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Abstract. For two families of time-series constraints with the aggre-
gator Sum and features one and width, we provide parameterised sharp
lower and upper bounds on the sum of the time-series variables wrt these
families of constraints. This is important in many applications, as this
sum represents the cost, for example the energy used, or the manpower
effort expended. We use these bounds not only to gain a priori knowledge
of the overall cost of a problem, we can also use them on increasing pre-
fixes and suffixes of the variables to avoid infeasible partial assignments
under a given cost budget. Experiments show that the bounds drastically
reduce the effort to find cost limited solutions.

1 Introduction

Time series is an increasingly important format of data in many applications,
from financial to scientific. Time series are sequences of values taken at successive
equally spaced points in time. Two traditional topics are time series forecast-
ing [16] and time series pattern recognition [19, 15]. A more recent topic is the
generation of time series satisfying a given set of constraints. Indeed, in an in-
dustrial or commercial setting, time series are constrained by physical laws or
organisational regulations. In this case, when time series correspond to a resource
produced or consumed, the question of maximising or minimising the sum of the
elements of a time series becomes important. This article focuses on this issue.

Context and motivation From a constraint perspective work on time-series con-
straints was introduced in [13] to formalise the notions of exact and approximate
similarity between time-series patterns and data. More recently, some authors
have proposed quantitative regular expressions [2, 1] as a way to (i) formalise
and identify common types of time-series patterns [9, 18], and to (ii) express
time-series constraints, which are then used to generate constrained time series.
To improve propagation, implied constraints and cuts were derived in [6, 7, 3].

? This publication has emanated from research conducted with the financial support of
Science Foundation Ireland under Grant number 12/RC/2289-P2 which is co-funded
under the European Regional Development Fund as well as from the Gaspard-Monge
program.
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These ideas have been used to solve real-life problems including the analysis
of the output of electric power stations over multiple days [11], the solution of a
staff scheduling problem in a service company [5], power management for large-
scale distributed systems [10] and the generation of typical energy consumption
profiles of a data centre [12, 14]. Most of these problems require the incorporation
of an objective function which is represented by the sum of the decision variables.
Hence, computing bounds on such sum is an important issue.

Time-series constraints A time-series constraint γ(X,R) is a constraint which
restricts an integer result variable R to be the result of some computations over
a sequence of n integer variables X. The components of a time-series constraint
we reuse from [9] are a pattern σ, a feature f , and an aggregator g. A pattern
is described by a regular expression over the alphabet Σ = {‘ < ’, ‘ = ’, ‘ > ’}
whose language Lσ does not contain the empty word. For instance, in [4] the
Plateau pattern is characterised by the expression ‘ <=∗> ’. A feature and an
aggregator are functions over integer sequences.

– A time-series constraint with the aggregator Sum and the feature one restricts
R to be the number of occurrences of pattern σ in X.

– A constraint with the aggregator Sum and the feature width restricts R
to be the sum of the widths of the maximal occurrences of pattern σ in the
integer sequence. The width of an occurrence of σ is the number of time-series
variables included in σ minus a constant corresponding to the sum of two
integer trimming values. For instance, consider a time series X = 〈0, 3, 3, 0〉
with one occurrence of σ = Plateau = ‘ <=∗> ’; the width of the occurrence
of σ is equal to 2, as the two integer trimming values of σ are equal to 1.

Motivating example Assume we have to generate a time series of size n = 14
with R = 5 increasing terraces, i.e. σ = ‘ <=+< ’, while maximising the sum
of the 14 variables, each restricted to be in [`, u] = [2, 6]. Ignoring the 5 terraces
leads to an upper bound of 84, while, as shown in Part (D) of Fig. 1, considering
the 5 terraces gives a sharp upper bound n ·u−p ·(2 ·t+s+1)−r ·(2 ·s+3) = 59.
The procedure for deriving the formulas p = min(R, bn−2·R

2 c), s = b R
max(1,p)c,

t = s·(s+1)
2 , r = R mod max(1, p), is presented in Section 3. Our goal is to find

a method to derive such formula for different patterns.

Focus and contributions of this paper We focus on the g f σ(X,R) families of
time-series constraints with g being Sum, with f being either one or width, and
with σ being a pattern described by a regular expression over the alphabet Σ =
{‘ < ’, ‘ = ’, ‘ > ’}. Our contributions consist of parameterised sharp upper and
lower bounds on the sum of the time-series variables for the sum one σ(X,R)
(also denoted as nb σ(X,R)) and the sum width σ(X,R) families provided all
X variables are in the interval [`, u]. The parameters in the bounds correspond
to the sequence length, the values ` and u, and the regular expression σ. The
limits ` and u are typically given by physical limitations of the system, which
are time independent, and therefore apply to all variables. The parameterised
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bounds are valid provided some condition on the regular expression σ holds,
which in practice is true for 80% of the 22 regular expressions of [4]. Note that
an approach encoding the full problem with an automaton would lead to a
pseudo-polynomial algorithm since such automaton would have O(n2u3) states:
assuming ` = 0, each state would record the values of R (from 0 to n), of Xi−1

(from 0 to n), of the partial sum X1 + · · · + Xi (from 0 to u × n), and would
have up to u outgoing transitions.

