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The capacity of sets of divergence of certain

Taylor series on the unit circle

J. B. Twomey

Abstract

A simple and direct proof is given of a generalization of a classical re-

sult on the convergence of
∑∞
k=0 ake

ikx outside sets of x of an appropriate

capacity zero where f(z) =
∑∞
k=0 akz

k is analytic in the unit disc U and∑∞
k=0 k

α|ak|2 <∞ with α ∈ (0, 1]. We also detail some convergence conse-

quences of our results for weighted Besov spaces, for the classes of analytic

functions in U for which
∑∞
k=1 k

γ |ak|p < ∞, and for trigonometric series

of the form
∑∞
k=1(αk cos kx+ βk sin kx) with

∑∞
k=1 k

γ(|αk|p + |βk|p) <∞,

where γ > 0, p > 1.

Keywords: Convergence of Taylor series, trigonometric series, capacity, ex-

ceptional sets, Dirichlet-type spaces, analytic Besov spaces.

2000 MSC. Primary 30B10, 42A20, 30H25.

1 The class Hp
β and convergence

We begin by defining the Lp-capacities that we will use to measure exceptional

sets. First, let K be a kernel on R, that is, K is a non-negative, even and

unbounded integrable function on R that is decreasing on (0,∞). We define the

convolution K ∗ F of K with any F ∈ Lp(R), p > 1, by

K ∗ F (x) =
∫
R
K(t)F (x− t) dt

and define T (K, p,E), E ⊂ R, to be the set of F ∈ Lp(R) with F ≥ 0 on R such

that K ∗ F (x) ≥ 1 for every x ∈ E. Following Meyers [11], we then define the

CK,p-capacity of E by

CK,p(E) = inf{
∫
R
F (x)pdx : F ∈ T (K, p,E)}.
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See [11],[1], and [13] for the basic properties of such capacities. We note here that

any set of zero CK,p-capacity also has Lebesgue measure zero, and also note one

further simple fact which is a significant element in our proof of Theorem 1 below:

if F ∈ Lp(R), p > 1, with F ≥ 0 on R, then K ∗ F < ∞ (i.e. K ∗ F exists as a

finite integral) outside a set E ∈ R with CK,p(E) = 0 , or, equivalently, K ∗ F is

finite CK,p–quasieverywhere in R. To show this we simply ‘pick F0 ∈ T (K, p,E)

and let E = {x : K ∗ F0(x) = ∞}. Then δF0 ∈ T (K, p,E) for every δ > 0 and,

letting δ → 0, we obtain CK,p(E) = 0’ ([13, p. 342]).

In Theorem 1 we work with the one-dimensional Bessel kernels Gα, 0 < α ≤ 1,

a family of kernels that decay exponentially as |x| → ∞ and satisfy the estimates

Gα(x) ∼ |x|α−1 , 0 < α < 1 , G1(x) ∼ log
1

|x|
, (1.1)

as x→ 0, where u ∼ v means that u/v is bounded above and below by positive

constants for all sufficiently small non-zero |x| . An explicit formula for Gα(x)

can be found in [2]. We write Cα,p for CK,p when K = Gα, 0 < α ≤ 1.

We complete the preparations for Theorem 1 by defining a classHp
β of analytic

functions f in U = {z : |z| < 1} (see [10],[13],[16]). We write f ∈ Hp
β, where

0 < β < 1 and p > 1, if there is a function F ∈ Lp(−π, π) such that

f(z) =
1

2π

∫ π

−π

F (t) dt

(1− ze−it)1−β , z ∈ U. (1.2)

We assume that F is extended by periodicity to [−3π, 3π] and that F ≡ 0 in

R\[−3π, 3π], so that F ∈ Lp(R) also. It is easy to show that H2
β = D2β for

β ∈ (0, 1/2], where Dα, 0 < α ≤ 1, denotes the Dirichlet-type space of analytic

functions f(z) =
∑∞
k=0 akz

k in U for which
∑∞
k=0 k

α|ak|2 <∞. For if f ∈ H2
β, and

we write (1− w)β−1 =
∑∞
k=0 bk(β)wk, |w| < 1, then, by (1.2),

∞∑
k=0

akz
k = f(z) =

1

2π

∞∑
k=0

(∫ π

−π
F (t)e−iktdt

)
bk(β)zk =

∞∑
k=0

ckbk(β)zk

so ak = bk(β)ck or ck = bk(β)−1ak. As (ck)
∞
1 consists of Fourier coefficients of F ,

