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Abstract — the aim of this work is to provide a systematic 

and comparative study on the material characteristics and 

electrical contact performance for a germanium-tin (GeSn) 

alloy with a high percentage of Sn (8%). Thin metal films (10 

nm) of Nickel (Ni), Titanium (Ti), or Platinum (Pt) were 

deposited on Ge0.92Sn0.08 layers and subsequently annealed at 

different temperatures ranging from 300°C up to 500°C.  

Various experimental techniques were employed to 

characterize the metal morphology and the electrical contact 

behavior, with the intention of identifying the most promising 

metal candidate, in terms of low sheet resistance and low surface 

roughness, considering a low formation temperature.  

The investigations carried out show that for nano-electronic 

contact applications, nickel-stanogermanide (NiGeSn) turns out 

to be the most promising candidate among the three different 

metals analyzed. NiGeSn presents low sheet resistance 

combined with low formation temperatures, below 400 °C; 

PtGeSn shows better thermal stability when compared to the 

other two options while, Ti was found to be unreactive below 

500°C, resulting in incomplete TiGeSn formation. 

Keywords— GeSn, sheet resistance, stanogermanide 

I. INTRODUCTION  

In recent years many technological innovations have 
facilitated the transistor shrinkage rules according to Moore's 
law. Breaktroughs, such as the use of the high-k gate dielectric 
technology [1], 3D structures such as the trigate/FinFET 
[2][3], and the introduction of embedded stressors in source 
and drain to enhance the performance of the device [4], have 
produced substantial advantages for advanced 
Complementary Metal Oxide Semiconductor (CMOS) 
technologies. Although giant steps have been taken in recent 
decades, the constant pursuit of Moore's law and the trend of 
continuous power reduction  , lead us to investigate new 
alternatives which enable further device reduction [5]. 

Consequently, a feasible and interesting solution to 
advanced Silicon (Si) CMOS scaling might be found in the 
transition metal di-chalcogenides (TMD), Germanium (Ge), 
GermaniumTin (Ge(1-x)Sn(x)) alloys, and III-V compounds; 
nevertheless, the integration processing and development 
costs of these new semiconductor materials are huge and not 

straightforward. Therefore in the last decade Ge and its alloy, 
GeSn, show promise over the other candidates due to their 
intrinsic characteristics as well as easier integration on Si 
platforms [6]. As a result, extensive study on Ge and GeSn has 
been made in order to explore the possibility of integration of 
this material into the CMOS process [7]. 
Furthermore, as the channel dimensions trend points 

towards shrinking, the source/drain resistances have become 

relatively more significant in the overall parasitic resistance 

of the transistor; then in many cases, the contact resistance 

becomes the bottleneck for many technologies. Therefore 

analogously with Si, where the silicides are used to create 

the metal contacts, germanides and stanogermanidation 

seem to be the natural candidates for metal contacts 

respectively for Ge and GeSn alloys.  

Although the Ge solutions proposed have a strong appeal, 

studies of contacts to GeSn are still immature; consequently 

an intensive investigation on the contacts is essential to 

ensure good GeSn device performances. 

Judging from recent literature, it seems that several research 

groups have focused their attention on the contact analysis 

using different metals with the aim to extrapolate the 

performance and point out the best candidate in terms of 

resistance and thermal stability. In this regard, from the up-

to-date work on GeSn, a lot of activity has been focused on 

Nickel-stanogermanide (NiGeSn) contacts [8][9][10][11] 

and a possible mix of different metals to increase the 

thermal stability of the Ni [12][13][14]; for these reasons, 

the purpose of this work is to show a systematic and 

comparative study, using three different metals Ni, Ti, and 

Pt, on Ge0.92Sn0.08. 

II. EXPERIMENTS 

Fig.1 summarizes the process flow carried out in this work. 

The starting material is comprised of a nominally un-doped 

epitaxial layer of Ge0.92Sn0.08, (nominally 28 nm thick), 

obtained using chemical vapour deposition (CVD), on a 

nominally un-doped virtual substrate layer of Ge used to 

reduce the lattice mismatch of the structure.  



Prior to deposition of the metal, all the coupons were 

subjected to a cleaning process; the samples are first dipped in 

acetone, isopropyl alcohol, and deionized water respectively 

for 30 seconds. 

 Afterwards, a 10 nm layer of three different metals was 

deposited on the samples. The deposition was carried out 

using the FC2000 electron beam evaporator at a pressure of 

5×10-7 Torr. Ni and Pt were evaporated with a rate of 0.2 nm/s 

while the Ti was evaporated at a rate of 0.1 nm/s. The samples 

were then subjected to a 30 s rapid thermal annealing (RTA) 

in N2 ambient at different temperatures; ranging from 300 - 

500 °C with in steps of 50 °C. The ramp rate used for each 

RTA was 100 °C/min and the cool down time was 15 minutes. 

