
Title A holistic architecture for the Internet of Things, sensing services
and big data

Authors Tracey, David;Sreenan, Cormac J.

Publication date 2013-05

Original Citation Tracey, D. and Sreenan, C. (2013) 'A Holistic Architecture for
the Internet of Things, Sensing Services and Big Data', 13th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, Delft, Netherlands, 13-16 May 2013, pp. 546-553. doi:
10.1109/CCGrid.2013.100

Type of publication Article (peer-reviewed);Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/6546137 - 10.1109/
CCGrid.2013.100

Rights © 2013 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-20 03:10:59

Item downloaded
from

https://hdl.handle.net/10468/9654

https://hdl.handle.net/10468/9654

A Holistic Architecture for the Internet of Things,

Sensing Services and Big Data

David Tracey, Cormac Sreenan

Dept. Of Computer Science,

University College Cork,

Cork, Ireland

Abstract—Wireless Sensor Networks (WSNs) increasingly enable

applications and services to interact with the physical world. Such

services may be located across the Internet from the sensing network.

Cloud services and big data approaches may be used to store and

analyse this data to improve scalability and availability, which will be

required for the billions of devices envisaged in the Internet of Things

(IoT). The potential of WSNs is limited by the relatively low number

deployed and the difficulties imposed by their heterogeneous nature

and limited (or proprietary) development environments and interfaces.

This paper proposes a set of requirements for achieving a pervasive,

integrated information system of WSNs and associated services. It

also presents an architecture which is termed holistic as it considers

the flow of the data from sensors through to services. The

architecture provides a set of abstractions for the different types of

sensors and services. It has been designed for implementation on a

resource constrained node and to be extensible to server

environments. This paper presents a „C‟ implementation of the core

architecture, including services on Linux and Contiki (using the

Constrained Application Protocol (CoAP)) and a Linux service to

integrate with the Hadoop HBase datastore.

Index Terms—Wireless Sensor Networks, Tuple Space,

Information Model, Protocols, Cloud Computing, Big Data

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are being enabled by

the increasing availability of sensors and advances in wireless

technologies, hardware and the use of IP for connecting

resource constrained devices. The use of micro IP stacks (and

IPv6 over Low power Wireless Personal Access Networks

(6LowPAN) [1] has enabled constrained devices to connect to

the Internet in a so called “Internet of Things” (IoT).

Definitions of IoT generally share the idea that it relates to the

integration of the physical world with the virtual world of the

Internet [2]. IoT is characterised by an interconnected set of

individually addressed and constrained (possibly autonomous)

devices in a distributed system, with sensing/active devices for

physical phenomena, data collection, and applications using

sensing, computation and actuation. There could potentially be

billions of such devices connected across the Internet with

predictions of 50 to 100 billion devices being connected to the

Internet by 2020 [3].

WSNs have a (possibly large) number of devices with

sensing capabilities, limited processing capability and wireless

connectivity (allowing nodes to be deployed close to the

phenomenon being observed) to other sensor or gateway

nodes. WSN nodes exist to sense a particular entity, collect

(and possibly parse or aggregate) the data and send the data to

one or more destinations and ultimately to an application

across a range of areas, e.g. environmental monitoring,

surveillance and healthcare. Such deployments are usually

dedicated and proprietary or specialized to optimise one

particular aspect such as lifetime.

The availability of increased storage and processing power

at a lower cost with greater bandwidth has enabled a range of

Cloud Computing services. In terms of IoT, this allows more

sources of data to be collected and for the data to be held for a

longer time and to be processed by powerful cloud based

applications and Big Data techniques, e.g. HBase and

MapReduce. Big Data can be characterised by the 3 „Vs of

Volume (size of the data), Variety (range in type and source of

data) and Velocity (frequency of data generation) [4].

The constrained nature of WSN nodes in terms of

processing power, memory and energy consumption makes it

difficult to enable WSNs to be more easily deployed,

developed and integrated with new Internet based services. A

key challenge is to enable WSNs to become extensions of the

Internet infrastructure, to take full advantage of Cloud and Big

Data services [5] and be universally available, rather than

isolated and relatively small islands of sensor networks. To

address this challenge, this paper presents a set of architectural

requirements, a resulting layered architecture and abstractions

for the data exchange roles taken by services on WSN nodes

and in the Cloud, supported by a novel protocol. It also

evaluates an initial implementation of the architecture.

The remainder of this paper is organised as follows. We

discuss prior work in section II and present a set of

architectural requirements to meet the challenge above in

Section III. Section IV presents the architecture, including its

service abstractions, object library and introduces the message

protocol. Sections V and VI present an initial implementation

and evaluation of the architecture and its HBase integration.

The paper concludes in Section VI.