and F ∈ L2(−π, π), we have
∑∞
k=0 |ck|2 <∞ and, since [19, vol. 1, p. 77]

bk(β) =
k−β

Γ(1− β)
{1 +O(

1

k
)}, (1.3)

we thus have
∑
k2β|ak|2 < ∞. Conversely, assume

∑
k2β|ak|2 < ∞ and that

f(z) =
∑∞
k=0 akz

k. Set dk = bk(β)−1ak for k ≥ 0. Then
∑∞
k=0 |dk|2 < ∞ and
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(dk)
∞
−∞, with dk = 0 for k < 0, is the sequence of Fourier coefficients of a function

F ∈ L2 and we have f ∈ H2
β. The equivalence of H2

β and D2β is shown.

The familiar proofs in [19], [15] of the convergence results for
∑∞
k=0 ake

ikx for

functions in Dα involve proving that the partial sums of the series are bounded

outside exceptional sets of C1−α capacity zero and then deducing the desired

convergence result by a simple argument. Our approach is more direct and is

based on showing that
∑∞
k=0 ake

ikx converges for every x for which Gβ ∗ |F |(x) is

finite, from which the required result follows immediately.

Theorem 1 Let f ∈ Hp
β with 0 < β < 1, p > 1, and assume that f(z) =∑∞

k=0 akz
k, z ∈ U. Then

∑∞
k=0 ake

ikx converges Cβ,p-quasieverywhere on [−π, π] to
1

2π

∫ π
−π

F (t)dt

(1−e−i(t−x))1−β
.

Proof of Theorem 1. Let f be related to F ∈ Lp(R) as in (1.2). Then, by an

earlier observation, there is a set E ⊂ [−π, π] of Cβ,p-capacity zero such that∫
R
Gβ(t) |F (x− t)| dt <∞, x ∈ E ′ = [−π, π]\E. (1.4)

Let x0 ∈ E ′. To prove Theorem 1 it will be enough to show that
∑∞
k=0 ake

ikx0

converges to the desired limit. To this end, note that by (1.2), as observed above,

ak = bk(β)ck where (ck) is the sequence of Fourier coefficients of F , and so, for

n ≥ 1,

2π
n∑
k=0

ake
ikx0 =

∫ π

−π

(
n∑
k=0

bk(β)eik(x0−t)
)
F (t) dt

=
∫ π

−π

(
n∑
k=0

bk(β)eikt
)
F (x0 − t)dt. (1.5)

Next by (1.3), the inequality |∑n
k=1 k

−βeikt| ≤ cβ|t|β−1, 0 < |t| ≤ π [19, vol.1, p.

191], and (1.1), for each n ≥ 1,∣∣∣∣∣
n∑
k=0

bk(β)eikt
∣∣∣∣∣ ≤ cβ|t|β−1 + Aβ ≤ c′βGβ(t) + Aβ, (1.6)

where Aβ, cβ, and c′β are positive quantities which depend only on β, so we have,

for 0 < |t| ≤ π and n ≥ 1,∣∣∣∣∣
(

n∑
k=0

bk(β)eikt)
)
F (x0 − t)

∣∣∣∣∣ ≤ c′βGβ(t)|F (x0 − t)|+ Aβ|F (x0 − t)|

≡ Q0(t), (1.7)

3



where Q0 ∈ L(−π, π) by (1.4). Since, for each fixed β ∈ (0, 1), (bk(β)) is a

decreasing sequence [19, vol. 1, p. 77], it follows (loc.cit., p.4) that
∑∞
k=0 bk(β)eikt

converges for non-zero t ∈ [−π, π], and hence, for such t,

(1− eit)β−1 = lim
r→1

(1− reit)β−1 = lim
r→1

∞∑
k=0

bk(β)eiktrk =
∞∑
k=0

bk(β)eikt

where we have used Abel’s theorem. We now have, by (1.5), (1.7) and Lebesgue’s

dominated convergence theorem,

lim
n→∞

2π
n∑
k=0

ake
ikx0 =

∫ π

−π
lim
n→∞

(
n∑
k=0

bk(β)eikt
)
F (x0 − t)dt =

∫ π

−π

F (x0 − t)dt
(1− eit)1−β .

