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Abstract—Wireless Sensor Networks (WSNs) increasingly enable 

applications and services to interact with the physical world. Such 

services may be located across the Internet from the sensing network. 

Cloud services and big data approaches may be used to store and 

analyse this data to improve scalability and availability, which will be 

required for the billions of devices envisaged in the Internet of Things 

(IoT). The potential of WSNs is limited by the relatively low number 

deployed and the difficulties imposed by their heterogeneous nature 

and limited (or proprietary) development environments and interfaces. 

This paper proposes a set of requirements for achieving a pervasive, 

integrated information system of WSNs and associated services. It 

also presents an architecture which is termed holistic as it considers 

the flow of the data from sensors through to services. The 

architecture provides a set of abstractions for the different types of 

sensors and services. It has been designed for implementation on a 

resource constrained node and to be extensible to server 

environments. This paper presents a „C‟ implementation of the core 

architecture, including services on Linux and Contiki (using the 

Constrained Application Protocol (CoAP)) and a Linux service to 

integrate with the Hadoop HBase datastore.  

Index Terms—Wireless Sensor Networks, Tuple Space, 

Information Model, Protocols, Cloud Computing, Big Data 

I. INTRODUCTION  

Wireless Sensor Networks (WSNs) are being enabled by 

the increasing availability of sensors and advances in wireless 

technologies, hardware and the use of IP for connecting 

resource constrained devices. The use of micro IP stacks (and 

IPv6 over Low power Wireless Personal Access Networks 

(6LowPAN) [1] has enabled constrained devices to connect to 

the Internet in a so called “Internet of Things” (IoT). 

Definitions of IoT generally share the idea that it relates to the 

integration of the physical world with the virtual world of the 

Internet [2]. IoT is characterised by an interconnected set of 

individually addressed and constrained (possibly autonomous) 

devices in a distributed system, with sensing/active devices for 

physical phenomena, data collection, and applications using 

sensing, computation and actuation. There could potentially be 

billions of such devices connected across the Internet with  

predictions of 50 to 100 billion devices being connected to the 

Internet by 2020 [3]. 

WSNs have a (possibly large) number of devices with 

sensing capabilities, limited processing capability and wireless 

connectivity (allowing nodes to be deployed close to the 

phenomenon being observed) to other sensor or gateway 

nodes. WSN nodes exist to sense a particular entity, collect 

(and possibly parse or aggregate) the data and send the data to 

one or more destinations and ultimately to an application 

across a range of areas, e.g. environmental monitoring, 

surveillance and healthcare. Such deployments are usually 

dedicated and proprietary or specialized to optimise one 

particular aspect such as lifetime. 

The availability of increased storage and processing power 

at a lower cost with greater bandwidth has enabled a range of 

Cloud Computing services. In terms of IoT, this allows more 

sources of data to be collected and for the data to be held for a 

longer time and to be processed by powerful cloud based 

applications and Big Data techniques, e.g. HBase and 

MapReduce. Big Data can be characterised by the 3 „Vs of 

Volume (size of the data), Variety (range in type and source of 

data) and Velocity (frequency of data generation) [4].  

The constrained nature of WSN nodes in terms of 

processing power, memory and energy consumption makes it 

difficult to enable WSNs to be more easily deployed, 

developed and integrated with new Internet based services. A 

key challenge is to enable WSNs to become extensions of the 

Internet infrastructure, to take full advantage of Cloud and Big 

Data services [5] and be universally available, rather than 

isolated and relatively small islands of sensor networks. To 

address this challenge, this paper presents a set of architectural 

requirements, a resulting layered architecture and abstractions 

for the data exchange roles taken by services on WSN nodes 

and in the Cloud, supported by a novel protocol. It also 

evaluates an initial implementation of the architecture. 

The remainder of this paper is organised as follows. We 

discuss prior work in section II and present a set of 

architectural requirements to meet the challenge above in 

Section III. Section IV presents the architecture, including its 

service abstractions, object library and introduces the message 

protocol. Sections V and VI present an initial implementation 

and evaluation of the architecture and its HBase integration. 

The paper concludes in Section VI. 

II. EXISTING AND EMERGING FRAMEWORKS 

This section outlines the current frameworks and 

approaches used in the Internet of Things, WSN software, 

Cloud Integration and Big Data. A recent survey shows that 

only 13 of 28 WSN systems surveyed have actually been 

implemented on hardware rather than run in simulators [6] and 

that there is still an absence of broad abstractions, which we 

propose later. Hence applications are often bound to a 

particular WSN technology and not easily portable as the 



application developer must have detailed knowledge of each 

underlying technology.  

