
Title Modified cyclodextrins as novel non-viral vectors for neuronal
siRNA delivery: focus on Huntington’s disease

Authors Godinho, Bruno M. D. C.

Publication date 2014

Original Citation Godinho, B. M. D. C. 2014. Modified cyclodextrins as novel non-
viral vectors for neuronal siRNA delivery: focus on Huntington’s
disease. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2014, Bruno M. D. C. Godinho - http://creativecommons.org/
licenses/by-nc-nd/3.0/

Download date 2024-04-27 12:04:57

Item downloaded
from

https://hdl.handle.net/10468/1411

https://hdl.handle.net/10468/1411


 

 

Ollscoil na hÉireann 

National University of Ireland 

Coláiste na hOllscoile Corcaigh 

University College Cork 

School of Pharmacy 

 
 
 

Modified Cyclodextrins as Novel Non-Viral Vectors 

for Neuronal siRNA Delivery: 

Focus on Huntington’s Disease 

 
Thesis presented by 

Bruno M.D.C. Godinho 

 

in fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 
under the supervision of 

Prof. John F. Cryan 

Prof. Caitriona O’Driscoll 

 

 

 

 
 

Head of School: Prof. Stephen Byrne 

January, 2014



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
“Não sou nada (...)  
À parte isso,  
tenho em mim todos os sonhos do mundo." 
(Fernando Pessoa) 

"I am nothing (...)  
Apart from that, 

 I have in me all the dreams in the world.” 
(Fernando Pessoa) 

 
À minha família.  

 
To my family. 



 

iii 

 

Table of Contents 

Declaration ....................................................................................................................... ix 

Acknowledgments ............................................................................................................. x 

List of publications .......................................................................................................... xii 

Abstract .......................................................................................................................... xiv 

List of abbreviations ...................................................................................................... xvi 

 

 

CHAPTER I – INTRODUCTION  ............................................................................................ 1 

 

1.1 Huntington’s Disease ................................................................................................ 2 

1.2 Genetic mechanism of Huntington’s Disease ............................................................. 2 

1.3 Wild-type and mutant Huntingtin: What are their functions in the brain? ................... 4 

1.3.1 Wild-type Huntingtin .................................................................................... 4 

1.3.2 Mutant Huntingtin......................................................................................... 7 

1.4 Neuropathology and symptomatology ..................................................................... 10 

1.5 Modelling Huntington’s Disease.............................................................................. 12 

1.5.1 In vitro models ............................................................................................ 13 

1.5.2 In vivo models............................................................................................. 15 

1.6 R6/2 Mouse model of Huntington’s Disease ............................................................ 23 

1.6.1 Neuropathology .......................................................................................... 23 

1.6.2 Behavioural phenotype, weight loss and survival ......................................... 25 

1.7 Therapeutic strategies for Huntington’s Disease ...................................................... 30 

1.7.1 Cell replacement therapies .......................................................................... 32 

1.7.2 Targeting the underlying pathogenic mechanisms of HD ............................. 32 

1.7.3 Silencing the mutant Huntingtin .................................................................. 36 

1.8 RNA interference .................................................................................................... 39 

1.8.1 RNA interference gene silencing mechanism............................................... 40 

1.8.2 Approaches for artificial induction of RNAi ................................................ 43 

1.8.3 Current applications of RNAi technology .................................................... 44 

1.9 RNAi therapeutics for CNS disorders: focusing on neurodegeneration ..................... 46 

1.9.1 Progress in RNAi therapeutics for Huntington’s Disease ............................. 48 

1.10 Barriers and challenges for therapeutic RNAi delivery to the CNS ........................... 54 

1.10.1 Extracellular barriers ................................................................................... 54 

1.10.2 Cellular uptake and endosomal release ........................................................ 56 

1.11 Improving RNAi delivery to the CNS ...................................................................... 58 



 

iv 

 

1.11.1 Delivery methods for RNAi in the CNS ...................................................... 58 

1.11.2 Routes of administration for RNAi delivery to the brain .............................. 66 

1.11.3 Strategies to improve systemic brain delivery .............................................. 69 

1.12 Limitations of RNAi................................................................................................ 74 

1.12.1 “Off-target” effects ..................................................................................... 74 

1.12.2 Saturation of RNAi endogenous pathway .................................................... 75 

1.12.3 Vector-mediated toxicity ............................................................................. 76 

1.13 Nanotoxicology of engineered biomaterials ............................................................. 77 

1.13.1 Mechanisms of nanoparticle-mediated toxicity: cytotoxicity and inflammatory 

susceptibilities in the CNS .......................................................................... 77 

1.13.2 Correlating physicochemical properties with cellular toxicity ...................... 81 

1.13.3 In vitro and in vivo assessment of nanoparticle safety for CNS delivery ....... 83 

1.14 Cyclodextrins as non-viral vectors for RNAi delivery to the CNS ............................ 88 

1.14.1 Cyclodextrin-containing delivery systems ................................................... 89 

1.14.2 Functionalised cyclodextrin delivery systems .............................................. 92 

1.15 Cyclodextrins as siRNA non-viral vectors for Huntington’s Disease ........................ 96 

1.16 Aims of Thesis ........................................................................................................ 97 

1.17 Specific Aims .......................................................................................................... 97 

 

CHAPTER II – ESTABLISHMENT OF A HUNTINGTON’S DISEASE ANIMAL MODEL 

PLATFORM  FOR ASSESSING THE EFFICACY OF NON-VIRAL SIRNA NANOPARTICLES  . 98 

 

2.1 Abstract .................................................................................................................. 99 

2.2 Introduction .......................................................................................................... 100 

2.3 Materials and methods ........................................................................................... 102 

2.3.1 R6/2 mouse breeding, housing and animal care ......................................... 102 

2.3.2 Genotyping ............................................................................................... 103 

2.3.3 Phenotypical characterisation of the R6/2 model ....................................... 105 

2.3.4 Statistical analysis ..................................................................................... 106 

2.4 Results .................................................................................................................. 108 

2.4.1 General appearance, body weight and survival .......................................... 108 

2.4.2 Behavioural characterisation ..................................................................... 110 

2.5 Discussion ............................................................................................................. 115 

2.6 Conclusion ............................................................................................................ 118 

2.7 Supplementary Information ................................................................................... 118 

2.7.1 R6/2 mouse husbandry, breeding and development ................................... 119 

2.7.2 PCR-based method for genotyping R6/2 mice ........................................... 121 

 



 

v 

 

CHAPTER III – SELF-ASSEMBLING MODIFIED Β-CYCLODEXTRIN NANOPARTICLES AS 

NEURONAL SIRNA DELIVERY VECTORS: FOCUS ON HUNTINGTON’S DISEASE  ........... 122 

 

3.1 Abstract ................................................................................................................ 123 

3.2 Introduction .......................................................................................................... 124 

3.3 Materials and methods ........................................................................................... 127 

3.3.1 Synthetic siRNAs...................................................................................... 127 

3.3.2 Preparation, physicochemical characterisation and stability of CD.siRNA 

nanoparticles ............................................................................................. 127 

3.3.3 Cell culture and RNAi transfection ............................................................ 128 

3.3.4 Toxicity assays ......................................................................................... 128 

3.3.5 Confocal Microscopy ................................................................................ 128 

3.3.6 Quantitative real-time PCR ....................................................................... 129 

3.3.7 Western blot analysis ................................................................................ 129 

3.3.8 R6/2 colony maintenance .......................................................................... 130 

3.3.9 Stereotaxic surgery and behavioural assessment ........................................ 130 

3.3.10 Statistical analysis ..................................................................................... 131 

3.4 Results .................................................................................................................. 132 

3.4.1 Physicochemical characterisation of CD.siRNA nanoparticles and stability in 

artificial cerebrospinal fluid ...................................................................... 132 

3.4.2 Delivery of CD.siRNA nanoparticles to a rat neuronal in vitro model of HD

 ................................................................................................................. 134 

3.4.3 Delivery of CD.siRNA nanoparticles to a human in vitro model of HD ..... 137 

3.4.4 CD.siRNA nanoparticles mediate HTT mRNA knockdown in the R6/2 mouse 

brain  ........................................................................................................ 139 

3.4.5 Multiple dosing with CD.siRNA nanoparticles into the R6/2 mouse brain and 

behavioural assessment ............................................................................. 141 

3.5 Discussion ............................................................................................................. 143 

3.6 Conclusions .......................................................................................................... 147 

3.7 Supplementary Information ................................................................................... 147 

3.7.1 Modified amphiphilic β-CDs bind HTT targeted siRNAs and are stable in 

aCSF......................................................................................................... 148 

3.7.2 Quantification of cellular uptake of fluorescent CD.siRNA nanoparticles by 
FACS ....................................................................................................... 149 

3.7.3 Formulation of CD.siRNA complexes in physiological buffer solutions 
suitable for in vivo brain delivery .............................................................. 150 

3.7.4 Spread of HTT gene expression knockdown in the brain after single injection 

of CD.siRNA nanoparticles into the striatum ............................................. 151 

3.7.5 Effects of localised HTT gene expression knockdown in other motor 

behaviour deficits of R6/2 mice ................................................................. 152 

3.7.6 Supplementary Materials and Methods ...................................................... 153 

3.8 Addendum ............................................................................................................ 155 



 

vi 

 

CHAPTER IV – DIFFERENTIAL NANOTOXICOLOGICAL AND NEUROINFLAMMATORY 

LIABILITIES OF NON-VIRAL VECTORS FOR RNA INTERFERENCE IN THE CENTRAL 

NERVOUS SYSTEM  ......................................................................................................... 156 

 

4.1 Abstract ................................................................................................................ 157 

4.2 Introduction .......................................................................................................... 158 

4.3 Materials and methods ........................................................................................... 161 

4.3.1 Synthetic siRNAs...................................................................................... 161 

4.3.2 Nanoparticle preparation and characterisation ........................................... 161 

4.3.3 Cell culture and RNAi transfection ............................................................ 162 

4.3.4 Trypan blue exclusion assay ...................................................................... 163 

4.3.5 Lactate Dehydrogenase release assay ........................................................ 163 

4.3.6 Methyl thiazolyl tetrazolium assay ............................................................ 164 

4.3.7 Cell Integrity Assay by High Content Analysis.......................................... 164 

4.3.8 Gene expression ........................................................................................ 165 

4.3.9 Brain stereotaxic surgery ........................................................................... 165 

4.3.10 Western blotting ....................................................................................... 166 

4.3.11 Statistical analysis ..................................................................................... 166 

4.4 Results .................................................................................................................. 168 

4.4.1 Physicochemical characterisation of non-viral siRNA nanoparticles .......... 168 

4.4.2 Gene silencing efficiency in ST14A-HTT120Q cells ................................. 169 

4.4.3 Direct biological adverse effects of non-viral siRNA nanoparticles in brain-

derived cell lines ....................................................................................... 170 

4.4.4 Nanoparticle-induced neuroinflammatory responses in brain-derived cell lines 

 ................................................................................................................. 175 

4.4.5 Acute in vivo neuroinflammatory responses to non-viral siRNA nanoparticles 

in the brain ................................................................................................ 177 

4.5 Discussion ............................................................................................................. 180 

4.6 Conclusion ............................................................................................................ 186 

4.7 Supplementary information ................................................................................... 186 

4.7.1 Nanoparticle-induced cytokine release in brain-derived cell lines .............. 187 

4.7.2 Body weight changes after stereotaxic injections of different non-viral siRNA 
nanoparticles into the mouse brain ............................................................ 188 

4.7.3 Supplementary Materials and Methods ...................................................... 189 

 

 

 



 

vii 

 

CHAPTER V – PEGYLATED CYCLODEXTRINS AS NOVEL SIRNA NANOSYSTEMS: 

CORRELATIONS BETWEEN POLYETHYLENE GLYCOL LENGTH AND NANOPARTICLE 

STABILITY ...................................................................................................................... 190 

 

5.1 Abstract ................................................................................................................ 191 

5.2 Introduction .......................................................................................................... 192 

5.3 Materials and Methods .......................................................................................... 195 

5.3.1 Synthetic siRNAs...................................................................................... 195 

5.3.2 Preparation of PEGylated CD.siRNA nanoparticles ................................... 195 

5.3.3 Physicochemical characterisation .............................................................. 196 

5.3.4 In vitro stability studies in physiological buffer conditions ........................ 196 

5.3.5 Comparative pharmacokinetic study .......................................................... 197 

5.3.6 Statistical analysis ..................................................................................... 198 

5.4 Results .................................................................................................................. 199 

5.4.1 Physicochemical characterisation of non-PEGylated and PEGylated 

CD.siRNA nanoparticles ........................................................................... 199 

5.4.2 Stability of non-PEGylated and PEGylated CD.siRNA nanoparticles in 

physiological salt conditions ..................................................................... 202 

5.4.3 Comparative pharmacokinetic study .......................................................... 205 

5.5 Discussion ............................................................................................................. 209 

5.6 Conclusions .......................................................................................................... 213 

5.7 Supplementary Information ................................................................................... 213 

5.7.1 Binding and complexation of siRNA by PEGylated amphiphilic CDs ........ 214 

5.7.2 Stability of non-PEGylated and PEGylated CD.siRNA nanoparticles in serum 

 ................................................................................................................. 215 

 

CHAPTER VI – GENERAL DISCUSSION  .......................................................................... 218 

 

6.1 Overview & Summary ........................................................................................... 219 

6.2 Towards an “ideal” siRNA delivery system for CNS applications: How do CD-

formulations stand-up? .......................................................................................... 223 

6.2.1 Improving delivery efficiency ................................................................... 223 

6.2.2 Reducing nanoparticle-mediated toxicity ................................................... 228 

6.3 Silencing the mutant Huntingtin: is allele-specificity merely an alternative or a 
compulsory prerequisite? ....................................................................................... 232 

6.4 Conclusions & Future Perspectives ........................................................................ 234 

 

REFERENCES  ................................................................................................................. 236 



 

viii 

 

APPENDICES ................................................................................................................... 279 

 

Appendix A:  Optimisation of cell culture conditions for Methyl thiazolyl tetrazolium 

colorimetric assays ................................................................................................ 280 

Appendix B:  Investigation of ultrafiltration as a method for concentration of CD.siRNA 

nanoparticles: Effects on the physicochemical proprieties and gene silencing 

efficiency. ............................................................................................................. 284 

 

  



 

ix 

 

Declaration 

This thesis has not been previously submitted, in part or in whole, to this or any other 

university for any degree and is, unless otherwise stated, the original work of the author. 

 

Author Contribution 

All the work described herein was performed independently by the author, with the 

following exceptions: 

Chapter II 

Dr. Susan Grenham assisted with the optimisation of genotyping protocols. 

Chapter III 

Dr. Susan Grenham assisted with the design of qPCR probes. Ms. Sheila O’Loughlin and 

Mr. Dinesh Rasiah assisted with the in vitro work in HD fibroblasts and qPCR analyses. 

Chapter IV 

Dr. Caroll J Beltran assisted with western blots. Dr. Cristina Torres-Fuentes assisted with 

HCA experiments. Mr. David J McCarthy assisted with in vitro work in U87 cells and qPCR 

analyses. Ms. Aoife Quinlan assisted with stereotaxic brain surgeries. 

Chapter V 

Ms. Aoife Quinlan assisted with pharmacokinetic study. 

 

Signed,  ________________________ 

                      Bruno MDC Godinho  



 

x 

 

Acknowledgments 

Firstly, I wish to thank my supervisors Prof. John Cryan and Prof. Caitriona O’Driscoll for 

the oportunity of conducting my research under their guidance and supervision at School of 

Pharmacy and the department of Anatomy and Neuroscience. Their vast expertise and 

knowledge of the field were key for the achievements of this project. In addition, personally 

both were source of great inspiration and motivation, further developing my passion for 

science and research. 

Carrying out my PhD studies would not have been possible without the support of many 

others that somehow have helped and enabled me to achieve the set goals. Thus, I would like 

to start by thanking the co-authors of my publications: David McCarthy, Aoife Quinlan, Dr. 

Caroll Beltran, Dr. Cristina Torres-Fuentes, and Dr. Joanna McCarthy, for all the hard work 

and patience when assisting me “on the ground” with those tough and demanding 

experiments. In this regard, I would also like to thank Sheila O’Loughlin and Dinesh Rasiah 

for their excellent comittment and focus. A special mention to Dr. Aoife O’Mahony which 

helped me through my first steps in the lab, but also with very useful discussions and with 

whom I am co-author of several research and review papers. Among the same lines, many 

thanks to Dr. Martin O’Neill, Dr. Jianfeng Guo, Dr. Sue Grenham, Dr. Harriet Schellekens, 

Dr. Monica Tramullas and Dr. Javier Bravo, essential sources of expert (guru) advice 

regarding lab techniques. A very cordial thank you to Ms. Colette Manley which always 

steped in when I needed the most. Additionally, I would like to thank our collaborators Dr. 

Raphael Darcy and co-workers for useful discussions and for assisting me with the synthesis 

of modified cyclodextrins, fundamental blocks of my research. 

I believe that many other factors and conditions significantly (even when applying the 

strictest statistical analysis) affect the perspective you have of science and research. Thus, I 

must also acknowledge the academically stimulating environments of the 

Biopharmaceutics/School of Pharmacy, Anatomy and Neuroscience and the Alimentary 



 

xi 

 

Pharmabiotic Centre Neurogastroenterology labs, which postgraduate students and staff 

were engaging and kindful to me during all these years. Indeed, all of the above were also 

crucial for the “great craic” which made my day-to-day in the lab so enjoyable and my life in 

Cork so memorable. A special mention to Kieran Keohane and Robert Ahern with whom I 

shared and laugh from the very early days of my PhD studies – can definetly call them my 

“Irish brothers”. Also, I would like to thank all others that even though not belonging to my 

specific academic setting have always believed in me and gave their support through their 

friendship. In particular, Ben Dick, Iveta Kloubova, Ludovica Butto, Janina Berghoff, 

Tatiana Marques and Jamie Urquhart for being awesome friends, flatmates and/or travel 

companions. Moreover, I would like to thank the wonderful people I met through volleyball 

and dancing (Leah, Magda, Azril, Agata, Jurgen, Alina, Sylvia, Kathleen, Colette, Paul, 

Riccardo...), which have definetly enhanced my experience in Cork and eased out any 

hardship I was going through. 

Finally, and (definetly) not the least (and certainly the most important), I am very grateful to 

my family for their unconditional support and love during all and every quest I decide to 

undertake. Thanks Dad (Fernando), Mom (aka. Mita – Ana Maria), brother Marco and sister 

Filipa! Extraordinary thanks to my siblings for their incredible complicity during the 

overwhelming days and for all the help formatting this thesis (but also, to David McCarthy 

without whom printing this “book” would not have been possible). Similarly, thanks to my 

dear Joana Marques (aka. Baguera) for her love, patience and all the listening, which even 

far from Cork kept my heart warm. Also, I would like to thank the rest of my family, 

including abuelitas Mila e Jesus, aunties and uncles (too many to be listed), cousins, sister-

in-law (aka. cunhadinha) and my very close friends from Scouts (Nanny, FAF, Raul, Alves) 

for all the encouragement. All of you have been “the reason” and let this achievement be 

yours as well. 

Thank you all! Obrigado a todos!   



 

xii 

 

List of publications 

Peer-reviewed articles 

1. Godinho BMDC, McCarthy DJ, Torres-Fuentes C, Beltrán CJ, McCarthy J, Quinlan A, 

Ogier JR, Darcy R., O'Driscoll CM., & Cryan JF. (2014). Differential nanotoxicological 

and neuroinflammatory liabilities of non-viral vectors for RNA interference in the 

central nervous system. Biomaterials, 35(1), 489-499. 

2. Godinho BMDC, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. (2013). Self-

assembling modified β-Cyclodextrin nanoparticles as neuronal siRNA delivery vectors: 

Focus on Huntington’s Disease. Molecular Pharmaceutics, 10 (2), pp 640–649. 

3. O'Mahony AM, Godinho BMDC, Cryan JF, & O’Driscoll CM. (2013). Non-viral 

nanosystems for gene and siRNA delivery to the central nervous system: formulating 

the solution. J. Pharm. Sci., 102(10), 3469-3484. 

4. O'Mahony AM, O'Neill MJ, Godinho BMDC, Darcy R, Cryan JF, O'Driscoll CM. 

(2013). Cyclodextrins for non-viral gene and siRNA delivery. Pharmaceutical 

Nanotechnology, 1(1) pp. 6-14. 

5. O’Mahony AM, Godinho BMDC, Ogier J, Devocelle M, Darcy R, Cryan JF, 

O’Driscoll CM. (2012). Click-modified cyclodextrins as non-viral vectors for neuronal 

siRNA delivery. ACS Chemical Neuroscience, 3 (10), pp 744–752. 

 

Oral communications 

6. Godinho BMDC, McCarthy DJ, Quinlan A, Beltrán C, Ogier JR, Darcy R, O’Driscoll 

CM, Cryan JF. A nanotoxicological appraisal of non-viral vectros for RNAi in the 

CNS. XIII Meeting of the Portuguese Neuroscience Society, Luso, Portugal, June, 

2013. 

7. Godinho BMDC, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Nanoparticles as 

disease-modifying mediators for brain therapy: focus on Huntigton’s Disease. European 

College of Neuropsycopharmacology workshop 2013, Nice, France, March 2013. 

 

  



 

xiii 

 

Poster communications 

8. Godinho BMDC, McCarthy DJ, Beltrán C, Quinlan A, Ogier JR, Darcy R, O’Driscoll 

CM, Cryan JF. Modified cyclodextrins as biocompatible siRNA vectors for 

Huntington’s Disease: a nanotoxicological and neuroinflammatory comparative study. 

Neuroscience Ireland 2013, Cork, Ireland, September 2013. 

9. McCarthy DJ, Godinho BMDC, Gooding M, Ogier JR, Darcy R, Cryan JF, O’Driscoll 

CM. Gene silencing in the blood brain barrier using modified beta cyclodextrins as non-

viral vectors for siRNA. Neuroscience Ireland 2013, Cork, Ireland, September 2013. 

10. Godinho BMDC, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Nanoparticles for 

treating Huntington’s Disease: Cyclodextrin-based siRNA delivery to the striatum 

improves motor deficits on the rotarod of the R6/2 mouse. 8th Forum of the Federation 

of Neuroscience Societies 2012, Barcelona, Spain, July 2012. 

11. Godinho BMDC, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Silencing toxic gene 

expression in in vitro and in vivo models of Huntington’s Disease using a cyclodextrin-

based siRNA delivery system. Society for Neuroscience Annual Meeting 2011, 

Washington DC, November 2011. 

12. Godinho BMDC, Tramullas M, Ogier JR, Grenham S, Darcy R, O’Driscoll CM, Cryan 

JF. Cyclodextrins as an effective siRNA delivery system in multiple models of 

Huntington’s Disease. Annual Meeting of the American Association of Pharmaceutical 

Scientists 2011, Washington DC, United States of America, October 2011. 

13. Godinho BMDC, O’Loughlin S, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. 

Modified cyclodextrins as stable and effective siRNA delivery systems in cell-based 

and in animal models of Huntington’s Disease. Neuroscience Ireland 2011, National 

University of Ireland, Maynooth, Republic of Ireland, September 2011. 

14. Godinho BMDC, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Cyclodextrin-based 

siRNA delivery in an in vitro model of Huntington’s Disease. XII Meeting of the 

Portuguese Neuroscience society, Universidade de Lisboa – Faculdade de Medicina, 

Lisboa, Portugal, May 2011. 

15. Godinho BMDC, O’Mahony AM, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. 

Cylcodextrins as nonviral-vectors for siRNA delivery to the Central Nervous System. 

Neuroscience Ireland 2010, University College Dublin, Dublin, Republic of Ireland. 

September 2010.  



 

xiv 

 

Abstract 

Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused 

by the expression of a mutant Huntingtin (muHTT) protein, leading to neuronal dysfunction 

and death in specific regions of the central nervous system (CNS). Thus, preventing the 

expression of muHTT is a key research avenue for developing novel therapies for HD. In 

this regard, harnessing the specificity of the RNAi pathway using synthetic short interfering 

RNA (siRNA) to silence the expression of the muHTT gene holds great promise. However, 

the biggest caveat in the RNA interference (RNAi) approach is delivering siRNAs to 

neurons, which are notoriously difficult to transfect. Indeed, despite the advances in the 

design and development of non-viral vectors, efficient and safe siRNA delivery systems for 

CNS applications are still lacking. Thus, the aim of this thesis was to investigate the utility 

of modified amphiphilic β-cyclodextrins (CDs), olygosacharride-based molecules, as non-

viral vectors for siRNA delivery for HD. 

Our studies demonstrated that modified CDs were able to bind and complex siRNAs 

forming nanoparticles which were stable in artificial cerebrospinal fluid. Modified CDs 

efficiently delivered siRNAs to two different in vitro models of HD, a rat striatal cell line 

(ST14A-HTT120Q) and human HD fibroblasts, significantly reducing the expression of the 

HTT gene and only causing minimal cytotoxicity. Moreover, direct single injections of 

CD.siRNA nanoparticles into the R6/2 mouse brain resulted in significant HTT gene 

expression knockdown, which was found to be sustained for 7 days. In addition, repeated 

brain injections of CD.siRNA complexes resulted in selective alleviation of rotarod motor 

deficits in this mouse model of HD. 

To further expand on previous preliminary toxicity data, a comparative study was carried out 

in multiple brain-derived cell lines (ST14-HTT120Q striatal cells, BV2 microglial cells and 

U87 astroglioma cells) using commercially available vectors and CD.siRNA nanoparticles. 

Differential cytotoxic effects were observed among commercially available cationic vectors, 



 

xv 

 

whereas CD.siRNA nanoparticles only induced limited disruptions of cellular membrane 

integrity and of mitochondrial metabolic activity. Additionally, and in contrast with 

commercially available vectors, CD.siRNA nanoparticles only induced limited 

neuroinflammatory responses in vitro, in BV2 cells, and after single injections into the 

mouse brain. Although these data support CDs as an efficient and safe siRNA delivery 

vector suitable for intracerebral injections, further studies to investigate the effects of 

chronic dosing and escalating doses are warranted. 

Progression towards developing CD-based formulations for systemic administration 

demands greater focus on increasing the stability of nanoparticles. Thus, to this end we have 

described a PEGylation method for post-modification of pre-formed CD.siRNA 

nanoparticles using amphiphilic PEGylated CDs. Resulting PEGylated CD.siRNA 

nanoparticles showed increased stability in physiological salt-conditions and, to some extent, 

reduced protein-induced aggregation. We have also identified polyethylene glycol length 

(PEG) as a major determinant for stability of CD.siRNA nanoparticles and now further 

studies are required with longer PEGs to improve the pharmacokinetic profile of siRNA. 

Taken together, the work outlined in this thesis identifies modified CDs as efficient non-

viral vectors for siRNA delivery to the brain, with minimal toxicity. Furthermore, we have 

established a strategy for modification of pre-formed CD.siRNA nanoparticles to improve 

the prospects of systemic delivery. These preliminary results indicate the potential of these 

nanosystems to treat a variety of CNS disorders, including other neuropsychiatric disorders 

and brain cancers, and indicate that further development towards the clinic is warranted.  
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1.1 Huntington’s Disease 

Huntington’s Disease (HD) is a rare neurodegenerative disease which affects ~5-10 in 

100,000 people in European, Australasian and American populations (Morrison, 2010; 

Pringsheim et al., 2012). According to the HD association of Ireland, there are ~500 HD 

patients and ~2500 people are at risk of developing the disease in Ireland. In addition, HD 

mainly affects middle-aged individuals and leads to death 15-18 years after onset of 

symptoms (Bates et al., 2002; Wexler, 2004). The hallmarks of HD are involuntary 

choreiform movements, progressive motor and cognitive impairment, depressive-like 

behaviour and mood disorders (Bates et al., 2002; Myers, 2004; Novak et al., 2010). 

The first accurate description of Huntington’s chorea was made by George Huntington in 

1872 in his classical paper  “On Chorea” (Huntington, 2004). However, it is believed that 

HD was first mentioned by Paracelsus (1493-1541), who suggested that this movement 

disorder had origin in the central nervous system (CNS) (Zuccato et al., 2010). Despite all 

efforts, it was only in 1993 that The Collaborative Huntington’s Research Group identified 

the mutation in the interesting transcript (IT)15 gene, now named Huntingtin (HTT) gene, as 

the cause for the disease (MacDonald et al., 1993). 

Despite the great advances in the understanding of HD neuropathology, current 

pharmacotherapy is only able to provide relief for some of the symptoms and does not target 

the underlying cause of the disease (Ross et al., 2011). Therefore, the development of new 

therapeutic strategies to stop disease progression is crucial to improve the standard of care 

for HD patients. 

1.2 Genetic mechanism of Huntington’s Disease 

We now know that HD is an autosomal dominant disease caused by an unstable and 

elongated repetitive deoxyribonucleic acid (DNA) element containing cytosine (C), adenine 

(A) and guanine (G)  in exon 1 of the HTT gene (Chromosome 4, 4p16.3) (MacDonald et 
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al., 1993). Thus, HD is part of a family with 8 other neurodegenerative disorders that are 

caused by CAG triplet expansions which include a number of spinocerebellar ataxias (SCA), 

spinal bulbar muscular atrophy and dentatorubral-pallidoluysian atrophy (Shao et al., 2007). 

As the CAG codon codes for glutamine, these diseases are collectively called 

“polyglutamine” (polyQ) disorders (Shao & Diamond, 2007). In the HTT gene, the number 

of CAG repeats in normal individuals varies between 6-39, however 17-20 are the most 

commonly found (Imarisio et al., 2008; Novak & Tabrizi, 2010). Symptomatic HD patients 

usually present over 40 CAG repeats and complete dominance of the disease is now widely 

accepted to occur above this number of CAG repeats (Imarisio et al., 2008; Sathasivam et 

al., 1997). Patients with very high numbers of CAG repeats, 180 CAG repeats (Sathasivam 

et al., 1997) and 250 CAG reapeats (Nance et al., 1999), are rare but have been reported. 

Also, CAG expansions greater than 60 have been associated with the juvenile form of the 

disease and with severe disease progression (Andrew et al., 1993; Langbehn et al., 2004). 

Indeed, clinical studies have shown that the number of CAG repeats is inversely correlated 

with the age of onset of clinical symptoms (Andrew et al., 1993; Brinkman et al., 1997). 

However, it is important to remark that this correlation only accounts for approximately 50-

70% of the variance in the age of onset of symptoms (Andrew et al., 1993; Brinkman et al., 

1997; MacDonald et al., 1993; Zuccato et al., 2010). Thus, although it is clear that HD has 

an age-dependent penetrance, it is common to find variability in the age of onset and 

severity of symptoms among patients with the same CAG repeat length (Myers, 2004). 

Other environmental and genetic factors have also been suggested to influence the age of 

onset and disease progression (Andresen et al., 2007; Wexler, 2004). 

HD is inherited in an autosomal dominant manner, meaning that a single copy of the mutant 

HTT (muHTT) gene is enough for disease manifestation (Myers, 2004). Thus, offspring of 

affected individuals have a 50% chance of expressing the disease regardless of their gender 

(Wexler, 2004). Furthermore, most HD patients are heterozygous individuals carrying one 

single copy of the mutant allele and very few patients have been found homozygous 
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(Squitieri et al., 2003). Although homozygosity has no apparent effect on the age of onset, it 

was recently found to clearly impact on severity of HD phenotype and disease progression 

(Squitieri et al., 2003). Nowadays, a precise and cost-effective predictive genetic test is 

available to identify individuals at risk before the onset of symptoms or as tool to confirm 

diagnosis based on pathological and symptom assessment (Levin et al., 2006). However, 

pre-symptomatic genetic testing for HD has raised many ethical issues mostly founded/based 

on the patient’s right “not to know” and on the fact that no cure is yet available (Terrenoire, 

1992). Despite this, in the future, if an effective disease-modifying therapy arises this test 

may be of particular interest to enable therapeutic interventions at early stages of the disease 

to block, or even reverse, disease progression.  

1.3 Wild-type and mutant Huntingtin: What are their functions in the 

brain? 

1.3.1 Wild-type Huntingtin 

Wild-type HTT (wtHTT) is a 348-kDa protein ubiquitously expressed in a wide variety of 

tissues/organs, including liver, colon, pancreas and brain, with the highest levels being 

reported in neurons in the brain (Sharp et al., 1995; Strong et al., 1993). Although substantial 

efforts have been made to understand the cellular roles of wtHTT, its specific functions are 

still not completely understood. wtHTT is mostly found in the cytoplasm but also in small 

amounts in the nucleus and is suggested to be implicated in a wide variety of cellular 

processes (Kegel et al., 2002). Moreover, wtHTT is known to interact with over 200 other 

patterns and several roles in transcriptional regulation, endocytosis, endosomal motility, 

axonal transport and synaptic transmission have been described (Imarisio et al., 2008; 

Zuccato et al., 2010). Here we will briefly overview the most studied functions attributed to 

wtHTT. 
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HTT has a crucial role in embryonic development and CNS formation (Reiner et al., 2003). 

Complete inactivation of the mouse homologue HTT gene (Hdh) in knockout mice leads to 

embryonic death before formation of the nervous system (before gastrulation) (Duyao et al., 

1995b; Zeitlin et al., 1995). This has been suggested to occur due to increased apoptosis in 

the embryonic ectoderm. In addition, other studies have demonstrated that mice with 

reduced levels of wtHTT expression (~50%)  survive after birth but show profound changes 

in cortical and striatal structures as well as enlarged brain ventricles due to abnormal brain 

development (Auerbach et al., 2001). On the other hand, studies in Rhesus macaque have 

shown that 45% reduction of the HTT gene in the adult brain does not compromise motor 

movement nor induced neuronal degeneration (Grondin et al., 2012; McBride et al., 2011). 

Thus, this suggests that despite that HTT is required at specific stages of development and 

plays an important role in neurogenesis, partial supression in adulthood might be well 

tolerated up to several months (Grondin et al., 2012; McBride et al., 2011). 

Other studies have suggested that wtHTT also has an anti-apoptotic and pro-survival 

function in the adult brain (Leavitt et al., 2001). Cattaneo and collaborators have shown that 

overexpression of wtHTT in vitro has a protective effect against toxic stimuli caused by 

starvation, mitochondrial toxins or toxic genes (Rigamonti et al., 2000; Rigamonti et al., 

2001). Additionally, Hayden and colleagues have conducted in vivo studies and reported that 

overexpression of wtHTT in transgenic yeast-derived artificial chromosome (YAC)18 mice 

confers protection against excitotoxicity-triggered apoptosis (Leavitt et al., 2006). The anti-

apoptotic effects mediated by wtHTT are believed to occur through several mechanisms 

including: direct interaction with caspase 3; inhibition of the processing of pro-caspase 9; 

and the sequestration of pro-apoptotic Huntingtin-interacting protein 1 (HIP1) (Gervais et 

al., 2002; Rigamonti et al., 2000; Rigamonti et al., 2001; Zhang et al., 2006). On the other 

hand, wtHTT may also act as a substrate for the Serine/threonine kinase Akt which in turn 

activates and enhance pro-survival pathways and gene expression (Rangone et al., 2004). 
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wtHTT is believed to be involved in transcriptional regulation interacting with multiple 

transcription factors and other intracellular partners. As an example, wtHTT increases 

transcription of pro-survival brain derived neurotrophic factor (BDNF) by sequestering 

Repressor element-1 silencing transcription factor (REST)/Neuron-restrictive silencer factor 

(NRSF) in the cytoplasm and inhibiting the formation of co-repressor complexes in the 

BDNF promoter exon II (Imarisio et al., 2008; Zuccato et al., 2003). Increased production of 

BDNF has been reported not only in vitro in brain-derived cells overexpressing wtHTT, but 

also in vivo in YAC18 mice where high striatal levels of BDNF were detected (Zuccato et 

al., 2001; Zuccato et al., 2003). Through interaction with REST/NRSF wtHTT promotes 

transcription of many other genes involved in neuronal development and normal neuronal 

functions, including genes coding for ion channels and neurotransmitter receptors (Cattaneo 

et al., 2005). Thus, wtHTT may have a role of facilitating gene transcription in the nervous 

system. 

wtHTT is also thought to play an important role in axonal transport of vesicles and 

mitochondria along the microtubules. This may occur by direct interaction or via Huntingtin-

associated protein 1 (HAP1) with dynein/dynactin molecular motor complex enabling 

anterograde and retrograde transport along microtubles. In fact, wtHTT has been reported to 

facilitate vesicular transport of BDNF from the cortex to the striatum perhaps working as a 

scaffolding protein (Gauthier et al., 2004). Finally, wtHTT interacts with various 

cytoskeletal and other proteins present at synaptic terminals involved in endo- and 

exocytosis, and has been suggested to play an active role in modulating synaptic 

transmission (Smith et al., 2005).  

Thus, due to the potential involvement of wtHTT in many cellular processes, loss-of-

function of wtHTT has been suggested to be implicated to some extent in the development 

of HD pathology (Dragatsis et al., 2000). 
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1.3.2 Mutant Huntingtin 

An increasing body of evidence suggests that HD is mainly caused by a toxic gain-of-

function of muHTT rather than only a loss-of-function of wtHTT (Shao & Diamond, 2007). 

In fact, muHTT has been found to disrupt multiple intracellular and intercellular processes 

directly causing toxicity or rendering specific neurons more susceptible to toxic stimulus 

(Ross & Tabrizi, 2011). Selected intracellular mechanisms of HD pathogenesis caused by 

muHTT are depicted on Figure 1.1. 

 

Figure 1.1. Selected intracellular mechanisms of pathogenesis induced by muHTT (Zuccato et al., 

2010). (A) Proteolytic cleavage of full length muHTT in the cytoplasm by proteases and subsequent 

targeting for proteasome degradation. Dysfunctional proteasome is not able to clear mutant protein 

and cytoplasmic aggregates are formed. (B-F) N-terminal muHTT interacts with multiple partners 

deregulating their normal function. (C) muHTT binds to inositol triphosphate receptors leading to 

calcium store release (D) muHTT induces mitochondrial dysfunction with a decrease in ATP and an 

increase of ROS production (E) muHTT shuttles into the nucleus forming inclusions and also 
impairing gene transcription (F) muHTT disrupts synaptic function in both pre- and post-synaptic 

terminals, by affecting vesicle transport, exocytosis and post-synaptic receptor activity. 

Abbreviations: ATP, adenosine triphosphate; BDNF, Brain derived neurotrophic factor; muHTT, 

Mutant HTT; ROS, reactive oxygen species. 
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The anomalous CAG triplet expansion in muHTT gene leads to the formation of an 

abnormal protein which has an elongated polyQ tract close to its amino (N)-terminus 

(MacDonald et al., 1993). Caspases and/or cysteine aspartic proteases cleave the missfolded 

full length muHTT down to toxic N-terminal fragments, containing the expanded polyQ, and 

have been found to be one of the key steps in HD pathogenesis. Indeed, the expression of 

muHTT N-terminal fragments in rodent and nonhuman primates seem to suffice to induce 

HD-like symptoms (Mangiarini et al., 1996; Palfi et al., 2007; Schilling et al., 1999).  

muHTT is believed to interact with many intracellular targets disrupting their normal 

function (Figure 1.1), consequently leading to: mitochondrial dysfunction by impairing 

mitochondrial metabolic function and motility; proteolysis and apoptosis induced by 

increased caspase activities; synaptic dysfunction and excitotoxicity. Furthermore, muHTT 

degradation and clearance seems to be impaired due dysfunctional ubiquitin-proteasome 

system (Tydlacka et al., 2008; Zuccato et al., 2010). As a result ubiquitinated-muHTT 

proteins accumulate in the cytoplasm and contribute to aggregate formation (Waelter et al., 

2001). Indeed, cytoplasmic N-terminal fragments and/or full length missfolded muHTT are 

believed to cluster and form β-sheet-rich fibrils with amyloid-like features. In turn, these 

amyloid-like structures will align resulting in the formation of aggregates or inclusions that 

can remain in the cytoplasm or can be shuttled to the nucleus (Bates, 2003; Cooper et al., 

1998). Nuclear inclusions comprise mostly of fragments containing the N-terminus of the 

muHTT, whereas cytoplasmic aggregates are composed of both full-length and truncated 

forms of the protein (Hackam et al., 1998; Zuccato et al., 2010). Additionally, it is believed 

that the length of the protein fragment and the length of the PolyQ repeats are crucial factors 

in aggregation and toxicity processes (Cooper et al., 1998; Hackam et al., 1998; Martindale 

et al., 1998a). Morever, several in vitro studies have shown that inclusion formation 

increases susceptibility to cell death in non-neuronal and neuronal mammalian cell lines 

(Hackam et al., 1998; Ho et al., 2001). It has also been suggested that this is achieved by 

sequestration of specific proteins (e.g. soluble motor proteins responsible for axonal 
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transport) (Gunawardena et al., 2003; Li et al., 2001) and transcription factors (Cha, 2007) 

that may lose their physiological function (Zuccato et al., 2010). In addition, an in vivo study 

in a conditional mouse model of HD have also demonstrated that aggregate formation 

correlates with disease progression and that reversal of the HD-like phenotype is observed 

when the muHTT gene is “turned off” and aggregates cleared (Yamamoto et al., 2000). 

Importantly, this study also highlights that symptoms arise prior neuronal death, indicating 

that neuronal dysfunction prevails at early stages of disease, a time window that could be 

explored for specific therapeutic interventions (Yamamoto et al., 2000). In contrast, other 

lines of evidence support aggregate formation as a cellular neuroprotective mechanism to 

avoid toxic effects from soluble forms of muHTT (Imarisio et al., 2008; Zuccato et al., 

2010). In fact, inclusion formation was found to improve survival of cells in culture perhaps 

by sequestering toxic soluble fragments (Arrasate et al., 2004). Additionally, in a study by 

Hayden and co-workers, HD mice bearing an expanded and truncated form of muHTT 

presented abundant inclusions, but neither behavioural impairment nor neuronal loss were 

reported (Slow et al., 2005). Furthermore, pharmacological promotion of inclusion 

formation has been shown to reduce the toxic effects of soluble muHTT in cell culture 

models (Bodner et al., 2006). Thus, although the role of aggregates is yet to be clarified and 

may depend on factors such as cell type and disease stage, aggregate formation is a widely 

known hallmark of HD. The presence of such aggregates has been reported in cortical and 

striatal structures in the brain of HD patients, but not in non-diseased control individuals 

(DiFiglia et al., 1997).  

In addition to detrimental effects within cells, muHTT also perturbs intercellular interactions 

between neurons themselves and neuron-glia interactions (Gu et al., 2007; Ross & Tabrizi, 

2011). muHTT is believed to increase release of glutamate excitatory neurotransmitter from 

cortical afferents and to enhance N-methyl-D-aspartate receptor (NMDAR) activity causing 

excitotoxicity in striatal neurons. This is further aggravated by reduced glutamate re-uptake 

from the synaptic cleft by glial glutamate transporter 1 (GLT-1) in glial cells. GLT-1 
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expression has been found to be reduced in post-mortem brain tissues from HD patients 

(Arzberger et al., 1997). On the other hand, deficient functioning of other neurotransmitter 

systems, such as adenosine A2 receptors, cannabinoidd receptors, and dopamine receptors, 

have been reported in different models of HD and may also play an important role mediating 

excitotoxicity in the HD brain (Cha et al., 1998; Zuccato et al., 2010). 

Finally, a systematic assessment of human cortices have revealed that HD patients present a 

reduction in BDNF levels and its cognate receptor (Zuccato et al., 2008). The loss of BDNF 

production in cortical neurons due to muHTT transcriptional interference, and the disruption 

of its vesicular transport and delivery to the striatum may increase vulnerability of striatal 

neurons to excitotoxicity and to intracellular muHTT toxicity (Zuccato et al., 2007; Zuccato 

et al., 2001).  

Although the relative contributions of cell-autonomous and non-cell-autonomous 

dysfunctions to the pathogenesis of HD are still unclear, ultimately they lead to neuronal 

dysfunction and death in the striatum, but also other brain regions such as cortex (Ross & 

Tabrizi, 2011; Zuccato et al., 2010). Furthermore, the extent to which symptoms of disease 

arise from neuronal death and/or from neuronal dysfunction still warrants further 

investigations, and may be key for the timing and application of different therapeutic 

strategies. 

1.4 Neuropathology and symptomatology 

As mentioned earlier HD pathology is largely brain specific and leads to major cell loss and 

atrophy of basal ganglia structures, specifically in the striatum (caudate nucleus and 

putamen) (Harper, 1996; Kowall et al., 1998; Reiner et al., 1988; Vonsattel et al., 1998; 

Vonsattel et al., 1985). In early and middle stages of HD progression, degeneration occurs 

preferentially in projecting g-aminobutyric acid (GABA)-ergic medium-sized spiny neurons, 

while medium-sized aspiny interneurons are not affected to a great extent (Albin et al., 1990; 

Vonsattel, 2008). Enkephalin-containing GABAergic neurons are believed to be affected 
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first and substance P-containing GABAergic neurons seem to be affected at later stages 

(Reiner et al., 1988). Furthermore, among substance P-containing neurons, neurons 

projecting to susbtantia nigra reticulata seem to be much more affected than neurons 

projecting to substantia nigra compacta (Reiner et al., 1988; Vonsattel, 2008). Despite the 

different degrees of degeneration among projecting neurons observed in early and middle 

stages of HD, at advanced stages both populations are largely affected (Vonsattel & 

DiFiglia, 1998; Zuccato et al., 2010). However, it is worth noting that the first symptoms 

(cognitive and motor) arise before the onset of overt neuronal loss in the striatum, thus 

suggesting that cellular dysfunctions may play an important role in early stage HD 

symptoms (Vonsattel et al., 1985). This is consistent with an increasing body of evidence 

that shows that aggregate formation and other biochemical alterations in the brain of HD 

patients occurs many years prior to the onset of symptoms (Gómez-Tortosa et al., 2001; 

Gutekunst et al., 1999). 

Other structures, such as cerebral cortex, hippocampus, cerebellum, substantia nigra, white 

matter, thalamus and hypothalamus, are also clearly affected in HD (Kassubek et al., 2004; 

Politis et al., 2008). In fact, morphometric analyses using magnetic resonance imaging 

(MRI) revealed that these brain structures have significant volume reductions in HD patients 

(Monte et al., 1988; Rosas et al., 2003; Vonsattel, 2008). In more severe HD patients this is 

more evident with patients sometimes presenting with up to a 30% of reduction in brain 

weight and 20-30% reduction in total area of the cortex, hippocampus, amygdala and 

thalamus (Monte et al., 1988). The degeneration observed in other CNS structures, 

especially in cortical structures, might explain to a great extent the heterogeneity of 

symptoms among HD patients (Rosas et al., 2008). As an example, degeneration and 

damage in cortical structures have been implicated in personality changes and dementia 

(Monte et al., 1988). Furthermore, although evidence suggests that most clinical features of 

HD are mainly attributable to degeneration within the CNS, other aspects of HD are believed 

by effects of muHTT in other peripheral tissues. As an example, patients may suffer 



CHAPTER I – INTRODUCTION 

12 

 

endocrine disturbances, metabolic dysfunctions, muscle atrophy and weight loss which have 

been associated, at least in part, with adverse effects of muHTT in skeletal muscle, liver, 

heart, pancreas and testes (Sanberg et al., 1981; van der Burg et al., 2009). 

The clinical features of HD include general motor dysfunctions, cognitive decline and 

psychological disturbances (Vonsattel & DiFiglia, 1998). Symptoms in early-stage human 

HD include alterations in mood, reward and sexual behaviour, disturbance of the circadian 

rhythm and progressive weight loss (Bates et al., 2002; Politis et al., 2008). However, early 

cognitive impairment has also been described prior to the onset of classical motor symptoms 

(Foroud et al., 1995; Lawrence et al., 1998). At peak-age of adult-onset, HD is classically 

associated with motor dysfunction, such as involuntary rapid movements (chorea), rigidity 

and dystonia; cognitive impairment, starting with loss of memory and progressing to 

dementia; and more pronounced neuropsychiatric manifestations, such as severe depression 

and anxiety (Bates et al., 2002; Rosenblatt, 2007). As HD progresses patients become unable 

to care for themselves and life threatening complications usually arise from poor nutrition, 

infection and inflammation, serious falls, among others (Zuccato et al., 2010). Swallowing 

difficulties that lead to aspiration pneumonia is the most common cause of death among HD 

sufferers (Bates et al., 2002). 

1.5 Modelling Huntington’s Disease 

Mainly due to methodological limitations when using post mortem brain samples from 

patients, research in HD has been largely dependent on model systems (Ross & Tabrizi, 

2011; Zuccato et al., 2010). Indeed, different in vitro and in vivo models have been widely 

used to gain insight into HD neuropathology and as tools to screen for potential new 

therapeutic interventions. The following is a short overview of the most commonly used in 

vitro systems and also the different animal models used to model HD. 
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1.5.1 In vitro models 

Cell model systems expressing muHTT have been invaluable to understand the mechanisms 

of intracellular toxicity caused by muHTT. The most widely used in vitro models of HD 

present a fast pathological course and consist of transiently transfected cell lines that 

overexpress the muHTT (Li et al., 2003a). Non-neuronal cell lines, such as 2-2 Monkey 

kidney cells and human embryonic kidney (HEK) 293T cells, and neuronal-derived cell 

lines, such as N2a neuroblastoma cells, have been used to evaluate the toxic consequences of 

different muHTT fragments, to study muHTT half-life and intracellular localization (Cooper 

et al., 1998; Hackam et al., 1998; Kaytor et al., 2004; Martindale et al., 1998b). Several 

stably transfected cell lines consistently expressing the muHTT (or wtHTT) under the 

control of an exogenous promoter have also been engineered. As an example, a rat striatal 

ST14A-HTT120Q cell line, derived from embryonic day 14 rat striatal primordia, has been 

stably cloned with a fragment of the human muHTT gene including the promoter region, 

exon 1 and 120 CAG repeats (Cattaneo et al., 1998; Rigamonti et al., 2000). muHTT 

expression is consistent up to the 25
th
 passage and these cell cultures present an increased 

susceptibility to toxicity (Rigamonti et al., 2000). Parental ST14A cells express neuronal 

specific markers such as βIII-tubulin and neuron-specific enolase (Ehrlich et al., 2001). 

These cells also retain characteristics from the immature primary neurons from which they 

are derived, expressing markers including nestin. However, sub-type specific markers for 

medium sized spiny neurons, such as dopamine and cAMP-responsive phophoprotein 32 

kDa (DARPP-32) and GABA are also expressed in undifferentiated ST14A cells. 

Expression of DARPP-32 increases upon cell differentiation and cells also express 

functional D1 and D2 dopamine receptors (Ehrlich et al., 2001). Other cell lines have been 

developed such that they contain an inducible system that permits regulation of the 

expression of the transgene. Examples of such are ST14 cells (Bari et al., 2013), rat adrenal 

phaeochromocytoma PC12 cells (Kazantsev et al., 1999; Wyttenbach et al., 2001) and 

neuroblastoma-glioma hybrid NG108-15 cells (Lunkes et al., 1999) stably cloned with 
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muHTT (e.g HD43 or HD-Q74) (or wtHTT (e.g. HD-Q23) and under the control of non-

steroid- or tetracycline transcriptional activator systems. All these cell-model systems have 

been used not only to study aggregate formation and toxicity, but also as models to screen 

potential therapies for HD (Wyttenbach et al., 2001). Despite their usefulness, in vitro 

models based on cell lines have several limitations, such as (i) they might not recapitulate 

cell biology of post-mitotic neurons, and (ii) they carry genetic artifacts due to their 

malignant nature or due to modifications introduced to drive immortal growth (Park et al., 

2008; Ross & Tabrizi, 2011). 

In contrast, primary neurons recapitulate many features observed in vivo. Primary striatal 

neurons obtained from transgenic mouse or rat HD models have been used to evaluate the 

protective effects of novel treatments for HD (Tang et al., 2003; Wu et al., 2009). On the 

other hand, primary human fibroblasts harvested from human HD patients, naturally 

harbouring the full length muHTT protein, have been used to investigate muHTT toxicity 

(Cray et al., 1980). Additionally, HD fibroblasts have recently been used for the 

identification of single nucleotide polymorphisms (SNP) associated with the mutant allele 

and as a model to test allele-specific silencing of the muHTT (Carroll et al., 2011; Lombardi 

et al., 2009; Zhang et al., 2009). However, a limitation of primary cells is their short life 

span in vitro upon their isolation from native tissues (Park et al., 2008). Finally, it has been 

recently demonstrated that through application of induced-Pluripotent Stem (iPS) technology 

on HD fibroblasts it is possible to generate disease-specific pluripotent cells (Park et al., 

2008). These cells can virtually differentiate to any cell-type, including neurons, and may be 

a promising model to study disease pathogenesis in a human system as well as to screen 

novel therapies (Park et al., 2008). Despite their versatility, recent studies have demonstrated 

that “epigenetic memory” of the tissues of origin may restrict cell differentiation. Therefore, 

in order to generate suitable in vitro models of disease and/or eventual therapies, it is crucial 

to select approriate methods to control for “epigenetic memory” (Kim et al., 2010b).  
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1.5.2 In vivo models 

A large variety of species ranging from invertebrates to widely used rodents, and more 

recently nonhuman primates, have been used to gain better understanding of HD pathology 

but also as invaluable resources for preclinical testing of potential therapies. Recently, 

several reviews have focused in the exhaustive description of the features and limitations of 

existing in vivo models of HD (Crook et al., 2011; Marsh et al., 2003; Morton et al., 2013; 

Pouladi et al., 2013; Ramaswamy et al., 2007; Xi et al., 2011; Yang et al., 2011a). Thus, we 

will only give a brief overview of the most widely used models. 

1.5.2.1 Non-mammalian in vivo models 

Invertebrate models, such as Drosophila melanogaster (a fruitfly) and Caenorhabditis 

elegans (nematode worm), are convenient model systems due to their ease of maintenance, 

allowing for the use of large number of animals in a cost-effective manner (Ramaswamy et 

al., 2007; Zuccato et al., 2010). Furthermore these systems are relatively easy to manipulate 

genetically to generate transgenic models. D. Melanogaster and C. Elegans transgenic 

models bearing an N-terminal truncated form of human muHTT have been shown to present 

polyQ length-dependent neurodegeneration and progressive loss of motor 

coordination/motility (Faber et al., 1999; Gunawardena et al., 2003; Jackson et al., 1998; 

Parker et al., 2001). In addition, these systems have also constituted a rapid and inexpensive 

option for high-throughput screening of numerous candidate therapies (e.g. histone 

deacetylase (HDAC) inhibitors in Drosophila) (Nichols, 2006; Steffan et al., 2001; Voisine 

et al., 2007). Non-mammalian vertebrate models, such as transgenic Danio rerio (Zebrafish) 

have also been successfully engineered and used to replicate aggregation and polyQ length-

dependent toxicity  (Xi et al., 2011). In addition to their rapid development, zebrafish 

embryos develop externally and they are transparent enabling direct analysis of organs and 

tissues, which makes it an attractive model system for screening new therapeutics (Miller et 

al., 2005; Xi et al., 2011). 
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Despite the above mentioned advantages and the positive correlation with aspects of HD 

pathology, when using non-mammalian models one should consider that the molecular 

pathways associated may be different across species. The neuroanatomy and immune 

systems of these animals are very simple when compared to the mammalian counterparts 

and, therefore discoveries in these models might require subsequent validation in 

mammalian models (Ross & Tabrizi, 2011). 

1.5.2.2 Mammalian in vivo models 

Broadly, mammalian in vivo models can be categorized in genetic and non-genetic models, 

and span from rodents to nonhuman primates (Morton & Howland, 2013; Ramaswamy et 

al., 2007). In addition to the insights regarding HD pathology, mammalian in vivo models 

have been crucial in pre-clinical testing of novel therapies, been widely applied in proof of 

concept studies. 