II. EXISTING AND EMERGING FRAMEWORKS

This section outlines the current frameworks and

approaches used in the Internet of Things, WSN software,

Cloud Integration and Big Data. A recent survey shows that

only 13 of 28 WSN systems surveyed have actually been

implemented on hardware rather than run in simulators [6] and

that there is still an absence of broad abstractions, which we

propose later. Hence applications are often bound to a

particular WSN technology and not easily portable as the

application developer must have detailed knowledge of each

underlying technology.

A. Constrained Application Protocol and IoT

The Constrained Application Protocol (CoAP) has been

developed by the Internet Engineering Task Force (IETF) and

is targeted at the IoT area [7]. It is a standard for a specialized

web transfer protocol for constrained nodes and constrained

(e.g. low-power, lossy) networks. It is built on top of UDP and

uses web concepts such as URIs and media formats for easy

integration of such constrained environments into HTTP and it

addresses issues such as the overhead of HTTP headers, XML

parsing, TCP over lossy links and the handling of node duty

cycles. It uses the REST architectural style [8], where

resources (such as sensors) are represented in a number of

formats and accessed by their Universal Resource Identifier

(URI) using a limited set of verbs, such as GET, POST, PUT,

DELETE in HTTP. The decoupled nature of this style

facilitates application development and scalability.

B. Cloud Integration Approaches

The NIST has proposed three main Cloud service

types/models of Infrastructure as a Service (IaaS), Platform as

a Service (PaaS), and Software as a Service (SaaS) [10].

Sensing as a Service has been proposed, with elements of an

IAAS solution [5], but more often as a PAAS. Commercial

offerings such as cosm.com allow users to upload their sensor

data using a defined set of attributes.

Sensor-Cloud [11] uses SensorML to describe sensor

metadata and manages sensors via the cloud, rather than

providing their data as a service. The OpenIoT [12]

middleware platform comprises an IoTCloudController

(provides SOAP Web services for sensor registration,

discovery, subscription and control), a JMS style Message

Broker, Sensors (with a module to publish to OpenIoT) and

Clients (which subscribe to or consume sensor data). Another

approach uses a data channel based on Java FileInputStream(),

FileOutputStream() to hide the underlying network protocols

and a Sensor Server on the wireless network‟s master node to

filter sensor data and to deliver it to cloud services [13]. This

approach is simple, but limited in its flexibility. Another

integration approach uses a content-based pub-sub model for

event publications and subscriptions for asynchronous data

exchange, requiring a gateway at the edge of the cloud to

receive sensor data, a Pub/Sub Broker to process and deliver

events to registered users and a range of components to

support SaaS applications [14].

These middleware approaches to cloud integration require

specific application gateways/proxies at the edge of each

wireless network and their own sensor data definition.

C. Big Data

The use of Big Data is well established commercially to

analyse large amounts of data in order to make timely

decisions, e.g. in retail for analysing consumer behaviour and

preferences. This paper illustrates how seamlessly our holistic

architecture can accommodate the use of Apache HBase to

store sensor data. HBase uses the Hadoop Distributed File

System (HDFS) and is a distributed, versioned, column-

oriented, store, derived from Google BigTable. HBase stores

data into tables, rows and cells. Rows are sorted by row key

and each cell in a table is specified by a row key, column key

and a version, with the content held as an un-interpreted array

of bytes. We consider HBase suitable for WSN data not just

because it is scalable and can store large amounts of replicated

data, but because of its key value nature and flexible data

access. The data access is provided by a rapid query using a

get with a row key and a scan using an arbitrary combination

of selected column family names, qualifier names, timestamp,

and cell values. It also provides sparse tables, which is

appropriate for cases where not all WSN nodes can provide all

the columns defined. Columns belong to a particular column

family and are identified by a qualifier. Column families must

be declared at schema definition time, but individual columns

can be added to a family at run time. The associated

MapReduce model has been shown to be appropriate for

processing sensor data [15].

D. WSN Software Frameworks

Programming WSN applications and nodes is time-

consuming, error-prone and difficult requiring low level

hardware and network knowledge, often using a vendor

specific environment for particular hardware. Software

Engineering concepts and higher level abstractions are required

to improve the development process and ease the integration

with other systems in order for wider deployment of WSNs [16]

as part of the seamless, context aware environments envisaged

in pervasive computing [17], where applications/services are

interested in the sensed information, not the underlying

hardware or wireless network. Special purpose operating

systems like Contiki are used on more constrained nodes, while

more powerful hardware platforms such as SUNSPOT have

high level language support such as Java, but at the cost of

more expensive hardware and higher power consumption.

TinyDB [18] essentially considers the WSN as a distributed

database and can be considered limited by its table based

approach and relational queries, especially in terms of handling

events. Middleware approaches such as Sensation[19] treat the

sensor network as a whole as an information source similar to a

database, with its middleware acting as an integration layer

between applications and networks and a proxy with a prioi

configuration for particular WSNs to hide device and network

specifics. Agent based middleware requires particular node

computational capability and the energy used by traffic for

code mobility reduces node lifetime [20]. A data-centric

approach such as directed diffusion has the potential of

significant energy savings and relatively high performance, but

it is tightly coupled to a query on demand data model where

applications can accept aggregated data [21]. TeenyLIME [22]

is another higher level approach, which is based on a shared

memory space (tuple space), derived from Linda‟s [23] limited

number of simple operations to insert, read, and withdraw

tuples from a tuple space. TeenyLIME has been deployed in a

real-world application and shown the usefulness of a tuple

space approach in WSNs [24], but a node‟s local tuple space is

only shared with the nodes within communication range.

