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ENERGY CONSIDERATIONS FOR NONLINEAR EQUATORIAL
WATER WAVES

D. HENRY

Abstract. In this article we consider the excess kinetic and potential energies
for exact nonlinear equatorial water waves. An investigation of linear waves estab-
lishes that the excess kinetic energy density is always negative, whereas the excess
potential energy density is always positive, for periodic travelling irrotational wa-
ter waves in the steady reference frame. For negative wavespeeds, we prove that
similar inequalities must also hold for nonlinear wave solutions. Characterisations
of the various excess energy densities as integrals along the wave surface profile
are also derived.

1. Introduction

The dynamics of the ocean in the equatorial region presents some unique and fas-
cinating characteristics from a modelling perspective [21,24,26,48]. At the Equator
there is a breakdown in mid-latitude geostrophic balance, resulting in the Equator
acting as a natural waveguide leading to equatorially-trapped zonal waves [10,24,27].
Recently, progress has been achieved in systematically developing models which
capture aspects of equatorial flows which had been hitherto captured via ad hoc
modelling considerations (cf. [16–19, 27, 30, 31, 36], and references therein). It is
noteworthy that a number of these developments do not just incorporate nonlinear
effects, but they are intrinsically nonlinear [19,28]. In this paper we address energy
considerations for nonlinear two-dimensional periodic travelling waves propagating
zonally in the equatorial region.

As fluid moves it must possess energy. For surface gravity waves on an inviscid
fluid the total energy consists of the potential energy (resulting from the displace-
ment of the mass of water from a position of equilibrium under the gravitational
field) and the kinetic energy (due to the motion of the water particles throughout
the fluid), cf. [20, 37]. Potential energy is the capacity for doing work due to the
position of a body, while kinetic energy is the capacity for doing work by reason of
the motion of a body. Ocean swell propagates over very long distances with rela-
tively little loss of energy, implying that the effects of viscosity are quite negligible
for these ocean waves [9, 20, 37]. Indeed this persistence of energy propagated by
water waves is the primary motivation behind the desire to harness wave energy (cf.
the discussions in [46]). For large-scale flows in the ocean, Coriolis effects relating to
the Earth’s rotation play an important role. This is the realm of geophysical fluid
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2 ENERGY CONSIDERATIONS FOR NONLINEAR EQUATORIAL WATER WAVES

dynamics (GFD), and in this paper we consider the energy of waves whose motion
is governed by the f−plane approximation to the geophysical governing equations
of motion. A hallmark of inviscid fluids is the absence of dissipating effects, and
accordingly one expects a conservation of the total energy, and a resulting balance
between fluctuations in both the potential and kinetic energy [39, 40, 45]. A useful
benefit of Hamiltonian formulations (which were recently constructed for equatorial
water waves in [14, 15]) are the invariants of motion which arise naturally as by-
products of the Hamiltonian framework; these invariants include, as expected, the
total (kinetic plus potential) wave energy (cf. [14, 15]).

Due to the mathematical complexities which are intrinsic to nonlinear waves,
most wave energy considerations tend to focus on the setting of linear waves, which
is applicable only for waves of relatively small amplitude [22]. For large-amplitude
waves in the nonlinear setting the literature is comparably sparse. The classical pa-
pers [3,38–40,45] present results characterising some energy properties for nonlinear
waves, and more recent developments have established rigorous results concerning
monotonicity properties of the kinetic energy for nonlinear waves [1, 44]. Recently,
in [29], the author has proven results concerning the excess kinetic and potential
energy densities for exact nonlinear periodic and travelling irrotational water waves,
in the purely gravity wave setting. In this article it will be shown that these results
(partially) transfer to the nonlinear wave setting for equatorial flows.

For fluids with infinite extent it is meaningless to discuss the total energy possessed
by the fluid, rather we must consider suitably defined local energy densities. For
water waves travelling with uniform wavespeed c we can transform to a moving
reference frame in which the resulting flow is steady. In this frame, the velocity field
is given by (u−c, w), with z = η(x) denoting the unknown free-surface. For periodic
surface waves, define the excess potential energy (per unit horizontal area) over the
value for the flow with an undisturbed free surface (η(x) ≡ 0) to be

Ep =
1

λ

∫ λ

0

∫ η(x)

−d
gz dz dx− 1

λ

∫ λ

0

∫ 0

−d
gz dz dx, (1.1)

whereas the excess kinetic energy (per unit horizontal area) over the value for the
undisturbed uniform flow (u− c, w) = (−c, 0) is given by

Ek =
1

2λ

∫ λ

0

∫ η(x)

−d

(
(u− c)2 + w2

)
dz dx− 1

2λ

∫ λ

0

∫ 0

−d
c2 dz dx. (1.2)

Here z = −d is an appropriate reference level (corresponding to the flat sea-bed,
for instance). In this paper we consider the excess energy densities for equatorial
water waves. In the linear wave regime (corresponding to waves of relatively small
amplitude a, where a � d) explicit wave solutions exist (see Section 3), and (1.1)
and (1.2) can be evaluated to get

Elin
p =

ga2

4
+O

(
a3
)
, Elin

k = −a
2

4
(g − 2Ωc0) +O(a3), (1.3)
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where the Landau symbol O(a3) denotes terms of order a3, and higher. Hence, in
the linear wave regime, the quantities Elin

p and Elin
k have definitive, and opposite,

signs:
Elin
p > 0, Elin

k < 0. (1.4)

The relations in (1.3) have important practical implications since, while the mea-
surement of kinetic energy is extremely difficult, estimating the wave amplitude is
much more achievable (for example, cf. [4, 6–8, 11, 34] for surface-profile recovery
formulae using measurements from submerged pressure transducers). The formulae
in (1.3) ensures that this procedure yields an accurate estimate for the total wave
energy when the wave amplitude is small. The total linear energy density (up to
order O(a2)) is given by

Elin
tot := Elin

p + Elin
k =

a2Ωc0

2
.

For purely gravity water waves (corresponding to Ω = 0) there is an equipartition of
energy: the excess linear energy densities Elin

p and Elin
k have the same magnitudes

(up to order O(a2)) and Elin
tot vanishes in this setting. Evidently, and unsurprisingly,

wave energy considerations in the geophysical framework are more complex and
involved, even in the linear regime where an equipartition of energy no longer applies.

