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Abstract 

A facile and reproducible one-step pathway has been developed for preparing ordered 

arrays of mesoporous carbon nanostructures with in the pores of AAO membranes 

through the confined self-assembly of phenol/formaldehyde resol and amphiphilic 

copolymer templates.  The morphology of the mesoporous carbon nanostructures can 

be controlled by varying the copolymer surfactant, the quantity of the resol/surfactant 

precursor sol used and the amount of phenol/formaldehyde resol introduced to the 

resol/surfactant sol.  One-dimensional (1 D) carbon nanostructures, such as carbon 

fibres with a core-shell structure and carbon ribbons with circular mesopores running 

parallel to the longitudinal axis of the ribbons, have been successfully prepared.  More 

importantly, the orientation of the mesoporous channels within these 1 D carbon 

nanostructures can be tuned by changing the mean pore diameter of the anodised 

aluminum oxide (AAO) membranes and the surfactants used in their preparation.  The 

conductive properties of these vertically aligned mesoporous carbon nanofibres within 

AAO membranes have been characterized by conductive atomic force microscopy 

(C-AFM). 
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Introduction 

Carbon materials, with properties such as remarkable chemical stability, excellent heat 

resistance and intrinsic electrical conductivity, have attracted considerable attention in 

the field of hydrogen storage, energy conversion, transistor and sensors, especially after 

the discovery of carbon nanotubes and fullerenes.1-7  Recently, researchers have 

extended the preparation of carbon nanostructures to form periodic mesoporous carbon.  

In addition to the intrinsic properties of carbon-based materials, mesoporous carbon has 

a variety of promising properties, including high specific surface area and easily 

accessed pore channels derived from their well-ordered porous structure.8-11  Many 

applications of mesoporous carbon will benefit from the ordered alignment of 1 D 

structures, such as nanofibres and nanotubes, with controllable pore channel 

arrangements on the mesoscale.  One simple and practical way to prepare 1 D 

mesoporous carbon is to employ a hard template, with well-ordered regular channels, 

such as anodic aluminium oxide (AAO) membranes.  AAO membranes can be 

prepared by a simple anodic oxidation process of Al foils in an acidic solution.12,13  

The unique properties of AAO membranes, such as well-defined columnar pore 

channels that can be readily accessed by a electrochemical or sol-gel processes, makes 

them very promising hosts for the preparation of 1 D nanomaterials.  For example, 
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well-ordered arrays of mesoporous silica nanowires and titania nanotubes have been 

prepared within the channels of AAO membranes.14-21  In particular, Yang and 

co-workers reported the preparation of mesoporous silica nanotubes and nanofibres 

through a sol-gel process 14, where the orientation of the hexagonal mesochannels could 

be tuned by changing the concentration of the surfactant template, by adjusting the 

relative humidity and by selecting the AAO membranes with different pore dimensions.  

Recently, at UCC mesoporous titania nanotubes have been synthesized within the 

channels of AAO membranes.15  The dimensions of these nanotubes could be 

manipulated by changing the pore diameter of the alumina membranes and varying the 

viscosity of the starting sol. 

 

Despite the success that has been achieved in synthesising 1 D mesoporous silica and 

titania structures, little progress has been made in the preparation of 1 D mesoporous 

carbon materials.  There are only a few literatures reports on the successful preparation 

of 1 D mesoporous carbon materials and in most of these cases the processing steps 

involved are complicated, time-consuming process and usually employ 1 D mesoporous 

silica fibres as hard templates.22  Recently, Zhao and co-workers reported the 

preparation of highly ordered mesoporous carbon based on an organic-organic 
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self-assembly of triblock copolymers with soluble low formula weight polymer 

precursors.23,24  The successful synthesis of mesoporous carbon from a precursor sol 

makes the fabrication of well-aligned 1 D mesoporous carbons within the pores of AAO 

membranes, through a simple evaporation-induced self-assembly (EISA) process, 

possible.  Recently, a direct and solvent-free approach has been reported for the 

synthesis of mesoporous carbon nanowires using AAO membranes as hard 

templates.25-27  Using an ethanolic solution of the Pluronic copolymer surfactant F127 

(EO106PO70EO106, Mav = 12600) and phenolic resol, mesoporous carbon nanofibres have 

been prepared within the pores of AAO membranes.25  After dissolving away the AAO 

templates, well-aligned arrays of carbon nanofibres could be fabricated on the surface of 

silicon wafers through a supercritical CO2 drying process.  Mesoporous carbon 

nanofibres with a core-shell structure have also been prepared through this sol-gel 

process.27  However, rational manipulation of the morphology of the 1 D carbon 

nanostructures on the macro-scale and deliberate control of the pore orientation in the 

meso-scale remain a challenge. 