III. ARCHITECTURE REQUIREMENTS

The objective of our architecture is to simplify the

development, configuration and deployment issues to enable

ubiquity of WSNs, easier interfacing to other networks and the

easier development of generic and more powerful applications

using sensor data. To meet this objective, we define the

following architecture requirements:

1. It must be independent of particular node hardware,

must handle a range of node functional capabilities and

provide an extensible layered system able to handle the

radio channel and environmental factors, within the

required limits of power consumption.

2. It must provide abstractions for the basic operations

required of a sensor node and the services using it,

which map easily to a range of heterogeneous devices

and higher level services.

3. It must clearly define the possible roles of nodes and

any protocols must be sufficiently simple for low

capability devices to participate. It is unreasonable to

demand that all nodes have equal functionality, as this

limits the ability to handle more powerful nodes.

Nodes will, however, require a minimum level of

functionality, e.g. forwarding data to a neighbour.

4. It must provide a consistent means to exchange sensor

information independent of the underlying technology

and provide specific support for the modelling of

sensor data to allow integration into higher level

systems. A sensor node should be able to advise other

nodes and services of its sensing and platform

capabilities.

5. It must be able to handle small, static networks and

allow the system to adapt as the network

grows/changes or encounters other networks and

support applications discovering and collaborating

without a centralized coordination facility.

The need for a more holistic approach can be seen in a

remote healthcare monitoring scenario, where sensors connect

to a central gateway in a house over a wireless network. The

gateway is responsible for storing the data locally and

uploading data to a central health monitoring site, possibly via

a central gateway/proxy and cloud based services to analyse the

data [25]. Such solutions often require sensor application and

proxy design to handle data integration, network integration

and security concerns. This lack of unified abstractions will

become more problematic in this scenario as Wireless Body

Area Networks are deployed, e.g. IEEE802.15.6 which allows

up to 64 nodes on a body to connect via a central co-ordinator

node. When large numbers of WSNs/BANs are deployed,

treating these networks of nodes as peripheral devices and

connecting them to the Internet via proxies or sinks will limit

performance and scalability [26].

IV. THE HOLISTIC ARCHITECTURE

This section proposes an architecture to meet the

requirements from section II. The key principle underlying it is

that all WSNs are primarily about delivering sensed data/events

to one or more applications (periodically, on-demand or

asynchronously) or commands to actuators from applications.

The architecture meets the requirements in section II by using a

number of service abstractions to model the different roles a

service can perform, defined software layers and an object

infrastructure to support information models. It uses a simple

protocol based on Peer to Peer (P2P) concepts able to run on

constrained nodes. The approach is termed as holistic because

it considers the entirety of the data flow between sensor and

service(s), supported by lower layers, rather than each layer

specifying its own behaviour in isolation.

Figure 1 shows the layers in the architecture for nodes of

different capability with their different roles, e.g. a node that

only fulfills the forwarder role does not have a local

instrumentation layer, but has an object space to store data

from remote peers. It also shows how a HBase store is modeled

as a sink service and how it would be exposed to constrained

nodes using a hpp_endpoint. The Data Model Service Layer

provides a high level abstraction for node data and it uses the

object space to hold remote peer data and local data (if

supported by the role), so simplifying the communication of

data between sensor nodes and higher level applications. The

local instrumentation (li) layer supports local data and provides

an abstraction above device specific layers to map to the

underlying node functions or data.

Fig. 1. Holistic Architecture

A. Service Abstractions and Data Model Service Layer

The architecture‟s Data Model layer uses a set of service

roles to model the data flow and to abstract the lower layer

interfaces for nodes and hide the underlying network and node

specifics from the application developer. The Data Model (DM)

Service layer abstracts the service capabilities using roles

reflecting the nature of the data exchange. The defined roles

support a range of capability with the following roles:

 DM_SINK_SRV (adds interest objects to its peers for

data it wants)

 DM_SOURCE_SRV (sends its sensor data)

 DM_FORWARDER_SRV (forwards to peer services)

 DM_STORE_SRV (stores data from peer services)

 DM_MATCHER_SRV (provides results of advanced

matching queries)

 DM_AGGREGATOR_SRV (aggregates data from

peer services)

A node can have several roles according to its resources, e.g.

a constrained node may only act as a DM_SOURCE_SRV, not

storing its own data or a node may remove its capability as a

DM_FORWARDER_SRV if low on remaining power. Source

and sink roles can be seen in other flow based approaches such

as Flume, used to deliver large amounts of log data in Web

and Cloud Computing services. We have added the forwarder,

aggregator and store roles for the capabilities of WSN nodes.