In Section 5 we consider whether the inequalities in (1.4) are applicable also to
nonlinear waves. In [29] it was proven by the author, for purely gravitational waves
(in the absence of Coriolis effects), that the excess energy densities for all nonlinear
wave solutions must satisfy similar inequalities to (1.4). The presence of Coriolis
forces complicates matters here, and it will be shown that the answer to this question
is more varied in the geophysical setting.

2. Governing equations

The governing equations for equatorial waves will be formulated in a reference
frame whose origin is located at a point on the Earth’s surface, and which is ro-
tating with the Earth. The X−axis represents the longitudinal variable (pointing
horizontally due east), the Y−axis the latitudinal variable (pointing horizontally due
north) and the Z−axis points vertically upwards. The Euler equation for inviscid
and incompressible fluid is given by

ut + uuX + vuY + wuZ + 2Ωw cosφ− 2Ωv sinφ = −1

ρ
PX ,

vt + uvX + vvY + wvZ + 2Ωu sinφ = −1

ρ
PY ,

wt + uwX + vwY + wwZ − 2Ωu cosφ = −1

ρ
PZ − g.

Here (u, v, w) denotes the fluid velocity field, P is the pressure and ρ is the density
of the fluid, and the φ variable represents the latitude. The Earth is taken to be a
perfect sphere of radius R = 6378km with constant rotational speed of Ω = 7.3×10−5

rad s−1, and g = 9.81ms−2 is the gravitational acceleration at the surface of the
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Earth. In the Equatorial region the latitude φ is necessarily restricted in scope:
assuming it to be fixed gives the f−plane approximation. The Euler equation is
consequently simplified by approximating sinφ ≈ 0, cosφ ≈ 1, leading to

ut + uuX + vuY + wuZ + 2Ωw = −PX
ρ
, (2.1a)

vt + uvX + vvY + wvZ = −PY
ρ
, (2.1b)

wt + uwX + vwY + wwZ − 2Ωu = −PZ
ρ
− g. (2.1c)

In modelling ocean surface waves it is reasonable to assume a constant fluid density,
in which case the equation of mass conservation takes the form of the continuity
equation

uX + vY + wZ = 0. (2.1d)

If Z = η(t,X, Y ) denotes the (unknown) free surface of the ocean, then the pressure
of the fluid is taken to match the atmospheric pressure Patm at the wave surface,
giving the surface dynamic boundary condition

P = Patm on Z = η(t,X, Y ). (2.1e)

For water waves not near breaking the free surface should consist of the same fluid
particles for all time, leading to the surface kinematic boundary condition

w = ηt + uηX + vηY on Z = η(t,X, Y ). (2.1f)

In the equatorial region the Coriolis parameter f = 2Ω sinφ vanishes, which effectu-
ates the equator acting as a natural wave-guide. With this in mind, we consider flows
which are two-dimensional, moving solely in the zonal direction along the equator,
and which are independent of the y−coordinate (with v ≡ 0 throughout the flow).
We further consider waves for which the unknown free-surface η(X, t) is a periodic
and even function with respect to the spatial variable, where λ > 0 denotes the
wavelength. To fix our reference frame, the condition∫ λ

0

η(X, t)dX = 0, (2.1g)

locates the mean water level at Z = 0. In the following we assume that the effects
of the surface wave motion are confined to the region Dη,d = {(X,Z) : X ∈ R,−d <
Z < η(X, t)}, for some depth d, with the surface wave generating no appreciable
vertical motion at this depth: Z = −d may correspond to an impermeable flat bed,
for instance. This motivates the kinematic boundary condition

w = 0 on Z = −d. (2.1h)

We further assume that the fluid motion is irrotational in the region Dη,d, leading
to the irrotationality condition

uZ = wX in Dη,d. (2.1i)
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This supposition implies that underlying currents in this near-surface region are
uniform: while non-uniform currents are prevalent in the equatorial ocean, these
tend to arise at large sub-surface depths. Finally, we assume that the fluid density
ρ is constant, and for convenience we set ρ = 1.

3. Linear water waves

3.1. Linear solutions. The governing equations (2.1), expressed in terms of phys-
ical variables (X,Z), are nondimensionalised using the transformation

X 7→ λX, Z 7→ dZ, t 7→ λ√
gd
t, u 7→ u

√
gd, w 7→ w

d
√
gd

λ
, η 7→ aη,

where λ is a typical wavelength and a a typical amplitude of the wave. We avoid
new notation by replacing, for example, X by λX, with X now being the nondimen-
sionalised variable. We decompose the pressure (in terms of the new nondimensional
variables) as P = Patm − gdZ + gpd, where the nondimensional pressure function p
corresponds to the dynamic pressure, which measures pressure deviations from the
hydrostatic distribution. These transformations lead to the boundary value problem
in terms of the nondimensional variables:

ut + uuX + wuZ + 2Ωw = −pX , (3.1a)

δ2(wt + uwX + wwZ)− 2Ωu = −pZ , for − 1 < Z < εη, (3.1b)

uX + wZ = 0 for − 1 < Z < εη, (3.1c)

p = εη on Z = εη, (3.1d)

w = ε(ηt + uηX) on Z = εη, (3.1e)

w = 0 on Z = −1, (3.1f)

uz = δ2wZ for − 1 < Z < εη, (3.1g)

where ε = a/d is the amplitude parameter, δ = d/λ is the shallowness parameter,
and Ω in (3.1) corresponds to a non-dimensionalised rotational speed defined by

Ω =
√
g/d · Ω̃. From the fourth and fifth equation in (3.1) it is obvious that both

w and p, if evaluated on Z = εη, are essentially proportional to ε (physically, ε→ 0
implies that wave motion on the surface is negligible, in which case we expect the
associated limiting behaviour w → 0 and p → 0). Scaling the nondimensional
variables as p 7→ εp, (u,w) 7→ ε(u,w), leads (again avoiding the introduction of new
variables) to

ut + ε(uuX + wuZ) + 2Ωw = −pX , (3.2a)

δ2{wt + ε(uwX + wwZ)} − 2Ωu = −pZ , for − 1 < Z < 0, (3.2b)

uX + wZ = 0, for − 1 < Z < 0, (3.2c)

w = ηt + εuηX and p = η on Z = εη, (3.2d)

w = 0 on Z = −1, (3.2e)

uz = δ2wZ for − 1 < Z < 0. (3.2f)
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The linearised problem is obtained by letting ε→ 0 in (3.2), resulting in

ut + 2Ωw = −px, δ2wt − 2Ωu = −pZ , for − 1 < Z < 0,

ux + wZ = 0, for − 1 < Z < 0,

w = ηt and p = η on Z = 0,

w = 0 on Z = −1,

uz = δ2wZ for − 1 < Z < 0,

which may be solved in terms of travelling wave solutions

η(t,X) = cos[2π(X − ĉ0t)]

u(t,X, Z) = 2πδĉ0
cosh(2πδ(1 + Z))

sinh(2πδ)
cos[2π(X − ĉ0t)],

w(t,X, Z) = 2πĉ0
sinh(2πδ(1 + Z))

sinh(2πδ)
sin[2π(X − ĉ0t)].