Several characterization techniques were employed to 

describe both morphological and electrical aspects. 

We characterized the material features through Scanning 

electron microscopy (SEM), performed by Zeiss Supra 55VP 

machine; atomic force microscopy (AFM) carried out by 

Veeco Multimode V AFM in tapping/non-contact mode over 

an area of 5 µm × 5 µm. Cross-sectional transmission electron 

microscopy (XTEM) was done using a JEOL 2100 HRTEM 

operated at 200KV and the lamella was produced by a Dual 

Beam Helios Nanolab 600i, using Ga ion beam. Furthermore, 

energy dispersive X-ray Spectroscopy (EDX) was done using 

FEI a dual Beam Helios Nanolab equipped with Oxford 

Instruments’ X-MAX-50 EDX detector. 

Finally, for the electrical characterization a 4 point probe 

measurement was performed using a LUCAS LABS-S-302 4 

manual probing station.   

 

 
Figure 1.  Summary of the experimental process flow. 

III. RESULTS AND DISCUSSION 

All the analysis previously reported, was done as a 
function of the annealing temperature and of the different 
metals used, with the aim of reporting the most promising 
material to create metal contact for GeSn alloy.  

In Fig. 2 the morphological evolution for samples 
annealed to the thermal range extremes (300°C and 500°C) is 
reported. From the study, all the metals show a smooth and 
homogeneous surface at 300°C, while at 500°C, Ni and Ti 
exhibit a discontinuous layer compared with Pt, that preserves 
its integrity. 

 Moreover, from further SEM analysis  (not showed in this 
work), we noticed that NiGeSn and TiGeSn contacts begin to 
depict some surface imperfections respectively from 400°C 
and 450°C, while PtGeSn showed continuous surface 
structures over the entire temperature range. 

Therefore, the degeneration at high annealing temperature is 

remarkable for Ni and Ti and may depend on the relatively 

high Sn content involved in the alloy (8%) or from the metal 

precipitations, that could lead to the surface agglomeration 

and degradation. 

 

 
Figure 2.  Representative SEM images of stanogermanides formed at 

different annealing temperatures. The pictures depict respectively NiGeSn 

, TiGeSn and PtGeSn surfaces annealed at 300°C, always show on the left 
side, and 500°C always on the right side. 

 
Continuing the study the AFM investigation (Fig. 3) 

confirms the data previously found in the SEM study (Fig. 2), 
namely an increasing trend in roughness as a function of the 
annealing temperature. On all samples, the analysis was 
carried on a central area in order to avoid edge effects.  

Fig.3 shows the 3D images with the root-mean-square 
(RMS) values found for the extreme temperature considered; 
it is noteworthy that the roughness increases significantly for 
NiGeSn and TiGeSn annealed at 500°C while for PtGeSn the 
RMS value slightly changes. 
Indeed from the investigation we found that the surface 

roughness of the samples increased due to the agglomeration 

effects as expected and was further confirmed from the cross-

sectional TEM analysis below. 

 

 
Figure 3.  RMS value and 3-D images derived from AFM analysis of 
NiGeSn, TiGeSn and PtGeSn annealed at 300 °C and 500 °C. 

 

To provide further details about the morphology of the metal-

GeSn layers a cross-sectional TEM inspection was done for 

the contacts formed respectively at 300 °C and 500 °C (Fig. 

4). As shown in Fig. 4(a), 4(c) and 4(e) the cross-sectional 

analysis of the sample annealed at 300°C confirmed that 

surface layer alloys were formed only with Ni and Pt in the 

temperature range taken into account; while the Ti did not 

appear to react with the underlying GeSn, which displayed a 

superficial layer of 10 nm.  

Comparable results were found for the sample formed at 

500°C as highlighted in Fig. 4(b), 4(d) and 4(f), in which Ni 

and Pt form stanogermanide layers while Ti does not yet react 

with the GeSn alloy. 



The solid-state growth process for the 30 s anneal resulted in 

structures with different thickness variation, depth, and grain 

size depending on the annealing temperature. Briefly, all Ni 

and Pt structures were composed of crystal grains with 

specific size and orientation, justified by observing the 

variation of the diffraction contrast in the TEM images. 

 In accordance with the top-down SEM analysis (Fig. 2), it 

was also seen that the continuity of the NiGeSn layers has 

degraded at 500 °C, resulting in the formation of well-defined 

island-type regions, as shown in Fig. 4(b). In comparison, the 

PtGeSn structures appeared continuous at both temperatures. 