 Non-genetic models 

Non-genetic rodent and nonhuman primate models dominated HD research prior to the 

discovery of the genetic mutation in the IT15 gene (Ramaswamy et al., 2007). In these early 

models, HD-like pathology was induced by direct injection of toxins into the striatum and 

therefore they are usually referred as chemical-based in vivo models. 

Glutamate, quinolinic acid (QA) or kainic acid have been used as “excitotoxic” agents to 

induce cell death in rodents and nonhuman primates through NMDAR or kainate receptors 

(Beal et al., 1991; Beal et al., 1986; Coyle et al., 1976; Emerich et al., 2006; McGeer et al., 

1976). The pattern of cell death in excitotoxic-models replicates in part the neuropathology 

observed HD patients, with enkephalin- and substance-P-containing medium spiny neurons 

being mainly affected (Beal et al., 1991; Beal et al., 1986). In addition, these models display 

HD-like motor symptoms, such as hyperkinesia and dyskinesia, but also cognitive symptoms 

(Ramaswamy et al., 2007). On the other hand, mitochondrial toxins, such as 3-nitropropionic 

acid (3-NP) and malonic acid, have also been used and caused degeneration of GABAergic 
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medium size spiny neurons in the striatum in a similar pattern that occurs in human HD 

brains (Beal et al., 1993). These toxins have been shown to irreversibly inhibit succinate 

dehydrogenase interfering with mitochondrial metabolic activity, causing cell death by 

reducing ATP production and increasing ROS formation. Although strain variability has 

been reported (Ouary et al., 2000), metabolic models also mimic hyperkinetic and 

hypokinetic symptoms of HD, and aspects of cognitive impairment (Borlongan et al., 1997; 

Palfi et al., 1996). 

Both excitotoxic and metabolic animal models of HD have not only played important roles 

unravelling the implications of excitotoxicity and mitochondrial impairment in HD 

pathology, but also in the evaluation of potential neurorestorative and neuroprotective 

therapies (e.g. coenzyme Q10, glial-derived neurotrophic factor (GDNF) gene delivery and 

GDNF/BDNF-producing cell grafts) (Kasparová et al., 2006; McBride et al., 2003; Pérez 

Navarro et al., 1999; Pérez Navarro et al., 2000). Despite their many advantages as simpler 

and convenient models, chemical-models of HD present several limitations: no muHTT 

protein is produced and consequently no aggregate formation is observed; no association 

between the mechanism of action and the actual genetic cause of the disease; the rapid cell 

death mechanism as opposed to the progressive neuronal loss in human HD; and finally, the 

interlaboratory variability, in regards to both neuropathology and behaviour, which may rise 

from differences in the genetic background of the rodents used but also in the technique and 

precision of surgical procedures (Ramaswamy et al., 2007).  

 Genetic models 

The discovery of the mutant HTT gene as cause of HD and the development of genetic 

engineering techniques has enabled the generation of classic transgenic models and 

transgenic models via gene targeting (knock-in models), that account for the hereditary and 

molecular processes underlying HD. Table 1.1 summarises the most widely used mouse 

models of HD and their main features (Yang & Chan, 2011a). 
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Transgenic models via gene targeting (Knock-in models) 

Mouse knock-in models have been generated by introducing an elongated CAG track into 

the murine Hdh or/and by replacing the corresponding mouse Hdh exon 1 for a portion of 

the human muHTT gene containing exon 1 and elongated CAG repeats (chimeric knock-in) 

(Menalled, 2005). Since these models only contain 2 copies of the HTT gene and their 

expression is regulated by the endogenous mouse Hdh promoter, protein synthesis is 

spatially and temporally accurate. Thus, knock-in models are considered the most faithful 

reproduction of HD from the genetic standpoint given that the mutation is expressed in the 

homologous HD gene (muHdh) (Menalled, 2005; Ramaswamy et al., 2007; Yang et al., 

2011b). Unfortunately, the first models generated did not represent HD neuropathology and 

models displayed unusual aggressive behaviour and no motor or cognitive deficits 

(Shelbourne et al., 1999). However, subsequent studies of knock-in mice with longer polyQ 

(Hdh111Q line) revealed increased gliosis and moderate neuropathology in the brain after 24 

months, but only subtle HD-like behavioural deficits (Wheeler et al., 2000). Other models 

containing, longer CAG repeats (~140) have also been generated which form muHTT 

inclusions in the striatum, cerebellum, cortex and hippocampus after 2 months, with motor 

symptoms only apparent from 12 months (Menalled et al., 2002; Menalled et al., 2003). 

Recently, in addition to aggregate formation, CAG150 knock-in mice have been shown to 

develop locomotor deficits, including limb clasping and gait abnormalities, as early as 4 

months (Lin et al., 2001; Yu et al., 2003). In general, knock-in models present a slow 

progression of molecular, cellular, pathological and behavioural features of the disease. 

Thus, they have been mainly applied to study the pathological pathways associated with 

muHTT, but also in some cases used to identification of novel molecular targets for the 

development of therapeutic approaches (Menalled, 2005). The lack of significant neuronal 

loss, no reduction in life span and relatively subtle behavioural deficits are the main 

limitations of knock-in models (Ramaswamy et al., 2007). 
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Traditional transgenic models  

Transgenic models bear a truncated form or the full length human muHTT gene randomly 

inserted into the host’s genome (Menalled, 2005; Morton & Howland, 2013). In these 

models, the expression of the transgene is achieved in addition to the endogenous HTT 

homologue and is usually driven by an exogenous promoter. Several species have been used 

when generating transgenic models including mice, rats (von Horsten et al., 2003), minipigs 

(Baxa et al., 2013), sheep (Jacobsen et al., 2010) and nonhuman primates (Wang et al., 

2008a; Yang et al., 2008).  However, for the scope of the present thesis here we focused on 

the most widely-used transgenic mouse models. 

It is now almost 20 years since Gillian Bates and co-workers generated the first transgenic 

mouse model of HD – the R6/2 mouse model, which was also the first genetic model of HD. 

This model expresses a truncated muHTT containing the human exon 1 and ~140-150 CAG 

repeats under the control of the human promoter (Mangiarini et al., 1996). Furthermore, the 

R6/2 model showed the presence of HTT aggregates and, severe anatomical and behavioural 

deficits, demonstrating that N-terminal muHTT is sufficient to induce HD-like pathology. 

The characteristics of this model will be discussed in detail in Section 1.6 of this thesis.  

A similar model containing fewer CAG repeats (~115 CAG) was also generated in the same 

mouse strain and presented a less dramatic disease progression, with later onset of symptoms 

and longer survival than R6/2 mice  (Mangiarini et al., 1996). This effect has been attributed 

to the shorter CAG expansion but also to the lower level of expression of the transgene 

(~31% of the endogenous mouse HTT gene) and possible different sites of integration into 

the mouse genome (Naver et al., 2003). Both R6 lines presented nuclear and neurophil 

aggregates, overall brain atrophy, motor and congnitive impairment, weight loss and 

decreased survival when compared to  wild-type littermates (Mangiarini et al., 1996). 

Borchelt and colleagues generated the N171-82Q transgenic mouse through insertion of a 

truncated fragment of the human muHTT gene containing the first 171 aminoacids and 82 
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CAG repeats, into the mouse genome (Schilling et al., 1999). The transgene is under control 

of the mouse prion promoter and is specifically expressed in neurons but not in glia. The 

N171-82Q mouse model present HTT inclusions in various brain regions and a late onset of 

motor symptoms (~10-15 weeks) (Schilling et al., 1999). Thus, it has been suggested as a 

good model for assessing pre-symptomatic therapies. More recently, transgenic mouse 

models expressing the full length human muHTT (containing different lengths of CAG 

repeats) under control of the human promoter have been engineered using yeast and bacterial 

artificial chromosome (YAC128 and BACHD97, respectively) vector systems (Gray et al., 

2008; Slow et al., 2005). Thus, these models are particularly useful in studies that aim to 

study cleavage of the muHTT protein. Alternatively to N-terminal-based models, full-length 

transgenic models have been more successful in mimicking the neuronal loss and the age-

dependent degeneration in the striatum and cortex, also exhibiting progressive motor and 

cognitive deficits (Gray et al., 2008; Slow et al., 2005). However, relatively to other models 

YAC128 and BACHD97 mice display unusually long survival and no overall weight loss 

(Menalled et al., 2009), and therefore they have been suggested as a good models for the 

investigation of the long-term effects of therapeutic strategies (Ramaswamy et al., 2007). 

Even though transgenic models recapitulate most of the molecular, neuropathological and 

clinical features of HD, they also present several pitfalls. Containing multiple copies of the 

HTT gene these models are not considered, by many, representative of HD genetics. In 

addition, due to random insertion of the human muHTT transgene in the mouse genome the 

normal functioning of other genes might be affected (Ramaswamy et al., 2007). 

Furthermore, the expression of the muHTT transgene driven by the exogenous promoter 

may not reflect an endogenous physiological production of the protein and HD-unrelated 

pathologic mechanisms in mouse (Ramaswamy et al., 2007). Finally, another limitation that 

has affected genetic mice models of HD in general is the variability of neuropathological 

and behavioural phenotypes across laboratories. Thus, efforts have been put together for the 
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standardisation of behavioural tasks and general husbandry, in order to increase consistency 

across future studies (Hockly et al., 2003b; Menalled et al., 2009; Yang & Gray, 2011b). 

Although none of the current existing mice models of HD can claim to be “the best” due to 

their specific limitations, genetic models are seen by many as “gold-standard” models for 

pre-clinical testing (Yang & Gray, 2011b; Zuccato et al., 2010). Thus, reversal of the 

phenotype in these models are generally required if the efficacy of a new experimental 

therapy is being evaluated (Yang & Gray, 2011b).  
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Table 1.1 Summary of most widely used mouse models of HD and their features. Adapted from 

(Yang & Chan, 2011a). 

 
Transgenic Knockin 

Mouse model R6/2 N171-82Q YAC128 BACHD Hdh
111

 CAG140 Hdh
(CAG)150

 

Promoter Human HTT 
Murine 

prion 

Human HTT 

locus 

Human HTT  

locus 

Murine 

Hdh 

Murine 

Hdh 
Murine Hdh 

PolyQ repeat 150 CAG 82 CAG 128 CAG 97 CAA/CAG 111 CAG 
140 

CAG 
150 CAG 

Protein 
expression level 
(Relative to 
endogenous Hdh) 

75% 20% 75% 150% 
50% or 
100% 

50% or 
100% 

100% 

Repeat stability Unstable Unstable N.D. Stable Unstable N.D. N.D. 

Motor phenotypes 
 

  
   

Open field +++ (8 wk) 
 

++ (8 wk) ++ (8 wk) 
 

++ 
(4 wk) 

++ (8 wk) 

Rotarod 
+++ 

(10–12 wk)  
++ (24 wk) +++ (24 wk) 

  
100 wk 

Grip strength 
+++ 

(10–12 wk)  
  

   

Gait 
  

  104 wk 52 wk 100 wk 

Wheel running 
+++ 

(4.5–5.5 wk)  
  

   

Climbing 
+++ 

(4.5–5.5 wk)  
  

   

Cognitive phenotypes 
 

  
   

Reversal learning ++ 
 

++ (8 wk)  
   

Morris water 
maze 

++ 
 

  
   

Instrumental 

learning   
 ++ (24 wk) 

   

Anxiety ++ 
 

 ++ 
   

Neuropathology 
  

  
   

Selective 
neuropathology 

Nonselective Nonselective Selective Selective Selective Selective Selective 

Brain weight 20% (12 wk) N.D. 10% (52 wk) 14% (52 wk) N.D. N.D. N.D. 

Striatal volume 
  

15% (52 wk) 28% (52 wk) 
  

40% 
(100 wk) 

Cortical volume 
  

7% (52 wk) 32% (52 wk) 
   

Striatal cell loss 
(stereology)   

18% (52 wk)  
  

40% 
(100 wk) 

Striatal dark 

neurons 
+ + N.D. 

10–15% (52 

wk) 

3.5% 

(104 wk) 
N.D. N.D. 

Mutant HTT 
aggregates 

+++ +++ ++ + ++ ++ ++ 

Gliosis 
 

++   
   

Other phenotypes 
 

  
   

Early lethality 12-13 wk. — — — — — — 

Body weight Loss (7 wk) Loss (12 wk) Gain (8 wk) Gain (8 wk) 
  

Loss (70 wk) 
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1.6 R6/2 Mouse model of Huntington’s Disease 

As stated earlier (Section 1.5.2.2), the R6/2 mouse was the first and most widely used mouse 

model of HD. The R6/2 transgenic line was engineered through microinjections into single 

cell CBA x C57BL/6J F1 embryos. Insertions consisted of a 1.9-kb truncated fragment of 

the human muHTT gene containing the human HTT promoter, exon 1, an elongated CAG 

repeat tract (~140-150 CAG) and 262 base pairs (bp) of intron 1 (Mangiarini et al., 1996). 

This is currently the most widely used transgenic animal model of HD for assessment of 

novel therapeutic strategies and presents a robust behavioural phenotype and HD 

neuropathology, in part attributed to the long polyQ repeat (Li et al., 2005).  

1.6.1 Neuropathology 

In the R6/2 line, the muHTT transgene was found to be ubiquitously expressed and at about 

75% of the level of expression of the murine wild-type gene (Mangiarini et al., 1996), thus 

suggesting that the transgene is to some extent overexpressed when compared to the human 

disease. Although the first studies only reported the appearance of N-terminal HTT 

aggregates in the striatum by weeks 3-4 (Davies et al., 1997; Meade et al., 2002; Morton et 

al., 2000), subsequent studies demonstrated that they can be readily detected  from birth in 

the neostriatum, S1 somatosensory cortex and hippocampal neurons (Stack et al., 2005). 

Furthermore, age-dependent increases in the size and number of inclusions (constituted by 

the muHTT protein and ubiquitin, which binds and tags proteins for degradation at the 

proteasome system) have been described, and at the terminal stage the vast majority of the 

neurons in the striatum express inclusions (Meade et al., 2002; Stack et al., 2005). At ~15 

weeks of age 98% of the striatal projecting neurons contain numerous inclusions, whereas 

only few are found in interneurons (Kosinski et al., 1999; Meade et al., 2002; Sathasivam et 

al., 1999). Despite that the first studies failed to demonstrate significant neuronal loss in the 

striatum (Sun et al., 2002), Stack et al. reported moderate dark neuron degeneration and  

astrogliosys by ~12-14 weeks of age (Stack et al., 2005). In addition, this study 
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demonstrated a significant reduction in the total striatal cell counts in the brain of R6/2 mice 

(-25%) when compared to wild-type littermates (Stack et al., 2005). In a different study, 

these reductions seemed to be selective for enkephalin-containing neurons in the striatum, 

whereas substance P-containing neurons exhibit no major change by ~12 weeks of age (Sun 

et al., 2002). The fact that selective neuronal death in the R6/2 striatum is only observed at 

later stages of the disease suggests that the observed symptoms are mainly due to neuronal 

dysfunction rather than due to neurodegeneration (Cha et al., 1998; Sathasivam et al., 1999). 

Indeed, R6/2 mice show downregulation of several neurotransmitter receptors such as, 

metabotropic glutamate receptors type I and III (mGlu1 and mGlu3, respectively), dopamine 

receptors D1 and D2, muscarinic cholinergic receptors, and cannabinoid receptor CB1 (Cha 

et al., 1998). Alterations in neurotransmitter production, release and reuptake have also been 

reported and associated with multiple changes in neuron and glial function (Li et al., 2005). 

As previously mentioned, R6/2 mice also display muHTT inclusions in many other brain 

regions, such as cortex, hippocampus, hypothalamus and cerebellum, yet in different 

proportions (Davies et al., 1997; Li et al., 2005). In the hippocampus, muHTT aggregates 

seem to affect CA1 at first instance (and later in other areas, CA3) resulting in reduced long 

term potentiation in this area of the hippocampus (Lione et al., 1999; Murphy et al., 2000); 

on the other hand, in the cortex of R6/2 mice muHTT impairs BDNF production and BDNF 

delivery to the striatum, but also leads to malfunctioning of the corticostriatal neuronal 

circuitry (Cepeda et al., 2003; Zuccato et al., 2005); HTT aggregates in the lateral 

hypothalamus are believed to cause death of orexin-positive neurons and affect gonado-

tropin-release hormone, consequently causing gonadal atrophy and infertility in adult R6/2 

mice (Papalexi et al., 2005; Petersén et al., 2005); muHTT mediates transcriptional 

dysregulation in the cerebellum affecting the expression of cyclic adenosine monophosphate 

(cAMP) and retinoid-responsive genes (Luthi-Carter et al., 2002). In addition to the 

cerebellum, gene expression dysregulation is found in multiple areas of the R6/2 mice brain, 
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including hippocampus and cortex, and has been documented from ~6 weeks of age, 

aggravating with disease progression (Luthi-Carter et al., 2002). 

R6/2 mice demonstrate robust brain atrophy, with brains weighing ~20% less than the brains 

of  wild-type littermates at 12 weeks of age (Davies et al., 1997). Subsequent studies of brain 

morphology reported age-dependent reduction of striatal and total brain volumes, significant 

from 60 days and achieving reductions up to ~41% and ~44%, respectively at ~12-13 weeks 

of age. Conversely, an increase of up to 6-fold in the ventricular volume was also reported 

(Mangiarini et al., 1996; Stack et al., 2005). Due to lack of massive neuronal loss in the R6/2 

model, the reduction in striatal and brain volume has been associated with atrophy of 

individual neurons (cell bodies of medium size spiny neurons reduce in size by ~20% but 

also their dendrites) (Klapstein et al., 2001). 

Whilst major focus has been given to the pathological effects of muHTT in the R6/2 brain, 

other body systems also seem to be affected. In fact, muHTT inclusions have been found in 

several other organs and tissues, such as: adrenal glands, hepatocytes, stomach wall, testes, 

kidney, cardiac and skeletal muscles and in pancreatic Langerhans islets (Sathasivam et al., 

1999). As examples, (i) R6/2 mice develop insulin-dependent diabetes by ~12 weeks of age, 

which is believed  to be caused by the formation of intranuclear HTT inclusions in β-cells 

pancreatic islets (Hurlbert et al., 1999); (ii) R6/2 mice also develop progressive muscle 

atrophy which is thought to be caused, at least in part, by specific gene expression 

dysregulation (Luthi-Carter et al., 2002; Sathasivam et al., 1999). 

1.6.2 Behavioural phenotype, weight loss and survival 

The behavioural phenotype of the R6/2 mouse model recapitulates most of the symptoms 

observed in human HD patients (see below). However, the progression of HD symptoms in 

this in vivo model is rapid and aggressive, and therefore it has been referred to as a good 

model of the rare juvenile variant of the disease (Ramaswamy et al., 2007). Table 1.2 
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summarises the most widely studied phenotypical deficits in R6/2 mice and the different 

behavioural tests commonly used for their assessment. 
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Table 1.2 Summary of phenotypical deficits in R6/2 mice and the different behavioural tests commonly used for their assessment. 

Deficits 
Behavioural assessment 

R6/2 mice characterisation 
Task Description 

Motor 

Open field 

Evaluates spontaneous locomotor activity. The 

animal is usually placed in the centre of an arena and 
left to explore. 

From ~8 weeks, R6/2 mice present a reduced total 

distance travelled in the open field when compared 
to wild-type littermates. 

Rotarod 

(Jones et al., 1968) 

Tests motor coordination and balance. Mice are 
place on top of a rod which rotates at a constant 

speed or accelerates according to a specific protocol. 

The latency to fall (in seconds) is the most widely 

used outcome. 

R6/2 mice tend to have shorter latencies to fall when 

compared to wild-type littermates from ~5 weeks of 

age. 

Clasping behaviour 

(after tail suspension) 

The clasping behaviour consists in the adoption of a 

dystonic posture, after tail suspension, where fore- 

or/and hind limbs are tightly pressed against the 

thorax and/or abdomen. 

When suspended wild-type mice spread their four 

limbs, whereas R6/2 mice crunch towards their 

thorax/abdomen. Clearly present by 8-9 weeks of 

age. 

Grip Strength 

Assesses muscle strength and grasping reflex of the 

forelimbs. Animals are allowed to grasp a 

trapeze/bar and are then pulled back gently until 

release. 

R6/2 mice tend to present lower peak strengths than 

wild-type littermates from ~10 weeks of age. 

Cognitive 

Morris water maze 

(Morris, 1981) 

Assesses spatial memory. Typically consists of a 

circular tank filled with water where the animal is 

placed and tries to escape by climbing to a platform 

just below the water level. Platform may be removed 

and time spent at the location is recorded. 

R6/2 mice have in average longer escape latencies, 

taking longer to find the platform based on visual 

landmarks than wild-type littermates. Early onset by 

~3.5 weeks if age. 

Alternating T-maze 
(Olton, 1979) 

Tests alternation, spatial and non-spatial learning. In 

this test, mice have to alternate between the arms so 
that they receive a reward. 

R6/2 mice made fewer alternations between the arms 

since they have a higher tendency to perseverate to 
the first stimulus.  Poor performance for ~5-6 weeks 

of age. 

Neuropsychiatric-like 
Elevated plus-maze 

(Hogg, 1996) 

Assesses anxiety-like behaviours. Consists of plus 

maze with two open and two closed arms, elevated 

from the floor 40-70 cm and roof open. Low anxious 

behaviour is measured by increased time spent in the 

open arms 

R6/2 mice have been reported to present reduced 

anxiety-like behaviours in this test from ~8 weeks of 

age. Note that other behavioural tests have shown 

conflicting results. 
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The onset of overt motor symptoms occurs on average at ~8 weeks of age and mice are 

severely affected by week 12 (Li et al., 2005).  In spite of being initially hyperactive in the 

open field test by 3 weeks of age (Lüesse et al., 2001), by 4.5 weeks mice have been 

reported to present decreased activity in the running wheel (Hickey et al., 2005). Indeed, 

hypoactivity in the open field task has been reported as early as 4 weeks (Hickey et al., 

2005). However, subsequent studies have only reported reduction of the spontaneous 

locomotor activity by ~8 weeks of age (Carter et al., 1999; Lüesse et al., 2001; Menalled et 

al., 2009). The normal rearing-climbing behaviour in mice is also found to be significantly 

impaired in R6/2 mice from ~4-6 weeks of age, and it has been noted that at later stages 

mice are not able to reach food (which will thereafter need to be provided in the form of soft 

food at the bottom of the cages) (Li et al., 2005; Menalled et al., 2009). In addition, R6/2 

mice exhibit a progressive motor coordination decline which is detected by poor rotarod 

performance from ~5 weeks of age and this is found to be further aggravated by 12 weeks, 

with animals presenting clear difficulties in performing the task (Menalled et al., 2009; Stack 

et al., 2005). Furthermore, when suspended by their tail R6/2 mice show paw clasping 

behaviour which instigates at around 8-9 weeks, however the pathophysiology of this 

abnormal behaviour is not well understood (Mangiarini et al., 1996). Also, grip strength 

deficits have been described to begin at about ~10 weeks of age (Menalled et al., 2009; 

Stack et al., 2005), and are likely to be correlated to the muscle atrophy observed from ~8 

weeks of age (Sathasivam et al., 1999). Other gradual changes in motor behaviour including 

resting tremor, involuntary jerky movements, stereotypical grooming and changes in gait 

and circadian rhythm have also been described (Carter et al., 1999; Mangiarini et al., 1996; 

Morton et al., 2005; Stack et al., 2005). Furthermore, R6/2 mice suffer, and even in some 

instances die, from epileptic seizures which may be triggered by handling or unexpected 

noises (Cepeda-Prado et al., 2012; Mangiarini et al., 1996). 

Cognitive deficits arise at earlier stages than motor deficits (at about ~3.5 weeks of age) with 

impairment in performing spatial learning tasks such as Morris water maze task, and at 
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weeks ~7-8 R6/2 mice are already unable to learn and carry out this task (Lione et al., 1999; 

Lüesse et al., 2001; Murphy et al., 2000). These deficits have been associated with HTT-

induced hippocampal pathology and the inability to learn at later stages of the disease could 

be in part explained by the worsening of the visual acuity and motor performance 

(deterioration of swimming abilities) (Lione et al., 1999; Murphy et al., 2000). Additionally, 

mice also show difficulties in reversing pre-learned tasks and perform poorly in the 

alternating T-maze task from ~5-6 weeks of age. Consequently, it has been suggested that 

these mice may have disturbances in the innate motivational program or tendency to 

perseverate, which is also common to HD patients (Lione et al., 1999). On the other hand, 

R6/2 mice have been found to mimic some of the neuropsychiatric manifestations of 

human HD. Despite that File et al. reported that by 8 weeks of age R6/2 mice are less 

anxious than wild-type littermates in the elevated plus-maze (increased time spent in the 

open arms of the maze) (File et al., 1998), recent studies have shown progressive anxiety-

like behaviour in R6/2 mice in the light-dark choice test (Menalled et al., 2009). The fast 

progression of symptoms in the R6/2 mice makes this model less adequate to study 

psychopathologies associated to HD (Du et al., 2013). 

Body weight in R6/2 mice reaches a plateau at about ~ 9 weeks of age, decreasing to as little 

as 30-40% of their wild-type littermates at later stages (Mangiarini et al., 1996). 

Additionally, the dramatic progression of the phenotype also results in premature death, with 

R6/2 mice dying at about 13-16 weeks of age (Stack et al., 2005). However, factors such as, 

housing conditions and handling, introduce great variability in these outcomes and therefore 

standardized living conditions are recommended (Hockly et al., 2002; Hockly et al., 2003b). 

Despite variability, the R6/2 model is the only mouse model that has consistently 

demonstrated reduced survival in systematic studies (Menalled et al., 2009). Furthermore, as 

the etiology for early death and body weight loss are not fully understood, these markers are 

only normally used to support other neuropathological or/and behavioural findings (Hockly 

et al., 2003b; Yang & Chan, 2011a). 
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In summary, the R6/2 model reproduces, at least in part, the molecular, cellular and 

behavioural deficits of HD in a robust and reproducible phenotype. Furthermore, this model 

is available from commercial breeding facilities and can be readily accessed by researchers.  

Thus, this model has been regarded as an excellent tool for high throughput screening of 

new therapies for HD in a relatively easy, rapid and inexpensive way (Li et al., 2005; 

Menalled et al., 2009).  

1.7 Therapeutic strategies for Huntington’s Disease 

Current drug therapies are unable to prevent, cure or stop disease progression, but are only 

able to provide relief for some of the symptoms of HD. Medical management of the 

symptoms is carried out using several classes of medications including: neuroleptics, 

antidepressants, anticonvulsants, benzodiazepines, acetylcholinesterase inhibitors, skeletal 

muscle relaxants, among others, which have been reviewed elsewhere (Adam et al., 2008). 

In addition, recently the United States of America (USA) Food and Drug Administration 

(FDA) approved tetrabenazine specifically for the treatment of HD chorea and other 

hyperkinetic disorders (Hayden et al., 2009). Tetrabenazine acts mainly as an inhibitor of the 

vesicular monoamine transporter (VMAT), depleting the release of monoamine 

neurotransmitters, such as dopamine, into the synaptic cleft. This was the first drug to be 

specifically approved by the FDA for the treatment of a symptom of HD (Hayden et al., 

2009; Phillips et al., 2008).  

Other measures, in addition to pharmacotherapy, can be taken to improve patient’s quality of 

life. For instance, since at later stages patients develop swallowing difficulties, thickening 

agents can be used to increase thickness of fluids making them safer and easier to swallow. 

Moreover, physiotherapy, and occupational and speech therapy are aimed to improve 

functional activity, and may be recommended on an individual basis according to clinical 

decision (Bilney et al., 2003). Despite that little evidence exists regarding the usefulness of 

these approaches to address motor deficits of HD (Bilney et al., 2003), environment 
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enrichment and exercise has been shown to partially reverse HD-like behaviour deficits in 

the R/2 mouse model of HD (Hockly et al., 2002; Wood et al., 2010). Thus, this aspect 

warrants further investigations. 

As mentioned earlier, no disease-modifying treatments are yet available and therefore efforts 

are being made to develop such therapies. Indeed, the identification of the causative gene 

and the better understanding of HD pathophysiology has brought to light new molecular 

targets (Johnson et al., 2010). Broadly, novel emerging therapeutic approaches can be 

classified into three main categories (Figure 1.2): (i) cell replacement therapies; (ii) therapies 

that aim to target the underlying pathologic mechanisms HD; and (ii) therapies that aim to 

silence the toxic muHTT. As an exhaustive description of all novel therapies is out of the 

scope of the present thesis, a brief overview of the most widely investigated will be given.  

 

Figure 1.2. Novel emerging therapeutic approaches for HD. Abbreviations: BDNF, Brain 
Neurotrophic Factor; HDAC, Histone deacetylase; muHTT, Mutant Huntingtin; siRNA, short 

interfering RNA. 



CHAPTER I – INTRODUCTION 

32 

 

1.7.1 Cell replacement therapies 

Cell transplantation into the striatum has been postulated as a potential therapy to stabilize 

HD-related symptoms by replacing the affected neurons (Björklund et al., 2000). Indeed, 

initial preclinical studies in excitoxin-lesioned animals revealed that transplantation of fetal 

striatal progenitors restores neuronal activity in the globus pallidus, functionally repairing 

the damaged pathway (Nakao et al., 1999). Subsequent clinical studies revealed that fetal 

striatal allografts were well tolerated and improvements in motor behaviour and cognitive 

deficits were also reported (Bachoud-Lévi et al., 2006; Bachoud-Lévi et al., 2000). 

However, about 2 years after surgery a plateau on amelioration was observed and the 

improvements faded off around 4-6 years (Bachoud-Lévi et al., 2006). Thus, it seems that 

this strategy is able to stabilize HD symptoms but is not able to provide a cure. Further 

investigations are now being carried out in phase II clinical trials (Multicentric Intracerebral 

Grafting in HD (MIG-HD). ClinicalTrials.gov Identifier: NCT00190450). 

Additionally, human embryonic stem cells (hESCs) and induced pluripotent stem cells 

(iPSC) also hold great therapeutic potential. Indeed, exciting results with in vivo xenografts 

were recently obtained (Aubry et al., 2008). However, challenges such as cell differentiation 

to specific neuronal phenotypes, controlled formation of functional circuits, and absence of 

tumour growth, still warrants further investigations before the clinic stage (Ross & Tabrizi, 

2011).   

1.7.2 Targeting the underlying pathogenic mechanisms of HD 

Several therapies targeting the underlying pathogenic mechanisms of HD have been 

extensively evaluated in vitro and in vivo. These include strategies targeting excitotoxicity, 

BDNF impairment, muHTT cleavage, aggregate/inclusion formation, energy impairment, 

and transcriptional dysregulation, all of which are deregulated in HD (Figure 1.1). 
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Drugs that counteract excitotoxicity by blocking pre-synaptic glutamate release or reduce N-

methyl-D-aspartic acid (NMDA) receptor activity have been extensively evaluated for their 

efficacy in HD. Riluzole was shown to inhibit glutamate neurotransmition and improve 

motor symptoms in genetic mouse models of HD. However, pilot studies in humans have 

showed only transient beneficial effects (Seppi et al., 2001). On the other hand, an open 

labelled trial has revealed that memantine, a NMDA receptor blocker, slows progression of 

the disease and improves cognitive deficits (Cankurtaran et al., 2006). Finally, dopamine 

pathway inhibitors, such as tetrabenazine, have also been tested and showed encouraging 

results regarding the control of chorea (Savani et al., 2007). In fact, this drug has been 

approved by the USA FDA and is now available for symptoms management (Phillips et al., 

2008). 

Different approaches have been considered when targeting BDNF impairment as a 

therapeutical strategy for HD. Since recombinant BDNF has poor pharmacokinetic 

proprieties, low ability to penetrate through the blood brain barrier (BBB) and showed 

limited effects in other neurodegenerative diseases (Kasarskis et al., 1999; Zuccato & 

Cattaneo, 2007), researchers have considered the use of viral gene delivery to achieve a local 

and sustained production of BDNF. Lentiviral (LV) and adeno-associate viral delivery of 

BDNF have been successfully achieved in animal models of the disease with significant 

improvements in neuronal survival (Bemelmans et al., 1999; Zuccato & Cattaneo, 2007). 

Recently, synthetic molecules that mimic BDNF have also been designed and showed 

improved BBB penetrability, which allows for a systemic administration rather than a local 

invasive administration (Fletcher et al., 2009). Alternatively, indirect strategies of increasing 

BDNF expression have also been evaluated and have mainly focused on the reduction of 

REST activity, which is increased in HD and represses BDNF expression (Zuccato et al., 

2003). Abrogating REST activity has been achieved by sequestering this transcription factor 

through overexpression of wtHTT (Zuccato et al., 2003); dominant-negative REST 
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constructs (Conforti et al., 2012); using synthetic oligonucleotides decoys (Soldati et al., 

2011), but also using low molecular weight drugs (Conforti et al., 2013). 

In order to prevent muHTT cleavage to its toxic N-terminal fragments, pharmacological 

inhibition of caspase activation has also been considered as a therapeutic approach for HD. 

As an example, researchers have used minocycline, a tetracycline antibiotic, as an inhibitor 

of caspase 1 and 3. Pre-clinical trials using minocycline in the R6/2 mouse model have 

revealed ameilioration of the symptoms, however results have been hard to reproduce (Ona 

et al., 1999; Wang et al., 2003). An open label study with minocylcine has been carried out 

in HD patients and showed an improvement after 6 months and a stabilization of motor and 

neuropsychological symptoms after 24 months (Bonelli et al., 2003). On the other hand, 

results from a double-blinded, randomised, multicentre clinical trial suggested futility of 

carrying out larger Phase III clinical studies (Cudkowicz, 2010). However, this study only 

assessed a specific dose of minocycline and based statistical analysis on a 25% improvement 

of the Total Functional Capacity (Cudkowicz, 2010). Thus, further investigations using 

higher doses may be warranted. 

Inclusion/aggregation formation is a widely accepted hallmark of HD, however its precise 

role in the toxic events is still unclear (Zuccato et al., 2010). Although both strategies 

promoting or blocking aggregate formation have been considered, a greater focus has been 

given to the latter. Congo red disrupts oligomerisation of polyQ and also increases clearance 

of polyQ expansions. Despite a reduction in the number of aggregates in vitro and 

improvement of the behavioural phenotype of a HD mouse model having been demonstrated 

already, results have been hard to replicate by others (Sánchez et al., 2003). C2-8, another 

polyQ inhibitor, has been shown to be able to penetrate the BBB and reduce both the size of 

HTT inclusions and neuronal atrophy in R6/2 HD model (Chopra et al., 2007). Furthermore, 

drugs that promote clearance of toxic muHTT fragments by induction autophagy, a process 

by which the cells degrade large portions of the cytosol and other cellular components by the 

internal lysosomal machinery, have also been evaluated. As an example, rapamycin and 
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trehalose significantly reduced the number of HTT aggregates and improved pathology in in 

vivo models of HD (Sarkar et al., 2007; Sarkar et al., 2008). However, the 

immunosupression induced by some of these compounds raise concerns about their use in 

humans (Sarkar et al., 2007; Sarkar et al., 2008). 

In HD mitochondrial dysfunction may lead to oxidative stress, increased vulnerability to 

excitotoxicity and apoptosis. Drugs, such as creatine and coenzyme Q10, have known 

antioxidant effects and therefore reduce ROS production (Zuccato et al., 2010). These drugs 

have been shown to have protective effects in toxin-based animal models and R6/2 mice 

(Ferrante et al., 2002; Ferrante et al., 2000). On the other hand, early stage clinical trials 

revealed amelioration of neurological scores for creatine. A larger clinical trial (2CARE 

study) is now being conducted for coenzyme Q10. Moreover, mitochondrial proliferators 

such as eicosapentaenoic acid (EPA) improve behavioural deficits in various HD animal 

models (Van Raamsdonk et al., 2005). Furthermore, this drug has significantly delayed 

cerebral atrophy and improved the orofacial component of HD in a stage III human trial 

(Puri et al., 2005). Finally, cysteamine blocks oxidative damage and has a pro-survival effect 

in vitro (Mao et al., 2006b). Preclinical studies have revealed that cysteamine is able to 

improve motor deficits in the R6/2 HD mouse model (Dedeoglu et al., 2002). 

Early-stage transcriptional dysregulation of a large number of genes significantly affects 

the molecular pathogenesis of HD (Cha, 2007). HDAC inhibitors improve histone 

acetylation leading to more relaxed chromatin structure prone to be transcribed. Moreover, it 

has been suggested that HDAC inhibitors exert effects beyond enhacing transcription and 

have also anti-inflammatory effects and anti-apoptotic effects (Giorgini et al., 2008). 

Examples of this type of drugs are: Suberoylanilide hydroxamic acid, sodium butyrate, 

phenylbutyrate and pimelic diphenylamide. All the above mentioned drugs improved motor 

deficits in animal models of HD (Hockly et al., 2003a; Thomas et al., 2008). Human trials 

are now ongoing for sodium phenylbutyrate to ensure its tolerability and safety in humans 

(Hogarth et al., 2007). Additionally, valproic acid, a well-tolerated antiepileptic drug, has 
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shown great potential as HDAC inhibitor in other neurodegenerative diseases, such as 

Retinitis Pigmentosa (Shanmugam et al., 2012). Indeed, initial clinical testing has shown 

very promising results (Shanmugam et al., 2012) and a Phase II clinical trial is currently 

ongoing (ClinicalTrial.gov Identifier: NCT01233609). However, it is also important to 

highlight that growth arrest and chromosomal instability can occur upon treatment with 

these drugs and therefore caution should be taken. Furthermore, compounds that may 

interact directly with DNA are also being evaluated for therapeutic efficacy in HD. 

Anthracycline antibiotics, such as chromomycin and mithramycin, modulate epigenetic 

histone modifications and influence transcription (Ferrante et al., 2004). Preclinical studies 

with these drugs showed a significant increase in survival and a significant improvement in 

the motor behaviour deficits in R6/2 mice (Ferrante et al., 2004). Clinical trials are currently 

being designed for these compounds. 

1.7.3 Silencing the mutant Huntingtin 

Targeting the muHTT specifically is now being considered as a potential therapeutic 

approach for HD. This can be achieved at the transcriptional level by specifically repressing 

expression of the muHTT gene or through genome editing techniques; but also post-

transcriptionally by targeting the respective messenger RNA (mRNA) or post-

translationally, by targeting the muHTT protein itself. 

Blocking muHTT toxicity at a post-translational level has been achieved using artificial 

polypeptides and/or intrabodies. First studies with artificial polypeptides were undertaken in 

Drosophila Melanogaster and revealed that small molecules, such as peptides, are able to 

bind HTT and avoid polyQ aggregation (Kazantsev et al., 2002). On the other hand, 

intrabodies are recombinant fragments of antibodies (Ab) that exert their activity against a 

specific intracellular antigen. Intrabodies have high affinity and specificity to the target 

antigen site and have been previously used for cancer and human immunodeficiency virus 

(HIV) therapies. Intrabodies targeting HTT exon 1 have effectively reduced HTT protein 
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levels, aggregates and cell death in vitro (Lecerf et al., 2001). Wang et al. showed that 

adeno-associated viral (AAV)2/1 delivery of scFV-C4 intrabody is able to reduce size and 

number of HTT inclusions in the striatum of R6/1 mice. Additionally, AAV delivery of 

scFV-EM48 to N171-82Q mice reduced motor deficits and cytoplasmic aggregate formation 

(Wang et al., 2008b). Recently, AAV2/1 delivery of Happ1 have been shown to improve HD 

neuropathology and motor and cognitive deficits in several other HD mouse models 

(Southwell et al., 2009). Although, the use of intrabodies as a potential therapeutic strategy 

for neurodegenerative diseases seems promising, this technology is still in a very early stage 

of development and improvements are needed regarding their stability and solubility. 

Post-transcriptional gene silencing (PTGS) approaches for HD have undergone 

considerable research and, include ribozymes, antisense oligonucleotides (ASOs) and RNA 

interference (RNAi) (Scanlon, 2004). Ribozymes are RNA molecules with self-cleaving 

capabilities consisting of an effector catalytic core and two flanking sequences that allow for 

specific binding to the mRNA (Scanlon, 2004; Tanner, 1999). Hammerhead ribozymes are 

believed to cleave mRNAs at a preferred site with rapid degradation of mRNA fragments, 

and have been successfully used in vitro and in transgenic mouse models of HD to silence 

the expression of muHTT (Scanlon, 2004; Tanner, 1999). Artificial ribozymes have also 

recently been considered as potential therapeutics for Alzheimer’s Disease (AD) (Aissa et 

al., 2012). On the other hand, ASO technology involves the use of single stranded DNA 

molecules, typically ~20 bp long, which have complementary sequence to the target mRNA 

(Chan et al., 2006; Smith et al., 2006). Hybridization can occur at the pre-mRNA level in the 

nucleus with inhibition of 5’ cap formation, inhibition of splicing and/or activation of RNase 

(Ribonuclease) H degradation (Chan et al., 2006). Moreover, when hybridisation takes place 

in the cytoplasm translation is inhibited by steric hindrance or by RNase H degradation of 

the mRNA transcript. ASOs are limited to the inhibition of one mRNA copy (Bertrand et al., 

2002). In early in vivo studies, although ASOs successfully penetrated neurons with no 

remarkable toxicity, no significant reduction in muHTT was observed (Haque et al., 1997). 
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The lack of efficacy in these studies were speculated to be due to high susceptibility to 

nuclease degradation (Bertrand et al., 2002). In contrast, modified ASOs have recently been 

shown to successfully reduce expression of HTT in human fibroblasts (Hu et al., 2009). 

Furthermore, it was recently demonstrated in several rodent models of HD that modified 

ASOs are able to successfully reduce muHTT expression, improve HD-like neuropathology 

and ameliorate symptoms of disease (Carroll et al., 2011; Kordasiewicz et al., 2012). In 

addition, ASOs have very recently undergone clinical trials as a potential therapy for 

amyolateral sclerosis, further advocating its promise for other neurodegenerative diseases 

(Miller et al., 2013). Despite their therapeutic potential, ribozymes and ASOs, have been 

largely superseded by the gene silencing potency and lasting effects of RNAi approaches 

(Bertrand et al., 2002; Miyagishi et al., 2003). This approach will be further discussed in the 

following sections. 

Alternatively, specific gene targeting/silencing can also be achieved at the transcriptional 

level through engineered nucleases, such as meganucleases, zinc finger nucleases (ZFN), 

transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced 

short palindromic repeat (CRISPR)/Cas systems (Gaj et al., 2013). These chimeric nucleases 

are able to bind to specific DNA sequences, repressing gene transcription and/or inducing 

DNA double strand breaks and enabling correction of mutated genes (Gaj et al., 2013). 

Some of these approaches have been successfully applied in X-linked severe combined 

immune deficiency (X-SCID) (Urnov et al., 2005), hemophilia B (Li et al., 2011b), sickle-

cell disease (Zou et al., 2011), Parkinson’s Disease (Soldner et al., 2011), Retinitis 

Pigmentosa (Mussolino et al., 2011) and HIV (Holt et al., 2010). In fact, ZFNs that 

interefere with the C-C chemokine receptor type 5, which in turn confers HIV resistance, are 

now undergoing clinical testing (ClinicalTrial.gov Identifiers: NCT01252641, 

NCT00842634 and NCT01044654). In the specific case of HD, it has recently been 

demonstrated that zinc finger proteins (ZFP) are able to effectively silence the muHTT, 

without affecting the expression of wtHTT, in vitro and in the R6/2 mouse brain (~40% 
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reduction in muHTT) (Garriga-Canut et al., 2012). In this study, ZFP repressors were 

delivered intraparenchymally using an AAV delivery system, resulting in significant 

improvements in HD-related neuropathology and motor deficits (Garriga-Canut et al., 2012). 

Although these technologies are still at their infancy, they hold great promise not only for 

HD but for other monogenic disorders. 

1.8 RNA interference 

RNAi has emerged as one of the most exciting areas for gene therapy development in the 

past two decades. RNAi is an endogenous cellular pathway that allows post-transcriptional 

regulation of gene expression. This intracellular pathway enables cells to auto-regulate gene 

expression and has been shown to have a crucial role during development (He et al., 2004; 

Krützfeldt et al., 2006; Stefani et al., 2008). Moreover, the same pathway may also be used 

to restrain the expression of parasitic invaders, such as viruses (Ding et al., 2007; Stefani & 

Slack, 2008). The key elements of this gene silencing machinery are small double stranded 

RNA (dsRNA) molecules, consisting of ~20-30 oligonucleotides (Agrawal et al., 2003; 

Bartel, 2004). These dsRNA molecules target complementary mRNA sequences to 

degradation or induce ribosomal arrest, blocking the translation of those transcripts into 

protein (Agrawal et al., 2003; Bartel, 2004). Napoli et al. (1990) were the first to 

unexpectedly observe the activation of the RNAi pathway in petunia plants while trying to 

overexpress a chalcone synthase (CHS) gene. Plants revealed a loss of pigmentation and 

CHS mRNA levels were reduced by 50-fold (Napoli et al., 1990). The realisation that this 

RNAi technology also generalised to animal systems was provided in 1998 by Fire and 

Mello, who were subsequently awarded the Nobel Prize in Physiology & Medicine for their 

groundbreaking research (Fire et al., 1998). The authors reported gene knockdown of a 

myofilament protein unc22 in a nematode worm, Caenorhabditis elegans using long 

dsRNAs (Fire et al., 1998). Moreover, Fire and Mello reported that unrelated dsRNAs 

sequences did not yield gene expression knockdown of the target gene, further supporting 

that RNAi is highly specific (Fire et al., 1998). Tuschel and colleagues demonstrated that 
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RNAi technology can also be used in mammalian cells to evoke gene silencing (Elbashir et 

al., 2001). In this study, gene expression of luciferase reporter plasmids were suppressed 3- 

to 25-fold in several mammalian cell lines, such as HEK293, HeLA, NIH/3T3 and COS-7 

(Elbashir et al., 2001), using short interfering RNAs. The same study shows significant gene 

silencing effects in Drosophila S2 cells indicating that the RNAi pathway is also conserved 

in insects. 

Although significant differences between animals and plants in terms of their RNAi 

mechanisms have been reported, homologous key proteins of the pathway have been shown 

to be highly conserved. Thus, this might suggest that the pathway is being conserved from 

the last eukaryotic common ancestor (Agrawal et al., 2003; Shabalina et al., 2008). 

Moreover, it has been described that prokaryotes possess an analogous RNAi-like defensive 

system that has evolved independently from eukaryotes (Shabalina & Koonin, 2008). 

1.8.1 RNA interference gene silencing mechanism 

PTGS through the RNAi pathway is mainly accomplished through two categories of small 

dsRNAs, endogenous microRNAs (miRNA) and short interfering RNAs (siRNA) (Agrawal 

et al., 2003; Meister et al., 2004; Tang, 2005). Figure 1.3 represents a schematic illustration 

of the RNAi pathway and its major components. 

Endogenous miRNAs are small non-coding RNAs derived from primary precursors encoded 

in the genome (He & Hannon, 2004; Siomi et al., 2009). Transcription of primary transcripts 

(pri)-miRNAs is carried out by RNA polymerase II in the nucleus originating single stranded 

RNAs which back fold and contain secondary structures, such as hairpin stem-loops and 

mismatch sequences. Before being exported to the cytoplasm, pri-miRNAs are processed by 

a ribonuclease (RNase III nuclease), Drosha, originating pre-miRNA molecules of ~60-70 

oligonucleotides. Pre-miRNA molecules are thereafter exported to the cytoplasm through the 

GTP-powered exportin-5 transporter (He & Hannon, 2004). In the cytoplasm these dsRNA 

pre-miRNAs are further processed by another RNase III, Dicer, generating small dsRNA 
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molecules with ~21-25 oligonucleotides (Agrawal et al., 2003; Esau et al., 2007). miRNAs 

bind to a RNA induced Silencing Complex (RISC) loading complex (RLC), a multimeric 

protein complex containing a transactivation response-RNA-binding protein (TRBP) (Kim et 

al., 2012b). Activation of the RISC complex occurs after unwinding of miRNA and 

thermodynamic selection of the guide/antisense strand (Haley et al., 2004; Siomi & Siomi, 

2009; Tang, 2005). An Argonaute protein with endonuclease capabilities subsequently 

attaches to the proteic complex (Agrawal et al., 2003; Rana, 2007). Due to oligonucleotide 

mismatch within miRNAs, miRNA activated RISCs (miRISCS) (also called micro 

Ribonucleprotein complex, miRNP) continuously search the transcriptome for partially 

complementary mRNA sequences to bind (Meister & Tuschl, 2004). Moreover, it has been 

suggested that miRNAs perform gene silencing effects by binding to target- 3’UTR 

sequences in specific mRNA transcripts (He & Hannon, 2004). Thus, miRNAs function 

mainly as translational repressors by promoting ribosomal translational arrest rather than 

mRNA cleavage (He & Hannon, 2004; Lai, 2002; Meister & Tuschl, 2004; Tang, 2005). 

However, the exact mechanism through which miRNA perform their gene silencing effects 

is still to be fully elucidated (Siomi & Siomi, 2009). On the other hand, siRNAs derive from 

long dsRNAs introduced during viral infections or as a result of transcription of genetic 

elements. In the cytoplasm, these dsRNAs are processed by Dicer to form perfectly matched 

dsRNAs with ~21-25 nt, or siRNAs (Agrawal et al., 2003). Synthetic siRNAs can also be 

artificially introduced in the cell and bypass the nuclear processing steps by Drosha, 

following essentially the same cytoplasmic pathway of miRNAs (Siomi & Siomi, 2009). 

siRNA activated RISCs (siRISCs) thereafter search the transcriptome for specific 

complementary mRNAs targeting them to degradation (Martinez et al., 2002; Siomi & 

Siomi, 2009; Zamore et al., 2000). siRNA and miRNA base pairing with target mRNA 

sequences is crucial for recognition, binding and cleavage. Indeed, it has been suggested that 

the seed region near the 5’ end of the antisense strand (2-7th oligontucelotide) plays a key 

role in this regard (Bartel, 2004; Haley & Zamore, 2004; Lai, 2002). Ultimately, both siRNA 

and miRNA inhibit translation of mRNA transcripts to their protein product. 
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Figure 1.3. RNA interference post transcriptional gene silencing mechanism. Adapted from (Guo et 

al., 2010a; Thakker et al., 2006). (a) Long dsRNA molecules are processed by Dicer in the cytoplasm 

originating siRNAs (~21-25 oligonucleotides). (b) Nuclear dsRNAs are processed by Drosha and 
exported to the cytoplasm for further processing by Dicer. (c) Synthetic and artificially introduced 

siRNAs by pass Drosha and follow the RNAi pathway. (a-c) Assembly of siRNA/miRNA in RISC or 

RITS complexes allow for transcriptional and post-transcriptional gene silencing. Abbreviations: 

dsRNAs, Double-stranded RNA; miRNA, Micro RNA; RISC, RNA induced silencing complex; RITS, 
RNA-induced transcriptional silencing; siRNAs, Short interfering RNA. 

 

Despite the differences in their biogenesis, miRNAs and siRNAs are both generated by 

Dicer and are thought to share components of the cytoplasmic RNAi machinery (Bartel, 

2004; Esau & Monia, 2007; Siomi & Siomi, 2009). It has also been argued that siRISCS and 

miRISCS are very similar and their functions sometimes interchangeable (Doench et al., 

2003; Saxena et al., 2003; Tang, 2005). Although less well described in the literature, 

siRNAs and miRNAs may also induce gene silencing at the transcriptional level by forming 

a RNA-induced transcriptional silencing (RITS) complex (Kawasaki et al., 2004; Morris et 

al., 2004). RITS bind to complementary regions in the chromatin recruiting enzymes that 

enable heterochromatin remodelling (Kawasaki & Taira, 2004; Meister & Tuschl, 2004; 
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Verdel et al., 2004). Thus, induction of transcriptional and/or PTGS through siRNAs and 

miRNAs is dependent on the different proteins and factors recruited in these proteic 

complexes (Meister & Tuschl, 2004). 

1.8.2 Approaches for artificial induction of RNAi 

The RNAi machinery can be artificially hijacked to induce specific gene expression 

knockdown. This is commonly performed using synthetic siRNAs, but also through short 

hairpin RNAs (shRNA) (Pardridge, 2007b; Rao et al., 2009; Singh et al., 2011). 

siRNAs (~21-25 nucleotides) are chemically synthesised double stranded RNA 

macromolecules with ~14 kDa and a net negative charge. As previously mentioned these 

synthetic siRNAs are able to bypass nuclear processing by Drosha being active upon 

efficient delivery and release to the cytoplasm. siRNAs allow for potent and specific gene 

expression knockdown in mammalian cells, however their effects have been found to be 

transient only lasting up to 5-7 days (Bartlett et al., 2006, 2007; Raab et al., 2004; Shin et al., 

2011). Dilution effect due to cell division has been suggested as one of the main reasons for 

short gene silencing effects in proliferating cells (Bartlett & Davis, 2007; Raab & 

Stephanopoulos, 2004). In addition, siRNA is not amplified intracellularly and probably 

more susceptible to cellular metabolism. Thus, if continuous gene expression knockdown is 

required, multiple administrations should be performed. Alternatively, synthetic siRNAs 

have presented long-lasting gene expression knockdown in cells with low proliferating rates, 

such as neurons (Bartlett & Davis, 2006; Omi et al., 2004).  

Alternatively, shRNAs can be used for stable RNAi gene silencing and are usually encoded 

within an expression vector (plasmid DNA or viral vector) (Paddison et al., 2002; Raab & 

Stephanopoulos, 2004; Rubinson et al., 2003; Sui et al., 2002). Transcription of shRNAs and 

miRNA constructs is carried out by RNA polymerase II or III in the nucleus and requires a 

suitable promoter (Singh et al., 2011). Pri-shRNAs are thereafter processed by Drosha, 

exported to the cytoplasm and further processed by Dicer. The amplification of the 
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expression of shRNAs by the intracellular transcription machinery makes this approach 

more resistant to cellular metabolism than the synthetic siRNA approach. Despite the 

convenience of long-term gene silencing effects, the need for translocation of constructs to 

the nucleus may restrict the use of such approaches in quiescent cells or cells with low 

proliferating activity (Wang et al., 2010a; Zou et al., 2010). Moreover, depending on the 

final application, inclusion of a “turn-off” system might be crucial for controlling 

intracellular levels of shRNA (Singh et al., 2011). Finally, plasmid DNA (pDNA) encoding 

shRNA or miRNA have a molecular weight (Mw) in average 100x times higher than 

synthetic siRNAs, which might further complicate packaging to adequate vectors and 

delivery to target cells (Wang et al., 2010a). 

1.8.3 Current applications of RNAi technology 

Experimentally RNAi technology has mostly been applied as a research tool to provide 

greater understanding of gene and protein functions (Agrawal et al., 2003). The recognised 

applicability of RNAi in a wide variety of organisms has lead to the identification of genes 

with crucial roles in embryonic development, biochemical signalling cascades and other 

cellular processes (Cheng et al., 2003). Furthermore, RNAi has allowed for high-throughput 

screening of gene function that is not achievable through conventional methods and 

therefore has an increasingly important role in drug development. Indeed, pharmaceutical 

companies use RNAi as a mean to validate novel drug targets by protein loss-of-function 

analyses in model systems, such as C. Elegans (Jain, 2004). Homologue relevant genes for 

disease detected in these systems are thereafter tracked back to the human genome and re-

validated by other means (Jain, 2004).  