p(t,X, Z) =
[2πĉ2

0δ cosh(2πδ(1 + Z)) + 2Ωĉ0 sinh(2πδ(1 + Z))]

sinh(2πδ)
cos[2π(X − ĉ0t)],

where ĉ0 is the nondimensionalised speed of the wave that must satisfy the linear
dispersion relation

ĉ0 =
−Ω tanh(2πδ)±

√
Ω2 tanh2(2πδ) + 2πδ tanh(2πδ)

2πδ
.

Returning to the original physical variables via the change of variables

X 7→ X

λ
, Z 7→ Z

d
, t 7→ t

√
gd

λ
, u 7→ u√

gd
, w 7→ w

λ

d
√
gd
, η 7→ η

a
,

the linear wave solution in terms of physical variables is given by

η(t,X) = a cos(kX − ωt), (3.3a)

u(t,X, Z) = aω
cosh(k(d+ Z))

sinh kd
cos(kX − ωt), (3.3b)

w(t,X, Z) = aω
sinh(k(d+ Z))

sinh kd
sin(kX − ωt), (3.3c)

P (t,X, Z) = Patm − gZ + a
kc2

0 cosh(k(d+ Z)) + 2Ωc0 sinh(k(d+ Z))

sinh kd
cos(kX − ωt),

(3.3d)

with k = 2π/λ the wavenumber, ω the wave frequency, and c0 = ω/k the wavespeed.

Remark 3.1. The linear surface profile (3.3a) is sinusoidal and the wave amplitude
a is simply the distance between the wave-crest and the mean water level (which
equals the distance between the wave trough and the mean water level). Hence the
wave height, which is defined to be the overall vertical change in height between
the wave crest and the wave trough, is simply twice the wave amplitude in the
linear setting. Nonlinear periodic waves observed in the sea tend to have sharper
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elevations, and flatter depressions, than their linear counterparts. The amplitude a
of a wave is defined as the maximum deviation of the wave surface from the mean
water level:

a = sup
X∈[0,λ]

{η(X, t)} ,

for any fixed-time t. The amplitude a is usually attained at the wave-crest and, for
nonlinear waves, typically exceeds the distance between the wave trough and the
mean water level.

3.2. Linear wavespeed: dispersion relations. For the linear wave solution (3.3)
the speed c0 =

√
gd · ĉ0 satisfies the dispersion relation

kc2
0 + 2Ω tanh kdc0 = g tanh kd (3.4)

which ensures the linear pressure solution (3.3d) fulfils the dynamic surface condition
(2.1e) for Z = η(t,X) as given by (3.3a). Relation (3.4) can be solved directly to
get

c±0 =
1

k

(
−Ω tanh kd±

√
Ω2 tanh2kd+ gk tanh kd

)
. (3.5)

Thus, there are two possible linear wavespeeds corresponding to the linear wave
solution (3.3): c−0 < 0, and c+

0 > 0. If we denote the linear wavespeed for gravity
waves (corresponding to setting Ω = 0 in c+

0 ) by

cgrav0 = ωgrav/k =
√
g tanh(kd)/k, (3.6)

then 0 < c+
0 < cgrav0 < |c−0 |. Furthermore, since Ω2/g ≈ 5.7×10−10, for non-negligible

values of k then c+
0 . cgrav0 , c−0 . −c

grav
0 < 0. There are two corresponding wave

frequencies ω± = k · c±0 given by

ω± = −Ω tanh kd±
√

Ω2 tanh2kd+ gk tanh kd, (3.7)

or, equivalently,

(ω±)2 = gk tanh kd− 2ω±Ω tanh kd =
(
g − 2c±0 Ω

)
k tanh kd. (3.8)

Requiring (ω±)2 > 0 in (3.8) leads to the condition

g > 2Ωc±0 (3.9)

which, considering the magnitudes of the respective physical parameters, is emi-
nently reasonable. Interesting discussions of the particle trajectories prescribed by
(3.3) for various choices in the dispersion relation can be found in [35].
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An important quantity in linear energy considerations is the group velocity, which
is defined as cg := dω

dk
, and we compute from (3.7)

c±g = −dΩ sech2kd+
1

2(ω± + Ω tanh kd)

{
g tanh kd+ d

[
2Ω2 tanh kd+ gk

]
sech2kd

}
= ± 1

2
√

Ω2 tanh2kd+ gk tanh kd

{
g tanh kd+ kd [g − 2Ωc0] sech2kd

}
=

1

2(ω± + Ω tanh kd)

{
g tanh kd+

2d (ω±)
2

sinh 2kd

}
.

(3.10)

In the absence of Coriolis forces expression (3.10) reduces to

cgravg =
1

2ωgrav

{
g tanh kd+

2d (ωgrav)2

sinh 2kd

}
(3.6)
=

g

2ωgrav
{

tanh kd+ dk sech2kd
}
.

3.3. Linear waves: energy densities and flux.

3.3.1. Potential energy V . The potential energy V of a water wave at a fixed point
X, measured relative to the undisturbed water level Z = 0, is given by

V =

∫ η(X,t)

0

gZdZ =
1

2
gη2.