Hence
∑∞
k=0 ake

ikx0 converges to 1
2π

∫ π
−π

F (x0−t)dt
(1−eit)1−β

and the theorem is proved.

Remark 1 SinceH2
β = D2β, the special case p = 2 of Theorem 1, with β ∈ (0, 1/2],

deals with the convergence of
∑∞
k=0 ake

ikx for functions f(z) =
∑∞
k=0 akz

k in U

for which
∑
k2β|ak|2 < ∞. It thus provides an alternative proof of the classical

results of Beurling [4] and Salem and Zygmund ([15], [19, vol. 2, p. 195]) that in

this case
∑∞
k=0 ake

ikx converges outside exceptional sets of Cβ,2-capacity zero. (If

β > 1/2 and
∑
k2β|ak|2 < ∞ then

∑ |ak| < ∞ and
∑∞
k=0 ake

ikx is convergent

for all x.) Note that C1/2,2-capacity corresponds to logarithmic capacity, and

more generally that Cβ,2(E) = 0 if and only if C2β(E) = 0 where Cα denotes

the classical α-capacity, 0 < α ≤ 1 (see [2, Corollary 2.2]). Note also that the

α-capacity used in [19] corresponds to C1−α. In section 2 we will apply Theorem 1

to derive inter alia some convergence results for
∑∞
k=0 ake

ikx when
∑
kγ|ak|p <∞

where γ > 0 and p ∈ (1,∞).

Remark 2 The classical results referred to above were proved for trigonometric

series, but the power series formulation given the results here is easily shown to

be equivalent. (See Section 2 below.)

Remark 3 Carleson [7, pp. 50-54] has proved the general result that if K is a

convex kernel with K(x) ≡ 0 for |x| ≥ 1, and
∑∞
k=1 λk|ak|2 < ∞, where (λ−1

k )∞1

is the (positive) sequence of Fourier cosine coefficients of K, then
∑∞
k=1 ake

ikx

converges outside a set E with CK̄(E) = 0, where K̄(r) = r−1
∫ r

0 K(x)dx and

0 < r ≤ 1.

Remark 4 SinceHp
β is an analytic analogue in the unit disc for the class of Poisson

integrals of Bessel potentials in half-spaces (see [13]), a natural analogue in Rn for
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the convergence question considered here for Hp
β is whether the spherical means

SRf(x) =
∫
|ξ|≤R

f̂(ξ)e2πix·ξdξ

converge as R → ∞, where f̂ denotes the Fourier transform of f ∈ Lpα(Rn), the

Sobolev space of convolutions of Bessel kernels with Lp functions in Rn, n ≥ 2.

For known results and more detail see [6] and [12] and the cited references.

We will state and outline a proof of an extension of Theorem 1 in the final

section below, and contrast our result with a theorem due to Temko [3, vol.1,

pp.411-413], but we will focus in the next section on detailing some convergence

consequences of Theorem 1 for two classes of analytic functions related to Hp
β,

and for certain trigonometric series.

2 The classes Dpα and Bpγ. Trigonometric Series.

For functions f analytic in U we write

Dpα = {f :
∫ ∫

U
(1− |z|)α|f ′(z)|p dx dy <∞}, α > −1, p > 1,

and

Bpγ = {f : f(z) =
∞∑
k=0

akz
k,
∞∑
k=0

kγ|ak|p <∞}, γ > 0, p > 1.

Note that for p > 1,Dpα is the weighted analytic Besov space (see [9], [5], [14],

[18]), and that D2β = H2
β = B2

2β = D2
1−2β, 0 < β ≤ 1/2. With a view to deducing

some convergence results for the classes Dpα and Bpγ, we collect together in the

following lemma some inclusion relations between these classes and Hp
β.