 

Herein, we report a one-step method for preparing highly ordered mesoporous carbon 

nanostructures, with defined structures, within the pores of AAO membranes using 
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triblock copolymer surfactants/phenolic resol ethanolic solutions.  The morphology of 

the 1 D mesoporous carbons could be controlled by tuning the resol-to-surfactant ratio 

of the initial precursor mixtures or the amount of the surfactants/resol ethanolic 

precursor sol used.  More importantly, the orientation of the mesoporous channels of 

these 1 D carbon materials can be controlled by choosing different surfactants and AAO 

membranes with various pore dimensions. 

 

Experimental 

 

The preparation of the phenol/formaldehyde resol and the precursor sol 

The phenol/formaldehyde resol was prepared from the reaction of phenol with 

formaldehyde in a base-catalyzed process following a previously reported procedure.24  

In a typical procedure, 0.61 g of phenol was melted at 40-42 °C in a flask and mixed 

with 0.13 g of 20 wt % sodium hydroxide aqueous solution under stirring.  After 10 

min, 1.05 g of formalin (37 wt % formaldehyde) was added drop wise below 50 °C to 

the mixture.  Upon further stirring for 1 h at 70-75 °C, the mixture was cooled to room 

temperature.  The pH of the solution was adjusted with 0.6 M HCl solution until it 

reached a value of 7.0, and water was removed by vacuum evaporation below 50 °C.  
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The final product was dissolved in 5 mL of ethanol. 

 

The precursor sol containing the above prepared resol, which works as the carbon 

source and a variety of amphiphilic surfactants, such as F127, P123 (EO20PO70EO20, 

Pluronic, Mav = 5800) or the cationic surfactant, cetyltrimethylammonium bromide 

(CTAB), as structural directing agents.  In a typical preparation, 1.0 g of F127 was 

dissolved in 20.0 g of ethanol.  Then 5.0 g of the resol precursor solution in ethanol 

was added.  After stirring for 10 min a homogeneous solution was obtained. 

 

The preparation of arrays of mesoporous carbon nanofibres in AAO membranes 

A glass tube with an inner diameter of about 18 mm was attached onto the surface of a 

silicon wafer by mounting wax.  A piece of AAO membrane together with 0.3 mL of 

the precursor sol was put into the tube (Scheme 1).  The sol infiltrates the pores of the 

AAO membrane and changes into a gel during the aging process, at room temperature 

and at 60 ºC.  After drying, the AAO membrane which firmly adheres to the silicon 

wafer was calcined at 600 ºC in a N2 atmosphere for approximately 3 hr to decompose 

the surfactant molecules and carbonize the mesoporous walls. 
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Characterization 

The morphology of the arrays of carbon nanofibres was characterized by scanning 

electron microscopy (SEM) performed on a JEOL JSM-5510 scanning microscope and 

a field-emission scanning microscope (FESEM; Carl Zeiss Gemini Supra) operating at 

10 kV.  Transmission electron microscopy (TEM) images were recorded using a JEOL 

2000E microscope operated at 200 kV.  Samples for TEM were prepared by the 

following method: 1) the AAO membranes were dissolved in 6 M HCl solution to 

release the embedded mesoporous carbon fibres; 2) top views were prepared by dimple 

grinding followed by Ar ion polishing.  A commercial atomic force microscope (AFM) 

(MFP-3D-BIO™, Asylum Research) in contact mode was used for topography and 

current mapping.  Conductive Pt/Ti-coated silicon AFM tips (Olympus AC240TM) 

were used in all experiments. 

 

Results and Discussion 

Influence of the precursor sol on morphology 

The 1 D mesoporous carbon nanostructures were prepared by a dual-template method 

via a simple one-step sol-gel process.  Amphiphilic triblock copolymers, poly(ethylene 

oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) were used as 
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soft-templates to direct the formation of the ordered mesoporous structure within the 1 

D carbon nanostructures during the EISA process.  Commercial AAO membranes, 

with pores of approximately 200 nm in diameter, were used as hard templates to shape 

the precursor sol or gel into 1 D nanostructures during the aging and calcination 

processes.  The precursor sol containing a soluble low molecular-weight 

phenol/formaldehyde resol and amphiphilic surfactant molecules was prepared 

following the procedure described before.25  The method used here for the confined 

self-assembly of the ordered mesoporous carbon nanostructures within the channels of 