In addition, RNAi has been successfully used to induce specific gene expression knockdown 

with the aim of generating in vivo models of disease (Gao et al., 2007; Hitz et al., 2009; 

Zhang, 2008). Examples of animal models engineered using this technology are an inducible 

RNAi rat model of Diabetes Mellitus (Kotnik et al., 2009) and a mouse model of human 
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Barth syndrome (Acehan et al., 2011). Although it is unlikely that RNAi will supplant 

knockout technology, it has been particularly useful when knockout models are not viable. 

Inducible RNAi in vivo models are able to circumvent the issues of embryonic impaired 

development, allowing the study of gene dysfunction in later stages of development 

(Agrawal et al., 2003; Gao & Zhang, 2007; Hitz et al., 2009; Zhang, 2008). 

Finally, harnessing the RNAi pathway to induce specific gene silencing effects has also 

shown great potential as a therapeutic strategy for incurable diseases (Aagaard et al., 2007; 

Cheng et al., 2003; Fougerolles et al., 2007; Kim et al., 2007). Diseases caused by specific 

dysfunctional or mutated genes are the main candidates for RNAi therapeutic approaches 

(Fougerolles et al., 2007). For instance, RNAi strategies for cancer therapy mainly target 

oncogenes and other pro-survival genes that are overexpressed in tumour tissue (Aagaard & 

Rossi, 2007). By suppressing multidrug resistance genes it has been suggested that RNAi 

might also be used to increase efficacy of other treatments such as chemo- and radiotherapy 

(Aagaard & Rossi, 2007). RNAi strategies may also facilitate treatment of autosomal 

dominant neurodegenerative diseases by targeting their respective cognate causative genes 

(Martínez et al., 2013). Suppression of such specific causative genetic targets is expected to 

halt progression of disease and ameliorate symptoms. Moreover, RNAi technologies might 

constitute a new alternative to conventional therapies which largely target proteins, by 

enabling post-transcriptional silencing of the so-called “undrugable” therapeutic targets. 

Therefore, efforts have been put together to support translation of this strategy to the clinic  

(Cheng et al., 2003). Indeed, numerous Phase I and Phase II clinical trials are currently 

underway mainly for solid cancers and age-related macular degeneration, but also for several 

infectious diseases (for further information on ongoing trials see (Davidson et al., 2011; Guo 

et al., 2010a; Kubowicz et al., 2013)). Finally, recent updates have shown very promising 

results regarding RNAi delivery to humans (Davis, 2009; Kaiser et al., 2010; Tabernero et 

al., 2013). 
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1.9 RNAi therapeutics for CNS disorders: focusing on neurodegeneration 

In the specific context of the CNS, RNAi holds great promise for the treatment of 

neurological incurable diseases, including neurodegenerative diseases and brain cancers 

(Raoul et al., 2005b; Sah, 2006). Although there have been significant advances in RNAi-

based approaches for brain tumors (Erdmann et al., 2009), for the purpose of this thesis a 

special emphasis will be given to neurodegenerative diseases. 

Neurodegenerative diseases are often associated with age-related dysfunction and are 

characterised by a loss of selective subpopulations of neurons within the CNS, leading to 

subsequent decline in neurological functions (Bossy-Wetzel et al., 2004; Forman et al., 

2004). These diseases are a relatively heterogeneous group of disorders with distinctive 

pathological and clinical features. Table 1.3 contains candidate neurodegenerative diseases 

that have been considered for RNAi therapeutics, their potential genetic targets, molecular 

pathological aspects, affected structures within the CNS and main symptoms. Dominantly 

inherited neurodegenerative diseases, such as HD, SCA-1 -2, -3 and -7, and familial 

amyotrophic sclerosis (FALS), are associated with causative mutant genes that lead to toxic 

gain of function of the protein (Bossy-Wetzel et al., 2004; Forman et al., 2004). Thus, 

although the precise molecular mechanisms of these diseases are not fully understood yet, 

reduction of the cellular load of abnormal disease-causing protein through RNAi has been a 

major area of focus. 
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Table 1.3 Main candidate neurodegenerative diseases for RNAi. Adapted from (Ralph et al., 2005a). 

Disease 

Potential 

gene targets 

for RNAi 

Molecular pathological 

aspects 

Main CNS 

structures 

affected 

Main Symptoms 
First in vivo 

RNAi study 

HD HTT 
Cytoplasmic and nuclear 
misfolded muHTT 
protein aggregates  

Striatum and 
cortex 

Chorea, rigidity, 
cognitive 
impairment 

(Harper et 
al., 2005) 

SCA 
SCA-1, -2, -3, 
-7 

Cytoplasmic and nuclear 
misfolded mutant ataxin 

protein aggregates 

Cerebellum 

Loss of 
coordination of 
the gait, hands, 

speech and eye 
movement 

(Xia et al., 
2004) 

FALS SOD-1 

Hyaline inclusions 

containing SOD-1 
deposits 

Spinal cord and 

brain stem 
neurons 

Muscle atrophy, 
stiffness 

(Ralph et al., 
2005b; 
Raoul et al., 
2005a) 

PD 
α-synuclein, 
LRRK2 

Lewy bodies Substantia nigra 

Tremor, 

bradykinesia, 
rigidity, 
neuropsychiatric 
manifestations 

(Sapru et al., 
2006) 

AD 
BACE-1, Tau, 
APP 

Extracellular amyloid 
plaques, intracellular 
neurofibrillary tangles 

Cortex and 
hippocampus 

Memory loss, 
confusion, 
trouble with 

language 

(Singer et 
al., 2005) 

 

Abbreviations: AD, Alzheimer’s Disease; APP, amyloid precursor protein; BACE, β-secretase; CNS, 

Central Nervous System; FALS, familial amyotrophic lateral sclerosis; HD, Huntington’s Disease; 

LRRK2, Leucine-rich repeat kinase 2; muHTT, Mutant Huntingtin; PD, Parkinson’s Disease; RNAi, 

RNA interference; SCA, Spinocerebellar ataxia; SOD, superoxide dismutase.  

 

The therapeutic effects of RNAi for polyQ disorders was first reported in vivo in a model of 

SCA by Davidson and colleagues (Xia et al., 2004). In this study, transduction of ~10% of 

Purkinje cells resulted in significant SCA-1 gene expression knockdown, reduction of the 

cerebellar pathology and improvements in the motor coordination deficits (Xia et al., 

2004).The first RNAi preclinical studies for ALS showed significant suppression of the 

mutant superoxide dismutase (SOD-1) after intramuscular injections (and retrograde 

transport to motor neurons) (Ralph et al., 2005b) and/or after lumbar injections (Raoul et al., 

2005a) in a transgenic mouse model of ALS. Both studies described improvements in 

pathological and behavioural abnormalities. Additionally, pioneering studies on the 

application of RNAi for AD targeted BACE-1 in the hippocampus of a transgenic mouse 

model of AD (Singer et al., 2005). Reduction of BACE-1 in mice overexpressing mutant 

amyloid precursor protein (APP) resulted in decreased amyloid plaque formation, improved 

neuronal survival and improved spatial learning and memory (Singer et al., 2005). 
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Furthermore, initial preclinical studies have also been conducted for PD and showed 

significant suppression of human α-synuclein overexpressed in the rat striatum (Sapru et al., 

2006). However, further in vivo studies are yet to be carried out in other animal models of 

PD to provide insights into potential pathological and behavioural improvements of RNAi. 

Finally, several RNAi preclinical studies in rodents and primates have also been carried out 

for HD. These will be discussed and reviewed in the following section (Section 1.9.1). 

Many other in vivo studies have since been conducted and the progress on the application of 

RNAi for neurodegenerative diseases has recently been reviewed elsewhere (AD (Chen et 

al., 2013b), ALS (Rizvanov et al., 2011), HD (Mantha et al., 2012), SCA (Keiser et al., 

2013) (Gonzalez-Alegre, 2007; Maxwell, 2009; Thakker et al., 2006). 

1.9.1 Progress in RNAi therapeutics for Huntington’s Disease 

Davidson and colleagues were also pioneers in the use of RNAi as a therapeutic strategy for 

HD in vivo (Harper et al., 2005). Since then many studies in various in vivo models of HD, 

from rodents to nonhuman primates, have been carried out. Table 1.4 summarises a large 

selection of RNAi in vivo studies for HD, including details regarding the main 

neuropathological and behavioural outcomes. 

In their initial study, Davidson and colleagues performed bilateral single injections of AAV 

delivery system, coding anti-HTT shRNA, into the striatum of N171-82Q mice (Harper et 

al., 2005). Significant reductions in muHTT mRNA levels (~55%) and in the number of 

HTT inclusions were observed. Moreover, behavioural improvements in stride length and in 

rotarod deficits were also reported (Harper et al., 2005). However, in this study there were 

no improvements in weight profiles and this was attributed to the systemic nature of the 

disease or to muHTT-mediated hypothalamic dysfunction. Subsequently, Rodriguez-Lebron 

et al. also reported reduction in HTT mRNA levels (~75%), decreased number of HTT 

inclusions (25-38%) and improvement of hindlimb clasping behaviour in the R6/1 mouse 

model, upon delivery of specific shRNAs (shHUNT1 and shHUNT2) targeting human 
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muHTT using a AAV-delivery system (Rodriguez-Lebron et al., 2005a). In addition, 

muHTT supression in the striatum increased expression of DARPP-32 and preproenkephalin 

(ppENK) when compared to untreated R6/1 (Rodriguez-Lebron et al., 2005a). Nevertheless, 

in this study RNAi treatment failed to improve weight gain and performance in the rotarod 

task of R6/1 mice (Rodriguez-Lebron et al., 2005a). 

In 2005 the first pre-clinical study for HD using lipid-formulated siRNAs emerged (Wang et 

al., 2005). Therein Wang and co-workers demonstrated that  siRNA-HDExon1, targeting a 

sequence upstream of the CAG repeats of the human muHTT transcript, was successfully 

delivered into the intracerebroventricular (i.c.v.) of postnatal day 2 R6/2 mice yielding a 

significant reduction in HTT mRNA levels (~70%), coupled with sustained effects up to 7 

days (Wang et al., 2005). This suppression of HTT resulted in a reduced number of nuclear 

aggregates and general brain atrophy. Additionally, RNAi treatment delayed the onset of the 

clasping behaviour, improved spontaneous locomotor activity in the open field and 

improved rotarod motor deficits of the R6/2 mouse. Furthermore, less severe weight loss and 

increased survival when compared to untreated R6/2 mice were also reported (Wang et al., 

2005). In another approach, the use of cholesterol-conjugated siRNAs (cc-siRNA-HTT) for 

RNAi in HD was first demonstrated by DiFiglia et al. in a AAV-based mouse model of HD. 

Co-administration of AAV-HTT100Q and cc-siRNA-HTT into adult mouse striatum 

resulted ~66% knockdown of the HTT transcript and reduction of HTT aggregates in the 

striatum (DiFiglia et al., 2007). Results also showed increased neuronal survival and 

significant behavioural improvements in beam walking and in the clasping behaviour 

(DiFiglia et al., 2007). 

In all of the above mentioned in vivo studies, RNAi treatment was initiated when animals 

were still pre-symptomatic, and therefore limited conclusions in regards to reversal of 

neuropathology could be drawn. However, following studies were carried out in 

symptomatic rodents and have shown that RNAi treatment is able to reverse the number of 

HTT inclusions and improve striatal dysfunction (Drouet et al., 2009; Machida et al., 2006). 
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Further investigations are now warranted to assess if such improvements in HD 

neuropathology also result in reversal or only block progression of behavioural deficits. 

Additionally, it is also worth noting that siRNAs/shRNAs molecules used in most preclinical 

trials described so far are unable to distinguish between human mutant and wild-type HTT 

alleles, and may cause disruption of both alleles if directly applied in human therapy. 

Although it has been recently shown in rodents and nonhuman primates that partial 

suppression of wtHTT can be well-tolerated in the adult brain up to 6 months (Grondin et 

al., 2012; McBride et al., 2011; Stiles et al., 2012), the effects of long term suppression of 

wtHTT have yet to be investigated. Thus, in order to circumvent the issue of long-term 

unwanted suppression of wtHTT, allele-specific siRNAs targeting SNP associated with the 

mutant allele have been developed (Lombardi et al., 2009; Zhang et al., 2009). Despite that 

initial in vitro studies in human HD fibroblasts have shown effective knockdown of muHTT 

alone leaving wtHTT undisrupted, in vivo studies are now warranted (Lombardi et al., 2009; 

Zhang et al., 2009). Alternatively, if generic RNAi approaches targeting both wtHTT and 

muHTT alleles are to be used in the long run, one may consider gene replacement as a 

strategy to maintain adequate levels of expression of the wild-type protein. Such combined 

approaches have been previously used with success in dominant Retinitis Pigmentosa where 

a RNAi-resistant gene construct was used to supplement the functional wild-type gene 

(Millington-Ward et al., 2011). 

Taken together, these great advances have demonstrated the utility of RNAi as a therapeutic 

approach for HD. However, the progression to the clinic has mainly been hindered by the 

lack of effective and safe siRNA delivery systems able to overcome the different CNS 

barriers. 
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Table 1.4. RNAi in vivo studies for Huntington’s Disease in mammalian models 

Category Animal model 

Disease 

stage/Age of 

intervention 

Delivery system 
Route of 

administration 

HTT gene 

expression 

knockdown* 

Protein 

knockdown* 

Improvement in HD 

pathology* 

Behavioural 

outcomes 
Ref. 

Rodents 

HD-N171-82Q 

mice 

Pre-

symptomatic 

4-week old 

AAV1 shRNA 

(shHD2.1) 

Intrastriatal 

injection 

(bilateral). 

Intracerebellar 

injection. 

↓ 51-55% in 

the striatum 

↓ HTT 

inclusions 

(striatum and 

cerebellum) 

↓ HTT inclusions 

(striatum and 

cerebellum) 

Rotarod deficits 

Gait deficits (Front 

and rear stride 

length) 

Weight loss 

(Harper et 

al., 2005) 

R6/1 mice 

Pre-

symptomatic 

6-week old 

AAV5 shRNA 

(siHUNT-1 and -

2) 

Intrastriatal 

injection 

(bilateral) 

↓~75% in the 

striatum 

↓ 25-38% in 

the striatum 

↓HTT nuclear inclusions 

↑ 24% ppENK, ↑ 16% 

DARPP-32  mRNA 

Clasping 

behaviour 

Weight loss 

Rotarod deficits 

(Rodrigue

z-Lebron 

et al., 

2005a) 

R6/2 mice 

Pre-

symptomatic 

Post natal day 2 

Lipofectamine200

0 siRNA-

HDExon1 

i.c.v. injection 
↓70% in the 

striatum 

↓ HTT nuclear 

aggregates in 

the striatum 

↓General brain atrophy 

↓ HTT nuclear 

aggregates in the 

striatum 

Survival 

Weight loss 

Rotarod deficits 

Clasping 

behaviour 

Spontaneous 

locomotor activity 

(Wang et 

al., 2005) 

HD190Q EGFP 

mice 

Symptomatic 

12-week old 

AAV2/AAV5 

shRNA (shEGFP) 

Intrastriatal 

injection 

(unilateral) 

Not reported 

↓ ~82% 

human HTT-

positive 

aggregates, ↓ 

~65.9% 

ubiquitin 

aggregates 

↑ ppENK and ↑DARPP-

32 mRNA 

No improvement in 

behaviour and 

survival (due to 

unilateral injection) 

(Machida 

et al., 

2006) 

AAV1/8-based 

mouse model 

overexpressing 

HTT100Q 

Pre-

symptomatic 

 

cc-siRNA-HTT 

(co-injection with 

the AAV1/8 

HTT100Q) 

Intrastriatal 

injection 

 

Not reported 
↓~66% human 

HTT 

↓Size of nuclear 

inclusions 

↓Neurophil aggregates 

↑Survival of striatal 

neurons (Nissl-stain) 

 Clasping 

behaviour 

 Beam walking 

(DiFiglia 

et al., 

2007) 
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Category Animal model 

Disease 

stage/Age of 

intervention 

Delivery system 
Route of 

administration 

HTT gene 

expression 

knockdown* 

Protein 

knockdown* 

Improvement in HD 

pathology* 

Behavioural 

outcomes 
Ref. 

Rodents 
(Cont.) 

Adenoviral-

based mouse 
model 
overexpressing 
HTTN171Q128 
R6/2 mice 

R6/2 
symptomatic. 5 
week-old 

Ad shRNA 
(shHTT) 
(co-injection with 
Ad 

HTTN171Q12) 

Intrastriatal 
injection 
(bilateral) 

Not reported 

↓ HTT 
aggregates in 
transduced 
areas 

↓ HTT aggregates in 
transduced areas 

Not reported 
(Huang et 

al., 

2007a) 

CAG140 
heterozygous 

knock in mice 
 

5 week-old 
AAV2/1 shRNA 

and miRNA 

Intrastriatal 
injection 
(bilateral) 

~50-60% in 
transduced 
areas 

Not reported Not reported Not reported 
(McBride 

et al., 

2008) 

AAV1/2-based 
rat model 

Pre-
symptomatic 

AAV2/1 shRNA 
(shHD2) 

Intrastriatal 
injection 
(bilateral) 
 

↓~80-90% in 
the striatum 

↓~50% HTT 
in the striatum 

↑ Neuronal survival 
↓Number of 
degenerating neurons 

 Spontaneous 
exploratory forepaw 
use 

(Franich 

et al., 

2008) 

Lentiviral-based 
rat model 
overexpressing 
HTT171-82Q  

Symptomatic 
2 months after 
expression 
started 

DOX regulated 
lentiviral shRNA 
sihtt1.1system 

Intrastriatal 
injection 

Not reported 
for muHTT 

↓ HTT 
inclusions 

↑DARPP-32 mRNA, 
↓ubiquitin inclusions 

Not reported 
(Drouet et 

al., 2009) 

HD-N171-82Q 
mice 

Pre-
symptomatic 
7 week-old 

AAV2/1 shRNA 
(sh2.4) and 

miRNA (mi2.4) 
(also targeted 
endogenous HTT 
homologue) 

Intrastriatal 
injection 
(bilateral) 

↓ ~60-75% in 
the striatum  

Not reported Not reported 

 Rotarod deficits 
 Trend to improved 
survival 
 Weight loss 
 

(Boudrea

u et al., 

2009b) 

BACHD mice Not reported 

AAV2/1 miRNA 
(miHDS1) 
(also targeted 

endogenous HTT 
homologue) 

Intrastriatal 
injections 

↓ ~60% in the 
striatum 

Not reported Not reported Not reported 
(McBride 

et al., 

2011) 

Wistar rats N/A 

cc-siRNA-HTT 
(targeting 
endogenous HTT 
homologue) 

MRIgFUS 
combined with 
i.v. injection 

↓ ~35% in the 
striatum 

Not reported N/A N/A 
(Burgess 

et al., 

2012) 

Table 1.4. (Cont.) 
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Category Animal model 

Disease 

stage/Age of 

intervention 

Delivery system 
Route of 

administration 

HTT gene 

expression 

knockdown* 

Protein 

knockdown* 

Improvement in HD 

pathology* 

Behavioural 

outcomes 
Ref. 

Nonhuman 
primates 

Adult rhesus 
monkeys 
(males) 

N/A 

AAV2/1 miRNA 
(miHDS1) 
(targeting 
endogenous HTT 
homologue) 

Intrastriatal 
injections (3 
injections per 
hemisphere) 

↓ ~45% in 
mid and 
caudal 
putamen 

Not reported N/A N/A 
(McBride 

et al., 

2011) 

Adult rhesus 

monkeys 
(females) 

N/A 

AAV2 shRNA 
(shHD5) 

(targeting 
endogenous HTT 
homologue) 

Intrastriatal 
injections (5 
injections per 
hemisphere) 

↓~30%  

↓~45% 
↓ HTT 
immunostain-
ing 

N/A N/A 
(Grondin 

et al., 

2012) 

Adult rhesus 
monkeys 
(females) 

N/A 

14C-siRNA 
(siHTT) (targeting 

endogenous HTT 
homologue) 

CED in the 
striatum for 28 
days 

↓ ~44% in the 

putamen 

↓ ~32% in the 
putamen 
↓HTT 
immunostain-

ing with 
decreasing 
distance from 
the catheter 

N/A 

 
N/A 

(Stiles et 

al., 2012) 

 

* (vs diseased control or sham treated) 

Abbreviations: (↑) Increase; (↓) reduction; AAV, adeno-associated virus; cc-siRNA, cholesterol-conjugated siRNA; CED, convection enhanced delivery; DARPP-32, 

dopamine and cAMP-responsive phophoprotein 32 kDa; DOX, doxycycline; EGFP, enhanced green fluorescent protein; HTT, huntingtin; i.v., intravenous injection; ppENK, 

preproenkephalin; MRIgFUS, magnetic resonance imaging guided focused ultrasound; mRNA, messenger RNA; N/A, not applicable; shRNA, short hairpin RNA; siRNA, 

short interfering RNA. 

Table 1.4. (Cont.) 
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1.10 Barriers and challenges for therapeutic RNAi delivery to the CNS 

In order to achieve gene silencing, synthetic siRNAs and/or pDNA coding shRNAs (from 

now on called shRNA) need to be successfully introduced into cells and reach their 

respective subcellular processing sites (O'Mahony et al., 2013b; Singh et al., 2011; Wang et 

al., 2010a; Wiethoff et al., 2003). Depending on the route of administration and target 

organ/tissue, these macromolecules must overcome several other extracellular barriers 

(O'Mahony et al., 2013b; Wang et al., 2010a; Wiethoff & Middaugh, 2003). The following 

sections give a brief overview of the various barriers that need to be circumvented, with a 

particular focus on siRNA delivery and CNS barriers. Figure 1.4 represents a schematic 

illustration of specific challenges to be overcome when delivering RNAi therapeutics to the 

CNS. 

1.10.1 Extracellular barriers 

Although administration of RNAi therapies by the systemic route may be more attractive 

when translating such therapy to the clinic, it poses significant delivery challenges 

(Dominska et al., 2010; O'Mahony et al., 2013b). Stability and nuclease degradation are 

among the major hurdles for naked nucleic acids when administered systemically 

(Whitehead et al., 2009). Exposure to serum and tissue endonucleases leads to degradation 

and enhances elimination, limiting efficacy. In addition, due to their unfavourable 

physicochemical characteristics (size, net negative charge and hydrophilic nature), nucleic 

acids have poor pharmacokinetic profiles and are subject to rapid systemic elimination. 

Elimination of degraded fragments through renal glomerular filtration seems to be the 

prevailing mechanism of clearance of nucleic acids when administered intravenously (Liu et 

al., 2007; Soutschek et al., 2004; Van de Water et al., 2006). However, an alternative 

intestinal elimination route for siRNAs after liver accumulation has recently been suggested 

(Huang et al., 2011). Introducing chemical modifications or bioconjugation of synthetic 

siRNAs (Bumcrot et al., 2006; Choung et al., 2006; Gao et al., 2009b; Soutschek et al., 
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2004) and/or complexing with appropriate non-viral vectors (O'Mahony et al., 2013a; 

Pulford et al., 2010) have been shown to significantly improve stability and circulation half-

lives (t1/2). However, unmodified, modified and/or vector-formulated siRNAs can be 

rapidly phagocytosed by the mononuclear phagocyte system (MPS) distributing to organs of 

the reticuloendothelial system (RES), such as the liver and the spleen (Guo et al., 2011). 

This may happen as a result of the interaction with components of the blood, including 

immunoglobulins, components of the complement cascade and other proteins, subsequently 

leading to an extensive accumulation in RES organs (Wang et al., 2010a). 

Upon reaching a specific organ, siRNAs need to overcome the vascular endothelial barrier 

and reach tissue interstitium. Extravasation to specific tissues is strongly dependent on the 

pore size limit of the capillary and specific characteristics of the endothelium of that organ. 

For instance, fenestrated/discontinuous endothelium of the liver present large pore sizes of 

~150 nm whereas the continuous endothelium in the retina and in the brain form tight 

junctions with pore sizes <2 nm (Singh et al., 2011; Wang et al., 2010a). The latter constitute 

the so-called blood brain barrier (BBB), which limits free diffusion of nutrients, drugs and 

nanoparticles to the brain. Although less restrictive, the spinal cord possesses the blood-

cerebrospinal fluid barrier (BCSFB) formed by the choroid plexus epithelial cells which 

also modulate transport to the CNS (Johanson et al., 2011). Effectively overcoming the BBB 

and/or the BCSFB constitutes one of the major hurdles in delivery to the CNS and is 

strongly dependent on the characteristics of the RNAi delivery system (O'Mahony et al., 

2013b). Several strategies that are being investigated to enhance circulating times and 

targeting across CNS barriers are discussed in Section 1.11.3.  

After crossing the epithelial barrier, RNAi vectors have to traverse the extracellular matrix 

(ECM), containing structural proteins and polysaccharides, in order to interact with target 

cells. Increased deposition of ECM macromolecules in certain disease states (such as cancer) 

may significantly hinder transport, reducing uptake of drug carriers and increasing the 
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likelihood of phagocytosis by tissue macrophages (Singh et al., 2011; Zámecník et al., 

2004). 

 

Figure 1.4. Challenges to delivery RNAi therapeutics to the CNS by non-viral vectors. (O’Mahony, 

Godinho et al. 2013b). The CNS includes the brain and spinal cord and consists of various different 

cell types, all of which contribute to the difficulty in achieving effective delivery of nucleic acids. 

Highlighted here are. (a) diverse cell types, (b) the spinal cord and (c) the blood–brain barrier, 

including neurons, astrocytes and other glial cells. 

 

1.10.2 Cellular uptake and endosomal release 

Nucleic acids, such as siRNAs and shRNA, have poor plasma membrane permeability due 

to their size, high Mw and net negative charge (phosphate backbone) which restrict passive 

diffusion (Whitehead et al., 2009). Formulation of nucleic acids using cationic non-viral 

vectors yields particles with net positive charges that significantly increase cellular uptake. 

The majority of positively charged siRNA.nanoparticles interact with anionic heparin 

sulphate proteoglycans (syndecans) on cellular membranes through electrostatic interactions, 

thereby facilitating endocytosis (Benfer et al., 2012; Evans et al., 2011; Lu et al., 2009; 
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Madani et al., 2011; O'Neill et al., 2011). However, specific characteristics of plasma 

membranes, such as protein and lipid constitution, may vary significantly among different 

cell types and in some instances significantly affect cellular uptake (Alberts et al., 2002). In 

the context of the CNS, multiple and different cell types exist, including neurons, microglia 

and astrocytes, which may vary in their ability to endocytose naked or formulated nucleic 

acids. Indeed, primary cultured astrocytes and microglial cells have previously presented 

differential cellular uptake profiles of lipid-formulated siRNA (Ki et al., 2010). In addition, 

neurons have been reported to be notoriously difficult to transfect for reasons not yet fully 

understood (Krichevsky et al., 2002; Ohki et al., 2001). Although neuronal uptake of siRNA 

nanoparticles has been reported to primarily occur at the cell soma, internalization has also 

been shown to occur at the neurites (Bergen et al., 2008b). In most cases, following cellular 

uptake, cholesterol modified siRNAs or cationic nanoparticles are localised inside endocytic 

vesicles. Endosomal escape of siRNAs or shRNAs is crucial to avoid lysosomal degradation 

and to achieve higher levels of gene expression knockdown. In this regard, the use of non-

viral vectors containing pH-sensitive polymers has been shown to aid nucleic acid release by 

causing endosomal swelling and rupture (Agrawal et al., 2009; Creusat et al., 2010). This is 

believed to occur by means of a “proton sponge effect”, whereby multiple amine groups 

become protonated upon acidification of endosomes. This buffers the pH inside the late 

endosome driving inward currents of protons, along with chloride and water leading to 

osmotic rupture (Agrawal et al., 2009; Creusat et al., 2010). Other examples of strategies to 

improve endosomal release are: (i) the inclusion of fusogenic lipids, such as 

dioleoylphosphatidylethanolamine (DOPE), which will fuse with the endosomal membrane 

enabling release of the nucleic acids (Farhood et al., 1995; Litzinger et al., 1992); and (ii) the 

use of fusogenic peptides, such as GALA and influenza-derived fusion domain based on N-

terminal hemagglutinin (HA2), which mimic the interaction of viral envelops with the 

endosomal membrane causing its destabilization (Hatakeyama et al., 2009; Navarro-Quiroga 

et al., 2002; Oliveira et al., 2007; Wadia et al., 2004). 



CHAPTER I – INTRODUCTION 

58 

 

The nuclear membrane is an additional barrier faced by shRNAs in order to elicit gene 

silencing effects. Translocation of pDNA and shRNAs to the nucleus has been achieved 

using nuclear localization signal peptides, such as VP1 capsid protein from the simian virus 

40 (SV40) and bis- and trisacridine conjugates of nuclear localization signal peptides 

(Navarro-Quiroga et al., 2002; Shiraishi et al., 2005). On the other hand, using appropriate 

viral vector, such as adeno-associated viruses (AAV) and/or lentiviruses, shRNAs can be 

delivered directly in the nucleus (Harper et al., 2005; Rubinson et al., 2003). 

1.11 Improving RNAi delivery to the CNS 

The major setback for the application of RNAi technologies in the treatment of CNS 

disorders is the lack of effective and non-toxic strategies for delivery. Neurons are hard to 

transfect and this is most likely due to their post-mitotic nature (Bergen et al., 2008a; Ohki et 

al., 2001). Indeed, relatively high doses have been required to induce gene silencing effects 

in primary neuronal cultures but also when administering to the brain in vivo. 

In order to improve delivery to the CNS, various strategies have been extensively evaluated. 

Among these, the introduction of chemical modifications in siRNAs and the use of 

appropriate delivery vectors, such as viral and non-viral vectors, have been given 

considerable attention. In this section we will overview the most widely used (i) delivery 

methods for RNAi, (ii) routes of administration and (iii) strategies to improve systemic brain 

delivery.  

1.11.1 Delivery methods for RNAi in the CNS 

1.11.1.1 Chemically modified siRNAs 

siRNAs are amenable to chemical modifications at several sites, including their ribose 

moieties and phosphate backbone (Bumcrot et al., 2006; Choung et al., 2006; Guo et al., 

2010b). Indeed, different chemical modifications have been introduced to siRNAs to 

enhance  stability against enzymatic degradation and to reduce immunogenicity (Bumcrot et 
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al., 2006; Choung et al., 2006). These modifications have been extensively reviewed 

elsewhere (Behlke, 2008; Watts et al., 2008). As an example of such, the 2’-O-methylation 

of the ribose moiety is usually used to confer resistance to nucleases but also to prevent 

recognition of the siRNA by the immune system (Judge et al., 2006). On the other hand, 

modifications to enhance delivery have also been carried out. In fact, cholesterol conjugation 

to the antisense strand aided siRNA delivery in the striatum and corpus callosum, after brain 

administration (Chen et al., 2010; DiFiglia et al., 2007). Additionally, conjugation of 

sertraline to the sense strand enabled specific targeting upon intranasal administration 

(Bortolozzi et al., 2012). 

However, since modifications may impact on gene silencing potency there are limits to the 

extent to which modifications can be carried out (Behlke, 2008; Choung et al., 2006). In 

addition and for obvious reasons, sense strands can be more extensively modified than 

antisense strands without significant reductions in gene silencing efficiency (Choung et al., 

2006). 

1.11.1.2 Viral delivery 

Recombinant viral vectors have been widely applied in gene therapy approaches as they 

present great tropism across a broad range of cell types, including neurons (Davidson et al., 

2003; Thomas et al., 2003). Recently, viruses have also been considered for mediating RNAi 

delivery to the CNS (Raoul et al., 2005b). Briefly, the concept is based on the use of a 

shRNA encoded in the viral genome that, once inside the nucleus, is transcribed by the 

host’s transcriptional machinery and exported to the cytoplasm for gene silencing. 

Recombinant AAV and LV vectors have been by far the most widely used viral vectors for 

RNAi in the CNS (Davidson & Breakefield, 2003; Lentz et al., 2012). 

AAV are small (~20 nm) ssDNA viruses derived from human parvovirus and devoid of viral 

genes. Several serotypes have been generated, but AAV1, AAV2 and AAV5 are the most 

widely used for CNS gene and RNAi delivery. Great tropism across large areas of the brain 
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and significant knockdown of target genes has been reported. Although AAV does not 

commonly integrate to the host’s genome, sustained transgene expression in the brain has 

been reported (Klein et al., 1999). Probably due to its low immunogenic profile, AAV has 

been widely used in many pre-clinical RNAi studies for neurodegenerative diseases, such as 

HD (Grondin et al., 2012; Harper et al., 2005), Parkinson’s Disease (PD) (Khodr et al., 

2011) and SCA 1 (Xia et al., 2004). Additionally, it is also worth noting that AAV delivery 

systems have also been successfully used in the clinical setting for gene replacement 

therapies in the human retina (Bainbridge et al., 2008; Maguire et al., 2008) and for 

haemophilia B (Nathwani et al., 2011), presenting good expression levels of the transgenes 

and no major adverse effects. Although it might constitute a major drawback for some gene 

replacement approaches, the limited packaging capacity of AAV (~4.2 kb) is not a problem 

for RNAi since shRNA constructs are relatively small (Gonzalez-Alegre, 2007). Thus, 

AAVs are very attractive delivery systems to conduct RNAi in the CNS. 

LV, commonly derived from the human immunodeficiency virus, are ssRNA viruses and are 

of particular interest for CNS delivery since they are capable of transducing post-mitotic 

cells, such as neurons (Davidson & Breakefield, 2003; Lentz et al., 2012). In addition, these 

retroviruses have the advantage of integrating into the host cell genome. This has allowed 

for long-term/stable expression of the shRNA in the striatum (Van den Haute et al., 2003). 

LV have also been shown to undergo retrograde transport through motor neurons to the 

spinal cord and brain stem after focal injections to the muscle (Ralph et al., 2005b). 

Successful application of LV in various preclinical RNAi studies for neurodegenerative 

diseases, such as HD (Drouet et al., 2009), PD (Sapru et al., 2006), ALS (Ralph et al., 

2005b) and AD (Singer et al., 2005), has been reported. Despite the many advantages, the 

main drawback of this vector system is that it can cause insertional mutagenesis by 

activation of cellular proto-oncogenes. 

Other viruses, such as neurotrophic herpes simplex virus – 1 (HSV-1) and recombinant 

adenoviruses also mediate shRNA delivery to the CNS. Indeed, significant gene silencing 
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effects were shown in a murine model of AD using HSV-1 viral particles encoding shRNA 

against β-amyloid peptide (Hong et al., 2006a). On the other hand, recombinant 

adenoviruses have been stereotaxically injected into the R6/2 mouse model of HD models 

with successful reduction in HTT aggregate load (Huang et al., 2007a). However, the 

development of adenoviral vectors for brain delivery of shRNA has been delayed due to 

their strong immunogenicity (Wood et al., 1996). 

Viral vectors are the most widely used delivery vectors in gene and RNAi clinical trials 

(Ginn et al., 2013; Thomas et al., 2003). Nevertheless, and broadly speaking, 

immunogenicity, neutralizing Ab and the high cost of large-scale production are still the 

main obstacles and need further consideration. 

1.11.1.3 Non-viral delivery 

As an alternative to viral vectors, several types of non-viral vectors have been developed for 

RNAi delivery to the CNS (O'Mahony et al., 2013b). In the vast majority of cases, these 

consist of cationic nanosystems which rely on electrostatic interactions with negatively 

charged nucleic acid for self-assembly. Furthermore, the net positive charge of the siRNA 

nanoparticle enables interaction with cellular membranes and internalization. Subsequently, 

siRNA is released to the cytoplasm where it is available for gene expression knockdown 

(O'Mahony et al., 2013b). 

Figure 1.5 contains a schematic representation of selected non-viral vectors for RNAi 

delivery in the CNS. Non-viral vectors for neuronal nucleic acid delivery have recently been 

reviewed elsewhere (Bergen et al., 2008a; O'Mahony et al., 2013b; Posadas et al., 2010). 

Thus, an exhaustive description of all existing non-viral vectors is out of the scope of this 

thesis; instead a focused overview of the most widely used non-viral vectors for RNAi in the 

CNS will be given.  
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Figure 1.5. Schematic diagrams of selected delivery systems. (a) Lipid-based delivery systems 

including cationic and neutral lipids with long aliphatic chains, and cationic non-viral vectors 

containing cholesterol domains. (b) Cationic linear and (c) branched natural and/or synthetic 

polymers. (d) Hyperbranched symmetrical synthetic dendrimers. (e) Gold nanoparticles. 

 

 Lipids 

Cationic synthetic lipids have been by far the most widely used non-viral vectors for CNS 

delivery of nucleic acids (Bergen et al., 2008a). These are amphiphilic molecules typically 

consisting of a cationic hydrophilic head group (mono- or multivalent), a hydrophobic lipid 

moiety, and a linker group. Long aliphatic chains or cholesterol domains have been adopted 

as hydrophobic moieties (Figure 1.5a). Dioleyloxypropyltrimethylammonium (DOTMA), 

dioleoylsperminecarboxamidoethyldimethylpropanetrifluoroacetate (DOSPA) 

(Lipofectamine
®
) and dioleoyltrimethylammoniumpropane (DOTAP) are examples of 

cationic lipids containing long aliphatic chains, whereas the newer 

dimethylaminoethanecarbamoyl cholesterol (DC-Chol) is an example of cationic lipid 

containing cholesterol. 

The first transfection in vitro using cationic lipids was reported for pDNA using DOTMA 

(Felgner et al., 1987). Although in early studies low transfection efficiencies where achieved 
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in primary neuronal cultures with DOTAP and DOSPA (~3%) (Kaech et al., 1996), 

subsequent formulations of DOSPA with a neutral “helper” lipid DOPE improved delivery 

(~27%) (Ohki et al., 2001). Indeed, incorporation of fusogenic lipid DOPE is believed to aid 

endosomal escape (Farhood et al., 1995). However, recently DOTAP has achieved 

successful gene expression knockdown when delivering siRNA to the adult mouse brain 

(Salahpour et al., 2007), suggesting that unsuccessful translocation of pDNA to the nucleus 

might have been the cause of early low trasnfection. Lipofectamine
®
2000 (Lf2000) 

(DOSPA:DOPE formulation) has also proved useful for enabling RNAi with siRNA and 

shRNA (encoded in plasmid DNA) in primary neuronal cultures (Dalby et al., 2004; Kao et 

al., 2004; Krichevsky & Kosik, 2002; Lingor et al., 2004; Omi et al., 2004; Tönges et al., 

2006; Yu et al., 2002). Due to its relatively good efficiency, Lf2000 is commonly used as 

standard transfection reagent for comparison when developing novel non-viral vectors. 

Furthermore, Lf2000 has been used in several RNAi studies in vivo and enabled significant 

gene expression knockdown after brain administration (Fu et al., 2007; Lei et al., 2008; 

Wang et al., 2005). Other proprietary amphiphilic cationic molecules, such as 

INTERFERin
®
, have also enabled gene silencing in primary neuronal cultures and in the 

mouse brain (Badaut et al., 2011; Rohn et al., 2012). 

Different formulation methods have been employed to enhance the steric stability of cationic 

nanoparticles and/or to further functionalise the vector for targeted delivery (Cardoso et al., 

2007; Pulford et al., 2010). Despite their relatively good efficiency, cationic lipid-based 

delivery systems have been usually associated with cytotoxic effects (Lv et al., 2006). 

 Polymers 

Both synthetic and natural polymers have also been used to facilitate gene and RNAi 

delivery in the CNS (Bergen et al., 2008a) (Figure 1.5b). Polyethylenimine (PEI) and poly-

L-lysine (PLL) are examples of synthetic polymers whereas chitosan and polylactic-co-

glycolic acid (PLGA) are examples of natural polymers. PLL, PEI and chitosan are cationic 
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polymers with nucleic acid condensing capabilities, while PLGA protects nucleic acid by 

entrapment. 

PEI’s repeating unit is composed of an amine group and two carbon aliphatic CH2CH2 

spacer (Park et al., 2006; Smedt et al., 2000). Linear and branched forms, as well as low and 

high Mw PEI, have been used for gene and RNAi delivery applications in the CNS (Bergen 

et al., 2008a). Early studies with high Mw PEI showed successful gene transfer to chick 

embryonic neurons and in the neonatal mouse brain (Boussif et al., 1995). In general, high 

Mw PEI enables greater transfection probably due to higher number of protonable amino 

groups available in the structure which aids endosomal release of the nucleic acid to the 

cytoplasm. siRNA (Campbell et al., 2012; Tan et al., 2004; Wang et al., 2005) and shRNA 

(encoded in pDNA) (Hassani et al., 2007) have been successfully delivered to the brain in 

preclinical studies using high Mw PEI. However, the high level of cytotoxicity is one of the 

main disadvantages of PEI. As an example, high Mw PEI (ExGen500) delivered to the R6/2 

mouse model of HD proved to be more efficient than Lf2000, however it was also more 

toxic (Wang et al., 2005). Chemical modifications have been introduced and shown to 

reduce, in part, its toxicity and aid targeting to neurons (Park et al., 2007; Son et al., 2011; 

Zeng et al., 2007). 

PLL is a linear polymer with L-lysine repeating units (Park et al., 2006; Smedt et al., 2000). 

At physiological pH, the primary amines within the polymer are fully protonated and 

therefore PLL has poor endosomal escape abilities when compared to PEI and dendrimers 

(Sonawane et al., 2003). However, functionalization with targeting ligands such as 

neurotensin, have shown potential to improve delivery to the rat brain (Gonzalez-Barrios et 

al., 2006; Martinez-Fong et al., 1999).  

Chitosans are linear polysaccharides consisting of D-glucosamine and N-acetyl-D-

glucosamine units connected through glycosidic bonds. This polymer is produced by 

deacetylation of chitin, it exists in a wide range of Mw (3.8-2000 kDa) and has been largely 
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applied for siRNA delivery (Rudzinski et al., 2010). The interest in this polymer might have 

arisen from its nucleic acid binding abilities and high biocompatibility. Indeed, chitosans in 

general present good toxicity profiles probably due to their biodegradability by lysozymes 

(Nordtveit et al., 1996; Varum et al., 1997). However, a significant limitation of unmodified 

chitosans is their low transfection efficiency and therefore several strategies have been 

adopted to improve delivery (Ishii et al., 2001; Mansouri et al., 2004). As an example, 

imidazole-modified and targeted chitosans have improved gene delivery to neuronal-like cell 

lines and also dorsal root ganglia primary neurons (Oliveira et al., 2010). Furthermore, 

modified-chitosan nanoparticles incorporated onto a biofunctionalized microfiber implant 

have shown significant knockdown and good biocompatibility when compared to Lf2000 in 

PC12 neuronal-like cells (Mittnacht et al., 2010). In addition, studies with targeted-chitosan 

nanoparticles have also improved delivery to Neuro2a cells (Malhotra et al., 2013). 

 Dendrimers 

Dendrimers are synthetic polymers with a hyperbranched symmetrical structure derived 

from a central core (single atom of group of atoms) (Figure 1.5c) (Dufès et al., 2005; Perez-

Martinez et al., 2012). Dendrimers display a globular shape and tend to have high solubility 

and surface reactivity that allows for nucleic acid complexation (Posadas et al., 2010). 

Dendrimers are also believed to avail of the “proton sponge effect”, initially described for 

PEI, to enhance endosomal release (Haensler et al., 1993). Moreover, the geometric 

progression of the concentric layers allows for the classification of dendrimers in 

generations (G) (Dufès et al., 2005; Perez-Martinez et al., 2012).  Although polyamidoamine 

(PAMAM) dendrimers have been by far the most widely used in gene and RNAi delivery to 

primary neurons and to the brain (Agrawal et al., 2009; Huang et al., 2008; Ke et al., 2009; 

Kim et al., 2010a; Kim et al., 2006; Liu et al., 2009; Rodrigo et al., 2011), carbosilane 

dendrimers have also been successfully applied (Posadas et al., 2009). In general, high 

generation dendrimers have been found to be more effective than low generation, but they 

have also been associated with higher toxicities (Haensler & Szoka Jr, 1993; Omidi et al., 



CHAPTER I – INTRODUCTION 

66 

 

2005). Functionalization approaches have been employed to reduce their cytotoxicity and to 

enhance targeted delivery to neuronal cells (Posadas et al., 2010). 

 Other novel nanoparticles 

In addition to the well-established non-viral vectors, other novel nanoparticles for siRNA are 

emerging for RNAi delivery to the CNS. Carbon nanotubes consist of graphene sheets 

arranged in concentric layers and they can be single- or multi-walled (Lacerda et al., 2008). 

Although further investigations are needed on the mechanisms of siRNA binding and 

internalization in neurons, this vector has been successfully used in primary neuron cultures 

and in vivo after brain administration (Al-Jamal et al., 2011; Ladeira et al., 2010; Ren et al., 

2012). Furthermore, brain-targeted nanotubes have also been successfully administered 

systemically to deliver other drug loads, such as doxiciclin, to the mouse brain (Ren et al., 

2012). 

Other nanoparticles based on inorganic elements, such as gold nanoparticles (Figure 1.5d), 

have also been considered for siRNA delivery in the CNS. In addition to efficient gene 

expression knockdown in primary neuronal cultures and in the brain after direct injections, 

these nanoparticles have been shown to effectively traverse an in vitro model of the BBB 

(Bonoiu et al., 2011; Bonoiu et al., 2009; Wang et al., 2010b). 

Finally, functionalized cyclodextrins (CDs) have been recently applied to deliver siRNA to 

primary hippocampal neurons (O'Mahony et al., 2012b). A more detailed description about 

CDs and their use as non-viral vectors for gene and siRNA delivery is given in Section 1.14. 

1.11.2 Routes of administration for RNAi delivery to the brain 

The selection of an appropriate route of administration is critical for the successful delivery 

of RNAi to the CNS (O'Mahony et al., 2013b). In the first instance, the route of 

administration determines the interaction of nanoparticles with specific organs and tissues 

(Karra et al., 2012). In addition, the delivery route impacts on the dose and length of 
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treatment and subsequently on eventual side effects of the therapy. Choosing a route of 

administration is largely dependent on the target structure within the CNS to be treated; the 

capabilities of the delivery vector; and the need for localised or widespread gene expression 

knockdown.  

Direct injections into the brain parenchyma have been largely employed when localised 

gene silencing effects are required. In rodents, intraparenchymal injections of naked or 

formulated siRNAs have been carried out to induce gene silencing effects in structures such 

as the striatum (Cardoso et al., 2010; Cardoso et al., 2008; Salahpour et al., 2007), 

hypothalamus (Makimura et al., 2002), hippocampus (Bonoiu et al., 2011), nucleus 

accumbens (Jean et al., 2007), cortex (Badaut et al., 2011; Kim et al., 2010a) and basolateral 

amygdala (Fu et al., 2007). Accurate injections to such specific structures enabled the use of 

significantly lower siRNA doses (for example, 0.2 µg (Manrique et al., 2009), 0.4 µg 

(Badaut et al., 2011), 3 µg (Cardoso et al., 2008)) when compared to other administration 

methods. It is worth noting that gene silencing effects in these studies were mostly short-

lived and restricted to the site of injection (Jean et al., 2007). Convection enhanced delivery 

(CED) consists of intraparenchymal infusions that employ the local positive pressure 

gradient from the effluent (vehicle) to enhance distribution of particles in the brain 

interstitium (Bobo et al., 1994). Delivery of siRNA by CED using osmotic minipumps has 

resulted in widespread suppression of gene expression in the mouse and primate brains with 

the highest levels of knockdown achieved at the site of infusion (Agrawal et al., 2009; Kato 

et al., 2010; Stiles et al., 2012). Biodistribution and gene expression knockdown is likely to 

be dependent on the type of catheter used, the dose and length of treatment. Distribution of 

nanoparticles in the brain by CED has been found to be highly reproducible and predictable 

(Krauze et al., 2008). This delivery strategy was initially developed to treat brain tumors 

(Allhenn et al., 2012; Barnett et al., 2007), but is now being considered as a potential 

administration method to treat other brain disorders, such as HD (Stiles et al., 2012). 

Injections or infusions into intracerebroventricular (i.c.v.) system have also been 
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extensively used to deliver siRNAs to the brain in the pre-clinical setting. In rodents, i.c.v. 

injections into the lateral ventricle (Hayakawa et al., 2012; Wang et al., 2005) and infusions 

in the dorsal third ventricle (Bortolozzi et al., 2012; Senechal et al., 2007; Thakker et al., 

2004; Thakker et al., 2005) using osmotic minipumps enabled wide spread gene silencing in 

the brain. In general, administration through the i.c.v. system allows for the use of higher 

volumes and/or higher doses. Indeed, relatively high doses of siRNA have been used in most 

studies when using i.c.v. infusions (for example, Thakker et al 0.4 mg/day (Thakker et al., 

2004)). The additional ventricular epithelial barrier and dependence on diffusion of siRNAs 

to the brain parenchyma might have been the underlying causes for the use of higher doses. 

Intraparenchymal injections, CED and i.c.v. infusions are possible through well-established 

stereotactic brain surgical techniques which allow delivery of therapeutics to specific regions 

within the brain (Athos et al., 2001; Cetin et al., 2006). 

Although less explored intranasal administration has also been considered as potential 

delivery route for nanoparticle-based therapeutics (Ali et al., 2010; Lochhead et al., 2012; 

Pardridge, 2007a). Transport to the brain has been suggested to occur mainly by intracellular 

uptake by the olfactory or trigeminal ganglion nerves and subsequent transport to the 

olfactory bulb, or extracellularly across the arachnoid membrane into the olfactory 

cerebrospinal fluid (Allhenn et al., 2012; Lochhead & Thorne, 2012; Pardridge, 2007a). 

Trans-nasal delivery of siRNA in rodents has resulted in efficient siRNA uptake in the 

olfactory bulb but also in deeper regions of the mouse brain, such as amygdala, raphe nuclei 

and hypothalamus (Bortolozzi et al., 2012; Kim et al., 2012a; Perez et al., 2012; Renner et 

al., 2012). Gene silencing effects have also been reported in several studies (Bortolozzi et 

al., 2012; Kim et al., 2009b; Kim et al., 2012a). Intranasal and stereotactic-based delivery 

allow the BBB, one of the major limiting factors in the progress of RNAi and gene therapy 

for brain disorders, to be circumvented (Cetin et al., 2006). 

Intravenous delivery of RNAi is among the most convenient and less invasive methods of 

administration, however the systemic route poses additional challenges to siRNA delivery 
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(see Section 1.10.1). In addition, due to difficulties targeting the brain when using the 

systemic route, higher doses of siRNA or formulated siRNA nanoparticles might be required 

to achieve the desired gene expression knockdown effect (O'Mahony et al., 2013b). This 

may increase the likelihood of toxicity in organs such as blood, liver, lungs and spleen. 

Despite the recent developments on strategies to effectively overcome the BBB (discussed in 

Section 1.11.3.2), transvascular delivery of RNAi to the brain is still limited and very 

challenging. 

1.11.3 Strategies to improve systemic brain delivery 

Systemically administered siRNA nanoparticles should have suitable physicochemical 

properties that allow for enhanced circulating times and/or facilitate translocation to the 

brain. However, in most cases, when administered intravenously cationic siRNA 

nanoparticles are rapidly opsonised and removed by the MPS (Gref et al., 2000; Owens III et 

al., 2006). Additionally, these nanoparticles also have poor stability in physiological 

conditions leading to aggregation, premature unpacking of the siRNA cargo and rapid 

subsequent removal from the blood circulation (O'Mahony et al., 2013b). Thus, multiple 

strategies are being investigated to improve blood residency times and/or improve brain 

delivery by translocation across the BBB. 

1.11.3.1 Strategies to improve stability and circulating times 

PEGylation is one of the most common approaches used to increase stability and circulating 

times of nanoparticles and involves the use of polyethylene glycol (PEG), a polymer of 

ethylene oxide, to modify the surface of the nanoparticles. PEG is a hydrophilic polymer that 

shields the positive charge at the surface of cationic nanoparticles and reduces aggregation 

(Owens III & Peppas, 2006). PEGylation confers steric hindrance by creating a “hydrophilic 

cloud” which reduces opsonisation and capture by the MPS (Gref et al., 2000; Owens III & 

Peppas, 2006). A variety of delivery systems including, lipid- (Li et al., 2007), PEI- (Kunath 

et al., 2002), PLL- (Guo et al., 2012a), and CD-based (O'Mahony et al., 2013a; Pun et al., 
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2002) nanoparticles have been successfully PEGylated, and have shown improved stability 

and circulating t1/2 in vivo. Indeed, in order to improve stability of these nanoparticles, 

different PEG lengths and polymer densities at the surface have been evaluated, however, no 

general consensus has yet been reached on the ideal PEG length or density (Gref et al., 2000; 

Kunath et al., 2002; Mao et al., 2006a). Furthermore, this is likely to be dependent on the 

vector type, and also on the PEGylation strategy adopted for modification of the 

nanoparticles. Finally, in this regard, a wide variety of methods have been developed, 

spanning from chemical to physical methods, to covalently attach PEG to the delivery 

system or to incorporate the polymer in a pre-formed assembled siRNA nanoparticle through 

post-modification methods (e.g. post-insertion) (O'Mahony et al., 2013b; Wang et al., 2012).  

Despite its usefulness in enhancing the stability and circulating times of siRNA 

nanoparticles  (Li et al., 2007), PEGylation reduces interaction with cell membranes and 

may consequently impact on uptake by relevant tissues (Davis, 2009; O'Mahony et al., 

2013d; O'Mahony et al., 2012d). Moreover, PEGylation as a strategy is not designed to 

enhance brain delivery per se thus it must be coupled with alternative methods to enable 

penetration to the brain such as by transient disruption of the BBB; receptor-mediated 

transport across the BBB using targeting ligands or monoclonal Ab coupled to the 

nanosystem; or through cell penetrating peptides (O'Mahony et al., 2013b). Figure 1.6 

displays selected mechanisms to overcome the BBB which are currently under investigation 

for non-viral gene and RNAi delivery to the brain  (O'Mahony et al., 2013b). 

1.11.3.2 Strategies for translocation across the blood brain barrier 

Transient disruption of the BBB has been previously applied to enhance delivery of 

conventional pharmaceuticals. To this end, mannitol, a sugar alcohol derived from mannose, 

has been used to cause osmotic shrinkage of endothelial cells and facilitate extravasion of 

drugs and nanoparticles across the BBB (Hwang et al., 2011; Iwadate et al., 1993). Indeed, 

in the context of RNAi, this method has been used to enhance delivery of modified-PEI 
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nanoparticles carrying miRNA to the brain (Hwang et al., 2011). Alternatively, magnetic 

resonance image (MRI)-guided focused ultrasound, another method to widen BBB tight 

junctions, has also improved delivery of cholesterol conjugated siRNAs to the rat brain 

(Burgess et al., 2012). However, the safety of these approaches to enable chronic 

administrations of siRNA still remains to be elucidated. 

Targeting ligands have also been used to enhance neuronal uptake and targeting across the 

BBB. Attachment of certain ligands to the delivery system, such as rabies virus glycoprotein 

peptide (RVG) (Alvarez-Erviti et al., 2011; Kumar et al., 2007; Pulford et al., 2010), 

transferrin (Tf) (Cardoso et al., 2007; Cardoso et al., 2008), lactoferrin (LTF) (Huang et al., 

2010) and angiopep (Ke et al., 2009), have been shown to enhance cellular uptake in 

neuronal cells or in the brain. Targeted-nanoparticles associate with cell-surface receptors 

and internalized through a receptor-mediated endocytotic process, whereas untargeted 

nanoparticles rely on unspecific electrostatic interactions (Sahay et al., 2010; Wang et al., 

2011). After transvascular delivery, targeted-nanoparticles have also been successfully 

transported across the BBB and delivered their nucleic acid into the brain, successfully 

achieving gene expression or gene expression knockdown (e.g. (Kumar et al., 2007). 