Lemma If 1 < p ≤ 2, then

Dpp(1−β)−1 ⊂ H
p
β, Bppβ ⊂ H

q
β, (2.1)

where 0 < β < 1 and q = p/(p− 1). If p ≥ 2, then

Dp1−pβ ⊂ B
p
p(1+β)−2 ⊂ H

p
β (2.2)

where 0 < β < 2/p.

The first inclusion in (2.1) is established in [9] and the first inclusion of (2.2)

follows from results in [14] (see also [5, Lemma 1.2]) for Bergman spaces. Note
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that f ∈ Dpα if and only if f ′ belongs to the Bergman space Ap
α. We derive the

remaining results here.

We begin with the proof that Bppβ ⊂ H
q
β for 1 < p ≤ 2, 0 < β < 1. Assume

that f ∈ Bppβ and set hk = bk(β)−1ak for k ≥ 0, where bk(β) is defined as in the last

section. Set hk = 0 for k < 0. Then, using (1.3),
∑∞
−∞ |hk|p ≤ Ap

∑∞
k=0 k

pβ|ak|p <
∞, so, by the Hausdorff-Young theorem [19, vol. 2, p. 101], (hk) is the sequence

of Fourier coefficients of a function F ∈ Lq(−π, π), q = p/(p − 1). Since f(z) =∑∞
k=0 akz

k =
∑∞
k=0 bk(β)hkz

k, it follows that f ∈ Hq
β, which is the desired result.

We establish the inclusion Bpp(1+β)−2 ⊂ H
p
β next. Suppose that f ∈ Bpp(1+β)−2,

so that
∑
kp(1+β)−2|ak|p is finite, with 0 < β < 1, p ≥ 2. Set dk = bk(β)−1ak for

k ≥ 0, dk = 0 for k < 0. Then

∞∑
−∞
|k|p−2|dk|p =

∞∑
1

kp−2bk(β)−p|ak|p ≤ cβ
∞∑
1

kp(1+β)−2|ak|p <∞,

and it follows by a result of Hardy and Littlewood [19, vol. 2, p. 110] that (dk) is

the sequence of Fourier coefficients of a function F ∈ Lp(−π, π). Since f(z) =∑∞
k=0 bk(β)dkz

k it follows that f ∈ Hp
β, and we have obtained the second inclusion

in (2.2) (for all β ∈ (0, 1)). This completes the proof of the lemma.

We now detail some of the convergence consequences that follow from com-

bining Theorem 1 and the Lemma. From the first inclusion of (2.1) and The-

orem 1, we deduce that
∑∞
k=0 ake

ikx is convergent Cβ,p-quasieverywhere when

f ∈ Dpp(1−β)−1 and 1 < p ≤ 2, 0 < β < 1. In particular, choosing the values

of β appropriately, we see that when f ∈ Dpp−2 and when f ∈ Dp0,
∑∞
k=0 ake

ikx

is respectively convergent C1/p,p and C1/q,p-quasieverywhere on [−π, π]. (Note

that if αp > α′p′, or if αp = α′p′ and α > α′, then [2] Cα,p(E) = 0 im-

plies Cα′,p′(E) = 0 .) It follows from the second inclusion in (2.1), and The-

orem 1, that
∑∞
k=0 ake

ikx converges Cγ/p,q-quasieverywhere when f ∈ Bpγ and

1 < p ≤ 2, 0 < γ ≤ p−1. Thus, for instance, if
∑
kp−1|ak|p <∞ then

∑∞
k=0 ake

ikx

converges C1/q,q-quasieverywhere. Note that if f ∈ Bpγ and p > 1, then
∑ |ak| <∞

when qγ/p > 1, i.e. when γ > p− 1.

From (2.2), setting β = 1/p with p ≥ 2, we obtain Dp0 ⊂ B
p
p−1 ⊂ H

p
1/p and

hence
∑∞
k=0 ake

ikx converges C1/p,p-quasieverywhere for every f ∈ Dp0 ∪B
p
p−1. The

second inclusion in (2.2) gives Bpγ ⊂ H
p
(γ+2−p)/p for p− 2 < γ ≤ p− 1 and p ≥ 2,

and the convergence results for Bpγ which follow from this may be deduced from

Theorem 1.
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We can restate the results involving the class Bpγ in terms of trigonometric

series as follows:

If p > 1,
∑
kγ(|αk|p+|βk|p) <∞ and Ak(x) = αk cos kx+βk sin kx, then the set of

points of divergence of the trigonometric series
∑
Ak(x) is of Cγ/p,q-capacity zero,

q = p/(p − 1), when 0 < γ ≤ p − 1 and 1 < p ≤ 2, and of C(γ+2−p)/p,p-capacity

zero when p− 2 < γ ≤ p− 1 and p > 2.