AAO membranes is depicted in Scheme 1.  First, a glass tube with an inner diameter of 

approximately 18 mm was attached onto the surface of a silicon wafer or glass slide by 

mounting wax.  Then, certain amount of the precursor sol together with a piece of 

AAO membrane was put into the tube, followed by aging and calcination.  The glass 

tube, attached to the substrate, prevents the spread of the sol onto the surface of the 

substrates and was essential to ensure complete filling of the AAO pores with the 

precursor sol.  This feature makes this in-tube gelation method a simple and 

reproducible way to prepare 1 D carbon nanostructures.  Moreover, given the defined 

diameter of the glass tubes, the degree of filling of these AAO pores by the precursor sol 

can be controlled by varying the amount of the sol used.  Actually, the amount of 
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precursor sol used not only influences the degree of filling of the AAO pore channels 

but also influences the morphology of the carbon nanostructures prepared. 

 

Figure 1 shows the SEM images of carbon nanostructures prepared from various 

amounts of precursor sol.  The top-view SEM images show that only approximately 

half of the AAO pores were occupied by the carbon nanofibres for the samples prepared 

with a precursor sol volume less than 0.1 mL (Figure 1a).  During the high temperature 

calcination process, the nanostructures formed within the AAO pores would be 

subjected to a dramatic shrinkage occuring both along and perpendicular to the axis of 

the pore channels.  The carbon nanostructures will occupy only part of the pore 

channel , which is similar to that reported by Yamaguchi et al. where a filtration method 

was applied.17  As a result, only short fine carbon nanofibres were obtained.  Nearly 

100 % of the AAO pores were occupied by the carbon nanofibres when more than 0.3 

mL of the precursor sol was introduced into the glass tubes.  Figure 1b clearly shows 

that well-shaped carbon nanofibres protrude from the openings of the AAO membranes.  

Our previous data also suggest that carbon nanofibres prepared with 0.3 mL of the 

precursor sol run throughout the entire length of the AAO channels.25 
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TEM images of the released carbon nanostructures prepared with various amounts of 

the precursor sol further confirmed the presence of mesoporous fibre-like nanostructures 

(Figure 2).  Side- and top-view TEM images shows that no obvious mesoporous 

ordering was observed for the carbon nanofibres prepared with a precursor sol with a 

volume less than 0.1 mL (Figure 2(a) and (d)).  When a precursor sol volume of more 

than 0.1 mL is used, hexagonally arranged mesoporous channels at the edge of the 

carbon nanofibres are produced, as shown in the TEM images.  The mean pore 

diameter of these carbon nanostructures, employed F127 as a structural directing agent, 

was approximately 5 nm.  The pore-to-pore distance between the mesopores was 

approximately 12 nm, which is in good agreement with the mesopore spacing in 

FDU-15,24 a mesoporous carbon material prepared using F127.  The diameter of the 

carbon nanofibres prepared were in the size range between 150 ~ 220 nm, which is 

consistent with the pore dimension of the commercial AAO membranes used. 

 

Influence of the phenol/formaldehyde resol on morphology 

The formation of the mesoporous carbon structures is based on the cooperative 

self-assembly among the surfactant molecules and the organic phenol/formaldehyde 

resol.  Therefore, the quantity of resol added to the precursor sol plays an important 
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role in the preparation of these mesoporous nanostructures.  Keeping other synthesis 

parameters constant, the amount of phenol/formaldehyde resol was varied to investigate 

the impact on the morphology and structure of the carbon nanomaterials produced.  

Typically, 0.5-4.0 g of the phenol/formaldehyde resol ethanolic solution, where 1 g of 

the resol ethanolic solution contains 0.12 g of phenol and 0.078 g of formaldehyde, was 

added to 4 mL of the ethanolic solution, containing 0.2 g of F127, to form a 

homogenous resol/surfactant precursor sol.  Together with AAO membranes, 0.3 mL 

of the above resol/surfactant precursor sols were added to glass tubes which were 

attached to silicon wafers.  Figure 3 shows the SEM images of the carbon 

nanostructures released from the AAO membranes.  When a small quantity of the 

phenol/formaldehyde resol ethanolic solution, for example 0.5 g, was used, a core-shell 

structure was prepared (Figure 3a).  This core-shell structure was confirmed by TEM, 

as shown in Figure 4a.  The cores of the nanostructures were wrapped by a thin layer 

of carbon shells.  A similar core-shell structure prepared within the channels of the 

AAO membranes using a F127/phenolic resol ethanol solution has already been 

reported by Cao and co-workers, where the shells are composed of ordered mesopores 

which can be easily destroyed to release the relatively solid mesoporous carbon cores by 

ultrasonic treatment.27  When more than 1.0 g of the phenol/formaldehyde resol 
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ethanolic solution was added to the sol mixture, the morphology of the carbon 

nanostructures changeed significantly.  SEM images, shown in Figure 3(b), show that 

only nanofibres were fabricated when the quantity of the resol solution was greater than 

1.0 g. 