Although further investigations are needed, transcytosis is believed to be the main 

mechanism involved. Similarly, the “molecular Trojan horse” strategy employed 

peptidomimetic monoclonal antibodies (mAb) which target specific receptors expressed in 

the BBB and in neuronal cells. Indeed, TFR- or human insulin receptor (HIR)- Ab grafted on 

the tip of PEG2000 chains of anionic liposomes – PEGylated immunoliposomes – have 

facilitated shRNA delivery to intracranial tumors (Zhang et al., 2004). TFR Ab enabled 

targeting across the BBB, while HIR Ab enabled delivery to human glioma cancer 

xenografts (Zhang et al., 2004). Additionally, Ab against the p75 neurotrophin  receptor 

(p75NTR) have been conjugated to a modified-PLL vector and successfully delivered 

shRNAs against TrkA in the rat brain (Berhanu et al., 2008). 



CHAPTER I – INTRODUCTION 

72 

 

Cell penetrating peptides such as penetratin and transcription-transactivating (TAT) protein 

of the HIV virus, have also been described for delivery of drugs and proteins into the brain 

(Heitz et al., 2009; O'Mahony et al., 2013b). Despite recent encouraging in vitro results 

using Tat-modified chitosans to silence the SCA1 gene, implicated in a spinocerebellar 

neurodegenerative disease (Malhotra et al., 2013), in vivo application of cell penetrating 

peptides for RNAi needs further investigation. Finally, other novel approaches such as using 

magnetic force to traverse the BBB are being considered for brain therapeutics and 

diagnostics, and may be applicable to brain-targeted RNAi (Kong et al., 2012). 
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Figure 1.6. Selected examples of the mechanisms for transport of non-viral gene delivery vectors from the systemic circulation across the blood–brain barrier into the 

brain. (O’Mahony, Godinho et al. 2013b). These include receptor-mediated transport, molecular Trojan horse approach, osmotic disruption of tight junctions, cell-

penetrating peptides and magnetic force. Abbreviations: Ach, Acetylcholine; BBB, Blood brain barrier; LRP, lipoprotein receptor-related protein; RVG, Rabies Virus 

Glycoprotein; TATp, transcripition-transactivating protein; Tf, transferrin; TfR, transferrin receptor. 
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1.12 Limitations of RNAi 

RNAi technologies are, without question, a useful tool to study gene function, however 

translation of such technology as a therapeutic to the clinic still presents some challenges. 

“Off-target effects”, saturation of the RNAi machinery and the lack of efficient and non-

toxic delivery vectors are the main obstacles in the progress of this technology (O'Mahony et 

al., 2013b).  

1.12.1 “Off-target” effects 

“Off-target effects” can arise from hybridization of the antisense strand (or in some cases the 

sense strand) to other non-target mRNA transcripts or from undesired activation of 

components of the immune system. The so-called “miRNA-like off-target effects” whereby 

siRNA acts as an endogenous miRNA regulating gene expression by partial 

complementarity, can induce unwanted gene silencing effects. In fact, it has been found that 

one or two perfect matches between 2
nd

 -7
th
  nucleotide (or 2

nd
 -8

th
  nucleotide) of the 

antisense strand and the 3’-UTR of an unrelated mRNA are all that is required for off-target 

gene silencing (Jackson et al., 2006). These undesired effects can induce false-positive 

phenotypes, induce toxicity and considerably complicate the interpretation of therapeutic 

outcomes (Jackson et al., 2010). Furthermore, microarray data have shown that “off-target” 

effects occur in a siRNA concentration-independent fashion, meaning that reducing dose 

alone will not be enough for reducing “off-target effects” (Jackson et al., 2003). On the other 

hand, conflicting microarray studies have shown that unspecific gene silencing is more 

likely to occur in a dose-dependent manner and therefore the use of a minimal dose is 

critical (Persengiev et al., 2004). Thus, rational algorithmic design tools should be used to 

guarantee correct loading of the antisense strand to the RISC (G/C content influences 

thermodynamic selection of strands), to generate highly complementary siRNA/shRNA to 

their target mRNAs, but also to ensure low potential for cross-hybridization with untargeted 

mRNA transcripts (Gong et al., 2004; Naito et al., 2004; Reynolds et al., 2004). On the other 
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hand, long dsRNAs (>30 bp) are known to induce host immune response by activation of the 

Interferon (IFN) pathway (Elbashir et al., 2001). Although siRNAs were initially believed to 

bypass undesired activation of the immune system, recent reports have demonstrated that 

this might not always be the case (Marques et al., 2005). Indeed, siRNAs and shRNA were 

shown to activate RNA helicases, such as protein kinase R (PKR) and RIG-1, causing 

protein synthesis arrest through phosphorylation of a general translation factor eIF2α and 

upregulation of a subset of genes from the IFN pathway (Bridge et al., 2003; Judge et al., 

2008; Moss et al., 2003; Pebernard et al., 2004; Sledz et al., 2003). siRNAs have also been 

shown to activate endosomal pattern-recognition toll-like receptors (TLR) 3, 7 and 8, 

thereby increasing the expression of pro-inflammatory cytokines (Hornung et al., 2005; 

Karikó et al., 2004; Sioud, 2005). Recognition of “danger motifs”, such as CpG motifs in 

oligodeoxynucleotides (ODNs) and UG rich regions in siRNAs, are believed to be 

responsible for such induction of immunostimulatory effects (Hornung et al., 2005; Judge et 

al., 2005). Several chemical modifications have been introduced to the backbone of siRNAs 

to overcome these issues and have been shown to be advantageous in reducing 

immunological activation (Judge et al., 2006; Sioud et al., 2007). Furthermore, induction of 

immune responses by siRNAs has been found to be cell type-, duplex length-dependent 

(Hornung et al., 2005; Judge et al., 2005; Reynolds et al., 2006; Sioud, 2005). Immune 

stimulatory effects were also found to be dose-dependent, further advocating the use of 

minimal doses (Persengiev et al., 2004). Although the reported activation of IFN response 

was only moderate in the above mentioned studies, this is an issue that should not be 

overlooked and further investigations are needed (Moss & Taylor, 2003).  

1.12.2 Saturation of RNAi endogenous pathway 

Saturation of the RNAi machinery can occur with both shRNAs (Borel et al., 2011; Grimm 

et al., 2006; Martin et al., 2011; Snove et al., 2006) and siRNAs (Bitko et al., 2005; Khan et 

al., 2009) leading to dysregulation of endogenous miRNA function (Barik, 2006). Dose-

dependent saturation of nuclear exportin-5 by shRNAs has led to liver toxicity and increased 
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morbidity in mice after intravenous injection of a shRNA-AAV expressing vector (Borel et 

al., 2011; Grimm et al., 2006). In these studies, shRNAs prevented endogenous miRNA 

maturation and led to a global shutdown of the miRNA pathway (Barik, 2006; Martin et al., 

2011). Selection of adequate promoters for modest expression of shRNAs or co-expression 

of recombinant exportin-5 are the main approaches being evaluated to reduce shRNA-

mediated toxicity (Grimm et al., 2006; Yi et al., 2005). In addition, others have suggested 

using an artificial miRNA-based expression system which is well tolerated in vitro and in 

vivo (Boudreau et al., 2009a; McBride et al., 2008). On the other hand, synthetic siRNAs 

bypass nuclear processing and do not overload nuclear transport, thereby circumventing this 

issue. However, siRNAs compete with endogenous miRNAs for RISC binding and therefore 

the use of the lowest possible dose is key to avoid dysregulation of the endogenous miRNA 

pathway (Barik, 2006). 

1.12.3 Vector-mediated toxicity 

Viruses and non-viral vectors for RNAi delivery can also induce toxicity and activate 

immune responses in the host organism (Sakurai et al., 2008). Despite their great tropism 

over a wide number of cell types, viruses have recently been associated with extreme 

adverse reactions (Thomas et al., 2003). The first human fatality in gene therapy occurred in 

1999 upon direct administration of an adenovirus vector (expression vector for ornithine-

transcarbamylase) into the hepatic artery (Marshall, 1999). The vector caused a systemic 

inflammatory response with respiratory distress, multi-organ failure and subsequent death of 

the 18-year-old patient (Marshall, 1999). Furthermore, in a gene therapy trial for X-SCID 

disease, using a γc Moloney retrovirus-derived vector, two patients were reported to develop 

a leukaemia-type disorder due to insertional mutagenesis (Check, 2002; Kaiser, 2003). In 

spite of the excellent clinical outcomes in most of the patients treated, the trial was halted 

(Cavazzana-Calvo et al., 2000). In contrast, several other gene therapy trials for head- and 

neck- cancer have used viral vectors with negligible or no remarkable induction of host’s 

immune response (Raty et al., 2008).  
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The nanotoxicological and immunological aspects of non-viral vectors for gene and RNAi 

delivery will be addressed in the following section (Section 1.13). 

1.13 Nanotoxicology of engineered biomaterials 

Biomaterials used for gene and RNAi delivery have, for some time, been considered as 

relatively inert materials with negligible or no toxic effects (O'Mahony et al., 2013b). In 

spite of their considerable advantages over their viral counter parts regarding toxicology, 

non-viral vectors are now known to cause several biological, genomic and inflammatory 

disturbances (Akhtar et al., 2007; Dobrovolskaia et al., 2007; Merkel et al., 2011). Thus, in 

addition to uptake and gene silencing requirements, biocompatibility of non-viral 

formulations is one of the emerging hurdles to their translation to the clinic (Ballarín-

González et al., 2012; Reischl et al., 2009). Nanoparticle-induced toxicity is dependent on 

the physicochemical characteristics of the nanoparticle, the subsequent tissue susceptibility 

and on other treatment-dependent factors, such as route of administration, dose and length of 

treatment required (Albanese et al., 2012). 

1.13.1 Mechanisms of nanoparticle-mediated toxicity: cytotoxicity and 

inflammatory susceptibilities in the CNS 

Assembled nanoparticles for RNAi can instigate detrimental effects at the cellular and 

intracellular level and can induce inflammatory responses with local or systemic 

consequences (Akhtar, 2010; Akhtar & Benter, 2007; Dobrovolskaia & McNeil, 2007; 

Merkel et al., 2011). 

1.13.1.1 Nanoparticle-mediated cytotoxic effects 

Nanosystems for siRNA delivery have been reported to cause cellular membrane 

destabilization and lysis. Disturbance of lipid raft assemblies and pore hole formation have 

been suggested as the main mechanisms for disruption of biological membranes by 

polymeric nanoparticles (Hong et al., 2004; Hong et al., 2006b; Moghimi et al., 2005). 
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Detrimental interactions with cellular membranes may also compromise cellular and 

intracellular signalling, influencing cellular and tissue homeostasis (Karra & Borlak, 2012). 

In addition, nanoparticles have also been shown to interfere with the metabolic activity of 

the mitochondria (Hunter et al., 2010). Indeed, leakage of mitochondrial enzymes (such as 

cytochrome-c) to the cytoplasm and reduction of mitochondrial membrane potential (MMP) 

have been observed in several cell-types with delivery vectors such as PEI, PLL and 

PAMAM dendrimers (Hibbitts et al., 2011; Lee et al., 2009; Moghimi et al., 2005; Symonds 

et al., 2005). Release of cytochrome-c consequently triggers caspases-3 and -9, activating 

the apoptotic pathway eventually culminating in loss of membrane integrity (Hunter & 

Moghimi, 2010). In addition, disruption of the mitochondrial respiratory chain by polymeric 

nanoparticles results in increased production of reactive oxygen species (ROS) (Hunter & 

Moghimi, 2010).  Similarly, the commercially available lipid-based vector Lipofectamine
®

 

has been shown to increase multiple ROS and trigger the apoptotic pathway (Dokka et al., 

2000; Kongkaneramit et al., 2008). Nanoparticles may also interact with the cell nucleus 

causing permeabilization of the nuclear membrane (Karra & Borlak, 2012). Furthermore, 

polymer-, lipid- and dendrimer-based nanoparticles have been shown to induce global 

changes in gene expression profiles (Akhtar, 2010; Akhtar & Benter, 2007; Choi et al., 

2010; Omidi et al., 2011). Indeed, microarray studies of the transcriptome have shown that 

biomaterials per se and assembled siRNA nanosystems induce different and specific “gene 

fingerprints” (Choi et al., 2010; Hollins et al., 2007). In this regard, cationic polymer- and 

lipid-based nanoparticles disrupt the expression of different genes related to cell 

proliferation and differentiation, apoptosis and mechanisms of DNA repair (Omidi et al., 

2005; Omidi et al., 2011). Therefore, adequate selection of the delivery system is crucial in 

order to reduce additional undesired “off-target” effects in RNAi therapies (Akhtar & 

Benter, 2007; Merkel et al., 2011). 

The extent and magnitude of the above mentioned biological and genotoxic adverse effects 

have been found to be cell-type dependent (Omidi et al., 2005). Thus, neurons, microglia 
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and astroglia – in the particular case of the CNS – may present different cellular 

susceptibilities due to differences in their intracellular regulation and nanoparticle uptake 

kinetics. Moreover, certain CNS disorders, such as HD, might render specific neuronal 

populations more susceptible to toxic stimuli (Rigamonti et al., 2000; Rigamonti et al., 

2001). In addition to the adverse effects directly exerted on neurons, toxic interactions of 

nanoparticles in astroglia and microglia populations may prompt oxidative stress, 

subsequently causing neuronal injury. This reduction in brain homeostasis and exacerbated 

inflammatory response may mask benefits of RNAi treatment and even aggravate the 

progress of neurodegenerative diseases.  

1.13.1.2 Nanoparticle-mediated immuno-inflammatory effects 

Cationic lipid- (Kawakami et al., 2006; Li et al., 1999; Loisel et al., 2001; Sakurai et al., 

2002; Tousignant et al., 2000; Whitmore et al., 1999; Yew et al., 1999; Zhao et al., 2004) 

and polymer-based (Gautam et al., 2001) gene delivery systems have been previously 

reported to induce production of pro-inflammatory cytokines upon systemic administration. 

However, these immunostimulatory effects were deemed to be due to unmethylated CpG 

sequences contained within the plasmid DNA to be delivered (Tousignant et al., 2000; 

Tousignant et al., 2003; Zhao et al., 2004). Lack or modification of such immunogenic 

sequences reduced cytokine release but did not completely eliminate it (Whitmore et al., 

1999). Furthermore, comparative studies have shown that linear PEI.pDNA complexes cause 

only limited increases in serum cytokine levels (TNF-α, interferon gamma (IFN-γ), 

interleukin 6 (IL-6), interleukin (IL-12)) when compared to lipid-based formulations 

(DOTMA:Chol and DOTAP:Chol) (Bonnet et al., 2008; Kawakami et al., 2006). Taken 

together this suggests that other underlying mechanisms might be implicated (Sakurai et al., 

2008). On the other hand, only recently siRNA nanoparticles have been reported to cause 

activation of the innate immune response upon intravenous administration (Bonnet et al., 

2008; Kedmi et al., 2010; Ma et al., 2005; Tao et al., 2011). Systemical delivery of linear 

PEI.siRNA nanoparticles induced mild increases in serum cytokine levels (TNF-α, IFN-γ, 
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IFN-β, IL-6 and IL-12) (Bonnet et al., 2008). In contrast, systemically administered 

DOTAP-based siRNA nanoparticles induced the expression of IFN responsive genes as well 

as the expression of pro-inflammatory cytokines, such as TNF-α (Kedmi et al., 2010). This 

pro-inflammatory response was also detected at the cellular level in monocytes (CD11b+), T  

cells (CD3+) and B cells (B220+) and was found to be dependent on the activation of 

pattern recognition toll-like receptor 4 (TLR4) (Kedmi et al., 2010). However, 

investigations in various dendritic cell models have demonstrated that this is likely to be a 

structure activity dependent-effect and therefore specific to certain lipids (Lonez et al., 2009; 

Tanaka et al., 2008; Vangasseri et al., 2006). Other in vivo studies have also reported 

differential activation of the immune system by polymer- and lipid-based nanoparticles 

containing the same siRNA cargo (Bonnet et al., 2008), further indicating that specific non-

viral vectors may be more likely to enhance siRNA-mediated immune response than others. 

In support, charge-dependent activation of the components of the complement system have 

also been reported for cationic lipids and polymers (Chanan-Khan et al., 2003; Plank et al., 

1996). 

Interestingly, strong drug-based suppression of IFN-γ, IL-6 and monocyte chemotactic 

protein-1 (MCP-1) (IFN-γ inducible cytokine) and partial suppression of TNF-α improved 

toxic effects in the liver and spleen of animals treated intravenous injection (i.v.) with 

cholesterol-based nanoparticles (Tao et al., 2011). These results suggest that cytokines are 

key mediators of nanoparticle-induced toxicities and premedication might be a viable 

strategy of reducing side effects.  

In the case of the brain, immune responses are mainly mediated by microglia, resident 

immune effector cells involved in phagocytosis and antigen-presentation, and to some extent 

by astroglia, cells that provide biochemical support to neurons (Block et al., 2005; Dong et 

al., 2001). Despite the importance of cytokine expression in vector-mediated toxicity, to our 

knowledge there are only few reports exploring these effects in CNS models (Gorina et al., 

2009; Kateb et al., 2007). Gorina et al. demonstrated in primary astroglial cultures that lipid 
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(oligofectamine)-based siRNA nanoparticles enhanced expression of Signal Transducers and 

Activators of Transcription 1 (Stat1), involved in the upregulation of a subset of IFN genes,
 

but also enhanced the expression of cyclooxygenase 2 (COX-2). In the same study authors 

reported release of IL-6 and IFN-γ induced protein 9 and 10 (IP-9 and IP-10). Curiously, in 

these studies astroglial cultures were more sensitive to lipid.siRNA nanoparticles than 

microglial cultures (Gorina et al., 2009). The latter only presented a modest increase in 

cytokine release upon stimulation with a lipid-formulated non-silencing siRNA (Gorina et 

al., 2009). In addition, siRNAs formulated in multi-walled carbon nanotubes have shown 

mild induction of TNF-α and IL-10 in an immortalised murine microglial cell model (BV2 

cells) (Kateb et al., 2007). Although not in the context of gene or RNAi delivery, other 

cationic nanoparticles have also been able to induce expression of pro-inflammatory 

cytokines and membrane TLR2 in cultured BV2 microglial cells (Hutter et al., 2010). 

Stimulation of the innate immune response might be advantageous when delivering RNAi in 

the particular case of brain cancers, however nanoparticle-induced exacerbated immune 

responses can be detrimental when treating non-malignant diseases, such as HD (Block & 

Hong, 2005). 

1.13.2 Correlating physicochemical properties with cellular toxicity 

Physicochemical characteristics of the assembled nanosystem, such as size, charge, shape 

and architecture, surface functionalisation, chemical composition and biodegradability are 

key features for efficient cellular uptake and gene expression knockdown (Albanese et al., 

2012; Karra & Borlak, 2012). The influence of such characteristics on the interaction of 

nanoparticles with cellular membranes, specific receptors, organelles and other intracellular 

targets is critical and, therefore, it is not surprising that they may also contribute to their 

toxicity profile (Albanese et al., 2012; Karra & Borlak, 2012). 

Size is a major determinant for tissue penetration, biodistribution and elimination. Large 

particles are cleared by the MPS whereas small particles (<10 nm) are removed by 



CHAPTER I – INTRODUCTION 

82 

 

glomerular filtration (Karra & Borlak, 2012; Moghimi et al., 2001). On the other hand, at the 

cellular level this feature is thought not only to determine the specific pathway of 

internalisation as well as the extent of exocytosis and retention (Harush-Frenkel et al., 2008; 

Nel et al., 2009; Rejman et al., 2004; Resina et al., 2009). Additionally, others have found 

that the shape/morphology of the nanoparticle plays an important role in neuronal and 

microglial uptake (Albanese et al., 2010; Albanese et al., 2012). Although not specifically in 

the context of RNAi, Hutter et al. demonstrated that microglial cells tend to phagocytose 

irregularly-shaped nanoparticles while neurons favoured uptake of rod-like nanoparticles 

(Hutter et al., 2010). 

In spite of providing a clear advantage from the delivery stand point facilitating membrane 

interaction and subsequent internalization, positive surface charge has been associated with 

detrimental effects (Ballarín-González & Howard, 2012; He et al., 2010; Karra & Borlak, 

2012). Indeed, polycation-based nanoparticles are well-known to disrupt cellular and 

mitochondrial biological membranes and to induce global changes in gene expression 

eventually leading to cell death (He et al., 2010; Lv et al., 2006). Additionally, cationic 

nanoparticles are also more likely to induce inflammatory responses (Kedmi et al., 2010; 

Vangasseri et al., 2006). In contrast, neutral or anionic systems seem to be less correlated 

with cytotoxic adverse effects (Dokka et al., 2000; Karra & Borlak, 2012; Lee et al., 2003; 

Mozafari et al., 2007). Nevertheless, significant disruptions in gene expression profiles have 

also been recently detected with anionic polymers such as PEG and PEG-poly glutamic acid 

(Kabanov et al., 2005). Therefore, when assessing biological and genomic effects other 

physicochemical factors must also be taken in account and toxicological categorization of 

delivery systems based solely on surface charge should be avoided (Akhtar, 2010). 

In most cases, surface functionalisation of nanoparticles has proven to be a useful strategy 

to reduce nanoparticle-mediated toxicities (Ballarín-González & Howard, 2012). The use of 

hydrophilic polymer, PEG, has helped prolong circulating halve-lives by reducing 

opsonisation and clearance through phagocytosis (Gref et al., 1994). PEGylation has also 



CHAPTER I – INTRODUCTION 

83 

 

been shown to improve in vitro and in vivo cytotoxicity profiles of PEI and PAMAM 

dendrimers (Beyerle et al., 2010; Hibbitts et al., 2011; Wang et al., 2010b). Moreover, 

toxicity profiles of G4 PAMAM dendrimers in brain endothelial cell-model (bEND3) and 

mixed glial cultures were improved upon introduction of surface lipid-modifications 

(Bertero et al., 2013). Further functionalization via grafting of targeting ligands (see Section 

1.11.3.2) enhances specific cellular uptake, thereby preventing toxicity in non-targeted 

tissues (Ballarín-González & Howard, 2012; Karra & Borlak, 2012). However, it must be 

considered that use of such targeting components at high density may also increase the 

immunogenic potential of the nanoparticles (Karra & Borlak, 2012). 

Chemical composition and biodegradability of nanomaterials are important determinants in 

their bioaccumulation and clearance from the body. Upon release of their cargo, 

biocompatible nanomaterials should be amenable to enzymatic degradation, generating non-

toxic by-products (Karra & Borlak, 2012). Persistence of non-degradable nanoparticles may 

increase the risk of biological and inflammatory responses (Akhtar & Benter, 2007; Karra & 

Borlak, 2012).  Engineered biodegradable nanosystems based on synthetic or natural 

polymers, such as PLGA and modified chitosans, have shown improved toxicity profiles 

when compared to cationic lipids and PAMAM dendrimers (Chan et al., 2007; Chen et al., 

2013a; Li et al., 2003b; Mansouri et al., 2006). Moreover, introduction of cleavable ester 

linkers to a PAMAM dendrimer has shown to improve its degradability and consequently its 

toxicity profile (Kim et al., 2010a). In summary, although the adverse effects of high-

positive surface charge have been well-documented, other factors such as biodegradability 

and processing of the biomaterial in the intracellular compartment might play important 

roles and must also be considered. 

1.13.3 In vitro and in vivo assessment of nanoparticle safety for CNS delivery 

Evaluation of cytotoxic effects of siRNA nanoparticles in relevant in vitro and in vivo 

models is vital to understanding the potential risks of these delivery nanosystems in the 
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CNS. A large number of RNAi studies for CNS delivery have based their biosafety 

assumptions on experiments conducted in cancer-derived and other immortalised cell lines 

(van Gaal et al., 2011). Despite their undisputable usefulness for transfection and high-

throughput screening, these cell-models have expression and proliferative patterns that in 

turn make them more resistant to toxic stimuli. Furthermore, in these studies researchers 

have mainly focused on cancer-derived neuron-like cell lines with little or no consideration 

has been given to microglia and astroglia. In contrast, some studies have been conducted in 

more representative primary mixed neuronal and glial cultures derived from healthy rodents 

(Gorina et al., 2009; O'Mahony et al., 2012b). Although considered a more representative 

and sensitive in vitro model, primary neuronal and glial cultures are models of healthy brain 

cells rather than in vitro models of CNS disease. Thus, the selection of in vitro models 

should be relevant to the purpose of the study. For instance, in the specific case of HD, 

ST14A-HTT120Q cells which harbour a muHTT protein that renders these cells more 

susceptible to toxic stimulus (Rigamonti et al., 2000; Rigamonti et al., 2001), might 

constitute an appropriate model for testing of RNAi nanosystems.   

A wide range of well-established methodologies for in vitro testing of biocompatibility of 

siRNA nanoparticles are available to researchers (Kepp et al., 2011). Table 1.5 summarises 

the most widely used methodologies for in vitro assessment of cytoxicity, their main 

advantages and limitations. Depending on the cytotoxic assay, the in vitro cell model system 

selected and the specific experimental conditions, different results can be obtained (Kim et 

al., 2009a; van Gaal et al., 2011; Weyermann et al., 2005). Thus, in order to avoid 

underestimation of adverse effects and have a more complete insight of the underlying 

mechanisms multiple assays must be used  (van Gaal et al., 2011). Alternatively, High 

Content Analysis assays, based on automated cell imaging analysis, can be used for high 

throughput screening of multiple cytotoxic parameters. Indeed, due to its high sensitivity and 

specificity this technique is now gaining popularity for the assessment of efficacy and 

cytotoxicity of gene and RNAi delivery vectors (Hibbitts et al., 2011; Solmesky et al., 2011). 
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Evaluation of nanoparticle-mediated toxicities in vivo depends largely on the route of 

administration chosen for delivery. Most studies carrying out i.v. injections assess the serum 

levels of hepatic enzymes (such as, Lactate Dehydrogenase (LDH), aspartate transaminase 

(ASAT), alanine aminotrasnferase (ALAT) and alkaline phosphatase (ALP)) and serum 

levels of pro-inflammatory cytokines (such as TNFα, IFN-γ, IL-1β and IL-6), but also 

histopathological  examination of representative sections of organs such as liver and spleen 

(e.g. of selected studies (Kawakami et al., 2006; Kedmi et al., 2010; Tao et al., 2011). On the 

other hand, evaluation of biological adverse effects of RNAi delivery systems when directly 

injected into the brain have been usually limited to histopathological studies of the injection 

sites and surrounding areas. Protocols for cresyl violet staining and immunostaining for glial 

fibrillary acidic protein (GFAP) and CD11b marker have been used  (e.g. of selected studies 

(Cardoso et al., 2010)). Additionally, the vast majority of preclinical studies for RNAi in the 

brain conducted to date are proof-of-concept studies of short duration and, therefore, only 

limited conclusions about safety can be drawn. Finally, the use of relevant disease models is 

crucial for gaining an integrated insight to the toxic responses to RNAi nanosystems during 

CNS disease states (Karra & Borlak, 2012; Silva, 2009). 
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Table 1.5. List of parameters and assays commonly used for in vitro assessment of biocompatibility of non-viral gene and RNAi delivery vectors 

Parameter Assay (Ref.) Principle Advantage Limitation 
Biocompat. studies 

Select. Ref. 

Cell 
morphology/cell 
density 

Light microscopy 

Visual comparison of treated and untreated cells. 
Characteristics to observe: Cell detachment, changes in 
morphology and pronounced cell debris due to cellular 

membrane lysis 

Inexpensive, rapid  
and routinely 
employed 

Unable to 
differentiate cell 
death mode 

(Fischer et al., 2003; 
Merkel et al., 2011) 

Plasma Membrane 
integrity 

Trypan Blue exclusion assay 
(Strober, 2001) 

Trypan blue dye is not permeable through intact 
functional cellular membranes. Viable cells exclude the 

dye whereas nonviable cells incorporate the dye 

Dead cells can be 
visualised. 
Inexpensive, routinely 
employed 

Unable to 
differentiate cell 

death mode 

(O'Mahony et al., 
2012b) 

Plasma Membrane 

integrity 

LDH assay 

(Decker et al., 1988) 

Leakage of cytoplasmic lactate dehydrogenase enzyme to 
the cell culture supernatant. LDH assay can detect 
minimal damages to the membrane 

Rapid, routinely 

employed 

Unable to 
identify cause of 

membrane 
disruption 

(Moghimi et al., 2005) 

Mitochondrial 
Metabolic activity  

MTT and XTT assay 
(Mosmann, 1983) 

Conversion of soluble tetrazolium salt in insoluble 

formazan product by metabolically active cells. A 
measure of mitochondrial dehydrogenase activity. 
Colorimetric read-out 

Inexpensive, rapid  
and routinely 
employed 

Unable to 
discriminate 
cytotoxicity and 
proliferation 
arrest 

(Hamid et al., 2004) 

Mitochondrial 
Metabolic activity 

Alamar Blue 
(O'Brien et al., 2000) 

Based on oxidation-reduction by mitochondrial 
respiratory chain (similar to MTT and XTT). 
Colorimetric or fluorimetric read-out 

Inexpensive, rapid  
and routinely 
employed 

Unable to 
discriminate 
cytotoxicity and 
proliferation 
arrest 

(Cardoso et al., 2007; 
Hamid et al., 2004) 

Mitochondrial 
Membrane 
Potential 

MMP JC-1 staining 

(Johnson et al., 1981) 

Probe is sequestered in healthy mitochondrion. Loss of 
mitochondrial potential leads to dissipation of JC-1 
aggregates in the cytoplasm with loss of fluorescence. 
Cells can be visualised by fluorescent microscopy or 
sorted by flow cytometry 

Rapid, inexpensive 

dyes available  

MMP 
dissipation can 
occur 

independently 
from cell death 
events 

(Hibbitts et al., 2011; 

Moghimi et al., 2005) 

Lysosome detection 
LysoTracker or Neutral red 
uptake 
(Borenfreund et al., 1985) 

Viable cells take up neutral red which accumulates in 
lysosomes 

Rapid, inexpensive 
dyes available 

Unable to 
differentiate cell 
death mode. 

(Fotakis et al., 2006) 

Apoptosis/ 
Necrosis 

Annexin V / PI assay 
(Jones et al., 1985; Vermes et al., 
1995) 

Annexin V labels PS residues in cells undergoing 

apoptosis. PI is membrane impermeant and DNA 
intercalating dye. Cells can be visualised by fluorescent 
microscopy or sorted by flow cytometry 

Rapid, identification 

of early/late 
apoptosis. Dead cells 
can be visualised 

PS exposure 

may occur 
independently 
of apoptosis 

(Moghimi et al., 2005) 
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Parameter Assay Principle Advantage Limitation 
Biocompat. studies 

Select. Ref. 

Apoptosis 
Caspase 3 activity assay 

 

Assay carried out in cell lysates. Hydrolysis of Caspase-3 
substrate and release of p-nitroanilide or fluorescent 7-

amino-4-methylcoumarin. Colorimetric or fluorimetric 
read-out 

Rapid 

Caspase 
activation may 
occur 

independently 
from cell death 
events 

(Moghimi et al., 2005) 

Nuclear 
morphology/DNA 
damage 

Hoescht and DAPI staining 
(Durand et al., 1982; Otto, 1990)
  

Membrane permeant dyes intercalate DNA allowing the 
observation of nuclear morphology. DNA fragmentation 

Well established 
inexpensive dyes, 
useful in co-staining 
protocols 

DAPI not so 
effective in 
living cells, 
fixing might be 

needed 

(Hibbitts et al., 2011) 

DNA damage 
Comet assay 
(Tice et al., 2000) 

Single Cell Gel electrophoresis where upon cell lysis 
breakage of DNA strands is assessed based on the 
intensity of the comet trail 

Rapid 
Technical 
variability 

(Choi et al., 2010) 

Protein 
quantification 

BCA assay 
(Bradford, 1976) 

Quantification of total protein content in viable cells 
upon removal of detached cells. Provides an indirect 

measure of viability 

Rapid, inexpensive 
and routinely 

employed 

Unable to 
differentiate cell 
death mode. 

Indirect 
measure 

(Fotakis & Timbrell, 
2006) 

 

Abbreviations:  BCA, Bicinchoninic acid; DAPI, Diamidinophenylindole; LDH, Lactate dehydrogenase; MMP, Mitochondrial membrane potential; MTT, 

Methylthiazolyltetrazolium; PI, Propidium Iodide; PS, Phosphatidylserine;  XTT, methoxynitrosulfophenyltetrazoliumcarboxanilide. 

Table 1.5. (Cont.) 
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1.14 Cyclodextrins as non-viral vectors for RNAi delivery to the CNS 

CDs are enzymatically derived from starch and consist of cyclic oligosaccharides with a 

torus-like ring shape (Stella et al., 2008). CDs are formed by a number of glucopyranose 

units connected through α-(1,4)-glycosidic bonds (Stella & He, 2008). Each basic unit 

contains one hydroxyl group in the primary face (position C-6) and two in the secondary 

face (positions C-2 abd C-3). Furthermore, CDs are classified according to the number of 

glucopyranose units that they contain in α-CD (6 units), β-CD (7 units) and γ-CD (8 units) 

(Challa et al., 2005). CDs contain a hydrophobic cavity where a guest molecule can be 

accommodated (Brewster et al., 2007). The diameter of the cavity is dependent on the type 

of CD and determines the size of the guest molecule that can be accommodated (Brewster & 

Loftsson, 2007).  

CDs have been widely used to enhance physicochemical properties of drug molecules that 

have poor solubility or/and bioavailability, for instance by forming non-covalent inclusion 

complexes with lipophilic drugs (Challa et al., 2005; Loftsson et al., 2007). Among all CDs, 

β-CD is the most widely used in the pharmaceutical sector, probably due to the favourable 

characteristics of its cavity, low cost and ready availability (Loftsson & Duchêne, 2007). In 

fact, β-CDs are well tolerated, have USA FDA approval for human consumption and are 

used in various drug formulations currently on the market (Loftsson et al., 2010). Despite of 

being virtually non-toxic on oral administration (Brewster & Loftsson, 2007), high i.v. doses 

of unmodified β-CDs have been associated with haemolysis and renal toxicity (Loftsson et 

al., 2005; Ohtani et al., 1989). These limitations have led to the introduction of modifications 

to the simple β-CD molecule, to form hydroxypropyl-β-CD, thereby improving its toxicity 

and solubility profiles (Davis et al., 2004; Loftsson et al., 2005). Indeed, functionalization of 

CDs is possible at each hydroxyl group in the primary and secondary face of the 

glycopyranose unit and this has been exploited to generate a wide variety of modified CDs 

(Davis & Brewster, 2004; Sallas et al., 2008; Szejtli, 1998). 
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CDs have recently attracted significant interest as component biomaterials for gene and 

RNAi delivery vectors (Chaturvedi et al., 2011; Mellet et al., 2011; O'Mahony et al., 2013c). 

Broadly speaking, two different approaches for the use of CDs in nucleic acid delivery have 

been used: (i) inclusion of CDs as a component of an existing delivery system, for its surface 

functionalization, toxicity profile improvement or enhancement of assembly properties; and 

(ii) as main starting materials, or scaffolds, onto which other chemical groups are attached 

achieving monodisperse self-assembling nanosystems (Chaturvedi et al., 2011; O'Mahony et 

al., 2013c). 

1.14.1 Cyclodextrin-containing delivery systems 

A wide range of CD-containing delivery systems have recently been developed and are 

represented in Figure 1.7. Mark Davis’s research group has pioneered studies in this area 

with the development of a linear CD-containing polymer (CDP). CDP synthesis is based on 

the condensation of a difunctionalised CD co-monomer with a co-monomer containing 

charge centres (Figure 1.7a) (Gonzalez et al., 1999). Electrostatic interactions of the charge 

centres of the polymer back bone facilitated interaction with negatively nucleic acids 

(including pDNA and siRNA) forming cationic nanoparticles in the range of ~60-150 nm 

(Bartlett et al., 2007; Gonzalez et al., 1999). Further functionalization was achieved with 

adamantyl-PEG 5000 derivatives by inclusion complex formation within the CD cavity (Pun 

& Davis, 2002). This minimised aggregation in high salt physiological conditions and 

interaction with components of the bloodstream (Bartlett & Davis, 2007; Pun & Davis, 

2002). Furthermore, the use of specific targeting ligands, such as galactose and Tf, coupled 

to the adamantyl-PEG 5000 chains enhanced delivery to hepatocytes and cancer cells, 

respectively (Bellocq et al., 2003; Hu-Lieskovan et al., 2005; Pun & Davis, 2002). 

CDPs have been successfully used in various gene silencing experiments in vitro and in vivo 

mainly aimed at cancer (Bartlett et al., 2008; Bartlett et al., 2007a; Hu-Lieskovan et al., 

2005). In addition, a recent safety trial in non-human primates for CALAA-01, a transferrin-
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targeted CDP-based delivery system containing siRNA for ribonucleotide reductase subunit 

M2 (RRM2), has shown that CDPs are well tolerated after i.v. administration with no 

significant immune responses after multiple dosing (Davis, 2009; Heidel et al., 2007). 

Although no Ab for PEGylated CDPs were detected after a washout period, low levels were 

detected for the Tf component of the delivery system (Davis, 2009; Heidel et al., 2007). 

Moreover, slight changes in creatinine and blood urea nitrogen were detected at higher doses 

(100-200 times higher than in mice) (Heidel et al., 2007). The success in pre-clinical studies 

has advanced this technology to Phase I safety clinical trials for solid tumor melanoma 

cancers (Davis et al., 2010). First results were recently published demonstrating dose-

dependent accumulation of the nanoparticles at the tumor site, efficient reductions in the 

levels of RRM2 mRNA and protein (Davis et al., 2010). Safety data should soon follow. 

Furthermore, application of the CDP-based technology has been reported as a new 

anticancer formulation CALAA-02, against hypoxia inducible factor-2α (Davis, 2009). 

In a similar approach, Srinivasachari et al. synthesised a CDP-based delivery system by 

coupling diazido-β-CD monomers to dialkyne-oligoethylenemine monomers with different 

numbers of ethylenemine units (Figure 1.7b) (Srinivasachari et al., 2009). Higher levels of 

pDNA transfection and lower levels of cytotoxicity than jet-PEI were achieved. This was the 

first report on the use of “click chemistry” for CDP synthesis. 

CDs have been conjugated to high Mw (25kDa) linear and branched PEI polymers 

improving the well-documented high toxicity profiles of these polymers in vitro and in vivo 

(the latter only for CD-branched PEI) (Pun et al., 2004). These formulations also explored 

the CD cavity for inclusion of adamantyl-PEG components to improve nanoparticle stability 

(Pun et al., 2004). Other studies have coupled CDs to low Mw (600 Da) PEIs and shown 

comparable gene delivery to high Mw PEI in the CNS, without causing significant toxicity 

(Tang et al., 2006). 
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Figure 1.7. Cyclodextrin-containing delivery systems. Adapted from (O’Mahony et al. 2013c). (a) 

CD-containing polymer + Ad-PEG-Tf (Davis, 2009). (b) CD-containing linear olygoethyleneamine 

polymer (Srinivasachari & Reineke, 2009). (c) CDs conjugated to PAMAM dendrimers (Arima et al., 

2009). (d) Chitosan-graft-PEI-β-CD polymer + Ad-PEG (Ping et al., 2011). (e) Olygoethyleneamine-

CD star polymer (Yang et al., 2007). (f) Olygoethyleneamine-modified CDs on a PEO-PPO co-
polymer (Li et al., 2006). Abbreviations: Ad, adamantane; CD, cyclodextrins; PAMAM, 

Polyamidoamine; PEG, Polyethylenegycol; PEI, Polyethyleneimine; PEO-PPO, polyethylene oxide-

polypropylene oxide. 

 

In addition, CDs can also be directly conjugated to PAMAM dendrimers (Figure 1.7c). 

Modifications with α- β- or γ-CD improved gene delivery efficiencies of lower generation 

G2 and G3 PAMAM dendrimers (Arima et al., 2001; Arima & Motoyama, 2009). 

Attachment of targeting ligands enhanced gene delivery to cultured hepatocytes in vitro and 
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in vivo after tail injection (Arima et al., 2010). Further modification of the delivery system 

with PEG chains and folate allowed gene delivery to cancer cells (Arima et al., 2012). In 

addition, successful delivery of shRNA and siRNA have also been achieved in hepatocytes 

in vitro and in vivo, with superior gene silencing effects and toxicological profiles compared 

to PEI and Lf2000 (Arima et al., 2011; Tsutsumi et al., 2007, 2008). 

Other CDP strategies used in gene and RNAi delivery include: (i) the attachment of CDs to 

chitosan polymers through PEI linkers and inclusion formation with adamantyl-PEG 

derivatives (Figure 1.7d) (Ping et al., 2011); (ii) cationic “star” polymers based on 

oligoethyleneamine chains grafted onto a α-CD core (Figure 1.7e) (Srinivasachari et al., 

2008; Yang et al., 2007); (iii) oligoethylenimine-conjugated CDs threaded onto a 

polyrotaxane polymer chain (co-polymers of poly(propylene oxide) (PPO) and poly(ethylene 

oxide) (PEO)) (Li et al., 2006; Yang et al., 2009) (Figure 1.7f). In general, these approaches 

have also yielded vectors which achieved successful binding to nucleic acids, high levels of 

transgene expression and lower levels of cytotoxicity than high Mw PEI. 

1.14.2 Functionalised cyclodextrin delivery systems 

CDs can be directly functionalised by modification of the hydroxyl groups in the primary 

and secondary face (Sallas & Darcy, 2008). Selected examples of functionalised CD 

delivery systems are represented on Figure 1.8. O’Driscoll’s and Cryan’s groups have been 

pioneers in this area with the development of various modified β-CDs for gene and RNAi 

delivery. In early stage studies, alkylimidazole, pyridylamino, methoxyethylamino groups 

were conjugated to the C-6 hydroxyl group of each glucopyranose unit yielding a series of 

cationic CDs (Figure 1.8a) (Cryan et al., 2004b). Electrostatic interactions between the 

cationic moieties of the modified β-CD and the negatively charged backbone of the nucleic 

acid allowed for self-assembly of the nanosystem. Gene delivery to COS-7 cells, a monkey 

fibroblast-like cell line derived kidney tissue, revealed that CDs modified with pyridylamino 

groups achieved similar transfection efficiencies to DOTAP, a lipid-based transfection 
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reagent (Cryan et al., 2004a). In subsequent studies, CDs were functionalized by attachment 

of short C6 and long C16 lipophilic chains to the primary face and oligoethyleneglycol 

chains on the secondary face to form neutral derivatives (Cryan et al., 2004a; Donohue et al., 

2002). Further coupling of primary amino groups resulted in cationic amphiphilic CDs 

(Figure 1.8b). In these studies, while delivering luciferase pDNA to COS-7 cells, cationic 

amphiphilic CDs performed significantly better than neutral compounds (Cryan et al., 

2004a). Moreover, studies in HepG2 cells, human liver carcinoma cell line, revealed that 

CDs modified with long (C16) hydrophobic lipid chains achieve better transfection 

efficiencies than those containing shorter (C6) lipid chains (McMahon et al., 2008). Lipid 

chains are believed to aid interaction with cellular membranes, thereby enhancing uptake of 

CD-siRNA complexes. In addition, reversing the arrangement of the cationic and lipid 

moieties in this CD delivery system did not affect transfection efficiency in undifferentiated 

and differentiated Caco-2 cells (human epithelial colorectal adenocarcinoma cells) with 

macropinocytosis identified as the major route of internalization (Figure 1.8c) (O'Neill et al., 

2011). On the other hand, differences between these systems where observed while 

delivering siRNA to mHypo N41 cells, mouse hypothamalic cell line, probably due to 

changes in assembly properties (O'Mahony et al., 2012a). 
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Figure 1.8. Functionalised cyclodextrin delivery systems. Adapted from (O’Mahony et al. 2013c). 
(a) Polycationic CDs. (b) Polycationic amphiphilic CDs (Cryan et al., 2004b). (c) Reverse 

polycationic amphiphilic CDs (O'Neill et al., 2011). (d) Polycationic amphiphilic CDs containing 

“click” linkers (O'Mahony et al., 2012d). (e) Polycationic anisamide-targeted PEGylated CD 

containing “click” linkers (Guo et al., 2012b). (f) Galactosyl-targeted amphiphilic CD (McMahon et 

al., 2012). (g) Mannosyl-targeted polycationic amphiphilic CD (Díaz-Moscoso et al., 2011). 

Abbreviations: CD, Cyclodextrin; PEG, Polyethyleneglycol. 

 

The application of “click” chemical reactions (copper catalyzed reaction between alkyne and 

azide groups (Binder et al., 2007)) in the synthesis of modified CD scaffolds has recently 

enabled the rapid synthesis of amphiphilic CD derivatives with high yields. Cationic 

amphiphilic click-modified CDs facilitated siRNA delivery to mHypo N41 cells and primary 

hipocamppal neuronal cultures with comparable efficiencies to Lf2000 (Figure 1.8d) 

(O'Mahony et al., 2012b). In these studies exogenous luciferase and endogenous 

glyceraldehyde phosphate dehydrogenase (GAPDH) gene expression were successfully 

silenced (~40-70%) (O'Mahony et al., 2012b). The same delivery system was also used for 

eliciting TNF-α gene expression knockdown in RAW264.7 cells, a murine macrophage-like 

cell line, and in a murine model of acute colitis (McCarthy et al., 2013). Significant  
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cytokine gene expression knockdown and partial amelioration of the clinical signs of colitis 

were achieved (McCarthy et al., 2013). A PEGylated click-modified CD delivery system 

containing an anisamide targeting ligand enabled specific delivery of vascular endothelial 

growth factor (VEGF) to prostate cancer cells in vitro and in vivo, via the sigma receptor 

(Figure 1.8e) (Guo et al., 2012b). Functionalization of cationic amphiphilic CD.siRNA 

complexes with cell penetrating peptides has also been achieved by “post-insertion” of a 

DSPE-PEG-octaarginine (O'Mahony et al., 2013a). Octaarginine-containing formulations 

improved luciferase and GAPDH gene expression knockdown in mHypo N41 cells. In 

addition, PEGylated-octaarginine formulations presented improved stability in high salt 

buffers and enhanced pharmacokinetic profiles when compared to non-PEGylated 

nanoparticles and naked siRNAs, respectively (O'Mahony et al., 2013a).  

Studies with “co-formulated” CDs, where amphiphilic CD-derivatives are blended together, 

have also been carried out. Galactosylated amphiphilic CDs (Figure 1.8f) were co-

formulated with cationic amphiphilic CDs and enhanced gene delivery to HepG2 cells, 

especially when formulated in the presence of DOPE fusogenic lipid (McMahon et al., 

2012). In different studies, cationic click-modified amphiphilic CD and a PEGylated click-

modified CD were formulated together (O'Mahony et al., 2013d; O'Mahony et al., 2012c). In 

these studies, the cationic CD enabled complexation of siRNA whereas PEGylated CD 

improved stabilisation of the nanoparticle in high salt buffers. Although the gene silencing 

effects, in both Caco-2 cells and mHypo N41 cells, were blocked after PEGylation, the 

group is now focusing on the addition of targeting ligands to allow specific-targeted delivery 

(O'Mahony et al., 2013d; O'Mahony et al., 2012c).  

The research group of García-Fernandez and collaborators have also reported extensive 

work in direct functionalization of CDs, mainly for gene delivery. Their initial studies were 

based on CDs, modified with primary amino groups at the primary face and short (C6) lipids 

at the secondary face (Díaz-Moscoso et al., 2008). High expression of a luciferase plasmid in 

BNL-CL2 murine embryonic cells with very low toxicity profile was reported (Díaz-
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Moscoso et al., 2008). Reversing such modifications abolished transfection unless long 

(C12) lipid chains were used, further advocating the importance of  hydrophobic-hydrophilic 

balance (Ortega-Caballero et al., 2008). However, when long hydrocarbon lipid chain was 

grafted to the secondary face it was shown to reduce binding capability to pDNA (Díaz-

Moscoso et al., 2009). Recently, mannosyl and galactosyl amphiphilic CDs enabled targeted 

delivery of pDNA to a RAW264.7 cells and HepG2 cells, respectively (Figure 1.8g) (Díaz-

Moscoso et al., 2011; Symens et al., 2012). In most of the above mentioned studies 

functionalised CDs presented comparable (or higher) levels of transfection to PEI with 

improved toxicity profiles. 

1.15 Cyclodextrins as siRNA non-viral vectors for Huntington’s Disease 

CDs are highly versatile pharmaceutical molecules which have recently demonstrated great 

potential as non-viral vectors for gene and RNAi delivery (O'Mahony et al., 2013c). Indeed, 

from the formulation point of view CDs present multiple sites for modification and further 

functionalization can be accomplished through inclusion formation in the CD hydrophobic 

cavity (Sallas & Darcy, 2008). From the biological point of view, modified CDs have 

achieved high levels of transfection in multiple cell lines and also presented encouraging 

results in animal models (Chaturvedi et al., 2011; O'Mahony et al., 2013c). Additionally, no 

major cytotoxic or immunological effects have been reported in gene or RNAi delivery 

studies so far (Chaturvedi et al., 2011; O'Mahony et al., 2013c). 

Our group has recently reported advances on the application of modified CDs for siRNA 

delivery to neurons. Indeed, CDs have enabled gene silencing effects in neuronal cell lines 

and primary hippocampal cultures (O'Mahony et al., 2012b). However, there is limited 

information on the applicability of such delivery systems for the treatment of 

neurodegenerative diseases, such as HD. Thus, this thesis focuses on the investigation of 

modified CDs as non-viral vectors for siRNA delivery for the treatment of HD. 
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1.16 Aims of Thesis 

The main overarching goal of this thesis is to investigate the application of modified 

amphiphilic CDs as potential non-viral vectors for siRNA delivery in HD. 

1.17 Specific Aims 

To achieve this goal, three specific aims were defined: 

Aim 1. Can modified amphiphilic CDs deliver siRNAs to relevant in vitro and in vivo 

models of HD?  

To this end we first describe and validate a murine pre-clinical model of HD for testing of 

CD.siRNA nanoparticles (Chapter 2). We subsequently assessed the efficiency and toxicity 

of CD.siRNA nanoparticles in a rat striatal cell line and in human HD fibroblasts (Chapter 

3). Further assessments of efficiency were carried by direct injections into the R6/2 mice 

brain and subsequent evaluations of motor improvements (Chapter 3).  

Aim 2. Can modified amphiphilic CDs deliver siRNAs to the CNS without causing marked 

toxicity and/or local neuroinflammatory responses? 

To address this question we conducted a comprehensive comparison of the 

nanotoxicological implications of CD-based siRNA delivery in a range of brain-derived cell 

lines using multiple methods for cytotoxicity assessment (Chapter 4). Furthermore, 

neuroinflammatory responses were assessed in vitro, in a microglia cell line, and in vivo 

after direct injections into the mouse brain. In all experiments a comparison with other 

commonly used commercial vectors was established (Chapter 4).  

Aim 3. Can CD formulations be further optimised to enhance key proprieties such as 

stability? 

To this end we investigated post-PEGylation as a formulation alternative to improve stability 

of pre-formed CD.siRNA nanoparticles, elucidating the influence of PEG length and density 

on nanoparticles stability (Chapter 5).   
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2.1  Abstract 

Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused 

by the expression of a toxic Huntingtin (HTT) protein. The disease is characterised by 

dysfunction and death of neurons in the brain, mainly in the striatum. Symptoms include 

chorea, dyskinesia, rigidity, cognitive deficits and neuropsychiatric manifestations. Several 

animal models have been developed to further understand the pathophysiology of the disease 

and also as platforms for preclinical testing of novel therapies. Indeed, several genetic rodent 

models have been engineered to express a form of the human muHTT gene and these have 

proven to be very important tools for the field. The R6/2 mouse model is perhaps the most 

utilised transgenic model of HD and has been shown to display many of the 

neuropathological aspects of HD including aggregate formation. Additionally, the R6/2 

model presents a robust phenotype with progressive motor deficits, cognitive impairment 

and fast disease progression. However, and despite the robust phenotype, variability in 

behavioural outcomes has been previously reported and attributed to different laboratory and 

testing conditions. The goal of the present study was to establish a colony of transgenic mice 

hemizygous for the human HTT transgene (R6/2 mice) and characterise them behaviourally 

to allow for intervention studies. To this end, we show that R6/2 mice display motor 

coordination deficits in the rotarod task, grip strength impairment, reduced locomotor 

activity and enhanced clasping behaviour in a time dependent process. These results validate 

the model for use in the preclinical assessment of novel cyclodextrin short interfering 

ribonucleic acid nanoparticle-based therapeutic approach for HD. 
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2.2 Introduction 

Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused 

by the expression of an aberrant toxic Huntingtin (HTT) protein, which contains an 

expanded polyglutamine tract (polyQ) (Ross & Tabrizi, 2011; Zuccato et al., 2010). 

Significant neuronal cell death occurs mainly in the striatum but also in the cortex, leading 

to the manifestation of a wide range of symptoms including: chorea, stereotypic movements, 

cognitive impairment and depression (Zuccato et al., 2010). Although no cure or 

preventative treatments are available as yet, great advancements have been made in the 

understanding of HD neuropathology with the aid of animal models (Ross & Tabrizi, 2011). 

Research in HD has been largely based on model systems of HD, in particular animal 

models (Ross & Tabrizi, 2011). Although initial studies were conducted in toxin-based 

models, since the identification of the mutant HTT (muHTT) as cause of HD, genetic 

models have grown in popularity (Ramaswamy et al., 2007). These models have been 

engineered in several species spanning from non-mammalian systems to non-human 

primates, however, transgenic and knock-in rodent models are by far the most widely used 

in the pre-clinical setting (Crook & Housman, 2011; Morton & Howland, 2013). 

Bates and co-workers generated the first transgenic mouse models of HD, the R6/1 and R6/2 

lines (Mangiarini et al., 1996). The R6/2 line, in particular, express a truncated form of the 

human muHTT gene containing exon 1 and ~144 CAG repeats, under the control of the 

human promoter (Mangiarini et al., 1996). This mouse model has been shown to display 

characteristic signs of HD neuropathology, such as HTT inclusion formation, gene 

transcriptional dysregulation and general brain atrophy (Luthi-Carter et al., 2002; Schilling 

et al., 1999; Stack et al., 2005). In addition, transgenic mice hemizygous for the human HTT 

transgene (R6/2 mice) mimic most of the symptoms of HD, including choreiform-like 

movements, motor deficits, clasping behaviour and cognitive impairment (Carter et al., 

1999; Lione et al., 1999). Furthermore, progression of HD-like pathology and respective 
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symptoms occurs rapidly and mice present decreased survival rates   compared to wild-type 

(WT) littermates. In fact, the R6/2 mouse model is the most widely used mouse model for 

pre-clinical screening of novel therapies, at least in part due to its early onset of behavioural 

deficits and the its ease of maintenance (Gil et al., 2009; Li et al., 2005).  

Despite their advantages over toxin-based models, the use of rodent genetic models has been 

plagued by the variability in results across laboratories, in terms of both their 

neuropathological and behavioural phenotypes. Despite its robust behavioural phenotype, 

inconsistent results have also been reported for the R6/2 mouse model (Hockly et al., 

2003b). Indeed, factors such as genetic instability of the CAG tract and environmental 

factors have been shown to contribute to the variability in neuropathology and behavioural 

deficits in this model (Carter et al., 2000; Dragatsis et al., 2009; Hockly et al., 2003b). 

Additionally, it is worth noting that inter-laboratory variability regarding behavioural 

outcomes has been also documented for other mouse strains and found to be dependent on 

the specific behavioural test being carried out, housing conditions, experimenter and mouse 

genetic background (Butcher et al., 1979; Crabbe et al., 1999; Lewejohann et al., 2006). 