Services use the holistic peer-to-peer (hpp) protocol to

exchange hpp messages using the hpp_endpoint and

hpp_channel. A hpp service registers/deregisters instances of

its objects (and their specific methods), its capabilities (in a

template object) and its interests in other objects with the object

space layer. These objects may be forwarded to remote peers

and services must renew their object leases with their peers. A

service‟s capabilities are thus advertised to other services,

allowing a node to set its sensing and response timing based on

the received interests, e.g. a sensor may be able to report every

15 minutes, but only sends a reading every hour based on what

interests were provided by applications.

B. The Object Space Layer

The object library is a simple object-like infrastructure

suitable for resource constrained devices with object functions

to support a simple shared object store and associated API. It is

used to store locally instrumented data and data received from

other nodes for aggregation or other purposes. It is based on

Linda‟s tuple space concepts. The decoupling in time and space

of tuple space communication enables interactions where

applications can be added or removed independently and do not

have to be available simultaneously to transfer data between

themselves. Our object library has been implemented in C and

its main methods are objectAdd(), objectRemove(),

objectGetByHandle(),objectGetByName(), objectLeaseRenew()

and objectGetInstance().

The object space is non-prescriptive about the classes and

instances it holds, except that it requires the use of a template

to hold the type of each attribute of the object and its methods.

An object structure represents an object held in the object store,

with its template and each object has a lease, allowing for the

space to remove objects if leases are not renewed. The template

and instance are kept separately to allow for objects that

represent a class (i.e. do not have instances) and to allow a

range of object encodings. For resource constrained devices it

also offers an efficient way of transferring them to other nodes,

where the template (or a reference) can be sent once to another

node prior to the encoded object. Templates are also used to

define node capabilities on a model/object basis (i.e. to specify

which properties of a standard object are instrumented). The

definition of a template is transparent to the object store.

C. Local Instrumentation Layer

This layer hides the platform specific sensor

implementations and provides get()/set() functions and method

prototypes for node functionality such as power off. It also

allows the use of C language features such as pointers to reduce

memory usage. It also provides per attribute structures to allow

only those object/sensor attributes supported by the node to be

implemented and these can be built into higher level

information models, e.g. an SNMP MIB table or CIM object.

D. The Holistic P2P Protocol (HPP) and Hpp Channel

A simple message protocol suitable for resource limited

nodes has been developed to support interaction between the

different service roles we have defined. It uses a hpp_channel

between hpp_endpoints to provide a single API to run on top of

various network and data link layers, so that applications do not

require knowledge of the underlying network. It uses a limited

set of message types in line with the operations of the object

space. HPP has the characteristics of a P2P system at the

application level as its hpp_channel and defined roles allow

nodes to act in an autonomic and dynamic manner where nodes

enter or leave the network and any node may initiate, manage

or terminate a session with other nodes. It does not at present

support node discovery (but can discover node capabilities) or

overlay networks.

Fig. 2. Sample Service Interaction

HPP messages consist of blocks, always started by at least a

Header block followed by other blocks for Address, Data and

Credentials. Some messages may only hold a header block and

every block has the same preamble of a Command, a block

length and a block id, so a WSN node only has to receive the

header block and parse the command to determine if it should

process this message. During the Connection Phase, the

messages are Hello, Attach and Detach and during the Data

Phase, the messages are Get, Add, Remove, Get Response,

Action, Notify and Acknowledgement. All nodes must support

Hello, Attach, Detach, but nodes may support only Get/Get

Response in the Data phase (shown in its capabilities). The

command types map well to the REST approach, although

Action, Notify primitives have been added for the actuator and

alert functionality of sensor devices.

The sequence diagram in Figure 2 shows an example

message interaction (after Hello and not showing object lease

renewal), where a source service (on a node) adds both its

service and node class templates and instances to a store

service, e.g. on a higher powered node. This store service is

queried by a sink service for the node‟s capabilities and

determines that there is a sensor on the node, which it then

retrieves. Other interactions are possible, e.g. the source service

adds its sensor class and instance to a store service (at a period

matching the sensor reading update) so the retrieval by the sink

service can use the store service‟s data for that node and not

require additional transmission to the original source node.