 

Figure 4 shows side-view TEM images of carbon nanostructures released by dissolving 

the AAO membranes in a 6 M HCl solution and top-view images for samples prepared 

by dimple grinding and subsequent Ar ion polishing.  Compared to the results reported 

by Cao et al.,27 no distinct mesopores were observed in the semi-transparent shells, and 

no obvious mesoporous ordering was observed in the core-shell structures prepared 

(Figure 4(a) and (d)).  By increasing the amount of the phenol/formaldehyde resol to 

the resol/surfactant precursor sol, mesoporous carbon nanofibres were prepared.  As 

shown in the side-view TEM image (Figure 4(b)), the carbon nanostructures prepared 

with more than 1.0 g of the resol solution exhibits well-ordered hexagonally arranged 

porous channels at the edge of the nanostructures, as reported in our previous work.25  

However, when even more resol solution, over 3.0 g, was incorporated in the 

self-assembly process, a hierarchical structure with both bubble-like macropores and 

well-ordered mesopores was fabricated (Figure 4(c) and (f)).  TEM shows that the 
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bubble-like macropores exist only at one end of the nanofibres (see the supporting 

information for detail).  From the top-view TEM observations, all of the AAO pore 

channels were fully occupied by the mesoporous carbon nanofibres, even after 

calcination at 600 °C.  Large quantities of phenol/formaldehyde resol may take part in 

the self-assembly process leading to relatively dense pore walls which would resist the 

volume shrinkage during the aging and calcination processes and result in blocked AAO 

pore channels.  The blockage of AAO pore channels by the carbon nanofibres would 

prevent the small air bubbles, which could be trapped within the channels with the 

addition of the precursor sol or formed during the gelation processes, to escape from the 

channels.  As a result, various sized bubble-like macropores were formed. 

 

The impact of the surfactants on morphology 

The amphiphilic structural directing agents play an important role in the formation of 

the mesoporous structures.  A variety of mesoporous structures ranging from 1 D 

hexagonal and 2 D lamellar to 3 D cubic frameworks can be prepared from mixtures of 

resol and different surfactant templates through an evaporation-induced self-assembly 

process.28-30  In addition to the F127 surfactant, the triblock copolymer surfactant P123 

and the cationic surfactant cetyltrimethylammonium bromide (CTAB), were 
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investigated as structural directing agents for the formation of carbon nanostructures. 

 

The preparation procedure for the carbon nanostructures using P123 and CTAB as 

structural directing agents is similar to that described above.  In a typical synthesis, 1.0 

g of P123 or CTAB was dissolved in 20.0 mL of ethanol, followed by the addition of 

10.0 g of the phenol/formaldehyde resol ethanolic solution.  When P123 was used as 

the surfactant, ribbon-like carbon materials were obtained as shown by the TEM image 

in Figure 5.  All of the carbon nanoribbons have circular mesochannels running 

parallel to their longitude axis.  The carbon layers of the mesochannels were wrapped 

together concentrically in a similar way to multi-walled carbon nanotubes  An 

unisotropic shrinkage of these carbon nanostructures occurred during the high 

temperature calcination process which leaded to the formation of these carbon 

nanoribbons with deformed mesochannels as shown in the plan-view TEM images 

(Figure 5c). 

 

The cationic surfactant CTAB has been widely used in the preparation of mesoporous 

silica materials, such as the M41S family.29  However, instead of well-ordered 

mesoporous structures, carbon nanofibres with bubble-like macropores were fabricated 
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when CTAB was employed as a structural directing agent (Figure 6).  As outlined by 

Huo et al.,30 the synthesis of mesostructures using cationic surfactants involves the 

electrostatic interaction of the cationic headgroup with anionic framework species.  For 

the phenol/formaldehyde resol, no anions will form under neutral conditions and 

consequently the cationic surfactant might not be involved in the templating processes 

during gelation.  As a result, no well-ordered mesoporous structures were generated. 