Thus it is important to undertake behavioural validation of any mouse model prior to 

therapeutic intervention studies.  

Thus, the aim of the present chapter is to establish de novo the R6/2 model in a new 

laboratory setting, the Biological Science Unit Annex at University College Cork. To this 

end, we conducted phenotypic and behavioural assessment of this mouse model, cross 

validating and comparing results with previous studies. 
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2.3 Materials and methods 

2.3.1 R6/2 mouse breeding, housing and animal care 

R6/2 colony was maintained by cross breeding B6CBAF1 ovarian transplanted (OT) females 

(HD exon 1, 62Gpb/3J) and B6CBAF1 males (Stock # 006494, The Jackson Laboratories, 

Bar Harbor, ME). Figure 2.1 depicts the breeding scheme and the pattern of inheritance of 

the human muHTT transgene. Two cohorts of breeders were purchased (Cohort A, with 6 

breeding pairs; Cohort B, with 16 breeding pairs) and kept as individualized pairs. 

B6CBAF1 mice were noted to be poor breeders (~6 pups per litter), and a total number of 6-

8 litters per female were allowed before retiring breeders. See Supplementary Information 

(SI) Supplementary Table S2.1 for further detail on husbandry, breeding and colony 

development. 

Pups were weaned at 3 weeks of age and group-housed in groups of 4-5 mice of mixed 

genotype. Cages contained minimally enriched living conditions with regular sawdust 

bedding, paper shred, and a cardboard play tunnel. Dry food pellets in a food hoper and 

water were available ad libitum and cages regularly changed on a weekly basis. Soft diet 

(mashed chow mixed with water) was provided on a small petri dish at the bottom of the 

cage at late stages of disease (~8 weeks of age onwards). Mice were maintained on a 12/12 

hour light-dark cycle with temperature (22 ± 1 ºC) and humidity (~55 %) controlled 

conditions. Animals were closely monitored and euthanized under ethical grounds if in pain 

and/or severe distress. 

All animal experimental procedures were approved by the ethical committee at the 

University College Cork and performed in accordance with the European Union Directive 

2010/63/EU for animals used for scientific purposes. 
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Figure 2.1. Breeding scheme and pattern of inheritance. R6/2 mouse colony was maintained by 

crossing OT B6CBAF1 females with B6CBAF1males. Breeders were kept together until retired. Pups 

were weaned at 3 weeks of age and group-housed in mixed genotype cages. Male and female pups 

were housed separately. Abbreviations: R6/2 mice, transgenic mice hemizygous for the human HTT 

transgene; WT, wild-type mice. 

2.3.2 Genotyping 

2.3.2.1 DNA collection and extraction 

At the time of weaning (3 weeks of age), tissue samples were collected from tails (2-3 mm) 

and placed in nuclease-free tubes. Deoxyribonucleic acid (DNA) extraction was carried out 

by adding 200 µL of non-ionic detergent (NID)-buffer [(50 mM KCl; 10 mM Tris-HCl, pH 

8.3; 2 mM MgCl2; 0.1 mg/ml gelatin; 0.45 % NP40; 0.45 % Tween-20)] and 3 µL of 

Proteinase K, and incubating samples overnight at 56 °C. Samples were further incubated for 

10 minutes at 95 °C and centrifuged at 14000 rotations per minute (rpm) for 5 minutes to 

pellet debris. Supernatant was transferred into a new nuclease-free tube and stored at -20 °C 

until polymerase chain reaction (PCR) was performed. 
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2.3.2.2 PCR 

PCR assays for genes containing long trinucleotide repeat regions, such as the N-terminal 

HTT transgene in the R6/2 mouse, are particularly challenging. Indeed, the extremely high 

guanine and cytosine content and the presence of secondary structures are believed to 

hamper amplification within the CAG region (Wallace, 1996). The initial genotyping 

protocol described by Mangiarini et al. and other similar protocols using primer sequences 

spanning the CAG repeat region (Mangiarini et al., 1996), were found to be very sensitive to 

assay conditions when performed in our lab. Thus, an alternative region prior to the CAG 

expansion was selected as target region for amplification. 

Genotyping PCR was carried out on genomic DNA samples (collected at 3 weeks of age) 

using previously published forward (CGCAGGCTAGGGCTGTCAATCATGCT) and 

reverse (TCATCAGCTTTTCCAGGGTCGCCAT) primers specific for the human HTT 

gene (Hockly et al., 2003b). Each 20 µL PCR reaction contained: 0.4 µL of 10 mM Deoxy 

nucleotides (dNTPs) (Sigma-Aldrich, United Kingdom); 0.4 µL of 20 µM forward primer; 

0.4 µL of 20 µM reverse primer; 0.6 µL of MgCl2; 1 µL dimethyl sulfoxide (DMSO); 1 µL 

of β-mercaptoethanol 1 mM (Fluka, Germany); 2 µL of Immolase buffer (Bioline, United 

Kingdom); 0.25 µL of Immolase Taq Polymerase (Bioline, United Kingdom); 1 µL of the 

specific tail DNA sample; and completed to the volume with nuclease-free water. Cycling 

conditions used were: 95°C for 10 minutes; 35 cycles [95 °C for 30 seconds; 60 °C for 30 

seconds; 72 °C for 1 m 30 seconds]; 72 °C for 10 minutes; and 4 °C indefinitely. The 

presence of the 272 base pairs (bp) amplicon was confirmed by running all amplified DNA 

samples in a 2% agarose gel. A representative gel is depicted on SI, Supplementary Figure 

S2.1. 
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2.3.3 Phenotypical characterisation of the R6/2 model 

The study design for phenotypical and behavioural validation of the R6/2 model is 

represented in table 2.1. 

Table 2.1. Study design for phenotypical and behavioural validation of the R6/2 mouse model. 

Activity 
Weeks 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Weaning X                               

Genotyping X                               

Weight X X X X X X X X X X X X X X X X 

B
e
h

a
v
io

u
r
a
l 

te
st

in
g
 

Clasping   X   X   X   X   X             

Rotarod   X X X X X X X X X X X         

Grip 

Strength 
            X X X X X X X X X X 

Loc. Activ.                               X 

 

2.3.3.1 Body weight and survival 

Body weight was assessed on a weekly basis to the nearest 0.1 g. Mice were monitored and 

examined daily to determine their health state. Animals that were found moribund meeting 

criteria for euthanasia under ethical guidelines were removed from the study.  

2.3.3.2 Rotarod 

Balance and motor coordination were assessed using a rotarod apparatus (Harvard 

Apparatus) in a similar protocol to that described by Menalled et al. and Hockly et al. 

(Hockly et al., 2003b; Menalled et al., 2009). In order to familiarize animals with the 

procedure, rotarod task was introduced to animals by a 5-minute trial at a constant speed of 4 

rpm. Thereafter animals were tested using an accelerating protocol with a linear increase of 

velocity from 4 to 40 rpm in 300 seconds. Tests were conducted weekly in 3 consecutive 

days and animals were given 3 trials per day. An interval of at least 10 minutes was given 

between trials. Locomotor performance was measured as “latency to fall” in seconds, with a 

cut off of 300 seconds. 
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2.3.3.3 Grip Strength 

Muscle strength was assessed using a grip strength meter (Ugo Basile, Italy) in a similar 

protocol to that described by Menalled et al. (Menalled et al., 2009). Mice were held by the 

tail and brought close to the grip strength apparatus. Mice were allowed to grasp the grid 

with the front paws and were gently pulled back until they released their grip. The apparatus 

registered the peak strength for that trial. Each animal had five trials with at least 15-30 

seconds rest between trials. The 5 trial test did not exceed 5 minutes. 

2.3.3.4 Spontaneous locomotor activity 

Spontaneous locomotor activity in the open field task was assessed at 18 weeks of age using 

a similar protocol to that previously described by Menalled et al. (Menalled et al., 2009). 

After 15-20 minutes habituation to the testing room, animals were placed individually in the 

middle of a 40 x 32 cm arena containing usual bedding. Locomotor activity was then 

recorded for 15 minutes using a JVC Everio GZ-MG21EK camera. Total distance travelled 

by each animal was tracked using Ethovision 3.0 software. 

2.3.3.5 Paw clasping behaviour 

Clasping phenotype was assessed by suspending mice by their tails for 60 seconds. Animals 

exhibiting feet-clasping (front or hind paws) were scored positive. Similar protocols have 

been used by Hickey et al. and Rodriguez-Lebron et al. (Hickey et al., 2005; Rodriguez-

Lebron et al., 2005b). 

2.3.4 Statistical analysis 

All results are expressed as mean ± standard error of mean (SEM) unless otherwise stated. 

Three-way repeated measures Analysis of Variance (ANOVA) was carried out to investigate 

the overall effect of genotype, gender and age on rotarod, grip strength and body weight 

profile data. Significant genotype x age interactions were further investigated using One-

way ANOVA followed by Bonferroni’s Post Hoc test to determine from which age 
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transgenic and WT differ. One-way ANOVA followed by Bonferroni’s Post Hoc test was 

also used to investigate significant statistical differences in spontaneous locomotor activity. 

Kaplan-Meier analysis and Mantel-Cox log-rank statistic were used to analyze survival data. 

All inferential statistics were carried out using PAWS 18 Statistical package. 
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2.4 Results 

The validation of the phenotype and behavioural deficits of the R6/2 mouse model was 

carried out according to the study design represented in Table 2.1. Animals were observed 

closely on a daily basis for development and progression of the phenotype, and a battery of 

behavioural tests was carried out to quantify and allow comparisons with previous studies. 

2.4.1 General appearance, body weight and survival 

At birth, R6/2 mice were indistinguishable from their WT littermates in terms of size and 

homecage behaviour. However, with progression of disease, R6/2 mice displayed 

piloerection, jerky and choreiform-like movements, tremor, and epileptic seizures. Also, in 

several instances premature death occurred after seizures, which were commonly triggered 

by handling and unexpected noises. Furthermore, R6/2 mice also exhibited unusual 

vocalizations and clicking sounds when at rest. In addition, considerable differences in 

animals’ size when compared to WT littermates were observed for both R6/2 males and 

females at late stages of disease. As an example, Figure 2.2 shows a R6/2 female and 

respective WT littermate at ~16 weeks of age. 

 
Figure 2.2. General appearance of R6/2 and WT mice. Picture denotes a R6/2 and a WT female with 

~16 weeks of age. At this late stage of disease progression there are considerable size differences 

between R6/2 mice and WT mice. It is also clear from the picture that R6/2 mice display piloerection 

whereas WT do not. Abbreviations: R6/2 mice, transgenic mice hemizygous for the human HTT 

transgene; WT, Wild-type. 
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In concordance with the above mentioned observations regarding the size of animals, body 

weight profile was significantly influenced by the genotype (F(1, 31) = 38,78, P<0.0001), 

but also affected by gender (F(1,31) = 106.36, P<0.0001) (Figure 2.3). Indeed, body weight 

profile of R6/2 mice plateau and animals fail to gain weight from ~7-8 weeks in the case of 

females and from ~10 weeks in the case of males, whereas WT littermates gain weight 

throughout the study. Furthermore, when compared to WT counterparts, differences in body 

weight profile became significant from 10 weeks of age for R6/2 males (P<0.01) and from 

13 weeks of age for R6/2 females (P<0.001). The effect of gender was apparent in both R6/2 

and WT mice, with males consistently weighing more than females. 

 

Figure 2.3. Weight profiles as function of genotype, gender and age. Results are expressed mean ± 

SEM. As disease progresses R6/2 mice fail to gain weight. n = 7-10/group. Abbreviations: R6/2 mice, 

transgenic mice hemizygous for the human HTT transgene; WT, Wild-type. 

 

In addition, R6/2 mice presented significantly shorter life span than WT counter parts, with a 

median survival of 154 days (Mantel-Cox: P<0.0001) (Figure 2.4). No significant 

differences were found between median survivals of R6/2 males (156 days) and R6/2 

females (152 days) (Mantel-Cox: P=0.7962), and the last animal survived for 168 days. 
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Figure 2.4. Kaplan-Meier survival curves as a function of genotype, gender and age. Both R6/2 

males and females presented shorter life spans than their WT counter parts. By the end of the study 

the percentage alive for both WT males and females was of 100%. Abbreviations: R6/2 mice, 

transgenic mice hemizygous for the human HTT transgene; WT, Wild-type. 

 

2.4.2 Behavioural characterisation 

Significant motor impairments were observed for R6/2 mice in the rotarod task as they aged, 

with shorter latencies to fall compared to their WT littermates (F(1,33) = 343.64, P<0.0001) 

(Figure 2.5). Although no significant overall differences were observed among females and 

males (F(1,33) = 3.22, P = 0.082), significant differences were seen in R6/2 mice compared 

to WT counterparts from 4 weeks of age (P<0.01)  and from 5 weeks of age in the females 

(P<0.001). At late stages of disease, R6/2 mice were no longer able to hold on to the rod. 
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Figure 2.5. Motor coordination and balance in the rotarod task as a function of genotype, gender 

and age. Mice were placed on top of a rotating rod and their latency to fall was recorded. Average of 

the best performances achieved in 3 consecutive days was recorded. All results are expressed in mean 

± SEM, n =8-10/group. Abbreviations: R6/2 mice, transgenic mice hemizygous for the human HTT 

transgene; WT, Wild-type.  

 

Furthermore, R6/2 mice displayed progressive deterioration of muscle strength (F(1, 26) = 

328.66, P<0.0001) (Figure 2.6). Although no overall significant differences in grip strength 

were found between genders (F(1,26) = 0.085), differences compared to WT counter parts 

became evident for R6/2 males at 10 weeks of age (P<0.01) and by 11 weeks of age for R6/2 

females (P<0.001). At late stages of disease, R6/2 mice were not motivated to perform the 

grip strength task and did not hold the grid with their front paws, thus testing was stopped 

after 18 weeks of age.  
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Figure 2.6. Muscle strength in the grip strength task as a function of genotype, gender and age. 
Mice were allowed to grasp a grid with their fore limbs and gently pulled back until release of their 

grip. Average of 5 trials was recorded for each animal. All results are expressed in mean ± SEM, n 

=7-10/group. Abbreviations: R6/2 mice, transgenic mice hemizygous for the human HTT transgene; 

WT, Wild-type.  

 

As seen in Figure 2.7a, at 18 weeks of age both R6/2 males and females were found to be 

hypoactive when compared to their WT counterparts, presenting significantly reduced 

spontaneous locomotor activity in the open field task (P<0.001) (Figure 2.7a,b). Indeed, at 

this late stage of disease, hypoactivity in R6/2 mice was also clearly evident through mere 

observation of their homecage behaviour. In addition, for both R6/2 and WT mice, no 

significant differences in distance travelled were found between males and females.  
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Figure 2.7. Spontaneous locomotor activity in the open field task as a function of genotype and 
gender. Mice were placed in the centre of an arena and allowed to move freely for 15 minutes. (a) 

Movement of R6/2 and WT females and males in the open field was tracked with Ethovision software. 

(b) Total distance moved as function of genotype and gender represented as mean ± 

SEM.***P<0.001, n=8-10/group. Abbreviations: R6/2 mice, transgenic mice hemizygous for the 

human HTT transgene; WT, Wild-type. 

 

For the time course of the study, characteristic feet-clasping behaviour was observed from 4 

weeks of age in R6/2 mice but not in WT mice. Figure 2.8a depicts the classical feet-

clasping posture adopted by R6/2 mice and the “normal” position adopted by WT mice. 

Although, initially R6/2 females seemed to be affected to a greater extent (~36%) than R6/2 

males (~9%), by 12 weeks of age week nearly ~100% of R6/2 mice presented feet-clasping 

behaviour (Figure 2.8b). 
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Figure 2.8. Clasping behaviour as a function of genotype, gender and age. Mice were held by their 

tails and scored positive if presenting clasping behaviour. (a) Characteristic clasping posture 

adopted by R6/2 mouse and “normal” posture by WT mouse when suspended by their tails. (b) 

Percentage of animals with clasping behaviour as a function of genotype, gender and age. n=9-

11/group. Abbreviations: R6/2 mice, transgenic mice hemizygous for the human HTT transgene; WT, 

Wild-type. 
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2.5 Discussion 

In this study we have successfully validated the R6/2 mouse model in our laboratory, 

establishing the basis for testing the therapeutic potential of modified cyclodextrins as non-

viral vectors for ribonucleic acid (RNA) interference treatment strategies for HD. R6/2 mice 

displayed early and progressive HD-like symptoms which did not arise in WT animals. 

These data are in agreement with previous findings by Mangiarini et al. As disease 

progressed, our R6/2 colony displayed piloerection, irregular gait, resting tremors, seizures 

and involuntary shuddering noises (Mangiarini et al., 1996). At the late stages of disease, 

R6/2 mice were considerably less active in their home-cage and consistently smaller than 

WT littermates. Additionally, as the disease progressed R6/2 mice fail to gain weight with 

significant differences in weight compared to their respective WT littermates from about ~ 

10 weeks for R6/2 males and ~ 13 weeks for females. Similar results have  been reported by 

others (Carter et al., 1999; Hickey et al., 2005; Hockly et al., 2003b), however, earlier drops 

in the body weight of R6/2 mice have also been observed (Menalled et al., 2009; Stack et al., 

2005). In the latter studies, abrupt weight loss was most likely caused by the inability of 

R6/2 mice to reach for food and water in standard laboratory cages at later stages of disease. 

In the present study animals were provided with soft diet at the bottom of the cage, 

consisting of mashed chow mixed with water (enhanced diet), which may have delayed 

weight loss at late stages of disease. Other studies focusing on the effect of feeding regimes 

have also found that enhanced diets improved weight profiles and also survival of R6/2 mice 

when compared to animals fed with standard diets (Carter et al., 2000). The present R6/2 

colony displayed longer survivals (median survival of 158 days) than has been commonly 

reported before (~92-113 days) (Menalled et al., 2009; Stack et al., 2005). Enhanced diet, 

but also other factors such as minimal environmental enrichment, animal handling and 

behavioural testing have been demonstrated to improve weight loss, longevity and motor 

deficits in the R6 transgenic lines (Carter et al., 2000; Hockly et al., 2002; Spires et al., 

2004; Wood et al., 2010), and might have played an important role in the current study. 
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Thus, in order to enable a fair comparison among studies carried out in R6/2 mice, there is 

an urgent call for standardisation of housing conditions, feeding regimens, handling and 

behavioural testing routines (Hockly et al., 2003b). Indeed such standardisation has also 

been called for in all aspects of behavioural neuroscience (Van der Staay et al., 2002). 

However, it is also worth noting that excessive standardisation has been shown to reduce 

reproducibility of studies between laboratories by increasing test sensitivity within a specific 

laboratory setting  (Richter et al., 2010; Richter et al., 2009). All of this points to the need 

for behavioural validation of relevant mouse models prior to preclinical testing of novel 

therapeutics. 

Behavioural data in this study confirmed an early onset of motor symptoms in R6/2 mice. 

Indeed, motor coordination and balance in the rotarod task was found to be impaired as early 

as 4 weeks of age in the rotarod task. Although some studies have also reported similar early 

rotarod deficits (Menalled et al., 2009), others only reported significant differences from WT 

littermates from 5 weeks of age (Carter et al., 1999; Stack et al., 2005). We reason that 

differences in testing protocols (constant vs. accelerating protocols) and rotarod equipments 

are, most likely, the cause of such dissimilarities between studies. On the other hand, grip 

strength data showed that disease progression affects R6/2 mice grip by ~10-11 weeks of 

age, which is in agreement with previous behavioural studies (Menalled et al., 2009). It is 

also worth noting that the deterioration of grip strength follows on from progressive muscle 

atrophy, which has been reported to start by 6 weeks of age (Sathasivam et al., 1999). 

Furthermore, at 4 weeks of age R6/2 mice already present dyskinetic clasping behaviour 

which progresses rapidly, and by 10 weeks of age almost all animals clasp after being 

suspended by their tails. Similar results have been reported in other studies (Hansson et al., 

2003; Stack et al., 2005). Finally, spontaneous locomotor activity at 18 weeks of age was 

found to be reduced in R6/2 mice compared to their wild type littermates. Although R6/2 

mice have been found by others to be hyperactive at early stages of their life (Lüesse et al., 

2001), from ~ 8 weeks of age these mice tend to be hypoactive in the open field task 
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(Menalled et al., 2009). Importantly, no overall significant differences were found between 

R6/2 males and females in the behavioural tests undertaken here. It is worth noting that WT 

and R6/2 males consistently weighed more than females of their respective genotype as 

reported by others (Hockly et al., 2003b; Stack et al., 2005). 

Although R6/2 mice also display other symptoms characteristic of human HD, such as 

increased cognitive impairment (Lione et al., 1999; Murphy et al., 2000), co-founding 

factors including reduction of visual acuity and the onset of motor symptoms 

confound/hinder the clear assessment of cognitive function in the R6/2 mouse model 

(Murphy et al., 2000; Murphy et al., 1998). Similarly, assessment of anxiety and depressive-

like behaviours in R6/2 mice are believed to be in part affected by their generalised 

hypoactivity at later stages of disease (Hickey et al., 2005). Thus, most preclinical studies in 

the R6/2 model which aim to evaluate the therapeutic potential of novel approaches for HD 

have majorly concentrated on the assessment of motor improvements (Gil & Rego, 2009; Li 

et al., 2005). Furthermore, behavioural tests such as rotarod, grip strength and spontaneous 

activity in the open field provide reliable quantitative measures of disease progression and 

are, therefore, less likely to be biased by the experimenter. To this end, the R6/2 colony 

established here has been successfully validated in the above mentioned behavioural tests, 

presenting a similar progressive dysfunctional motor behaviour to that previously described. 
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2.6 Conclusion 

Animal models of HD have revolutionized the field, giving new insights into the 

pathophysiology of HD and also providing a platform for testing novel therapies. Although 

none of the current animal models of HD fully reproduce the complexity of human HD 

neuropathology, the R6/2 mouse model offers a robust representation of the poor motor 

coordination and muscle wasting seen in human disease. The early onset of motor symptoms 

in this model enables rapid testing, with the possibility of obtaining results within 3 months, 

reducing costs and accelerating preclinical studies of new therapies. Thus, the R6/2 model, 

which we have validated here, seems to be a suitable model for initial studies of potential 

new disease-modifying therapies, such as cyclodextrin-based short interfering RNA (siRNA) 

nanoparticles for muHTT gene silencing. However, in spite of its unequivocal economical 

convenience, the aggressive progression of the disease phenotype in this model may pose 

other challenges, for instance in terms of the timeframe & logistics of experiments including 

surgical intervention, if required. Furthermore, it is worth nothing that, prior to human trials, 

positive results obtained in R6/2 mice will likely need further confirmation in other animal 

HD models which show different temporal and functional correlates of the disease (see 

Chapter I, Table 1.1). In conclusion we have shown that the R6/2 model produces 

behavioural deficits relevant to HD and is thus a suitable platform for initial therapeutic 

intervention studies.   

2.7 Supplementary Information 

The SI section in this chapter includes further details concerning R6/2 mouse husbandry, 

breeding and development (Supplementary Table S2.1), and also additional data regarding 

the PCR-based method for genotyping R6/2 mice.  
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2.7.1 R6/2 mouse husbandry, breeding and development 

Two different cohorts of B6CBAF1 breeders (OT B6CBAF1females x B6CBAF1 males) 

were used to expand and maintain the R6/2 colony. Breeders were obtained from Jackson 

Laboratories and paired together when they were ~6 weeks of age. Although none of OT 

B6CBAF1 females expressed the disease, they were previously transplanted with the ovaries 

of a histocompatible R6/2 female and therefore were able to produce eggs containing the 

transgenic allele. Most OT B6CBAF1females delivered their first litter ~60 days after 

pairing with males. In some cases, for instance in breeding pairs 2 (Cohort A), 9 and 12 

(Cohort B), OT B6CBAF1females failed to deliver their first litter after >120 days. To 

investigate if this was due to infertility of the male breeder, a male from a different breeding 

pair was introduced, but no litter was still delivered and therefore females were deemed 

unproductive. Furthermore, OT B6CBAF1 females sometimes displayed excessive 

grooming and in those cases the breeding pair was separated. However, this was only carried 

out in extreme cases since females were less likely to breed when put back together with 

males after a period of separation (e.g. female from breeding pair 4 (cohort B)). 

From both cohorts of breeders a total number of 529 mice was obtained and reached 

adulthood (Supplementary table S2.1). Rare cases where litters were lost are not included. 

From all B6CBAF2 mice generated, 275 were males (52.0% of total), 254 females (48.0% 

of total), 262 carried the muHTT transgene (49.5% of total) and 267 were WT (50.5% of 

total). From total, the percentage of R6/2 males was of 26.1% and of R6/2 females was of 

24.6%. In conclusion, from this analysis the percentage of R6/2 and WT mice obtained very 

closely matched the expected dominant inheritance pattern (~50%) of mendelian traits when 

one of the progenitors is affected.  
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Supplementary Table S2.1. R6/2 Mouse Husbandry, Breeding and Development 

Cohort 
Breeding 

pair 
Pups Males Females R6/2 WT 

R6/2 

F 

R6/2 

M 

WT 

F 

WT 

M 

A 1 45 18 27 27 18 17 10 10 8 

 
2 - - - - - - - - - 

 
3 23 13 10 10 13 5 5 5 8 

 
4 14 8 6 7 7 3 4 3 4 

 
5 18 9 9 8 10 4 4 5 5 

 
6 20 13 7 8 12 2 6 5 7 

 
Subtotal  120 61 59 60 60 31 29 28 32 

 
% Subtotal N/A 50.8 49.2 50.0 50.0 25.8 24.2 23.3 26.7 

B 1 11 8 3 6 5 2 4 1 4 

 
2 41 25 16 24 17 10 14 6 11 

 
3 20 9 11 11 9 7 4 4 5 

 
4 6 2 4 4 2 2 2 2 0 

 
5 25 16 9 14 11 5 9 4 7 

 
6 38 23 15 17 21 4 13 11 10 

 
7 20 10 10 9 11 4 5 6 5 

 
8 29 19 10 17 12 5 12 5 7 

 
9 - - - - - - - - - 

 
10 56 25 31 32 24 17 15 14 10 

 
11 32 14 18 14 18 10 4 8 10 

 
12 - - - - - - - - - 

 
13 16 10 6 5 11 0 5 6 5 

 
14 44 20 24 16 28 10 6 14 14 

 
15 44 21 23 23 21 10 13 13 8 

 
16 27 12 15 10 17 7 3 8 9 

 
Subtotal  409 214 195 202 207 93 109 102 105 

  % Subtotal N/A 52.3 47.7 49.4 50.6 22.7 26.7 24.9 25.7 

TOTAL   529 275 254 262 267 124 138 130 137 

% TOTAL 
 

N/A 52.0 48.0 49.5 50.5 23.4 26.1 24.6 25.9 

Abbreviations: N/A, Not applicable; R6/2 F, R6/2 females; R6/2 M, R6/2 males; WT, Wild-type. 
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2.7.2 PCR-based method for genotyping R6/2 mice 

 

 

 

 

 

Supplementary Figure S2.1. PCR-based method for genotyping R6/2 mice. Agarose gel 

electrophoresis of the PCR product amplified from DNA samples collected from tail tips. Arrow 

indicates ~272 bp amplicon product from the human muHTT transgene only expressed in R6/2 mice. 

Absence of specific band indicates that the transgene is not present and therefore the animal belongs 

to the WT genotype group. Ladder 1000 Kb. Abbreviations: R6/2 mice, transgenic mice hemizygous 

for the human HTT transgene; WT, Wild-type. 
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3.1 Abstract 

Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused 

by the expression of a toxic Huntingtin (HTT) protein.  The use of short interfering 

ribonucleic acids (siRNAs) to silence the mutant protein is one of the most promising 

therapeutic strategies under investigation. The biggest caveat to siRNA-based approaches is 

the lack of efficient and non-toxic delivery vectors for siRNA delivery to the central nervous 

system. In this study, we investigated the potential of modified amphiphilic β-cyclodextrins 

(CDs), oligosaccharide-based molecules, as novel siRNA neuronal carriers. We show that 

CDs formed nanosize particles which were stable in artificial cerebrospinal fluid. Moreover, 

these complexes were able to reduce the expression of the HTT gene in rat striatal cells 

(ST14A-HTT120Q) and in human HD primary fibroblasts. Only limited toxicity was 

observed with CD.siRNA nanoparticles in any of the in vitro models used. Sustained 

knockdown effects were observed in the striatum of the R6/2 mouse model of HD after 

single direct injections of CD.siRNA nanoparticles. Repeated brain injections of CD.siRNA 

complexes resulted in selective alleviation of motor deficits in this mouse model. Together 

these data support the utility of modified β-CDs as efficient and safe siRNA delivery vectors 

for rivonucleic acid interference based (RNAi-based) therapies for neuropsychiatric and 

neurodegenerative disorders. 

 

  



CHAPTER III – MODIFIED CYCLODEXTRINS FOR SIRNA DELIVERY FOR HUNTINGTON’S 

DISEASE 

124 

 

3.2 Introduction 

Huntington’s Disease (HD) is a rare but devastating autosomal dominant neurodegenerative 

disease caused by a mutation within the Huntingtin (HTT) gene (Zuccato et al., 2010). The 

mutation consists of an abnormal CAG repeat expansion that leads to the expression of a 

toxic HTT protein. Accumulation of the mutant HTT (muHTT) protein compromises 

survival and normal neuronal functioning in the striatum and progressively in other brain 

structures, such as the cortex (Zuccato et al., 2010). 

Reducing expression of the muHTT gene by means of ribonucleic acid interference (RNAi) 

has been recently suggested as one of the most promising therapeutic strategies for HD 

(Zuccato et al., 2010). Briefly, the RNAi pathway is an endogenous post-transcriptional 

mechanism whereby short double stranded RNA molecules inhibit the translation of specific 

messenger RNA (mRNA) by ribosomal arrest or degradation (Guo et al., 2010a). 

Exogenously introduced synthetic short interfering RNAs (siRNAs), short harpin RNAs 

(shRNAs) and pre-micro RNAs (miRNAs) are also able to evoke specific gene silencing 

effects via this pathway. However, such nucleic acids have poor cell penetrating proprieties 

and therefore an appropriate delivery method is required (Guo et al., 2010a). Moreover, for 

reasons not clearly understood neurons are particularly resistant to RNAi and therefore 

delivering such molecules to the central nervous system (CNS) is very challenging 

(Krichevsky & Kosik, 2002). Viral and non-viral approaches for RNAi delivery have been 

evaluated to facilitate the transport of genetic material into neurons (Boudreau et al., 2010). 

Lentiviruses and adeno-associated viruses (AAV) have been by far the most widely used 

viral vectors for CNS applications due to their ability to transduce nondividing cells and to 

their relatively low immunogenicity. Several, in vitro and in vivo studies have demonstrated 

the potential utility of such viral particles for treating neurological disorders, such as HD, 

Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS) (Grondin et al., 2012; 

Sah, 2006). Although viral vectors have great tropism over a wide range of cell types, their 

potential for RNAi-based therapies in the CNS is limited by their toxicity, immunogenicity, 
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risk of insertional mutagenesis and high cost of large-scale production (Nayak et al., 2010; 

Snove & Rossi, 2006). Alternatively, non-viral approaches for siRNA delivery have also 

been considered to enable RNAi in the CNS. In vivo studies have demonstrated that long-

term treatment with large amounts of unmodified naked siRNAs were able to induce 

widespread gene silencing effects in the brain when delivered intracerebroventricularly using 

osmotic minipumps or to specific structures in the brain by convection-enhanced delivery 

(Stiles et al., 2012; Thakker et al., 2004; Thakker et al., 2005). In order to reduce the large 

amounts of siRNA required for in vivo applications a number of strategies have been 

adopted to improve their stability, nuclease resistance and cell penetrating properties. 

Chemical modifications of siRNA duplexes using functional groups such as, peptides 

(Davidson et al., 2004), lipids and steroid derivatives (Chen et al., 2010; DiFiglia et al., 

2007), and other modifications (Nakajima et al., 2012; Wang et al., 2008c) have been shown 

to be advantageous for in vivo delivery and have improved delivery of siRNAs to the brain 

and spinal cord (Watts et al., 2008). On the other hand, several lipid-based (Cardoso et al., 

2008; Salahpour et al., 2007), polymer-based (Kim et al., 2010a; Tan et al., 2004), peptide-

based carriers (Ifediba et al., 2010) and other nanoparticles (Bonoiu et al., 2011; Wong et al., 

2010) have been engineered and used to complex, condense and transport siRNAs into CNS 

in vitro and in vivo models. These vary in their efficacy, toxicity and applicability to 

neuronal systems. 

Despite the advances in the design and development of such non-viral RNAi vectors, there 

remains a great need to develop more effective and less toxic carriers for siRNA delivery 

into the CNS (Guo et al., 2010a). Modified cyclodextrins (CD), based on naturally occuring 

oligosaccharide molecules, are promising nucleic acid carriers that have been shown to bind 

and complex siRNA protecting it from enzymatic degradation (Chaturvedi et al., 2011). Our 

group has previously demonstrated efficacy of these nano carriers to deliver both plasmid 

deoxyribonucleic acid (DNA) and siRNA into hepatocyte, enterocyte, prostate cancer and 

neuronal in vitro models (Guo et al., 2012b; McMahon et al., 2012; O'Mahony et al., 2012b; 
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O'Mahony et al., 2012d; O'Neill et al., 2011). Moreover, the potential of CD polymer-based 

carriers for human therapy has been recently demonstrated by the first phase I clinical trial in 

patients with metastatic melanoma (Davis, 2009; Davis et al., 2010). 

The aim of the present study was to investigate the use of modified β-CDs to deliver HTT 

targeted siRNAs to multiple in vitro models and to the most widely used in vivo model of 

HD (R6/2 mouse model). To this end, a rat striatal cell line (ST14A-HTT120Q) stably 

cloned with a fragment of the human HTT gene and human primary fibroblasts naturally 

harbouring the human muHTT gene were used to validate this technology in vitro. In order 

to evaluate if any effects translated to the in vivo setting, pre-clinical testing of CD.siRNA 

nanoparticles was carried out in the R6/2 mouse model of HD. 
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3.3 Materials and methods 

3.3.1 Synthetic siRNAs 

Synthetic duplexed siRNAs were obtained from Sigma-Aldrich (France) or QIAGEN 

(United Kingdom). HTT target siRNAs (HTTsiRNA) as per Wang et al. (Wang et al., 2005) 

sense strand, 5’-GCCUUCGAGUCCCUCAAGUCC-3’; antisense strand, 5’-

ACUUGAGGGACUCGAAGGCCU-3’. Non-silencing siRNAs (NSsiRNA): sense strand, 

5’-UUCUCCGAACGUGUCACGUdTdT-3’; antisense strand, 5’-

ACGUGACACGUUCGGAGAAdTdT-3’. FAM-labelled siRNA (FAMsiRNA): sense 

strand, 5’-[6FAM] UUCUCCGAACGUGUCACGUdTdT-3’; antisense strand, 5’-

ACGUGACACGUUCGGAGAAdTdT-3’. 

3.3.2 Preparation, physicochemical characterisation and stability of CD.siRNA 

nanoparticles 

CD solutions were prepared as previously described in sterile deionised water (DIW) or 5% 

glucose solution (O'Mahony et al., 2012d). Details on preparation of CD solutions are 

described in Supplementary Information (SI, Supplementary Materials and Methods), 

CD.siRNA complexes were diluted DIW and particle size and charge were assessed using a 

Malvern’s Zetasizer Nano ZS. Stability studies were carried out in artificial cerebrospinal 

fluid (aCSF) (NaCl 148 mM, MgCl2 0.8 mM, KCl 3 mM, CaCl2 1.4 mM, Na2HPO4 1.5 mM, 

NaH2PO4 0.23 mM (all from Sigma-Aldrich, Germany). Complexes were incubated in aCSF 

at 37 °C for different periods of time and siRNA binding was assessed by gel retardation 

assay described in O’Mahony et al. (O'Mahony et al., 2012d). Sodium dodecyl sulphate 

(SDS) (Sigma-Aldrich, Germany) was used to disrupt nanoparticles and enable release of 

siRNA. For in vivo studies CD.siRNAs nanoparticles were prepared as above and 

concentrated by ultrafiltration using Vivaspin 500 centrifugal units (Sartorius, Germany) to a 

final concentration of 1 µg/µL of siRNA. 
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3.3.3 Cell culture and RNAi transfection 

Rat striatal cells expressing exon 1 and 120 polyQ of the human HTT gene (ST14A-

HTT120Q cells) and primary human HD fibroblasts (GM04691) were obtained from Coriell 

Institute for Medical Research (Camden, NJ). Detailed information on subculture described 

in SI (SI Materials and Methods). CD.siRNA nanoparticles were prepared in sterile DIW 

and left to incubate for 20 minutes and thereafter diluted in optiMEM
®
 (GIBCO, United 

Kingdom). Cells were transfected with CD.siRNA nanoparticles 24 hours after being 

seeded. 

3.3.4 Toxicity assays 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) (Sigma-Aldrich, 

Germany) was added to each well and left to incubate for 4 hours either at 33 °C or 37 °C 

and 5% CO2. The formazan product was then dissolved with 100 µL of dimethyl sulfoxide 

(Sigma-Aldrich, Germany) and left to incubate at room temperature at least for 30 minutes. 

Absorbance was measured at 590 nm using a SpectraMax Plus384 plate reader. 

3.3.5 Confocal Microscopy 

Confocal microscopy was carried out in living cells. Non-silencing [6FAM] 5’-labelled 

siRNAs were obtained from Sigma-Aldrich (France) or QIAGEN (United Kingdom) and 

used at a final concentration of 200 nM. Cells were seeded in glass bottom plates and 

transfected for 24 hours. Cells were incubated for 30 minutes with LysoTracker Red DND-

99 endosomal marker (Invitrogen, Molecular Probes, Eugene, OR) following manufacturer 

instructions. Images were acquired on a FluoView FV1000 Confocal Microscope and 

analysed using Olympus Fluoview ver 2.1b software. 
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3.3.6 Quantitative real-time PCR 

Ribonucleic acid (RNA) was isolated from tissue using a Trizol
®
-based method (Invitrogen, 

United Kingdom). 300 ng of total RNA was reverse transcribed to complementary DNA 

(cDNA) using a High Capacity cDNA Reverse Transcription kit from Applied Biosystems 

(Foster City, MO). Gene expression was assessed by fluorescent real time quantitative 

polymerase chain reaction (RT-qPCR) using a 7300 Real Time polymerase chain reaction 

(PCR) System. Cycling conditions were: 10 minutes at 95 °C, 40 cycles of [15 seconds at 95 

°C; 1 minute at 60 °C]. TaqMan
®
 rat or mouse b-actin VIC

®
 labelled probes were acquired 

from Applied Biosystems (United Kingdom) (part number 4352340E and 4352341E). 

Primer sequences (forward: CGACCCTGGAAAAGCTGATGAA, reverse: 

CTGCTGCTGCTGGAAGGA) were validated for detection of human HTT mRNA (Ref. 

Seq. NM_002111) and used to design a TaqMan
®
 HTT FAM-labelled probe. Each sample 

was analysed in triplicate wells and average CT values were used for gene expression 

calculations. β-actin was used as endogenous control and all CT values were normalized to 

the expression of β-actin. 

3.3.7 Western blot analysis 

ST14A HTT120Q cells were harvested 72 hours after addition of transfection complexes 

and lysed in lysis buffer (10 mM HEPES, 100 mM KCl, 1.5 mM MgCl2, 0.1% Igepal, 0.1% 

SDS, 2.5 mM CHAPS, 0.5% Sodium Deoxicholate) containing a protease and proteinase 

inhibitor cocktail (P8340, Sigma-Aldrich). Total protein content was quantified using a 

bicinchoninic acid (BCA) assay according to manufacturer’s instructions (Pierce, Thermo 

Scientific, Rockford, IL). 5-10 ug of total protein were loaded onto each well of a precast 

NuPAGE Novex 4-12% Bis-Tris gel (Invitrogen, Carlsbad, CA). Protein electrophoresis was 

carried out at 100 volts for ~2.5 hours. Protein was then transferred to a polyvinylidene 

difluoride (PVDF) membrane (Millipore, Bedford, MA) for 1.5 hours at 200 mA and 

transfer confirmed by Ponceau S staining. Membrane was incubated in a blocking solution 
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containing 0.1% Tween and 5% milk and incubated overnight with anti-human HTT 

antibody (dilution 1:2,500) (MAB2166, Millipore) or anti-β-actin (dilution 1:3,000) (A5441, 

Sigma). Membrane was washed and then incubated with a 1:10,000 dilution of a goat anti-

mouse antibody (IRDye 800CW, LI-COR) for 1 hour. Scans were carried out using a 

LICOR Odyssey near-infrared scanner. Densitometry analysis of bands was performed using 

ImageJ software and all results were normalised to β-actin controls. 

3.3.8 R6/2 colony maintenance  

R6/2 colony was maintained by breeding B6CBAF1 ovarian transplanted females (HD exon 

1, 62Gpb/3J) and B6CBAF1 males (Stock # 006494, The Jackson Laboratories, Bar Harbor, 

ME). Pups were weaned at 3 weeks and DNA samples for genotyping were collected from 

tail clips. Detailed description of the genotyping protocol has been given in Chapter II 

Materials and Methods. Animals were group-housed in groups of 4-5 mice in cages 

containing regular sawdust bedding. After surgical procedures animals were recovered and 

kept single-housed until the end of the experiments. Animals were closely monitored and 

euthanized under ethical grounds if in pain and/or severe distress. 

All animal experimental procedures were approved by the ethical committee at the 

University College Cork and performed in accordance with the European Union directive 

2010/63/EU for animals used for scientific purposes. 

3.3.9 Stereotaxic surgery and behavioural assessment 

Simulation of brain injections was carried out in the Brain Navigator
TM

 

(http://www.brainnav.com). Stereotaxic surgery was performed in animals with 4-5 weeks of 

age in order to implant cannulas (PlasticOne, Roanoke, VA) for chronic administration of 

CD.siRNA nanoparticles or to perform acute direct injections into the Striatum (Anterior-

Posterior = + 0.7, Medio-lateral = ± 2.0, Ventral = -3.0). During all surgical procedures 

animals were anaesthetized under a continuous flow of Isofluorane (IsoFlo
®
, Abbott, United 

http://www.brainnav.com/
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Kingdom) and Carprofen (Rimadyl
®
, Pfizer Animal Health, Netherlands) was injected 

subcutaneously to provide analgesia. 2.5 µL of each treatment was injected bilaterally at a 

rate of 0.5 µL/min. In in vivo HTT mRNA knockdown studies a 2 mm slice from the site of 

injection was isolated using a mouse brain slicer matrix. Tissue was kept in RNA Later
®
 

(Sigma) and 4 °C overnight, and thereafter stored at -80 °C until analysis. For behavioural 

studies a total of 7 injections of naked HTTsiRNAs or CD.HTTsiRNA nanoparticles were 

given over a period of 5 weeks and behaviour deficits were assessed up to 10 weeks after 

first injection (Figure 3.5a). All behaviour tests were conducted after 10-15 minutes 

habituation period to the testing room. Behaviour tasks were carried out as previously 

described in (Dragatsis et al., 2009; Menalled et al., 2010; Wang et al., 2005) for further 

details on behavioural tasks see SI, Supplementary Materials and Methods. 

3.3.10 Statistical analysis 

All results are expressed as mean ± standard error of mean (SEM) unless otherwise stated. 

Statistical analyses were performed by One-way Analysis of Variance (ANOVA) followed 

by Bonferroni Post Hoc test for all comparisons. Two-way repeated measures ANOVA was 

carried out to investigate the overall effect of treatment over time on the rotarod, grip 

strength and spontaneous locomotor activity data. Thereafter, one-way ANOVA followed by 

Bonferroni’s Post Hoc test was used to analyse each specific time point of behavioural 

assessment. Finally, paw clasping behaviour data was analysed by Chi Square tests at each 

age separately. All inferential statistics were carried out using PAWS 18 Statistical package. 
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3.4 Results 

3.4.1 Physicochemical characterisation of CD.siRNA nanoparticles and stability 

in artificial cerebrospinal fluid 

Chemical modifications have been previously introduced onto a β-CD to form polycationic 

amphiphilic molecules (SC12 CD (Click) Propylamine) (Figure 3.1a) (O'Mahony et al., 

2012d) Electrostatic interaction between these modified β-CDs and polyanionic siRNAs 

results in nucleic acid condensation and formation of nanoparticles (Figure 3.1a). HTT 

targeted siRNAs (HTTsiRNA) were mixed and complexed at different mass ratios (MR) 

(MR are expressed by µg of CD : µg of siRNA) with this modified β-CD. Gel retardation 

assays showed that modified β-CDs are able to bind and fully complex HTT targeted 

siRNAs from MR 5 (SI, Supplementary Figure S3.1a). Moreover, these complexes were 

found to have a hydrodynamic diameter between 100 nm and 350 nm and a net positive 

surface charge (Figure 3.1b). A reduction in particle size and an increase in net charge were 

noted as increasing MRs of modified β-CD were used. CD.siRNAs nanoparticles were found 

to remain stable and undisrupted in aCSF up to 6 hours (Figure 3.1c). aCSF and 

physiological temperatures (37 °C) seemed not to affect siRNA binding and complexation as 

shown by gel retardation assays. Furthermore, size and surface charge of the CD.siRNA 

nanoparticles did not reveal remarkable changes up to 6 hours (SI, Supplementary Figure 

S3.1b). 
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Figure 3.1. Physicochemical characterisation of CD.siRNA nanoparticles and stability in artificial 
aCSF. (a) Schematic showing the formation of nanoparticles. Complex formation is enabled by 

electrostatic interactions between positively charged modified β-CD units and negatively charged 

siRNA phosphate back bone. (b) Hydrodynamic radius and zeta potential of CD.siRNA nanoparticles 

measured through Dynamic Light Scattering and Electrophoretic Light Scattering, respectively. 

Results are expressed in mean ± standard deviation (SD). (c) siRNA binding and nanoparticle 

stability in aCSF was assessed through a gel retardation assay after different time points. 0.3 µg of 

siRNA loaded onto each well. Free siRNA migrates through the gel, complexed siRNA remain in the 

wells. SDS was used to release siRNAs from nanoparticles and prove its integrity. Abbreviations: 

aCSF, Artificial cerebrospinal fluid; CD, Cyclodextrin; SD, Standard deviation; SDS, Sodium 

Docecyl Sulfate; siRNA, Short interfering RNA. 
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3.4.2 Delivery of CD.siRNA nanoparticles to a rat neuronal in vitro model of HD 

Cytotoxicity studies revealed that even at high MRs, CD.siRNA nanoparticles maintained a 

good mitochondrial dehydrogenase activity profile when compared to untreated cells (Figure 

3.2a). Reduced mitochondrial dehydrogenase activity has been widely used as an indication 

of cytotoxicity. Even after 48 hours transfection with CD.siRNA complexes, cell viability 

was maintained above 80% and no statistically significant differences were found when 

compared to untreated or naked siRNA-treated cells. 

Cellular uptake of a FAMsiRNA was observed by confocal microscopy (Figure 3.2b) and 

quantified by Fluorescent Activated Cell Sorting (FACS) Flow cytometry (SI, 

Supplementary Figure S3.2a,b). Fluorescent CD.FAMsiRNA nanoparticles (green) were 

taken up by this neuronal cell line in a time-dependent fashion. After 48 hours post 

transfection, up to ~38% (38.3 ± 7.1%) of cells were found to be positive for fluorescent 

CD.FAMsiRNA complexes. Furthermore, our data shows that only a few CD.FAMsiRNA 

complexes were co-localised (yellow) with acidic endosomes (red) after 24 hours. In 

contrast, no significant uptake was observed in cells treated with naked FAMsiRNA (Figure 

3.2b). 
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Figure 3.2. Delivery of CD.siRNA nanoparticles to a rat neuronal in vitro model of HD (ST14A-

HTT120Q cells). (a) Cytotoxicity profiles of CD.siRNA nanoparticles in ST14A-HTT120Q cells were 

assessed by MTT assay after 24 and 48 hours transfection. (b) Cellular uptake of fluorescently 

labelled CD.siRNA nanoparticles by confocal microscopy. FAM, Green CD.FAMsiRNAs 

nanoparticles; Lyso, acidic endosomes stained red with Lysotracker endosomal marker; merged, 

FAM and Lyso; phase merged, phase contrast and merged. Red arrow indicates CD.siRNA complexes 

co-localised with acidic endosomes. White arrow indicates CD.siRNAs nanoparticles free from 

endosomes. Scale bar = 20 µm (c) Knockdown of HTT gene expression in a rat striatal cell line. 
ST14A-HTT120Q cells were transfected with naked HTT siRNA (siRNA), CD.HTTsiRNA 

nanoparticles at different MR (blue) and CD.NSsiRNA at MR10 (10(NS)). Total RNA was extracted 

and reverse transcribed to cDNA. Relative expression of HTT mRNA was assessed by quantitative 

PCR. HTT gene expression was normalized against the expression of β-actin. (d) Western blot 

analysis of HTT protein expression in ST14A-HTT120Q cells. (i) Cell protein extracts were subjected 

to western blotting with anti-HTT antibody (MAB2166). 5 µg of total protein was loaded onto each 

lane. (ii) Densitometry analysis. All results were normalised to β-actin protein expression prior 

densitometry analysis. Final concentration of siRNA for all experiments was 100 nM (except for 

microscopy experiments, 200 nM), and cells were transfected for 24, 48 or 72 h (HTT protein 
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expression). All results are expressed in mean ± SEM, n = 3 per group, *p < 0.05, and **p < 0.01 

compared to untreated cells.  

 

MuHTT gene expression was assessed by RT-qPCR (Figure 3.2c). Results showed that 

CD.HTTsiRNA nanoparticles at different MR were able to effectively knockdown 

expression of the HTT gene by ~51% (50.9 ± 4.8%) after 24 hours transfection. The 

HTTsiRNAs sequences used in the present study which allow for specific knockdown have 

been previously screened and validated by others (Rodriguez-Lebron et al., 2005a; Wang et 

al., 2005). No significant differences were observed in knockdown efficiency among the 

different MRs of CD.HTTsiRNAs used. In contrast, naked HTT siRNA and CD.siRNA 

complexes bearing a NSsiRNA sequence were not able to significantly reduce expression of 

HTT when compared with untreated cells. Additionally, HTT protein levels were found to 

be reduced by ~35% (35.1 ± 7.1%) after 72 hours transfection with CD.HTTsiRNAs (Figure 

3.2d). Commercially available cationic lipids (Lipofectamine
®
 2000) were also able to 

successfully transfect ST14A-HTT120Q cells, evoke silencing of HTT mRNA and reduce 

expression of the HTT protein (Table 3.1). However, it is worth noting that Lipofectamine
®

 

2000 exerted much greater cytotoxic effects as indicated by the reduced mitochondrial 

dehydrogenase activity when compared to CD.siRNA MR 10 (Table 3.1). 

 

Table 3.1. Efficiency and cytotoxicity of CD.siRNA nanoparticles vs. Lipofectamine
®
 2000 in 

ST14A-HTT120Q cells 

Vector characteristic Lipofectamine
®
2000 CD.siRNA MR10 

Cellular uptake 50-60% 30-50% 

Knockdown in HTT gene expression 60-63% 40-60% 

Reduction in HTT protein expression 

(72 hours) 
36% 35% 

Dehydrogenase activity 58-60% 82-98% 
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3.4.3 Delivery of CD.siRNA nanoparticles to a human in vitro model of HD 

MTT assays revealed that even at high MRs CD.siRNA nanoparticles maintained a good cell 

viability profile when compared to untreated cells in these primary human cells (Figure 

3.3a). After 48 hours transfection with CD.siRNA complexes, cell viability was maintained 

above 78% and no statistically significant differences were found when compared to 

untreated or naked siRNA-treated cells. CD.FAMsiRNA nanoparticles (green) were also 

actively taken up by this primary human cell line as shown by confocal images (Figure 

3.3b). FACS flowcytometry revealed that after 48 hours transfection up to ~40% (40.2 ± 

1.6%) of cells were found to be positive for fluorescent CD.FAMsiRNA complexes (SI, 

Supplementary Figure S3.2c,d). Moreover, our data shows that only few CD.FAMsiRNA 

complexes were co-localised (yellow) with acidic endosomes (red) after 24 hours. In 

contrast, no significant uptake was observed in cells treated with naked fluorescent siRNA. 

Additionally, CD.HTTsiRNA nanoparticles at different MR were able to silence the 

expression of the HTT gene by ~78% (78.2 ± 8.5%) after 24 hours transfection (Figure 

3.3c). Alternatively, naked HTTsiRNA and CD.NSsiRNA complexes were not able to 

significantly reduce expression of the HTT gene when compared with untreated cells. 

 

 

 

 

 

 

 



CHAPTER III – MODIFIED CYCLODEXTRINS FOR SIRNA DELIVERY FOR HUNTINGTON’S 

DISEASE 

138 

 

 

 

 

Figure 3.3. Delivery of CD.siRNA nanoparticles to a human in vitro model of HD (HD human 

primary fibroblasts). (a) Cytotoxicity profiles of CD.siRNA nanoparticles in human HD fibroblast 

primary cells were assessed by MTT assays after 48 hours transfection. (b) Cellular uptake of 

fluorescently labelled CD.siRNA nanoparticles by confocal microscopy. FAM, Green 

CD.FAMsiRNAs nanoparticles; Lyso, acidic endosomes stained red with Lysotracker endosomal 

marker; merged, FAM and Lyso; phase merged, phase contrast and merged. White arrow indicates 
CD.siRNAs nanoparticles free from acidic endosomes Scale bar = 50 µm. (c) Knockdown of HTT 

gene expression in a human in vitro model of HD. Human HD fibroblast primary cells were 

transfected with naked HTT siRNA (siRNA), CD.HTTsiRNA nanoparticles at different MR (blue) and 

CD.NSsiRNA at MR10 (10(NS)). Total RNA was extracted and reverse transcribed to cDNA. Relative 

expression of HTT mRNA was assessed by quantitative PCR. HTT gene expression was normalized 

against the expression of β-actin. Final concentration of siRNA for all experiments was 100 nM 

(except for microscopy experiments, 200 nM), and cells were transfected for 24 or 48 h. All results 

are expressed in mean ± SEM, n = 3 per group, **P < 0.01 compared to untreated cells.  
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3.4.4 CD.siRNA nanoparticles mediate HTT mRNA knockdown in the R6/2 

mouse brain 

Based on the physicochemical properties of the nanoparticles, cellular uptake and mRNA 

knockdown efficiency in both in vitro models of HD, MR10 was chosen as optimal ratio 

between CD and siRNA to carry out in vivo studies. Prior to in vivo experiments, 

formulation of CD.siRNA complexes in several physiological buffer solutions was also 

investigated. Preparation of CDs in 5 % glucose, saline (150 mM NaCl) and aCSF resulted 

in clear solutions and did not affect complex formation with siRNAs (SI, Supplementary 

Figure S3.3a,b). Additionally, size and surface charge of complexes prepared in these 

buffers were not affected to a great extent when compared to complexes prepared in DIW 

(SI, Supplementary Figure S3.3c,d). In contrast, CDs prepared in phosphate buffered saline 

(PBS) resulted in cloudy solutions, failed to fully complex siRNAs and caused abrupt 

changes in size and surface charge of particles (SI, Supplementary Figure S3.3). Since 5 % 

glucose has been widely used for direct brain injections in previous studies and stability of 

complexes was not affected, we have selected this buffer as vehicle for brain delivery of 

CD.siRNA nanoparticles (Tan et al., 2004). 