For the linear wave solution (3.3) we have V = 1
2
ga2 cos2(kX −ωt), and we see that

the potential energy is a quantity which varies with respect to both x and t. For
fluids with infinite extent it is meaningless to discuss the total energy possessed by
the fluid, instead we consider suitably defined local energy densities. The average
of V over a wave-period, denoted V̄ , will be independent of both space and time
and so serves as a more useful measure of the potential energy of the wave. Since
the average of cos2(kX−ωt) (and sin2(kX−ωt)) over a period is 1/2, the potential
energy density is

V̄ =
1

4
ga2.
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3.3.2. Kinetic energy T . The kinetic energy T at a fixed point X can be evaluated
(to O(a2)) to be

T =
1

2

∫ 0

−d

(
u2 + w2

)
dz =

a2ω2 cos2(kX − ωt)
2 sinh2(kd)

∫ 0

−d
cosh2 [k(d+ Z)] dZ

+
a2ω2 sin2(kX − ωt)

2 sinh2(kd)

∫ 0

−d
sinh2 [k(d+ Z)] dZ

=
a2ω2 cos2(kX − ωt)

4 sinh2(kd)

∫ 0

−d
(cosh [2k(d+ Z)] + 1) dZ

+
a2ω2 sin2(kX − ωt)

4 sinh2(kd)

∫ 0

−d
(cosh [2k(d+ Z)]− 1) dZ

=
a2ω2 cos2(kX − ωt)

4 sinh2(kd)

(
sinh(2kd)

2k
+ d

)
+
a2ω2 sin2(kX − ωt)

4 sinh2(kd)

(
sinh(2kd)

2k
− d
)

=
a2ω2 sinh(2kd)

8k sinh2(kd)
+

a2ω2d

4 sinh2(kd)

(
cos2(kX − ωt)− sin2(kX − ωt)

)
=

a2ω2

4 sinh2(kd)

[
1

2k
sinh(2kd) + d cos [2(kX − ωt)]

]
.

Averaging over a wave-period gives the kinetic energy density, denoted T̄ :

T̄ =
a2ω2

8k sinh2(kd)
sinh(2kd) =

a2ω2

4k tanh(kd)
=
a2

4
(g − 2Ωc0) , (3.11)

where we have used (3.8) in deriving the last equality, and T̄ > 0 due to (3.9).

Remark 3.2. If T̄ grav denotes the kinetic energy density for purely gravity waves
(obtained by setting Ω = 0 in (3.11)) then

T̄ < T̄ grav for c0 = c+
0 , while T̄ > T̄ grav for c0 = c−0 .

Hence the mean kinetic energy of a linear water wave is enhanced by Coriolis effects
for left-moving waves, and diminished by Coriolis effects for right-moving waves.
The magnitude of these perturbations is small bearing in mind that Ω = 7.3× 10−5

rad s−1, while the representative value |c0| = 3m s−1 would be excessive for many
equatorial Rossby and Kelvin surface waves, cf. [24].

3.3.3. Total energy E: For linear geophysical waves there is no equipartition of en-
ergy between the (mean) potential and kinetic energies: V̄ 6= T̄ . Indeed, V̄ < T̄ for
the wavespeed c+

0 , while V̄ > T̄ for the wavespeed c−0 . This contrasts with the case
of purely gravity waves (Ω = 0) whereby T̄ grav = V̄ grav. The total energy E = V +T
has the mean-value

E = Ē = V̄ + T̄ =
1

2
a2 (g − Ωc0) . (3.12)

If Egrav denotes the total energy density for purely gravity waves (obtained by setting
Ω = 0 in (3.12)) then

E < Egrav for c0 = c+
0 , while E > Egrav for c0 = c−0 .
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3.3.4. Energy propagation. The energy flux across a vertical plane, in the direction
of motion of the wave crests (positive X−direction), is given by the expression:

Ef = Rate of doing work on the surface of the plane + convection of energy

=

∫ η

−d
P u dZ +

∫ η

−d
E udZ =

∫ 0

−d
P u dZ +O(a3)

=

[∫ 0

−d
Patmaω

cosh(k(d+ Z))

sinh kd
dZ −

∫ 0

−d
gZaω

cosh(k(d+ Z))

sinh kd
dZ

]
cos(kX − ωt)

+a2ωkc2
0

∫ 0

−d

cosh(k(d+ Z))

sinh kd

cosh(k(d+ Z))

sinh kd
dZ cos2(kX − ωt)

+2a2ωΩc0

∫ 0

−d

sinh(k(d+ Z))

sinh kd

cosh(k(d+ Z))

sinh kd
dZ cos2(kX − ωt)

=

[∫ 0

−d
Patmaω

cosh(k(d+ Z))

sinh kd
dZ −

∫ 0

−d
gZaω

cosh(k(d+ Z))

sinh kd
dZ

]
cos(kX − ωt)

+
a2ωkc2

0

2 sinh2 kd

[
d+

sinh 2kd

2k

]
cos2(kX − ωt) +

a2ωΩc0

sinh2 kd

[
cosh 2kd

2k
− 1

2k

]
cos2(kX − ωt).

Ignoring terms of O(a3) and higher, and noting that the average of all terms which
are proportional to cos(kX−ωt) vanish, we evaluate the average energy propagation

Ef = Ēf =
a2ωkc2

0

4 sinh2 kd

[
d+

sinh 2kd

2k

]
+

a2ωΩc0

4k sinh2 kd
[cosh 2kd− 1]

= d
a2kω

4 sinh2 kd
c2

0 +
a2ω

4 tanh kd
c2

0−
a2Ω

2 sinh2 kd
c2

0 +
a2Ω

2 tanh2 kd
c2

0

=
a2

2
(g − 2c0Ω)

[
kdc0

sinh 2kd
+
c0

2
− 2Ω

k sinh 2kd
+

Ω

k tanh kd

]
= 2T̄ ·

[
kdc0

sinh 2kd
+
c0

2
+

Ω

k tanh kd

(
1− 1

cosh2 kd

)]
, (3.13)

making use of the expressions (3.4), (3.5), (3.7) and (3.8).

Remark 3.3. In the setting of purely gravitational waves (Ω = 0) expression (3.13)
reduces to the familiar relation (cf. [20, 22,37])

Egravf =
1

2
ga2 ·

[
kdcgrav0

sinh 2kd
+
cgrav0

2

]
(3.6)
=

1

2
ga2 · g

2ω

[
tanh(kd) +

kd

cosh2(kd)

]
(3.10)
= Egrav ·cgravg . (3.14)

Thus when the restoration force is purely gravity, the mean-energy flux for a linear
water wave is given by Egravf = Egrav · cgravg : the energy flux propagates the total
energy density Egrav with group velocity cgravg . The mean kinetic and potential ener-

gies are equal for linear gravity waves, V̄ grav = T̄ grav, and hence indistinguishable in
Egrav due to the equipartition of energy. However in the geophysical setting, where
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T̄ and V̄ are unequal and distinct, expression (3.13) suggests that the energy density
which is being propagated comprises solely of the kinetic energy density.