 

The impact of pore dimensions on mesoporous carbon formation 

In our experiments, the AAO membranes act as hard templates for the fabrication of the 

carbon nanostructures and the dimensions and properties of the AAO channels influence 

the morphology of the carbon nanostructures prepared.  Y-branched carbon nanofibres 

and nanofibres with saw-shaped edges as observed in the TEM images can be obtained 

from commercial AAO membranes (see the supporting information for detail), which 

reflects the inner surface morphology of the porous channels.  In fact, the diameter and 

shape of the AAO pores and the properties of the inner surface of the pore walls not 

only define the morphology of the 1 D carbon nanostructures, but also influences the 

mesoporous frameworks formed. 
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Using the nonionic triblock copolymer F127 as a soft template, well-aligned 

mesoporous carbon nanofibres can been fabricated with the pore channels of 

commercial AAO membranes through a confined self-assembly process as shown in 

Figure 4 and as outlined reference 25.  From the side-view TEM observations, the 

carbon nanofibres have hexagonally arranged circular mesochannels concentrically 

coiled around the longitudinal axis of the fibres, consistent with the mesoporous 

structure of silica and titania nanowires or nanotubes prepared within the pores of the 

AAO membranes.  However, in some relatively large triangular-shaped AAO pores, 

columnar oriented mesochannels actually exist at the centre of the carbon nanofibres.  

As shown in the top-view TEM images (Figure 4e), these columnar mesochannels, 

wrapped by circular mesochannels, are aligned parallel to the longitudinal axis of the 

fibres.  Thus, the size and shape of the AAO pores have a significant impact on the 

orientation of the mesochannels.  The formation of these mesoporous carbon structures 

is assumed to occur through the confined self-assembly of resol and surfactant 

molecules within the limited void space of the AAO pore channels.  Due to the 

difference in surface energy, the precursor sol can evenly wet or spread out over the 

inner-pore surface of the AAO membranes.  Thus, the void space within the AAO 

membrane is completely occupied by the precursor sol, or the relatively condensed gel 
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formed during the gelation process. 

 

Hydroxyl groups of the phenol/formaldehyde oligomers, formed from the reactions 

between formaldehyde and phenol, will hydrogen bond with the hydrophilic blocks of 

the surfactant molecules, and the terminal hydroxyl groups or bridged oxygen atoms on 

the inner surface of the AAO channels, to form the initial meso-rings.  Driven by the 

reduction in surface energy, a confined self-assembly process occurs starting from the 

alumina pore wall to the pore centre and concentric rings with decreasing radii form 

during the aging process.  As a result, circular mesoporous channels form concentric 

coils around the axis of the carbon fibres in some relatively small and regular AAO 

pores (Figure 7a).  However, for the larger triangular shaped AAO pores, the confining 

effect of the channel walls decreases dramatically towards the centre of the pores and 

columnar oriented mesochannels form in the centre of the carbon fibres after about 

seven meso-rings have formed.  The triangular alignment of the columnar channels at 

the centre of the fibres clearly reflects the influence of pore size and pore shape on the 

formation of the mesoporous carbons (Figure 7b).  The distance from the vertexes of 

the triangle AAO pore to its centre is much longer compared to the sides and thus the 

confining effect from the vertexes on the self-assembly of the resol and surfactant 
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molecules is weaker.  Columnar channels prefer to form in the same direction as the 

vertexes of AAO pores.  As a result, the columnar channels stack into triangular shapes, 

with vertexes pointing to the corresponding vertexes of the AAO pores at the centre of 

the carbon nanofibres.  The contraction of the carbon nanofibres, perpendicular to their 

axes, results from peeling of the nanofibres from the inner surface of AAO channels 

during high temperature calcination.  This peeling effect, leads to the formation of 

voids between the fibres and the walls of the AAO channels. 

 

The confined assembly of silica-surfactant composite mesostructures within the porous 

channels of AAO membranes has been studied by Stucky and co-workers.18  The 

smaller pore diameter of the AAO membranes employed, less than 75 nm, produced a 

greater confining effect on the mesoporous silica materials compared to the commercial 

membranes used in our study.  Thus, only coiled cylindrical or spherical cage-like 

mesopores could be prepared by Stucky et al. 18 due to the strong confining effect. 