(When p = 2 this coincides with the statement of the classical results of Salem and

Zygmund in [19, vol. 2, p. 195].) To see that the results stated for trigonometric

series are simply an equivalent reformulation of the results indicated above for

the class Bpγ, note that if p > 1 and ak = αk − iβk then

|αk|p, |βk|p ≤ |ak|p = (|αk|2+|βk|2)p/2 ≤ (2 max(|αk|2, |βk|2)p/2 ≤ 2p/2(|αk|p+|βk|p)

so
∑
nγ(|αk|p + |βk|p) < ∞ ⇐⇒

∑
nγ|ak|p < ∞. As

∑<(ake
ikx) =

∑
Ak(x) and∑=(ake

ikx) =
∑

(−βk cos kx+ αk sin kx), the equivalence follows.

We finish this section by noting [17, Theorem 5] that if p − 2 ≤ α < p − 1

and p > 2, then Dpα ⊂ B2
γ for every γ < 2(p − α − 1)/p (but not, in general, for

γ = 2(p − α − 1)/p), with consequent convergence implications for
∑
ake

ikx by

the classical case p = 2 of Theorem 1 above. In particular, if f ∈ Dpp−2 and p > 2,

then
∑
kγ|ak|2 <∞, and

∑
ake

ikx is convergent Cγ/2,2-quasieverywhere, for every

γ < 2/p.

3 An extension of Theorem 1

We begin by recalling some standard notation relating to sequences. For a real

sequence (dk)
∞
0 we write ∆dk = dk − dk+1, so that (dk) is decreasing if ∆dk ≥ 0.

We say that (dk) is convex if ∆2dk = ∆(∆dk) ≥ 0. We suppose now that (λk)
∞
0

is a positive convex sequence such that λk → 0 and
∑
λk = ∞, and is also such

that the sequence (γk)
∞
1 decreases to zero as k →∞ where γk = k∆λk for k ≥ 1.

We write

Γn(x) =
n∑
k=1

γke
ikx, n ≥ 1,

and define

Kλ(x) =
∫ π/|x|

1
t[λ(t)− λ(t+ 1)]dt, 0 < |x| ≤ π, (3.1)

7



where λ(t) is interpolated linearly between λk = λ(k) and λk+1 = λ(k + 1). We

then have from [3, vol. 1, pp. 408-9] that

|Γn(x)| ≤ B1Kλ(x) +B2, 0 < |x| ≤ π, (3.2)

where B1, B2 are positive quantities independent of n. The inequality (3.2) is

established in [3] with Γn(x) =
∑n
k=1 γk cos kx but the proof is easily seen to

apply to the sum
∑n
k=1 γk sin kx as well, so the result stated here follows. We

extend the definition of Kλ to R by setting Kλ(x) ≡ 0 for |x| > π. Then Kλ is a

kernel: it is even, decreasing, unbounded since

Kλ(x) ≥
[π/|x|]∑
k=1

k[λk+1 − λk+2]→∞, x→ 0,

because
∑
λk =∞ (see [3, vol. 1, p. 6]), and is integrable on R since

∫ π

0
Kλ(x)dx = π

∫ ∞
1

[λ(t)− λ(t+ 1)]dt ≤ π
∞∑
k=1

[λk − λk+1] = πλ1.

Consequently, by a simple property of kernels noted in the first section above, we

have, for every F in Lp(R), that∫
R
Kλ(t) |F (x− t)| dt <∞ (3.3)

CKλ,p-quasieverywhere in R.

We are now in a position to state our final theorem.