A. Constrained Application Protocol and IoT 

The Constrained Application Protocol (CoAP) has been 

developed by the Internet Engineering Task Force (IETF) and 

is targeted at the IoT area [7]. It is a standard for a specialized 

web transfer protocol for constrained nodes and constrained 

(e.g. low-power, lossy) networks. It is built on top of UDP and 

uses web concepts such as URIs and media formats for easy 

integration of such constrained environments into HTTP and it 

addresses issues such as the overhead of HTTP headers, XML 

parsing, TCP over lossy links and the handling of node duty 

cycles. It uses the REST architectural style [8], where 

resources (such as sensors) are represented in a number of 

formats and accessed by their Universal Resource Identifier 

(URI) using a limited set of verbs, such as GET, POST, PUT, 

DELETE in HTTP. The decoupled nature of this style 

facilitates application development and scalability.  

B. Cloud Integration Approaches 

The NIST has proposed three main Cloud service 

types/models of Infrastructure as a Service (IaaS), Platform as 

a Service (PaaS), and Software as a Service (SaaS) [10].  

Sensing as a Service has been proposed, with elements of an 

IAAS solution [5], but more often as a PAAS. Commercial 

offerings such as cosm.com allow users to upload their sensor 

data using a defined set of attributes. 

Sensor-Cloud [11] uses SensorML to describe sensor 

metadata and manages sensors via the cloud, rather than 

providing their data as a service. The OpenIoT [12] 

middleware platform comprises an IoTCloudController 

(provides SOAP Web services for sensor registration, 

discovery, subscription and control), a JMS style Message 

Broker, Sensors (with a module to publish to OpenIoT) and 

Clients (which subscribe to or consume sensor data). Another 

approach uses a data channel based on Java FileInputStream(), 

FileOutputStream() to hide the underlying network protocols 

and a Sensor Server on the wireless network‟s master node to 

filter sensor data and to deliver it to cloud services [13]. This  

approach is simple, but limited in its flexibility. Another 

integration approach uses a content-based pub-sub model for 

event publications and subscriptions for asynchronous data 

exchange, requiring a gateway at the edge of the cloud to 

receive sensor data, a Pub/Sub Broker to process and deliver 

events to registered users and a range of components to 

support SaaS applications [14]. 

These middleware approaches to cloud integration require 

specific application gateways/proxies at the edge of each 

wireless network and their own sensor data definition. 

C. Big Data 

The use of Big Data is well established commercially to 

analyse large amounts of data in order to make timely 

decisions, e.g. in retail for analysing consumer behaviour and 

preferences. This paper illustrates how seamlessly our holistic 

architecture can accommodate the use of Apache HBase to 

store sensor data. HBase uses the Hadoop Distributed File 

System (HDFS) and is a distributed, versioned, column-

oriented, store, derived from Google BigTable. HBase stores 

data into tables, rows and cells. Rows are sorted by row key 

and each cell in a table is specified by a row key, column key 

and a version, with the content held as an un-interpreted array 

of bytes. We consider HBase suitable for WSN data not just 

because it is scalable and can store large amounts of replicated 

data, but because of its key value nature and flexible data 

access. The data access is provided by a rapid query using a 

get with a row key and a scan using an arbitrary combination 

of selected column family names, qualifier names, timestamp, 

and cell values. It also provides sparse tables, which is 

appropriate for cases where not all WSN nodes can provide all 

the columns defined. Columns belong to a particular column 

family and are identified by a qualifier. Column families must 

be declared at schema definition time, but individual columns 

can be added to a family at run time. The associated 

MapReduce model has been shown to be appropriate for 

processing sensor data [15].  

D. WSN Software Frameworks 

Programming WSN applications and nodes is time-

consuming, error-prone and difficult requiring low level 

hardware and network knowledge, often using a vendor 

specific environment for particular hardware. Software 

Engineering concepts and higher level abstractions are required 

to improve the development process and ease the integration 

with other systems in order for wider deployment of WSNs [16] 

as part of the seamless, context aware environments envisaged 

in pervasive computing [17], where applications/services are 

interested in the sensed information,  not the underlying 

hardware or wireless network. Special purpose operating 

systems like Contiki are used on more constrained nodes, while 

more powerful hardware platforms such as SUNSPOT have 

high level language support such as Java, but at the cost of 

more expensive hardware and higher power consumption. 