In order to investigate knockdown efficiency in vivo, R6/2 mice were treated with vehicle 

(5% glucose) (Tan et al., 2004), HTT naked siRNA, CD.HTTsiRNA or CD.NSsiRNA. A 

total of 2.5 µg of siRNA was injected bilaterally into the striatum of R6/2 males and females 

(Figure 3.4a). 

CD.HTTsiRNA nanoparticles were able to significantly reduce the expression of the HTT 

gene in vivo (Figure 3.4b). The time course study revealed that, 4 hours post-injection, HTT 

gene expression was reduced by ~85% (84.7 ± 3.8%). Moreover, gene silencing effects were 

found to be maintained up to seven days with HTT gene expression still reduced by ~66% 

(65.5 ± 8.3%). However, knockdown was no longer apparent at three weeks post-injection. 
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In comparison, no significant gene expression knockdown was achieved either with naked 

HTTsiRNAs or with CD.NSsiRNA. 

The spread of HTT gene expression knockdown in the brain after a single injection of 

CD.HTTsiRNA nanoparticles into the striatum was also assessed. Results showed that whilst 

there was a trend towards a significant knockdown in areas close to the site of injection 

(hippocampus, p=0.061 by ANOVA followed by Bonferroni’s post hoc test for multiple 

comparisons) no significant reduction in HTT gene expression was observed in a region 

distal from the site of injection such as the cerebellum (SI, Supplementary Figure S3.4a,b). 

 

Figure 3.4. CD.HTTsiRNAs mediate in vivo HTT mRNA knockdown in the R6/2 mouse model . (a) 

CD.HTTsiRNA nanoparticles were injected into the Striatum of R6/2 mice. 2.5 uL brain injections 

were simulated on BrainNavigatorTM and shown in horizontal, coronal and sagittal planes. 

Stereotaxic coordinates for brain injections are as follow Anterior-Posterior (AP) = + 0.7, Medio-

lateral (ML) = ± 2.0, and Ventral (V) = - 3.0. (b) Knockdown of HTT gene expression in the R6/2 

mouse brain. Mice were injected directly into the striatum with vehicle, naked siRNA, CD.HTTsiRNA 

and CD.NSsiRNA nanoparticles. Tissue harvested at different time points. RNA was extracted and 

reverse transcribed to cDNA. Relative expression of HTT mRNA was assessed by quantitative PCR. 

HTT gene expression was normalized against the expression of β-actin. All results are expressed in 

mean ± SEM, n = 3-8 per group, ***P<0.001 compared to vehicle treated animals.  
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3.4.5 Multiple dosing with CD.siRNA nanoparticles into the R6/2 mouse brain 

and behavioural assessment 

On assessing behavioural differences between the R6/2 mice and their wild-type controls 

significant differences in their latency to fall from a rotating rod were already evident from 5 

weeks in both treated and untreated R6/2 mice (Figure 3.5b). Results revealed that 

CD.HTTsiRNA nanoparticles significantly alleviated rotarod deficits in R6/2 mice when 

compared to untreated or naked siRNA treated animals (F (2, 26) = 3.906, P= 0.033). By 6 

weeks of age, CD.HTTsiRNA treated animals performed better than untreated R6/2 mice 

and naked siRNA treated animals, however significant differences were only observed from 

7 weeks of age. When brain injections were ceased by week 9, deterioration in rotarod 

performance was then observed in animals treated with CD.HTTsiRNA nanoparticles. 

No significant improvements in grip strength, locomotor activity and clasping behaviour 

were observed in the CD.HTTsiRNA treated group (SI, Supplementary Figure S3.5a,b,c).  

Moreover, no significant changes were observed in bodyweight profiles (SI, Supplementary 

Figure S3.5d). 
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Figure 3.5. Multiple dosing with CD.siRNA nanoparticles into the R6/2 mouse brain and 

behavioural assessment. (a) Study design. Briefly, stereotaxic surgery to implant cannulas in the 
striatum (bilaterally) was carried out at 4 weeks of age. 7 injections of naked HTT siRNA and 

CD.HTTsiRNA nanoparticles were given over 5 weeks. Motor behaviour was assessed as per figure. 

(b) Motor coordination and balance was assessed through rotarod task in 3 consecutive days. Mice 

were placed on top of a rotating rod and their latency to fall was recorded. All results are expressed 

in mean ± SEM. Statistical analysis by ANOVA with repeated measures F (2, 26) = 3.906, P = 0.033. 

*p < 0.05 compared with untreated mice, #p < 0.05 compared with naked HTT siRNA treated mice. 

R6/2 mice: n (Untreated) = 12, n (HTT siRNA) = 6, n (CD.HTTsiRNA) = 11. Wild-type mice n = 24.  
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3.5 Discussion 

Progress in the development of RNAi-based therapies for neurodegenerative diseases has 

been hindered by the lack of an effective and non-toxic delivery vector. Here we report, 

what is to our knowledge, the first use of a modified amphiphilic cationic β-CD vector for 

siRNA delivery to the brain and to multiple in vitro and in vivo models of HD. The synthesis 

and physicochemical characterisation of this modified β-CD has been previously described 

by our group (O'Mahony et al., 2012d). These positively charged modified β-CDs are 

thought to interact with negatively charged siRNAs by electrostatic interactions, as found for 

other cationic delivery systems (Guo et al., 2010a). In the current study, this self-assembling 

nanoparticle system was able to successfully bind and complex HTT targeted siRNAs 

forming particles in the nano-size range and with a positive net charge. Small particle size 

and positive surface charge are important physicochemical characteristics to aid cellular 

uptake by facilitating interactions with the negatively charged cellular membrane (Gratton et 

al., 2008; Hillaireau et al., 2009). Furthermore, ensuring stability in physiological fluids such 

as CSF and at body temperature is crucial to enable delivery to the target site (Agrawal et al., 

2009; Lu et al., 2011; Lu et al., 2009). Our data shows that CD.siRNA complexes were 

found to be stable in aCSF and 37 °C up to 6 hours, therefore assuring adequate protection 

of siRNA from degradation. 

CD-based vectors have recently been considered as an attractive gene delivery vector due to 

their improved toxicity profiles when compared to other cationic lipid- or polymer-based 

vectors (Chaturvedi et al., 2011). In comparison, cationic lipid-based gene transfer reagents 

induce rapid activation of innate immune response after local and systemic administrations 

and are shown to have an elevated risk of cellular toxicity (Lv et al., 2006; Souto et al., 

2009; Tönges et al., 2006). Our in vitro data support the concept that CDs are an appropriate 

choice as a delivery vector with limited toxicity shown here in both neuronal and human HD 

in vitro models after treatment with CD.siRNA complexes. 
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Gene and RNAi transfer into neurons is an extremely challenging task, most likely due to 

their post mitotic nature or specific characteristics of their cellular membranes (Krichevsky 

& Kosik, 2002). In the present study, CD.siRNA nanoparticles were able to transfect a rat 

striatal cell line (ST14A-HTT120Q) that stably expresses a fragment of the human muHTT 

gene and evoke specific silencing effects on the expression of the HTT gene and 

consequently reduce the expression of this protein. It is important to note that the toxic 

effects of the muHTT mainly affects neurons of the striatum in the brain and therefore these 

findings are of great relevance. In comparison, a commercially available transfection reagent 

(Lipofectamine
®
 2000) was also able to transfect and evoke silencing effects in ST14A-

HTT120Q cells to a similar extent of CD.siRNA nanoparticles. However, the use of this 

cationic lipid reagent resulted in greater cytotoxic effects in this neuronal cell line. Previous 

work in our group has shown similar toxic effects of Lipofectamine
®
 2000 in an 

immortalised hypothalamic cell line and also in primary hippocampal cultures (O'Mahony et 

al., 2012b). Additionally, CD.siRNA nanoparticles were also able to transfect and evoke 

HTT gene knockdown in human fibroblasts naturally harbouring the muHTT gene. 

Although, both mutant and wild type human HTT alleles were silenced in this HD fibroblast 

in vitro model, previous studies have demonstrated that allele-specific HTT gene expression 

knockdown is feasible (Fiszer et al., 2011; Lombardi et al., 2009). Intriguingly, our in vitro 

studies in the rat neuronal cell line have shown that HTT gene silencing effects occur 

independently of particle size, whereas smaller CD.siRNA complexes seemed to be more 

efficacious in human HD fibroblasts. The underlying cause for these differential effects 

between both in vitro models still remains unknown. Although, sedimentation of larger 

particles on top of the cells may facilitate interaction with cellular membranes and uptake in 

vitro, in vivo sedimentation is not relevant and smaller particles have been generally 

associated with greater cellular uptake and knockdown efficiencies (as reviewed by Guo et 

al.) (Guo et al., 2010b). 
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Importantly, our data also showed that CD.siRNAs complexes were able to reduce HTT 

gene expression in the R6/2 mouse model of HD by ~85% after only 4 hours and that these 

effects sustained silencing up to at least 7 days post-injection. Although, HTT gene silencing 

effects have been previously observed using other delivery methods, to our knowledge, no 

other delivery vector has been able to achieve such an immediate and strong knockdown of 

HTT gene expression in vivo after local injection into the brain  (DiFiglia et al., 2007; 

Harper et al., 2005; Wang et al., 2005). In addition, little to no overt gross toxicity has been 

observed after direct brain injections using CD.siRNA nanoparticles (unpublished results). 

On the other hand, the unfavourable toxicity profiles of viral and lipid-based delivery 

vectors may have precluded repeated dosing regimens which were not used in previous 

studies (DiFiglia et al., 2007; Harper et al., 2005; Wang et al., 2005). Thus, in contrast with 

other gene delivery vectors, the low toxicity profiles of CDs enabled multiple dosing in the 

present study and further advocates the promise of this technology. Nevertheless, further 

investigation of the effects of multiple dosing of CD.siRNA nanoparticles in the brain is 

required to ensure its safety for human therapy. 

To investigate if such changes could translate into any behavioural effects and to determine 

the impact of sustained treatment we repeatedly injected CD.siRNA nanoparticles into the 

striatum of the R6/2 mouse model. Results showed that sustained CD-based HTT gene 

expression knockdown in such localised structure in the brain was able to alleviate balance 

and motor coordination deficits in this mouse model. Interestingly, when injections of 

CD.HTTsiRNA complexes were ceased a relatively rapid deterioration of rotarod deficits 

was observed. Moreover, despite the significant level of knockdown of the HTT mRNA 

levels achieved in the brain and the partial improvements in the rotarod task, CD.siRNA 

nanoparticles failed to improve spontaneous locomotor activity, grip strength and clasping 

behaviour in this animal model. Differential effects on improvements of specific motor 

behaviours have also been observed in previous studies using both non-viral and viral-based 

RNAi delivery approaches to study HD in vivo (Rodriguez-Lebron et al., 2005a; Wang et al., 
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2005). In fact, it is worth noting that although the most widely used pre-clinical model of 

HD, the R6/2 mouse model is an early onset and more severe model of HD and therefore the 

observed benefits of the delivery vector might be underestimated. Thus, future studies 

should also be carried out in other rodent and primate models of HD which have a more 

delayed progression of the disease. In addition, caution is needed when silencing HTT gene 

expression exclusively in the striatum as the behavioural phenotype in HD is likely to be due 

to dysfunctions in other extra-striatal brain structures (Li et al., 2005; Zuccato et al., 2010). 

Indeed, we speculate that accumulation of toxic N-terminal HTT fragments in other 

structures of the R6/2 mouse brain, such as cortex and cerebellum, might account for the 

observation of such modest behavioural improvements. Moreover, the initial delay to 

observe therapeutic improvements in the rotarod task and the relatively fast decline when 

treatment was ceased might also be related to accumulation of the muHTT in untargeted 

regions of the brain.  Therefore, it is crucial that future studies assess the effects of a 

widespread suppression of the muHTT gene throughout the brain. 

The progression of RNAi-based therapies to the clinic is highly dependent on the efficacy 

and safety of the delivery vector (Gao et al., 2009a). Here we have shown that modified CDs 

significantly increase the intracellular delivery of siRNAs leading to dramatic reduction of 

HTT mRNA levels in neuronal and human in vitro models, but also in an in vivo model of 

HD. Furthermore, modified β-CDs have exhibited favourable toxicity profiles in our in vitro 

models. Other in vivo studies in non-human primates have shown that multiple dosing with 

CD-polymer based nanoparticles was well tolerated and did not elicit major immune 

responses (Heidel et al., 2007). On this basis, the United States of America Food and Drug 

Administration has recently approved a clinical trial using CD-polymer based nanoparticles 

for RNAi delivery for cancer treatment (Davis et al., 2010). 
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3.6 Conclusions 

In conclusion, although there has been a renaissance in the applicability of neurosurgical 

approaches to treat complex brain disorders, systemic RNAi delivery approaches might be 

more attractive when translating this potential therapeutic strategy to the clinic (Chiocca, 

2003; Gao & Huang, 2009a). Here, we show that CDs have great potential in facilitating 

specific gene silencing effects once they are targeted to the site of greatest importance to 

disease pathology. However, it is important to note that these modified β-CDs are very 

versatile molecules and further pharmaceutical functionalization is feasible which may 

enable targeting across the blood brain barrier in the future.  Finally, the potential 

application of these modified β-CDs as siRNA carriers for CNS delivery is not restricted to 

HD but applicable to other neurodegenerative disease such as AD, Parkinson’s Disease and 

ALS. 

3.7 Supplementary Information 

The SI section in this chapter includes data regarding stability of CD.siRNA nanoparticles in 

aCSF (Supplementary Figure S3.1); quantification of cellular uptake of fluorescent 

CD.siRNA nanoparticles by FACS (Supplementary Figure S3.2); formulation of CD.siRNA 

complexes in physiological buffers suitable for in vivo brain delivery (Supplementary Figure 

S3.3); spread of HTT gene expression knockdown in the brain after single injection of 

CD.siRNA nanoparticles into the striatum (Supplementary Figure S3.4); effects of localised 

HTT gene expression knockdown on other motor behaviour deficits of R6/2 mice 

(Supplementary Figure S3.5); and further details are given regarding materials and methods 

used in the experimental section (Supplementary material and methods). 
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3.7.1 Modified amphiphilic β-CDs bind HTT targeted siRNAs and are stable in 

aCSF 

 

 

 

 

Supplementary Figure S3.1. Modified amphiphilic β-CDs bind HTT targeted siRNAs and are stable 

in aCSF.(a) Gel retardation assay. Modified amphiphilic β-CDs complexed with siRNAs at different 

MR. Free siRNA migrates through the gel whereas complexed siRNAs fail to migrate from wells. 

White arrow indicates full complexation of siRNA from MR 5. 0.3 µg of siRNA loaded into each well. 

(b) CD.siRNA nanoparticles complexed at MR10 were incubated in aCSF for different amounts of 

time. Particle size and zeta potential were assessed using Dynamic Light Scattering and 

Electrophoretic light scattering respectively. All values represent mean ± SD. Abbreviations: aCSF, 

Artificial cerebrospinal fluid; CD, Cyclodextrin; HTT, Huntingtin; MR, Mass ratio; SD, Standard 

deviation; siRNA, Short interfering RNA.  
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3.7.2 Quantification of cellular uptake of fluorescent CD.siRNA nanoparticles by 

FACS 

 

 

 

Supplementary Figure S3.2. Quantification of cellular uptake of fluorescent CD.siRNA 

nanoparticles by FACS. [6FAM] 5’- labelled siRNAs were complexed with modified amphiphilic β-

CDs at MR 10. ST14A-HTT120Q neuronal cells and HD human primary fibroblasts were transfected 
for 4, 24 or 48 hours.  Prior to FACS cells were treated with Cell ScrubTM buffer in order to remove 

complexes bound to the cellular membrane. Representative flowcytometry histograms for ST14A-

HTT120Q cells (a) and HD primary fibroblasts (c). Percentage of FAM-positive cells per time point 

for ST14A-HTT120Q cells (b) and HD primary fibroblasts (d). n = 3 per group and a total of 10,000 

cells were counted per sample. Final concentration of FAMsiRNA was of 100 nM. All values 

represent mean ± SEM. ***p<0.001 compared to untreated cells, ###p<0.001 compared to naked 

6FAM-siRNA. All statistics performed by ANOVA followed by Bonferroni’s Post hoc test.  
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3.7.3 Formulation of CD.siRNA complexes in physiological buffer solutions 

suitable for in vivo brain delivery 

 

 

 
 

Supplementary Figure S3.3. Formulation of CD.siRNA complexes in physiological buffer solutions 

suitable for in vivo brain delivery. (a) Photograph of modified amphiphilic β-cyclodextrins 

reconstituted in different physiological buffer solutions. Yellow arrow indicates cloudy solution. (b) 

Gel retardation assay. Free siRNA migrates through the gel whereas complexed siRNA fails to 

migrate from wells. Red arrow indicates uncomplexed siRNA. (c, d) Particle size and zeta potential 

assessed using Dynamic Light Scattering and Electrophoretic light scattering respectively. All values 

represent mean ± SD.  
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3.7.4 Spread of HTT gene expression knockdown in the brain after single 

injection of CD.siRNA nanoparticles into the striatum 

 

 

 

 

Supplementary Figure S3.4. Spread of HTT gene expression knockdown in the brain after single 

injection of CD.siRNA nanoparticles into the striatum. HTT gene expression in the hippocampus (a) 

and cerebellum (b) 24 hours after direct injection of CD.HTTsiRNA or CD.NSsiRNA complexes. Total 

RNA was extracted and reverse transcribed to cDNA. HTT gene expression was assessed by 

quantitative PCR. n = 4-5 per group. All values represent mean ± SEM. All statistics performed by 

ANOVA followed by Bonferroni’s Post hoc test.  
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3.7.5 Effects of localised HTT gene expression knockdown in other motor 

behaviour deficits of R6/2 mice 

 

 

 

Supplementary Figure S3.5. Effects of localised HTT gene expression knockdown in other motor 

behaviour deficits of R6/2 mice. (a) Despite an overall positive effect on grip strength (F(2, 14) = 

9.08, P= 0.003), and a beneficial effect of CD.HTTsiRNAs when compared to naked HTT siRNAs 

(##p<0.01 by ANOVA with Bonferroni’s Post hoc test), the treatment failed to improve grip strength 

when compared to untreated R6/2 mice (n (Untreated) = 10 n (siRNA) = 2 n (HTT CD) = 5). CD-

based HTT siRNA delivery did not significantly improve (b) spontaneous locomotor activity (F(2, 16) 

= 1.535, P= 0.246) (n (Untreated) = 10 n (siRNA) = 3 n (HTT CD) = 6) or (c) feet clasping 

behaviour (chi-square = 0.603, df= 1, p= 0.213). No significant improvements in weight profile were 

observed in animals treated repeatedly with CD.HTTsiRNA nanoparticles when compared to 

untreated or naked HTT siRNA-treated animals.  
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3.7.6 Supplementary Materials and Methods 

Preparation of CD.siRNA nanoparticles 

As previously described (O'Mahony et al., 2012b), modified CDs were dissolved in 

chloroform, and chloroform evaporated under a stream of nitrogen. CDs were reconstituted 

in different physiological buffers (5% glucose, 150 mM NaCl, aCSF or DIW) and sonicated 

for 60 minutes. siRNAs were also diluted in different buffers, mixed with CDs and 

incubated for ~20 minutes at room temperature. 

Cell culture 

ST14A-HTT120Q cells were grown at permissive temperature 33 °C and 5% CO2 and sub-

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich, United 

Kingdom) + 10% Foetal bovine serum (FBS) (Sigma-Aldrich, Germany) up to passage 25. 

HD fibroblasts were grown at 37 °C and 5% CO2 and subcultured in DMEM + 20% FBS + 

5% vitamins (GIBCO, United Kingdom) + 5% aminoacids (GIBCO, United Kingdom) up to 

passage 15. 

Behavioural assessment 

Rotarod 

Balance and motor coordination were assessed using a rotarod (Model 7650, Ugo Basile, 

Italy) in a similar protocol to that described by Menalled et al. (Menalled et al., 2009). 

Rotarod task was introduced to animals by a 5-minute trial at a constant speed of 4 rpm (data 

not included in the analysis). Thereafter, animals were tested using an accelerating protocol 

with a linear increase of velocity from 4 to 40 rpm in 300 seconds. Tests were conducted 

weekly in 3 consecutive days and animals were given 3 trials per day. An interval of at least 

10 minutes was given between trials. Locomotor performance was measured as “latency to 

fall” in seconds, with a cut off of 300 seconds. 
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Grip Strength 

Muscle strength was assessed using a grip strength meter (Ugo Basile, Italy) in a similar 

protocol to that described by Menalled et al (Menalled et al., 2009). Mice were held by the 

tail and brought to the grip strength apparatus. Mice were allowed to grasp the grid with the 

front paws and were gently pulled back until they released their grip. The apparatus registers 

the peak strength for that trial. Each animal had five trials with at least 15-30 seconds rest 

between trials. The 5 trial test did not exceed 5 minutes. 

Spontaneous locomotor activity 

Spontaneous locomotor activity was assessed using a similar protocol to that previously 

described by Menalled et al. (Menalled et al., 2009). Animals were placed individually in 

the middle of a 25x19 cm arena in a transparent acrylic cage containing usual bedding. 

Locomotor activity was then recorded for 60 minutes using Video Monitor Control Package 

from Med Associates Inc. Total distance travelled by each animal was tracked using SOF-

840-VHCM software (version 1.70). 

Paw clasping behaviour 

Typical clasping phenotype of HD was assessed by suspending mice for 60 seconds. 

Animals exhibiting feet-clasping (front or hind paws) clasping were scored positive. Similar 

protocols have been used by Rodriguez-Lebron et al. and Hickey et al. (Hickey et al., 2005; 

Rodriguez-Lebron et al., 2005a). 
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3.8 Addendum 

Delivery of CD.siRNA nanoparticles to a human in vitro model of HD (HD human primary 

fibroblasts). 

Figure 3.3. shows that CD.FAMsiRNA nanoparticles are able to effectively transfect human 

HD Fibroblasts. It is also possible to observe that CD.FAMsiRNAs nanoparticles have 

successfully escaped the endossomal pathway, with very few nanoparticles being co-

localised with late acidic endossomes/lysosomes. Interestingly, HD fibroblasts transfected 

with CD.FAMsiRNA nanoparticles presented stronger late acidic endossomal/lysosomal 

staining than cells transfected with naked FAMsiRNAs. We reason that high cellular uptake 

of CD.FAMsiRNAs resulting in an increased number of endocytic vesicles within the cell, 

may have in turn led to an enhanced production of lysosome vesicles. Conversely, naked 

FAMsiRNAs which are not easily taken up by HD fibroblasts, generate very few endocytic 

vesicles and consequently present reduced late endossoamal/lysosomal staining. 

 

CD-based siRNA delivery as therapeutical approach for HD 

In this chapter we have demonstrated, using HD as a model disease, the utility of modified 

CDs as effective and safe siRNA delivery systems for CNS applications. Although 

CD.HTTsiRNAs were very effective silencing the muHTT gene, it is worth noting that 

HTTsiRNAs here used do not distinguish between the wild-type and mutant alleles and were 

designed and developed in 2005 (Wang et al., 2005). Thus, despite their utility for proof-of-

concept studies as this one, when developing a formulation for clinical application for HD, it 

would be wise designing new siRNAs based on up-to-date algorithms. Furthermore, this 

new siRNAs would ideally be able to target the mutant HTT without affecting the wild-type 

allele, eventually by targeting disease-associated single nucleotide polymorphisms (SNP). 
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4.1 Abstract 

Progression of ribonucleic acid (RNA) interference-based gene silencing technologies for 

the treatment of disorders of the central nervous system (CNS) depends on the availability of 

efficient non-toxic nanocarriers. Despite advances in the field of nanotechnology undesired 

and non-specific interactions with different brain-cell types occur and are poorly 

investigated. To this end, we studied the cytotoxic and neuroinflammatory effects of widely-

used transfection reagents and modified amphiphilic β-cyclodextrins (CDs). All non-viral 

vectors formed positively charged nanoparticles with distinctive physicochemical properties. 

Differential and significant cytotoxic effects were observed among commercially available 

cationic vectors, whereas CDs induced limited disruptions of cellular membrane integrity 

and mitochondrial dehydrogenase activity. Interestingly, murine derived BV2 microglia cells 

and a rat striatal in vitro model of Huntington’s Disease (ST14A-HTT120Q) were more 

susceptible to toxicity than human U87 astroglioma cells. BV2 microglia presented 

significant increases in cytokine, toll-like receptor 2 and cyclooxygenase-2 gene expression 

after transfection with selected commercial vectors but not with CD.siRNA nanoparticles. 

Non-viral short interfering RNA (siRNA) nanoparticles formulated with G6 

polyamidoamine (PAMAM) dendrimers also significantly increased cytokine gene 

expression in the brain following injections into the mouse striatum.  Together our data 

identify modified CDs as nanosystems that enable siRNA delivery to the brain with low 

levels of cytotoxicity and immunological activation. 
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4.2 Introduction 

Therapeutic gene silencing by harnessing the specificity of the endogenous ribonucleic acid 

interference (RNAi) pathway offers great promise for the treatment of neurological 

disorders, such as Huntington’s Disease (HD) (Sah, 2006). However, the lack of efficient 

and safe delivery vectors has tempered the progression of this technology for the treatment 

of disorders of the central nervous system (CNS) (O'Mahony et al., 2013b). To date, both 

viral and non-viral approaches have been investigated. Despite their ability to transduce a 

wide range of cell types, several concerns have been raised against viral vectors regarding 

their immunogenicity and safety (Thomas et al., 2003). On the other hand, efforts in the field 

of nanotechnology have been put together to develop more effective and safe non-viral 

alternatives for short interfering RNA (siRNA) delivery to the CNS (O'Mahony et al., 

2013b). 

Non-viral vectors are chemically synthesised or derived from naturally occurring polymers 

and often contain cationic moieties that facilitate electrostatic interaction with anionic 

siRNAs, enabling complexation and protection from serum degradation (O'Mahony et al., 

2013b). These nanosystems have been able to successfully deliver siRNA and elicit gene 

silencing effects in a variety of cell models, including cultured neurons, but also in vivo in 

the brain of relevant models of CNS disorders (e.g. (Badaut et al., 2011; Godinho et al., 

2013; O'Mahony et al., 2012b; Wang et al., 2005)). However, and in addition to cellular 

uptake and gene silencing requirements, biocompatibility of non-viral formulations is one of 

the emerging hurdles (Ballarín-González & Howard, 2012). Although until recently 

biomaterials were considered to be relatively inert, advancements have shown that they are 

capable of causing toxic biological responses and inducing specific genomic signatures 

(Akhtar & Benter, 2007; Ballarín-González & Howard, 2012). Indeed, several delivery 

vectors (e.g. formulations containing cationic/neutral lipids, cationic linear and branched 

polymers, polyamidoamine (PAMAM) dendrimers) have been reported to cause cellular 

membrane destabilization and lysis, and to interfere with mitochondrial metabolic activity 
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leading to increased cellular oxidative stress (Hong et al., 2006b; Hunter & Moghimi, 2010; 

Lee et al., 2009; Moghimi et al., 2005). Furthermore, global changes in gene expression 

profiles, activation of the apoptotic pathway and induction of immune responses have also 

been reported to occur in a vector-dependent fashion both in vitro and in vivo upon systemic 

delivery (Bonnet et al., 2008; Gorina et al., 2009; Hollins et al., 2007; Hunter & Moghimi, 

2010; Kedmi et al., 2010; Omidi et al., 2005).  

Key contributors to the toxicological and immunological profiles of nanoparticles are the 

physicochemical properties of the assembled nanosystem as well as tissue and cell 

susceptibility (Albanese et al., 2012; O'Mahony et al., 2013b). In fact, surface 

functionalization, shape, size, charge, and architecture are fundamental aspects for cellular 

uptake and gene silencing efficiency, and have now been found to be also crucial in 

nanoparticle-mediated toxicity (Albanese et al., 2012; Gary et al., 2011; Rejman et al., 

2004). On the other hand, as ultimate targets in the CNS, neurons are notoriously difficult to 

transfect and are also very sensitive to cytotoxicity mediated by non-viral vectors 

(Krichevsky & Kosik, 2002; Tönges et al., 2006). In addition, neurodegenerative diseases, 

such as HD, may render specific neuronal populations more susceptible to toxic stimuli and 

therefore adequate non-toxic carriers must be used (Rigamonti et al., 2000). Furthermore, 

inducing gene silencing effects in the brain requires, in various circumstances, interaction of 

nanoparticles with different cell types, including microglia and astroglia. Thus, non-specific 

toxic interactions with these cell types may reduce brain homeostasis, induce inflammatory 

processes and eventually accelerate progression of neurological diseases (Amor et al., 2010). 

However, despite its importance, the nanotoxicological and neuroinflammatory impact of 

nanoparticles for gene and RNAi in the intricate context of the CNS is still relatively poorly 

investigated. In fact, most studies have focused on single CNS cell types, essentially 

providing efficacy data and only presenting limited data on the cytoxicity and inflammatory 

profiles of delivery systems. Thus, a systematic and integrated assessment of the cytotoxic 
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and neuroinflammatory effects of commonly used transfection reagents in multiple brain-

derived cells is warranted. 

To this end the present study aims to assess the toxicological and immunological profiles of 

three commercially available and widely used cationic vectors and a modified cationic 

amphiphilic cyclodextrin (CD) delivery system. These biomaterials were chosen on the basis 

of their particular molecular architecture and/or in order to cover the most widely used 

polycation-based delivery systems. Potential biological adverse effects and 

neuroinflammatory responses were assessed in three different brain-derived cell lines: 

ST14A-HTT120Q cells derived from rat striatal primordia and previously cloned with the 

mutant Huntingtin (HTT) gene were chosen as we are interested in developing non viral 

therapeutic approaches for HD (Godinho et al., 2013);  mouse BV2 microglial cells were 

chosen as model of CNS resident immune cells; and U87 human astroglioma cells were 

chosen as brain cancer in vitro model. Moreover, we investigated local immune responses to 

these distinctive biomaterials in vivo after single bilateral injections into the striatum of 

mice. 
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4.3 Materials and methods 

4.3.1 Synthetic siRNAs 

Synthetic duplexed siRNAs were obtained from QIAGEN (United Kingdom) or Sigma-

Aldrich (France). Non-silencing siRNAs (NSsiRNA): sense strand, 5’-

UUCUCCGAACGUGUCACGUdTdT-3’; antisense strand, 5’-

ACGUGACACGUUCGGAGAAdTdT-3’. Non-silencing FAM-labelled siRNA 

(FAMsiRNA): sense strand, 5’-[6FAM] UUCUCCGAACGUGUCACGUdTdT-3’; antisense 

strand, 5’-ACGUGACACGUUCGGAGAAdTdT-3’. HTT siRNAs as per Wang et al. 2005 

(Wang et al., 2005): 5’-GCCUUCGAGUCCCUCAAGUCC-3’; antisense strand, 5’-

ACUUGAGGGACUCGAAGGCCU-3. 

4.3.2 Nanoparticle preparation and characterisation 

Modified cationic amphiphilic CDs were prepared as previously described in O’Mahony et 

al. (O'Mahony et al., 2012b) and Godinho et al. (Godinho et al., 2013). Briefly, CDs were 

dissolved in chloroform and evaporated under a stream of gaseous nitrogen. CDs were then 

rehydrated in sterilised deionised water (DIW) and sonicated for 1 hour before complexation 

with siRNAs. For nanoparticle formation, CDs were mixed with equal volumes of siRNA 

solutions and left to incubate at room temperature (RT) for 20 minutes. Commercially 

available cationic vectors, Lipofectamine
TM

2000 (Lf2000) (Invitrogen, Carlsbad, CA), 

INTERFERin
®
 (Interferin) (PolyPlus

®
, France) and Superfect

®
 (SF) (QIAGEN, United 

Kingdom) were complexed with siRNAs as per manufacturer’s instructions. CD.siRNA 

nanoparticles were used at a mass ratio 10:1 (10 µg CD : 1 µg siRNA). The final 

vector/siRNA ratios for commercially available transfection reagents were selected or 

adapted from manufacturer’s recommendations to facilitate comparisons across vectors in 

vitro and also to facilitate comparison with in vivo studies (Lf2000 (1 µL Lf2000 : 20 pmol 

siRNA), SF (5 µL SF : 1 µg siRNA) and Interferin (1-1.2 µL Interferin : 0.1-0.2 µg siRNA). 
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For physicochemical characterisation all nanoparticles were prepared in sterilised DIW and 

further diluted in DIW up to 1 mL. Size and charge measurements were assessed at RT by 

dynamic light scattering (DLS) and electrophoretic light scattering, respectively, using a 

Malvern’s Zetasizer Nano ZS as previously described in O’Mahony et al. (O'Mahony et al., 

2012b) and Godinho et al. (Godinho et al., 2013). Results are expressed in mean ± standart 

deviation (DS) of 3 independent experiments. For in vivo studies nanoparticles were 

prepared in 5% glucose solution (Sigma-Aldrich, Germany) and CD.siRNA nanoparticles 

concentrated by ultrafiltration using Vivaspin 500 spin columns (Sartorius, Germany) to a 

final concentration of siRNA of 0.08 µg/µL. 

4.3.3 Cell culture and RNAi transfection 

ST14A-HTT120Q cells derived from rat striatal primordia and cloned with the human HTT 

gene were obtained from Coriell Institute for Medical Research (Camden, NJ). BV2 cells 

derived from primary mouse microglia cells were obtained from Banca Biologica e Cell 

Factory – IST (Italy, Genova). U87 astroglioma cells were a kind gift from Dr. Paul Young 

(University College Cork). ST14A-HTT120Q cells were cultured in Dulbecco’s Modified 

Eagle Medium (DMEM) (Sigma, St. Louis, MO) supplemented with 10% Fetal Bovine 

Serum (FBS) (Sigma, Germany). BV2 cells were maintained in Roswell Park Memorial 

Institute medium 1640 (RPMI) (GIBCO, United Kingdom) medium supplemented with 10% 

FBS and 2 mM L-glutamine (GIBCO, United Kingdom). U87 cells were grown in DMEM 

supplemented with 10% FBS and 2 mM L-glutamine (GIBCO, United Kingdom). For 

passaging ST14A-HTT120Q and U87 cells 0.05% Trypsin-EDTA (GIBCO, United 

Kingdom) was used, for passaging BV2 cells 0.25% Trypsin-EDTA (Sigma, United 

Kingdom) was used. All cultures were kept in a humidified incubator with 5% CO2 and at 

33 °C (ST14A-HTT120Q) or 37 °C (BV2 and U87). ST14A-HTT120Q, BV2 and U87 cells 

were seeded in 96-well plates at a density of 7.5 x 10
3
, 1 x 10

4
 and 1 x 10

4
 cells / well, 

respectively. For experiments carried out on 12-well plates cells were seeded at a density of 

1.7 x 10
5
, 0.3 x 10

6
, and 2 x 10

5
 cells / well, respectively. 
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RNAi transfection or stimulation with lipopolysaccharide (LPS) (Sigma, Germany) was 

carried out for 4, 24 or 48 hours according to the experiment. Nanoparticles were prepared 

as described above and diluted in optiMEM
®.

 The volume of transfection sample accounted 

for 20% of the total volume of the well, the remaining 80% consisted of complete growth 

media. The final concentration of siRNA in all RNAi-treated groups was of 100 nM. 

4.3.4 Trypan blue exclusion assay 

The trypan blue assay is a well established method for the evaluation of cell viability in cell 

suspensions (Kepp et al., 2011). This is a dye exclusion assay technique whereby viable 

cells, with intact cellular membranes, exclude the dye and nonviable cells incorporate the 

dye (Kepp et al., 2011). The method was conducted essentially as previously described in 

O’Mahony et al. (O'Mahony et al., 2012b). Briefly, cells were seeded in 12-well plates and 

transfected as described above. After 24 hours cell supernatants were collected, spun down, 

decanted into new tubes and stored at -80 ºC. Cells were washed with phosphate buffered 

saline (PBS) (Sigma, United Kingdom) and detached using 0.25% trypsin-EDTA (Sigma, 

United Kingdom). Cell suspensions were spun down at 1,000 revolutions per minute (rpm) 

for 5 minutes and the supernatant decanted. Cell pellet was resuspended in 1 mL of 

respective growth media. A 1:1 dilution of the cell suspension in a trypan blue solution 0.4% 

(Sigma, United Kingdom) was carried out, and cell counts (total and living cells) were 

obtained from BioRad TC10
TM

 Automated Cell Counter. 

4.3.5 Lactate Dehydrogenase release assay 

Lactate Dehydrogenase (LDH) release assay measures early and even transient damages to 

the cellular membrane (Kepp et al., 2011). An increased leakage of cytosolic LDH to the cell 

supernatant has been associated with an increase in cytototoxicity (Kepp et al., 2011). LDH 

assay was carried out on cell supernatants using CytoTox
®
 96 Non-radioactive Cytotoxicity 

Assay from Promega (Madison, WI) as per manufacturer’s instructions. Briefly, cell 

supernatants were defrosted on ice and 50 µL of each sample was placed in triplicate on 96-
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well plates and respective complete media used as control. 50 µL of substrate solution was 

added into each well and incubated at RT for 30 minutes protected from light. 50 µL of stop 

solution was added to each well and absorbance measured at 490 nm using a SpectraMax 

Plus384 plate reader. 

4.3.6 Methyl thiazolyl tetrazolium assay 

Methyl thiazolyl tetrazolium (MTT) (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromide) (Sigma, St. Louis, MO) assay assesses mitochondrial reductase 

activity and therefore is a good measure of cellular metabolism (Kepp et al., 2011). 

Reduction in mitochondrial dehydrogenase activity has been associated with reduced cell 

viability. MTT assays were carried out in 96-well plates as previously described in Godinho 

et al. (Godinho et al., 2013) and O’Mahony et al. (O'Mahony et al., 2012b). 

4.3.7 Cell Integrity Assay by High Content Analysis 

High Content Analysis (HCA) is a high throughput technique that allows for screening of 

multiple cellular features based on automated cell imaging analysis. In this study, Cytiva
TM

 

Cell Integrity HCA Assay was used to investigate different cell viability parameters such as 

plasma membrane integrity, mitochondrial viability and apoptosis (Cat. #. 29-0244-69, GE 

Healthcare, UK). Briefly, dye cocktails containing membrane permeable / impermeable 

DNA, mitochondrial and phosphatidylserine dyes were prepared following manufacturer’s 

instructions. Cells incubated with Ionomycin 20 µM for 2 hours were validated and included 

as positive control for cytotoxicity and apoptosis.  Three images per well were acquired 

using the IN Cell Analyser 1000 (GE Healthcare, United Kingdom) with a 20x objective. 

Further information on excitation and emission wavelengths used for detection of each dye 

is described in Supplementary Information (SI), Supplementary Materials and Methods. 

After acquisition, data were analysed using In Cell
®
 1,000 Workstation software (GE 

Healthcare, United Kingdom) using multitarget analysis. Specific details on the settings used 

for analysis are given in SI, Supplementary Materials and Methods. 
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4.3.8 Gene expression 

RNA was isolated using GenELUTE
TM

 Mammalian Total RNA Miniprep Kit (Sigma, St. 

Louis, MO). 300 ng of total RNA was reverse transcribed to complementary DNA (cDNA) 

using the High-capacity cDNA reverse transcription kit from Life technologies, Applied 

Biosystems (Foster City, MO). Real-time quantitative Polymerase chain reaction (RT-qPCR) 

was performed using a 7300 Real Time Polymerase chain reaction (PCR) system under the 

cycling conditions previously described in Godinho et al. (Godinho et al., 2013). Mouse 

Tumour Necrosis Factor (TNF)-α (Mm00443258_m1), Interleukin (IL)-1β 

(Mm00434228_m1), IL-6 (Mm00446190_m1), Toll-like receptor (TLR) 2 

(Mm00442346_m1), cyclooxygenase 2 (COX-2) (Mm00478374_m1) and β-actin 

(4352341E) Taqman
®
 gene expression assays were acquired from Life technologies, 

Applied Biosystems (United Kingdom). Custom TaqMan
®
 HTT FAM-labelled probe was 

designed on previously validated primers as per Godinho et al. (Godinho et al., 2013). 

Samples were run in triplicate and average CT values were used for gene expression 

calculations. β-actin gene expression was used as endogenous control and relative cytokine 

gene expression was calculated on normalized CT values. 

4.3.9 Brain stereotaxic surgery 

Bilateral injections into the striatum (CPu) of 6-week old C57/BL6 male mice (Harlan, 

United Kingdom) were carried out through brain stereotaxic surgery. Previously optimised 

coordinates from bregma were used (Anterior-posterior = + 0.7, Medio-lateral = ± 2.0 and 

Ventral = - 3.0) and a total volume of 2.5 µL was delivered bilaterally at a rate of 0.5 

µL/min. In RNAi treated animals 0.2 µg of siRNA was delivered in each side and in positive 

control animals LPS (3 µg) was injected. Following the injection 5 minutes extra were given 

before the syringe was retracted to avoid flush back. Bone wax (ETHICON, 

Johnson&Johnson, Belgium) was used to cover the burr hole and sterile sutures (ETHICON 

Mersilk, Belgium) were used to sew the skin. All procedures were conducted under gaseous 
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anaesthetic Isofluorane (IsoFlo
®
, Abbott, United Kingdom). After 24 hours animals were 

euthanized and brain tissue collected using a brain slicer matrix. Tissue for western blotting 

was snap frozen in dry ice and tissue for gene expression analysis was kept in RNA later 

(Sigma, United Kingdom) at 4 ºC overnight. All tissues were thereafter kept in -80 ºC until 

further analysis. All animal experimental procedures were approved by the ethical 

committee at the University College Cork and performed in accordance with the European 

Union directive 2010/63/EU for animals used for scientific purposes. 

4.3.10 Western blotting 

Brain tissue from the site of injection was disrupted by homogenization in lysis buffer and 

total protein quantified using a bicinchoninic acid assay as described in Godinho et al. 

(Godinho et al., 2013). 30 µg of total protein was loaded on NuPAGE Novex 4-12% Bis-

Tris gel (Invitrogen, Carlsbad, CA). Protein electrophoresis, protein transfer to a 

polyvinylidene difluoride (PVDF) membrane (Millipore, Bedford, MA) and membrane 

blocking was carried out as described in Godinho et al. (Godinho et al., 2013). Membranes 

were incubated overnight with anti-Glial Fibrillary Acidic Protein (GFAP) antibody 

(dilution 1:1,000) (MAB3402, Millipore, Temecula, CA) or anti-β-actin (dilution 1:3,000) 

(A5441, Sigma, St Louis, MO). Membrane was washed with Tris-buffered saline solution 

containing 0.1% Tween 20 (Fisher Scientific, Fair Lawn, NJ) and incubated for 1 hour with 

anti-mouse antibody (dilution 1:10,000) (IRDye 800CW, LI-COR). LICOR Odyssey near-

infrared scanner was used to scan membranes and ImageJ software to carry out densitometry 

analysis. All results were normalised to the house keeping gene β-actin.  

4.3.11 Statistical analysis 

Unless otherwise stated results are expressed as mean ± standard error of mean (SEM). One-

way analysis of variance (ANOVA) followed by Bonferroni’s Post Hoc test was carried to 

determine statistical significant differences in particle size and surface charge among all 

non-viral vectors. ANOVA followed by Dunnett’s Post Hoc test was used to determine 
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significant statistical differences between naked siRNA, CD, Lf2000, Interferin and SF 

against untreated controls. Student’s t-tests were carried out to investigate significant 

differences between LPS-positive controls and untreated controls. In in vivo studies 

statistical significant differences were investigated against vehicle, whereas untreated 

animals were only kept as a reference. All statistics were carried out using PAWS 18 

Statistical package. 
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4.4 Results 

4.4.1 Physicochemical characterisation of non-viral siRNA nanoparticles 

The non-viral delivery systems investigated in this study have been represented in Figure 4.1 

a.  Cationic amphiphilic CDs are siRNA nanocarriers consisting of click-modified β-CDs 

(Godinho et al., 2013; O'Mahony et al., 2012b). On the other hand, Lf2000 consists of a 

cationic liposome formulation (3:1 DOSPA:DOPE (Fiszer-Kierzkowska et al., 2011; 

Vangasseri et al., 2006)), Interferin is a proprietary cationic non-liposomal amphiphile and 

SF is a 6
th
 generation fractured PAMAM dendrimer (Hollins et al., 2007). Lf2000, Interferin 

and SF are commercially available and have been widely used for nucleic acid transfection. 

Although all cationic vectors were able to successfully bind and complex siRNAs as shown 

in gel retardation assays (Figure 4.1 b), the hydrodynamic radius, polydispersity and surface 

charge of these non-viral siRNA nanoparticles varied significantly (Figure 4.1 c,d). CD 

(192.34 ± 9.89 nm) and Lf2000 siRNA nanoparticles (222.37 ± 4.96 nm) were significantly 

larger than Interferin (122.83 ± 7.86) and SF (148.81 ± 16.33). Furthermore, polydispersity 

index (PDI) of these nanoparticles decreased in the following order CD (0.329 ± 0.033) > 

Interferin (0.173 ± 0.038) > SF (0.129 ± 0.048) > Lf2000 (0.071 ± 0.007), suggesting 

different degrees of homogeneity within samples. Finally, zeta potential measurements 

demonstrated that all non-viral siRNA nanoparticles were positively charged and that 

CD.siRNA nanoparticles presented the lowest surface charge. However, no statistically 

significant differences were found among the different systems (Figure 4.1 d). 
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Figure 4.1. Physicochemical characterisation of non-viral siRNA nanoparticles. (a) Schematic 

representation of non-viral vectors. (b) Gel retardation assay for siRNA binding and complexation. 

Free siRNA migrates through the gel. 0.3µg siRNA per well. (c) Hydrodynamic radius of non-viral 

siRNA nanoparticles measured by DLS. (d) ζ potential measured through electrophoretic light 
scattering. Results are expressed as Mean ± SD. **P<0.01 and *** P<0.001. n = 3 per group. 

Abbreviations: CD, Cylcodextrin; DLM, Dynamic light scattering; Interf., Interferin; Lf2000, 

Lipofectamine2,000; SF, Superfect®.  

 

4.4.2 Gene silencing efficiency in ST14A-HTT120Q cells 

For completion and to enable further comparison among the different vectors their gene 

silencing efficiency was investigated in ST14A-HTT120Q cells, an in vitro model of HD. 

Transfection with Lf2000 and Interferin induced the highest levels of HTT gene expression 

knockdown in this cell line (Table 4.1). Furthermore, CD.siRNA nanoparticles also induced 

a very high level of HTT gene expression knockdown, whereas SF was the nanosystem that 

achieved the lowest level of gene expression knockdown in this cell line (Table 4.1). 
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Table 4.1. HTT gene expression knockdown efficiency of non-viral vectors in ST14-HTT120Q cells 

Non-viral delivery system 
HTT gene expression knockdown 

(% of untreated controls) 

Cyclodextrin 45.06 ± 16.49 

Lipofectamine®2000 69.90 ± 6.42 

INTERFERin® 63.74 ± 12.13 

Superfect® 29.25 ± 6.80 

 

4.4.3 Direct biological adverse effects of non-viral siRNA nanoparticles in brain-

derived cell lines 

Assessment of direct biological adverse effects using conventional end-point methods 

revealed differential toxicity profiles of non-viral siRNA nanoparticles within the same 

brain-derived cell line. Moreover, trypan blue exclusion assays (Figure 4.2 a – c), LDH 

assays (Figure 4.2 d – f) and MTT assays (Figure 4.2 g – i) provided insights into the various 

aspects of cellular toxicity. Trypan blue dye exclusion assays provided robust live/dead cell 

evaluation based on permanent cellular membrane damage, LDH assays detected transient 

and early injury to the cellular membrane and  MTT assays were used as a measure of 

cellular metabolic activity (Jurisic et al., 2008; Kepp et al., 2011; Lappalainen et al., 1994). 

In the rat striatal cell line (ST14A-HTT120Q) siRNA transfections using Lf2000 and 

Interferin resulted in significant reduction in cell viability (53.2 ± 3.1% and 37.6 ± 7.5% 

viable cells after 24 hours, respectively), increased LDH release (4.08 ± 0.08 and 5.06 ± 0.39 

fold-increase after 24 hours, respectively) and reduction in mitochondrial dehydrogenase 

activity (46.29 ± 0.53%, 76.36 ± 2.39% metabolically active cells after 48 hours, 

respectively) (Figure 4.2 a,d,g). Although after 24 hours transfection SF.siRNA 

nanoparticles did not affect cell viability or LDH release, they had significant effects in 

mitochondrial metabolic activity after 48 hours (71.72 ± 0.54%). No significant adverse 
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effects were detected for CD.siRNA nanoparticles in all toxicity tests carried out in ST14A-

HTT120Q cells (Figure 4.2 a,d,g). 

Interferin and SF siRNA nanoparticles significantly reduced cell viability (56.47 ± 5.29% 

and 43.88 ± 1.44% viable cells after 24 hours, respectively), increased LDH release (2.59 ± 

0.06, 2.93 ± 0.08 fold-increase after 24 hours, respectively) and reduced dehydrogenase 

activity (12.60 ± 1.85%, 53.13 ± 4.00% metabolically active cells after 48 h, respectively) in 

BV2 microglia cells (Figure 4.2 b,e,h). Although Lf2000 did not reduce cell viability, it 

significantly increased LDH release after 24 hours (2.10 ± 0.084 fold-increase) and reduced 

dehydrogenase activity (36.78 ± 2.97% metabolically active cells) after 48 hours. On the 

other hand, CD.siRNA nanoparticles only modestly affected cellular metabolic activity 

(79.59 ± 6.13% metabolically active cells) in BV2 cells after 48 hours (Figure 4.2 b,e,h). 

Although not dramatically, Lf2000 and interferin siRNA nanoparticles significantly reduced 

cell viability (92.09 ± 1.50% and 92.43 ± 1.91% viable cells after 24 hours transfection, 

respectively) and increased LDH release (3.13 ± 0.51% and 3.85 ± 0.30 fold-increase after 

24 hours, respectively) in U87 astroglioma cells (Figure 4.2 c,f,i). However, after 48 hours 

Interferin.siRNA nanoparticles did not induce significant changes in mitochondrial 

metabolic activity in this cell line whereas Lf2000 did (81.50 ± 0.63% metabolically active 

cells). Although no changes were observed in trypan blue and LDH assays after 24 hours, 

SF.siRNA nanoparticles induced mitochondrial adverse effects detected by MTT assay after 

48 hours (47.39 ± 0.70% metabolically active cells). No toxic effects in U87 cells were 

observed with CD.siRNA nanoparticles in the tests performed (Figure 4.2 c,f,i). Trypan blue 

dye exclusion assays, LDH and MTT biochemical assays did not detect any detrimental 

effects of naked siRNAs in the brain-derived cell lines tested in this study.
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Figure 4.2. Evaluation of nanoparticle-induced cytotoxicity in multiple brain-derived cell lines 

using conventional methods. ST14A-HTT120Q cells (a, d, g), BV2 microglial cells (b, e, h) and U87 

cells (c, f, i) were transfected using different non-viral siRNA nanoparticles. Final concentration of 
siRNA in RNAi-treated groups was of 100 nM for all experiments. Trypan blue exclusion assays (a-c) 

and LDH release assays (d-f) were carried out after 24 hours of transfection. MTT assays were 

performed after 48 hours transfection (g-i). Results are expressed as Mean ± SEM. *P<0.05, 

**P<0.01 and ***P<0.001 against untreated control. n = 3-5 per group. Abbreviations: CD, 

Cylcodextrin; Interf., Interferin; Lf2000, Lipofectamine2000; MTT, Methyl thiazolyl tetrazolium ; 

siRNA, Naked siRNA; SF, Superfect®; Unt., Untreated. 

 

HCA was used to further investigate nanoparticle-induced cytotoxicity in the ST14A-

HTT120Q in vitro model of HD (Figure 4.3). Figure 4.3 a shows fused images of the HCA 

cell integrity assay where membrane permeant nuclear blue stain identifies viable living 

cells, membrane impermeant red nuclear dye identifies dead cells (co-staining with blue 

yields magenta), phosphatidylserine green marker identifies apoptotic cells and red 

mitochondrial stain identifies healthy mitochondria. After 24 hours, Lf2000 and Interferin 

significantly reduced the number of viable cells (51.61 ± 3.62% and 18.93 ± 5.17% of total 

number of cells, respectively) and  increased the number of late apoptotic (43.72 ± 2.98% 

and 71.98 ± 5.48% of total number of cells, respectively) and dead cells (4.68 ± 1.90% and 
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9.09 ± 2.67% of total number of cells, respectively) (Figure 4.3 b). In addition, Lf2000 and 

Interferin also significantly decreased cell density by 45.12 ± 3.32% and 49.86 ± 1.69%, 

respectively, when compared to untreated controls (Figure 4.3 c). Furthermore, HCA 

revealed that Lf2000 and Interferin increased membrane permeability by 147.80 ± 5.17% 

and 241.60 ± 8.69%, respectively, when compared to untreated controls following cellular 

insult (Figure 4.3 d). Despite obvious differences in sensitivity, these results are in 

accordance with trypan blue and LDH assays, respectively. Nuclear morphology analysis 

showed significant shrinkage of the nuclear area in Lf2000 (-23.49 ± 2.33%) and Interferin 

(-43.35 ± 0.84%) transfected cells (Figure 4.3 e). Additionally, Lf2000 and Interferin 

significantly reduced mitochondrial membrane potential (MMP) by 38.4 ± 0.63% and 45.04 

± 2.79%, respectively (Figure 4.3 f). On the other hand, naked siRNAs, CDs and SF did not 

alter significantly any of the above mentioned cell integrity parameters when compared to 

untreated controls. However, and in contrast with CDs which have efficiently transfected 

ST14A-HTT120Q cells in the present study, it is worth noting that the good viability profile 

observed for SF might have been associated with the lower levels of transfection achieved in 

this particular cell line. Finally, cells stimulated for 2 hours with a calcium ionophore 

(Ionomycin 20 µM), known to increase release of intracellular calcium and to induce an 

apoptotic like process, presented reduction in cell densities, number of viable cells, nuclear 

area and the MMP. Ionomycin also significantly increased the number of late apoptotic cells 

and plasma membrane permeability when compared to untreated controls (Figure 4.3 a-f).  
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Figure 4.3. Nanoparticle-induced cytotoxicity in ST14A-HTT120Q striatal cells assessed by High 

Content Analysis. ST14A-HTT120Q cells were transfected for 24 h with different non-viral siRNA 

nanoparticles. Final concentration of siRNA in RNAi-treated groups was of 100 nM. Ionomycin 20 
µM incubated for 2 h was used as positive control for apoptosis. (a) Representative fused images 

obtained from HCA consisting of (blue) nuclear permeant dye indicating viable cells, (red) 

mitochondrial stain identifying healthy mitochondrion, (green) marker for presence of 

phosphatidylserine in outer plasma membrane and (magenta) indicating co-localization of blue 

nuclear stain with membrane impermeant dye, identifying late apoptotic cells. (b) Percentage of 

viable, apoptotic and dead cells from total cell count. (c) Cell number (d) Membrane permeability (e) 

Nuclear area and (f) Mitochondrial membrane potential presented as a percentage of untreated 

controls. Results are expressed as Mean ± SEM. *P<0.05, **P<0.01 and ***P<0.001 against 

untreated control. n = 3 per group. Abbreviations: CD, Cylcodextrin; Interf, Interferin; Ion, 

Ionomycin; Lf2000, Lipofectamine2,000; SF, Superfect®; Unt, Untreate; siRNA, Naked siRNA.  
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4.4.4 Nanoparticle-induced neuroinflammatory responses in brain-derived cell 

lines 

Immune responses in the CNS are mainly mediated by microglia and astroglia. Therefore 

here we tested BV2 microglia cells and U87 astroglioma cells for the expression of pro-

inflammatory markers, such as cytokines, after transfection with different non-viral vectors.  