Outline of the paper Sec. 2 presents a background on time-series constraints.
Sec. 3 introduces our contribution, a unique per family expression that defines
upper and lower bounds on the sum of the time-series variables wrt the time-
series constraints. Sec. 4 evaluates the impact of the bounds. Sec. 5 concludes.

2 Background

We present the background to define bounds on the sum of the time-series vari-
ables wrt the time-series constraints with aggregator Sum and features one and
width. A time-series constraint imposed on a sequence of n integer variables
X = 〈X1, ..., Xn〉 and a result variable R is described by a feature f , an aggrega-
tor g, and a pattern σ as mentioned in the introduction. Let S = 〈S1, ..., Sn−1〉
be the signature of a time series X, which is defined by: (Xi < Xi+1 ⇔ Si = ‘ <
’)∧ (Xi = Xi+1 ⇔ Si = ‘ = ’)∧ (Xi > Xi+1 ⇔ Si = ‘ > ’) for all i ∈ [1, n− 1]. If
a sub-signature 〈Si, ..., Sj〉 is a maximal word matching σ in the signature of X,
then the subsequence 〈Xi+bσ , ..., Xj+1−aσ 〉 is called a σ-pattern, and the subse-
quence 〈Xi, ..., Xj+1〉 is called an extended σ-pattern. The constants bσ and aσ
respectively trim the left and right borders of an extended σ-pattern to obtain
a σ-pattern from which a feature value is computed. They are useful when there
is the need to perform computations from only a part of the occurrence of σ, as
shown in Ex. 1. As in [9], we assume σ-patterns not to overlap.

Example 1. Consider the σ = IncreasingTerrace = ‘ <=+< ’ regular expres-
sion with aσ = bσ = 1 and the time series X shown in the figure in the right over
the interval [2, 5] and with signature S = 〈<,=, <,>,<,=,=, <〉. A σ-pattern
called increasing terrace within X is a subset whose signature is a maximal
occurrence of σ in the signature of X. Time series X contains two increasing ter-

races, labelled ¬ and , namely
〈3, 4, 4, 5〉 and 〈2, 3, 3, 3, 5〉 with widths
2 and 3, respectively. Hence, the ag-
gregation of the number of occurrences
using the aggregator Sum is 2 and
the aggregation of their widths us-
ing Sum is 5. The corresponding time-
series constraints are nb σ(X,R) and
sum width σ(X,R), respectively. 4

< = < > < = = <

increasing
terrace ¬

2

5 aggregator (Sum)

3

increasing
terrace 

X1 X2 X3 X4 X5 X6 X7 X8 X9

1

2

3

4

5

6

feature values (width)

3

4 4

5

2

3 3 3

5
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Regular-expression characteristics were introduced as a way to parameterise the
bounds on the result value of time-series constraints [8] and to derive among
implied constraints [6] in a systematic way. We now present a brief definition of
the characteristics we reuse in this paper and illustrate them with one example.

– The size of σ, denoted by ωσ, is the length of a shortest word in the language
Lσ of the regular expression σ.

– The height of σ, denoted by ησ, is the smallest difference between the domain
upper and lower limits, i.e. u− `, such that there is a ground time series (all
Xi are fixed) over [`, u] whose signature has at least one occurrence of σ.

– The range of σ wrt n, denoted by φ
〈n〉
σ , is the minimum difference between

the maximum and the minimum values in an extended σ-pattern of width n.
– The set of inducing words of σ, denoted by Θσ, is a subset of Lσ such that for

every word v in Lσ, there exists a word w = w1w2...wk in Θσ such that every
wi is non-empty and every v in Lσ can be represented as v1w1v2w2...vkwkvk+1

with every vi being a word in {‘ < ’, ‘ = ’, ‘ > ’}∗.
– The overlap of σ wrt 〈`, u〉, denoted by o

〈`,u〉
σ , is the maximum number of

time-series variables that belong simultaneously to two consecutive extended
σ-patterns of a time series among all time series over [`, u]. If such maximum

is not bounded, then o
〈`,u〉
σ is undefined.

– The smallest variation of maxima of σ wrt 〈`, u〉, denoted by δ
〈`,u〉
σ , corre-

sponds to the smallest difference between the maximum values of two consec-
utive extended σ-patterns that have at least one common time-series variable.

– The set of supporting time series of a word v in Lσ wrt 〈`, u〉, denoted by

Ω
〈`,u〉
σ (v), is a set of time series where each element of Ω

〈`,u〉
σ (v) is a time

series over [`, u] whose signature is v.

Example 2. Consider the σ = IncreasingTerrace = ‘ <=+< ’ regular expres-
sion and the sequence X = 〈3, 4, 4, 5, 5, 6〉. The figure on the right illustrates

regular-expression characteristics asso-
ciated with X. The common time-
series variables of the two consecutive
extended σ-patterns are coloured in
grey. The first (resp. second) extended
σ-pattern is shown in blue (resp. red).
Points L1 and L2 correspond to the

overlap o
〈`,u〉
σ . The difference between

the y-coordinates of points L2 and L3

corresponds to the value of δ
〈`,u〉
σ . 4

X1 X2 X3 X4 X5 X6

L1

L2

L3

Θσ = {‘ <=< ’}

ησ = φ〈n〉σ
= 2

δ〈0,6〉σ = −1

ωσ = 3

ωσ = 3

o〈0,6〉σ = 2

< = < = <

increasing
terrace ¬

increasing
terrace 

We reuse in Sec. 3 the notions of interval without restart and superposition
of two words from [8] that we now recall. An interval without restart consists of
a subsequence such that every two consecutive extended σ-patterns within this

subsequence have o
〈`,u〉
σ > 0 common time-series variables. The intervals without

restart are always disjoint. Consequently, two consecutive extended σ-patterns
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belonging to distinct intervals without restart do not share any time-series vari-
ables. The superposition of two words v and w in Lσ wrt 〈`, u〉 is the signature q
of some ground time series over [`, u] that contains at least two σ-patterns. For
instance, the word z = ‘ <=<=< ’ is the superposition of the two increasing
terraces in the figure from Ex. 2.