TinyDB [18] essentially considers the WSN as a distributed 

database and can be considered limited by its table based 

approach and relational queries, especially in terms of handling 

events. Middleware approaches such as Sensation[19] treat the 

sensor network as a whole as an information source similar to a 

database, with its middleware acting as an integration layer 

between applications and networks and a proxy with a prioi 

configuration for particular WSNs to hide device and network 

specifics. Agent based middleware requires particular node 

computational capability and the energy used by traffic for 

code mobility reduces node lifetime [20]. A data-centric 

approach such as directed diffusion has the potential of 

significant energy savings and relatively high performance, but 

it is tightly coupled to a query on demand data model where 

applications can accept aggregated data [21]. TeenyLIME [22] 

is another higher level approach, which is based on a shared 

memory space (tuple space), derived from Linda‟s [23] limited 

number of simple operations to insert, read, and withdraw 

tuples from a tuple space. TeenyLIME has been deployed in a 

real-world application and shown the usefulness of a tuple 

space approach in WSNs [24], but a node‟s local tuple space is 

only shared with the nodes within communication range. 



III. ARCHITECTURE REQUIREMENTS 

The objective of our architecture is to simplify the 

development, configuration and deployment issues to enable 

ubiquity of WSNs, easier interfacing to other networks and the 

easier development of generic and more powerful applications 

using sensor data. To meet this objective, we define the 

following architecture requirements:   

1. It must be independent of particular node hardware, 

must handle a range of node functional capabilities and 

provide an extensible layered system able to handle the 

radio channel and environmental factors, within the 

required limits of power consumption. 

2. It must provide abstractions for the basic operations 

required of a sensor node and the services using it, 

which map easily to a range of heterogeneous devices 

and higher level services.   

3. It must clearly define the possible roles of nodes and 

any protocols must be sufficiently simple for low 

capability devices to participate. It is unreasonable to 

demand that all nodes have equal functionality, as this 

limits the ability to handle more powerful nodes. 

Nodes will, however, require a minimum level of 

functionality, e.g. forwarding data to a neighbour. 

4. It must provide a consistent means to exchange sensor 

information independent of the underlying technology 

and provide specific support for the modelling of 

sensor data to allow integration into higher level 

systems. A sensor node should be able to advise other 

nodes and services of its sensing and platform 

capabilities.  

5. It must be able to handle small, static networks and 

allow the system to adapt as the network 

grows/changes or encounters other networks and 

support  applications discovering and collaborating 

without a centralized coordination facility. 

The need for a more holistic approach can be seen in a 

remote healthcare monitoring scenario, where sensors connect 

to a central gateway in a house over a wireless network. The 

gateway is responsible for storing the data locally and 

uploading data to a central health monitoring site, possibly via 

a central gateway/proxy and cloud based services to analyse the 

data [25]. Such solutions often require sensor application and 

proxy design to handle data integration, network integration 

and security concerns. This lack of unified abstractions will 

become more problematic in this scenario as Wireless Body 

Area Networks are deployed, e.g. IEEE802.15.6 which allows 

up to 64 nodes on a body to connect via a central co-ordinator 

node. When large numbers of WSNs/BANs are deployed, 

treating these networks of nodes as peripheral devices and 

connecting them to the Internet via proxies or sinks will limit 

performance and scalability [26].  

IV. THE HOLISTIC ARCHITECTURE  

This section proposes an architecture to meet the 

requirements from section II. The key principle underlying it is 

that all WSNs are primarily about delivering sensed data/events 

to one or more applications (periodically, on-demand or 

asynchronously) or commands to actuators from applications. 

The architecture meets the requirements in section II by using a 

number of service abstractions to model the different roles a 

service can perform, defined software layers and an object 

infrastructure to support information models. It uses a simple 

protocol based on Peer to Peer (P2P) concepts able to run on 

constrained nodes. The approach is termed as holistic because 

it considers the entirety of the data flow between sensor and 

service(s), supported by lower layers, rather than each layer 

specifying its own behaviour in isolation.  

Figure 1 shows the layers in the architecture for nodes of 

different capability with their different roles, e.g. a node that 

only fulfills the forwarder role does not have a local 

instrumentation layer, but has an object space to store data 

from remote peers. It also shows how a HBase store is modeled 

as a sink service and how it would be exposed to constrained 

nodes using a hpp_endpoint. The Data Model Service Layer 

provides a high level abstraction for node data and it uses the 

object space to hold remote peer data and local data (if 

supported by the role), so simplifying the communication of 

data between sensor nodes and higher level applications. The 

local instrumentation (li) layer supports local data and provides 

an abstraction above device specific layers to map to the 

underlying node functions or data.  

