonstrator which is evaluated in detail within Chapter 6.

The feasibility of the proposed DISCUS architectures was initially examined us-

ing a linear optical power and OSNR model in order to establish the achievable

reach and split by deriving the detailed specifications of the in-line optical ampli-

fiers. Subsequently, based on the performance boundaries set by the transmitter and

receiver specifications, EDFAs emerged as suitable candidates due to their ability

to provide a high gain (>30dB) and a relatively low noise figure (∼ 5.5dB) across a
wide band of channels. However, as their relatively slow gain dynamics are known

to produce gain transients, EDFAs with active gain controls were required to ensure

the link performance of the architectures under consideration. With this in mind,

commercial EDFAs with active transient suppression circuitry whose performance

specifications (e.g. gain, noise figure and aggregate output power) were derived from

the power and OSNR model were acquired for deployment within the physical layer

experimental testbed.
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In order to examine the extent of the residual EDFA transients attributed to the

limited response time of the gain control circuitry, the performance of the ampli-

fiers procured for the physical layer testbed was evaluated under di↵erent dynamic

loading conditions. In particular, the induction and evolution of residual transients

were studied using a continuous-wave probe channel for which the measurement

system was used to emulate the e↵ect of 39 DWDM channels operated dynamically

within a link comprised of up to five chained amplifiers as would be the case in

the proposed ‘open-ring’ LR-PON architecture. Notably, the results presented in

section 5.3.1 demonstrate that the amplitude of the residual transients induced by

these switching events were observed to accumulate linearly (with respect to the dB

scale) as a function of the number of chained amplifiers. For instance, in response to

a worst-case add/drop power ratio of ∼ 16dB using repetition rates of 10kHz (T =

100µs) and 100kHz (T = 10µs) which are representative of typical burst timescales,

the amplitude of the compounded residual optical transients attained values of ap-

proximately 3dB and 1.4dB respectively within the wavelength band assigned to the

US channels (1546.92nm to 1563.86nm).

As the performance impact of these residual EDFA transients will ultimately de-

pend on the architecture of the OLT-based BMRx, a more comprehensive analysis

was required with respect to the proposed DISCUS architectures. Subsequently, the

primary contribution of the work in this chapter was the result of a collaborative

research e↵ort that involved examining the resilience of an FPGA-based BM-FEC

algorithm used in conjunction with an innovative 10G-capable LBMRx [146]. Here,

the pre-FEC and post-FEC BER were monitored as a function of the relative delay

and amplitude of emulated optical transients imparted on incident bursts transmit-

ted from two time-multiplexed ONUs.

The results from this analysis demonstrated an appreciable performance margin

of 4dB with respect to the optical transient amplitude prior to FEC degradation. No-

tably, this margin is roughly 1dB larger than the amplitude of the worst-case residual

transient induced by emulating the e↵ect of dynamically switching 39 DWDM chan-

nels simultaneously within the allocated US wavelength band for a link with up to

five chained gain-controlled EDFAs. Moreover, this outcome indicates that when

the burst tra�c is regulated by an appropriate PON protocol, the residual power

excursions produced by these commercial GC-EDFAs should not compromise the

transmission performance of the US 10G-TDMA tra�c in either of the LR-PON
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configurations proposed by the DISCUS project. Subsequently, this work was pre-

sented at the International Conference on Optical Network Design and Modeling

(ONDM) which was held in Dublin in 2018 [147].

186



6

Demonstration of Dynamically
Reconfigurable TDM-DWDM

Long-Reach PONs

This chapter presents the results obtained from the physical layer testbed aimed

at demonstrating the functionality of the network architectures and subsystems

developed during the EU FP7 project DISCUS.

In the previous chapter, two distinct TDM-DWDM LR-PON topologies were

identified for the demonstration; a tree-like topology with a single amplifier node

which is suitable for deployment in densely populated urban areas and a novel

chained amplifier node (‘open-ring’) architecture for deployment in rural, sparsely

populated regions. Both baseline configurations use EDFAs as optical amplifiers,

however, an alternative tree-structured configuration using SOAs was also inves-

tigated as an alternative technology with the potential to increase the flexibility

of the system by extending the usable spectral range beyond the C-band. This

work substantially extends previous demonstrations of evolutionary access networks

[167], [249] and [250] in relation to the size of the network demonstrated, the level

of reconfigurability and integration with the higher control and service layers.

Figure 6.1: High-level network view of the proposed DISCUS architecture.
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The experimental results demonstrate that with an emulated load of 40 DWDM

channels in both transmission directions, the EDFA-based urban (‘tree-structured’)

architecture shown in Fig. 6.1 (a), supports a physical reach of up to 100km with

1024 users [19], while the rural (‘open-ring’) architecture presented in Fig. 6.1 (b),

supports up to 1024 users with a physical reach of 120km [20]. Both network con-

figurations are dual parented on separate core nodes for link protection and support

high dynamic range (>15dB) burst-mode transmission in the upstream direction

facilitated by a 10Gb/s linear burst-mode receivers (LBMRx) [251] and forward er-

ror correction (FEC) [252][145]. The amplifier nodes (ANs) significantly extend the

physical reach (≥100km) while supporting the transmission of heterogeneous services

and modulation formats. By exploiting the dynamic allocation of DWDM channels,

the proposed infrastructure can support the convergence of di↵erent user types and

service demands, from residential users, which share a 10G PON channel, to busi-

ness users, with options to rent dedicated 10G PON channels or high capacity 100G

point-to-point links.

Figure 6.2: EU FP7 Project DISCUS testbed, December 2015.
(Photonic Systems Lab, Tyndall National Institute, University College Cork, Ireland).

The first section of this Chapter (section:6.1) outlines the physical layer details of

both architectural variants assembled for the laboratory testbed demonstration. The

feasibility of both network designs is then examined in detail through a performance

evaluation of the 10G TDM-PON channels alongside a 100G point-to-point overlay

to examine the viability of service convergence; the corresponding results are pre-

sented in section 6.2. Finally, a brief overview of the software defined networking

(SDN) and control plane services integrated with the tree-structured LR-PON ar-

chitecture is presented in section 6.3; however, as this work is primarily focussed

on the design and feasibility of the physical layer, this section is only provided for

context.
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6.1 Experimental Testbed Configuration

For experimental convenience, both architectural variants utilised the same core

nodes (CNs), optical network units (ONUs) and ballast channels; this was achieved

using a Polatis™ optical switch (I-VST-32x32-FAI-GSENS-200) to reliably inter-

change between the network designs. This configuration, shown in Fig. 6.3, proved

very useful by allowing for a quick reconfiguration of the testbed without having

to manually break connections. The typical insertion loss measured for the optical

matrix switches was ∼ 1dB.

Figure 6.3: Experimental testbed configuration.

Core Nodes and Optical Line Terminals:

As shown in Fig. 6.3, reconfiguration and tuneability was achieved at the head

end of the testbed by routing the ports of a wavelength multiplexer/demultiplexer

(MUX/DeMUX) to two optical line terminals (OLTs) using a second Polatis™optical
switch (N-VST-24x24-LUI-MMHNS-300). It should be noted that this additional

switch was logically partitioned to facilitate the emulation of two separate CNs,

namely the primary node and the backup/protection node. Although the associ-
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ated OLTs can serve as primary and backup modules respectively, they can also be

connected to the same LR-PON to support operation at di↵erent wavelengths.

Within the OLTs, whose structure is presented in Fig. 6.4, the downstream (DS)

signal was generated using commercial 10G tuneable enhanced small form factor

pluggable (SFP+) transceivers controlled by commercial field programmable gate

arrays (FPGAs) using a simplified LR-PON protocol, which controls the ONU burst

timings. In particular, the SFP+ transmitter employs a chirp optimised externally

modulated tuneable laser, with a typical 1dB dispersion penalty at 80km of standard

single mode fibre (SMF). Since the downstream is operated in continuous-mode no

extra components are required in the transmitter. The upstream (US) signal was

received at the OLT using a 10G-capable linear burst-mode receiver (LBMRx) [146].

As outlined in the previous chapter, this device is still in the development stage, but

for this work it was packaged with high speed outputs and fibre coupled. The signal

from the LBMRx was fed to a commercial continuous-mode electronic dispersion

compensation (EDC) - clock and data recovery (CDR) module (Vitesse VSC8240).

(a) (b)

Figure 6.4: (a) Structure of the optical line terminals and (b) the housing units for the
LBMRx and EDC-CDR Modules.

In contrast to a conventional limiting BMRx, the LBMRx (discussed in section 5.4.1)

enables preservation of the signal’s pulse shape which can then be processed by the
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EDC [253]. Within the testbed, static EDC was deployed in the OLTs; this was

su�cient as the ONUs were located at the same physical distance from the OLTs

hence they experienced the same amount of chromatic dispersion; however, in a

real system, an adaptive EDC capable of operation on a burst-by-burst basis would

be necessary to compensate for bursts experiencing di↵erent amounts of chromatic

dispersion and having di↵erent pulse distortions. Here, the EDC taps were trained

with a continuous-mode sequence and then frozen during burst-mode operation.

The output of the EDC-CDR module was then sent to the frame synchroniser; the

first processing block of the PON protocol implemented on the OLT-FPGA.

As outlined in the previous chapter, the FPGAs were also used to encode and

decode the DS and US signals using the RS(248,216) forward error correction (FEC)

algorithm, which has a theoretical performance threshold of 1.1×10−3, [80]. The

encoded data was received by each FPGA in blocks of 248 symbols and each symbol

of 8 bits was processed by one Reed-Solomon (RS) decoder. A group of 8 interleaved

decoders was used to process 8 FEC symbols (64 bits) simultaneously at a clock rate

of ∼161MHz for a bit rate of 10Gb/s. In particular, the BER was measured at the

OLT-Rx in burst-mode operation for 2µs bursts whose basic structure is shown in

Fig. 6.5. A 50ns preamble with a specific binary sequence was required for the

LBMRx to facilitate the receivers gain adjustment on a burst-by-burst basis. A

supplementary preamble of 150ns using PRBS 27−1 data was required for the static

EDC-CDR module. In addition, a synchronisation word of known sequence with

a temporal length corresponding to one FPGA clock cycle (∼6ns) was required for

the error correcting algorithm while the payload contained groups of 8 FEC blocks

interleaved at the symbol level, where 1 symbol corresponds to 8 bits.

Figure 6.5: Basic structure of the upstream bursts.

Optical Network Units:

At the access edge, two ONUs were comprised of an FPGA test board (Xilinx

Virtex7 XC7VX690T) as shown in Fig. 6.6, which implemented the custom LR-
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PON protocol and also could mount a commercial SFP+ tuneable transceiver used

as the ONU transmitter and receiver. The physical layer FPGA code implements the

full burst structure (i.e. guard bands, preamble, synchronisation and burst envelope

generation) while it also enabled a more accurate BER measurement (since the

payload was a selectable PRBS) and also allows for synchronisation of the bursts

with test and measurement and diagnostic equipment such as oscilloscopes. The

SFP + receiver employs an APD with a worst case sensitivity of –24dBm at a BER

of 1 × 10−12, while the transmitter employs a chirp optimised externally modulated

tuneable laser, with a typical 1dB dispersion penalty at 80km of standard SMF.

The SFP+ receiver is preceded by a commercial tuneable filter with 35GHz 3dB

bandwidth (∼23GHz at 1dB), which could be controlled by serial communication

via USB. An external SOA was also used after the SFP+ transmitter to create

the burst envelopes and blank the ONU output during the periods of time where

it was not transmitting data. This was necessary since the high speed modulator

used in the transmitter has to be operated in continuous mode in order to obtain

good performance since it is AC coupled. Idle data is hence transmitted from the

FPGA in between bursts to maintain the DC balance of the sequence. The idle

data signal is blocked by the SOA whose bias current is driven by a burst envelope

signal generated by the FPGA. Up- and downstream signals were combined in the

ONU using a circulator. The assembled ONUs were then placed in an equipment

rack along with the CN instruments; this setup is shown on the left of Fig. 6.7.

(a) (b)

Figure 6.6: (a) Structure of the optical network units and (b) the housing units for the
external gating SOAs used to generate the burst envelopes.
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To emulate the e↵ect of di↵erential loss imparted on the US signals by the optical

distribution network (ODN), the dynamic range (DR) between the bursts trans-

mitted by both ONUs is generated by changing the value of a variable attenuator

(VOA) in front of each ONU. For these measurements ONU 1 was chosen to be the

‘loud’ ONU transmitting the high power bursts and ONU 2 was chosen to be the

‘soft’ ONU, with low power bursts. The up- and downstream signals of the two

ONUs were combined using a 1x2 (50/50) coupler. The combined output of the

1x2 coupler is connected to the ODN of the LR-PON architecture under test. In

this way both the VOAs and the 1x2 coupler are e↵ectively part of the ODN loss.

This was been taken into account when measuring the ODN loss during the exper-

iments. It should be noted that the use of an SFP+ transmitter with an external

gating SOA is only an emulation which is su�cient for the purpose of this system

demonstration; the transmitter used in a real ONU would have to be optimised for

the specific application in terms of cost and performance. In fact, this requirement

prompted the investigation presented in section 4.6, for which an SOA was mono-

lithically integrated with a tuneable laser and absorptive modulator using low-cost,

foundry compatible techniques [254]. Notably, the ONU receiver and tuneable filter

assembly would also need to be optimised in terms of cost, while the FPGA would

probably be replaced by an application specific integrated circuit (ASIC).

Figure 6.7: Testbed equipment: (L) rack containing the OLTs and ONUs and (R) 50GHz
real-time oscilloscope and coherent receiver.
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100G Point-to-Point Overlay

An important target of the DISCUS network architecture was to implement the

“principle of equality” where all optical terminations in the network have equiv-

alent connection capability independent of their geographical location. This can

be achieved through flexible use of the wavelength domain, with channels capable

of carrying a wide range of services and capacities. For example, the same access

infrastructure could deliver in parallel 10Gb/s TDM-DWDM PON services for res-

idential customers as well as point-to-point core services at 100Gb/s (or higher) for

business customers located at any point within the network. Hence, this requires

that the LR-PON must have the capability to o↵er such capacities to a few selected

customers without disrupting the on-going TDMA tra�c to and from the conven-

tional customers attached to that network and that the high capacity link is also

resilient against the impairments created by the TDMA tra�c, such as, for example,

linear and non-linear cross-talk.

Figure 6.8: Constellation and eye diagrams for both polarisations of a 100G point-to-
point DP-QPSK channel captured post-reception on a real-time oscilloscope.

As discussed in Chapter 3, the 100G point-to-point (P2P) channel deployed in the

DISCUS testbed used dual-polarisation quadrature phase-shift keying (DP-QPSK)

as it is the most commonly adopted solution for 100G in long haul and metro optical

channels. Moreover, within the experimental testbed, the signal was generated

using a prototype transponder that was on loan from a commercial vendor. The

constellation and eye diagrams for both polarisations of the 100G channel captured

post-reception by the real-time oscilloscope (shown on the right of Fig. 6.7) is

presented in Fig. 6.8. The 100G channel was added to the network at similar entry

points as the US and DS ballast channels which can be seen in Fig. 6.14 and Fig.6.17

for the urban and rural network designs respectively. The transponder included an

194



6.1. Experimental Testbed Configuration

internal soft-decision forward error correction (SD-FEC) encoding technology that

uses a low density parity check (LDPC) code and features an overhead of up to 20%

resulting in an actual line rate of up to 128Gb/s. Typically, another layer of FEC

is then applied by external components (i.e. standard Reed-Solomon); however,

this was not implemented for this transponder, hence, only the pre-FEC BER is

measured and an FEC threshold of 1.1×10−3 was assumed, as done for the 10G PON

channels [19]. For the physical layer analysis, the optical carrier for the 100G DP-

QPSK channel was set to 1533.47nm and 1551.32nm for the DS and US respectively.