Remark 3.4. An alternative expression of the energy flux is given by

Ef =
a2ωc2

0

4 sinh2 kd

[
kd+

sinh 2kd

2

]
+

a2Ωc2
0

2 sinh2 kd
· cosh 2kd− 1

2

=
a2kc3

0

4 sinh2 kd

[
kd+

sinh 2kd

2

]
+ Ω

a2c2
0

2
. (3.15)

Formally expanding quantities in (3.15) with respect to Ω, neglecting terms ofO(Ω2),

leads to c±0 = ±cgrav0 − Ω tanh(kd)
k

+ O(Ω2), with Ω(c±0 )2 = Ω(cgrav0 )2 + O(Ω2), and

(c±0 )3 = ±(cgrav0 )3
(

1∓ 3Ω tanh kd√
gk tanh kd

)
+O(Ω2) which, substituting into (3.15), gives

E±f = (Egravf )± − Ω
a2(cgrav0 )2

4

(
1 +

6kd

sin 2kd

)
+O(Ω2), (3.16)

where (Egravf )± is given by (cf. )

(Egravf )± = ±1

2
ga2 ·

[
kdcgrav0

sinh 2kd
+
cgrav0

2

]
.

Similarly, implementing a perturbative expansion in the group velocity (3.10) gives

c±g = ±c
grav
0

2

(
1 +

2kd

sinh(2kd)

)
− Ω

(cgrav0 )2

g

2kd

sinh(2kd)
+O(Ω2),

from which it can be easily seen that

2T̄ · c±g = E±f +O(Ω2), (3.17)

where E±f is given by (3.16). Therefore, up to first order in a perturbative expansion
involving Ω, the parenthesis on the right-hand side of expression (3.13) matches
the group velocity (3.10). Hence, at this level of approximation the energy flux Ef
satisfies equation (3.17), which is identical to (3.14) (except featuring 2T̄ in place
of E) which pertains to the simpler gravity wave setting (cf. Remark 3.3). Note
that the sign of the Coriolis contribution towards the energy flow in (3.16) is always
negative.

3.4. Linear waves: excess energy densities. To estimate the excess potential
energy density for small amplitude waves we substitute the linear wave solution
(3.3a), η(x) = a cos(kx), into (5.1) to get

Elin
p =

ga2

4
+O

(
a3
)
> 0,

where the inequality clearly holds for sufficiently small amplitudes a.
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The excess kinetic energy density (1.2), evaluated for the linear wave solution
prescribed by (3.3), becomes

Elin
k =

1

2λ

∫ λ

0

∫ 0

−d

(
u2 + w2

)
dz dx− c0

λ

∫ λ

0

∫ a cos kx

−d
u dz dx+

1

2λ

∫ λ

0

∫ a cos kx

0

c2
0 dz dx+O(a3).

(3.18)

The first term on the right-hand side of (3.18) is given by (3.11), the third term is
zero due to (2.1g), and the second term in (3.18) is found (using (3.3)) to be

c0

λ
aω

∫ λ

0

∫ a cos kx

−d

cosh(k(d+ z))

sinh(kd)
cos kx dz dx =

c0ω

λk
a

∫ λ

0

sinh(k(d+ a cos kx))

sinh kd
cos kx dx

=
c0ω

λ

cosh kd

sinh kd
a2

∫ λ

0

cos2 kx dx+O(a3) =
ω2

2k tanh kd
a2 (3.8)

=
a2

2
(g − 2Ωc0) ,

where we have used the identity

sinh(k(d+ a cosx)) = sinh kd+ cosh kd · ka cosx+
sinh kd

2!
(ka cosx)2 + . . . (3.19)

Hence (3.18) can be explicitly computed in the linear setting to get

Elin
k = −a

2

4
(g − 2Ωc0) +O(a3) < 0, (3.20)

where the inequality in (3.20) holds due to (3.9) regardless of the sign of c0.
Finally, the total excess energy density is

Elin
tot = Elin

p + Elin
k =

1

2
Ωc0a

2 +O(a3). (3.21)

The sign of Elin
tot in (3.21) depends on the choice of c±0 : Elin

tot < 0 for c−0 , while Elin
tot > 0

for c+
0 , for sufficiently small amplitude waves.

4. Nonlinear travelling water waves

In the analysis of nonlinear waves, our focus will be restricted to travelling waves
whereby the X and t variables have a functional dependence of the form X − ct.
The dispersion relation (3.5) suggests that c may be taken to be either positive or
negative, corresponding to right–moving (respectively, left–moving) waves. Making
this choice affects not just the magnitude of the wavespeed (as can be seen explicitly
in the linear setting in (3.5)) but also the magnitude of the wave energy densities (as
seen explicitly in (3.11) and (3.12) for the linear regime). This situation contrasts
with the setting of purely gravity waves (Ω = 0) where the choice of sign is quite
immaterial: the different choices simply correspond to choosing different directions
of wave motion. As seen in Proposition 2 below, the choice c < 0 is most propitious
for the analysis of the excess energy for nonlinear waves and, unless otherwise stated,
in subsequence considerations we take c < 0 (although Remarks 4.1 and 5.3 outline
how various considerations can be applied to the case c > 0).
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Define new variables x and z in the reference frame moving with speed c via

x = X − ct, z = Z. (4.1)

The governing equations (2.1) for fluid motion in the moving reference frame are
then transformed to

ux + wz = 0, (4.2a)

(u− c)ux + wuz + 2Ωw = −Px, (4.2b)

(u− c)wx + wwz − 2Ωu = −Pz − g in Dη(x),d, (4.2c)

with the kinematic and dynamic boundary conditions

w = (u− c)ηx, (4.2d)

P = Patm on z = η(x), (4.2e)

w = 0 on z = −d. (4.2f)

In the following we analyse smooth exact solutions to the governing equations (4.2)
for which η, u, w, P have period λ in the x−variable. Moreover, there is a single
crest and trough per period, and the profile η is decreasing from crest to trough
with η′(x) 6= 0 except at the maximum (crest) or minimum (trough). The functions
η, u, P are symmetric while v is antisymmetric about the crest. The existence of such
waves was rigorously established using bifurcation theory methods in [12, 32] (per-
mitting general underlying vorticity distributions, but without stagnation points)
with further generalisations achieved in [41,42]. The assumption we make regarding
the symmetry of the unknown wave-surface is not restrictive in the sense that it can
be proven that if the surface profile is monotonic between troughs and crests, then
it must in fact be symmetric [33], even in the presence of stagnation points [2]. We
choose the crest to lie on x = 0, with the trough located at x = ±λ/2. Additionally,
we assume that there is no underlying constant current, that is