 

 

Fig. 1.  Holistic Architecture 

A. Service Abstractions and Data Model Service Layer 

The architecture‟s Data Model layer uses a set of service 

roles to model the data flow and to abstract the lower layer 

interfaces for nodes and hide the underlying network and node 

specifics from the application developer. The Data Model (DM) 

Service layer abstracts the service capabilities using roles 

reflecting the nature of the data exchange. The defined roles 

support a range of capability with the following roles: 

 DM_SINK_SRV (adds interest objects to its peers for 

data it wants) 



 DM_SOURCE_SRV (sends its sensor data) 

 DM_FORWARDER_SRV (forwards to peer services) 

 DM_STORE_SRV (stores data from peer services) 

 DM_MATCHER_SRV (provides results of advanced 

matching queries) 

 DM_AGGREGATOR_SRV (aggregates data from 

peer services) 

A node can have several roles according to its resources, e.g. 

a constrained node may only act as a DM_SOURCE_SRV, not 

storing its own data or a node may remove its capability as a 

DM_FORWARDER_SRV if low on remaining power. Source 

and sink roles can be seen in other flow based approaches such 

as Flume, used to deliver large amounts of log data in Web 

and Cloud Computing services. We have added the forwarder, 

aggregator and store roles for the capabilities of WSN nodes. 

Services use the holistic peer-to-peer (hpp) protocol to 

exchange hpp messages using the hpp_endpoint and 

hpp_channel. A hpp service registers/deregisters instances of 

its objects (and their specific methods), its capabilities (in a 

template object) and its interests in other objects with the object 

space layer. These objects may be forwarded to remote peers 

and services must renew their object leases with their peers. A 

service‟s capabilities are thus advertised to other services, 

allowing  a node to set its sensing and response timing based on 

the received interests, e.g. a sensor may be able to report every 

15 minutes, but only sends a reading every hour based on what 

interests were provided by applications. 

B. The Object Space Layer  

The object library is a simple object-like infrastructure 

suitable for resource constrained devices with object functions 

to support a simple shared object store and associated API. It is 

used to store locally instrumented data and data received from 

other nodes for aggregation or other purposes. It is based on  

Linda‟s tuple space concepts. The decoupling in time and space 

of tuple space communication enables interactions where 

applications can be added or removed independently and do not 

have to be available simultaneously to transfer data between 

themselves. Our object library has been implemented in C and 

its main methods are objectAdd(), objectRemove(), 

objectGetByHandle(),objectGetByName(), objectLeaseRenew() 

and objectGetInstance(). 

The object space is non-prescriptive about the classes and 

instances it holds, except that it requires the use of a template 

to hold the type of each attribute of the object and its methods. 

An object structure represents an object held in the object store, 

with its template and each object has a lease, allowing for the 

space to remove objects if leases are not renewed. The template 

and instance are kept separately to allow for objects that 

represent a class (i.e. do not have instances) and to allow a 

range of object encodings. For resource constrained devices it 

also offers an efficient way of transferring them to other nodes, 

where the template (or a reference) can be sent once to another 

node prior to the encoded object. Templates are also used to 

define node capabilities on a model/object basis (i.e. to specify 

which properties of a standard object are instrumented). The 

definition of a template is transparent to the object store. 

C. Local Instrumentation Layer 

This layer hides the platform specific sensor 

implementations and provides get()/set() functions and method 

prototypes for node functionality such as power off. It also 

allows the use of C language features such as pointers to reduce 

memory usage. It also provides per attribute structures to allow 

only those object/sensor attributes supported by the node to be 

implemented and these can be built into higher level 

information models, e.g. an SNMP MIB table or CIM object. 

D. The Holistic P2P Protocol (HPP) and Hpp Channel 

A simple message protocol suitable for resource limited 

nodes has been developed to support interaction between the 

different service roles we have defined. It uses a hpp_channel 

between hpp_endpoints to provide a single API to run on top of 

various network and data link layers, so that applications do not 

require knowledge of the underlying network. It uses a limited 

set of message types in line with the operations of the object 

space. HPP has the characteristics of a P2P system at the 

application level as its hpp_channel and defined roles allow 

nodes to act in an autonomic and dynamic manner where nodes 

enter or leave the network and any node may initiate, manage 

or terminate a session with other nodes. It does not at present 

support node discovery (but can discover node capabilities) or 

overlay networks.  