V. IMPLEMENTATION

A. HPP Implementation

This section discusses the design and implementation issues

encountered in an initial implementation using the CIM

information model for sensor objects and storing this data in

HBase. The implementation in „C‟ includes the Data Model

Service, Object Space and Local Instrumentation Layers

shown in Figure 1 and a DM_SINK_SRV service written in

Java to integrate with HBase. The „C‟ code was implemented

initially on Linux, using the hpp_service abstraction on top of

the hpp channel abstraction to hide the specific network layer

details. Testing was done using Linux based source nodes

sending hpp messages to transfer their classes and instances to

a specified number of remote nodes using a small number of

functions, as the following code is all that is required for a

service to start receiving messages from other services:

 rv = hpp_endpoint_check(endpoint_ptr);

if (rv == 0) {

 channel_ptr = hpp_endpoint_accept(endpoint_ptr);

} else if (rv > 0) {

 hpp_endpoint_get_messages(endpoint_ptr);

} // timed out with no data, so loop again

The Linux code was then ported to Contiki running on a

Sky WSN mote (emulated in Cooja), using the CoAP

implementation. This implementation created objects and

added them to the object space at different times as the node

started up (and added dynamically later), e.g. the DM service

class and instance objects were created at the start of the

process, followed by the node class and instance and the local

instrumented objects for led and temperature sensor. This

showed the architecture and its abstractions worked across

Linux and constrained nodes.

B. Data Model Service Layer

The initial Contiki implementation includes a number of

custom CoAP "resources" on top of the data model layer, using

the object space. For example, a DM_SOURCE_SRV service

and node objects were implemented as key value pair objects

be sent to another node such as a DM_STORE_SRV. Also, a

CoAP resource was implemented for the creation of HPP

objects dynamically. Classes and instances for red/blue/green

leds, temperature sensor and node, using a subset of attributes

from the CIM object, were also implemented. The following

pseudo-code (not including error code) shows the service

adding its own service class template and initialising its role(s):

uchar dm_register_dm_service(objectAttr_t *template_ptr,

objectAttr_t *inst_ptr, objectAttr_t *inst_key_ptr) {

 if (dm_srv_class_hdl == 0)

 dm_srv_class_hdl = dm_add_service_class(

 &DMServiceTemplate,

 DM_SERVICE_CLASSNAME);

 hdl = dm_add_instance(…..);

 if (service_role || DM_SOURCE_SRV) {

 dm_source_init(); // initialise my local instrumentation (li)

 } // objectswith object store

 if (service_role || DM_SINK_SRV) {

 dm_sink_init(); // add objects we are interested in to

 } // object space on remote peers

 if (service_role || DM_STORE_SRV) {

 dm_store_init(); // set up support for holding

 } //instrumentation objects from peers

 return (0);

}

The data model layer provides support functions on top of

the object library; dm_initialise() and dm_add_class(),

dm_add_instance(), dm_remove_instance() for local or remote

sensor classes/instances. Retrieving object instances is done by

dm_get_instance(inst_handle) or dm_find_instance(), which

uses key values or particular attribute values according to the

matching specified. Matching is implemented in the data model

layer and not the object library (the contents of objects are

transparent to it). A hpp Add message is sent to a remote node

to add a class or instance, with the remote node calling

setupTemplate() to process the class attributes received and

then dm_add_class() or calling dm_add_instance() with the

received instance attributes.

C. Local Instrumentation Layer

Locally instrumented data is implemented using an

li_class_property for each property and an li_inst_property

with the value. This per property approach aligns with the

hardware/vendor specific implementations to access particular

readings or data, e.g. to access sensor data by reading a value

from a register or an API call like get_sensor_reading(). The

li_class_property structure does not make any assumption

about the object it is to be put in (it could appear in more than

one) and can be combined into different classes for particular

information models or be added into tables or key value stores

such as HBase. A node‟s local instrumentation (li) classes and

instances are added to its local object store and optionally

converted into key value pairs for adding to other nodes.

Key and non-key properties are treated separately as many

information models use keys to identify groups of data (rows in

SNMP or HBase or object instances in CIM), but also because

resource constrained devices often set keys when the class is

created and can be allocated then, whereas non-key data in an

instance changes and may be read by a dynamic getter function.

D. HPP Integrated Erbium-CoAP Implementation on Contiki

The Linux implementations of the local instrumentation (li)

layer, data model and object space, supporting libraries

(memory utilities, doubly linked list, hash, lease) and the

message building parts of the hpp protocol have been ported to

Contiki as part of the pre-existing erbium-REST

implementation example [9]. This approach allowed these

items to be tested on hardware with a supporting REST

infrastructure and for the port to use existing Contiki libraries.

The code samples below show the integration itself was

straightforward. The hpp message payload was simply added as

CoAP payload using the call REST.set_response_payload(). It

is expected that adding the hpp channel abstraction on top of

the existing Contiki networking stack will not be difficult. The

additional code required in Contiki compared to Linux

consisted of:

 A Contiki call to initialize hpp_element. The simple call

service_hdl = service_initialise(); was added to the Contiki

main PROCESS to call the initialize code in the Linux

hpp_service daemon to set up the service and node objects.