κ =

∫ λ/2

−λ/2
u(x,−d) dx = 0. (4.3)

(A detailed mathematical analysis of the underlying fluid motion for nonlinear equa-
torial waves, which also accommodates a non-zero current term κ 6= 0, can be found
in [43].) The stream function ψ is defined (up to a constant) by

ψz = u− c, ψx = −w, (4.4)

and we fix the constant by setting ψ = 0 on z = η(x). Relations (4.2d) and
(2.1h) imply that ψ is constant on both boundaries of Dη(x),d, and so it follows from
integrating (4.4) that ψ = m on z = −d, where

m =

∫ η(x)

−d
(u(x, z)− c)dz. (4.5)
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The above expression gives the relative mass flux, and it is seen by direct calculation
that m is an invariant of the flow. Since

ψ(x, z) = −m+

∫ z

−d
(u(x, s)− c)ds,

we deduce that ψ is a periodic function, with period λ. Furthermore, the level sets
of the stream function ψ(x, z) describe the streamlines of the flow. An important
consequence of the irrotationality condition (2.1i) is that the stream function ψ, and
hence also ψz and u, are harmonic functions throughout the fluid domain Dη(x),d.
The strong maximum principle for harmonic functions [25] implies that m 6= 0,
unless the flow is trivial. Since ψ = 0 on z = η, applying the strong maximum
principle for harmonic functions to ψ, and in turn ψz, we can infer that m > 0.
Furthermore, it follows that there are no stagnation points in Dη(x),d, that is,

ψz = u(x, z)− c > 0 in Dη(x),d. (4.6)

The absence of stagnation points is a physically realistic scenario for water waves
without underlying currents containing strong non-uniformities, and which are not
near breaking: in this situation the maximal horizontal velocity u typically has a
magnitude of about 10% of the wavespeed. Along the lines of purely gravitational
waves (Ω = 0, cf. [9]), it can be shown that the maximum of the harmonic function u
is attained precisely at the wave-crest: the limiting case whereby a stagnation point
occurs at the wavecrest (u = c) is known as an extreme wave. Define the relative
hydraulic head Q by the expression

Q :=
(u− c)2 + w2

2
+ (g − 2Ωc)z +

P

ρ
− 2Ωψ in Dη(x),d.

It follows from taking the curl of equations (4.2b) and (4.2c) that Q is constant
in Dη(x),d: this is the f−plane version of Bernoulli’s law. Accordingly, we can
reformulate (4.2) in terms of the functions η, ψ in the moving reference frame as

∆ψ = 0 in − d < z < η(x), (4.7a)

|∇ψ|2 + 2(g − 2Ωc)z = Q on z = η(x), (4.7b)

ψ = 0 on z = η(x), (4.7c)

ψ = −m on z = −d. (4.7d)

It is clear from (4.7b) that Q > 0 for non-trivial waves (η 6≡ 0) in the setting c < 0.
The governing equations (4.2) and (4.7) have been greatly simplified by being

formulated in the moving reference frame wherein they describe steady fluid motion.
Transforming to the moving frame is an apparently trivial exercise mathematically,
simply requiring the change of coordinates (4.1). Yet this innocuous-looking change
of variables belies a hidden complication that must be addressed before we can
consider the physical flow characteristics and parameters of the underlying wave
motion, namely: what is the wavespeed c, and how do we determine it? The issue of
determining the wavespeed from the kinematics of a travelling wave is a surprisingly
complex matter both from the mathematical [9,13], and physical [47], perspectives.
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This question is particularly apposite when posed in the moving reference frame
(wherein mathematical analysis is performed) in which the steady flow is time-
independent. We note that, unlike for purely gravity waves (whereby Ω = 0), the
wavespeed c appears explicitly in the governing equation formulations (4.7). There
is no canonical definition of the wavespeed, however (bearing in mind relations (4.3)
and (4.4)) Stokes’ first definition of the wavespeed defines the wavespeed by the
expression

c = −1

λ

∫ λ

0

ψz(x, z0) dx < 0, (4.8)

where the last inequality follows from (4.6). The wavespeed c is thus defined by
(4.8) to be the mean horizontal velocity of the fluid in the moving frame of reference
for which the wave is stationary. It can be seen (cf. [43]) that expression (4.8) is
independent of the (fixed) depth z0 beneath the wave trough level.

Remark 4.1. For the choice of wavespeed c > 0, the condition ensuring an absence
of stagnation points corresponding to (4.6) is given by

ψz = u(x, z)− c < 0 in Dη(x),d, (4.9)

and it follows that the mass-flux m < 0. If we make the physically reasonable
assumption that condition (3.9) holds for the choice of nonlinear wavespeed c > 0,
it follows that Q > 0 also in this case. Stokes first definition of the wavespeed also
applies to this setting, except with a reversal of the inequality in (4.8) above.

The irrotationality condition (2.1i) enables the definition (up to a constant) of a
velocity potential φ(x, y) by way of the relations

φx := u− c = ψz, φz := w = −ψx. (4.10)

Hence the physical system is conservative, and it follows from (4.2a) and relation
(4.10) that φ is a harmonic function. Fixing φ = 0 on the crest line we can express

φ(x, y) =

∫ x

0

[u(l,−d)− c] dl +

∫ y

−d
w(x, s)ds,

from which we deduce that φ(x, z)+cx has period λ in x, φ is odd in the x−variable
and vanishes at x = 0, and φ(λn, z) = −cλn for any integer n. The existence of a
velocity potential enables us to define the hodograph coordinate transformation

(x, z) 7→ (q, p) = (−φ(x, z),−ψ(x, z)) . (4.11)

The governing equations (4.7) can be further reformulated in terms of the height
function

h(q, p) = z + d,

as follows. The mapping (4.11) is conformal since φ and ψ are harmonic conjugates
(4.10), hence ∆(x,z)h = 0 implies that ∆(q,p)h = 0. Furthermore (4.11) transforms
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the fluid domain Dη(x),d with an unknown free boundary into the fixed rectangular
strip R× [−m, 0]. We have {

∂q = hp∂x + hq∂z,
∂p = −hq∂x + hp∂z,

with {
∂x = (c− u)∂q + w∂p,
∂z = −w∂q + (c− u)∂p,

while

hq = − w

(c− u)2 + w2
= −∂x

∂p
=
∂z

∂q
, hp =

c− u
(c− u)2 + w2

=
∂x

∂q
=
∂z

∂p
, (4.12)

noting that condition (4.6) implies that hp > 0. The governing equations (4.7) have
the following reformulation in terms of h:

∆h = 0 for −m < p < 0, (4.13a)

[Q+ 2(d− h)(g − 2Ωc)]
(
h2
q + h2

p

)
= 1 on p = 0, (4.13b)

h = 0 on p = −m. (4.13c)

5. Wave energy densities

5.1. Excess potential energy density. Our first result concerning the excess
potential energy Ep follows immediately from the definition (1.1).