 

 

Fig. 2.  Sample Service Interaction  

HPP messages consist of blocks, always started by at least a 

Header block followed by other blocks for Address, Data and 

Credentials. Some messages may only hold a header block and 

every block has the same preamble of a Command, a block 

length and a block id, so a WSN node only has to receive the 

header block and parse the command to determine if it should 

process this message. During the Connection Phase, the 

messages are Hello, Attach and Detach and during the Data 

Phase, the messages are Get, Add, Remove, Get Response, 

Action, Notify and Acknowledgement. All nodes must support 

Hello, Attach, Detach, but nodes may support only Get/Get 

Response in the Data phase (shown in its capabilities). The 

command types map well to the REST approach, although 



Action, Notify primitives have been added for the actuator and 

alert functionality of sensor devices. 

The sequence diagram in Figure 2 shows an example 

message interaction (after Hello and not showing object lease 

renewal), where a source service (on a node) adds both its 

service and node class templates and instances to a store 

service, e.g. on a higher powered node. This store service is 

queried by a sink service for the node‟s capabilities and 

determines that there is a sensor on the node, which it then 

retrieves. Other interactions are possible, e.g. the source service 

adds its sensor class and instance to a store service (at a period 

matching the sensor reading update) so the retrieval by the sink 

service can use the store service‟s data for that node and not 

require additional transmission to the original source node. 

V. IMPLEMENTATION 

A. HPP  Implementation 

This section discusses the design and implementation issues 

encountered in an initial implementation using the CIM 

information model for sensor objects and storing this data in 

HBase. The implementation in „C‟ includes the Data Model 

Service, Object Space and Local Instrumentation Layers 

shown in Figure 1 and a DM_SINK_SRV service written in 

Java to integrate with HBase. The „C‟ code was implemented 

initially on Linux, using the hpp_service abstraction on top of 

the hpp channel abstraction to hide the specific network layer 

details. Testing was done using Linux based source nodes 

sending hpp messages to transfer their classes and instances to 

a specified number of remote nodes using a small number of 

functions, as the following code is all that is required for a 

service to start receiving messages from other services: 

 

    rv = hpp_endpoint_check(endpoint_ptr); 

if (rv == 0) {        

  channel_ptr = hpp_endpoint_accept(endpoint_ptr); 

} else if (rv > 0 ) { 

  hpp_endpoint_get_messages(endpoint_ptr); 

} // timed out with no data, so loop again 

 

The Linux code was then ported to Contiki running on a 

Sky WSN mote (emulated in Cooja), using the CoAP 

implementation. This implementation created objects and 

added them to the object space at different times as the node 

started up (and added dynamically later), e.g. the DM service 

class and instance objects were created at the start of the 

process, followed by the node class and instance and the local 

instrumented objects for led and temperature sensor. This 

showed the architecture and its abstractions worked across 

Linux and constrained nodes. 

B. Data Model Service Layer 

The initial Contiki implementation includes a number of 

custom CoAP "resources" on top of the data model layer, using 

the object space. For example, a DM_SOURCE_SRV service 

and node objects were implemented as key value pair objects 

be sent to another node such as a DM_STORE_SRV. Also, a 

CoAP resource was implemented for the creation of HPP 

objects dynamically. Classes and instances for red/blue/green 

leds, temperature sensor and node, using a subset of attributes 

from the CIM object, were also implemented. The following 

pseudo-code (not including error code) shows the service 

adding its own service class template and initialising its role(s): 

 

uchar dm_register_dm_service(objectAttr_t *template_ptr, 

objectAttr_t *inst_ptr, objectAttr_t *inst_key_ptr) { 

 

  if (dm_srv_class_hdl == 0)  

     dm_srv_class_hdl = dm_add_service_class( 

                         &DMServiceTemplate,    

                         DM_SERVICE_CLASSNAME);  

 

  hdl = dm_add_instance(…..); 

 

  if (service_role || DM_SOURCE_SRV) { 

      dm_source_init(); // initialise my local instrumentation (li) 

  }         // objectswith object store  

  if (service_role || DM_SINK_SRV) { 

     dm_sink_init(); // add objects we are interested in to 

  }         // object space on remote peers 

  if (service_role || DM_STORE_SRV) { 

      dm_store_init(); // set up support for holding  

  }       //instrumentation objects from peers 

  return (0); 

} 

The data model layer provides support functions on top of 

the object library; dm_initialise() and dm_add_class(), 

dm_add_instance(), dm_remove_instance() for local or remote 

sensor classes/instances. Retrieving object instances is done by 

dm_get_instance(inst_handle) or dm_find_instance(), which 

uses key values or particular attribute values according to the 

matching specified. Matching is implemented in the data model 

layer and not the object library (the contents of objects are 

transparent to it). A hpp Add message is sent to a remote node 

to add a class or instance, with the remote node calling 

setupTemplate() to process the class attributes received and 

then dm_add_class() or calling dm_add_instance() with the 

received instance attributes. 