 

 

Figure 4.  TEM images at the same magnification for all the metals at the 
two different extreme annealing temperature; a) NiGeSn at 300 °C, b) 
NiGeSn at 500 °C, c) PtGeSn at 300 °C, d) PtGeSn at 500 °C, e)TiGeSn 
at 300 °C, f) PtGeSn at 500 °C. 

  
 To obtain further details on the metal structures, we used 
EDX line scans to obtain compositional profiles for all 
samples (fig.5 and fig.6). Figure 5 provides STEM imaging 
and EDX line scans for two Ni samples respectively annealed 
at 300°C and 500°C (fig. 5(a) - fig. 5(c). From the graph below 
the pictures (fig 5(c) and fig. 5(d)) it can be seen that the Sn 
content (both averaged values across the stanogermanide layer 
and point measurements within the layer) decreased to about 
4.0 and 6.0 at. % for the Ni samples while Sn content for the 
non-annealed sample measured under similar EDX condition 
showed Sn content of about 8.0 at.%.  
Looking at the Sn EDX profile in the underlying Ge substrate, 
highlighted in the picture and in the graph with light green 
region, we can see that the Sn signal is at the limit-of-the 
detection of the measurement (about 0.1 at.%). It is worth 
mentioning that the compositional profiles for all NiGeSn and 

PtGeSn structures were relatively uniform both across 
(perpendicular) and along (parallel) the layer surface. 
 

 
Figure 5.  STEM imaging and corresponding EDX line scans for the 
regions marked with golden and light blue measured for the Ni(GeSn) 
sample formed at 300°C (a) and 500°C (c) Graphs below report 
respectively the line scan of the respective sample above; b) Ni(GeSn) at 
300°C d) Ni(GeSn) at 500°C  

 
Furthermore all the other EDX line scans are reported in figure 
6. As a consequence of what has been mentioned and depicted 
previously, for Pt samples annealed at 300°C and 500°C ( 
respectively Fig. 6(c) and 6(d) ) it is possible to see that the 
blue curve peak, always used to highlight the metal, fit with 
the other two peaks, red used for Ge and green for Sn. While 
for the Ti samples, as pointed out in Figs. 6(a) and 6(d), the 
blue curve peak is positioned outside the green and red peaks; 
essentially meaning that the metal does not react with the 
GeSn alloy beneath to form TiGeSn. 
 

 
Figure 6.  EDX analysis of the other metals. Figure (a) and (b) represent 
respectively TiGeSn at 300 °C and 500 °C; while figure (c) and (d) 
represent PtGeSn annealed respectively at 300 °C and 500 °C. In all the 
last four images (a), (b), (c) and (d), the blue curve is always related to the 
metal used, the red curve at Ge while the green one to the Sn. 



With regards to the electrical testing, a 4PP measurement was 
performed on all the samples developed. 
Each coupon was tested 3 times, in 3 different places, 
respectively on the two opposite corners and in the center of 
the coupon in order to extract an averaging resistance. 
In fig.7 it is possible to see the sheet resistance values 
measured by following the four-point probe methodology 
[15]; the graph display the result achieved as a function of the 
annealing temperature. Nickel shows the lowest values up to 
450°C; point where Platinum overtakes Nickel performance 
showing the lowest resistance values. While for Titanium the 
data are always at least one order of magnitude higher 
compared with the other two materials. 
 

 
Figure 7.  Sheet resistance for all the metal material take into account as 
a function of the formation temperature. The black curve will highlight Ni 
data , the red curve will show the Pt and the green the Ti ones 

 

CONCLUSION 

The aim of this work was to show the best metal 
candidates for stanogermanide contacts on Ge0.92Sn0.08 thin 
films in the formation temperature range selected. 

We pointed out the sheet resistance trends, for three 
different metals, respectively Ni Ti and Pt subjected at various 
annealing temperatures. 

Relating to the morphological aspects, in the thermal range 
selected, Ni and Ti were found to be the more sensitive 
materials for the agglomeration as showed in the SEM 
analysis; further confirmed also by TEM detection which 
showed that Ni and Pt are able to form continuous 
stanogermanide layers while Ti does not react with the 
underlying GeSn layer. 

In addition, we performed a roughness study that depicts 
an increasing trend as a function of the annealing temperature. 

Finally, from the electrical data investigation, NiGeSn 
shows best low-resistance performance up to a formation 
temperature of 435 °C, above which PtGeSn outperforms the 
NiGeSn in terms of sheet resistance.  

Therefore, the most attractive solution to increase the 
thermal stability, as long as good contact performance is 
required, is represented by mix of Ni and Pt. This alternative 
could be used in future to develop GeSn devices with higher 

performance avoiding the contact problems due to the higher 
Sn concentration. 
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