3 Bounds on the Sum of the Time-Series Variables

Consider a regular expression σ, an integer interval [`, u], and a time series X =
〈X1, . . . , Xn〉, with every Xi ranging over [`, u]. We present a method to derive
upper bounds on the sum of the Xi for nb σ(X,R) and sum width σ(X,R).
Wlog lower bounds are obtained in a similar way.

3.1 New Regular-Expression Characteristics

We present in this section two new regular-expression characteristics that will
be used to maximise the sum of the time-series variables, while at the same time
(i) constructing a fixed number of pattern occurrences, or (ii) building a number
of pattern occurrences achieving a given total width. We first motivate and give
the intuition of such characteristics in the context of the IncreasingTerrace =
‘ <=+< ’ pattern before providing their formal definitions.

– The first characteristic corresponds to the maximum weight of the inducing
word of a regular expression σ. For example, given ‘ <=+< ’ and the domain
value u, the maximum weight is the maximum value which can be achieved
by a supporting time series of the inducing word ‘ <=< ’, i.e. (u− 2) + (u−
1) + (u− 1) + u = 4 · u− 4.

– The second characteristic corresponds to the weight of the overlap of the
inducing word of a regular expression σ with itself. We need to know this
quantity to evaluate the maximum weight that can be achieved by a sup-
porting time series of a stretch of overlapping inducing words. For example,
given ‘ <=+< ’ and the domain value u, the maximum weight of the overlap
highlighted in grey in ’<=<=<’ of two consecutive inducing words ‘ <=< ’
is equal to (u− 2) + (u− 1) = 2 · u− 3.

Definition 1 (Maximum weight of σ). Consider a regular expression σ with
exactly one word v ∈ Θσ with length ωσ, and an integer interval domain [`, u].

The maximum weight of σ wrt 〈u〉, denoted by λ
〈u〉
σ , is a function that maps an

element of RΣ × Z to Z. It is defined by λ
〈u〉
σ = u · (ωσ + 1) − νσ, where νσ is

the weight variation of σ. The function νσ maps an element of RΣ to Z,

νσ = min
t∈Ω〈`,u〉σ (v)

[
(ωσ + 1) ·max

Xi∈t
Xi −

∑
Xi∈t

Xi

]
,

where t is a supporting time series of v ∈ Θσ wrt 〈`, u〉 denoted by Ω
〈`,u〉
σ (v),

and RΣ denotes the set of regular expressions over the alphabet Σ.
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Definition 2 (Total weight of the overlap of σ). Consider a regular ex-
pression σ with exactly one word v in Θσ, and an integer interval domain [`, u].

The total weight of the overlap of σ wrt 〈u〉, denoted by α
〈u〉
σ , is a function that

maps an element of RΣ × Z to Z. It is defined by α
〈u〉
σ = u · o〈`,u〉σ − ξσ, where

ξσ is the weight variation of the overlap of σ, defined by

ξσ =

 min
t∈Ω〈`,u〉σ (v,v)

[
o
〈`,u〉
σ ·maxXi∈tXi −

∑
Xi∈to Xi

]
, if Γ

〈`,u〉
σ (v, v) 6= ∅

0, otherwise.

where Γ
〈`,u〉
σ (v, w) is the shortest superposition of words v and v in Θσ, Ω

〈`,u〉
σ (v, v)

is the supporting time series set for the shortest superposition between v and v
wrt 〈`, u〉, and to is a subsequence of t corresponding to the overlap of two con-

secutive extended σ-patterns from Γ
〈`,u〉
σ (v, v).

Example 3. Consider σ1 = StrictlyDecreasingSequence, σ2 = Peak = ‘ < (<
| =) ∗ (> | =)∗ > ’, and σ3 = IncreasingTerrace = ‘ <=+< ’, and the interval
[0, 3]. Table 1 presents the values for the weight variation and the total weight
regular-expression characteristics of the inducing words and the overlap of σ1, σ2

and σ3. 4

3.2 Time-Series Constraints With Feature ONE

We show how to derive bounds on the sum of the time-series variables for the
nb σ(X,R) constraint family, provided all variables are in an interval [`, u].