At this point, the author would like to gratefully acknowledge Oclaro™ for the loan

of the 100G transponder.

LR-PON Wavelength Plan:

The wavelength plan for the LR-PON strongly depends on the technology of choice,

especially with respect to the availability of suitable optical amplifier technologies

within the desired wavelength region as discussed in the DISCUS deliverable D3.2

[255]. For instance, the C-band is typically used for the operation of long-haul

networks because of the availability of mature components such as wavelength mul-

tiplexers and EDFAs which are a key enabling technology for operation in this

wavelength region. Alternatively, other spectral regions of the fibre, such as the

O-band (1260nm - 1360nm), continue to attract attention [256]. Here, SOAs are

a promising technology as they o↵er spectral coverage over the entire wavelength

region of the fibre (1250nm - 1600nm) at reasonable cost [257]. In particular, linear

SOAs o↵er a constant modest gain (∼ 15dB) and ASE output power with a mod-

erate noise figure (∼ 8dB) over a large range of input powers [258, 259]. However,

the availability of mature transmitter and receiver components in these wavelength

bands must be improved to increase the attractiveness of such an approach.

As outlined in the previous chapter, EDFAs are the primary amplifier technology

of choice in this work as they are capable of supplying a large gain (> 30dB) to a

high number of channels between 1525nm and 1565nm with a relatively low noise

figure. This enables long-reach architectures in which a few EDFAs are deployed

only at the CN and AN sites whose cost is then shared equally among the end

users making them an attractive option for deployment. Nonetheless, this work also

examines the feasibility of an alternative SOA-based AN configuration albeit using
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C-band wavelengths in order to utilise the same ONU and OLT equipment within

the physical layer testbed.

With respect to the wavelength allocation between the US and DS channels, band

splitting or interleaving could be considered as the wavelength routing is achieved

via the optical switch located in the CN. However, there is a significant advantage in

using the band splitting approach as it could relax the specifications of the tuneable

components (e.g. lasers, filters) which in turn would reduce the cost of such com-

ponents. As shown in Fig. 6.9, in this work, the DS channels are located between

1530.33 and 1542.14nm while the US channels are located between 1548.51 and

1560.61nm, leaving a spectral guard band of approximately 6nm. The allocation of

these wavelength bands is in response to the results presented in the previous chapter

which demonstrates that the amplitude of residual transients induced by dynamic

network events is less in the longer wavelength portion of the C-band (i.e. 1545nm -

1565nm), hence, it is more suitable for burst-mode tra�c. Notably, this strategy also

serves to demonstrate a fully loaded system that can be used to stress the amplifier

technology and non-linearities in the fibre. However, it should be noted that even

though the system (in particular the EDFAs) are designed to support 40 channels

in both transmission directions, the wavelength plan adopted in this demonstration

can only support 32 channels in order to use available band splitting filters.

Figure 6.9: Wavelength transmission bands: (a) downstream, (b) upstream.

The DS ballast channels were generated by a bank of 100GHz spaced distributed

feedback (DFB) lasers which were multiplexed using a thermally stabilised arrayed
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waveguide grating (AWG) before being modulated at 10Gb/s with a non-return

to zero on-o↵ keying (NRZ-OOK) pseudorandom binary sequence using a lithium

niobate (LiNbO3) Mach-Zehnder modulator (MZM). All DS ballast channels were

linewidth broadened using a 3% amplitude, 2kHz frequency, sinusoidal current mod-

ulation to prevent impairments due to Stimulated Brillouin Scattering (SBS). A

wavelength selective switch (WSS) was used to level the power and to selectively

remove channels in order to inject the live 10G PON channel generated by the OLT

(1533.07nm), a 100G DP-QPSK channel (1533.47nm) and a continuous-mode 10G

NRZ-OOK interfering channel (1533.86nm) spaced at 50GHz from the 100G P2P

channel. The power of four 10G channels neighbouring the 100G P2P channel (two

at lower wavelengths, two at higher wavelengths) were set to the nominal DS chan-

nel power while the power of the remaining 13 channels was adjusted in order to

obtain an overall DS power equivalent to 40 DWDM channels at nominal power.

The optical spectrum of the DS channels is shown in Fig. 6.10. For experimental

convenience, the ballast channels coupled into the testbed at the primary CN, after

the Polatis™switch and before the booster amplifier were always present to allow the

use of simpler EDFA controls in the DS link.

Figure 6.10: Downstream spectrum: channels launched from the core node.

The US ballast channels were generated using amplified spontaneous emission (ASE)

generated from a cascade of an EDFA and SOAs. The spectral profile of the emu-

lated US channels is carved using a wavelength selective switch (WSS), which is also
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used to flatten the ASE by applying attenuation on a channel-by-channel basis. The

SOAs used to amplify the ASE were driven by a function generator which enabled

the application of an amplitude modulation in order to emulate the power variation

from tra�c patterns due to burst-mode operation. The ASE spectrally emulates 31

US DWDM channels (from 1548.51nm to 1560.61nm) with a gap carved to allow

the insertion of a continuous-mode 10G NRZ-OOK fronthaul channel (1550.52nm),

the target 10G PON channel generated by the two ONUs (1550.92nm), a 100G DP-

QPSK channel (1551.32nm) and a second continuous-mode 10G NRZ-OOK channel

(1551.72nm) used as a second interferer to the 100G P2P channel. The target 10G

PON channel generated by the ONUs is typically recognisable because of the high

average power due to the large DR, which means that one of the ONUs is transmit-

ting power larger than the nominal channel power used for the ballast channels, the

100G channel and the NRZ interferers.

Figure 6.11: Upstream spectrum with ‘loud’ target channel bursts.

In the spectrum provided in Fig. 6.11, both ONUs are set to transmit ‘loud’ bursts,

hence they have a significantly larger average power. In addition, the per-channel

power of the US ballast channels carved using the WSS which has a flat-top filter

profile with a 50GHz channel bandwidth is more accurately captured using a larger

resolution bandwidth (i.e. 0.5nm, ∼62.5GHz) on the OSA. Consequently, using a

resolution bandwidth of 0.1nm, the observed power appears lower than the nominal

channel power. The emulated US ballast channels were inserted into the ODN using
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a spare splitter arm and the power was adjusted to emulate the power equivalent of

36 DWDM channels at the nominal channel power.

6.1.1 Single Amplifier Node (‘Tree-Like’) Architecture

Densely populated areas can be e�ciently connected by deploying a simple opti-

cal access architecture where each LR-PON served by the backhaul fibre cable is

supported by a single amplifier node. Each AN connects to a totally passive ODN,

supporting 512 or 1024 users and reaches of up to 20km, forming a tree-like topology

[17]. In this work, a dynamically reconfigurable TDM-DWDM LR-PON supported

by a single AN which utilises EDFAs or SOAs is demonstrated as an e�cient solution

to enable the convergence of multiple services and user types on a single architecture

for urban deployment. Fig. 6.12 illustrates the high-level network concept while the

details of the physical layer testbed are presented in Fig. 6.14.

Figure 6.12: Proposed network concept for urban access deployment.

As indicated in Fig. 6.12, part of the total ODN split was located in the AN;

a 4x4 split was used in the EDFA-based AN while a 2x4 for was used in SOA-

based ANs. This is used to combine up- and down-stream tra�c and also provides

access to a redundancy path in the backhaul link for resilience and protection. The

protection link was only implemented for the EDFA design and consisted of just a

few metres of fibre to achieve the maximum di↵erential reach with the primary path.

Optical attenuators were used to emulate the end-of-life standard SMF attenuation

(0.3dB/km) and realistic splitter losses in the ODN including excess loss [260].

199



6. Demonstration of Dynamically Reconfigurable Long-Reach PONs

EDFA-Based Amplifier Node:

In the EDFA-based AN (Fig. 6.13 and Fig. 6.14(a)), the DS signals coming from

the primary backhaul link were amplified using a two stage EDFA configuration

providing an overall gain of 38dB. A module of dispersion compensating fibre (DCF),

equivalent to -40km (∼ -680ps/nm at 1550nm) of standard single mode fibre (SMF)

was used mid-stage to partially compensate the primary DS link as the SFP+ has

a dispersion tolerance of ∼ 80km. The high power second stage EDFA, with a

maximum output of +30dBm was shared between the primary and secondary DS

link in order to reduce the number of EDFAs in the laboratory testbed; however,

in a real deployment scenario the secondary path should employ a separate device

to increase resilience. A 3dB coupler was used mid-stage to provide access to the

second stage EDFA from the secondary path. Due to the high power launched into

the ODN from the amplifier node, the backscattered power was comparable with

the power of the US signals and hence it was subtracting gain and power from the

US EDFAs. To remove the Rayleigh backscatter, band blocking (red/blue) filters

were used in front of the US amplifiers. The US primary and secondary path EDFAs

were each connected to to a port of the 4x4 splitter through a red/blue C-band filter

in order to remove potential back-reflection from the high power DS signals. All the

EDFAs used in the US were commercial devices with fast gain stabilisation in order

to reduce the impact of gain transients induced by burst tra�c [228]. In contrast

to the DS link, it was not necessary to use optical dispersion compensating modules

(i.e. DCF) since electronic dispersion compensation was used in the OLTs.

Figure 6.13: Illustration of the EDFA-based amplifier node configuration used in the
‘tree-structured’ (urban) LR-PON configuration.
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As the long-reach of the proposed architecture can introduce round-trip transmission

times of ∼1ms; this is generally not compatible with the ultra-low latency required

by some wireless architectures and some future services discussed for 5G [261]. This

latency issue could be addressed by placing small active nodes containing an ONU

and the necessary processing equipment in the AN where a dedicated wavelength

could be used to carry a common public radio interface (CPRI) channel from the

AN to the remote site over the distribution network. To investigate the feasibility

of this approach, a fronthaul channel was also emulated for the EDFA-based single

AN physical layer; this was achieved by adding an SFP+ transceiver driven by an

FPGA located in the AN at one ODN arm as shown in Fig. 6.13. Architecturally,

the backhauling part of the wireless signal can be carried over one of the 10G PON

channels and terminated in the AN using an ONU connected to a 1% power tap on

one of the ODN 4x4 ports.

SOA-Based Amplifier Node:

The SOA-based AN presented Fig. 6.14(b) was developed by researchers from Nokia

Bell Labs in Stuttgart. It was comprised of a chain of SOAs for individual amplifi-

cation of DS and US wavelength bands. The chained SOA configuration was imple-

mented in order to bridge a large loss budget by o↵ering the signals twice the gain

over a large range of input powers. Red/blue C-band filters are used to separate the

US and DS bands at each instance. The amplifier chain is established by equipping

each branch of a 2×4 splitter with an SOA for the down- and up-stream direction,

respectively. In the experiments, the DS direction is equipped with an SOA at the

primary backhaul connection as well as one of the 2×4 splitter branches. In the US

direction, each of the ×4 branches include an SOA to consider the e↵ect of noise

funneling. The e↵ective small-signal gain of the entire amplifier node is 18dB at

1550nm in US and 19dB at 1530nm for the DS direction. The e↵ective noise figure

of the amplifier node is around 13dB in the US direction including the noise fun-

neling contributions and about 9dB in the DS direction. The 3dB saturation input

power of the AN is +1dBm in the US direction and −2dBm in the DS direction,

while the 1dB saturation input power is −5dBm and −6dBm respectively. To opti-

mise the physical layer with respect to the available gain from the SOA-based AN,

the outside plant comprised a 62km long feeder fibre while 12km of SMF was used

in the ODN alongside splitters and VOAs in order to adapt the loss budget.

201



F
ig
u
r
e
6
.1
4
:
T
h
e
L
R
-P

O
N

p
hysical

layer
p
rop

osed
for

u
rb
an

areas
W

ith
(a)

E
D
F
A
-b
ased

an
d
(b
)
S
O
A
-b
ased

am
p
lifi

er
n
od

es
alon

gsid
e
(c)

u
p
stream

an
d
(d
)
d
ow

n
stream

sp
ectra.

(R
ep

rod
u
ced

from
[19])



6.1. Experimental Testbed Configuration

6.1.2 Chained Amplifier Node (‘Open-Ring’) Architecture

As discussed in 5.1.2, the communities to be served in rural areas can be much

smaller than the total achievable LR-PON split, therefore the conventional tree-

structured design would be considerably underutilised, directly increasing the cost

per customer. The utilisation and e�ciency of rural access deployment can be

improved using an alternative TDM-DWDM PON structure that uses a chain of

ANs. The architecture is based on the structure of metro rings, where two fibres

with counter-propagating tra�c connect a chain of nodes. In the proposed design,

the ring is open and the two head-ends are the CNs, while the intermediate nodes

are the ANs where the ODNs are optically aggregated into the system. The ‘open-

ring’ network concept for rural deployment is presented in Fig. 6.15 while details of

the physical layer testbed are presented in Fig. 6.17.

Figure 6.15: Proposed network concept for rural access deployment.

In the experimental testbed, a chain of 4 ANs, connected by fibres links between 0km

(representing co-located ANs used to facilitate the provision of a higher split in a

specific area) and 40km, is demonstrated; this is easily adequate to cover the typical

distances between today’s local exchanges or central o�ces. The total physical

reach of the chained AN configuration is 120km, which includes an ODN length

of 20km. Commercially available wideband gain-stabilised EDFAs are employed as

in-line amplifiers in the ANs to reduce the impact of gain transients caused by the

bursty nature of the US tra�c [20]. Within the ANs, an additional 4x4 splitter was

used to connect the DS ‘drop’ ports (x2) and the US ‘add’ ports (x2) of the ODN

to the ‘open-ring’ feeder fibres so that in the event of a fibres cut or of a failure in

the primary CN or within an AN, the tra�c can be routed to the protection CN,

hence providing the same intrinsic resilience as metro rings. Four asymmetric 1x2
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80/20 couplers are used in each AN to add and drop the tra�c from the links in

both directions. At both entry points for US tra�c, the 80% port of the asymmetric

couplers minimises the addition loss (∼1dB). In contrast, the exit points utilise the

20% port of the asymmetric couplers (loss ∼ 7dB) thus allowing the lower loss 80%

port to be used for tra�c forwarded to the next AN. A band filter is required to

isolate the DS channels dropped to each ODN as the presence of US channels would

deplete the gain available from the ‘drop’ amplifier while Rayleigh backscattering

and reflections in the ODNs could interfere with US tra�c. For practical reasons,

within the testbed, ANs 1 and 4 were fully implemented (Fig. 6.1.2(a)) while ANs

2 and 3 were only partially realised using optical attenuators to emulate the loss

of the 80/20 couplers (Fig. 6.1.2(b)). A module of dispersion compensating fibre

(DCF), equivalent to -80km of SMF (∼ -1370ps/nm at 1550nm) was used in AN 2 to

partially compensate the primary DS link while an identical module was installed in

AN 3 to compensate the US link in addition to the static EDC-CDR module located

in the OLT of the primary CN.

Figure 6.16: EDFA-based amplifier nodes for the ‘open-ring’ configuration: (a) fully and
(b) partially implemented.