C. Local Instrumentation Layer 

Locally instrumented data is implemented using an 

li_class_property for each property and an li_inst_property 

with the value. This per property approach aligns with the 

hardware/vendor specific implementations to access particular 

readings or data,  e.g. to access sensor data by reading a value 

from a register or an API call like get_sensor_reading(). The 

li_class_property structure does not make any assumption 

about the object it is to be put in (it could appear in more than 

one) and can be combined into different classes for particular 

information models or be added into tables or key value stores 

such as HBase. A node‟s local instrumentation (li) classes and 

instances are added to its local object store and optionally 

converted into key value pairs for adding to other nodes. 

Key and non-key properties are treated separately as many 

information models use keys to identify groups of data (rows in 

SNMP or HBase or object instances in CIM), but also because 



resource constrained devices often set keys when the class is 

created and can be allocated then, whereas non-key data in an 

instance changes and may be read by a dynamic getter function.  

D. HPP Integrated Erbium-CoAP Implementation on Contiki 

The Linux implementations of the local instrumentation (li) 

layer, data model and object space, supporting libraries 

(memory utilities, doubly linked list, hash, lease) and the 

message building parts of the hpp protocol have been ported to 

Contiki as part of the pre-existing erbium-REST 

implementation example [9]. This approach allowed these 

items to be tested on hardware with a supporting REST 

infrastructure and for the port to use existing Contiki libraries. 

The code samples below show the integration itself was 

straightforward. The hpp message payload was simply added as 

CoAP payload using the call REST.set_response_payload(). It 

is expected that adding the hpp channel abstraction on top of 

the existing Contiki networking stack will not be difficult. The 

additional code required in Contiki compared to Linux 

consisted of: 

 A Contiki call to initialize hpp_element. The simple call 

service_hdl = service_initialise(); was added to the Contiki 

main PROCESS to call the initialize code in the Linux 

hpp_service daemon to set up the service and node objects. 

 Integrating with the REST code. This consisted of code to 

add the resource into the erbium resource handling list 

rest_activate_resource(&resource_hppnode) and the code 

to implement that resource. The CoAP resources were 

accessed via URLs using a suffix of hpp/[classname] and 

the node responded with the properties implemented in 

that hpp object as key value pairs in the CoAP payload, 

using multiple CoAP buffers. A RESOURCE macro is 

used to define a CoAP resource and the CoAP verbs such 

as get or put it handles, with a corresponding function to 

implement it called resource-name_handler. The handler 

below for the node object returns the node instance from 

the object space when queried over CoAP: 

 

void hppnode_handler(…) { 

    object_t *instObj_ptr = NULL;  

    instObj_ptr = dm_find_instance(NODE_CLASS); 

    hpp_send_object_resp(instObj_ptr, response, buffer);  

} 

 Adding a Resource for Hpp Objects. This allowed a URI 

like /nodeAddr/hpp/object?hdl=x to select an object by 

the handle allocated when it was created in the object 

space or to walk through the available objects, as shown 

by the following handler: 

 

void hppobject_handler(…) { 

    len = REST.get_query_variable(request, "hdl", &chdl); 

    instObj_ptr = dm_find_object_by_handle(hdl); 

    hpp_send_object_resp(instObj_ptr, response, buffer); 

} 

 Integrating with the Contiki hardware abstractions. This 

pseudo-code shows the li layer code wrapping the Contiki 

led calls  and is called by a resource handler to set a led: 

  

li_mote_method(int method_cap, int inst_id, int setting) { 

uint8_t led = (uint8_t)inst_id; 

if (method_cap == MOTE_CAP_LED_SET) 

    if (setting == MOTE_LED_ON)  

        leds_on(led); // Removed  leds_off,  leds_toggle code 

} 

E. Integration of Data From  Contiki Based Node with HBase 

We created a HBase table for each hpp class with a row for 

each instance. The tables have two column families named 

"key attributes" and "attributes" and a column family qualifier 

for each attribute. A row key consists of the hpp object‟s key 

attributes, node id and a timestamp.  