σ word type Θσ length illustration
new characteristics
weight

variation
total

weight

Strictly-

Decreasing-

Sequence

inducing

word
‘ > ’ 2 u − 1

u

1 2u− 1

overlap - 0 u − 1

u

0 0u− 0

Peak

inducing

word
‘ <> ’ 3 u − 1

u

2 3u− 2

overlap - 1 u − 1

u

1 u− 1

Increasing-

Terrace

inducing

word
‘ <=< ’ 4

u

u − 1

u − 2

4 4u− 4

overlap - 2

u − 3

u

u − 1

u − 2

3 2u− 3

Table 1. Regular-expression characteristics for StrictlyDecreasingSequence, Peak,
IncreasingTerrace; column “length” gives the number of variables in the time series
of interest, i.e. the number of filled dots in the column “illustration”.
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– First, Ex. 4 provides the basis for understanding the intuition of the method.
– Second, we list the properties required by a regular expression to use the

intuitions we just described for deriving an upper bound.
– Finally, based on these properties, we give a greedy method to construct

a time series that maximises the sum of its variables wrt the nb σ(X,R)
family of time-series constraints.

From an intuition to a methodology

Example 4 (Intuition for constructing a time series reaching the upper bound).
Fig. 1 gives three examples of how to build a time series that maximises
the sum of its variables, while reaching a given number of pattern oc-
currences. Part (A) gives three constraints of the form nb σi with σ1 =
StrictlyDecreasingSequence = ‘ >+ ’, σ2 = Peak = ‘ < (< | =)∗(> | =)∗ > ’,
and σ3 = IncreasingTerrace = ‘ <=+< ’, respectively enforcing 3 occurrences
of σ1, 3 occurrences of σ2, and 5 occurrences of σ3.

– Since strictly decreasing sequences cannot overlap, Part (B) shows a time
series with three intervals without restart where each interval corresponds to
a strictly decreasing minimum size sequence positioned at its highest level,
the remaining variables X7, X8 being set at their maximum value.

– Even if consecutive peaks may overlap, their maximal values may remain at
the same level, Part (C) shows a time series with a single interval without
restart containing three minimum size peaks positioned at their highest level,
the remaining variables Y8, Y9 being set at their maximum value.

– As two consecutive intersecting increasing terraces are necessarily offset in
height, Part (D) shows a time series containing the maximum number of
possible intervals without restart, given that 5 increasing terraces have to
be positioned in a sequence of size 14. The 5 terraces ¬, , . . . , ° are
distributed in two intervals without restart in the most balanced way, i.e. 3
and 2 terraces, by placing them at the highest possible level. 4

To build a time series whose sum of variables is maximum, while having R
maximal occurrences of the pattern σ, we proceed as follows.

– [maximising the number of variables set to u] We minimise the overall
size taken by all R maximal occurrences of σ in order to set all remaining
variables to their maximum value u.

– [positioning pattern occurrences as close as possible to u] We try
to position the R maximal occurrences of σ at their maximum height wrt
to u. Unfortunately, as shown in Ex. 4 for the IncreasingTerrace pattern,
this is not always possible: in Part (D) of Figure 1, only the terraces labelled
with ¬ and  are placed at their highest possible level. This can occur for

patterns such that o
〈`,u〉
σ 6= 0 and δ

〈`,u〉
σ 6= 0, when R is too large wrt the size

of the time series. In this case, the R pattern occurrences are distributed in
a balanced way over as many intervals without restart as possible.
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(A)
nb strictly decreasing sequence(〈X1, X2, . . . , X8〉, 3),

nb peak(〈 Y1, Y2, . . . , Y9〉, 3),
nb increasing terrace(〈Z1, Z2, . . . , Z14〉, 5),

with
with
with

Xi ∈ [2, 6]
Yi ∈ [2, 6]
Zi ∈ [2, 6]

(B)

X1 X2 X3 X4 X5 X6 X7 X8

2

3

4

5

6

¬  ®

Three intervals
without restart

> < > < > < =

(C)

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

2

3

4

5

6
¬  ®

One single interval
without restart

< > < > < >

(D)

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10Z11Z12Z13Z14

2

3

4

5

6

°
®

¬
¯



First interval
without restart

Second interval
without restart

< = < = < = < > < = < = <

Fig. 1. (A) Three constraints and their corresponding time series that maximise the
sum of the time-series variables respectively containing (B) three strictly decreasing
sequences, (C) three peaks, and (D) five increasing terraces

– [selecting each pattern occurrence] Finally, each maximal occurrence
of σ corresponds to a supporting time series X1, X2, . . . , Xωσ+1 of a word v
of Lσ verifying simultaneously all the following conditions:

i. v is a word whose size is as short as possible; hence its size is ωσ + 1.
ii. X1, . . . , Xωσ+1 minimises the variation wrt the maximum value of its

variables, i.e. (ωσ + 1) ·maxi∈[1,ωσ+1]Xi −
∑
i∈[1,ωσ+1]Xi .

Required properties of regular expressions. As shown before, building in
a greedy way a time series t that maximises the upper bound on the sum of
the time-series variables wrt a time-series constraint with aggregator Sum and
feature one, requires finding R maximal words of Lσ, such that the superposition
of these R words wrt an integer interval domain [`, u] simultaneously optimises
several regular-expression characteristics. To define these properties, we use two
regular-expression characteristics presented in Sec. 2 and Sec. 3.1: the set of
inducing words and the weight variation of word v, denoted by Θσ and νσ(v).

Prop. 1 The language of σ does not include the word ‘ =+ ’, i.e., ‘ =+ ’ /∈ Lσ.
Prop. 2 Regular expression σ has only one inducing word, i.e., | Θσ |= 1.
Prop. 3 The weight variation wrt the maximum domain value u of the only

inducing word of σ, denoted by v, is lower than or equal to the weight
variation of any other word in the language of σ, i.e., νσ(v) ≤ νσ(w),
for each w ∈ Lσ : w 6= v.