Proposition 1. The excess potential energy per unit horizontal area, Ep, can be
expressed as

Ep =
g

λ

∫ λ/2

0

η2(x)dx. (5.1)

Hence, Ep > 0 is positive for all (non-trivial) water wave solutions of the nonlinear
governing equations (4.2).

This result is independent of the sign of the wavespeed c, and it reflects the fact
that both a raised, and depressed, free-surface serve to increase the potential energy
by an amount proportional to the square of the displacement from the mean water
level. The raised surface increases the potential energy through adding new fluid
above the position of the mean water level, whereas a depressed surface increases
the potential energy through the removal of fluid beneath the mean water level.

Proof. It is extremely straightforward to show that the presence of free-surface waves
increases the potential energy of a flow. Expression (1.1) reduces to

Ep =
1

λ

∫ λ

0

∫ η(x)

0

gz dz dx =
g

2λ

∫ λ

0

η2(x)dx > 0,

with equality holding only in the absence of free-surface waves (η ≡ 0), in which
case the potential energy for the flow is minimised. Expression (5.1) follows from
symmetry considerations. �
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5.2. Excess kinetic energy density. Unlike the situation for potential energy,
considerations relating to the excess kinetic energy for nonlinear waves are affected,
and complicated, by the presence of Coriolis terms involving Ω. Nevertheless, for
negative wavespeeds c < 0 we can prove that the presence of waves serves to decrease
the kinetic energy in the moving frame: the excess kinetic energy is negative in this
case. This result generalises inequality (3.20), which is applicable for linear water
waves, and which explicitly shows that Elin

k is negative. Since (3.20) pertains only
to waves of relatively small amplitude (a � d), it can not be used to infer that a
similar inequality holds for larger amplitude nonlinear waves. Instead, this result
follows from Proposition 2.

Proposition 2. The excess kinetic energy per unit horizontal area, Ek, can be ex-
pressed as

Ek = − c
λ

∫ λ/2

0

η(x)u(x, η(x))dx. (5.2)

Additionally, for the choice of wavespeed c < 0, the excess kinetic energy Ek <
0 is negative for all (non-trivial) water wave solutions of the nonlinear governing
equations (4.2).

To prove the second part of this statement we use the following:

Lemma 5.1. (i) If c < 0, the function u(x, η(x))+2Ωη(x) is strictly increasing
along the free-surface from crest to trough, that is,

∂x [u(x, η(x)) + 2Ωη(x)] > 0 for x ∈ (0, λ/2).

Since η′(x) < 0 for x ∈ (0, λ/2), we conclude that ∂xu(x, η(x)) > 0.
(ii) If c > 0, the function u(x, η(x)) + 2Ωη(x) is strictly decreasing along the

free-surface from crest to trough, that is,

∂x [u(x, η(x)) + 2Ωη(x)] < 0 for x ∈ (0, λ/2).

Proof. Direct calculation from (4.2b) and (4.2c) shows that ∆P = −2ux − 2uy ≤ 0,
where the Coriolis terms vanish due to the irrotationality condition (2.1i). Hence
the pressure function P is superharmonic and its minimum must be attained on
the boundary of Dη(x),d, cf. [25]. On the boundary z = −d, (4.2c) and (2.1h) show
that Pz = −g + 2Ωu < 0, where the inequality comes from (4.6) and the natural
assumption that c satisfies (3.9), therefore Hopf’s maximum principle implies that
the minimum of P cannot occur here [25]. The pressure P = Patm is constant
along the free-surface z = η(x), which itself is strictly decreasing for x ∈ (0, λ/2).
Accordingly, Hopf’s minimum principle implies that Px(x, η(x)) < 0 for x ∈ (0, λ/2),
which in conjunction with (4.2b) and (4.2d) gives

(u(x, η(x))− c)ux(x, η(x)) + w(x, η(x))uz(x, η(x)) + 2Ωw(x, η(x))

= (u(x, η(x))− c) [ux(x, η(x)) + uz(x, η(x))η′(x) + 2Ωη′(x)]

= (u(x, η(x))− c) ∂x [u(x, η(x)) + 2Ωη(x)] > 0.

Statement (i) follows from (4.6), while statement (ii) follows from (4.9). �
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Proof of Proposition 2. In the nonlinear wave regime, we work as follows. The hodo-
graph change of variables (4.11) transforms the region Dλη(x),d = Dη(x),d∩{x ∈ [0, λ]}
to the finite rectangle R = [0, cλ]× [−m, 0]. From relations (4.12) we can re-express
the excess kinetic energy (1.2) as

Ek =
1

2λ

∫ λ

0

∫ η(x)

−d

(
(u− c)2 + v2

)
dy dx− c2d

2

=
1

2λ

∫ cλ

0

∫ 0

m

1

h2
p + h2

q

∣∣∣∣∂(x, y)

∂(q, p)

∣∣∣∣ dp dq − c2d

2

=
1

2λ

∫ cλ

0

∫ 0

m

1

h2
p + h2

q

(
h2
p + h2

q

)
dp dq − c2d

2
= − c

2
(m+ cd) = −cd

2
(c− c̃).

(5.3)

Here c̃ corresponds to Stokes’ second definition of the wavespeed, which is defined
to be equal to the depth-averaged horizontal fluid velocity in the moving frame:

c̃ = − 1

λd

∫ λ

0

∫ η(x)

−d
ψz(x, z0) dzdx = −m

d
. (5.4)

The second equality in (5.4) follows from (4.4) and (4.5). Along the lines of [13], it
can be shown that

c− c̃ =
1

λd

∫ λ

0

η(x) (u(x, η(x))− c) dx =
2

λd

∫ λ/2

0

η(x)u(x, η(x))dx, (5.5)

where the second equality follows from an implementation of (2.1g), and symmetry
considerations. Substituting relation (5.5) into (5.3) leads to the expression (5.2).