A Java CoAP client (a DM_SINK_SRV) was written that 

connected to the desired WSN node via a socket to the CoAP 

Server on the Contiki rpl border router. It built a COAPPacket 

using COAPPacket(), called the serialize() method and sent it 

using the COAP libraries. It then passed the reply data and the 

HBaseConfiguration object it had created to writeToHBase(). 

The code extract below shows writeToHBase(). It assumes 

the table has already been created by an earlier hpp command 

to add the class and shows how the received hpp data as key 

value pairs is processed and written as a row to the HBase table 

for that class: 

 

public static void writeToHBase(Configuration conf,  

    String tableName, String hppData) { 

 

  Map<String, String> keyKvs = getKeyMap(hppData); 

  Map<String, String> attrKvs = getAttrMap(hppData); 

  HBase admin = new HBaseAdmin(conf); 

  HTable table = new HTable(conf, tableName); 

  String rowKey = createRowKey(keyKvs);  

  Put put = new Put(Bytes.toBytes(rowKey)); 

  // Add hpp data to column families 

  addMapToHBasePut(put, keyKvs, "key attributes");  

  addMapToHBasePut(put, attrKvs, "attributes"); 

   table.put(put); 

   admin.close(); 

} 

VI. EVALUATION OF IMPLEMENTATION 

The initial implementation is evaluated in this section in 

terms of the abstractions used, the ability to map properties to  

objects or tables, HBase integration, the value of the initial 

Linux implementation and its memory use. It is planned to 

perform more objective tests in defined scenarios. 

1)  Abstractions 
Evaluating abstractions can be done by ensuring that “end-

user” and “WSN geek” are catered for [6]. The “end-user” is a 

domain expert concerned with using the WSN data and not 

with the network/node specifics, which  the “WSN geek” is 

concerned with. We have shown examples where the end user 

is able to access the data simply with known CoAP Resources 

or objects or from the HBase store. The “WSN geek” has been 

provided with a cross-platform architecture using an object 



space and data model layer with a local instrumentation layer 

for incorporating node specific functionality and capabilities. 

The code extracts show that these items made it straightforward 

for a node to implement objects from a rich information model 

on both a Linux and Contiki platform and to map to CoAP 

Resources. This also meets the design goal of the same 

abstractions giving a generic information infrastructure across 

heterogeneous platforms of different capability, even when 

used with delivery protocols other than the hpp protocol. The 

object space was also shown to easily map objects to specific  

CoAP REST resources and the hppobj resource above showed 

it also easily supported discovery and searches across the 

implemented objects.  

The value of some of the service abstractions has been 

shown with a Java DM_SINK_SRV service that receives data 

as hpp key value pairs  from Contiki and stores that data in 

HBase and also a DM_SOURCE_SRV that adds its classes and 

instances to specific remote nodes (via hpp add directly or in a 

CoAP PUT payload).  

2) Object and Property Node Mapping 
The sample code has shown that an attribute based 

implementation of the objects fits naturally with the low level 

specifics of the nodes and maps to CoAP REST resources, such 

as led and sensors and groupings of individual attributes, such 

as proposed in the IP for Smart Objects (IPSO) Application 

Framework [27]. The implementation showed that the 

approach of having a class object as a template with attribute 

descriptions and its instance object with attribute values was 

successful in three ways; it allowed selective use of attributes 

from CIM classes on constrained nodes (important for the 

many strings used in objects such as CIM_NumericSensor), it 

supported a set of abstractions in a COAP/REST environment 

and also allowed straightforward mapping of these attributes 

into a HBase store. 

3) HBase Integration 
In terms of data mapping, the hpp objects mapped cleanly 

to HBase tables and the use of a property per attribute mapped 

well to HBase columns. Furthermore, the approach of separate 

key and non-key properties could be mapped to separate HBase 

column families, allowing a HBase scan across all rows of key 

attributes as well as non-key attributes, rather than only being 

able to use the key attributes as instance identifiers. The hpp 

message primitives also mapped well to HBase functionality, 

e.g. the two column families defined for attributes allowed 

adding new objects with their attributes by creating a table (and 

its columns), which can be done dynamically on receiving a 

hpp Add message with the template class. Similarly, a hpp Add 

of an instance (at a given time) will result in a new row in the 

object‟s table. The architecture allowed hpp data on the node to 

be transported and stored in HBase, using CoAP, requiring no 

application level proxy and only requiring a proxy at the 

network level (the rpl border gateway). 