To study the feasibility of the ‘open-ring’ physical layer, the ODN from AN 4, which

is the furthest from the primary CN at a fibre equivalent physical reach of 100km

was connected to both ONUs, the 100G (DP-QPSK) channel and the US ballast

channels. It should be noted that even though some of the nodes were not fully

realised, the power budget and number of optical amplifiers in the system (with the

required gain and saturated output power) as seen by tra�c to/from the ODN of

AN 4 are the same as that for a fully implemented system. In addition, only the

primary path was considered for the ‘open-ring’ demonstration.
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6.2 Experimental Results

This section presents the results from the physical layer characterisation of the

experimental testbed. Unless otherwise stated, the ballast channels were active in

order to provide an emulated load of 40 DWDM channels in both transmission

directions. It is also important to note that attenuators were used in the ODNs to

emulate the end-of-life standard SMF attenuation (0.3dB/km) and realistic splitter

losses including excess loss [260]. For instance, a worst-case loss of 3.5dB is assumed

for each x2 split.

6.2.1 10G TDM-PON and Fronthaul Channels

Downstream Characterisation:

To evaluate the performance in the DS direction, the BER (pre- and post-FEC) of

the 10G PON target channels were measured internally using the ONU FPGAs as

a function of the ODN loss for both architectural designs; the corresponding results

are presented in Fig. 6.18. While the results of the ’tree-structured’ and ’open-

ring’ LR-PON designs are provided here side-by-side, a direct numerical comparison

should be avoided as the topologies are too dissimilar, having been designed for

di↵erent deployment scenarios; each having a unique power and OSNR budget as

demonstrated in the previous chapter.

In this analysis, the main points of comparison focus on the physical reach and

total number of users that can be supported by each infrastructure. With this in

mind and by considering an FEC threshold of 1.1×10−3, the DS physical layer char-

acterisation results presented in Fig. 6.18 demonstrate that the urban (single AN)

architecture can support an ODN loss of at least 36dB. This value corresponds to a

256-split with 20km of standard SMF with a system margin of ∼2dB. Considering
the additional x4 split within the AN, an overall split ratio of 1024 (256x4) can

be achieved with a total physical reach of 100km. Alternatively, the ‘open-ring’

(chained AN) architecture was shown to support an ODN loss of at least 27dB; this

corresponds to a 64-split plus 20km of fibre with no system margin and an overall

split ratio of 256 (64x4) per AN. Assuming a fully realised system with 4 ANs, a

total split ratio of 1024 can be achieved for the open-ring configuration with a total
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physical reach of 120km. In addition, the proposed fronthaul channel configuration

demonstrates error-free transmission (BER < 1 × 10−12) without FEC for an ODN

loss of up to 28dB; this value corresponds to a 64-split ODN with 20km of fibre

which is e↵ectively the same as that for the 10G TDM-PON target channel.

Figure 6.18: Downstream performance of the 10G PON channels as a function of the
ODN loss.

In both LR-PON architectures, a performance discrepancy of < 3dB is present be-

tween ONU 1 and ONU 2 due to a variation in receiver sensitivity; this di↵erence

is within the tolerance of commercial SFP+ transceivers. The post-FEC results

confirm that a BER of < 1×10−12 is obtained with a confidence interval of 95% for a

pre-FEC BER below the theoretical threshold of 1.1×10−3. Notably, due to the inser-
tion loss of the optical coupler preceding the CN EDFA, the maximum OSNR of the

10G target channel at the output of the CN was ∼26dB. In fact, the ballast channels

and the private 100G channel enter the CN EDFA with relatively low power due to

the high accumulated insertion loss of the WSS, the optical coupler and the various

passive elements in between; this results in an additional OSNR degradation. While

this is highly unlikely to occur in a real network where the transmitted OSNR should

be substantially higher (i.e. >30dB), it represents a worst case scenario study.

In practice, through the use of commercial C-band gain-flattened EDFAs, pas-
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sive optical components (filters, AWGs, etc.) and dispersion compensation, the

performance of each DWDM channel should not vary significantly within the DS

transmission band outlined earlier in Fig. 6.9. As a result, in order to demonstrate

the physical layer feasibility it is su�cient to emulate a spectral load of 40 DWDM

channels and select a typical target channel for analysis.

In the case of the tree-structured LR-PON using the SOA-based AN, the per-

formance of the DS link was characterised by monitoring the pre-FEC BER as a

function of the ODN loss. As in the case of the EDFA-based AN design, a per-

formance discrepancy of < 3dB is present between both ONUs near the theoretical

FEC threshold of 1.1×10−3, due to a variation in receiver sensitivity; this di↵erence

is attributed to a sensitivity variation between the SFP+ receivers and is within

the manufacturers performance tolerance. The results, presented in Fig. 6.19(a),

indicate that the SOA-based AN supports an ODN loss of at least 28.2dB. This

value corresponds to a 128-split plus 12km of fibre; if the additional x4 split within

the AN is considered the system can support up to 512 users, however, it should be

noted that there is no system margin.

Figure 6.19: Comparing the downstream pre-FEC BER of the 10G NRZ target channel
as a function of the ODN loss in the ‘tree-structured’ (single AN) LR-PON architecture
using EDFA and SOA-based amplifier nodes.
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Compared to the system with the EDFA-based AN; the SOA-based AN design is

a performance di↵erence of ∼8dB which roughly corresponds to the di↵erence in

power launched into the ODNs. The launch power is limited in the SOA case

by the saturation power of the available devices. In particular, the total output

power measured from the SOA-based AN was ∼+16dBm which is beyond the 3dB

saturation power of the SOAs used in the system (+14dBm). For single channel

operation; these conditions should produce severe patterning which would impair the

performance of the 10G PON channels; however, as the channels are decorrelated and

the per-channel power is below the 3dB saturation power the performance impact

of patterning is reduced.

Upstream Characterisation:

To evaluate the performance of the burst-mode link, the power of the ‘loud’ bursts

transmitted from ONU 1 was maintained at a value close to the overload of the

LBMRx with an ODN loss of 16dB and 15dB for the single AN (urban) and chained

AN (rural) systems respectively. The ODN loss was then varied from 15dB to 35dB

for ONU 2 only in order to adjust the dynamic range (DR) of the burst powers

reaching the LBMRx in the OLT as demonstrated in Fig. 6.20. In this way, the

‘loud’ bursts from ONU 1 act as a worst-case interferer for the ‘soft’ bursts from

ONU 2, with respect to the LBMRx operation.

Figure 6.20: Consecutive bursts from ONU 1 (‘loud’) and ONU 2 (‘soft’) launched into
the ODN with (a) 5dB DR and (b) 17dB DR.

The comparison of the pre- and post-FEC BER for ONU 2 in Fig. 6.21 confirms that

the FEC threshold of 1.1×10−3 is applicable also in burst-mode operation in the US

link. The results demonstrate that the single AN (urban) network design is capable

of supporting an ODN loss of up to 34dB which corresponds to a DR of 18dB and
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a 256-split ODN with 20km of fibre; however, there is no system margin. If the

additional split within the AN is considered, an overall split ratio of 1024 (256x4)

can be achieved. Alternatively, for an ODN loss of 30.5dB, the urban design can

support a 128-split ratio over 20km of fibre with a system margin of ∼3dB; this
gives an overall split of 512 (128x4). In addition, the emulated fronthaul channel

configuration demonstrates error-free transmission (BER <1E-12) without FEC for

an ODN loss of up to 28dB; this value corresponds to a 64-split ODN with 20km

of fibre. Notably, this channel shows a slightly better BER performance than the

10G TDM-PON channels as it is not transmitted through the link towards the

primary CN; hence, it maintains a higher OSNR. Moreover, this channel constitutes

a continuous-mode link, therefore it does not require the use of a burst-mode receiver.

For the open-ring system, the results demonstrate that ONU 2 operates with a

post-FEC BER < 1 × 10−12 for an ODN loss of up to 30dB. This is equivalent to a

64-split ODN with 20km of fibre with a performance margin of ∼3dB and a DR of

15dB at the LBMRx. An overall split ratio of 256 (64x4) can be achieved when the

additional AN split is accounted for while a fully implemented system of 4 ANs can

provide an overall split of up to 1024 (256x4). In both system designs, the post-FEC

BER of ONU 1 was < 1 × 10−12; therefore, the performance ONU 1 is not reported

in Fig. 6.21.

Figure 6.21: Upstream performance of 10G channels as a function of the ODN loss.
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With respect to the tree-structured LR-PON architecture supported by the SOA-

based AN, the US link was characterised using the same technique as that used for

the EDFA-based configuration. In this case, the ODN loss for ONU 1 was maintained

at 16dB while the ODN loss for ONU 2 was varied from 16dB to 35dB in order to

adjust the DR of the burst powers reaching the LBMRx in the OLT. As before, the

‘loud’ bursts from ONU 1 act as a worst-case interferer for the ‘soft’ bursts from

ONU 2, with respect to the LBMRx operation. The corresponding results, presented

in Fig. 6.22, show that the pre-FEC BER of ONU 1 was below the FEC threshold

for all values of DR; more precisely between 1× 10−7 and 1× 10−8 for the case of the
SOA-based AN and ∼ 1 × 10−12 for the EDFA-based AN. On the other hand, the

results obtained for ONU 2 demonstrate that this SOA-based AN can support a DR

of up to 15.5dB with a corresponding ODN loss of 31.5dB. This value corresponds to

a 128-split with 12km of fibre with a 3.4dB margin; giving a total split ratio of 512

when the additional AN split is considered. As in the case of the EDFA-based AN;

the results demonstrate that the SOA-based AN is capable of supporting a higher

DR than that introduced by the non-uniform loss of the ODN splitters, which can

be up to 12dB for a 512-split ratio using realistic splitter losses [260]. As the US

performance of the tree-structured architecture is OSNR limited, the EDFA-based

AN exhibits a slightly better performance compared to the SOA-based AN due to

the lower noise figure values.

Figure 6.22: Pre-FEC BER performance of the 10G NRZ target channel for upstream
transmission in the ‘tree-like’ architecture for SOA- and EDFA-based amplifier nodes.
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6.2.2 Evaluating the FEC Performance in the ‘Open-Ring’

To evaluate the FPGA-based FEC implementation, the BER (pre- and post-FEC)

performance of the 10G PON target channel in the ‘open-ring’ (chained AN) network

design was compared with the expected theoretical FEC behaviour which is outlined

in the previous chapter. For instance, it can be seen from the results presented in

Fig. 6.23 that the BER measurements taken from the open-ring testbed closely

follow the theoretical curves for both DS (a) and US (burst-mode) transmission

(b) while demonstrating that the measured FEC threshold is close to the expected

theoretical value of 1.1×10−3 for the RS(248,216) code. These results indicate that

the system performance converges towards the theoretical behaviour for both down-

and upstream (burst-mode) transmission and that the BER above and below the

FEC threshold is predicted correctly. Notably, this result is a further validation the

FPGA-based FEC implementation presented in Chapter 5.

Figure 6.23: FEC performance evaluation: (a) downstream and (b) upstream.

Performance Impact of Residual EDFA Gain Transients:

As outlined in the previous chapter, the wide-band (DWDM) gain-flattened ED-

FAs deployed within the testbed used a dynamic gain control system to suppress

transients induced by sudden change in input power such as that caused by the ad-

dition or reduction in the number of active channels. These commercial amplifiers

were not specifically designed for burst-mode operation; however, as demonstrated
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previously, the level of transient suppression they provide should be su�cient for

such applications. With this in mind, the impact of accumulated residual EDFA

transients within the open-ring (chained AN) testbed which has up to five chained

EDFAs on the primary link was studied by dynamically varying the amplitude of the

ASE used to emulate the US channels was modulated asynchronously with respect

to the bursts from both ONUs in order to imitate the bursty nature of US tra�c. Of

the 40 emulated DWDM channels, 36 were added and dropped for various repetition

frequencies using a 50% duty cycle giving a power ratio of ∼10dB. The peak-to-peak
amplitude of the resulting transient is presented in Table 6.1 while the profile of

the induced power excursion for a repetition frequency of 10kHz (measured using a

continuous-wave probe channel) is shown in Fig. 6.24.

TAdd�Drop [µs] Peak-to-Peak [dB]

300 1.2

100 1.2

50 1.1

20 1

10 0.6

Table 6.1: Analysis of
accumulated residual
EDFA transients.

Figure 6.24: Temporal profile of an
accumulated residual EDFA transient
on a CW probe channel at 1551.72nm

for TASE
Add�Drop = 100µs.

The peak-to-peak power variation at the OLT observed on a continuous wave probe

channel at 1551.72nm (∼100GHz from the 10G PON target channel) is presented

in Table 6.1 while the profile of the transient induced by a 100µs add/drop period

is shown in Fig. 6.24. These results indicate that peak-to-peak amplitude of the

transient is dependent on the modulation frequency; however, no significant increase

in amplitude was observed beyond an add/drop period of 100µs. The latter observa-

tion may be attributed to the performance of the EDFA gain control system which

has been designed for ROADM (reconfigurable optical add-drop multiplexer) appli-

cations where power variations from dynamic add/drop events occur on a timescale
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on the order of milliseconds (∼kHz).
The US performance impact of the accumulated residual EDFA transient induced

by an add/drop period of 100µs was examined by repeating the US characterisation

of the 10G PON target channel. Using the experimental method outlined previously

in section 6.2.1, the BER of ONU 2 was measured at the OLT in burst-mode opera-

tion for 2µs bursts where the power of the ‘loud’ bursts from ONU 1 was maintained

at a value close to the overload of the LBMRx with an ODN loss of 15dB. The ODN

loss was then varied from 15dB to 35dB for ONU 2 only in order to adjust the DR

of the burst powers reaching the LBMRx in the OLT.

The results presented in Fig. 6.25 indicate that a marginal performance impact

of ∼0.5dB is present for a post-FEC BER ∼ 1×10−12. This penalty is not present for

a pre-FEC BER ∼ 1 × 10−3; therefore, this observation suggests that the transient

(peak-to-peak ∼ 1.2dB) may have slightly altered the error distribution which in turn

compromised the performance of the FEC algorithm. Nonetheless, the accumulated

transient caused by add/drop of almost the entire tra�c load for the worst-case

repetition rate for a link with 5 chained EDFAs produces a barely noticeable power

penalty of 0.5dB. These results further validate those presented in the previous

chapter, highlighting the suitability of these commercial gain-controlled EDFAs for

burst-mode applications.

Figure 6.25: Upstream performance impact from accumulated residual EDFA transients
in the ‘open-ring’ architecture where TASE

Add�Drop = 100µs.
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6.2.3 100G DP-QPSK Point-to-Point Overlay

In this section, the performance of a private 100G point-to-point DP-QPSK channel

is examined in the presence of co-propagating 10Gb/s NRZ neighbouring channels

for both proposed LR-PON topologies. The results from this collaborative research

e↵ort were included in the peer-reviewed journal Optics Express (see ‘List of Pub-

lications’ [J4]) [151].

Downstream Characterisation:

Similar to the 10G PON channel analysis, the BER of the 100G link was charac-

terised as a function of the ODN loss in the DS direction with the results presented

in Fig. 6.26. Assuming an FEC threshold of 1.1×10−3, the experimental curves

show that the conventional tree-structured architecture can support a 100G link

with ODN loss up to ∼38.5dB, which corresponds to 128 split plus 20km of distri-

bution fibre and ∼8dB system margin. Considering the additional split in the AN,

the overall split ratio supported by the urban configuration is 128×4 = 512, that

could be further increased at the expense of the ∼8dB system margin. Similarly, the

‘open-ring’ architecture can support the 100G channel with ODN loss up to ∼30dB,
which corresponds to 64 split plus 20km of distribution fibres and ∼3dB system mar-

gin. That is at least 64×4 = 256 splits when the additional split in AN 4 is taken

into account, and 256×4 = 1024 users when all intermediate ANs are aggregated.