Results showed that after only 4 hours Lf2000, Interferin and SF siRNA nanoparticles had 

significantly increased TNF-α gene expression (2.65 ± 0.28, 1.98 ± 0.24, 2.26 ± 0.4 fold-

increase, respectively), which was further increased for Interferin and SF (29.59 ± 2.18 and 

46.35 ± 2.75, respectively) after 24 hours (Figure 4.4 a). IL-1β gene expression was only 

found to be significantly increased in cells transfected with SF.siRNA nanoparticles after 4 

hours (26.58 ± 11.22 fold-increase), however after 24 hours both Interferin and SF induced 

significant increases in IL-1β gene expression (225.88 ± 63.65 and 386.51 ± 115.07, 

respectively) (Figure 4.4 b). In contrast, no significant changes from untreated controls were 

observed for cells treated with naked siRNA or CD.siRNA nanoparticles for any of the 

cytokines assessed at any of the time points (Figure 4.4 a,b). A positive control for cytokine 

release, LPS induced a significant increase in TNF-α and IL-1β gene expression 

immediately after 4 hours stimulation. The expression of IL-6 was also assessed in this 

study, yet no expression of this cytokine was detected with either LPS positive control or 

with the different non-viral vectors (data not shown). For completion of these results we 

investigated cytokine release to the culture medium in BV2 and U87 cells through multi-spot 

enzyme-linked immune sorbent assay (ELISA) after 24 hours transfection. In BV2 cells, 

Lf2000, Interferin and SF significantly increased TNF-α release when compared to untreated 

controls (2.55 ± 0.11, 1.80 ± 0.48 and 1.54 ± 0.23 pg/mL, respectively), however this was 

only a modest increase at this particular time point (SI, Supplementary Figure S4.1). Release 

of IL-1β in BV2 cells was only found to be modestly increased with LPS and none of the 

vectors induced significant release of this cytokine (SI, Supplementary Figure S4.1). In the 

U87 astroglioma cell line, Lf2000 and Interferin were found to significantly increase release 
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of IL-6 (51.89 ± 6.44, 49.08 ± 7.38 pg/mL, respectively) (SI, Supplementary Figure S4.1). 

Moreover, stimulation of U87 cells with LPS resulted in low levels of expression of TNF-α 

and IL-1β release after 24 hours (data not shown).  

The expression of the pattern recognition TLR2 was also assessed and found to be 

significantly increased in BV2 cells after 4 hours transfection with Lf2000 (3.16 ± 0.14 fold-

increase) and Interferin (3.47 ± 0.54 fold-increase) (Figure 4.4 c). Further increases were 

observed at 24 hours for Interferin (11.73 ± 0.64 fold-increase) and SF siRNA nanoparticles 

(11.51 ± 1.13 fold-increase). On the other hand, neither naked siRNAs nor CD.siRNA 

nanoparticles induced significant increases in the expression of this pattern recognition 

receptor (Figure 4.4 c). Finally, the expression of the pro-inflammatory prostaglandin 

synthase COX-2 was found to be significantly increased in BV2 cells treated with SF.siRNA 

nanoparticles (84.25 ± 7.95 fold-increase) (Figure 4.4 d). Despite a modest increase 

observed with siRNA nanoparticles formulated with CD (2.56 ± 0.90 fold-increase), Lf2000 

(2.74 ± 0.56 fold-increase) and Interferin (2.85 ± 0.75 fold-increase) results for these 

nanoparticles did not reach significance when compared to untreated controls. 
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Figure 4.4. Nanoparticle-induced pro-inflammatory gene expression in BV2 microglia cells. BV2 
microglia cells were transfected for 4 or 24 hours using different nanoparticles. Final siRNA 

concentration was of 100 nM for all experiments. Total RNA was extracted, reverse transcribed to 

cDNA and gene expression assessed by RT-qPCR. (a-c) First bar series correspond to gene 

expression at 4 hours and second bar series to 24 hours. All results were normalized to the expression 

of β-actin endogenous control. LPS was used as positive control. Results are expressed as Mean ± 

SEM. *P<0.05, **P<0.01, ***P<0.001 and ###P<0.001 against untreated control. n = 3-5 per 

group. Abbreviations: CD, Cylcodextrin; cDNA, complementary DNA; Interf, Interferi; Lf2000, 

Lipofectamine2000; siRNA, Naked siRNA; SF, Superfect®; LPS, Lipopolysaccharide; RT-qPCR, Real 

time quantitative PCR; Unt, Untreated. 

 

4.4.5 Acute in vivo neuroinflammatory responses to non-viral siRNA 

nanoparticles in the brain 

In order to investigate local activation of immune response in the brain caused by non-viral 

siRNA nanoparticles, direct injections into the striatum of C57/BL6 mice were performed. 

Subsequently, gene expression of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 gene 

expression were assessed through RT-qPCR (Figure 4.5). After 24 hours, all animals 

subjected to stereotaxic brain surgery revealed an expected increase in the expression of 

TNF-α due to mechanical lesion and trauma. However, only SF.siRNA nanoparticles 
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significantly increased the expression of this cytokine when compared to vehicle-treated 

animals (527.40 ± 137.10 fold-increase) (Figure 4.5 a). Furthermore, the expression of IL-1β 

was found to be undetectable in untreated control animals and only SF.siRNA nanoparticles 

significantly increased its expression when compared to vehicle-treated animals (Figure 4.5 

b). Finally, expression of IL-6 was found to be significantly enhanced in animals treated 

with SF.siRNA nanoparticles (259.50 ± 94.54 fold-increase) and a trend towards 

significance was found for animals treated with Interferin.siRNA nanoparticles (Figure 4.5 

c). Naked siRNA did not stimulate the expression of any of the cytokines screened in this 

study. In contrast, LPS caused a significant and dramatic increase in TNF-α, IL-1β and IL-6 

after 24 hours. 

Furthermore, astroglia activation was evaluated by assessing GFAP levels across the 

different treatment groups (Figure 4.5 d box). All animals subjected to brain surgery 

presented increased levels of GFAP when compared to untreated animals. Although a 

positive trend towards significance is clear for animals treated with Lf2000 and SF siRNA 

nanoparticles, no statistical significance was achieved (Figure 4.5 d).  Moreover, only 

modest weight loss was noted in all RNAi-treated animals, except for the SF-treated group 

where significant differences were observed when compared to vehicle-treated animals (SI, 

Supplementary Figure S4.2). 
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Figure 4.5. Acute in vivo neuroinflammatory responses to non-viral siRNA nanoparticles in the 

brain. Different non-viral siRNA nanoparticles were injected bilaterally (2 x 0.2 µg siRNA / 2.5µL) 

into the striatum of 6-week old C57/BL6 male mice. After 24 hours, total RNA was extracted, reverse 

transcribed to cDNA and cytokine gene expression assessed by RT-qPCR (a-c). (d) Western blot (box) 
and densitometry analysis for GFAP protein expression. LPS was used as positive control. All results 

were normalized to the expression of β-actin endogenous control. Results are expressed as Mean ± 

SEM. ***P<0.001 and ###P<0.001 against vehicle control. n = 3-12 per group. Abbreviations: CD, 

Cylcodextrin; cDNA, Complementary DNA; Interf, Interferin; GFAP, Glial Fibrillary Acidic Protein; 

Lf2000, Lipofectamine2000; LPS, Lipopolysaccharide; ND, Not detected; SF, Superfect®; siRNA, 

Naked siRNA; RT-qPCR, Real time quantitative PCR; Unt, Untreated; Vehicle, 5% glucose. 

  



CHAPTER IV – NANOTOXICOLOGICAL AND NEUROINFLAMMATORY RESPONSES TO SIRNA 

NANOPARTICLES 

180 

 

4.5 Discussion 

Developing nanosystems for RNAi delivery is a difficult balancing act between inducing an 

appropriate level of efficacy versus the biocompatibility and safety liabilities of the 

assembled nanosystem. This is particularly cogent for disorders of the CNS where neuronal 

and glial cells are highly sensitive to cytotoxic insults. Moreover, the rapid developments in 

nanotechnology have resulted in the establishment of a wide range of non-viral vectors 

whose biological and immunological effects in the CNS are still to be comprehensively 

elucidated and compared. Thus, this report aims to solely evaluate the differential 

nanotoxicological and neuroinflammatory effects of widely used non-viral vectors for 

siRNA delivery to the CNS.  

The physicochemical characteristics of the assembled nanosystem have been shown to 

dictate cellular uptake and gene knockdown efficiency, but also their cytotoxic effect. In this 

study, the different vectors (CD, Lf2000, Interferin and SF) yielded nanoparticles with 

comparable surface charges but with varying hydrodynamic sizes. Similar particle sizes have 

been previously reported by our group for CD.siRNA nanoparticles in DLS studies 

(Godinho et al., 2013; O'Mahony et al., 2012b), and further confirmed by morphological 

studies using transmission electron microscopy (O'Mahony et al., 2013d). Furthermore, 

vectors achieved different degrees of gene silencing of the mutant HTT gene in an in vitro 

model of HD (ST14A-HTT120Q), with CD.siRNA nanoparticles having a similar potency to 

that described previously (Godinho et al., 2013). However, and despite the fact that all 

nanoparticles presented comparable surface charges, only CD.siRNA nanoparticles have 

consistently presented safer cytotoxic profiles across most cell lines and assays here 

performed. Thus, in spite of the well documented detrimental effects of high positive surface 

charges (Bertero et al., 2013; Hong et al., 2006b; Hunter, 2006; Kedmi et al., 2010), we 

suggest that the differences in cytotoxicity and also in the degree of HTT suppression 

observed, are probably in part associated with other characteristics of the nanoparticles, such 

as size and/or morphology. Indeed, others have found that nanoparticle size is a key factor in 
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determining the specific cellular uptake and intracellular trafficking pathways whereas 

nanoparticle morphology may determine selective uptake by neurons and/or microglia 

(Albanese et al., 2012; Rejman et al., 2004). We also reason that, biodegradability and 

clearance of the nanosystem from the intracellular compartment could have played an 

important role in cellular toxicity, however, further investigations are needed to clarify the 

mechanisms implicated. On the other hand, it is of interest to note that recent microarray 

data show that different biomaterials induce cell-specific “gene fingerprints”, deregulating 

various genes related to apoptosis, cell proliferation and differentiation and mechanisms of 

DNA repair (Choi et al., 2010; Hollins et al., 2007; Merkel et al., 2011; Omidi et al., 2005). 

In turn, these genomic disruptions significantly differ between empty non-viral vectors and 

assembled nanosystems (containing their nucleic acid cargo) (Choi et al., 2010; Hollins et 

al., 2007; Omidi et al., 2005). Therefore, this may suggest that cells recognize assembled 

nanosystems as singular entities distinct from the individual components, and that pathways 

implicated in subsequent cytotoxicity may also be different (Akhtar & Benter, 2007).  

Inducing gene silencing effects in the brain requires in various circumstances interaction of 

nanoparticles with different cell types, including neurons and glia (O'Mahony et al., 2013b). 

Thus, here we emphasise important differences in cellular susceptibility to the toxic stimulus 

mediated by non-viral vectors in brain-derived cell lines. Our results showed that ST14A-

HTT120Q striatal cells and U87 astroglioma cells seemed to be more susceptible to toxic 

adverse effects from Lf2000 and Interferin siRNA nanoparticles, whereas BV2 microglia 

cells seemed to be more susceptible to toxicity from Interferin and SF. In agreement with 

our results, others have found that cellular uptake and cytotoxic profiles of widely used 

commercially available vectors are largely cell type-dependent (Gebhart et al., 2001; Kiefer 

et al., 2004; Uchida et al., 2002; Yamano et al., 2010). Furthermore, in the specific context 

of the CNS, primary cultured astrocytes and microglial cells have also presented differential 

cellular uptake profiles when transfected with lipid-formulated siRNA (Ki et al., 2010). 

Together, the differential toxicological cellular responses found in these studies may be 
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related to the specific composition of cellular membranes of each cell-type, differences in 

the interaction of the biomaterials with intracellular components, but also in how cells are 

able to process and degrade these biomaterials.  Overall, ST14A-HTT120Q cells, an in vitro 

model of HD, and the BV2 microglia cells used in this study seemed to be the most sensitive 

to adverse effects of non-viral siRNA nanoparticles. Indeed, it has been previously shown 

that the expression of the mutant and toxic HTT protein in this striatal cell line renders these 

cells more prone to toxic insults (Rigamonti et al., 2000). At the other end of the transfection 

spectrum, U87 astroglia cells, derived from a human astroglioma cancer, seemed to be more 

resistant to cell death. Thus, the selection of appropriate CNS in vitro models and 

appropriate toxicity assays is crucial for the assessment of biological adverse effects of non-

viral vectors. 

The majority of studies assessing in vitro cytotoxicity of widely used delivery systems have 

based their biosafety assumptions on a single end-point toxicity assay (e.g. (Gebhart & 

Kabanov, 2001; Kiefer et al., 2004; Uchida et al., 2002; Yamano et al., 2010)). In fact, 

despite the vast number of well established toxicity assays available to researchers for 

monitoring cell death, such as trypan blue exclusion, LDH and MTT assays, there is limited 

comparative information on the relative utility of these tests (Kepp et al., 2011). In 

summary, each of the conventional cytotoxicity methods employed in this study assesses a 

specific parameter involved in cell death and should be used together for a more complete 

assessment of cytotoxicity. As an example, no dramatic reduction in cell viability was 

detected in U87 cells upon transfection, nevertheless remarkable increases in LDH release 

revealed that early disruptions of membrane permeability might be occurring. Furthermore, 

MTT assays complement these results demonstrating that nanoparticles have also altered 

mitochondrial metabolic activity significantly. Thus, assumptions regarding biocompatibility 

of nanomaterials using a single conventional end-point toxicity assay are limited and should 

be avoided. Alternatively, HCA is a high-throughput technique that allows the evaluation of 

multiple cellular morphological and biochemical parameters with high sensitivity and 
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specificity (Giuliano et al., 2003). Although this technique is lately becoming popular to 

assess cytotoxicity of active pharmaceutical compounds (Giuliano et al., 2003), was only 

recently that HCA has been applied to evaluate efficiency and cytotoxic effects of non-viral 

vectors for gene delivery and other nanoparticles in vitro (Hibbitts et al., 2011; Rawlinson et 

al., 2010). HCA cell integrity assay revealed that Lf2000 and Interferin siRNA nanoparticles 

reduced cell densities and the number of viable cells, and increased the number of late 

apoptotic and dead cells. Presence of phosphatildylserine in the outer face of the plasma 

membrane and co-staining of the nucleus with nuclear impermeable dye due to increased 

plasmatic membrane permeability, enabled identification of these cells as late apoptotic 

(Van Cruchten et al., 2002). Additionally, RNAi transfection with these vectors induced 

nuclear contraction and chromatin condensation, both of which are typical features of cells 

undergoing apoptosis (Rawlinson et al., 2010; Van Cruchten & Van Den Broeck, 2002). 

Lf2000 and Interferin also triggered loss of MMP indicating that these vectors compromise 

healthy mitochondrial function, eventually leading to cytochrome C release and induction of 

several other signalling cascades. Thus, the HCA results bolster our data obtained with 

conventional methods, however at a much higher degree of sensitivity, while also allowing 

for specific identification of the cell death mechanism activated by these biomaterials.  

Safety of non-viral vectors for RNAi in the CNS is also dependent on a reduced activation of 

the local immune system. Interestingly, our data showed that the non-viral vectors that 

induced greater cytotoxic effects in microglia and astroglia cells are more likely to trigger 

neuroinflammatory responses. Indeed, in BV2 microglia cells, Interferin and SF induced the 

highest expression of major pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) among all 

vectors used. Consistent with our results, others have also reported increased cytokine 

release in primary glial cultures and/or in vivo, after systemic administrations, when using 

lipid- and/or polymer-based siRNA/pDNA nanoparticles (Gautam et al., 2001; Gorina et al., 

2009; Sakurai et al., 2002). In addition, although these immunostimulatory effects could 

have been triggered by the nucleic acid cargo itself rather than the biomaterial, other studies 
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have highlighted that this might be a vector-dependent effect. Indeed, these studies 

demonstrate that delivery of the same nucleic acid cargo (including unmodified siRNAs) by 

different vectors leads to differential immune responses after intravenous injection (i.v.) 

(Bonnet et al., 2008; Kawakami et al., 2006; Kedmi et al., 2010). Thus, certain vectors seem 

to be more likely to enhance the immunostimulatory effects of siRNA than others, and these 

effects have been suggested to be closely related to sequestration of siRNA within a TLR7 

rich environment in the endosomes (Ballarín-González & Howard, 2012). This further 

supports the need to develop non-viral vectors with endosomolytic properties and with low 

cytotoxic effects. Furthermore, it has also been recently suggested that the induction of 

cytokine expression by nanoparticles and biomaterials may occur through the activation of 

TLRs (Hutter et al., 2010; Kedmi et al., 2010). Investigations in various denditric cell 

models have demonstrated that this is likely to be a structural activity dependent-effect and 

therefore specific to certain lipids (Lonez et al., 2009; Tanaka et al., 2008; Vangasseri et al., 

2006). Although not in the particular context of RNAi or gene delivery, several biomaterials 

and delivery systems (e.g. PAMAM dendrimers) have been shown to activate microglia, 

resident immune cells of the CNS, and to increase the expression of specific inflammatory 

receptors such as TLRs and CC-chemokine receptor 2 (Bertero et al., 2013; Hutter et al., 

2010). Expression of TLR2 was found to be enhanced following the administration of 

Interferin and SF, however further studies are needed to reach a better understanding of the 

mechanism underlying these effects. Additionally, despite marked increased in cytokine 

gene expression in vitro with SF, Lf2000 and Inteferin, only SF nanoparticles lead to a 

significant increase gene expression of the pro-inflammatory enzyme COX-2, a key enzyme 

responsible for the synthesis of prostaglandins. Thus, although expression of COX-2 in the 

brain is closely regulated by growth factors and cytokines (Ramsay et al., 2003), this 

differential response of the nanosystems indicates that additional underlying mechanisms are 

probably responsible for its activation by this G6 PAMAM dendrimer. 
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Route of administration, length of treatment and dosing regimens have also been identified 

as important determinants for toxic and inflammatory responses to delivery systems 

(O'Mahony et al., 2013b). Indeed, here we demonstrate that the mechanical damage during 

brain intraparenchymal injections per se is able to enhance cytokine gene expression and 

also GFAP levels, effect which is clearly observed in all surgical animals including vehicle-

treated animals. In agreement with our in vitro data, SF nanoparticles caused significant 

increases in cytokine gene expression in vivo and induced weight loss when compared to 

vehicle-treated animals. However, in a previous study only moderate glial activation was 

reported upon intracortical injections with G4 PAMAM dendrimers (Albertazzi et al., 2012). 

Thus, we speculate that the increased activation of the immune response in our study might 

be related to the increased cytotoxic effects of the G6 PAMAM dendrimer in the brain. 

Indeed, in vitro mechanistic studies in mammalian cells have demonstrated that dendrimers 

induce cytotoxic effects in a generation-dependent manner (Mukherjee et al., 2010). On the 

other hand, although no significant immune activation was found for Interferin in the present 

in vivo study, increased immunological responses upon brain delivery have been reported 

elsewhere (Badaut et al., 2011). In contrast, a previous study in our group showed that 

multiple injections with CD.HTTsiRNA nanoparticles into the striatum of the R6/2 mouse 

model of HD selectively improved rotarod motor deficits without causing detrimental effects 

on body weight profiles (Godinho et al., 2013). In addition, other CD-containing polymer 

delivery systems for siRNA (CALAA-01) have been shown to be well tolerated in non-

human primates after multiple i.v. administrations revealing no significant activation of the 

immune system (Heidel et al., 2007). Therefore, further studies should be carried out for 

Lf2000, Interferin and SF to assess the effects of multiple injections into this susceptible 

structure. 
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4.6 Conclusion 

The functional importance of examining toxicity profiles of nanosystems is obvious when 

one is extrapolating to in vivo analysis. Although brain stereotaxic surgery and direct 

administration of non-viral siRNA nanoparticles into the CNS is a common practice in 

research and pre-clinical testing (e.g. (Badaut et al., 2011; Godinho et al., 2013; Wang et al., 

2005)), the translation of this approach to the clinic requires a better understanding of the 

interaction of non-viral siRNA nanoparticles and the CNS cellular milieu. Intrinsic toxicity 

of nanoparticles might be advantageous when treating brain cancers, but the application of 

such technologies to neurodegenerative disorders demands low cytotoxic and immunological 

adverse effects. Thus, taken together our data enable us to identify modified CDs as 

promising nanocarriers that enable siRNA delivery to the brain with low levels of 

cytotoxicity and immunological activation. 

4.7 Supplementary information 

The SI section in this chapter includes data regarding nanoparticle-induced cytokine release 

in brain-derived cell lines (Supplementary Figure S4.1); body weight changes after 

stereotaxic injections of different non-viral siRNA nanoparticles into the mouse brain 

(Supplementary Figure S4.2); and further details are given regarding materials and methods 

used in the experimental section (Supplementary Materials and Methods). 
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4.7.1 Nanoparticle-induced cytokine release in brain-derived cell lines 

 

Supplementary Figure S4.1. Nanoparticle-induced cytokine release in brain-derived cell lines. BV2 

microglia cells and U87 astroglioma cells were transfected for 24 hours using different non-viral 

siRNA nanoparticles. Final concentration of siRNA in all RNAi-treated groups was of 100 nM. (a-c) 

TNF-α, IL-1β and IL-6 release to cell supernatants was assessed by using Multi Spot MSD ELISA. 

LPS was used as positive control. Results are expressed as Mean ± SEM. *P<0.05, **P<0.01, 

***P<0.001 and ###P<0.001 against untreated control. n = 3 per group. Abbreviations: CD, 

Cylcodextrin; Lf2000, Lipofectamine2000; Interf., Interferin; SF, Superfect®; LPS, 

Lipopolysaccharide ND, Not detected; Unt., Untreated; siRNA, Naked siRNA.  
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4.7.2 Body weight changes after stereotaxic injections of different non-viral 

siRNA nanoparticles into the mouse brain 

 

 

 

 

Supplementary Figure S4.2. Body weight changes after stereotaxic injections of different non-viral 

siRNA nanoparticles into the mouse brain. C57/BL6 mice were bilaterally injected into the striatum 

(2 × 0.2 μg siRNA/2.5 μL) with different non-viral siRNA nanoparticles. Differences in body weights 

observed 24 hours after stereotaxic injections were recorded. Results are expressed as Mean ± SEM. 

*P<0.05 and ###P<0.001 against vehicle control. n = 9-11 per group. Abbreviations: CD, 

Cylcodextrin; Interf, Interferin; Lf2000, Lipofectamine2000; SF, LPS, Lipopolysaccharide; 

Superfect®; siRNA, Naked siRNA; Unt., Untreated.  

  



CHAPTER IV – NANOTOXICOLOGICAL AND NEUROINFLAMMATORY RESPONSES TO SIRNA 

NANOPARTICLES 

189 

 

4.7.3 Supplementary Materials and Methods 

Cell Integrity Assay by High Content Analysis 

Supplementary Table S4.1. Cytiva
TM

 Cell Integrity Assay kit dye cocktail for HCA assay. 

Dye 

Excitation/Emissi

on 

 (nm) 

Dye function 
Objects 

identified 

A 360/535 
Membrane permeant 

nuclear stain 
All Nuclei 

B 535/620 
Membrane impermeant 

nuclear stain 

Dead cells 

nuclei 

C 535/620 

Membrane permeant 

indicator for 

mitochondrial 

membrane potential 

Mitochondr

ia 

E 475/535 

Phosphatidylserine 

detection at the plasma 

membrane 

Apoptotic 

cells 

 

Supplementary Table S4.2. Multitarget analysis settings cytotoxicity assay analysis with In Cell
®
 

1000 Workstation software. 

Object Source Segmentation Others 

Nuclei 
Wave 1 
(360/535) 

Top-hat Min. area: 32 µm2 / Sensitivity: 90 

Cells 
Wave 2 
(475/535) 

Collar Radius: 7 µm 

Reference 1 
(dye B) 

Wave 3 
535/620 

Pseudo-nuclei - 

Mitochondria 
Wave 3 

535/620 
Organelles 

Multiscale top-hat 
Range: 1-32 µm 

Sensitivity: 80 

# scales: 3 

Reference 2 

(dye B) 

Wave 3 

535/620 
Pseudo-cells - 

Cytokine release 

BV2 microglia cells and U87 astroglioma cells were transfected for 24 hours with different 

non-viral siRNA nanoparticles. Cytokine release was assessed from cell supernatants by 

ELISA. Meso Scale Discovery
®
 (MSD

®
, Gaithersburg, MD) 96-well plate multi-spot mouse 

and human pro-inflammatory cytokine assays were purchased for detection of TNF-α, IL-1β, 

IL-6 and IFN-γ. Mouse assay also included the detection of IL-12p70, IL-10 and KC. 

Specific manufacturer’s instructions were followed for plate preparation. SECTOR
®
 Imager 

2400 reader was used to quantify cytokine release. 
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5.1 Abstract 

Silencing disease-related genes in the central nervous system (CNS) using short interfering 

RNA (siRNA) holds great promise for treating neurological disorders. Yet, delivering RNAi 

therapeutics to the brain poses major challenges to non-viral systems especially given that 

the systemic route is preferred. Cationic nanoparticles have been widely investigated for 

siRNA delivery, but these are hindered with their aggregation potential in physiological 

environments which limits their intravenous application. Thus, strategies to increase the 

stability of nanoparticles, such as incorporation of polyethylene glycol (PEG), have being 

considered. In the current study we investigated the utility of modified cationic amphiphilic 

or PEGylated amphiphilic cyclodextrins (CD), oligosaccharide-based molecules, to 

formulate stable CD.siRNA nanoparticles. To this end, we describe a simple method of post-

modifying pre-formed CD.siRNA nanoparticles at their surface using PEGylated CDs of 

different PEG lengths. Resulting PEGylated CD.siRNA nanoparticles presented reduced 

surface charges and increased stability in physiological salt conditions indicating that PEG 

has been incorporated. Stability of PEGylated CD.siRNA nanoparticles in vitro increased 

with both PEG length and PEG density at the surface. Furthermore, in a comparative 

pharmacokinetic (PK) study, improved blood residency times were achieved with CD-

formulations when compared to naked siRNAs. However, no significant differences were 

observed among non-PEGylated and PEGylated CD.siRNAs suggesting that longer PEG 

lengths might be required for improving stability in vivo. Once a stable CD-based 

formulation is optimised further modification with specific targeting ligands will enable 

tailoring of this technology for CNS delivery across the blood brain barrier (BBB). 
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5.2 Introduction 

Therapeutic gene silencing by harnessing the endogenous RNA interference (RNAi) 

pathway using synthetic short interfering RNAs (siRNA) holds great promise for the 

treatment of neurological disorders, such as Huntington’s Disease (Sah, 2006; Thakker et al., 

2006). However, silencing disease-related genes in the central nervous system (CNS) 

constitutes a significant challenge for current non-viral delivery systems. In addition to the 

difficulty of transfecting neuronal cells, siRNA nanoparticles have to overcome multiple 

biological barriers, including the blood brain barrier (BBB), which limits the diffusion of 

these nanoparticles to the brain (O'Mahony et al., 2013b). Indeed, most successful 

preclinical studies so far consisted of stereotaxic injections into specific structures within the 

brain (Bonoiu et al., 2011; Cardoso et al., 2010; Cardoso et al., 2008; Godinho et al., 2013) 

and/or infusion into the intracerebroventricular (i.c.v.) (Thakker et al., 2004; Thakker et al., 

2005) in order to overcome the hurdles of systemic delivery. Although gene expression 

knockdown has been efficiently achieved using the strategies mentioned above, direct and 

continuous administration into the brain may be less practical when transferring to the 

clinical setting. Thus, the development of efficient and non-toxic non-viral formulations for 

systemic administration and subsequent transport across the BBB has received great 

attention (O'Mahony et al., 2013b). 

Cyclodextrins (CD) are starch-derived molecules which have been recently modified to form 

cationic amphiphilic siRNA delivery systems (O'Mahony et al., 2012d). We have previously 

used this non-viral vector to deliver specific siRNAs and silence the expression of the 

mutant Huntingtin (muHTT) gene in the R6/2 mouse brain through stereotaxic injections 

into the striatum (Godinho et al., 2013). However, the development of such cationic CD 

formulations for systemic administration will require, at first, further improvements to their 

stability in physiological salt and serum conditions. Polyethylene glycol (PEG), a polymer of 

ethylene oxide commonly used in medical applications, has been widely used to confer 

“steric” stability to nanoparticles, reducing interactions with plasma and blood components 
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(Gref et al., 2000; Monfardini et al., 1998). In addition, PEGylation has also been shown to 

minimise recognition of nanoparticles by the mononuclear phagocyte system (Gref et al., 

2000; Owens III & Peppas, 2006). Thus, by these means, PEGylation has improved the 

circulating times of several non-viral vectors including CD-containing polymers (Davis, 

2009; Pun & Davis, 2002), lipid-based nanoparticles (Li et al., 2007; Sonoke et al., 2008), 

and cationic polymer (e.g polyethylenimine (PEI)) (Malek et al., 2009). In order to enhance 

the stability of nanoparticles, different PEG lengths and polymer densities have been 

evaluated, however, no general consensus has been reached yet on the ideal PEG length or 

polymer density (Gref et al., 2000; Kunath et al., 2002; Mao et al., 2006a). Indeed, this is 

likely to be dependent on the vector type, and also on the PEGylation strategy adopted for 

modification of the nanoparticles. 

Different strategies for PEGylating nanoparticles have been employed including: chemical 

methods to covalently couple PEG chains to the non-viral vector (Guo et al., 2012b; Mao et 

al., 2006a); and physical methods, such as post-insertion (Mendon a et al., 2009; Morille et 

al., 2011; O'Mahony et al., 2013a) and co-formulation (O'Mahony et al., 2013d), used to 

incorporate PEG into the final formulation. Regarding CD-based formulation approaches, 

our group has previously described a co-formulation strategy whereby a cationic amphiphilic 

CD and a PEGylated amphiphilic CD were blended together prior to siRNA complexation. 

This PEGylation method yielded nanoparticles with increased stability in physiological salt 

conditions (O'Mahony et al., 2013d). Alternatively, pre-formed CD.siRNA nanoparticles 

have also been surface-modified by post-insertion of PEGylated lipids yielding a 

formulation with enhanced pharmacokinetic (PK) profiles when compared to naked siRNAs 

(O'Mahony et al., 2013a). However, although different methods for PEGylating CD-based 

nanoparticles are available, the influence of PEG length and polymer density in these 

delivery systems still warants further investigation. 

The present study aims to determine the influence of PEG density and length on the 

properties of CD nanosystems. To this end, a post-PEGylation approach was used to modify 
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pre-formed CD.siRNA nanoparticles at the surface using different amphiphilic CDs 

containing a range of molecular weight (Mw) PEGs. Physicochemical characterisatics and in 

vitro stability in physiological salt conditions were investigated. Subsequently, an optimal 

polymer density was selected and the PK behaviour of PEGylated CD.siRNA nanoparticles 

was assessed in vivo and compared to non-PEGylated CD.siRNA nanoparticles and naked 

siRNA. 
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5.3 Materials and Methods 

5.3.1 Synthetic siRNAs 

Synthetic duplexed siRNAs were obtained from Sigma-Aldrich (France) or QIAGEN 

(United Kingdom). HTT target siRNAs (HTTsiRNA) as per Wang et al. (Wang et al., 2005) 

sense strand, 5’-GCCUUCGAGUCCCUCAAGUCC-3’; antisense strand, 5’-

ACUUGAGGGACUCGAAGGCCU-3’. FAM-labelled siRNA (FAMsiRNA): sense strand, 

5’-[6FAM] UUCUCCGAACGUGUCACGUdTdT-3’; antisense strand, 5’-

ACGUGACACGUUCGGAGAAdTdT-3’. 

5.3.2 Preparation of PEGylated CD.siRNA nanoparticles 

The synthesis of the modified cationic amphiphilic β-cyclodextrin (SC12 CD Click 

Propylamine) and PEGylated amphiphilic β-cyclodextrin (SC12 CD Click PEG500) used in 

the present study has been previously described (O'Mahony et al., 2012d). Similarly, 

PEGylated amphiphilic β-cyclodextrins with larger Mw PEG chains (SC12 CD Click 

PEG1000, SC12 CD Click PEG2000) were synthesised using the same method. SC12 CD 

Click Propylamine and SC12 CD Click PEGx will from here after be referred as cationic CD 

and PEG CDs, respectively. Modified amphiphilic CDs were dissolved in chloroform, and 

chloroform evaporated under a stream of nitrogen. Prior to formulation with siRNAs, 

modified amphiphilic CDs were reconstituted in sterile dionised water (DIW) and sonicated 

for 60 minutes. Complexes with anionic siRNA were formed using the cationic CD at mass 

ratio 10 (µg of CD : µg of siRNA). Equal volumes of cationic CD and siRNA solution were 

mixed together and incubated at room temperature (RT) for 20 minutes. Thereafter, 

PEGylated CDs were added to pre-formed cationic CD.siRNA nanoparticles in defined 

molar ratios between cationic CD and PEGylated CD. A specific volume of each of the 

PEGylated CDs was gently mixed with corresponding pre-formed CD.siRNA nanoparticles 

and further incubated at RT for 20 minutes. 
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For in vivo studies CD.siRNA nanoparticles were prepared as outlined above in 5% glucose 

and concentrated by ultrafiltration using Vivaspin 500 centrifugal units (Sartorius, Germany) 

to a final concentration of 0.267 µg/µL of siRNA.  

5.3.3 Physicochemical characterisation 

Binding and complexation of siRNA was confirmed by gel retardation assay. CD.siRNA 

nanoparticles containing ~0.3 µg of siRNA were mixed with 2 µL of Blue Juice Loading 

Buffer (Invitrogen, Carlsbad, CA) and sufficient DIW to a final volume of ~30 µL. Samples 

were loaded in a 2% agarose gel and electrophoresis performed at 90 mV for 20 minutes in 

Tris-acetate-Ethylenediaminetetraacetic acid (TAE) buffer (Fisher Scientific, Fair Lawn, 

NJ). The gel was post-stained using GelRed
TM

 nucleic acid stain (Biotium, Hayward, CA) 

and visualised using the DNR Bioimaging Systems and Gel Capture version 7.0.9 software. 

Size and surface charge measurements were carried out using Dynamic Light Scattering 

(DLS) and Electrophoretic Light Scattering (ELS), respectively. CD.siRNA nanoparticles, 

containing ~ 3 µg of siRNA, were diluted up to 1 mL with filtered sterilised DIW and 

assessed by DLS and ELS using a Malvern Zetasizer Nano ZS. A total of five readings for 

size and charge were taken per sample and the refractive index (1.33) and viscosity (0.8872 

mPa·s) of water were taken into to account in data analysis. 

5.3.4 In vitro stability studies in physiological buffer conditions 

The stability of PEGylated CD.siRNA nanoparticles was investigated in salt-containing 

medium (optiMEM
®
, Invitrogen, UK) and in foetal bovine serum (FBS, Sigma-Aldrich, 

Germany). Complexes were prepared as above, diluted up to 1 mL in optiMEM
®
 or FBS and 

incubated at 37 ºC. Size measurements were carried out at different time points (24, 48 and 

72 hours) using a Malvern Zetasizer Nano ZS. 
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5.3.5 Comparative pharmacokinetic study 

Male 8-week old Balb/c mice (~24 grams) were obtained from Harlan Laboratories (United 

Kingdom). Mice were given approximately one week to habituate to the animal facility and 

maintained on a 12/12 hour light-dark cycle with temperature (22 ± 1 ºC) and humidity (~55 

%) controlled conditions. 

For PK study, mice were injected with naked FAMsiRNA or with CD.FAMsiRNA 

nanoparticles. A single i.v. bolus dose of 40 µg of formulated or non-formulated 

FAMsiRNA in a total of 150 µL 5% glucose solution was administered through the tail vein. 

Thereafter, blood samples (~30 µL) were collected from the saphenous vein at various time 

points. Plasma was isolated, snap frozen and kept at -80 °C until analysis. Plasma 

concentrations of FAMsiRNA were assessed by post-extraction as previously described (Li 

et al., 2007; O'Mahony et al., 2013a). Briefly, 10 µL of plasma was incubated at 65 °C for 10 

minutes with 90 µL of lysis buffer (0.1 % sodium dodecyl sulphate in phosphate buffer 

saline (PBS)). Methanol (200 µL) was added and samples incubated for 10 minutes at 90 °C. 

Samples were spun down at 14,000 for 5 minutes and 100 µL of supernatant was transferred 

in duplicates to a black 96-well plate. Fluorescence was measured using a fluorescent plate 

reader (λex 465 nm and λem 520 nm) and the concentration of FAMsiRNA determined from a 

standard curve. The final concentration of FAMsiRNA was corrected for extraction 

efficiency. Data were fitted to a two-compartmental model with biexponential function C(t) 

= Ae
-αt

 + Be
-βt

 for estimation of plasma PK parameters. Estimates were calculated for each 

individual animal and averaged by group.  

All animal experimental procedures were approved by the ethical committee at the 

University College Cork and performed in accordance with the European Union Directive 

2010/63/EU for animals used for scientific purposes. 
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5.3.6 Statistical analysis 

Data are expressed as mean ± standard deviation (SD) and mean ± standard error of mean 

(SEM) according to the experiment. One-way analysis of variance (ANOVA) followed by 

Dunnett’s post hoc was used to investigate statistical significant differences against naked 

siRNA regarding PK parameters. ANOVA followed by Bonferroni’s post hoc test was used 

to investigate statistical significant differences among CD formulations in regards to PK 

parameters. All inferential statistics were carried out using PAWS 18 Statistical package. 
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5.4 Results 

Cationic amphiphilic β-cyclodextrins and PEGylated amphiphilic β-cyclodextrins with 

different Mw PEG chains are represented in Figure 5.1. These CDs were previously 

synthesised using copper catalysed “click” chemistry which enabled coupling of cationic 

propylamine groups or different Mw PEG chains to the 2-position of the β-CD. This route 

for functionalisation is a versatile method for coupling functional groups to a variety of 

vectors, as well as achieving high yields (O'Mahony et al., 2012d). 

 

Figure 5.1. Chemical structures and schematic diagrams of modified amphiphilic CDs. (a) 

Modified cationic amphiphilic CD and (b) modified PEGylated amphiphilic CDs with different 

molecular weight PEG chains. (i) Chemical structures of modified CDs and (ii) schematic diagrams. 

Abbreviations: CD, Cyclodextrin; PEG, Polyethyleneglycol.  

 

5.4.1 Physicochemical characterisation of non-PEGylated and PEGylated 

CD.siRNA nanoparticles 

Pre-formed CD.siRNA nanoparticles were modified at the surface using different amounts 

of PEGylated CDs and this was expressed as molar ratio of cationic amphiphilic CD to 

PEGylated amphiphilic CDs (Cationic CD : PEG CD). Cationic CD successfully complexed 
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siRNAs (ratio 1:0, Figure 5.2a,c,e) and modification of CD.siRNA nanoparticles with 

PEGylated CDs did not affect binding and complexation of siRNA as shown in gel 

retardation assay studies (Figure 5.2a,c,e). In contrast, gel retardation assays showed that 

PEGylated amphiphilic CDs per se were not able to complex anionic siRNA in the absence 

of cationic CD (Supplementary Information (SI), Supplementary Figure S5.1).  

 

 

Figure 5.2. Physicochemical characterisation of non-PEGylated and PEGylated CD.siRNA 

nanoparticles. CD.siRNA nanoparticles surface-modified with PEG500 CD (a,b), PEG1000 CD (c,d) 

and PEG2000 CD (e,f). (a,c,e) Gel retardation assay to investigate binding and complexation of 

siRNA. Free siRNA migrates through the gel, whereas successfully complexed siRNAs fail to migrate 

from wells. (b,d,f) Particle size and zeta potential of PEGylated CD.siRNA nanoparticles measured by 

DLS and ELS, respectively. Data are represented as mean ± SD (n = 5). Abbreviations: CD; 

Cyclodextrin; DLS, Dynamic light scattering; ELS, Electrophoretic Light Scattering; PEG, 

Polyethyleneglycol; siRNA, Short interfering RNA.  
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Surface modification of CD.siRNA nanoparticles with increasing amounts of PEGylated 

CDs resulted in modest increases in particle size in all cases (Figure 5.2b,d,f). PEGylation 

with PEG500 CD increased size of nanoparticles from 151.28 ± 3.80 nm at the lowest molar 

ratio between cationic CD : PEG500 CD to 199.46 ± 16.48 nm at the highest molar ratio. 

Similarly, PEG1000 CD led to an increase from 145.14 ± 2.92 nm to 188.30 ± 25.22 nm and 

PEG2000 CD increased particle size from 171.76 ± 3.04 to 224.98 ± 7.71 nm. The 

polydispersity index (PDI) of samples tended to increase with increasing amounts of 

PEGylated CDs, i.e. lowest cationic CD : PEG CD ratios (Table 5.1), indicating a higher 

degree of heterogeneity within the sample. 

Table 5.1. PDI of non-PEGylated and PEGylated CD.siRNA nanoparticles in deionised water 

Molar ratio            

Cationic CD : PEG CD 

PEG500 CD PEG1000 CD PEG2000 CD 

PDI PDI PDI 

Mean SD Mean SD Mean SD 

1:0 0.346 0.048 0.275 0.011 0.316 0.035 

10:1 0.378 0.038 0.292 0.030 0.392 0.048 

4:1 0.265 0.008 0.347 0.035 0.413 0.021 

2:1 0.369 0.035 0.400 0.028 0.361 0.036 

1.5:1 0.320 0.042 0.429 0.024 0.336 0.038 

1:1 0.337 0.045 0.518 0.049 0.366 0.068 

0.5:1 0.415 0.023 0.621 0.078 0.383 0.007 
 

Abbreviations: PDI, Polydispersity index; PEG CD, PEGylated cyclodextrins; SD, Standard 

deviation. 

 

Furthermore, PEGylation reduced surface charge of pre-formed CD.siRNA nanoparticles. 

Subtle reductions were observed with PEG500 CD with surface charge of nanoparticles been 

reduced from +30.74 ± 2.19 mV to +23.34 ± 0.6 mV. On the other hand, PEG1000 CD and 

PEG2000 CD caused greater reductions in surface charge from +33.14 ± 1.72 to +17.74 ± 

0.71 mV and +30.98 ± 5.77 to +18.54 ± 0.39 mV, respectively (Figure 5.2b,d,f). 
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5.4.2 Stability of non-PEGylated and PEGylated CD.siRNA nanoparticles in 

physiological salt conditions  

CD.siRNA nanoparticles were exposed to optiMEM
®
 and incubated at physiological 

temperatures (37 ºC) for different periods of time (Figure 5.3a-c). As expected, non-

PEGylated cationic nanoparticles (molar ratio 1:0) showed the greatest tendency to 

aggregate even after only 4 hours (Figure 5.3a). Similarly, CD.siRNA nanoparticles with the 

lowest degree of PEGylation, namely the ratio 10:1 between cationic CD : PEGylated CD), 

tended to aggregate after 4 hours incubation. However, this effect was only evident in 

nanoparticles modified with lower Mw PEG CDs (500 and 1000). Lower molar ratios  of 

cationic CD to PEGylated CD (2:1 – 0.5:1) tended to be more resistant to salt-induced 

aggregation at early time points (4 and 24 hours) (Figure 5.3a,b). Although in general, lower 

molar ratios of cationic CD : PEGylated CD showed improved stability in salt-containing 

medium, subtle increases in particle size were observed over time (SI, Supplementary Table 

S1-3). In addition, over a longer time period (48 hours), lower ratios of cationic CD to 

PEG500 CD also aggregated, an effect that was not observable with PEG1000 CD and 

PEG2000 CD (Figure 5.3c). Surface modification of CD.siRNA nanoparticles with 

PEG2000 CD provided the greatest resistance to salt-induced aggregation for all molar ratios 

tested and at all time points tested (Figure 5.3a-c). Overall, the ratio 1.5:1 of cationic CD : 

PEGylated CD  presented favourable hydrodynamic diameters across all PEGylated CDs at 

early time points (Figure 5.3 and SI, Supplementary Table S1-3). Furthermore, PEGylated 

CD.siRNA nanoparticles in this particular molar ratio display low PDI values when prepared 

in DIW (Table 5.1) and in aggregation studies in optiMEM
®
 (Supplementary Table S5.1 – 

S5.2). Thus, this particular ratio was selected for subsequent studies with PEGylated CDs 

containing PEG2000 in serum. 

Stability of non-PEGylated CD.siRNA nanoparticles and PEGylated (PEG2000 CD) 

CD.siRNA nanoparticles was investigated in FBS (Supplementary Figure S5.2). After 4 

hours a broadening of the main peak in particle size distribution for both non-PEGylated and 
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PEGylated formulations was observed, suggesting an increase in PDI. However, a clear shift 

of the main peak of particle size distribution was only observable for non-PEGylated 

nanoparticles at 24 hours, suggesting that protein-induced nanoparticles aggregation has 

occurred. No abrupt shifts in size distribution were observed for PEGylated nanoparticles, 

possibly suggesting that PEG2000 CD confer some degree of stability to CD.siRNA 

nanoparticles in serum-containing environment. 
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Figure 5.3. Stability of non-PEGylated and PEGylated CD.siRNA nanoparticles in physiological 

salt conditions. Changes in particle size after incubation of nanoparticles in optiMEM® at 37 ºC for 

different periods of time. Assessed by DLS. Results are expressed as mean ± SD (n=5). 

Abbreviations: Cat. CD : PEG CD, Ratio of cationic cyclodextrin to PEGylated cyclodextrin; PEG, 

Polyethyleneglycol; SD, Standard deviation. 



CHAPTER V – PEGYLATED CYCLODEXTRINS AS NOVEL SIRNA NANOSYSTEMS 

205 

 

5.4.3 Comparative pharmacokinetic study 

The in vivo PK behaviour of naked FAMsiRNAs, non-PEGylated and PEGylated 

CD.siRNAs were compared after administration of a single intravenous injection (i.v.) bolus 

dose, corresponding to a total of 40 µg of nucleic acid. The optimal molar ratio for 

PEGylation of CD.siRNA nanoparticles was determined taking into account the 

physicochemical properties and the in vitro aggregation studies up to 24 hours. The ratio 

Cationic CD : PEGylated CD (ratio of 1.5 : 1) was kept constant for all PEGylated CDs to 

enable investigation of optimal PEG length for in vivo applications. 

The plasma concentration profiles of naked and CD-formulated FAMsiRNAs over the time 

course of the study are represented in Figure 5.4. These plasma concentration profiles were 

best described by a biexponential 2-compartmental model with a first fast deposition phase 

and a slower elimination phase (Table 5.2 and Table 5.3). No significant differences were 

found between areas under the curve (AUC) estimated by the 2-compartmental model and 

AUCs derived by a model independent method (Trapezoidal rule). Additionally, ratios of 

model-dependent : model independent AUCs were between 0.92 – 1.11 further reinforcing 

the predictability of the model (Table 5.3). Altogether, these data validate the suitability of 

the model for calculation of PK parameters in this study. 
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Figure 5.4. Plasma concentration profiles of naked and CD-formulated FAMsiRNA after single i.v. 
bolus dose. Male Balb-c mice were injected through the tail vein with 40 µg of naked or CD-

formulated FAMsiRNA. PEGylated formulations consisted of a molar ratio 1.5:1 of cationic CD to a 

specific PEGylated CD (PEG500 CD, PEG1000 CD and PEG2000 CD). (a) Plasma concentration of 

FAMsiRNA expressed in a continuous scale and (b) in a semi-logarithmic scale. Data are presented 

as mean ± SEM (n=3-8). Abbreviations: CD, Cyclodextrin; FAMsiRNA, Fluorescently labelled 

siRNA; PEG, Polyethyleneglycol; siRNA, Naked siRNA. 

 

Immediately after injection, plasma concentrations of naked FAMsiRNAs dramatically 

decreased whereas CD-formulated FAMsiRNAs displayed a more delayed profile. Indeed, 

the distribution half-life (t1/2α) of naked FAMsiRNA was short and fast (2.09 ± 0.17 min.) 

compared to CD-formulated FAMsiRNAs (2.50 – 4.24 min.), however, these differences did 

not reach statistical significance. Conversely, all treatments presented slower β elimination 

phases, but with the exception of CD.siRNA nanoparticles containing PEG1000 CD, no 

significant differences were found in the elimination half-lives (t1/2β). Typically, t1/2β were 20 

– 30 minutes. 

Naked FAMsiRNAs and all CD formulations tested were rapidly cleared from the blood 

compartment with only residual levels detected by 60 minutes. However, CD formulations, 
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with the exception of CD.siRNA nanoparticles containing PEG2000 CD, showed 

significantly improved AUCs (211-253 ng/µL x min.) when compared to naked siRNAs (82 

± 14.98 ng/µL x min.). It is worth noting that although no statistical significance was 

reached for PEGylated CD.siRNA nanoparticles formulated with PEG2000 CDs, a positive 

trend was observed (168.55 ± 12.17 ng/µL x min.). Importantly, CD formulations also 

exerted profound effects on clearance (CL) rates (162 – 246 µL/min), showing reduced CL 

when compared to naked FAMsiRNAs (528.18 ± 114.93 µL/min). In summary, these data 

suggest that CD-formulations in general exhibit significant increases in circulating times 

when compared to naked FAMsiRNAs, however, no statistically significant differences were 

observed among non-PEGylated and PEGylated CD.siRNA nanoparticles.  
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Table 5.2 Comparison of PK parameters of non-formulated and CD-formulated FAMsiRNA upon single i.v. bolus dose 

PK 

parameter 

A α B β t1/2 α t1/2 β AUC Vd CL 

(ng/µL) (min
-1

) (ng/µL) (min
-1

) (min) (min) (ng/µL x min) (µL) (µL/min) 

Formulation Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

Cationic CD 20.82 2.80 0.2265# 0.0371 3.51# 0.99 0.0361 0.0070 3.51 0.50 22.15 2.73 225.06* 38.90 1840.52 265.03 199.35*** 21.79 

Cat. CD : 
PEG500 CD 

24.43 6.99 0.3476 0.1063 5.39* 0.97 0.0322 0.0084 4.24 2.61 24.89 4.29 252.92* 22.69 1634.00 484.32 162.15*** 14.91 

Cat. CD : 
PEG1000 CD 

20.65 5.17 3.1156 1.3208 6.80** 0.66 0.0464 0.0044 2.50 1.73 15.61** 1.47 210.58* 30.73 1816.81 377.18 210.48*** 29.15 

Cat. CD : 
PEG2000 CD 

21.23 6.16 0.3775# 0.0567 3.68 0.58 0.0347 0.0017 2.95 1.22 20.30 1.05 168.55 12.17 2450.36 568.82 246.23*** 18.06 

siRNA 11.82 4.19 0.3373 0.0300 1.06 0.16 0.0241 0.0036 2.09 0.17 30.05 4.30 82.22 14.98 4310.44 1931.01 528.18 114.93 

 

*P<0.05 and **P<0.01 vs. siRNA and #P<0.05 vs. Cat. CD : PEG1000 CD by One-way ANOVA followed by Dunnett’s posthoc test or Bonferroni’s post hoc test, 

respectively. Abbreviations: Ae-αt + Be-βt, A, B, α, and β refer to the biexponential function C(t); AUC, Area under the curve; Cat. CD, Cationic Cyclodextrin; CL, Clearance; 

PEG CD, PEGylated cyclodextrin; SEM, Standard error of mean; siRNA, Naked siRNA. t1/2 α ,  half-life in alpha phase; t1/2 β , half-life in elimination phase; Vd, Volume of 

distribution. 

 

Table 5.3 Comparison of model-dependent and model-independent area under the curve of non-formulated and CD-formulated FAMsiRNA upon single i.v. bolus dose 

Formulation Cationic CD Cat. CD : PEG500 CD Cat. CD : PEG1000 CD Cat. CD : PEG2000 CD siRNA 

AUC (ng/µL x min) Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

AUC 2-comp. Model 225.06 38.90 252.92 22.69 210.58 30.73 168.55 12.17 82.22 14.98 

AUC (0-∞) Model Indep. 202.16 37.91 238.88 28.59 201.15 20.28 155.98 6.30 89.36 18.15 

Ratio (2-comp/Mod.Indep.) 1.11 N/A 1.06 N/A 1.05 N/A 1.08 N/A 0.92 N/A 

 

Abbreviations: AUC 2-comp. Model, AUC derived from parameter estimates from 2-compartmental model; AUC (0-∞) Model Indep., Area under the curve derived through 
the trapezoidal method; Cat. CD, Cationic Cyclodextrin; CL, Clearance; PEG CD, PEGylated cyclodextrins; N/A, Not applicable; SEM, Standard error of mean; siRNA, 

Naked siRNA. 
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5.5 Discussion 

Optimising formulation strategies to obtain stable non-viral vectors for systemic 

administration of RNAi-based therapies with subsequent transfer to the brain is critical to the 

progression of this technology to the clinical setting. In this study, we investigated a simple 

and efficient post-PEGylation approach to surface-modify pre-formed CD.siRNA 

nanoparticles and increase their steric stability in physiological conditions. 

Physicochemical characterisation of PEGylated CD.siRNA nanoparticles showed that post-

modifications with higher molar content of PEGylated CDs tended to yield nanoparticles 

with slightly bigger sizes. This is in accordance with other methods of post-modification of 

liposome with PEGylated lipids (Mendon a et al., 2009), and possibly suggests that in our 

case PEGylated amphiphilic CDs are located at the surface of pre-formed CD.siRNA 

nanoparticles. On the other hand, increasing the molar content of PEGylated CDs within the 

formulation decreased the surface charge of the PEGylated CD.siRNA nanoparticles. This 

surface charge reduction is also in agreement with previous findings in our group where 

cationic and PEGylated CDs were blended together to form stable CD nanoparticles with 

reduced charge (O'Mahony et al., 2013d; O'Mahony et al., 2012d). This has been 

hypothesised to occur due to the charge shielding capacity of highly hydrated PEG chains 

which form a stealth corona at the surface of the nanoparticles and has also been observed in 

other polymeric vectors (Kunath et al., 2002). In support, it is also interesting to note that in 

the present study PEGylation using higher Mw PEG CDs (PEG1000 and PEG2000) yielded 

greater reductions in surface charge, probably due to better charge masking abilities of large 

PEG molecules.  

Despite that PEGylated amphiphilic CDs do not have cationic groups in their structure and 

therefore per se have poor siRNA binding capabilities, they have been used in the present 

study to post-modify pre-formed CD.siRNA nanoparticles. Post-modification of pre-formed 

CD.siRNA nanoparticles with PEGylated CDs did not affect binding and complexation of 
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anionic siRNAs. In fact, this represents an advantage of the current method relative to other 

PEGylation methods, such as covalent grafting of PEG chains to the delivery system, which 

can interfere with complex formation by reducing the affinity to bind siRNA (Mao et al., 

2006a). Covalent and non-covalent post-PEGylation methods have also been successfully 

applied to other DNA and siRNA delivery vectors, such as PEI (Ogris et al., 1999) and 

poly(2-(dimethylamino) ethyl methacrylate (Kong et al., 2009), to enhance stability. 

In this study, highly PEGylated CD.siRNA nanoparticles were resistant to salt-induced 

aggregation in vitro for up to 24 hours, whereas non-PEGylated CD.siRNA nanoparticles 

readily aggregated after 4 hours (Figure 5.3). Similar results have been previously reported 

by our group using a different PEGylation method which consisted of co-formulation of 

cationic and low Mw CDs (PEG500 CD) (O'Mahony et al., 2013d; O'Mahony et al., 2012d). 