Theorem 2 Let the sequences (λk) and (γk) and the kernel Kλ be defined as

detailed above. Define g(z) =
∑∞
k=0 γkz

k for z ∈ U and set

f(z) =
∞∑
k=0

akz
k =

∫ π

−π
g(ze−it)F (t)dt, z = reix ∈ U, (3.4)

where F ∈ Lp(−π, π) is extended by periodicity to [−3π, 3π] and F ≡ 0 in

R\[−3π, 3π]. Then
∑∞
k=0 ake

ikx converges CKλ,p-quasieverywhere on [−π, π] to∫ π
−π g(e−i(t−x))F (t)dt.

To prove Theorem 2 it is enough to show that
∑∞
k=0 ake

ikx converges for every

x for which Kλ ∗ |F |(x) is finite. To do this we apply an argument similar to the

one used above to obtain Theorem 1, replacing (1.6) with (3.2), and using (3.3)

instead of (1.4). We omit the details which are easily provided.
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Theorem 2 is a generalization of Theorem 1. To see this, choose γk = bk(β)

and λk =
∑∞
m=k bm(β)/m, k ≥ 1, in Theorem 2. Then g(z) = (1 − z)β−1 and,

writing Nx for [π/|x|], we have from (3.1) that

Nx∑
k=1

k∆λk+1 ≤ Kλ(x) ≤
Nx+1∑
k=1

(k + 1)∆λk, (3.5)

and so
1

2

Nx∑
k=1

bk+1(β) ≤ Kλ(x) ≤ 2
Nx+1∑
k=1

bk(β).

Using (1.3) and (1.1), we easily obtain Kλ(x) ∼ Gβ(x), x→ 0. Hence Theorem 2

contains Theorem 1.

We illustrate Theorem 2 with some examples. For our first example we assume

that
∑
kp−2(log(k + 1))p+ε|ak|p <∞ where p ≥ 2 and ε > 0. We set

γk = k∆λk = (log(k + 1))−1−ε/p, k ≥ 1,

so that

λk =
∞∑
m=k

γm
m

=
∞∑
m=k

1/m(log(m+ 1))1+ε/p ∼ (log(k + 1))−ε/p,

giving
∑
λk =∞. Then, using (3.5), we deduce that

Kλ(x) ∼
Nx∑
k=1

(log(k + 1))−1−ε/p ∼ 1/|x|(log(π/|x|))1+ε/p (3.6)

as x→ 0. We note next that

∑
kp−2γ−pk |ak|p =

∑
kp−2 log(k + 1)p+ε|ak|p <∞,

by assumption, and it follows (see proof of second inclusion (2.2)) that (dk)
∞
−∞,

with dk = γ−1
k ak for k ≥ 1 and 0 otherwise, is the sequence of Fourier coefficients

of a function F ∈ Lp(−π, π). Since ak = γkdk, k ≥ 1, we have that f(z) =
∑
akz

k

is of the form (3.4), with g(z) =
∑
γkz

k, and Theorem 2 now yields the result

that
∑∞
k=0 ake

ikx converges CKλ,p-quasieverywhere where Kλ satisfies (3.6).

Next, as a second example, we assume that
∑
k2−p(log(k + 1))p+ε|ak|p < ∞,

with 1 < p < 2 and ε > 0, and set γk = k1−2/p(log(k + 1))−1−ε/p. Then

λk =
∞∑
m=k

1/m2/p(log(m+ 1))1+ε/p ∼ k1−2/p/(log(k + 1))1+ε/p,

9



as k →∞, and
∑
λk =∞ since p > 1. Next, writing dk = γ−1

k ak again, we have

∑
|dk|p =

∑
γ−pk |ak|p =

∑
k2−p(log(k + 1))p+ε|ak|p <∞.

Hence, using the Hausdorff-Young theorem, we find that f(z) =
∑
akz

k is of the

form (3.4) for a function F ∈ Lq(−π, π), q = p/(p−1). Consequently,
∑∞
k=0 ake

ikx

converges outside a set of CKλ,q capacity zero where, by (3.5),

Kλ(x) ∼ 1/|x|2/q(log(π/|x|)1+ε/p.