 Integrating with the REST code. This consisted of code to

add the resource into the erbium resource handling list

rest_activate_resource(&resource_hppnode) and the code

to implement that resource. The CoAP resources were

accessed via URLs using a suffix of hpp/[classname] and

the node responded with the properties implemented in

that hpp object as key value pairs in the CoAP payload,

using multiple CoAP buffers. A RESOURCE macro is

used to define a CoAP resource and the CoAP verbs such

as get or put it handles, with a corresponding function to

implement it called resource-name_handler. The handler

below for the node object returns the node instance from

the object space when queried over CoAP:

void hppnode_handler(…) {

 object_t *instObj_ptr = NULL;

 instObj_ptr = dm_find_instance(NODE_CLASS);

 hpp_send_object_resp(instObj_ptr, response, buffer);

}

 Adding a Resource for Hpp Objects. This allowed a URI

like /nodeAddr/hpp/object?hdl=x to select an object by

the handle allocated when it was created in the object

space or to walk through the available objects, as shown

by the following handler:

void hppobject_handler(…) {

 len = REST.get_query_variable(request, "hdl", &chdl);

 instObj_ptr = dm_find_object_by_handle(hdl);

 hpp_send_object_resp(instObj_ptr, response, buffer);

}

 Integrating with the Contiki hardware abstractions. This

pseudo-code shows the li layer code wrapping the Contiki

led calls and is called by a resource handler to set a led:

li_mote_method(int method_cap, int inst_id, int setting) {

uint8_t led = (uint8_t)inst_id;

if (method_cap == MOTE_CAP_LED_SET)

 if (setting == MOTE_LED_ON)

 leds_on(led); // Removed leds_off, leds_toggle code

}

E. Integration of Data From Contiki Based Node with HBase

We created a HBase table for each hpp class with a row for

each instance. The tables have two column families named

"key attributes" and "attributes" and a column family qualifier

for each attribute. A row key consists of the hpp object‟s key

attributes, node id and a timestamp.

A Java CoAP client (a DM_SINK_SRV) was written that

connected to the desired WSN node via a socket to the CoAP

Server on the Contiki rpl border router. It built a COAPPacket

using COAPPacket(), called the serialize() method and sent it

using the COAP libraries. It then passed the reply data and the

HBaseConfiguration object it had created to writeToHBase().

The code extract below shows writeToHBase(). It assumes

the table has already been created by an earlier hpp command

to add the class and shows how the received hpp data as key

value pairs is processed and written as a row to the HBase table

for that class:

public static void writeToHBase(Configuration conf,

 String tableName, String hppData) {

 Map<String, String> keyKvs = getKeyMap(hppData);

 Map<String, String> attrKvs = getAttrMap(hppData);

 HBase admin = new HBaseAdmin(conf);

 HTable table = new HTable(conf, tableName);

 String rowKey = createRowKey(keyKvs);

 Put put = new Put(Bytes.toBytes(rowKey));

 // Add hpp data to column families

 addMapToHBasePut(put, keyKvs, "key attributes");

 addMapToHBasePut(put, attrKvs, "attributes");

 table.put(put);

 admin.close();

}

VI. EVALUATION OF IMPLEMENTATION

The initial implementation is evaluated in this section in

terms of the abstractions used, the ability to map properties to

objects or tables, HBase integration, the value of the initial

Linux implementation and its memory use. It is planned to

perform more objective tests in defined scenarios.

1) Abstractions
Evaluating abstractions can be done by ensuring that “end-

user” and “WSN geek” are catered for [6]. The “end-user” is a

domain expert concerned with using the WSN data and not

with the network/node specifics, which the “WSN geek” is

concerned with. We have shown examples where the end user

is able to access the data simply with known CoAP Resources

or objects or from the HBase store. The “WSN geek” has been

provided with a cross-platform architecture using an object

space and data model layer with a local instrumentation layer

for incorporating node specific functionality and capabilities.

The code extracts show that these items made it straightforward

for a node to implement objects from a rich information model

on both a Linux and Contiki platform and to map to CoAP

Resources. This also meets the design goal of the same

abstractions giving a generic information infrastructure across

heterogeneous platforms of different capability, even when

used with delivery protocols other than the hpp protocol. The

object space was also shown to easily map objects to specific

CoAP REST resources and the hppobj resource above showed

it also easily supported discovery and searches across the

implemented objects.

The value of some of the service abstractions has been

shown with a Java DM_SINK_SRV service that receives data

as hpp key value pairs from Contiki and stores that data in

HBase and also a DM_SOURCE_SRV that adds its classes and

instances to specific remote nodes (via hpp add directly or in a

CoAP PUT payload).

2) Object and Property Node Mapping
The sample code has shown that an attribute based

implementation of the objects fits naturally with the low level

specifics of the nodes and maps to CoAP REST resources, such

as led and sensors and groupings of individual attributes, such

as proposed in the IP for Smart Objects (IPSO) Application

Framework [27]. The implementation showed that the

approach of having a class object as a template with attribute

descriptions and its instance object with attribute values was

successful in three ways; it allowed selective use of attributes

from CIM classes on constrained nodes (important for the

many strings used in objects such as CIM_NumericSensor), it

supported a set of abstractions in a COAP/REST environment

and also allowed straightforward mapping of these attributes

into a HBase store.