Prop. 1 guarantees that when the number of time-series variables included in
the R maximal occurrences of σ is lower than the sequence length n, the time
series t can be completed by setting all its reminder variables in the maximal
domain value u. Prop. 2 guarantees that the smallest possible number of time-
series variables is used to include R maximal occurrences of pattern σ in time
series t. Prop. 3 ensures that the weight variation of a σ occurrence is minimised.
Hence, the upper bound on the sum of the time-series variables associated with
the R occurrences of σ in t is maximal. We show in Lemma 2 that these three
properties give a sufficient condition for getting a sharp upper bound on the sum
of time-series variables wrt a nb σ(X,R) constraint.
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Structure of a time series achieving the upper bound on the sum
of the time-series variables. Following the description of the methodology
presented in Ex. 4, Lemma 2 defines the structure of a time series achieving the
upper bound on the sum of time-series variables wrt a nb σ(X,R) time-series

constraint. For regular expressions with o
〈`,u〉
σ 6= 0 and δ

〈`,u〉
σ 6= 0 (e.g., Part (D)

of Fig. 1), we present an intermediary lemma (Lemma 1) which defines the
maximal number of intervals without restart containing R maximal occurrences
of σ in a time series X achieving the upper bound on the sum of its variables.

Lemma 1. Consider a regular expression σ, a time series X = 〈X1, . . . , Xn〉
with every Xi ranging over the same integer interval domain [`, u], a nb σ(X,R)

constraint with R ≥ 0. When o
〈`,u〉
σ 6= 0, δ

〈`,u〉
σ 6= 0 and Prop. 2 holds, the

maximal number of intervals without restart, denoted by p, is defined by

p = min

(
R,

⌊
n−R · (ωσ + 1− o〈`,u〉σ )

o
〈`,u〉
σ

⌋)
. (1)

Proof. When o
〈`,u〉
σ 6= 0 and δ

〈`,u〉
σ 6= 0 the R σ-patterns might be contained

in one or more intervals without restart. Since each interval without restart
contains at least one σ-pattern, p cannot exceed R. Wlog assume that we have
only one σ-pattern in the first p − 1 intervals without restart and R − p + 1
in the last one; we remark that moving one σ-pattern from an interval without
restart containing more than one σ-pattern to another interval without restart,
does not change the overall number of time-series variables belonging to the R
σ-pattern occurrences. By Prop. 2 we use the only inducing word of σ, hence:

– In the first p − 1 intervals without restart the total number of time-series
variables used is (p− 1) · (ωσ + 1).

– In the last interval without restart the total number of time-series variables
used is (R− p+ 1) · (ωσ + 1)− (R− p) · o〈`,u〉σ .

Since the total number of time-series variables used by the R σ-patterns must
be lower than or equal to n we have:

(p− 1) · (ωσ + 1) + (R− p+ 1) · (ωσ + 1)− (R− p) · o〈`,u〉σ ≤ n.

By isolating p, and since p is an integer, we obtain p ≤
⌊
n−R·(ωσ+1−o〈`,u〉σ )

o
〈`,u〉
σ

⌋
,

which is thus the second term inside the min term in Equation (1). ut

Lemma 2. Consider a regular expression σ that has Prop. 1, Prop. 2 and
Prop. 3. Then for any integer number n ≥ 2 and given number of occurrences
of σ R ≥ 0, there exists a word z with an associated ground time series t of
length n over [`, u] achieving the upper bound on the sum of the Xi time-series
variables.

Proof. We first construct a word z composed by the concatenation of two words,
a prefix, denoted by −→z , containing R maximal occurrences of σ, and a suffix,



10 N. Beldiceanu et al.

denoted by ←−z , containing zero occurrences of σ. Second, we prove that there
exists a supporting time series wrt [`, u] with signature z that maximises the
sum of the time-series variables.

Part A: construction of the word z. When building word z, if o
〈`,u〉
σ = 0,

each pair of consecutive σ-patterns does not share any time-series variables.
Hence, each extended σ-pattern belongs to a different interval without restart

and p = R. If o
〈`,u〉
σ 6= 0 and δ

〈`,u〉
σ = 0, all pairs of consecutive extended

σ-patterns share o
〈`,u〉
σ time-series variables. Hence, time series t has a single

interval without restart that contains all σ-patterns and p = 1. By Lemma 1, if

o
〈`,u〉
σ 6= 0 and δ

〈`,u〉
σ 6= 0, all σ-pattern occurrences of time series t are contained

in p ≥ 1 intervals without restart. There exists R words of Lσ, a prefix word −→z
including the R words, and a concatenation of −→z with a suffix word←−z such that
all the conditions of Prop. 1, Prop. 2 and Prop. 3 are satisfied. We construct
the signature of the time series, denoted by z, by first building the signature zk
(with k ∈ [1, p]) of every interval without restart of t by imposing the following
conditions:

• [Structure of each interval without restart] Each word zk (with k ∈
[1, p]) has ck occurrences of σ and is defined by

zk = vck , ck = 1, if o
〈`,u〉
σ = 0

zk = vck , ck = R, if o
〈`,u〉
σ 6= 0 and δ

〈`,u〉
σ = 0

zk = vwck−1,

{
ck = s+ 1, if k ≤ p′
ck = s, otherwise

otherwise

(2)

where v ∈ Θσ, vk denotes the concatenation of k occurrences of v, vw is the
superposition between v and v, s =

⌊
R

max(1,p)

⌋
, and p′ = R mod max(1, p).