Figure 6.26: Downstream BER performance of the 100G DP-QPSK channel.
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As indicated in Fig. 6.26, the DS performance of the 100G DP-QPSK channel is

impaired by OSNR degradation as well as by nonlinear fibre e↵ects. The di↵erence of

approximately 8dB at the FEC threshold between the experimental curves relative

to the both network designs is due to the fact that in the urban architecture, a higher

100G signal power is launched into the ODN (i.e. +6.5dBm against -1.2dBm). In

fact, the tree-structured architecture is designed to potentially support a higher split-

ratio (up to 4 times) from one AN in comparison to the ‘open-ring’ architecture.On

the other hand, for a low ODN loss, the maximum achievable OSNR is limited by the

AN and CN amplifiers and it is equal to ∼23dB and ∼21dB for the ‘tree-structured’

and the ‘open-ring’ designs respectively. It should be noted that, due to limitations

introduced by the experimental set-up, the maximum OSNR of the DP-QPSK signal

at the output of the CN was about 26dB; which can be taken to represent a worst

case scenario study. For high ODN loss the OSNR of the 100G channel is limited

by the ASE introduced by the pre-amplifier EDFA. From the experimental curves

in Fig. 6.26 it is possible to see that for low ODN loss, despite the higher OSNR,

the urban architecture has a worse performance than the ‘open-ring’ due to the

higher impact of the nonlinear crosstalk with the 10Gb/s NRZ channels in the fibre.

This results in a BER floor approximately one order of magnitude higher than the

open-ring design (i.e. ∼ 1 × 10−4 versus ∼ 1 × 10−5).
In order to evaluate the e↵ect of nonlinearities for both network schemes in more

detail, Fig. 6.26 also shows the BER measured as a function of the ODN loss in

back-to-back (B2B), where the output of the CN is connected directly to the pre-

amplifier EDFA with all the 10Gb/s NRZ channels o↵ and without going through

the LR-PON physical layer. In this case, the ODN loss is emulated by a variable

optical attenuator (VOA) which changes the OSNR at the input of the coherent

receiver. The value of the ODN loss is estimated by comparing the B2B OSNR

(measured after the EDFA pre-amplifier) with the corresponding value measured

from the PON testbeds. Assuming a negligible impact from other sources of impair-

ments, such as chromatic dispersion, the e↵ect of the nonlinearities can be clearly

seen by comparing the B2B curves for both network designs with the values ob-

tained from the respective LR-PON. Notably, in the urban architecture, the e↵ect

of nonlinearities is highly visible, as the BER floor increases by approximately two

orders of magnitude in comparison to the B2B case. It should be noted that this

analysis represents a worst case study in terms of XPM crosstalk from neighbor-
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ing channels due to the additional residual penalty from all the NRZ channels at

≥200GHz spacing with ∼3.7dB higher-than-nominal power (necessary to emulate a

full system load of 40 channels). Nevertheless, the impact from those NRZ channels

is reasonably smaller in comparison to the e↵ect of cross-phase modulation (XPM)

crosstalk from adjacent channels (at the same power of the 100G signal) and there-

fore the overall DS performance is not significantly a↵ected. On the other hand,

in the open-ring architecture the e↵ect of nonlinearities is rather small as shown

by the experimental curve in Fig. 6.26 which almost lies on the top of the B2B

measurements. This is due to the fact that in the open-ring design the maximum

power launched into the various fibre links (≤0dBm) is significantly smaller than

in the urban design (≤6.5dBm). Therefore, despite the fact that in the open-ring

case there is an accumulated e↵ect of XPM from the multiple fibre links, this is

still negligible in comparison to the e↵ect of XPM from the backhaul link of the

tree-structured urban architecture.

With respect to the LR-PON configuration supported by the SOA-based AN;

the DS performance of the 100G DP-QPSK channel was also characterised as a

function of the ODN loss using a pre-amplifier with a NF of ∼5.5dB. As shown

in Fig. 6.27, the 100G channel is impaired by the OSNR degradation alongside

non-linear impairments introduced in the fibre propagation and in the SOAs.

Figure 6.27: (a) Downstream BER performance and (b) OSNR of the 100G DP-QPSK
channel as a function of the ODN loss.
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For high ODN loss (> 30dB), the OSNR is limited by ASE introduced by the pre-

amplifier at the receiver. Conversely, for low ODN loss (< 30dB), the OSNR lim-

itation can be attributed to the AN and CN amplifiers. Moreover, it should be

noted that the SOA design has a better OSNR with respect to the EDFA-based AN

because the power of the 100G channel was set 5dB higher than the other nomi-

nal channels while it also has lower backhaul losses due to a shorter link of 50km.

Notably, the results of the DS characterisation demonstrate that both EDFA- and

SOA-based AN designs are capable of supporting an ODN loss greater than 28.1dB

which corresponds to a 128-split with 12km of fibre. Overall, the SOA-based AN

demonstrates a poorer performance despite having a higher OSNR. This can be

attributed to non-linear crosstalk with the 10G DS PON channels resulting from

cross-gain and coupled phase modulation within the saturated SOAs.

The technique used to evaluate the impact of non-linearities is identical to that

outlined for the EDFA-based AN. The first step was to measure the back-to-back

BER performance of the 100G channel as a function of the ODN loss where the

100G transmitter was connected directly to the EDFA preamplifier without going

through the LR-PON physical layer. The ODN loss was emulated using a variable

optical attenuator located at the input to the pre-amplifier. By adjusting the value

of attenuation, the OSNR of the 100G signal at the input of the coherent receiver

could be altered. The corresponding value of ODN loss was then determined by

comparing each value of OSNR measured after the pre-amplifier with that mea-

sured from the LR-PON characterisation. By comparing the back-to-back curve

with the corresponding measurements taken from the LR-PON physical layer, the

performance impact of the non-linearities can be identified. This approach is based

on the assumption of a negligible impact from other sources of impairments, such as

chromatic dispersion. With this in mind, the impact of the cross-gain and coupled

phase modulation within Fig. 6.27 is clearly evident.

Upstream Characterisation:

In the US direction, the 10G NRZ PON tra�c which is interfering with the 100G

channel, presents bursts with di↵erent power. In the urban architecture, the non-

uniform ODN loss can cause up to 12dB of DR between burst powers, while in

the open-ring design the resulting DR can be up to 9dB. These values have been
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estimated considering a 512 and a 256 split ratio for both architectures respectively,

and realistic splitter losses [260].

By system design, the 100G channel power should be set in the middle of the

PON channels DR. This is also referred to as the nominal US power and in these

experiments it is set to achieve an ODN loss of 28.6dB and 24dB respectively for

the tree-design and the open ring designs. The experimental values of the nominal

ODN loss are slightly higher than the ODN loss that would be obtain considering a

worst case loss of 3.5dB for each ×2 split, which represent a worst case in terms of

achieved OSNR for the DP-QPSK signal as well as for the 10Gb/s PON channels.

The transmitted power from all ONUs (100G and NRZ) is fixed to +5dBm. The

100G channel was characterised in terms of penalty caused by the nonlinear crosstalk

from the two neighboring 10Gb/s NRZ PON channels bursting with high power, as

this represents a realistic worst case. The BER of the 100G US link was measured

as a function of the power of two 50GHz-spaced interfering channels operated with

2µs bursts and 2µs gaps overlapped in time to provide also a worst case for the

nonlinearity.

Figure 6.28: 100G DP-QPSK channel analysis: upstream spectrum at the monitor port
of the AN in the ‘tree-like’ architecture showing the neighbouring 10G NRZ aggressor
channels.
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Figure 6.29: Upstream performance of the 100G channel as a function of the power of
the neighbouring 10G NRZ PON channels for the EDFA-based ANs.

The experimental results in Fig. 6.29 show that for small NRZ channels powers

the BER of the tree-structured architecture is almost an order of magnitude lower

than the open-ring architecture, due to the fact that it is possible to achieve a ∼2dB
higher OSNR (∼21.5dB versus ∼19.5dB) respectively. In contrast to the DS case, the

maximum launched power into the various fibre links is very similar for both network

architectures. This corresponds to approximately -4dBm into the 80km backhaul

fibre for the tree-structured design, as well as into the two 40km links for the open-

ring design. As a consequence, the performance of both architectures degrades

with a similar trend and the experimental curves tend to converge towards the FEC

threshold for NRZ channel powers ∼12dB higher than the DP-QPSK channel power.

Fig. 6.29 also indicates the DR expected from a non-uniform ODN loss for tree-

structured design (12dB) and for the open-ring design (9dB). The 100G channel can

work below the FEC threshold even when the neighboring bursty channels present

DR larger than expected from the non-uniform ODN loss. It should also be noted

that, while in the open-ring case the DR is distributed symmetrically around the

nominal value, in the tree-structured design the DR is asymmetric with -5dB and

+7dB. This is caused in the experiment by misalignment of 1dB between the ODN

loss range and the LBMRx DR.

The performance analysis of the 100G channel in the US direction for the SOA-

based AN is identical to the technique outlined in section 6.2.3. By design, the power
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of the 100G channel is set in the middle of the 10G PON channels DR. As the burst

power of the 10G NRZ-OOK channels can vary in power by up to 12dB due to

non-uniform ODN loss, the US performance of the 100G channel was characterised

in terms of impairments caused by the non-linear cross-talk from two neighbouring

10G channels with high burst power which is representative of a worst-case scenario

study. The BER of the 100G link was measured as a function of the power of

the two 50GHz spaced interfering channels operated with 2µs bursts and 2µs gaps

overlapped in time to provide a worst case for non-linearity.

Figure 6.30: Upstream performance of the 100G DP-QPSK channel as a function of
the power of the neighbouring 10Gb/s NRZ PON channels for the EDFA and SOA-based
amplifier node designs.

The results, presented in Fig. 6.30 show that the 100G channel can operate below

the FEC threshold when the DR of the bursts from the nearest-neighbour (50GHz-

spaced) 10G NRZ-OOK channels is greater than the 12dB variation caused by non-

uniform ODN loss for both AN designs. As presented in section 6.2.3, cross-phase

modulation (XPM) in the backhaul fibre is a major source of impairment for the

EDFA-based AN. In contrast, the performance of the SOA-based AN is mostly

degraded by the cross-gain and coupled-phase modulation within the SOAs. The

nominal power of the NRZ-OOK channels launched from the SOA, which was set

in the middle of the DR, is ∼3.5dB lower compared to the DS case, which reduces

the impact of non-linearities. For the EDFA case, the e↵ect of XPM induced by
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channels beyond 100GHz channel spacing is negligible; however for the SOAs the

e↵ect would be roughly the same within the entire gain bandwidth. For this reason,

the absolute worst-case performance impact for the SOA-based AN design would be

if the 39 remaining channels were bursting with the highest power within the DR.

due to the statistical nature of the ODN loss distribution and randomness in tra�c

patterns this scenario is highly unlikely to occur; therefore this case study can be

considered a realistic worst-case scenario study.

6.3 Integrated SDN Control Plane Services

The static architecture of conventional networks is now ill-suited to the dynamic

needs of modern carrier environments; therefore a cost-e↵ective, agile and adaptive

control plane is required to improve bandwidth e�ciency and capacity flexibility.

Software-defined networking (SDN) is an emerging configuration which removes

the control plane from the network hardware and implements it in software instead.

This enables the programmatic initialisation, control, change, and management of

dynamic network behavior via open interfaces which makes network administration

much more flexible [262]. For instance, through the use of SDN, a network adminis-

trator can regulate the data transfer from a centralised location to assure a certain

level of performance without having to manually configure individual switches.

Through a collaborative research e↵ort as part of the DISCUS project, the ability

to dynamically allocate resources within a high-capacity LR-PON was demonstrated

using the physical layer of the EDFA-based urban architecture using a custom SDN

control plane. In particular, two specific use cases were examined: (i) a fast pro-

tection mechanism with end-to-end service restoration in the event of a primary

link failure and (ii) dynamic wavelength allocation (DWA) to enable flexible service

provisioning in response to an increased bandwidth demand.

It is important to note that the SDN control plane whose basic structure is shown

in Fig. 6.31 was developed and integrated with the LR-PON testbed by our DIS-

CUS project collaborators from the CONNECT research centre in Trinity College

Dublin (TCD). This experimental overview is included with permission in order to

supplement the design, assembly and investigation of the physical layer presented

in this work by demonstrating the resiliency and flexibility of the architecture. As
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the development of the SDN control plane is beyond the scope of this work, it is not

discussed further; however, for further information the reader is referred to [19] and

[263].

Figure 6.31: Network level view of the tree-structured LR-PON and the SDN control
plane equipment.

The protocol used in the SDN experiments was a partial implementation of the 10G

symmetric XG-PON standard [118]. While not all functions from the standard were

implemented in the testbed, some modifications were required in order to support

the longer physical reach (125km as opposed to 60km) and the higher split ratio

(512 versus 64). This modified protocol was implemented over four Xilinx Virtex7

XC7VX690T FPGAs which acted as the primary and secondary OLTs and two

ONUs. In addition, a Xilinx Microblaze soft processor, was instantiated on the FP-

GAs to provide a universal asynchronous receiver/transmitter (UART) management

interface to the OLT and ONU hardware. This allowed control of PON function-

alities such as resetting the hardware, viewing the hardware status, simulating a

hardware failure, loading the bandwidth map and setting XG-PON encapsulation

method (XGEM) mappings [263]

A simplified core network was also emulated in the testbed using a Pronto 3780

10G Ethernet (10GbE) SDN switch which was configured with three virtual Open-

Flow (OF) bridges. The PON backplane connection between the OLTs and the core

network was enabled by the Pronto switch 10GbE interfaces which were also used to

interconnect the virtual bridges using SFP+ transceivers and two 40km fibre links.
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6.3.1 Link Protection and Resiliency

As illustrated in Fig. 6.32, the link protection experiment was triggered by a failure

event emulated using the optical switch to simulate a fibre cut in the backhaul fibre

link between the primary OLT and the AN. The corresponding silence in the US

path then activated a countdown timer within the primary OLT which generated

a failure detection and an in-band alarm to the controller of the primary CN on

expiry via the device-controller plane interface (D-CPI). Notably, the duration of

this timer was designed to take into account all typical silences on the PON including

the 1.25ms quiet windows and 1.25ms roundtrip transmission time for the maximum

distance supported by the protocol (125km) giving a total of 2.5ms. The primary

node controller (NC) was then used to alert the overarching network orchestrator

(NetO) which then calculated a path to restore services to the ONUs according to its

knowledge of the full end-to-end topology. Once an available path was established,

the core network controller (CNC) and the relevant NC are then instructed by

the NetO via the intermediate-controller plane interface (I-CPI) to provision the

protection path through the optical switch and the secondary OLT.

Figure 6.32: Overview of the control plane processes for the link protection experiment.