Here we expand on this previous work providing further comparative information with 

higher Mw PEG CDs to clarify the importance of PEG length and polymer density on the 

stability of the final assembly. Interestingly, CD.siRNA nanoparticles PEGylated with 

PEG2000 CDs required lower polymer densities at the nanoparticle’s surface, than PEG500 

and PEG1000 CDS, to produce nanoparticles resistant to salt-induced aggregation. In 

addition, these PEGylated CD.siRNA nanoparticles were stable up to 48 hours of incubation 

in physiological salt conditions, whereas, such long-lasting anti-aggregation effects were not 

apparent for PEG500 CDs. Therefore, at early time points PEG CD density at the 

nanoparticle’s surface seems to be of greater importance to improve stability when using 

PEGylated CDs of lower Mw. On the other hand, high Mw PEGylated CDs consistently 

present longer lasting stabilities in vitro even when present at low densities, and were overall 

more efficient in conferring stability against salt-induced aggregation. Furthermore, surface-

modification with PEG2000 CDs also conferred some degree of stability in the presence of 

serum. In contrast, a previous serum-stability study with PEG500 CDs have shown the lack 

of effectiveness of this low Mw PEGylated CD to protect against interactions with serum 

proteins (O'Mahony et al., 2013d). Thus, suggesting that high Mw PEG CDs will be more 



CHAPTER V – PEGYLATED CYCLODEXTRINS AS NOVEL SIRNA NANOSYSTEMS 

211 

 

likely to be able to stabilise and enhance the circulating times of CD.siRNA nanoparticles in 

the in vivo setting.  

Finally, our PK study showed that FAMsiRNAs formulated in CD-based delivery systems 

display longer plasma residency times, as indicated by higher AUCs and lower CLs, than 

naked FAMsiRNAs. In fact, others have also reported very short circulating times for naked 

siRNAs upon systemic administration, which has been associated with its rapid renal CL (Li 

et al., 2007; Malek et al., 2009; O'Mahony et al., 2013a). Although, CD-formulations have 

improved circulating times up to what might be comparable to other delivery systems 

(Malek et al., 2009; Merdan et al., 2005), no significant differences were observed among 

the different non-PEGylated and PEGylated CD.siRNA nanoparticles. After i.v. injection the 

opsonisation of nanoparticles with plasma proteins might have enhanced their removal by 

the mononuclear phagocyte system. Indeed, instability of the nanoparticles leading to 

premature complex disassembly have been suggested as possible reasons for rapid CL of 

siRNA nanoparticles (Merdan et al., 2005). This is not an effect solely observed in CD 

nanosystems but has also been observed in other polymer-based delivery systems (Malek et 

al., 2009; Merkel et al., 2009). Although it seemed likely from our aggregation studies that 

CD.siRNA nanoparticles PEGylated with PEG2000 CDs would perform better in vivo, the 

reason underlying its poor performance might be again related to the PEG length used. 

Previous studies have revealed that nanoparticles PEGylated with PEG blocks of Mw below 

Mw 5000 are more likely to be opsonised and phagocytised by the mononuclear phagocyte 

system (Gref et al., 2000). On the other hand, it seems that PEG lengths above Mw 5000 are 

enough to avoid opsonisation in human plasma (Gref et al., 2000). Indeed, CD-containing 

polymers surface-modified by inclusion formation with an adamantane-PEG5000 derivative 

have shown low aggregation and improved circulating times (Davis et al., 2010; Pun & 

Davis, 2002). This further advocates that higher Mw PEG lengths may be required for 

modification of CD-based delivery systems to achieve appropriate stealth effects in vivo. In 

addition, although higher Mw PEGs have also been successfully used to improve circulating 
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times of liposomes and other active proteins, it has been reported that high Mw PEG may 

cause immunogenicity and therefore reduce effectiveness of a second dose (Cheng et al., 

1999; Garay et al., 2011; Wang et al., 2007). Thus, PEGylating siRNA nanoparticles is a 

challenging balancing act between achieving suitable stability of the delivery system upon 

systemic administration and no immunogenic activation. 
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5.6 Conclusions 

Although there has been a revitalised interest in neurosurgical approaches for treating 

complex brain disorders, systemic delivery of RNAi therapeutics is by far the preferred route 

of administration. Thus, developing suitable non-viral vectors for systemic administration 

with subsequent transfer to the brain is one of the current hurdles in the field of 

nanotechnology. Here we have shown that post-PEGylation is a successful approach to 

surface-modify pre-formed CD.siRNA nanoparticles. We have also explored the importance 

of surface PEG density and PEG length modifications on the physicochemical properties and 

stability of CD.siRNA nanoparticles. Although both PEG densities and PEG length appeared 

to have a profound impact on salt-induced aggregation, it seems that PEG length is the major 

determinant factor in the in vivo setting. Thus, when modifying CD-delivery systems with 

higher Mw PEGs should be preferred. Once a stable CD delivery system has been 

developed, coupling of specific targeting ligands, such as transferrin or the fragment of 

rabies virus glycoprotein, will facilitate tailoring of these formulations for potential CNS 

delivery across the BBB. 

5.7 Supplementary Information 

The SI in this chapter includes data regarding the limited ability of PEGylated amphiphilic 

CDs to bind and complex siRNA (Supplementary Figure S5.1); the stability of non-

PEGylated and PEGylated CD.siRNA nanoparticles in FBS (Supplementary Figure S5.2); 

and further details on sizes and polydispersity indexes of non-PEGylated and PEGylated 

CD.siRNA nanoparticles after incubation in physiological salt conditions at 37 °C 

(Supplementary Table S5.1 – S5.3). 
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5.7.1 Binding and complexation of siRNA by PEGylated amphiphilic CDs 

 

 

 

 

Supplementary Figure S5.1. Gel retardation assay for assessing binding and complexation of 

siRNA by PEGylated amphiphilic CDs . PEGylated CDs were mixed with 0.3 μg of siRNA to achieve 

specific mass ratios (μg of CD : μg of siRNA) and allowed 20 minutes for complexation. Samples 

were mixed with loading buffer and run in a 2% agarose gel. Gel electrophoresis carried out for 20 

minutes at 90 volts. Free siRNA migrates through the gel whereas complexed siRNAs fail to migrate 

from wells. PEGylated cyclodextrins fail to effectively complex siRNA at the mass ratios studied, and 

therefore a band is seen and stained by the nucleic acid stain. Abbreviations: CD, Cyclodextrin; 
PEG, Polyethyleneglycol; siRNA, Short interfering RNA. 
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5.7.2 Stability of non-PEGylated and PEGylated CD.siRNA nanoparticles in 

serum 

 

 

 

 
 

 

 

 
 

Supplementary Figure S5.2. Stability of non-PEGylated and PEGylated CD.siRNA nanoparticles 

in serum. (a) Non-PEGylated and (b) PEGylated CD.siRNA nanoparticles were incubated in FBS at 

37 ºC for 4 or 24 hours. Size distribution was assessed by DLS. FBS (red line) and nanoparticles 

prepared in DIW (black line) were included as controls (n=5). Abbreviations: CD, Cyclodextrin; 

DIW, Deionised water; DLS, Dynamic light scattering; FBS, Foetal bovine serum, PEG, 

Polyethyleneglycol; siRNA, Short interfering RNA. 
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Supplementary Table S5.1. Sizes and polydispersity indexes of non-PEGylated and PEGylated CD.siRNA nanoparticles after 4 hours incubation in physiological salt 

conditions at 37 °C 

4 hours 
PEG500 PEG1000 PEG2000 

Size PDI Size PDI Size PDI 

Cat.CD : PEG CD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

1:0 2936.8 182.5 0.251 0.052 2631.0 249.6 0.282 0.179 1567.6 92.5 0.401 0.133 

10:1 2013.8 149.7 0.274 0.038 2786.2 525.8 0.312 0.186 184.3 4.6 0.277 0.016 

4:1 475.6 14.2 0.312 0.039 1486.6 46.0 0.273 0.034 168.9 1.8 0.258 0.012 

2:1 271.2 2.0 0.245 0.019 338.7 5.9 0.258 0.013 186.5 3.3 0.347 0.035 

1.5:1 227.6 4.8 0.266 0.012 222.3 2.6 0.198 0.011 179.3 7.4 0.282 0.014 

1:1 192.7 2.7 0.255 0.030 176.2 1.0 0.221 0.015 192.6 5.6 0.357 0.013 

0.5:1 182.9 2.9 0.332 0.022 172.2 6.4 0.419 0.020 242.8 6.5 0.464 0.091 

Abbreviations: Cat. CD : PEG CD, Ratio of cationic cyclodextrin to PEGylated cyclodextrin; PDI, Polydispersity index; SD, Standard deviation. 

Supplementary Table S5.2. Sizes and polydispersity indexes of non-PEGylated and PEGylated CD.siRNA nanoparticles after 24 hours incubation in physiological salt 

conditions at 37 °C 

24 hours 
PEG500 PEG1000 PEG2000 

Size PDI Size PDI Size PDI 

Cat.CD : PEG CD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

1:0 3329.6 222.2 0.327 0.156 3769.0 1471.6 0.612 0.328 1297.8 68.4 0.782 0.053 

10:1 3541.0 429.9 0.410 0.154 3352.4 288.7 0.418 0.358 170.3 1.4 0.214 0.008 

4:1 676.8 11.4 0.324 0.067 2351.6 140.7 0.373 0.144 163.7 3.7 0.257 0.013 

2:1 271.6 4.4 0.239 0.020 415.2 14.6 0.277 0.010 173.1 2.1 0.283 0.026 

1.5:1 214.5 3.7 0.220 0.013 233.4 1.1 0.202 0.013 173.3 3.9 0.266 0.015 

1:1 188.5 2.6 0.247 0.010 175.5 1.1 0.216 0.015 199.5 7.1 0.372 0.009 

0.5:1 183.2 3.1 0.356 0.029 158.8 3.7 0.401 0.021 194.9 4.1 0.346 0.029 

Abbreviations: Cat. CD : PEG CD, Ratio of cationic cyclodextrin to PEGylated cyclodextrin; PDI, Polydispersity index; SD, Standard deviation. 
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Supplementary Table S5.3. Sizes and polydispersity indexes of non-PEGylated and PEGylated CD.siRNA nanoparticles after 48 hours incubation in physiological salt 

conditions at 37 °C 

48 hours 
PEG500 PEG1000 PEG2000 

Size PDI Size PDI Size PDI 

Cat.CD : PEG CD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

1:0 2261.2 199.9 0.446 0.218 4081.2 372.0 0.499 0.361 1693.6 137.2 0.658 0.066 

10:1 4495.0 423.3 0.491 0.355 4171.6 243.9 0.421 0.389 195.0 4.3 0.278 0.021 

4:1 1000.4 40.8 0.300 0.062 2389.4 392.5 0.498 0.084 171.2 3.3 0.298 0.023 

2:1 343.8 15.7 0.368 0.018 513.5 7.6 0.286 0.037 209.4 7.0 0.435 0.060 

1.5:1 1327.2 95.7 0.850 0.056 255.4 4.0 0.223 0.021 176.5 3.7 0.281 0.016 

1:1 3113.4 185.1 1.000 0.000 214.4 8.0 0.315 0.018 179.8 2.1 0.289 0.028 

0.5:1 2533.0 108.3 1.000 0.000 157.1 6.0 0.380 0.025 198.8 3.1 0.374 0.015 

Abbreviations: Cat. CD : PEG CD, Ratio of cationic cyclodextrin to PEGylated cyclodextrin; PDI, Polydispersity index; SD, Standard deviation.
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6.1 Overview & Summary 

Silencing disease-related genes using RNAi therapeutics holds great promise as a strategy 

for the treatment of disorders of the central nervous system (CNS), such as 

neurodegenerative diseases. Indeed, autosomal dominant diseases with well-identified 

genetic targets, such as Huntington’s Disease (HD), are probably the most well-suited 

candidate-diseases for this potential therapeutic approach. However, achieving efficient and 

safe delivery of short interfering RNAs (siRNAs) to the brain, and specifically to neurons, 

poses great challenges to the progression of such a strategy to the clinic. Thus, efforts have 

emerged in the field of nanotechnology to develop more efficient and safe delivery systems 

for siRNAs into the CNS. 

In this thesis we investigated the suitability of modified cyclodextrins (CD) as non-viral 

vectors for siRNA delivery to the CNS, focusing on HD as a disease-model. To this end, an 

animal model for pre-clinical testing of CD.siRNA nanoparticles was established (Chapter 

II). The R6/2 mouse model was successfully validated and enabled us to optimise 

behavioural tasks for the purpose of our pre-clinical studies. Subsequently, we demonstrated 

that modified cationic amphiphilic CDs were able to bind and complex siRNAs forming 

nanoparticles which were stable in artificial cerebrospinal fluid (Chapter III). Moreover, in 

vitro evaluations showed that CD.siRNA nanoparticles could transfect a rat striatal cell line 

(ST14A-HTT120Q) and human HD fibroblasts with minimal toxicity. Additionally, 

CD.siRNAs nanoparticles efficiently reduced the expression of the Huntingtin (HTT) gene 

in both in vitro models and also after stereotaxic injection into the R6/2 mouse brain. 

Repeated brain injections of CD.siRNA nanoparticles into the R6/2 mouse brain resulted in 

a selective alleviation of rotarod deficits (Chapter III). Thus, these data indentify CDs as 

effective non-viral vectors for siRNA delivery to the CNS in vivo and highlights their 

potential as a therapeutic approach for the treatment of HD. 
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To expand on previously obtained preliminary cytotoxicity data (Chapter III), we further 

investigated the nanotoxicological and neuroinflammatory liabilities of CD.siRNA 

nanoparticles, and siRNA nanoparticles formulated with other commercially available non-

viral vectors, in multiple brain-derived cell lines. Overall these investigations demonstrated 

that CD.siRNA nanoparticles did not cause marked disruptions of the cellular or nuclear 

membrane, and did not disrupt normal mitochondrial metabolic activity to a great extent. 

Furthermore, we observed that different brain-derived cells presented different 

susceptibilities to toxic stimuli caused by commercially available non-viral vectors,  with rat 

striatal cell line (ST14A-HTT120Q cells) and the mouse microglia cell line (BV2 cells) 

being generally more sensitive than the human astroglioma cell line (U87 cells). In addition 

to the low cytotoxicity, CD.siRNA nanoparticles did not elicit marked inflammatory 

responses in vitro, when transfecting BV2 microglia cells and U87 cells, and in vivo upon 

direct injections into the brain of a naive mouse. In contrast, significant increases in 

neuroinflammatory markers were observed with siRNA nanoparticles formulated with 

commercial non-viral vectors, in particular with dendrimer-based delivery systems (Chapter 

IV). Overall, these data identify CDs as safe and non-toxic non-viral vectors for delivering 

siRNAs through intraparenchymal injections to the brain, further supporting its suitability 

for neurodegenerative diseases, such as HD. 

On the other hand, in order to circumvent the need for brain surgery, cationic CD.siRNA 

nanoparticles need to be further modified to achieve greater stability in physiological 

conditions and allow systemic administration. In the final studies of this thesis we focused 

on stabilisation of CD.siRNA nanoparticles by PEGylation. PEGylated formulations showed 

improved resistance to salt-induced aggregation and, at least to some extent, to protein-

induced aggregation. These effects were found to be dependent on both PEG density and 

length. Furthermore, all CD-formulations displayed enhanced circulating times in vivo when 

compared to naked siRNAs, however, we were unable to differentiate between PEGylated 

and non-PEGylated CD.siRNA nanoparticles. Thus, here we have described a successful 
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post-modification approach to PEGylate pre-formed CD.siRNA nanoparticles and identified 

the need for longer PEG lengths to increase nanoparticle’s stability in vivo in subsequent 

studies. 

 

In summary, in this thesis we have outlined two possible CD-based formulation strategies 

for HD, one for intracerebral administration and another for systemic delivery. Figure 6.1 

depicts the main stages of drug discovery and indicates where the studies in this thesis 

contribute to the effort of developing CD-based siRNA formulations for HD. However, it is 

important to highlight that prior reaching the clinical trial stage, selected formulations should 

undergo extensive preclinical toxicological and biodistribution testing in animals, such as 

human primates. Furthermore, when developing products for human application their 

production should follow the regulatory and good manufacturing practices guidelines to 

ensure that standards are met. Upon approval, these products should be tested in well-

designed Phase I, II and III clinical trials.  
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Figure 6.1. Drug discovery timeline for novel gene therapy approaches for HD. This diagram depicts the main stages of drug discovery and indicates where the studies in 

this thesis contribute to the effort of developing CD-based siRNA formulations for HD. Upon identification of a specific genetic target, siRNAs must be designed and 

validated using appropriate algorithms. Synthesis and formulation of modified CDs is carried out according to the specific requirements of the treatment and selected route 

of administration. Gene silencing efficiency, cytotoxicity and eventual inflammatory responses are investigated in relevant in vitro models. Proof of concept preclinical trials 

are carried out in a validated animal model of the disease to investigate therapeutic efficacy, along with the first in vivo toxicological studies. Further assessments of efficacy 

and extensive animal toxicological testing are also conducted in large animals prior clinical trials. Phase I, II, and III clinical trials conducted when permission is granted. 
Abbreviations: CD, Cyclodextrin; HD, Huntington’s Disease; siRNA, Short interfering RNA.  



CHAPTER VI – GENERAL DISCUSSION 

223 

 

6.2 Towards an “ideal” siRNA delivery system for CNS applications: How 

do CD-formulations stand-up?  

Delivery to the CNS, and in particular to the brain, is a major challenge faced by delivery 

systems for RNAi therapeutics. Indeed, producing an “ideal” delivery system for CNS 

applications is a fine balancing act between efficiency and toxicity. Thus, these two main 

aspects need to be considered when developing non-viral vectors for siRNA delivery to the 

brain and are further discussed below. 

6.2.1 Improving delivery efficiency  

When designing non-viral vectors for brain delivery, one should be aware that several 

extracellular and intracellular biological barriers exist and must be overcome in order to 

achieve the required silencing effect at the specific target site. Based on the knowledge about 

these different barriers (see Section 1.10) and according to the selected route of 

administration, it is possible to foresee the “ideal” characteristics required by the non-viral 

vector to effectively deliver to the brain. In this regard, Kostarelos and Miller (Kostarelos et 

al., 2005) have suggested a practical and meaningful paradigm for optimisation of non-viral 

vectors based on the self-assembly “ABCD” nanoparticles concept depicted in Figure 6.2.  
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Figure 6.2. “ABCD” structural paradigm for non-viral vectors. (A) Nucleic acid cargo (e.g. siRNA, 

pDNA). (B) Condensing or encapsulating layer. (C) Stealth layer to confer stability. (D) Biological 

recognition layer. Abbreviations: pDNA, Plasmid DNA; siRNA, Short interfering RNA. 

 

Based on this structural paradigm, if non-viral vectors are to be administered through 

localised intraparenchymal administrations to a specific target site within the brain, as in 

Chapter III, simpler “AB” formulations may suffice. However, in order to achieve successful 

gene silencing effects, this “AB” delivery systems should still: protect siRNA from 

enzymatic degradation; be able to transfect relevant target cell-types within the CNS; and, 

escape endosomal degradation releasing the siRNAs to the cytoplasm (Guo et al., 2010a; 

O'Mahony et al., 2013b). In addition, it is worth noting that neurons are notoriously difficult 

to transfect, most likely due to their post-mitotic nature, and therefore pose great challenges 

to non-viral delivery systems (Krichevsky & Kosik, 2002). Here we have shown that 

modified cationic amphiphilic CDs (SC12 CD Click Propylamine) (Chapter III) fulfil these 

criteria by condensing siRNAs into positively charged nanoparticles, which in turn are 

capable of interacting with cellular membranes and facilitating cellular uptake. In addition, 

CD.siRNA nanoparicles have effectively reduced the expression of the mutant HTT 

(muHTT), both in vitro and in the R6/2 mouse brain, also suggesting successful escape from 
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endosomal degradation. Therefore, this cationic CD-formulation holds great promise for 

administrations to be carried out directly in the brain. Moreover, it is worth noting that the 

innovative “click” chemistry methodology used to synthesise these non-viral vectors is a 

very promising approach. This is especially true in the context of the high yields garnared 

which is poised to be very advantageous over other cationic CDs when industrial scale-up is 

required. 

Alternatively, and given that the systemic route is preferred, cationic non-viral vectors may 

need to be further stabilised by forming “ABC”-type nanoparticles. This is commonly 

achieved by addition of a stealth layer usually consisting of PEG to improve stability under 

physiological conditions (reducing salt- and serum-induced aggregation). In this thesis, we 

have described a modification strategy towards improving the in vivo stability of CD.siRNA 

nanoparticles. Surface post-modification through incorporation of other complementary 

amphiphilic PEGylated CDs conferred enhanced stability against salt-induced aggregation, 

and in part against serum protein-induced aggregation. Although, in our case these 

PEGylated CD.siRNA nanoparticles failed to demonstrate any improved blood residency, 

others have achieved this by using larger PEG molecules (Mw 5000) (Davis, 2009; Davis et 

al., 2010). Also, stable “ABC”-type CD.siRNA nanoparticles have been previously formed 

by: direct grafting of PEG chains to the CD scaffold; by co-formulation with PEGylated 

CDs; or even by using the hydrophobic CD cavity to form inclusion complexes with 

PEGylated “guest molecules” such as adamantane-PEG derivatives. Thus, CDs as non-viral 

vectors have the advantage of being versatile pharmaceutical molecules which allow several 

functional modifications to be carried out in order to generate stable and efficient delivery 

systems (Sallas & Darcy, 2008). 

Finally, once stable siRNA nanoparticles have been formulated, targeting across the BBB is 

likely to be required to access the brain. To this end, several targeting ligands have been 

investigated to enhance transport across the BBB or to increase delivery to neurons (Table 

6.1). Among such peptides, the 29 amino acid fragment derived from the rabies virus 
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glycoprotein (RVG) has lately received much attention (Hwang et al., 2011; Kumar et al., 

2007; Liu et al., 2009). This targeting ligand interacts with acetylcholine (Ach) receptors 

expressed in the BBB and neuronal cells, leading to translocation across the BBB by 

receptor-mediated endocytosis. Transferrin (Cardoso et al., 2010; Cardoso et al., 2007), 

lactoferrin (Huang et al., 2010) and angiopep (Ren et al., 2012) have also been widely 

investigated for CNS delivery, however, the receptors for this proteins/peptides are widely 

expressed in other tissues and may not confer specificity for the CNS. In this thesis the “AB” 

and “ABC” delivery systems investigated lack neuronal targeting. However, it is worth 

noting specific targeting has been successfully achieved in our lab, for example, using 

anisamide-targeted PEGylated CD delivery systems for prostate cancer (Guo et al., 2012b). 

Thus, this demonstrates that further improvements of current CD-formulations for specific 

targeting to neurons, and eventually to specific sub-populations of neurons, may be feasible 

in the future. 
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Table 6.1. In vivo studies using targeting ligands to improve neuronal and brain delivery of drugs and nucleic acids 

Target ligand Receptor 
Basic 

nanosystem 

Other 

modifications 
Target/disease Cargo 

System model 

(in vivo) 

Outcome Across BBB 

Enhanced neuronal 

Route of 

Admin. 
Ref. 

TF TFR Liposomes N/A Luciferase siRNA 
NF-kB-luciferase 

reporter mice 

40% reduction in luciferase 

expression in the striatum 

Single 

intrastriatal 

injection 

(Cardoso et 

al., 2008) 

TF TFR 
PAMAM 

dendrimer 
PEG3400 

pGL2/pEGFP 

gene delivery 
pDNA Balb/c mice 

Several regions of the brain 

compared to untargeted 

formulations 

i.v. 
(Huang et al., 

2007b) 

LTF LTFR 
PAMAM 

dendrimer 
PEG3400 

pGL2/pEGFP 

gene delivery 
pDNA Nude mice and Balb/c 

Enhanced gene expression in the 

mid brain 
i.v. 

(Huang et al., 

2010) 

RVG AchR R9 N/A 
GFP, SOD1 and  

FvE
J
 

siRNA 
GFP transgenic, Balb-

c, JEV-infected mice 

~50% reduction in GFP and  

SOD1. Improved survival in 

JEV-infected mice 

i.v 
(Kumar et al., 

2007) 

RVG AchR Liposomes 
Imidazole 

containing lipid 
PrP

C
 siRNA FVB mice 

25% decrease in PrP
C
 in the 

brain 
i.v. 

(Pulford et 

al., 2010) 

RVG AchR PEI PEG5000 

Delivery of 

neurogenic miR-

124a 

miRNA Balb/c mice 
Accumulation of Cy5.5-

miR124.a in the brain 
i.v. 

(Hwang et al., 

2011) 

RVG AchR PAMAM PEG3400 
pGL2/pEGFP 

gene delivery 
pDNA Balb/c mice 

Increased uptake in the brain. 

High gene expression 
i.v. 

(Liu et al., 

2009) 

ANG LRP O-MWNTS PEG2000 Brain glioma Doxorub. 

Intracranial glioma 

bearing Balb/c 

 

Enhanced delivery of DOX to 

the brain and anti-glioma 

effects. 

i.v. 
(Ren et al., 

2012) 

ANG LRP 
PAMAM 

dendrimer 
PEG3400 

GFP gene 

delivery 
pDNA Nude mouse 

Increased uptake in the brain, 

GFP expression in several 

regions 

i.v. 
(Ke et al., 

2009) 

NT NTS1 PLL 

HA2 fusigenic 

peptide and Vp1 

SV40 karyophilic 

peptide 

hGDNF gene 

expression 
pDNA 

6-OHDA 

hemiparkinsonian rats 

Increased hGDNG  expression 

in the striatum and substantia 

nigra. Biochemical and 

functional recovery. 

Injection into 

the substantia 

nigra 

(Gonzalez-

Barrios et al., 

2006) 

Tet1 GT1b PEI PEG5000 

Luciferase/β 

galactosidase 

plasmid 

pDNA C57/BL6 mice 

Expression of Luciferase 

sustained for 10 days. Targets 

mainly NPC 

Left lateral 

cerebral 

ventriculum 

(Kwon et al., 

2010) 

 
Abbreviations: AchR, Acetylcholine Receptor; ANG, Angiopep-2; BCEC, Brain Capillary Endothelial Cells; Doxorub., Doxorubicin;  GFP, Green fluorescent protein; GT1b, 
triasialoganglioside receptor; hGDNF, human glial cell line-derived neurotrophic factor; JEV, japanese encephalitis virus; LTF, lactoferrin; LTFR, lactoferrin receptor; LRP, low-density 
lipoprotein receptor-related protein; miRNA, micro RNA; NT, Neuortensin;  NPC, neuron progenitor cells;  NTS1, neurotensin receptor; O-MWNTs, oxidized multiwalled carbon nanotubes; 
PAMAM, polyamidoamine; PEG, Poly(ethylene glycol); PrPC, prion protein cellular; R9, nona-arginine; RVG, rabies virus glycoprotein; SOD1, superoxide dismutase 1.
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6.2.2 Reducing nanoparticle-mediated toxicity 

Cell death and/or exacerbated inflammatory responses to siRNA nanoparticles in the CNS 

may mask the benefits of RNAi-based therapies. This is of particular importance in the 

context of HD, where an underlying inflammatory condition exists (Möller, 2010), and 

diseased neurons have been found to be particularly sensitive to toxic stimuli (Rigamonti et 

al., 2000). Furthermore, unspecific interactions of siRNA nanoparticles with other cell types 

within the brain, such as microglia and astroglia, may lead to direct toxic effects in these 

cells with subsequent reduction in brain homeostasis (Figure 6.3 bottom box). As a result, 

neurons can be indirectly affected due to a reduction in the biochemical support provided 

and/or due to the inflammatory response triggered. Thus, investigating the cytotoxicity 

caused by the final assembled nanosystem in multiple brain cell types is crucial to provide 

an integrated and more complete evaluation of these effects. 

In addition to the therapeutic efficacy, gene silencing in the CNS requires the use of safe and 

non-toxic delivery vectors. In this thesis, commercially available delivery systems, such as 

Lipofectamine2000
®
 (lipid-based vector) and INTERFERin

® 
(proprietary cationic non-

liposomal amphiphile), were very effective transfecting a rat striatal cell line (ST14A-

HTT120Q) and silencing the expression of muHTT gene. However, these vectors also 

displayed high cytotoxicity at concentrations and time points commonly used to silence 

genes in in vitro neuronal cell cultures (O'Mahony et al., 2012b). Indeed, polycation-based 

nanoparticles are well-known to cause biological adverse effects, such as membrane lysis 

and disruption of mitochondrial activity (Figure 6.3 top box) (Ballarín-González & Howard, 

2012; He et al., 2010). However, although CD.siRNA nanoparticles are also cationic in 

nature, in this study they exhibited low cytotoxicity and comparable gene silencing effects to 

that seen with commercial vectors. Thus, we hypothesise that other characteristics associated 

with the physicochemical properties of the nanoparticle, such as the size and morphology, 

but also the biodegradability of the nanocarrier may play a pivotal role in toxicity. However, 

mechanistic studies are still warranted to further elucidate the different pathways involved 
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and the importance of each of the above factors in cytotoxicity. Interestingly, our in vitro 

studies also showed that vectors that commonly induced high cytotoxicity in BV2 microglial 

cells, also induced high gene expression of pro-inflammatory cytokines (Chapter IV). Thus, 

the immune activation observed in our studies might be closely related to the cytotoxicity of 

the vector and may involve the activation of Toll-like receptors (TLR) (Figure 6.3 top box). 

It is thus possible that a vector-induced activation of TLRs may occur after the release of 

danger associated molecular patterns (DAMPS), or even by direct activation of these 

receptors. In fact, it has been recently suggested that cationic siRNA nanoparticles may 

directly activate TLRs at the cellular membrane when injected intravenously (Kedmi et al., 

2010). On the other hand, it has also been argued that siRNA itself, rather than the 

biomaterial may be the culprit of the immune response. However, in general these effects 

have been suggested to be vector-dependent (Bonnet et al., 2008; Kawakami et al., 2006; 

Kedmi et al., 2010), and closely related to the sequestration of siRNA within a TLR rich 

environment in endosomes (Ballarín-González & Howard, 2012). In the particular case of 

modified CDs, low activation of the immune response was observed, thus suggesting that 

these vectors are able to avoid TLR activation at the cellular membrane and also escape the 

TLR-rich environment in the endosomes. 

Several approaches have been investigated to reduce nanoparticle-mediated toxicity.  As an 

example, introduction of cleavable ester linkers in synthetic polyamidoamine (PAMAM) 

dendrimers have been shown to improve its biodegradability and consequently its toxicity 

profile (Kim et al., 2010a). Alternative strategies to reduce cytotoxicity have consisted of 

surface modifications with PEG in order to reduce charge-related toxic effects (Beyerle et 

al., 2010; Hibbitts et al., 2011; Wang et al., 2010b). Further functionalisation of the 

nanoparticle with targeting ligands (Table 6.1) may enhance cellular uptake by specific cell 

types, thereby preventing toxicity in non-target cells and tissues when nanoparticles are 

applied in vivo. This strategy might be of particular utility to avoid uptake by microglial and 

astroglial cells and circumvent, at least in part, the activation of the inflammatory response. 
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Furthermore, the addition of fusogenic lipids and/or peptides to the formulation has been 

shown to improve endosomal escape (Farhood et al., 1995; Hatakeyama et al., 2009; 

Litzinger & Huang, 1992; Oliveira et al., 2007), and therefore might constitute valid and 

feasible strategies to minimise immune activation and enhance gene silencing effects. 

Although our studies revealed favourable toxicity and neuroinflammatory profiles for 

modified CDs in vitro and after single injections into the striatum, further extensive 

toxicological evaluations are still required in different brain regions and using escalating 

doses. Also, although no apparent toxic effects were seen after multiple dosing into the R6/2 

mouse brain, an evaluation of the nanotoxicological effects of CD-formulations after chronic 

administration is warranted. In addition, PEGylated CD.siRNA nanoparticles used in this 

thesis were not assessed for toxicological and inflammatory responses after i.v. 

administration. However, previous work in our lab has demonstrated no significant increases 

in liver enzymes, alanine transaminases (ALAT) or aspartate transaminases (AST), 

following i.v. injections with anisamide-targeted cationic PEGylated CDs (Guo et al., 

2012b).  In addition, encouraging results have also been obtained in recent clinical trials 

where CD-containing formulations have been used with no apparent or significant immune 

responses (Davis, 2009; Davis et al., 2010). Thus, taken together, this further advocates that 

CD formulations may also be used through this route of administration with success.  
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Figure 6.3. Nanotoxicological and neuroinflammatory liabilities of cationic siRNA nanoparticles. 

Cationic siRNA nanoparticles may unspecifically interact with different cell types in the CNS milieu 

eventually causing cytotoxicity or triggering inflammatory response. Top box: (a) Cationic siRNA 

nanoparticles may directly activate TLRs at the surface of the cell membrane. (b) Poor endosomal 

release capabilities may also result on the activation of TLRs by siRNAs. Cationic siRNA 

nanoparticles may (c) disrupt the cellular membrane causing lysis and release of Damage-associated 

molecular pattern molecules (DAMPS). DAMPS can subsequently activate TLRs. (d) Permeation of 

the nuclear membrane and disruption of gene expression. (e) Interference with mitochondria may 

cause disruptions in the metabolic activity, pore hole formation and release of mitochondrial 

enzymes. Bottom box: Cytotoxicity over one cell-type might reduce homeostasis in the brain. 
Abbreviations: CNS, Central Nervous System; DAMPS, Damage-associated molecular pattern 

molecules; TLR, Toll-like receptor; siRNA, Short interfering RNA. 
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6.3 Silencing the mutant Huntingtin: is allele-specificity merely an 

alternative or a compulsory prerequisite? 

In dominantly inherited neurodegenerative diseases, such as HD, most of the affected 

individuals are heterozygous, carrying one copy of the normal allele and another mutated 

form of the allele (Squitieri et al., 2003). Although mutant proteins are causative of disease, 

wild-type proteins may have essential or unknown functions. Therefore, non-specific 

silencing of the wild-type alleles could have detrimental effects, especially if chronic 

administration is need, and allele-specific targeting of mutant genes might be an alternative 

to circumvent this issue (Rodriguez-Lebron & Paulson, 2005b). Indeed, this has been 

successfully achieved by exploiting the nucleotide differences between mutated and wild-

type genes and the specificity of the RNAi mechanism. Rational design of siRNA (or shorth 

hairpin RNAs (shRNAs)) targeting the site of the mutations has enabled allele-specific 

silencing of the mutant forms of superoxide dismutase (SOD)-1 in vitro and in vivo (Xia et 

al., 2006), and of tau and amyloid precursor protein (APP) in vitro (Miller et al., 2003). 

However, targeting of the mutant CAG expansion using siRNAs in polyglutamine (polyQ) 

disorders, such as HD and spinocerebellar ataxia (SCA), leads to an unintended suppression 

of the normal allele and also of other genes normally containing CAG repeats (Hu et al., 

2009; Miller et al., 2003). In this case, allele-specificity might only be achievable by 

targeting disease-linked polymorphisms.  

Approximately 60 single nucleotide polymorphisms (SNP) have been identified in the 

coding and in the 3’ untranslated regions (UTR) of the human HTT gene (Bilsen et al., 

2008). From those, a selection of 25 SNPs and a GAG deletion (in exon 58) were recently 

found to have enough heterozygosity among a cohort of HD Caucasian Europeans, with 

86% of patients being heterozygous for at least one of these polymorphisms (Lombardi et 

al., 2009). Initial studies showed specific silencing of the muHTT allele in artificial HeLa 

cell systems containing plasmids with the nucleotide sequence of the SNP incorporated 

(Schwarz et al., 2006). Further studies revealed that allele-specific silencing is also possible 
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by targeting HTT polymorphisms in human HD fibroblasts, naturally harbouring the 

muHTT (Lombardi et al., 2009; Zhang et al., 2009). Additionally, rationally designed 

siRNAs against a subset of 3-7 SNPs have achieved allele-specific knockdown of the 

muHTT in vitro and may be suitable to treat at least three quarters of the US and European 

HD populations (Pfister et al., 2009; Zhang et al., 2009). It is also important to note that 

allele-specific silencing has also been achieved using ASO technology in several in vitro and 

in vivo studies, further supporting the feasibility of this approach (Carroll et al., 2011). 

However, this approach would require genotyping of all SNP sites of interest, selection of 

the SNP to be targeted and of the allele-specific siRNAs, which may lead to increased costs. 

Alternatively, non-allele specific targeting has been recently suggested as a valid approach 

that would circumvent the economic cost of individualized therapy. Complete (or almost 

complete) ablation of the mouse homologue Hdh gene has led to complications in 

embryogenesis and progressive degeneration in the adult brain (Dragatsis et al., 2000; 

Duyao et al., 1995a). However, recent in vivo preclinical studies have shown that partial 

reduction of the wild-type protein might be tolerable (Boudreau et al., 2009b; Drouet et al., 

2009; McBride et al., 2011). In these studies, partial silencing of the endogenous HTT 

homologue did not exacerbate HD pathology or cause detrimental effects in neuronal 

survival, and has been found to be well tolerated for several months (Boudreau et al.; Drouet 

et al.). Furthermore, studies carried out in nonhuman primates have also shown that 

reduction of endogenous HTT homologue by ~45% does not induce neuronal degeneration, 

astrogliosis or even motor deficits (Grondin et al., 2012; McBride et al., 2011; Stiles et al., 

2012). Thus, the residual levels of wildtype protein may be sufficient to maintain cellular 

needs. However, silencing of endogenous HTT lead to transcriptomic changes in other genes 

related to the functions of HTT and therefore a clear assessment of the impact of these is 

needed before progressing to the clinic (Boudreau et al., 2009b; Drouet et al., 2009). Finally, 

despite the favourable outcomes, most of these in vivo studies were conducted up to 6-9 
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months and therefore the effect of long term gene expression knockdown of wild-type 

Huntingtin (wtHTT) still needs further investigations. 

A novel combinatory therapy has been reported as a useful strategy to target diseases where 

mutations have a high level of heterogeneity, such as dominant retinitis pigmentosa 

(Millington-Ward et al., 2011). The method consists of utilising RNAi for non-allele specific 

gene suppression of the mutated gene and gene therapy for supplementing a RNAi-resistant 

wild-type. This approach has been successfully used in vivo for α-1 antitrypsin (AAT) 

deficiency, preventing liver pathology and increasing blood levels of AAT, and for dominant 

retinitis pigmentosa , improving retinal structures and function (Li et al., 2011a; Millington-

Ward et al., 2011). The applicability to neurodegenerative diseases has also been explored 

with initial studies for SOD1 and SCA showing effective knockdown and replacement; 

however no functional effects were reported (Kubodera et al., 2011; Kubodera et al., 2005). 

The suppression and replacement approach could also be possibly used for HD, however this 

has not yet been investigated. 

6.4 Conclusions & Future Perspectives 

The work carried out in this thesis identified a CD-based delivery system capable of 

efficiently delivering siRNAs to the brain, inducing significant gene silencing effects with 

low levels of toxicity and immunological activation. Here we also demonstrated that the 

application of such nanosystem for delivering RNAi therapeutics in the context of HD is 

feasible through direct injections into the brain. Additionally, and taking into account that 

the systemic route is preferred, we have described a method for post-modification of 

CD.siRNA nanoparticles in order to increase stability in physiological conditions, and 

identified PEG length as a major determinant for stability. However, certain limitations still 

remain including lack of improved half-lives in vivo and lack of specific neuronal targeting. 

In order to overcome the limitations above mentioned, at first, future studies should 

concentrate on further stabilisation of CD.siRNA nanoparticles with higher molecular 
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weight (Mw) PEG. To this end, PEGs of Mw > 2,000 should be selected and incorporated to 

CD-formulations using the post-modification strategy described in this thesis, or other 

strategies previously described by our group. Alternatively, other PEGylation approaches 

that have been found successful elsewhere might also be employed (Davis, 2009), for 

example, by using the hydrophobic cavity of the CD to form inclusion complexes with 

adamantane-PEG derivatives. Once the desired stability in vivo has been achieved, transport 

of CD.siRNA nanoparticles across the BBB must be guaranteed. To achieve this, transient 

disruptions of the BBB and/or the use of specific targeting ligands are two possible 

strategies. The later most likely will be preferred since it may also facilitate specific 

neuronal uptake. 

Moreover, in this thesis, HD has been used as a disease-model for investigating the 

applicability of CD-based formulations for siRNA delivery to the CNS. Thus, the 

applicability of these nanosystems for the treatment of other CNS disorders, including other 

neuropsychiatric disorders and brain cancers, still warrants further investigations and all of 

which requires clinical validation. 
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Appendix A:  

Optimisation of cell culture conditions for Methyl 

thiazolyl tetrazolium colorimetric assays 
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A.1. Background information 

Methyl thiazolyl tetrazolium (MTT) colorimetric assays assess mitochondrial dehydrogenase 

activity and therefore are a good measure of cellular metabolism (Kepp et al., 2011). Indeed, 

MTT assays are commonly used to measure cell proliferation, but also as a mean to evaluate 

in vitro cytotoxicity of specific treatments. However, MTT assays have been found to be 

sensitive to several assay conditions, including cell densities, culture medium, and exposure 

times (Sylvester, 2011). Thus, in order to obtain reliable results in cytotoxicity experiments 

based on MTT assays, here we have investigated the optimal cell density to be used for each 

specific cell line. 

(Data in this appendix were obtained prior carrying out experiments outlined in Chapter III 

and IV)  

 

A.2. Materials and Methods 

A.2.1. Cell culture 

ST14A-HTT120Q cells derived from rat striatal primordia and cloned with the human 

Huntingtin (HTT) gene were obtained from Coriell Institute for Medical Research (Camden, 

NJ). Primary human fibroblasts harvested from a patient with Huntington’s Disease (HD) 

(HD fibroblasts, GM04691) were obtained from Coriell Institute for Medical Research 

(Camden, NJ). BV2 cells derived from primary mouse microglia cells were obtained from 

Banca Biologica e Cell Factory – IST (Italy, Genova). U87 astroglioma cells were a kind gift 

from Dr. Paul Young (University College Cork). ST14A-HTT120Q cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) (Sigma, St. Louis, MO) supplemented with 

10% Fetal Bovine Serum (FBS) (Sigma, Germany) up to passage 25. HD fibroblasts were 

grown in DMEM + 20% FBS + 5% vitamins (GIBCO, United Kingdom) + 5% aminoacids 

(GIBCO, United Kingdom) up to passage 15. BV2 cells were maintained in Roswell Park 

Memorial Institute medium 1640 (RPMI) (GIBCO, United Kingdom) medium supplemented 
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with 10% FBS and 2 mM L-glutamine (GIBCO, United Kingdom) up to passage 25. U87 

cells were grown in DMEM supplemented with 10 % FBS and 2 mM L-glutamine (GIBCO, 

United Kingdom). All cultures were kept in a humidified incubator with 5 % CO2 and at 33 

°C (ST14A-HTT120Q) or 37 °C (HD fibroblasts, BV2 and U87). 

A.2.2. MTT assay 

Cells were seeded at different cell densities in 96-well plates and after 48 hours MTT assays 

were carried out. Briefly, medium was removed from wells and replaced with 100 μL of 

fresh medium. 20 μL of a 5 mg/mL solution of MTT reagent was added to each well and 

incubated at 37 °C for 4 hours. The formazan crystal product was dissolved in 100 μL of 

dimethyl sulfoxide. Absorbance was measured at 590 nm using a using a SpectraMax 

Plus384 UV plate reader. 

 

A.3. Results and Discussion 

Our results demonstrate that different cell types reduce the MTT reagent to the respective 

formazan product differently (Figure A.1). Indeed, we observed that BV2 and U87 cells 

reduced the MTT reagent to a greater extent (resulting in higher absorbances), than ST14-

HTT120Q and HD fibroblast cells. This may be due to differences in plasma membrane 

permeability to the MTT dye from cell to cell, or possibly due to higher mitochondrial 

metabolic activity rates in BV2 and U87 cells. 

For the purpose of our cytotoxicity studies (Chapter III and IV), a cell density within the 

growth phase (before absorbance reaches plateau) was selected for each of the cell lines 

independently. Table A.1 summarises the cell densities used for each of the cell lines in 

subsequent cytotoxicity experiments using MTT assays. 
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Table A.1. Cell densities for MTT assays in 96-well plates. 

Cell line Cell density (Cells/Well) 

ST14A-HTT120Q striatal cells 7.5 x 10
3
 

HD Fibroblast 7.5 x 10
3
 

BV2 microglial cells 1.0 x 10
4
 

U87 astroglioma cells 1.0 x 10
4
 

 

 

 

 
 

 

 
 
Figure A.1. Optimisation of cell culture conditions for MTT assays. (a) ST14A-HTT120Q striatal 

cells, (b) human HD fibroblast, (c) BV2 microglia cells, and (d) U87 human astroglioma cells were 

seeded at different cell densities in 96-well plates and MTT assay carried out after 48 hours. (n = 3). 
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Appendix B: 

Investigation of ultrafiltration as a method for 

concentration of CD.siRNA nanoparticles: Effects on 

the physicochemical proprieties and gene silencing 

efficiency 
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B.1. Background information 

Delivering short interfering RNAs (siRNAs) to the central nervous system (CNS) and in 

particular to the brain poses significant challenges to delivery systems. Neurons are 

notoriously difficult to transfect (Krichevsky & Kosik, 2002), and the existence of 

specialised biological barriers, such as the blood brain barrier (BBB), limits diffusion of 

siRNA nanoparticles to the brain (O'Mahony et al., 2013b). Indeed, in order to circumvent 

the hurdles of systemic delivery, most successful preclinical studies for brain delivery of 

siRNA have consisted of stereotaxic injections into specific structures (Bonoiu et al., 2011; 

Cardoso et al., 2010; Cardoso et al., 2008) and/or infusion into the intracerebroventriculum 

(Thakker et al., 2004). However, when carrying out local administrations to the brain brain 

one is constricted to small volumes, and therefore additional processing steps in the 

formulation of nanoparticles are necessary to meet this requirement. To this end several 

methods have been employed, including ultrafiltration. 

Ultrafiltration is a gentle method that uses pressure for separation and concentration of high 

molecular weight solutes by retention, whereas, low molecular weight solutes and solvent 

pass through a semi-permeable membrane (Pingoud et al., 2002). Indeed, this method has 

been successfully applied to concentrate cationic lipoplexes and polyplexes carrying DNA 

(Howard et al., 2004; Nchinda et al., 2003), and recently applied to siRNA nanoparticles 

formulated with modified cyclodextrins (CDs) (O'Mahony et al., 2013a). 

Thus, here we investigated the effects of ultrafiltration on the physicochemical proprieties 

and gene silencing efficiency of CD.siRNA nanoparticles. To this end, complexes were 

prepared according to standard protocols previously described by our group, and 

concentrated up to 20x from the initial concentrations. Physicochemical properties, 

including binding and complexation of siRNA, and size and charge were assessed. 

Subsequently, gene silencing efficiency of concentrated and non-concentrated CD.siRNA 
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nanoparticles was assessed in ST14A-HTT120Q cells. targeting the mutant Huntingtin 

(muHTT) mRNA. 

(Data in this appendix were obtained prior carrying out experiments outlined in Chapter III 

and IV) 

 

B.2. Materials and Methods 

B.2.1. Synthetic siRNAs 

Synthetic duplexed siRNAs were obtained from Sigma-Aldrich (France) or QIAGEN 

(United Kingdom). HTT target siRNAs (HTTsiRNA) as per Wang et al. (Wang et al., 2005) 

sense strand, 5’-GCCUUCGAGUCCCUCAAGUCC-3’; antisense strand, 5’-

ACUUGAGGGACUCGAAGGCCU-3’. Non-silencing siRNAs (NSsiRNA): sense strand, 

5’-UUCUCCGAACGUGUCACGUdTdT-3’; antisense strand, 5’-

ACGUGACACGUUCGGAGAAdTdT-3’. 

B.2.2. Preparation and concentration of CD.siRNA nanoparticles 

Modified cationic CDs were dissolved in chloroform to give a 1 mg/mL solution. 

Chloroform was evaporated, under a stream of gaseous nitrogen, leaving a CD film which 

was rehydrated using a solution of 5% glucose to achieve a solution containing 1 mg/mL of 

CD. CDs were vortexed for 5 minutes and sonicated for 60 minutes. CDs were mixed with 

siRNAs at a mass ratio 10 (µg CD : µg siRNA), using equal volumes of both solutions, and 

incubated at room temperature (RT) for 20 minutes. CD.siRNAs nanoparticles were 

concentrated by ultrafiltration using Vivaspin 500 centrifugal units (Sartorius, Germany) 

with a molecular weight cut off of 3,000 Da. Concentrator tubes were centrifuged at 1,500 g 

at RT to a final concentration of 1 µg/µl of siRNA. 
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B.2.3. Physicochemical characterisation 

Binding and complexation of siRNA was confirmed by gel retardation assay. Concentrated 

and non-concentrated CD.siRNA nanoparticles containing ~1 µg of siRNA were mixed with 

2 µL of Blue Juice Loading Buffer (Invitrogen, Carlsbad, CA) and sufficient DIW to a final 

volume of ~30 µL. Samples were loaded in a 2% agarose gel and electrophoresis performed 

at 90 mV for 20 minutes in Tris-acetate-Ethylenediaminetetraacetic acid (TAE) buffer 

(Fisher Scientific, Fair Lawn, NJ). The gel was post-stained using GelRedTM nucleic acid 

stain (Biotium, Hayward, CA) and visualised using the DNR Bioimaging Systems and Gel 

Capture version 7.0.9 software. 

Size and surface charge measurements were carried out using Dynamic Light Scattering 

(DLS) and Electrophoretic Light Scattering (ELS), respectively. CD.siRNA nanoparticles, 

containing ~ 3 µg of siRNA, were diluted up to 1 mL with filtered sterilised DIW and 

assessed by DLS and ELS using a Malvern Zetasizer Nano ZS. A total of five readings for 

size and charge were taken per sample and the refractive index (1.33) and viscosity (0.8872 

mPa·s) of water were taken into to account in data analysis. 

B.2.4. Cell culture and RNAi transfection 

ST14A-HTT120Q cells were obtained from Coriell Institute for Medical Research (Camden, 

NJ) and cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma, St. Louis, MO) 

supplemented with 10% Fetal Bovine Serum (FBS) (Sigma, Germany) up to passage 25. 

For RNAi transfection experiments cells were seeded in 12-well plates at a density of 1.7-

2.0 x 105 cells/well. Nanoparticles were prepared as described above and diluted in 

optiMEM. The volume of transfection sample accounted for 20% of the total volume of the 

well, the remaining 80% consisted of complete growth media. Transfection was carried out 

for 24 hours and the final concentration of siRNA in all RNAi-treated groups was of 100 

nM. 
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B.2.5. Gene expression 

RNA was isolated from tissue using a Trizol®-based method (Invitrogen, United Kingdom). 

300 ng of total RNA was reverse transcribed to cDNA using a High Capacity cDNA Reverse 

Transcription kit from Applied Biosystems (Foster City, MO). Gene expression was 

assessed by fluorescent real time quantitative PCR using a 7300 Real Time PCR System. 

Cycling conditions were: 10 minutes at 95 °C, 40 cycles of [15 seconds at 95 °C; 1 min at 

60°C]. TaqMan® rat or mouse b-actin VIC® labelled probes were acquired from Applied 

Biosystems (United Kingdom) (part number 4352340E and 4352341E). Primer sequences 

(forward: CGACCCTGGAAAAGCTGATGAA, reverse: CTGCTGCTGCTGGAAGGA) 

were validated for detection of human HTT mRNA (Ref. Seq. NM_002111) and used to 

design a TaqMan® HTT FAM-labelled probe. Each sample was analysed in triplicate wells 

and average CT values were used for gene expression calculations. β-actin was used as 

endogenous control and all CT values were normalized to the expression of β-actin. 

B.2.6. Statistical analysis 

Statistical analysis was performed by One-way Analysis of Variance (ANOVA) followed by 

Dunnett’s Post Hoc test. Unpaired t-student test was carried out for comparisons between 

concentrated and non-concentrated CD.siRNA nanoparticles. 

 

B.3. Results and Discussion 

Direct local administrations of siRNAs into the mouse brain require small volumes. To this 

end, we investigated the suitability of ultrafiltration as a method for concentration of 

CD.siRNA nanoparticles. CD.siRNA nanoparticles were prepared in optimal volume as 

previously described (O'Mahony et al., 2012b),and thereafter concentrated by ultrafiltration. 

Our results showed that concentration of CD.siRNA nanoparticles by ultrafiltration up to 20-

fold from the initial solution did not affect binding and complexation of siRNA (Figure 
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B.1a). Furthermore, after incubation of concentrated CD.siRNA nanoparticles with SDS, 

confirming that siRNA was still present within the CD-formulation after the concentration 

process (Figure B.1b). On the other hand, CD.siRNA nanoparticles concentrated up to 20-

fold from the initial solution and with a final concentration of siRNA of 1 mg/mL did not 

present marked increases in particle size nor major changes in zeta potential.  

 

 

Figure B.1. Physicochemical characterisation of concentrated and non-concentrated CD.siRNA 

nanoparticles. CD.siRNA nanoparticles were concentrated from 1x up to 20x by ultrafiltration. 

Samples for characterisation were taken at different stages of the concentration process. (a,b) Gel 

retardation assay where free siRNA migrates from the well. (a) Concentrated CD.siRNA 

nanoparticles were not disrupted by the concentration process. (b) Release of siRNA from the 
complexes after incubation of samples with sodium dodecyl sulfate confirms that siRNA is still present 

within the nanoparticle after the concentration process. (c) Hydrodynamic diameter measured by 

Dynamic Light Scattering. (d) Zeta potential measured by Electrophoretic Light Scattering. Data 

represented as Mean ± SD (n = 5).  
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Subsequently, we investigated if CD.siRNA nanoparticles concentrated 20-fold from the 

starting solution would maintain comparable gene silencing efficiencies to the non-

concentrated nanoparticles. Results showed that concentrated CD.siRNA nanoparticles were 

capable of delivering siRNAs and efficiently silence the expression of the muHTT gene in 

ST14-HTT120Q cells. No statistical significant differences were found when compared to 

non-concentrated CD.siRNA nanoparticles or Lipofectamine2000
®
 (commercially available 

lipid-based formulation).  

 

Figure B.2. Gene silencing efficiencies of concentrated and non-concentrated CD.siRNA 

nanoparticles in ST14A-HTT120Q cells. ST14A-HTT120Q cells were transfected for 24 hours. RNA 

was extracted and reverse transcribed to cDNA. HTT gene expression assessed by RT-qPCR. Final 

concentration of siRNA = 100 nM. Data represented as Mean ± SEM (n = 2-4). **P<0.01 and 

***P<0.001. Abbreviations: HTT CD, CD.HTTsiRNA nanoparticles; NS CD, CD.NSsiRNA 

nanoparticles; Lf2000, Lipofectamine2000®; Unt., Untreated; siRNA, naked siRNA. 

 

Ultrafiltration has been previously used to concentrate polyplexes and lipoplexes containing 

pDNA for in vivo applications (Howard et al., 2004; Nchinda et al., 2003). In these studies, 

concentration by ultrafiltration did not disturb to a great extent the physical properties of the 

nanoparticles and in some cases enhanced delivery of the nuclei acid in vivo (Howard et al., 

2004; Nchinda et al., 2003). Taken together with our in vitro results, these data suggests that 

ultrafiltration may be a suitable method for concentration of CD.siRNA nanoparticles for in 

vitro and in vivo applications. 