3) HBase Integration
In terms of data mapping, the hpp objects mapped cleanly

to HBase tables and the use of a property per attribute mapped

well to HBase columns. Furthermore, the approach of separate

key and non-key properties could be mapped to separate HBase

column families, allowing a HBase scan across all rows of key

attributes as well as non-key attributes, rather than only being

able to use the key attributes as instance identifiers. The hpp

message primitives also mapped well to HBase functionality,

e.g. the two column families defined for attributes allowed

adding new objects with their attributes by creating a table (and

its columns), which can be done dynamically on receiving a

hpp Add message with the template class. Similarly, a hpp Add

of an instance (at a given time) will result in a new row in the

object‟s table. The architecture allowed hpp data on the node to

be transported and stored in HBase, using CoAP, requiring no

application level proxy and only requiring a proxy at the

network level (the rpl border gateway).

4) Linux Implementation and Code Porting Issues
The approach of initially implementing on Linux allowed

the design to be refined and the code to be debugged and tested

more easily and rapidly, using the more advanced Linux

development and debug environments. It also provided services

on Linux that could integrate easily with those on constrained

nodes. These benefits came at little cost in terms of the

subsequent port to Contiki as most of the code did not require

any changes, given the availability of standard C libraries in

Contiki. The main code changes were to provide a revised

Makefile, a simplified implementation of gettimeofday() used

for object leases and to change the type of function parameters

and structure members to reduce size (e.g. from int to char).

5) Memory Usage
It was necessary to remove parts of the erbium-CoAP code

to create space for the hpp code. Retaining parts of the erbium

and CoAP stack did allow using the CoAP transport and the

Copper Browser plugin for testing. A more complete

integration with CoAP would reduce the memory footprint and

allow more hpp functionality to be included.

TABLE I. MEMORY USAGE OF REST EXAMPLE

 Original Erbium REST

Code
Erbium + HPP Code

 Code

(%)
Data(%)

Total

(%)

Code

(%)
Data(%)

Total

(%)

libc 8 0 7 9 0 8

core 9 3 8 7 2 6

Network 50 74 53 50 63 52

Platform 12 3 10 10 4 9

coap 17 17 17 11 12 11

rest 5 3 5 2 4 2

hpp n/a n/a n/a 11 15 12

Table 1 shows the percentages (both applications varied by

a few 100 bytes) of the available memory (10K RAM, 48K

Flash) used for particular sections in the original er-rest-

example application and for the modified application with hpp.

The hpp application included resources for the hpp led and

objects for Service, node and reduced CIM_AlarmDevice and

CIM_NumericSensor. The REST engine and CoAP use a

small amount of memory compared to networking, which is

equivalent to that for the platform and core. It can be seen that

the code and data usage of hpp is equivalent to that of CoAP,

so that it is feasible for a constrained device.

VII. CONCLUSION

We have proposed a set of requirements for an architecture

that reflects the characteristics of WSNs and would allow

WSNs to be more widely deployed and more easily integrated

with applications, including Big Data services to collect and

analyse their data. We have proposed a holistic architecture

with defined abstractions, software layers, a loosely coupled

object space and a simple and flexible protocol. These

abstractions also enabled the approach of developing the code

initially on Linux and then porting to Contiki. We have also

evaluated the architecture based on an initial implementation.

The first requirement has been met by showing that the

architecture and abstractions can be relatively easily

implemented on both constrained WSN nodes with acceptable

memory use and are also suitable for more capable devices and

applications, e.g. on Linux. The second requirement has been

met by providing abstractions for the basic operations of a

sensor node and the services using it, e.g. the local

instrumentation layer handled the underlying Contiki hardware

libraries and the data model layer handled the REST resources.

The third requirement has been met with the service roles,

although only the source, sink and store roles have been

implemented at this point. The fourth requirement has been met

by showing the exchange of sensor information from the node

to CoAP to HBase independent of the underlying technology.

Further work is planned to port the hpp channel abstraction

to Contiki and to investigate further integration of hpp with the

CoAP transport, to implement the other service roles in the

architecture, as well as investigating the use of service

capabilities/interests, particularly in terms of the interaction

with Big Data services in the cloud to perform processing. It is

also planned to investigate support for P2P overlays and the use

of Distributed Hash Tables (DHT). It is also planned to

perform larger scale tests with more nodes to verify the

architecture meets the fifth requirement of being able to scale

from small static networks to larger dynamic, heterogeneous

environments and to show the benefits of the characteristics of

the P2P and tuple concepts in the architecture (high scalability,

redundancy, fault-tolerance and self-management).

In summary, this architecture has been shown to enable a

holistic, high-level approach on constrained and powerful

platforms and enable a straightforward integration with Contiki

and HBase to store sensor data, requiring only simple message

reformats without requiring semantic changes or application

proxies in an infrastructure of nodes and services.