The event timings that comprise the protection scenario illustrated in Fig. 6.32 are

presented in Fig. 6.33. For instance, as mentioned earlier, the hardware monitoring

at the OLT can detect a failure in the network after approximately 2.5ms. An ad-

ditional ∼1ms is taken for the alarm packet to be created and sent to the CN SDN

switch. The time needed by the protocol to re-establish DS synchronisation is typi-

cally between 2-3ms. Furthermore, from previous work [264], it is known that some
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extra time may be needed to re-range the ONUs in addition to the synchronisation

time (between 2 and 4ms); however, in this work it was assumed that ranging to the

backup OLT can be done during normal operation of the PON. Intra-control plane

communication is done through a dedicated network with typical latencies. The

network latencies between both the OLT and NetO and the NetO and the NCs are

emulated in the test-bed and set at 4ms each. The latency and the processing times

for both the NCs is also emulated as 5ms each. It is important to note that the core

network recovery happens in parallel to the access network recovery time. Accord-

ingly, within 15ms of the failure, the optical and electronic switch components and

the backup OLT have been instructed to reconfigure their protection paths. Within

33ms after the failure, the electronic switch components within the core and access

are configured and by 38ms, the optical switch is ready.

Figure 6.33: Overview of the control plane link protection experiment timings.

The average time required for service restoration following a primary link failure in

the tree-like (urban) architecture using the custom SDN-based protection mecha-

nism was found to be 41ms following 70 consecutive measurements. In addition, to

understand the e↵ect of centralising both the NetO and the NCs, the measurements

were then repeated for the case where orchestrator and controllers are co-located

within the CN. This was accomplished by setting the emulated intra-control plane

latencies at zero with the results shown in Fig. 6.34 as the basic protection curve.

On average, this basic protection can be accomplished within 27.8ms.
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Figure 6.34: Service restoration time for the protection scenario and wavelength alloca-
tion time from the SDN control plane experiments.

6.3.2 Dynamic Wavelength Allocation

Through the use of dynamic wavelength allocation (DWA), capacity constraints in

a PON may be overcome by actively re-allocating one or more ONUs to a di↵erent

wavelength channel in order to improve bandwidth e�ciency and assure quality of

service. Moreover, this approach could also be used for the opportunistic provision

of high bandwidth services (on-demand video and big data transfers) to specific

PON users on a dynamic basis. With this in mind, the SDN control plane was used

to examine the feasibility of supporting DWA within a TDM-DWDM LR-PON for

the purpose of flexible capacity provisioning. It is important to note that in this

scenario, wavelength assignment is not required on a burst-by-burst basis, hence

reconfiguration times were targeted in the region of a few hundred milliseconds.

The main processes involved in the DWA experiment are illustrated in Fig. 6.35.

Figure 6.35: Overview of the control plane processes for the DWA experiment.

226



6.3. Integrated SDN Control Plane Services

Following a resource request via the application-controller plane interface (A-CPI),

the NetO orchestrated the provisioning of the new path according to its knowledge

of the full end-to-end topology by directing the CNC and the relevant NC using

the I-CPI. The NC was then used to instruct the Polatis optical switch and the

secondary OLT using the D-CPI to provision a new wavelength for the ONU. Since

the ONU was remote from the control plane, the request to tune to a di↵erent

channel was performed through the OLT interface by the invocation of a custom

LR-PON protocol message embedded in the DS signal. At the ONU, wavelength

reconfiguration was achieved by controlling the tuneable laser within the SFP+

transceiver using an i2c bus and the tuneable filter through a UART interface.

Subsequently, the secondary OLT was used to acknowledge the ONU registration to

the NC via the D-CPI which then reported to the NetO through the I-CPI confirming

that it had successfully completed the provision of the new path.

The typical timing of the main events associated with this DWA experiment

are presented in Fig. 6.36 while the results of 70 consecutive measurements which

capture the service restoration time (i.e. event 4.a to 6.a) can be found in Fig. 6.34.

Following analysis of these results, it is believed that by optimising the design of the

communication interfaces between the ONU FPGA and the tuneable components it

may be possible to further reduce the average provisioning time of ∼ 225ms.

Figure 6.36: Control plane processes and timings for the DWA experiment.
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Although the successful demonstration of DWA proves that this approach could work

for the TDM-DWDM LR-PON architecture under consideration, it must be recog-

nised that the lasers used in this investigation were commercially available C-band

tuneable SFP+ modules with fast tuning and high-precision wavelength locking.

Nonetheless, this implementation remains valid from a control plane timing per-

spective and in practice additional delays could be accounted for in estimating the

overall provisioning time for lower-cost transceivers which are required for deploy-

ment within the ONUs as outlined in Chapter 4.

6.4 Summary and Conclusions

This chapter presents the experimental demonstration of two distinct dynamically

reconfigurable TDM-DWDM LR-PON architectures that were assembled in accor-

dance with the physical layer design strategy outlined in Chapter 5. The primary

objective of this work was to experimentally verify the proposed DISCUS archi-

tectures whose physical layer targets (e.g. reach ≈100km, split ≥ 512) have the

potential to bypass the majority of power-hungry, hierarchical switching and signal

regeneration sites present in modern telecommunication networks. Consequently,

as mentioned previously in Chapter 3, the e↵ective integration of the access and

metro networks using a long-reach optical access infrastructure, optimisation mod-

els undertaken by our industrial project partners have shown that the number of

core nodes can be reduced by up to two orders of magnitude [8] thus simplifying the

overall network infrastructure and the associated tra�c management.

It is important to note that the work presented in this chapter represents the

culmination of a remarkable amount of research undertaken by the various academic

and industrial partners within the DISCUS project which ran from November 2012

to December 2015. For instance, each partner was focussed on developing di↵erent

aspects of the network ranging from optimising the core to the simplification of tra�c

management through the integration of a custom SDN control-plane. In particular,

the authors role within this large-scale EU-funded project was primarily focussed

on the design, assembly and investigation of the LR-PON physical layer resulting in

the detailed collection of data presented in this chapter which was achieved through

extensive collaborative research.
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For instance, in section 6.2, the ‘tree-structured’ LR-PON proposed for urban

access deployment consisting of a single EDFA-based AN was demonstrated to sup-

port the convergence of multi-service tra�c (e.g. 10G-TDM channels, coherent

100G point-to-point overlay and wireless fronthaul) with a total physical reach of

up to 100km, 1024 end users and an emulated system load of 40 DWDM channels

in both transmission directions. Moreover, through a collaboration with researchers

from Nokia Bell Labs in Stuttgart, a ‘tree-structured’ LR-PON architecture em-

ploying linear SOAs within the AN was also investigated. The corresponding results

demonstrated that the physical layer was capable of supporting up to 512 users

over a physical reach of 74km. It should be noted that the experimental results ob-

tained from the investigation of the urban LR-PON architecture using both EDFA-

and SOA-based ANs were presented at the Optical Networking and Communication

Conference (OFC) in 2016 [265] with an invited paper subsequently published in

the IEEE Journal of Lightwave Technology in 2017 [19].

Alternatively, to address the critical challenge facing FTTP deployment in rural

regions, a novel LR-PON architecture was developed using a chain of ANs from

which the ODNs can be aggregated in order to reach wide areas with dispersed

communities. This innovative ‘open-ring’ physical layer was assembled and demon-

strated using up to four chained EDFA-based ANs with the ability to support the

convergence of multi-service tra�c for a total physical reach of up to 120km, 1024

end users and an emulated system load of 40 DWDM channels in both transmis-

sion directions. To the best of our knowledge, this was the first time that such an

architecture was proposed and experimentally demonstrated as a potential solution

for rural fixed-line access. Notably, this work represents one of the most signifi-

cant contributions of this thesis with the corresponding results being presented at

the European Conference on Optical Communications (ECOC) which was held in

Düsseldorf in 2016 [20].

Finally, through a collaboration with researchers from Trinity College in Dublin,

a custom SDN control plane was integrated with the physical layer testbed of the ur-

ban LR-PON architecture to examine the feasibility of programmatically managing

the dynamic access and core network elements. In particular, two key service sce-

narios were investigated, these included: i) a fast protection switchover to a backup

OLT due to a failure in the active backhaul link and ii) the dynamic reassignment of

an ONU wavelength in response to increased tra�c demand. Notably, as shown in
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section 6.3, the results demonstrate that end-to-end service restoration in the event

of a fibre break in the backhaul link can be accomplished within an average time of

41ms which indicates a minimal disruption to services while an average wavelength

provisioning time of 225ms was achieved with potential for further improvement

though the use of optimised components.

At the time of investigation, the physical layer testbed designed, assembled and

investigated in this work was the most advanced LR-PON demonstrator in the world,

combining multiple research topics from the design of systems level solutions and

technologies to link, node and control plane architectures. In turn, this project

enabled the limits of various LR-PON configurations to be explored in detail and

even though some of the components used were not specifically designed for access

applications (e.g. the ONU-Tx and Rx) they represent the performance that is ex-

pected for such systems. Moreover, in line with emerging trends for access networks,

the proposed architectures successfully enabled the convergence of multiple service

tra�c on the same infrastructure which can be deployed across a wide range of geo-

types. Furthermore, the successful integration of SDN with the LR-PON physical

layer through a collaborative research e↵ort has proven that it is indeed possible to

remotely manage a dynamic network such as DISCUS with a single control plane

in order to provide reliable link protection and dynamic service provisioning for

e�cient capacity utilisation.

Overall, these testbed results have successfully verified the concept proposed by

the DISCUS project in that dynamically reconfigurable TDM-DWDM LR-PONs

have been shown to be capable of providing ubiquitous bandwidth across a wide

range of service scenarios with the simplification of tra�c management enabled

through the consolidation of core nodes and network interfaces thus o↵ering the

potential for remarkable cost and power savings for future access networks.
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Passive optical networks (PONs) remain the one of the most economically attractive

infrastructures for deploying fibre-to-the-premises (FTTP) where standards such as

G-PON [84] and XG-PON [10] support multiple users through a time-division mul-

tiplexed (TDM) channel. Recently, this capability has been significantly extended

by the NG-PON2 standard which has introduced wavelength division multiplex-

ing (WDM) to facilitate multiple TDM as well as dedicated point-to-point (PtP)

channels on the same infrastructure [11].

In this thesis, this latest access solution is further enhanced by the design, as-

sembly and demonstration of dynamically reconfigurable time-division multiplexed

(TDM) dense wavelength division multiplexed (DWDM) long-reach passive optical

networks (LR-PONs) capable of providing an economically scalable network design

supporting the convergence of multiple service scenarios and user types. The main

technical findings of this work are outlined below.

7.1 Overview of this Thesis Contribution

In Chapter 4, the potential for appreciable savings through an increased yield, lower

power consumption and simplified fabrication processes prompted an investigation

into two prototype tuneable diode laser technologies which have been proposed as

candidates for deployment within customer premises equipment.

For instance, section 4.5 presents a detailed investigation of a novel MEMS-

VCSEL developed within the SUBTUNE project (2008 - 2011) [179]. Although,

the laser under test demonstrated a noteworthy continuous tuning range of over

45nm between 1540nm and 1585nm, the output wavelength was observed to ex-

hibit a significant level of instability which is attributed to various sources including

resonance oscillations from residual air currents and the release of material stress.

Consequently, a custom LabVIEW-based feedback loop was developed to actively
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adjusted the applied tuning current in response to a continuous comparison between

the target wavelength and the peak as measured by an OSA. Having successfully

stabilised the output of the unpackaged VCSEL to ≤ ±0.25nm, the transmission per-

formance was demonstrated to consistently achieve bit error rates less than 1×10−9
across a 30nm wavelength tuning range (i.e. 1540nm - 1570nm) using external in-

tensity modulation at 10Gb/s. Notably, the device under test exhibited only a small

average receiver penalty of approximately 0.2dB with respect to a commercial ex-

ternal cavity laser in both the back-to-back and 50km of single-mode fibre which

encompasses the typical physical reach targeted by todays PON standards (see List

of Publications: [J1]).

While the main advantages of this VCSEL technology include wafer-level testing,

a lower power consumption and a remarkable continuous tuning range, the results

presented in this work demonstrate that the main challenge facing these lasers in-

volves optimising the stability of the surface DBR membrane which is essential to

maintain the integrity of the set transmission channel. Nonetheless, recent work on

these devices has instead focussed on improving the parasitic resistance and capaci-

tance of the half-VCSEL structure in order to facilitate direct modulation at 10Gb/s

[193]. Interestingly, to the best of our knowledge, the resulting chirp performance

of these VCSELs is yet to be reported; moreover, based on the results published

thus far, it is clear that the addition of an SOA will be required to reach the launch

power specifications of current PON standards [140].

Alternatively, in section 4.6, a single-growth, monolithically integrated tune-

able transmitter based on a slotted Fabry-Pérot (SFP) ridge-waveguide laser, a

10G-capable absorption modulator and a semiconductor optical amplifier (SOA) is

investigated in detail. Developed and fabricated by the III-V Materials and De-

vices Group of the Tyndall National Institute as part of the DISCUS project, the

main advantage of this transmitter structure is that it o↵ers the potential for sub-

stantial cost savings when compared with alternative grating-based structures due

to the use of a standard ‘o↵-the-shelf’ epitaxial MQW material and cost-e�cient

re-growth free fabrication techniques. In particular, within section 4.6.1 and 4.6.5

respectively, this unpackaged device was shown to attain a discrete tuning range

of approximately 12nm between 1551nm and 1563nm with a side-mode suppression

ratio ≥ 30dB and an extinction ratio in excess of 6dB for modulation at 10Gb/s

using NRZ-OOK. While some challenges remain to improve the insertion loss and
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bandwidth of the modulator section, the detailed time-resolved chirp measurements

presented in section 4.6.6 indicate an noteworthy wavelength stability of less than

10GHz (∼ 0.08nm) under intensity modulation at 10Gb/s and optical burst genera-

tion for packet lengths comparable with those of the latest PON standards (see List

of Publications: [J6]).

The main contribution of this investigation demonstrates that this device shares

key challenges faced by other well-established integrated transmitter technologies

such as thermal crosstalk and residual optical feedback. While this behaviour was

shown to compromise the resonance conditions of the slotted Fabry-Pérot laser in

section 4.6.4, the time-resolved chirp measurements presented in section 4.6.6 have

shown that when the gating function applied to the SOA section is faster than the

thermal response time of the transmitter material, the amplitude of the induced

frequency deviations can be ≤ 10GHz. Notably, the deviation in the carrier fre-

quency induced by thermal crosstalk can be maintained below the strict maximum

spectral excursion of ±12.5GHz specified for DWDM channels [140]. In fact, the

work presented in section 4.6.6 demonstrates that the dynamic stability of the car-

rier frequency exhibited by the integrated transmitter under modulation or optical

burst generation is significantly better than that of directly modulated lasers in the

absence of active thermal chirp compensation [124].

(a) (b)

Figure 7.1: (a) Microscope image of a MEMS-VCSEL array (Reproduced from [187])
(b) Monolithically integrated transmitter based on a slotted Fabry-Pérot laser.

Focusing attention on the physical layer design strategy, the viability of two distinct

LR-PON configurations are investigated in Chapter 5 in accordance with the tar-

gets of the DISCUS project [8] with the aim of bridging the ever growing ‘digital

divide’ between urban and rural communities. In particular, the feasibility of a ‘tree-

structured’ LR-PON for urban areas (5.1.1) and an innovative ‘open-ring’ LR-PON

233



7. Conclusions and Future Work

proposed for rural regions (5.1.2) was investigated through a linear optical power

and OSNR model (presented in Appendix C) to examine the achievable physical

reach and split by deriving the detailed specifications of the amplifier nodes (ANs).

Subsequently, based on the performance boundaries set by the transmitter (Tx)

and receiver (Rx) specifications, erbium-doped fibre amplifiers (EDFAs) emerged as

suitable candidates to support the proposed physical layer due to their ability to

provide a high gain and a relatively low noise figure across a wide band of channels.