• [Combining the intervals without restart: structure of −→z ] Word −→z
is defined by 

wR−1v, if o
〈`,u〉
σ = 0

z1, if o
〈`,u〉
σ 6= 0 and δ

〈`,u〉
σ = 0

z1‘ < ’...‘ < ’ zp, if o
〈`,u〉
σ 6= 0 and δ

〈`,u〉
σ > 0

z1‘ > ’...‘ > ’ zp, if o
〈`,u〉
σ 6= 0 and δ

〈`,u〉
σ < 0

(3)

where v ∈ Θσ, and word w belonging to {‘v > ’, ‘v = ’, ‘v < ’} is not a proper
factor of any word in Lσ and its height is ησ.

• [Completing the set of intervals without restart: structure of ←−z ] Word
←−z with length m is defined by

ε, if m = 0

‘ <=∗ ’, if m > 0 and ‘ > (=|>)∗’ is a suffix of v

‘ =+ ’, otherwise

(4)
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Part B: proving that there is a ground time series t with signature
z that maximises the sum of the time-series variables. Since we assume
that regular expression σ has Prop. 1, time-series variables in←−z can be assigned
to the maximal domain value u without creating a new occurrence of pattern.
Hence, to prove the maximality on the sum of the Xi variables belonging to t, it
suffices to show that there exists a ground time series over [`, u] obtained with the
signature of word −→z achieving the upper bound on the sum of its variables. For

space reasons we only consider the case where δ
〈`,u〉
σ 6= 0. We define two ground

time series t∗ and t′ such that their signatures contain R σ-pattern occurrences
and p intervals without restart:

– t∗ corresponds to the ground time series with signature −→z satisfying Equa-
tion (2) and where the first σ-pattern occurrence of each interval without
restart is at level 0, i.e. the level closest to the maximal domain value u.

– t′ corresponds to any other ground time series where the number of σ-patterns
located at level 0 is strictly less than p.

To obtain the total weight of a ground time series, i.e. the upper bound
on the sum of the time-series variables, we first define the maximum weight
of a σ-pattern located at level e by λ〈u〉σ︸︷︷︸

A

− (ωσ + 1)· | δ〈`,u〉σ | · e︸ ︷︷ ︸
B

, and the weight

of the overlap between two consecutive σ-patterns located at levels e and e +
1 by α〈u〉σ︸︷︷︸

C

− o〈`,u〉σ · | δ〈`,u〉σ | ·e︸ ︷︷ ︸
D

. Terms A and C, defined in Sec. 3.1, correspond

to the maximum weight of a σ-pattern and to the total weight of the overlap
between two consecutive σ-patterns, respectively. B and D are two correction
terms which respectively adjust the weight of a σ-pattern and the weight of the
overlap between two consecutive σ-patterns, caused by a change in the level of
a σ-pattern occurrence.

The total weight of a ground time series t, denoted by Wt, is the sum of the
weights of the R σ-patterns minus the sum of the weights of the R− p overlaps
between consecutive pairs of σ-patterns. Hence, Wt is defined by

Wt =
(
R ·λ〈u〉σ −(ωσ+1)

p∑
k=1

jk∑
e=ik

∆e︸ ︷︷ ︸
BT

)
−
(

(R−p) ·α〈u〉σ −o〈`,u〉σ

p∑
k=1

jk−1∑
e=ik

∆e︸ ︷︷ ︸
DT

)
, (5)

where ∆e =| δ〈`,u〉σ | · e, and ik, jk are the highest and the lowest levels of
the σ-patterns in interval without restart k ∈ [1, p], respectively. Note that in
Equation (5), the only terms that depend on the level of the σ-pattern oc-
currences are the correction terms BT and DT . Let ik = 0 and jk = ck − 1
be the levels of the highest and the lowest σ-pattern occurrence in interval
k ∈ [1, p] for t∗. For t′ we assume that at least one ik > 0 with k ∈ [1, p].
Therefore, we compare the terms BT and DT for t∗ and t′ in the following way:
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p∑
k=1

jk∑
e=ik

∆e ≥ | δ〈`,u〉σ | +
p∑
k=1

ck−1∑
e=0

∆e (6)
p∑
k=1

jk−1∑
e=ik

∆e ≥ | δ〈`,u〉σ | +
p∑
k=1

ck−2∑
e=0

∆e (7)

Our objective is to show that Wt∗ > Wt′ , i.e. the total weight of t∗ is strictly
greater than the total weight of t′. Hence, by using Equation (5) to define Wt∗

and Wt′ , by including Inequalities (6) and (7) in Wt′ and by factorising, we have

o
〈`,u〉
σ

p∑
k=1

ck−2∑
e=0

∆e − (ωσ + 1)
p∑
k=1

ck−1∑
e=0

∆e > (8)

o
〈`,u〉
σ

(
| δ〈`,u〉σ | +

p∑
k=1

ck−2∑
e=0

∆e

)
− (ωσ + 1)

(
| δ〈`,u〉σ | +

p∑
k=1

ck−1∑
e=0

∆e

)
By factorising Inequality (8), we have

ωσ + 1 > o〈`,u〉σ (9)

Since the size of σ is always greater than or equal to the overlap of σ, i.e.