The proof that Ek < 0 for c < 0 follows from (5.3) by showing that c < c̃ < 0
for all wave solutions of (4.2). This result was first established in the gravity wave
setting in [13], and the analysis replicated for equatorial waves in [23]. If x0 is the
unique point where η(x0) = 0, then re-expressing (5.5) gives

c− c̃ =
2

λd

∫ λ/2

0

η(x) [u(x, η(x)) + 2Ωη(x)] dx− 4Ω

λd

∫ λ/2

0

η2(x)dx

=
2

λd

∫ x0

0

η(x) [u(x, η(x)) + 2Ωη(x)] dx+
2

λd

∫ λ/2

x0

η(x) [u(x, η(x)) + 2Ωη(x)] dx

−4Ω

λd

∫ λ/2

0

η2(x)dx
(†)
<

2

λd

∫ x0

0

η(x)u(x0, η(x0))dx+
2

λd

∫ λ/2

x0

η(x)u(x0, η(x0))dx

−4Ω

λd

∫ λ/2

0

η2(x)dx =
2u(x0, η(x0))

λd

∫ λ/2

0

η(x)dx− 4Ω

λd

∫ λ/2

0

η2(x)dx

= −4Ω

λd

∫ λ/2

0

η2(x)dx < 0.

(5.6)
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The first inequality (†) in (5.6) follows from an application of statement (i) in Lemma
5.1, using the fact that η′(x) < 0 in this region. Now using relation (5.6) in (5.3) we
conclude that

Ek = − c

2λ

∫ λ

0

η(x)u(x, η(x))dx < 0.

Expression (5.2) follows from symmetry considerations. �

Remark 5.2. Stokes’ first definition of the wavespeed (4.8) can be evaluated for the
linear wave solution (3.3) to get

c ≈ −1

λ

∫ λ/2

−λ/2
aω

cosh(k(d+ Z))

sinh kd
cos(x)dx+

1

λ

∫ λ/2

−λ/2

ω

k
dx = c0,

where c0 = ω/k is the wavespeed given by the linear dispersion relation (3.5). Eval-
uating Stokes’ second definition of the wavespeed (5.4) for the linear wave solution
(3.3) gives

c̃ ≈ − 1

λd

∫ λ/2

−λ/2

∫ η(x)

−d
aω

cosh(k(d+ Z))

sinh kd
cos(x)dzdx+

1

λd

∫ λ/2

−λ/2

∫ η(x)

−d

ω

k
dzdx

= −ac0

λd

∫ λ/2

−λ/2

sinh(k(d+ a cosx))

sinh kd
cos(x)dx+ c0

= −ac0

λd

∫ λ/2

−λ/2

(
cosx+

cosh kd

sinh kd
ka cos2 x+

1

2!
(ka)2 cos3 x

)
dx+ c0

= c0 −
c0ka

2

2d
coth kd+O(a3). (5.7)

where we have used the identity (3.19). Hence c = c̃ +O(a2), and definitions (4.8)
and (5.4) ‘agree’ up to O(a2): they coincide in the regime of linear water waves.

Remark 5.3. Regarding the case where the wavespeed is positive, c > 0, relation
(3.20) implies that Ek < 0 for sufficiently small amplitude waves, whatever the sign
of c, once the (physically plausible) condition (3.9) is satisfied. For larger amplitude
nonlinear waves, considerations similar to those in (5.6) carry over to the case c > 0,
except with a reversal of inequality (†) due to statement (ii) in Lemma 5.1. Hence,
for c, c̃ > 0, we can show that

c− c̃ > −4Ω

λd

∫ λ/2

0

η2(x)dx. (5.8)

In the case of purely gravity waves (Ω = 0) we recover the result (cf. [13]) that
c − c̃ > 0 for all nonlinear waves. Although Ω is numerically very small, and
the identity (5.7) implies that c − c̃ > 0 for small amplitude wave solutions of
(2.1), unfortunately we are unable to infer from (5.8) that a similar result holds for
nonlinear wave solutions of (2.1). Proving this would enable us to conclude, by way
of (5.3), that Ek < 0 holds also when c > 0.



20 ENERGY CONSIDERATIONS FOR NONLINEAR EQUATORIAL WATER WAVES

5.3. Total excess energy density. The total excess energy density, defined by
Etot = Ep + Ek, can be characterised for nonlinear waves as follows.

Proposition 3. The total excess energy for nonlinear waves is given by

Etot = − 1

2λ

∫ λ/2

0

η(x)
(
u2(x, η(x)) + v2(x, η(x))

)
dx+

Ωc

λ

∫ λ/2

0

η2(x)dx. (5.9)

Proof. For nonlinear water waves, (5.1) and (5.2) give

Etot = Ep + Ek =
1

2λ

∫ λ

0

η(x) (gη(x)− cu(x, η(x))) dx.

= − 1

4λ

∫ λ

0

η(x)
(
u2(x, η(x)) + v2(x, η(x))− 2Ωcη(x)

)
dx.

The last equality follows from the Bernoulli relation (4.7b) combined with an appli-
cation of (2.1g). Expression (5.9) now follows from symmetry considerations. �

The total excess energy for water waves is expressed in (5.9) as the mean of the
kinetic energy along the wave surface profile, weighted by the wave surface profile
itself, plus an additional term which depends on both the wavespeed, and the Coriolis
term Ω. Expression (5.9) matches (3.21) for linear waves solutions (3.3), where we
note that the first weighted integral term is zero (at order O(a2)).

Determining the sign of (5.9) provides insight into whether the kinetic or poten-
tial energies predominate for a given wave solution and, for nonlinear waves whereby
relation (3.21) is not applicable, establishing this analytically is not a trivial exer-
cise. We know that η(0) > 0, and η(λ/2) < 0, with η′(x) < 0 for x ∈ (0, λ/2), and
furthermore nonlinear waves tend to have sharper crest elevations and flatter de-
pressions compared to linear waves (see Remark 3.1). Rigorous results establishing
monotonicity properties of the kinetic energy for nonlinear waves do exist [1,38,44],
however these establish an exponential decrease of the kinetic energy with respect to
vertical depth (for fluid motion beneath the wave trough) and do not pertain to the
behaviour along the free surface. Some monotonicity properties can be established
for the horizontal velocity component u along the free-surface (see Lemma 5.1) but,
even in the simpler setting of gravity waves, little is known analytically about the
behaviour of the vertical velocity v, cf. [5] for numerical investigations which pro-
vide some insight into this question. Similarly, insight into expression (5.9) could
be achieved in the first instance by way of numerical investigations.
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