4) Linux Implementation and Code Porting Issues 
The approach of initially implementing on Linux allowed 

the design to be refined and the code to be debugged and tested 

more easily and rapidly, using the more advanced Linux 

development and debug environments. It also provided services 

on Linux that could integrate easily with those on constrained 

nodes. These benefits came at little cost in terms of the 

subsequent port to Contiki as most of the code did not require 

any changes, given the availability of standard C libraries in 

Contiki. The main code changes were to provide a revised 

Makefile, a simplified implementation of gettimeofday() used 

for object leases and to change the type of function parameters 

and structure members to reduce size (e.g. from int to char). 

5) Memory Usage 
It was necessary to remove parts of the erbium-CoAP code 

to create space for the hpp code. Retaining parts of the erbium 

and CoAP stack did allow using the CoAP transport and the 

Copper Browser plugin for testing. A more complete 

integration with CoAP would reduce the memory footprint and 

allow more hpp functionality to be included. 

TABLE I.  MEMORY USAGE OF REST EXAMPLE 

 Original Erbium REST 

Code 
Erbium  +  HPP Code 

 Code 

(%) 
Data(%) 

Total 

(%) 

Code 

(%) 
Data(%) 

Total 

(%) 

libc 8 0 7 9 0 8 

core 9 3 8 7 2 6 

Network 50 74 53 50 63 52 

Platform 12 3 10 10 4 9 

coap 17 17 17 11 12 11 

rest 5 3 5 2 4 2 

hpp n/a n/a n/a 11 15 12 

 

Table 1 shows the percentages (both applications varied by 

a few 100 bytes) of the available memory (10K RAM, 48K 

Flash) used for particular sections in the original er-rest-

example application and for the modified application with hpp. 

The hpp application included resources for the hpp led and 

objects for Service, node and reduced CIM_AlarmDevice and 

CIM_NumericSensor. The REST engine and CoAP use a 

small amount of memory compared to networking, which is 

equivalent to that for the platform and core. It can be seen that 

the code and data usage of hpp is equivalent to that of CoAP, 

so that it is feasible for a constrained device. 

VII. CONCLUSION 

We have proposed a set of requirements for an architecture 

that reflects the characteristics of WSNs and would allow 

WSNs to be more widely deployed and more easily integrated 

with applications, including Big Data services to collect and 

analyse their data. We have proposed a holistic architecture 

with defined abstractions, software layers, a loosely coupled 

object space and a simple and flexible protocol. These 

abstractions also enabled the approach of developing the code 

initially on Linux and then porting to Contiki. We have also 

evaluated the architecture based on an initial implementation. 

The first requirement has been met by showing that the 

architecture and abstractions can be relatively easily 

implemented on both constrained WSN nodes with acceptable 



memory use and are also suitable for more capable devices and 

applications, e.g. on Linux. The second requirement has been 

met by providing abstractions for the basic operations of a 

sensor node and the services using it, e.g. the local 

instrumentation layer handled the underlying Contiki hardware 

libraries and the data model layer handled the REST resources. 

The third requirement has been met with the service roles, 

although only the source, sink and store roles have been 

implemented at this point. The fourth requirement has been met 

by showing the exchange of sensor information from the node 

to CoAP to HBase independent of the underlying technology.  

Further work is planned to port the hpp channel abstraction 

to Contiki and to investigate further integration of hpp with the 

CoAP transport, to implement the other service roles in the 

architecture, as well as investigating the use of service 

capabilities/interests, particularly in terms of the interaction 

with Big Data services in the cloud to perform processing. It is 

also planned to investigate support for P2P overlays and the use 

of Distributed Hash Tables (DHT). It is also planned to 

perform larger scale tests with more nodes to verify the 

architecture meets the fifth requirement of being able to scale 

from small static networks to larger dynamic, heterogeneous 

environments and to show the benefits of the characteristics of 

the P2P and tuple concepts in the architecture (high scalability, 

redundancy, fault-tolerance and self-management). 

In summary, this architecture has been shown to enable a 

holistic, high-level approach on constrained and powerful 

platforms and enable a straightforward integration with Contiki 

and HBase to store sensor data, requiring only simple message 

reformats without requiring semantic changes or application 

proxies in an infrastructure of nodes and services. 
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