ωσ ≥ o〈`,u〉σ , Inequality (9) holds and Wt∗ > Wt′ . ut

Upper bound on the sum of the time-series variables. Consider a
nb σ(X,R) family of time-series constraints with every Xi ranging over the same
interval [`, u]. Theorem 1 provides an upper bound on the sum of the time-series
variables wrt the time-series constraint.

Theorem 1. Consider a regular expression σ satisfying the conditions of Prop. 1,
Prop. 2 and Prop. 3. The upper bound on the sum of the time-series variables
for the nb σ(X,R) family is defined by

p∑
k=1

ck−1∑
e=0

(λ〈`,u〉σ − (ωσ + 1) ·∆e)−
p∑
k=1

ck−2∑
e=0

(α〈`,u〉σ − o〈`,u〉σ ·∆e) +m · u, (10)

where m is defined by: m = n−
[

p∑
k=1

ck−1∑
e=0

(ωσ + 1)−
p∑
k=1

ck−2∑
e=0

o
〈`,u〉
σ

]
.

Proof. It uses the construction of the proof of Lemma 2. ut

This upper bound is valid for all 22 regular expressions of [4], except for
Inflexion, Zigzag, Steady and SteadySequence, since the first two regular
expressions do not satisfy the condition in Prop. 2 and the last two regular
expressions do not satisfy the condition in Prop. 1.

3.3 Time-Series Constraints with Feature WIDTH

For patterns σ satisfying Prop. 1 and Prop. 2 we sketch a method to derive
bounds on the sum of the time-series variables for the sum width σ(X,R) fam-
ily, provided all Xi (with i ∈ [1, n]) variables are in an interval [`, u]. To build a
time series t whose sum of variables is maximum, while having R as the sum of
the widths of the occurrences of the pattern σ, we use a two-step procedure.



Parameterised Bounds on the Sum of Variables in Time-Series Constraints 13

– [step 1: normalising the pattern occurrences] For each σ pattern,
we define a transformation Tσ whose repeated application from any initial
signature Sinitial leads to a target signature Starget . Sinitial and Starget have
the same value for R, and no matter the value of Sinitial , this signature will
converge to a signature Starget with the same number of σ-pattern occur-
rences. A single application of Tσ from a signature S to a signature S′ has
the following properties:

i. S and S′ share the same sum of the widths for their σ patterns.
ii. The largest sum of the Xi variables compatible with S is less than or

equal to the largest sum of the Xi variables compatible with S′.
To find the time series with the largest sum of the Xi variables compatible
with signature S we first perform generalised arc consistent (GAC) in the
induced constraint satisfaction problem. Second, we fix all Xi variables to
their respective maximal value. Note that for a binary constraint of the type
<, = or >, we can always set its two variables to their respective maximal
values, while satisfying the constraint in question.

– [step 2: normalisation outside the pattern occurrences] We mod-
ify Starget to Sfinal so that all Xi variables that do not belong to an extended
σ-pattern of Sfinal can be set to their maximum value u.

We define two transformations, denoted by T 1
σ and T 2

σ . For space reasons, we
sketch the two transformations but we only illustrate T 1

σ in Ex. 5.

– T 1
σ transforms Sinitial into a sequence Starget containing the smallest possible

words in Lσ, i.e. inducing words whose widths are equal to πσ = ωσ + 1 −
aσ − bσ. T 1

σ works for σ = DecreasingSequence, IncreasingSequence,
StrictlyIncreasingSequence, and StrictlyDecreasingSequence, and

for Gorge and Summit when n ≥ p
〈R〉
σ · (ωσ + 1) − (p

〈R〉
σ − 1) · o〈`,u〉σ , i.e.

there is enough space to create p
〈R〉
σ = b Rπσ c inducing words of σ. The upper

bound on the sum of Xi variables when T 1
σ is used is

p〈R〉σ · λ〈`,u〉σ − (p〈R〉σ − 1) · α〈`,u〉σ︸ ︷︷ ︸
I

+ (R mod πσ) · (u− (ησ + 1))︸ ︷︷ ︸
II

+m · u︸ ︷︷ ︸
III

,

where m = n − (p
〈R〉
σ · (ωσ + 1) − (p

〈R〉
σ − 1) · o〈`,u〉σ + R mod πσ). Term I

corresponds to the maximum weight of the concatenation of p
〈R〉
σ occurrences

of the only inducing word of σ. Term II is related to a correction term which
is used when it is not possible to obtain a sum of the widths equal to R

with p
〈R〉
σ inducing words. Term III corresponds to the maximum weight of

the variables that do not belong to any σ-pattern occurrence. In Part (C) of
Fig. 2 points , and respectively contribute to terms I, II and III.

– T 2
σ transforms Sinitial into a sequence Starget containing one occurrence of σ.
T 2
σ works for 10 other σ-pattern including IncreasingTerrace and Peak.