The theorem of Temko [3, vol. 1, p. 411] referred to above, which deals only

with the case p = 2, and involves exceptional sets of an appropriate generalised

convex capacity zero, yields the result that
∑∞
k=0 ake

ikx converges outside an ex-

ceptional set of capacity zero if
∑

(log(k + 1))1+ε|ak|2 < ∞ for any ε > 0 (but

not for ε = 0), a stronger result than the corresponding result obtained in the

examples above from Theorem 2 when p = 2. Indeed, Temko has shown more

generally that if
∑
W (k)|ak|2 <∞, where (W (k)) is an increasing sequence such

that
∑

1/kW (k) <∞ then
∑∞
k=0 ake

ikx converges outside a set of convex capacity

zero. For more detail, see [3].

We conclude by noting that it was proved in the Kolmogorov-Seliverstov-

Plessner theorem [3, vol. 1, p. 364] that if
∑

log(k + 1)|ak|2 < ∞ then the series∑
ake

ikx is convergent almost everywhere in [−π, π], a result that was strengthened

by L. Carleson in [8] who proved the long-standing conjecture of Lusin that∑ |ak|2 <∞ is sufficient to ensure almost everywhere convergence of
∑
ake

ikx.

Acknowledgement. The author thanks the referee for some helpful comments

and suggestions.

References

[1] D.R. Adams and L.I. Hedberg, Function Spaces and Potential Theory,

Springer, Berlin, 1996.

[2] D.R. Adams and N.G. Meyers. Bessel Potentials. Inclusion relations among

classes of exceptional sets. Indiana Univ. Math. J. (9) 22 (1973), 873–905.

[3] N. K. Bari, Trigonometric Series, Macmillan, New York and Pergamon,

Oxford, 1964.

10



[4] A. Beurling. Ensembles exceptionels. Acta Math. 72 (1940), 1–13.

[5] S. M. Buckley, P. Koskela, and D. Vukotic. Fractional integration, differen-

tiation, and weighted Bergman spaces. Math. Proc. Cambridge Philos. Soc.

126 (1999), no. 2, 369-385. (1) 29 (2008), 1-16.

[6] A. Carbery and F. Soria. Almost everywhere convergence of Fourier Integrals

for functions in Sobolev spaces and an L2–localisation principle. Rev. Mat.

Iberoamericana 4 (1988) pp. 319 -337.

[7] L. Carleson. Selected problems on exceptional sets. Van Nostrand, Princeton,

New Jersey, 1967.

[8] L. Carleson, On convergence and growth of partial sums of Fourier series,

Acta Math. 116 (1966), 135-157.

[9] D. Girela and J.A. Pelaez. Boundary behaviour of analytic functions in spaces

of Dirichlet type. J. Inequal. Appl. Art. ID92795 (2006).

[10] John Kinney. Tangential limits of functions of the class Sα. Proc. Amer.

Math. Soc. 14 (1963), 68–70.

[11] N.G. Meyers. A theory of capacities for potentials of functions in Lebesgue

classes. Math. Scand. 26 (1970), 255–292.

[12] E. Montini. On the capacity of sets of divergence associated with the spher-

ical partial integral operator. Trans. Amer. Math. Soc. 355 (2003), no. 4,

1415- 1441.

[13] A. Nagel, W. Rudin and J.H. Shapiro. Tangential boundary behavior of

functions in Dirichlet-type spaces. Ann. of Math. 116 (1982), 331–360.

[14] A. Nakamura, F. Ohya, and H. Watanabe. On some properties of functions

in weighted Bergman spaces. Proc. Fac. Sci. Tokai Univ. 15 (1979), 33-44.

[15] R. Salem and A. Zygmund. Capacity of sets and Fourier series. Trans. Amer.

Math. Soc. 59 (1946), 23-41.

[16] J. B. Twomey. Tangential boundary behaviour of harmonic and holomorphic

functions. Jour. London Math. Soc. (2) 65 (2002), 68–84.

11



[17] J. B. Twomey. Boundary behaviour and Taylor coefficients of Besov func-

tions. Comput. Methods Funct. Theory 14 (2014), no. 2-3, 541-557.

[18] K. Zhu. Analytic Besov spaces. J. Math. Anal. Appl. 157 (1991), 318-336.

[19] A. Zygmund. Trigonometric Series. (Cambridge Univ. Press, New York,

1959).

J. B. Twomey

E-mail: b.twomey@ucc.ie

Address: University College Cork, Department of Mathematics, Ireland.

12