However, as demonstrated in section 5.2.2 and Appendix D, their comparatively

slow gain dynamics can produce saturation induced power excursions that can com-

promise the link performance; therefore, devices whose parameters (i.e. gain, noise

figure and aggregate output power) were derived from the power and OSNR model

were acquired with transient suppression circuitry.

Figure 7.2: Schematic of a single-stage, forward-pumped EDFA configuration with active
gain stabilisation via dynamic pump control.

As the upstream performance impact of residual EDFA transients will ultimately

depend on the architecture of the OLT-based burst-mode receiver (BMRx), a collab-

orative investigation was undertaken to examine the resilience of an FPGA-based

forward error correction (FEC) algorithm used in conjunction with an innovative

10G-capable linear BMRx when the incident bursts are impaired by optical tran-

sients. The results of this work demonstrated an appreciable performance margin

of 4dB with respect to the transient amplitude prior to FEC degradation (see List

of Publications: [C6]). By comparing these results with those presented in section

5.3, it is evident that if the burst-mode tra�c is regulated by an appropriate PON

protocol, the power excursions produced by these commercial gain-stabilised EDFAs

should not compromise the US transmission performance of the 10G TDM-DWDM

channels in either of the LR-PON configurations targeted for the DISCUS project

testbed demonstration.
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Figure 7.3: High-level network view of the proposed DISCUS architecture.

Following the initial physical layer feasibility analysis and the investigation of the

main burst-mode subsystems in Chapter 5, the LR-PON experimental testbed was

assembled and investigated in detail with the results presented in Chapter 6. At the

time of investigation, this system was the most advanced LR-PON demonstrator in

the world, combining multiple research contributions from multiple project partners

including the design of systems level solutions and technologies to the development of

a custom SDN control plane (see List of Publications: [C1 - C5, J3 - J5]). However,

it is important to note that the main contribution from this work includes the design,

assembly and investigation of the LR-PON physical layer testbed which resulted in

the detailed collection of data through extensive collaborative research.

In particular, the results presented in section 6.2 demonstrate that the ‘tree-

structured’ physical layer employing a single EDFA-based amplifier node is capable

of supporting up to 1024 end users and a total physical reach of up to 100km with an

emulated system load of 40 DWDM channels in both transmission directions. More-

over, through collaborative research e↵orts, a coherent 100G point-to-point overlay

targeted for business users and a 10G wireless fronthaul channel were also success-

fully demonstrated to coexist with 10G-TDM PON channels over the same LR-PON

infrastructure, thus verifying the feasibility of multi-service tra�c convergence.

The innovative ‘open-ring’ LR-PON configuration, comprised of four chained

EDFA-based ANs, was also shown to support the convergence of multi-service tra�c

(i.e. 10G TDM-PON channels, coherent 100G overlay) over a total physical reach

of 120km with the ability to support up to 1024 end users with an emulated system

load of 40 DWDM channels in both transmission directions [20]. In fact, to the best

of our knowledge, this work represents the first experimental demonstration of such
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an architecture which has been proposed for rural fixed-line access deployment which

includes burst-mode operation of the 10Gb/s physical layer and the implementation

of FEC in both down- and upstream transmission directions. Consequently, this

work represents one of the most significant contributions of this thesis [20].

Finally, in section 6.3, through a collaboration with researchers in Trinity College

Dublin, a custom software-defined networking (SDN) control plane was integrated

with the physical layer of the ‘tree-structured’ LR-PON architecture in order to

demonstrate the feasibility of remotely managing dynamic network elements using

centrally located programmable algorithms. In particular, two crucial service cases

were examined in section 6.3.1 and 6.3.2, these include: i) a fast protection mech-

anism with end-to-end service restoration in the case of a primary link failure and

ii) dynamic wavelength allocation in response to an increased tra�c demand.

While the results presented in this work have successfully verified the feasibility

of the envisaged DISCUS architecture, it is important to note that as the infras-

tructure was designed around the physical reach of a LR-PON (∼ 100km) it has

the potential to facilitate a remarkable reduction of core nodes by up to a factor

of 50 [8]. For instance, as outlined in section 3.3.2, ∼100 DISCUS core nodes could

cover the United Kingdom (UK) network instead of the 5600 nodes in service today.

Similarly, in Ireland, approximately 20 DISCUS nodes would be capable of covering

the national network, down from 1100 nodes. Crucially, this node consolidation

simplifies the overall network infrastructure by enabling a flat optical core, which

serves to remove the hierarchical structure between the nodes to significantly reduce

optical-electrical-optical (OEO) signal regeneration and packet processing. As a re-

sult, the DISCUS architecture not only ensures compatibility with today’s networks

but also future technologies as they emerge.

Figure 7.4: EU FP7 Project DISCUS testbed.
(Photonic Systems Lab, Tyndall National Institute, University College Cork, Ireland).
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7.2 Future Work

7.2.1 Wavelength Referencing and Control

The aging of semiconductor materials, fabrication tolerances, thermal sensitivity

and current source inaccuracies are just a few causes of inadequate stability of tune-

able lasers [266]. As a result, the introduction of an e�cient wavelength referencing

and control strategy for ‘colourless’ ONUs is of critical importance to maintain the

integrity of the low-cost approach outlined in Chapter 4. In particular, such schemes

are critical for networks targeting DWDM in order to avoid rogue wavelength be-

haviour and maintain the fine tuning capabilities of the chosen ONU laser technology

within the assigned channel bandwidth with a prescribed spectral tolerance [267].

In practice, wavelength control strategies can be e↵ectively grouped into two

scenarios; local and centralised. The former case typically utilises an integrated

etalon-based wavelength locker (WL) to provide a reliable reference in conjunction

with a detailed device-by-device laser characterisation in order to establish the de-

sired operating points [268, 269]. Notably, the WL must be small enough to fit

inside the laser package. Moreover, through detailed fabrication, the optical path

length of the etalon must be closely tuned to properly align the lock points on the

etalon fringes with the desired ITU channels. Furthermore, depending on the etalon

material, temperature may also need to be stabilised and/or monitored [270].

As the material and assembly costs of an integrated WL contribute significantly

to the overall cost of the tuneable laser it makes sense to replace the individual

WLs in each laser by a centralised implementation with only one locker located in

the core node which is shared by all attached ONUs [271]. This approach can be

complemented by the use of distinct low-frequency pilot tones generated by a low-

amplitude envelope modulation of the upstream optical signals for the purpose of

identification and analysis with active feedback to the ONUs through the network

via the OLT by means of an adapted protocol [178].

With this in mind, the round trip latency within a LR-PON whose physical

reach is in excess of 100km will ultimately place a limit on the speed of the control

loop. Consequently, rogue wavelength behaviour may only be recognised when an

upstream data collision has already occurred before being stabilised by means of the

protocol. Nonetheless, embedded communication through the downstream channels

should be fast enough to track a slow drift of the wavelength due to temperature
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changes or ageing in the laser; however, it should be recognised that for this to work

the wavelengths must already lie within the bandwidth of the assigned channels.

As a result, coarse knowledge of the laser operating points is required to avoid

rogue behaviour during start-up or wavelength switching events. Interestingly, this

observation suggests that the optimal solution to maintain the low-cost approach

may not be explicitly localised or centralised but in fact an e�cient combination of

both strategies.

7.2.2 Beyond 10G TDM-PONs

At present, peak and aggregate consumption of data over access networks are expe-

riencing an average of ∼ 50% year-over-year growth [272]. As outlined in Chapter

3, the main trends driving this demand for bandwidth include a rising number of

subscribers, a growing number of connected devices per subscriber and increasing

bandwidth requirements per device or application. In particular, beyond the provi-

sion of broadband access to residential and small businesses, the growing demand

for advanced data-centric mobile multimedia services has accelerated the develop-

ment and deployment of new wireless broadband access technologies such as the

fifth-generation (5G) of cellular mobile communications [273]. Notably, 5G systems

are aiming to deliver an unprecedented level of service capabilities to the end user

which will inevitably require larger mobile broadband bandwidth with ubiquitous

availability, a faster response time, higher reliability and security [274, 261].

The challenge now faced by both fixed network and mobile operators in order

to deliver these advanced wireless services while continuing to reduce the cost per-

bit will inevitably lead to a consolidation of the network infrastructure [275]. For

instance, due to the di�culty and potentially prohibitive costs of supplying optical

fibre to all end-user premises as well as the spectrum limitations of wireless access

networks, hybrid optical-wireless access networks appear to be more attractive than

relying on either technology as a standalone solution. Moreover, as mobile network

operators start looking into the deployment of large numbers of small cells to o↵er

a higher capacity per user, the idea of a shared, low-cost, fibre backhaul networks

based on PONs becomes especially attractive. As a result, residential broadband,

enterprise connectivity and wireless data tra�c, which are today carried by separate

networks, must converge onto a single network architecture able to provide flexibly
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and economically the performances required by these di↵erent services [276]. No-

tably, this approach is exactly that of the DISCUS project whose innovative physical

layer has been verified in this work, particularly in Chapter 6 which has also demon-

strated the feasibility of deploying a 10G wireless fronthaul link within a LR-PON.

In fact, the progression of PON standards completely validates the approach taken

by DISCUS; one obvious example being the recent introduction of extended reach

options for XG-PON [277] and another being the introduction of wavelength division

multiplexing in NG-PON2 to support increased network capacity and heterogeneous

service scenarios [11].

To support the envisaged bandwidth requirements of future access networks, in-

vestigating and developing options for increasing the serial bit rate beyond 10Gb/s is

imperative to enable further cost-e↵ective upgrades for PON. With this in mind, the

IEEE 802.3ca task force was formed in 2015 and is currently working towards stan-

dardising a 25G TDM-PON by 2020 [278]. In particular, the focus is on a low-cost

solution for 25G E-PON coexisting with 10G E-PON with a targeted extension of

up to 100G (i.e. 25G → 50G → 100G) [279]. However, the main issues with increas-

ing the serial NRZ bit rate beyond 10Gb/s include the reduction in optical power

budget, due to a reduction in the SNR, a decreased chromatic dispersion tolerance

and a consequently reduced fibre reach. Moreover, higher speed components will

be required which correspond to an increased overall system cost. To address these

challenges, advanced modulation formats must now be investigated which provide

a high spectral e�ciency and possess a higher CD tolerance with a minimum in-

crease in implementation cost. Furthermore, since cost is the most important factor

in access networks, increasing the serial rate for PON beyond 10G will only make

economic sense if a lower cost per bit than 10G-PON is achieved [280].
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Appendix A

Q-Factor Analysis in Power and
OSNR-Limited Systems

The appendix is to supplement the analysis presented section 2.4.1 which describes

the process of system characterisation and performance penalty analysis for power

and OSNR-limited systems based on a various values of the transmitter extinction

ratio (ER).

Power-Limited System:

To account for the ‘0’-bit statistics, the Q-factor of a power-limited system can be

determined through the following relation

Q = R(Psig,1 − Psig,0)
�1 + �0

������→
�1 = �0 = �th

R(Psig,1 − Psig,0)
2�th

(A.0.1)

where �th can be obtained from Eqn. 2.3.13 and re-written as follows,

�th =
�

4kBT

RL
Fn.Be = R.(NEP ).�Be (A.0.2)

where NEP signifies the noise equivalent power which specifies the minimum power

per unit bandwidth when the SNR = 1. By specifying the NEP (W/
√
Hz), it allows

for the calculation of the optical power required to achieve a specific value of SNR.

For a system dominated by thermal noise, the NEP be derived from Eqn. 2.3.14 as

NEP = Psig,1√
Be

=
�

4kBTFn

R2RL
[W �√Hz] (A.0.3)

241



Appendix A. Q-Factor in Power and OSNR-Limited Systems

Furthermore, by recognising that the average received optical power is given by,

PRx = Psig,1 + Psig,0

2
(A.0.4)

the power corresponding to the ‘1’-bit and ‘0’-bit levels can be expressed with respect

to the extinction ratio (ER):

Psig,1 = 2PRx� ER

ER + 1�, Psig,0 = 2PRx� 1

ER + 1� (A.0.5)

where,

Psig,1 − Psig,0 = 2PRx�ER − 1
ER + 1� (A.0.6)

Hence, it is then possible to re-write Eqn A.0.1 as:

Q = PRx(NEP )√Be

�ER − 1
ER + 1� (A.0.7)

It is important to note that the BER curves presented in Fig. 2.16(a) were generated

by using a B3dB of 12.5GHz and a NEP of 24pW �√Hz obtained from the datasheet

of a conventional 10Gb/s o↵-the-shelf receiver.

OSNR-Limited System:

In the case of an OSNR-limited system, the current noise variance on both bit

levels must account for the signal-ASE and the ASE-ASE beat noise contributions

as indicated in Eqn. A.0.8

�2
1,0 = 4R2Psig,1,0SASEBe���������������������������������������������������������������������������������������������������������

Signal-ASE
Beat Noise

+4R2S2
ASEBoptBe���������������������������������������������������������������������������������������

ASE-ASE
Beat Noise

(A.0.8)
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With respect to the ‘1’-bit level, Eqn. A.0.8 can be re-written with respect to the

ASE power (PASE) using Eqn. 2.2.26:

�2
1 = 2R2PASEPsig,1

Be

Bref
+R2P 2

ASE

Be

Bref

Bopt

Bref
(A.0.9)

By recognising that Psig,1 = 2(OSNR.PASE)(ER�ER + 1) through Eqn. A.0.5 and

2.2.28, the current noise variance on the ‘1’-bit level can be re-written as

�2
1 = R2P 2

ASE� Be

Bref
��4OSNR( ER

ER + 1) +
Bopt

Bref
� (A.0.10)

Alternatively, following a similar procedure, the current noise variance on the ‘0’-bit

level (�2
0) can be determined as

�2
0 = R2P 2

ASE� Be

Bref
��4OSNR( 1

ER + 1) +
Bopt

Bref
� (A.0.11)

Finally, using Eqn. A.0.6, A.0.10 and A.0.11 the Q-factor for an OSNR-limited

system is given by

Q = R(Psig,1 − Psig,0)
�1 + �0

= R(2.OSNR.PASE(ER−1
ER+1))

�1 + �0

= 2OSNR.(ER−1
ER+1)

�
Bref

Be�
4OSNR( ER

ER+1) + Bopt

Bref
+�4OSNR( 1

ER+1) + Bopt

Bref

(A.0.12)

It should be noted that the data presented in Fig. 2.16(b) was achieved using an

optical filter bandwidth, Bopt, of 50GHz, a reference optical bandwidth, Bref =

12.5Hz (∼0.1nm) and a 3dB electrical bandwidth, B3dB = 2
⇡ .Be = 12.5GHz.
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Appendix B

Time-Resolved Chirp
Measurement

This work is intended to supplement section 4.6.6 of Chapter 4 which outlines the

background of the time-resolved chirp measurement technique which was used to

examine the dynamic wavelength stability of the monolithically integrated trans-

mitter.