The upper bound on the sum of Xi variables when T 2
σ is used is λ

〈R,u〉
σ +m·u,
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(A)
∑
i∈[1,8]Xi = 14

0

1

2

3

4

step 1−−−→
T 1
σ

(B)
∑
i∈[1,8]Xi = 26

1

2

3

4

step 2−−−→

(C)
∑
i∈[1,8]Xi = 28

1

2

3

4

→ I
→ II
→ III

8∑
i=1

Xi=p
〈R〉
σ ·λ〈`,u〉σ −(p

〈R〉
σ −1)·α〈`,u〉σ +(R mod πσ)·(u−(ησ+1))+m·u

2 7 2 0 5 2 4 1 3 4

Fig. 2. Transforming an initial time series to a final time series that maximises the
sum of the Xi variables, where both time series share the same value, i.e. R = 5, for
the sum of the widths of the strictly decreasing sequences

where m = n−(R+aσ+bσ), and λ
〈R,u〉
σ is the maximum weight of the regular

expression σ where words in Lσ have a fixed length of R+ aσ + bσ − 1.

Example 5. Fig. 2 gives an example of how to build a time series that maximises
the sum of its variables while reaching a given sum of the widths of the pattern
occurrences. The constraint used is sum width σ(〈X1, . . . , X8〉, 5) with σ =
‘ >+ ’, aσ = bσ = 0, and Xi ∈ [0, 4]. Part (A) shows an initial time series
with the largest sum of the Xi variables compatible with signature Sinitial =
〈=, >,>,>,>,=,=〉. Part (B) presents a time series with the largest sum of the
Xi variables compatible with Starget = 〈=, >,>,<, >,=,=〉. Starget is obtained
after applying T 1

σ to Sinitial by changing the fourth signature variable from
‘ > ’ to ‘ < ’. Note that Sinitial and Starget share the same value for R and
that the largest sum of the Xi variables compatible with Sinitial is less than
the largest sum of the Xi variables compatible with Starget . Part (C) shows
a final time series with the largest sum of the Xi variables compatible with
Sfinal = 〈=, >,>,<,>,<,=〉, which is obtained by applying step 2 to Starget ,
i.e. by changing the sixth signature variable from ‘ = ’ to ‘ < ’. This allows one
to obtain a larger value for the sum of the Xi, i.e. 28 instead of 26. 4

4 Evaluation

As a test for our procedure, we run all time-series constraints from the nb σ
and the sum width σ families for synthetic time series with length between 5
and 60, and for all possible result values (in all 45,835 runs), and find a single
optimal solution minimising the sum of the time-series variables. The individ-
ual constraints use a state-of-the-art implementation, combining optimised au-
tomata [5], bounds on the result variables [8], glue-matrix constraints linking
all prefixes and suffixes [5], and selected redundant linear constraints based on
Farkas lemma [17]. For the variable assignment, we compare four search methods
shown below, while using the bounds obtained for cost variables.
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Search This is the default search in SICStus, the vari-

ables are assigned in natural order, enumerating the

values from the smallest to the largest.

Custom This implements a custom search routine

based on assigning the signature variables first. The

same method is used for all test cases.

Search Impose This uses the default search in SICS-

tus, but first assigns the cost variable to its smallest

value. As the bounds are sharp, the first solution found

is optimal.

Custom Impose We use the custom search method,

but also initially impose the lower bound of our method

for each constraint.

 0.1

 1

 10

 100

 1000

 10000

 0  10  20  30  40  50  60

Ti
m

e 
(s

)

Size
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Search + Bounds
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Fig. 3: Comparing baseline solutions

with different search strategies

Since the conjunction of arithmetic constraints encoding bounds can propa-
gate poorly, which results in some poor performance in the context of optimisa-
tion, we do not propagate the bounds directly; we rather use a table constraint to
link the cost and result variables with a pre-computed table of all possible pairs.
We compare against three baseline solutions. The first one (Only Satisfy) finds
a single feasible solution, the second one (Search Only) solves the optimisation
problem without bounds on the cost and with the default search routine, the
third one (Custom Only) uses the custom search, again without the bounds on
the cost variable. All experiments were run with SICStus Prolog 4.3.5 on a single
core of a Windows 10 laptop with an Intel Core i7 CPU running at 2.9 GHz and
with 64 Gb of memory. We stop the search if, for a given size, the time to run
all its instances exceeds 600s, or if we reach size 60.

As we observed that both families nb σ and sum width σ behave similarly
in our benchmarks, the results are shown in Fig. 3, using a log scale for the y
axis. We see that without the new bounds on the cost even a custom search
routine does not find solutions for all cases if the size exceeds 18. Adding the
bounds significantly increases the size of the problem one can handle. The custom
search outperforms the default search for larger sizes, and further improvements
are possible if we impose the lower bound before starting the search on the time-
series variables. The best search combines imposing the lower bound with the
default search, which seems to impose only a very limited overhead compared to
the Only Satisfy base line, which only finds feasible solutions.

5 Conclusion

On the one hand, the theoretical contribution of this paper consists of parame-
terised sharp bounds on the sum of the time-series variables for two families of
time-series constraints. Future work may look how to extend this work to any
linear cost function, e.g. linear functions where all coefficients are not set to one.

On the other hand, the practical insight of this paper is related to the im-
portance of encoding all arithmetic constraints representing a bound as a table
constraint in order to get all the benefits from the bounds. An interesting avenue
for future research is related to the derivation of bounds for the conjunction of
time-series constraints.
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