REFERENCES

[1] N. Kushalnagar, “IPv6 over Low-Power Wireless Personal Area

Networks (6LoWPANs): Overview, Assumptions, Problem

Statement, and Goals”, RFC 4919

[2] S. Haller, “The Things in the Internet of Things”, Internet of

Things Conference 2010, http://www.iot2010.org/

[3] D.A Reed, D.D. Ganno., J.R. Larus., "Imagining the Future:

Thoughts on Computing," Computer, vol. 45, no. 1, pp. 25-30,

Jan. 2012.

[4] D. Laney, “Application Delivery Strategies”,

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-

Data-Management-Controlling-Data-Volume-Velocity-and-

Variety.pdf

[5] A. Zaslavsky, C. Perera, D. Georgakopoulos, “Sensing as a

Service and Big Data”, Proc. of International Conference on

Advances in Cloud Computing, July 2012.

[6] L. Mottola and G. P. Picco. “Programming Wireless Sensor

Networks: Fundamental Concepts and State of the Art. ACM

Computing Surveys, 2010.

[7] Z. Shelby et al, “Constrained Application Protocol (CoAP)”,

Internet-Draft. draft-ietf-core-coap-12.

[8] R. Fielding “Architectural Styles and the Design of Network-

based Software Architectures”, Doctoral dissertation (2000),

[9] M. Kovatsch, S. Duquennoy, A. Dunkels, “A Low Power CoAP

for Contiki”, IEEE 8th International Conference on Mobile

Adhoc and Sensor Systems (MASS), 2011

[10] P. Mell, T. Grance, “The NIST Definition of Cloud Computing”,

csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[11] M. Yuriyama and T. Kushida, "Sensor-Cloud Infrastructure -

Physical Sensor Management with Virtualized Sensors on Cloud

Computing,", Sept. 2010, pp. 1-8.

[12] G.C. Fox, S. Kamburugamuve, R.D. Hartman, “Architecture

and Measured Characteristics of a Cloud Based Internet of

Things API”, International Conference on Collaboration

Technologies and Systems (CTS), 2012,

[13] J. Melchor, M. Fukuda,. “A Design of Flexible Data Channels

for Sensor-Cloud Integration”, Proc. of the 2011International

Conference on Systems Engineering, ICSENG2011

[14] M. Hassan, B. Song., E-N. Huh, “A Framework of Sensor -

Cloud Integration Opportunities and Challenges”, Proc. of the

3rd International Conference on Ubiquitous Information

Management and Communication, ICUIMC '09

[15] C. Jardak, J. Riihijärvi, F. Oldewurtel, P. Mähönen, “Parallel

Processing of Data from Very Large-Scale Wireless Sensor

Networks”, Proc. of the 19th ACM International Symposium on

High Performance Distributed Computing, HPDC10

[16] G. Picco, “Software Engineering and Wireless Sensor Networks:

Happy Marriage or Consensual Divorce?”, FoSER 2010.

[17] M. Weiser “The computer for the twenty-first century”,

Scientific American, September 1991 (reprinted in IEEE

Pervasive Computing, Jan-Mar 2002)

[18] S. R. Madden, „The Design and Evaluation of a Query

Processing Architecture for Sensor Networks”, Ph.D. Thesis.

UC Berkeley. Fall, 2003

[19] T. Hasiotis et al, “Sensation: A Middleware Integration Platform

for Pervasive Applications in Wireless Sensor Networks”, 2nd

European Workshop on Wireless Sensor Networks (EWSN),

Istanbul, Turkey, January 2005.

[20] A. Boulis and M. B. Srivastava, "A Framework for Efficient and

Programmable Sensor Networks", In Proc. of OPENARCH

2002, New York, June, 2002.

[21] C. Intanagonwiwat, R. Govinden, D. Estrin, J. Heidemann, F.

Silva, “Directed Diffusion for Wireless Sensor Networking”,

IEEE/ACM Transactions on Networking, Vol 11, No. 1,

February 2003

[22] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco.

“Programming wireless sensor networks with the TeenyLIME

middleware”, Proc. of the 8th Int. Middleware Conf., 2007

[23] D. Gelernter, “Generative communication in Linda”, ACM

Transactions on Programming Languages and Systems

(TOPLAS), Volume 7 Issue 1, Jan. 1985

[24] M. Ceriotti et al “Monitoring heritage buildings with wireless

sensor networks: The Torre Aquila deployment”, Proc. of the

8th Int. Conf. On Information Processing in Sensor Networks

(IPSN), 2009.

[25] X. Le et al , “Secured WSN-integrated Cloud Computing for u-

Life Care”, IEEE CCNC 2010.

[26] D. Clark et al, “Making the world (of communications) a

different place.”, ACM SIGCOMM CCR, 35(3):91–96, 2005.

[27] Z. Shelby et al, “The IPSO Application Framework”, Internet-

Draft. draft-ipso-app-framework-04, August 2012