Frequency Discrimination:

Using a programmable optical filter based on high-resolution liquid-crystal-on-silicon

(LCoS) technology with a transfer function, H(!), designed to be linear in mag-

nitude to the frequency, !p, around the carrier frequency, !c, with a transmission

amplitude T0 and di↵erential coe�cient c1:

H(!p) = T0[1 ± c1(!p − !c)] (B.0.1)

where, c1 can be set as a real value that is defined by the filter bandwidth (fBW =
!BW �2⇡) which specifies the frequency range bounded by transmission values of 0.1

and 0.9 where the centre carrier frequency has a transmission of 0.5.

c1 = 0.9 − 0.1(0.5)2⇡fBW
(B.0.2)

For Eqn. B.0.1, the following notation is then applied, ! = !p−!c; in order to deter-

mine the output field after propagation through the filter. For instance, considering

the filter with positive slope (P-Filter), the output (E+) can be determined as
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E+ = 1

2⇡ � T0(1 + c1!)Ẽin(!)ei!td! (B.0.3)

= 1

2⇡ � �T0Ẽin(!)ei!t + T0c1!Ẽin(!)ei!t�d! (B.0.4)

= T0� 1
2⇡ � Ẽin(!)ei!td! − ic1 d

dt
� 1

2⇡ � Ẽin(!)ei!td!�� (B.0.5)

= T0�Ein(t) − ic1dEin(t)
dt

� (B.0.6)

where, Ein = √Pin.Ei� and Ẽin(!) is the Fourier transform of the input field. The

corresponding optical power waveform P+ can then be determined as

P+ ≡ �E+�2 = E+.E∗+ (B.0.7)

= T 2
0 �(Ein − ic1dEin

dt
).(E∗in + ic1dE∗indt

)� (B.0.8)

= T 2
0 �Ein.E

∗
in + ic1dE∗indt

.Ein − ic1dEin

dt
.E∗in + c21dEin

dt

dE∗in
dt
� (B.0.9)

⇒ T 2
0 ��Ein�2 + 2c1Pin

d�

dt
+ c21�dEin

dt
�2� (B.0.10)

= T 2
0Pin�1 + 2c1d�

dt
+ c21
Pin
�dEin

dt
�2� (B.0.11)

As the third term within Eqn. B.0.11 is appreciably smaller than the second term,

it can be neglected to give the final form of the P+ waveform:

P+ =≅ T 2
0Pin�1 + 2c1d�

dt
� (B.0.12)

A similar analysis can be carried out to determine the P− waveform,

P− ≅ T 2
0Pin�1 − 2c1d�

dt
� (B.0.13)
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Appendix C

Power Budget and OSNR Model

The optical power budget of a LR-PON is an initial feasibility test that theoreti-

cally examines the achievable physical reach, split and dynamic range for a particular

modulation scheme by ensuring that the link design is within the transceivers op-

erating specifications. Moreover, with the introduction of optical amplification, the

optical signal-to-noise ratio (OSNR) rather than just received optical power level

becomes one of the prominent system limitations. As the power budget and OSNR

are closely interlinked both parameters must be considered together in the overall

system design. As a result, the model presented here represents a high-level study of

the OSNR and power budget limitations within LR-PONs. The model assumes lin-

earity and is based on the principle of superposition where the signal power and the

noise power are assumed to propagate through the system in parallel. The system

is comprised of components that are categorised as either passive or active through

assigned values of gain and noise figure; this concept is illustrated in Fig. C.1. For

instance, a passive component will possess a negative value of gain (G) to represent

an insertion loss (IL) while its corresponding noise figure (NF) will be 0 as it does

not contribute noise to the system.

Figure C.1: Basic concept of the power and OSNR model.
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Active Components:

The active components within the model are the optical amplifiers which contribute

gain and optical noise (ASE) to each channel as they propagate through the system.

In particular, the relations describing the amplified signal power and the correspond-

ing ASE power at the output of an active component within the proposed system

are presented in C.0.1 and C.0.2, where the amount of ASE produced is dependent

on the associated noise figure (NF).

P sig
Out,n

[dBm] = P sig
In,n
[dBm] +Gn [dB] (C.0.1)

PASE
Out,n [dBm] = 10.log10(Gn.P

ASE
In,n
[W ] + PASE

n [W ]) + 30 (C.0.2)

where,

PASE
In,n

[W ] = �10PASE
In,n

[dBm]
10 ��1000, PASE

n [W ] = 2h⌫BrefGn�NFn − 1

Gn
�

[h ≈ 6.626 × 10−34 Js, ⌫ ≈ 1.9341 × 1014 Hz, Bref = 12.5 × 109 GHz]

Passive Components:

Conversely, the passive components (optical switches, bandpass filters, optical split-

ters, fibre, etc.) contribute attenuation which can be interpreted as a negative gain.

Moreover, as they do not contribute ASE to the system, their associated NF can

be set as zero. The relations describing the attenuated signal power and the cor-

responding ASE power at the output of an passive component in the system are

presented in C.0.3 and C.0.4 where Gn represents a negative value indicating an IL.

P sig
Outn
[dBm] = P sig

Inn
[dBm] +Gn [dB] (C.0.3)

PASE
Outn [dBm] = PASE

Inn
[dBm] +Gn [dB] (C.0.4)

The optical signal-to-noise ratio (OSNR) at the output of the nth component within

the network can then be determined using the following relation:
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OSNRn [dB] = P Sig
outn [dBm] − PASE

outn [dBm] (C.0.5)

A list of the typical component parameters is presented in Table C.1 which outlines

the maximum and minimum gain and the corresponding value of noise figure. The

distinction between GMax and GMin values is only considered for components within

the ODN in order to estimate the maximal dynamic range resulting from the varying

path loss experienced by tra�c from the ONUs. The splitter losses outlined in Table

C.1 are derived from the ITU-T standard (G.671) [260] which accounts for the sta-

tistical variations in these components while datasheets of commercial components

were used to obtain the values required for the ANs and backhaul links.

Component
Gain (Max)

[dB]

Gain (Min)

[dB]

Noise Figure

[dB]

Circulator -0.2 -0.6 0

Fibre (per km) -0.2 -0.3 0

Splice -0.0 -0.3 0

1:2 Splitter -2.8 -4.1 0

1:4 Splitter -5.4 -7.5 0

1:8 Splitter -7.9 -11.05 0

1:16 Splitter -10.5 -14.4 0

1:32 Splitter -13 -18.1 0

Mux/DeMux -4 -6.0 0

Optical Switch -1.8 -2.0 0

Tuneable Filter -4 -4 0

Optical Amplifier GMax GMin NF

Table C.1: Component parameters for the power and OSNR model.

It is important to recognise that this power and OSNR model does not directly

account for optical transients (e.g. from the amplifiers), dispersion or non-linear

interactions between the optical signals and the fibre. In practice, these phenomena

can produce interference, distortion and excess attenuation on the optical signals,

hence, the limitations they impose must be considered within the network design.

To address these issues in this analysis, we assume the utilisation of gain-stabilised

EDFAs with adequate transient suppression circuitry, dispersion compensating fibre

(DCF) or electronic dispersion compensation (EDC) while the output power levels
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of transmitter and amplifiers are chosen in order to assure linear fibre propagation

and linear amplifier operation.

Polarisation Dependent Loss

Within the component parameters presented in Table C.1, the polarisation depen-

dent loss (PDL) of the commercial passive components (i.e. circulators, filters) has

been included using the values specified within the associated datasheets while the

PDL of the passive optical splitters has been accounted for using the following table

which can be found in the ITU-T G.671 standard [260]. Notably, the separation

of PDL from the analysis of polarisation-mode dispersion (PMD) is justified when

the system limitations caused by PDL are related primarily to its role as a random

attenuator [281]. In practice, the PDL must be considered in the power budget in

order to accurately estimate the dynamic range of the upstream signal.

Component
Maximum PDL

[dB]

1:2 Splitter 0.2

1:4 Splitter 0.2

1:8 Splitter 0.25

1:16 Splitter 0.3

1:32 Splitter 0.4

Table C.2: Polarisation dependent loss specifications for passive optical splitters.

In practice, PDL accumulation over a large number of components is statistical;

therefore, the calculation of the worst-case PDL can lead to overestimation. Us-

ing the theory presented in [281], the probability distribution of the accumulated

PDL for a series of components within an optical network (Pz(⇢)) can be estimated

through the following relations:

Pz(⇢) = 4⇢2√
⇡[2�2(z)]3�2 .exp[−

⇢2

2�2(z)] (C.0.6)

�⇢2� = 3�(z)2 = 9�2

2
(e2z�9 − 1) (C.0.7)
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where, ⇢ indicates the magnitude of the PDL [dB], � gives the variance of the

distribution, �⇢2� is the mean-square PDL and � = 20
loge(10) ≈ 8.7 is a constant.

Using the data within Table C.2, the probability distribution of the accumulated

PDL within the open-ring architecture proposed for rural access in Chapter 5 is

presented in Fig. C.2. It should be noted that as the PDL of some components was

not defined within ITU-T G.671, corresponding values were taken from specifications

of equivalent commercial components. In practice, the overall accumulated PDL will

vary with time, hence the impact of this phenomenon will average to some extent.

Nonetheless, the system under investigation consists of four chained amplifier nodes

(ANs), each separated by 30km supporting a 20km distribution network with 128

users to give a total of 512 over a total physical reach of 120km. The PDL analysis

is undertaken for an ONU connected to the ODN of AN 4 whose signal traverses the

longest path with respect to the OLT which is located in primary metro/core node.

In particular, this configuration presents 41 PDL contributions which produces a

mean-square value of approximately 2dB and peak at 1.2dB. In practice, these

values should be taken into account when considering the performance margin of

the proposed open-ring configuration.

Figure C.2: Probability distribution of the accumulated PDL within the proposed open-
ring configuration which employs 4 chained amplifier nodes, each supporting a 20km dis-
tribution network with 128 users.

251



252



Appendix D

Time-Dependent Gain Model for
Erbium-Doped Fibre Amplifiers

Consider a length of Erbium-doped fibre (EDF) supporting N optical channels as

shown in Fig. D.1. The nth channel of wavelength, �n, has an optical power of

P In
n (t) and POut

n (t) at the input and output respectively at a time t.

Figure D.1: Model of an erbium-doped fibre supporting N channels [227].

The corresponding rate equation for the fraction of atoms in the excited state,

N2(z, t), and the photon propagation equation for the nth channel are given by

@N2(t)
@t

= −N2(z, t)
⌧0

− 1

⇢S

N�
i=1 ui

@Pi(z, t)
@z

(D.0.1)

@Pn(z, t)
@z

= un[(�n + ↵n)N2(z, t) − ↵n]Pn(z, t) (D.0.2)

where, ⌧0 is the spontaneous lifetime of the upper level, ⇢ is the number density of

the active erbium atoms, S is the fibre core cross-section, �n is the emission constant

(i.e. the gain constant for complete inversion), ↵n is the absorption constant and

un is a unit vector with a value of +1 for forward propagation and -1 for counter

propagation [227]. In this model, the signal and pump channels are treated equally
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and the optical power is expressed as photons per unit time (i.e. normalised to

their photon energy) while ASE can be modelled by adding e↵ective input signals

with appropriate power and bandwidth. Furthermore, it is important to note that

the fractional populations of the upper and lower energy levels satisfy the following

relation

N1(z, t) +N2(z, t) = 1 (D.0.3)

By integrating Eqn. D.0.1 from 0 to L, the following expression can be obtained

d

@t �
L

0
N2(z, t)dz + 1

⌧0
� L

0
N2(z, t)dz = − 1

⇢S

N�
i=1 [POut

i
(t) − P In

i
(t)] (D.0.4)

At this point the key parameters of this two-level model are introduced; these include

the average inversion level, N̄2, which represents the population of the upper level

normalised to the total population density and the average amplifier gain coe�cient

of the ith channel.

N̄2(t) = 1

L �
L

0
N2(z, t)dz (D.0.5)

ḡi(t) = 1

L
loge�POut

i (t)
P In
i (t) � (D.0.6)

Substituting Eqn. D.0.5 into Eqn. D.0.4 yields the characteristic relation for this

analysis which is known as the time-dependent average inversion model.

d

dt
[⇢SLN̄2(t)] + ⇢SL

⌧0
N̄2(t) = −

N�
i=1
[POut

j (t) − P In
j (t)] (D.0.7)

With respect to Eqn D.0.2, re-arranging the equation and integrating over the entire

length of the fibre provides an expression for the overall amplifier gain for the ith

channel, Gi(t), which highlights the relation to the average inversion level, N2(t).
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� P
In
i (t)

P In
i (t)

@Pi(z, t)
Pi(z, t) = �

L

0
ui[(�i + ↵i).N2(z, t) − ↵i]@z (D.0.8)

⇒ loge�POut
i (t)
P In
i (t) � = [ui(�i + ↵i)N̄2(t) − ui↵i]L (D.0.9)

By recognising that the expression on the right hand side of Eqn. D.0.9 is related

to the average gain coe�cient defined in Eqn. D.0.6, an expression for the overall

amplifier gain coe�cient, Gi(t), for forward propagating beams (ui = +1) can be

derived as

Gi(t) = ḡi(t)L = [(�i + ↵i)N̄2(t) − ↵i]L (D.0.10)

Hence, the output power of the ith channel can be written as

POut
i (t) = P In

i (t)eGi(t) (D.0.11)

By using Eqn. D.0.11, the expression on the right hand side of Eqn. D.0.7 can be

re-written with respect to Gi(t)

− N�
i=1
[POut

j (t) − P In
j (t)] = −

N�
i=1
[P In

i (t)eGi(t) − P In
j (t)] (D.0.12)

= − N�
i=1
[P In

i (t).(eGi(t) − 1)] (D.0.13)

In addition, by rearranging the terms in Eqn.D.0.10, an expression of the average

inversion can be obtained with respect to ḡi(t), �i and ↵i.

ḡi(t) = [(�i + ↵i)N̄2(t) − ↵i] ⇒ N̄2(t) = ḡi(t) + ↵i

�i + ↵i
(D.0.14)

Substituting Eqn. D.0.14 and D.0.12 into Eqn. D.0.7, the following time-dependent

relation with respect to ḡi(t) can be obtained
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⌧0
dḡi(t)
dt
+ ḡi(t) + ↵i = −⌧0(�i + ↵i)

⇢SL

N�
i=1
[P In

i (t).(eGi(t) − 1)] (D.0.15)

At this point, the intrinsic saturation power, P IS
i , of the ith channel as defined in

[233] can be introduced

P IS
i = ⇢S

⌧0(�i + ↵i) (D.0.16)

By introducing P IS
i into Eqn. D.0.15, the time-dependent gain model can be re-

written as

⌧0
dḡi(t)
dt
+ ḡi(t) + ↵i = − 1

P IS
i L

N�
i=1
[P In

i (t).(eGi(t) − 1)] (D.0.17)

Finally, by recognising that Gi(t) = ḡi(t).L in accordance with Eqn. D.0.10; the final

expression for the time-dependent EDFA gain model which represents the coupled

relation between all wavelengths passing through the EDFA is given as

⌧0
dGi(t)
dt

+Gi(t) + ↵iL = − 1

P IS
i

N�
i=1
[P In

i (t).(eGi(t) − 1)] (D.0.18)

Notably, for dynamic processes such as an add/drop event, power variations due to

the nature of burst-mode tra�c or a partial link failure the expression on the right

hand side of Eqn. D.0.18 will vary and result in gain variations over time in all the

optical channels. This cross-gain modulation e↵ect is a major concern for the use of

EDFAs in the access domain.

The Transient Response of EDFAs

For small perturbations in the gain, the response of the EDFA can be assumed to

have a single e↵ective time constant, ⌧eff where the Eqn. D.0.18 has been linearised

for t close to the steady state value, Gi(∞), using a Taylor Series:

Gi(t) = Gi(∞) − ⌧eff dGi(t)
dt

(D.0.19)
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where, ⌧eff can be determined using Eqn.D.0.18:

1

⌧eff
= − @

@Gi
�dGi(t)

dt
� �

t=∞
(D.0.20)

= − @

@Gi
� 1
⌧0
� − 1

P IS
i

N�
j=1
[P In

i (t).(eGj(t) − 1)] −Gi(t) − ↵iL�� �
t=∞

(D.0.21)

= − 1
⌧0
� − 1

P IS
i

N�
j=1
[P In

j (t).@Gj

@Gi
(eGj(t))] − 1� �

t=∞
(D.0.22)

At this point, Eqn. D.0.16 and D.0.10 can be used to determine the di↵erential gain

between the channels (@Gj�@Gi) as

@Gj

@Gi
≡ @Gj�@N̄2

@Gi�@N̄2
= (�j + ↵j)(�i + ↵i) =

P IS
i

P IS
j

(D.0.23)

Notably, Eqn. D.0.23 is independent of the degree of inversion and is only a con-

sequence of the fibre parameters. Nonetheless, through substitution, ⌧eff can be

expressed as

⇒ 1

⌧eff
= 1

⌧0
� 1

P IS
i

N�
j=1
[P In

j (t).P IS
i

P IS
j

.(eGj(t))] + 1� �
t=∞

(D.0.24)

= 1

⌧0
� 1

P IS
i

N�
j=1
[P IS

i

P IS
j

.POut
i (∞)] + 1� (D.0.25)

= 1

⌧0
� N�
j=1

POut
i (∞)
P IS
j

+ 1� (D.0.26)

where, POut
i (t) = P In

i (t)eGi(t) used in accordance with Eqn. D.0.11 and POut
i (∞) is

the steady state value. The e↵ective time constant now takes the form

⌧eff = ⌧0
1 + ⌘ (D.0.27)

where the saturation parameter, ⌘, has been introduced to represent the summation

of the output powers which are normalised to their corresponding saturation powers.
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It is important to note that ⌘ only depends on the output power and not the power

averaged over the fibre.

⌘ = N�
j=1

POut
i (∞)
P IS
j

(D.0.28)

When a dynamic process such as a step change in input power of one or more

channels or channel add/drop is assumed to occur at t = 0 and the EDFA once again

reaches the steady-state condition at t =∞; the overall gain coe�cient of the EDFA

as a function of time can be written using ⌧eff [236]:

Gi(t) = Gi(∞) + (Gi(0) −Gi(∞)).e− t
⌧eff , for t > 0 (D.0.29)

where the EDFA is assumed to be in the steady state when t ≤ 0. The output power
is then obtained through Eqn. D.0.11:

POut
i (t) = POut

i (∞)� POut
i (0)

POut
i (∞)�

e
− t
⌧eff

(D.0.30)

where, P In
i (0) = P In

i (∞).

Figure D.2: Captured data from an oscilloscope showing transients from a commercial
EDFA in the absence of active gain control for an optical signal at 1550.12nm. (The fitting
curve was applied using Eqn. D.0.30 with ⌧eff = 40µs).
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Overview of the Linear
Burst-Mode Receiver Assembly

The 10G-capable linear burst-mode receiver (LBMRx) die measures 2.4 x 2.1 mm2

and uses 650mW with 2.5V/3.3V supplies. It was flip-chipped onto an Aluminium

Nitrate (AlN) substrate with tracks and coplanar waveguides (CPWs) for DC and

RF electrical connections respectively before being wire-bonded to a 10G InGaAs/InP

PIN photodiode along with four 1nF capacitors (one for each supply line) are at-

tached to the substrate using silver epoxy as illustrated in Fig. E.1.

Figure E.1: Illustration of the unpackaged LBMRx subassembly chip showing the die
flip-chipped onto the ceramic substrate and wire-bonded to the 10G PIN photodiode.

The LBMRx sub-assembly was then packaged into a customised 14-pin butterfly

module with GPPO connections. To achieve this, the ceramic was placed flush with

the package wall and aligned with the GPPO connector feedthroughs. Each track

line was then wire bonded to the pins of the butterfly package. Notably, due to

the absence of a TEC (thermoelectric cooler) underneath the assembly, the CPW
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RF-outputs did not align with the GPPO outputs of the butterfly package. Con-

sequently, to overcome this issue, a connection made of silver epoxy is built up to

the GPPO level. A metalised lensed fibre with a bevel angle of 45°was employed to

couple the light into the high-speed photodiode where an active optical alignment

was performed using micro-positioning units to maximise the average photocurrent

for a given optical power. To complete the packaging process, the fibre pigtail along

with a strain relief boot was secured to the cylindrical window of the packaging unit

using epoxy adhesive. The packaged LBMRx was then mounted and soldered on

a custom printed circuit board (PCB) shown in Fig. E.2 which was designed to

simplify the interface with the rest of the setup and to avoid non-optimal connec-

tions and its RF outputs are connected using semi-rigid cable assemblies (GPPO to

2.4mm).

Figure E.2: LBMRx Assembly: (a) Image of the 10G LBMRx Die (b) packaged LBMRx
chip (c) LBMRx with accompanying PCB.

Finally, the LBMRx and the LV 24-33 microcontroller board used to communicate

with it were then mounted together on an aluminium optical breadboard. An addi-

tional PCB with a series of di↵erent ac-coupling capacitor values is also added to the

configuration to compensate for the residual dc-o↵set between consecutive packets

which arises from mismatch between transistors and resistors. In this work, the two

RF outputs of the LBMRx are AC-coupled using 560pF capacitors.
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DISCUS Demonstration:
ECOC Exhibition, 2015

In order to increase the impact of the DISCUS project, a demonstration of the key

enabling technologies and architecture was presented at the European Conference on

Optical Communications (ECOC), which was held in Valencia, Spain in September

2015. The demonstration was hosted at the ECOC exhibition by our industrial

project partners Polatis™ who manufacture the optical beam steering switches used

within the experimental testbed to provide network reconfigurability.

Figure F.1: Logo for the European Conference on Optical Communications, 2015.

For the physical layer demonstration, it was decided to implement a simplified ver-

sion of the single amplifier node (tree-structured) topology which could still demon-

strate the novel features of the DISCUS architecture. In addition, through a col-

laboration with researchers from Trinity College in Dublin, control plane services

integrated with the physical layer targeted streaming a 4K video downstream from

the OLT to the ONU and a protection scenario which simulated a fibre break using

the optical switch in order to interrupt active services and induce network reconfig-

uration.
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The Physical Layer Configuration:

The details of the physical layer are illustrated in Fig. F.2. At the access edge,

the ONUs consisted of commercially available tuneable small form factor pluggable

(SFP+) 10G transceivers controlled using Xilinx™Virtex 7 FPGAs with external

SOAs employed to carve the upstream burst envelopes; while, at the receiver side,

a remotely tuneable bandpass filter was used to isolate the downstream wavelength.

The optical distribution network was comprised of 20km of standard single-mode

fibre (SMF) and a combination of passive splitters while a variable optical attenua-

tor (VOA) was used to emulate end-of-life fibre attenuation and excess splitter loss

[260]. The total emulated split factor for the portable DISCUS demonstration was

128 (4x4x8). In particular, part of the total ODN split (4x4) was located in the am-

plifier node alongside the commercial gain-stabilised erbium-doped fibre amplifiers

(EDFAs) in order to combine upstream and downstream tra�c while also providing

access to a protection path in the event of a backhaul fibre break or service node

(SN) failure. On the primary path, the amplifier node was connected to the SN using

50km of SMF, providing a total physical reach of 70km for the demonstration. At

the head end of the system, the SN included a Polatis™optical switch, an OpenFlow

SDN 10GbE switch, one access controller, in addition to two OLTs. As in the case of

the ONUs, each OLT contained an FPGA controlled SFP+ transceiver, a packaged

10G linear burst mode receiver (LBMRx) and a commercial continuous-mode elec-

tronic dispersion compensation (EDC) chip which also performed the clock and data

recovery (CDR). Notably, the optical switch was partitioned logically to emulate two

geographically separated core nodes. Moreover, in order to provide the worst-case

di↵erential reach for the system, the protection path was created by connecting the

amplifier node directly to the SN.

Figure F.2: Physical layer architecture of the portable DISCUS demonstrator.
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Link Power and OSNR Model:

The feasibility of the physical layer for the ECOC demonstration was initially in-

vestigated using the power and OSNR model which is presented in Appendix C; the

corresponding results are shown in Fig. F.3. Assuming the used of an APD-based

photoreceiver and the implementation of FEC in both transmission directions, the

performance of the portable physical layer demonstration designed for the ECOC ex-

hibition can achieve error-free operation (post-FEC BER ≤ 1×10−12 ). In particular,

this performance requires the use of gain-stabilised EDFAs capable of supplying in-

line gain of 18dB and 14dB within the AN and SN receptively for both transmission

directions. For instance, in the downstream direction, which is typically power-

limited due to the high loss of the ODN, the required per-channel output power

launched by both SN and AN EDFAs is approximately +9.5dBm which corresponds

to a total aggregate power of +25.5dBm for a fully loaded system of 40 channels.

While this value is relatively high, it is achievable for commercially-available ampli-

fiers; moreover, as the downstream transmission is broadcast in continuous-mode,

the requirements of the transient suppression circuitry can be relaxed. Alternately,

in the OSNR-limited upstream link, the maximum per-channel output power is es-

timated to be approximately -2dBm at the AN and -6dBm at the SN corresponding

to a total aggregate power of +14dBm and +10dBm respectively for a 40-channel

system; these values are also well within the capabilities of commercial devices.

Figure F.3: The power and OSNR model for the (a) downstream and (b) upstream
transmission directions of the ECOC physical layer demonstration.
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Appendix F. ECOC Exhibition 2015

The Integrated SDN Control Plane Services:

A high level overview of the control plane developed by researchers from Trinity

College Dublin is presented in F.4. For the protection scenario, fibre breaks (iden-

tified by loss of light in the upstream path, considering round-trip-time, connected

ONUs, and estimated quiet windows) trigger a failure alarm, which is directly noti-

fied from the PON controller to the OpenFlow controller through in-band signalling.

This showcased the operation of OpenFlow switch, optical switch, OLT, ONU and

control plane.

vspace6pt

Figure F.4: Control plane overview of the portable DISCUS demonstrator.

Unfortunately, unexpected issues with the mains power supply at the venue resulted

in the failure of one of the OLT FPGAs and as a result the protection scenario

could not be presented at the exhibition. Hence, only the 4K video streaming ser-

vice over the LR-PON was presented. Nonetheless, The portable DISCUS testbed

demonstrated the fundamental operation of a core node while showcasing a sym-

metric 10G-capable PON architecture comprised of physical layer transmission (with

10Gb/s burst mode components, wavelength reconfigurability, extended reach and

switching technology) and Layer-2 protocols at the ONUs and OLTs, controlled by

an SDN control plane capable of satisfying on-demand user requests, such as 4K

definition video-on-demand applications.
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Appendix F. ECOC Exhibition 2015

Overall, despite some unforeseen technical di�culties, the demonstration was very

successful and of high impact attracting more than 50 visitors from more than 40

companies (excluding DISCUS partners) that showed great interest in the project

and the key enabling technologies.

Figure F.5: DISCUS demonstration hosted by Polatis™at the ECOC Exhibition, 2015.

Figure F.6: Portable DISCUS demonstration: ECOC 2015, Valencia, Spain.
(F. Slyne, C. Blümm, S. Porto, N. Brandonisio, G. Talli, D. Carey and P. Townsend)
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Acronyms and Abbreviations

ADSL Asymmetric Digital Subscriber Line

AFG Arbitrary Function Generator

AM Amplitude Modulation

AN Amplifier Node

APD Avalanche Photodiode

ASE Amplified Spontaneous Emission

ASIC Application Specific Integrated Circuit

AWG Arrayed Waveguide Grating

BER Bit Error Rate

BERT Bit Error Rate Tester

BM Burst-Mode

BMRx Burst-Mode Receiver

BPF Bandpass Filter

BT British Telecom

CAPEX Capital Expenditure

CATV Community Access Television

CD Chromatic Dispersion

CDR Clock and Data Recovery

CID Consecutive Identical Digits

CIP Centre for Integrated Photonics (now Huawei), Ipswich, UK.

CN Core Node

CPRI Common Public Radio Interface

CW Continuous Wave

DBA Dynamic Bandwidth Assignment

DCF Dispersion Compensating Fibre

DFB Distributed Feedback

De-MUX De-Multiplexer

DCF Dispersion Compensating Fibre

DISCUS DIStributed Core for ubiquitous bandwidth supply

for all Users and Services
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Appendix . Acronyms and Abbreviations

DML Directly Modulated Laser

DP-QPSK Dual-Polarisation Quadrature Phase Shift Keying

DR Dynamic Range

DS Downstream

DSL Digital Subscriber Line

DWA Dynamic Wavelength Allocation

EAM Electro-absorption Modulator

EDC Electronic Dispersion Compensation

EDFA Erbium-Doped Fibre Amplifier

EMI Electromagnetic Interference

E-PON Ethernet Passive Optical Network

ER Extinction Ratio

FP Fabry-Pérot

FEC Forward Error Correction

FTTC Fibre-to-the-Cabinet

FTTH Fibre-to-the-Home

FTTP Fibre-to-the-Premises

FSAN Full Service Access Network

FWM Four Wave Mixing

G-PON Gigabit Passive Optical Network

GVD Group Velocity Dispersion

HD High-Definition

IC Integrated Circuit

IEEE Institute of Electrical and Electronic Engineers

IP Internet Protocol

IR Infrared Radiation

ISI Inter-symbol Interference

ITU International Telecommunication Union

LE Local Exchange

LP ‘Loud’ Packet

LPF Low-Pass Filter

LTE Long Term Evolution

M/C Metro/Core

MEMS Micro-Electro-Mechanical System
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Appendix . Acronyms and Abbreviations

MUX Multiplexer

NC Node Controller

NetO Network Orchestrator

NEP Noise Equivalent Power

NG-PON Next Generation Passive Optical Network

NRZ Non-Return-to-Zero

OEO Optical-Electrical-Optical

ODN Optical Distribution Network

OLT Optical Line Terminal

ONU Optical Network Unit

OOK On-O↵ Keying

OSNR Optical Signal-to-Noise Ratio

OSA Optical Spectrum Analyser

PCB Printed Circuit Board

PD Photodiode

PDG Polarisation Dependent Gain

PDL Polarisation Dependent Loss

PIN Positive-Intrinsic-Negative

PMD Polarisation Mode Dispersion

PON Passive Optical Network

PPG Pulse Pattern Generator

PRBS Pseudorandom Binary Sequence

QWI Quantum Well Intermixing

RE Reach Extender

R-EAM Reflective Electro-absorption Modulator

RF Radio Frequency

SBS Stimulated Brillouin Scattering

SDN Software Defined Networking

SSMF Standard Single-Mode Fibre

SN Service Node

SNR Signal-to-Noise Ratio

SOA Semiconductor Optical Amplifier

SEM Scanning Electron Microscope

SP ‘Soft’ Packet

269



Appendix . Acronyms and Abbreviations

SPM Self-Phase Modulation

SRS Stimulated Raman Scattering

TBPF Tuneable Bandpass Filter

TDM Time-Division Multiplexing

TDMA Time Division Multiple Access

TIR Total Internal Reflection

TWDM Time and Wavelength Division Multiplexing

US Upstream

VCSEL Vertical Cavity Surface Emitting Laser

VDSL Very High Bit Rate Digital Subscriber Line

VOA Variable Optical Attenuator

WDM Wavelength Division Multiplexing

WiMAX Worldwide Interoperability For Microwave Access

WL Wavelength Locker

XG-PON Next-Generation 10G-PON

XPM Cross Phase Modulation
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