 

Conductive properties of the mesoporous carbon nanofibres 

Conductive atomic force microscopy (C-AFM) was used to characterize the conductive 

properties of the mesoporous carbon nanofibres and to test if the nanofibres ran 
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continuously through the full length of the pores in the AAO membranes.  C- AFM has 

proven to be suitable for measuring the electrical transport properties of individual 

germanium nanowires within AAO pores.31,X  Both surfaces of the AAO membranes 

were mechanically polished in order to remove the layers of residual growth products 

and to avoid electrical contacts between the nanowires through this layer.  One side of 

the AAO membrane, used for macrocontact deposition, was treated with 9% H3PO4 for 

30 min in order to partially remove the AAO membrane and to expose the ends of the 

nanofibres.  The contact area and the contact resistance have previously been found to 

decrease after surface treatment with H3PO4 
28.  A current map of individual 

mesoporous carbon nanofibres, prepared from the F127 surfactant, within an AAO 

membrane measured at 150 mV is shown in Figure 8.  The areas of high current 

density, as shown in Figure 8b, correspond well with the protrusions in the topographic 

image of the nanofibres displayed in Figure 8a.  As shown in the current map almost 

all of the nanofibers are conductive and are continuous throughout the length of the 

membrane, approximately 60 µm.  The current-voltage (I(V)) curve acquired from a 

single carbon nanofibre exhibits linear characteristic (Figure 8c), indicating the ohmic 

nature of the contact.  The resistivity for a single nanofibres was in the range from 

0.014 to 0.028 Ω·m.  The true resistivity of the nanofibres may be even lower as 
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contact resistance has not been accounted for in these measurements.  The resistivity 

values of these mesoporous nanofibres are nearly three order of magnitude lower than 

that of poly(methyl methacrylate) and multiwalled carbon nanotube (MWCNT) 

nanocomposite fibers, approximately 18.9 Ω·m, with the concentration of the MWCNTs 

of 2%.32  Due to their excellent electrical conductivity and high porosity, there 

well-aligned mesoporous nanofibers offer potential applications in the fields of 

biosensors, anode materials for high performance lithium ion batteries, and 

nanoelectronic devices. 

 

Conclusion 

A simple and reproducible one-step preparation method has been developed for growing 

1 D mesoporous carbon nanostructures with in the pores of AAO membranes.  Using 

amphiphilic surfactants as soft-templates and AAO membranes as hard templates, 

well-aligned mesoporous carbon nanostructure arrays have been fabricated.  The 

morphology of the mesoporous carbon nanostructures has been controlled by choosing 

various copolymer surfactants, varying the amount of the resol/surfactant precursor sol 

and the amount of resol introduced into the sol.  The dimension of the AAO channels 

plays an important role in defining the mesoporous structures of the carbon materials by 
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influencing the confined self-assembly of resol and surfactant molecules.  The 

orientation of the mesoporous channels in these 1 D carbon materials can be tuned by 

simply selecting AAO membranes with various pore sizes and choosing different 

surfactants.  The conductive properties of the mesoporous carbon nanofibres have been 

characterized by C-AFM.  The resistivity for a single nanofibre, based on a mean value 

obtained for a group of nanofibres, is in the range from 0.014 to 0.028 Ω·m.  The 

diversity of structures and good electrical conductivity make these mesoporous carbon 

materials potential candidates in applications that include biosensors, anode materials 

for high performance lithium ion batteries and nanoelectronic devices. 
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Scheme and Figures 
 

 

 

 

Scheme 1.  Schematic illustration of the carbon nanostructures formed inside the AAO 

pores by using (a) the in-sol gelation method and (b) the popular soak-dry method. 
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Figure 1.  Representative top-view SEM images of carbon nanofibres prepared with (a) 

0.1 and (b) 0.3 mL of the precursor sol. 
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Figure 2.  TEM images of the released carbon nanofibres prepared with (a) 0.07, (b) 

0.1 and (c) 0.3 mL of the precursor sol and top-view of (a) embedded within the AAO 

pores. 
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Figure 3.  SEM images show the influence of the amount of the phenol/formaldehyde 

resol added to the precursor sol on the morphology of the carbon nanostructures 

prepared. (a) core-shell and (b) fibre-like carbon structures prepared with 0.5 g and 3.0g 

of the phenol/formaldehyde resol ethanol solution, respectively. 
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Figure 4.  Side-view TEM images of carbon structures prepared by using (a) 0.5, (b) 

1.0, and (c) 3.0 g of the phenol/formaldehyde resol ethanol solution. (d), (e) and (f) 

top-view TEM images of (a), (b) and (c), respectively. 
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Figure 5.  Side-view (a) and (b), and top-view (c) TEM images of mesoporous carbon 

nanoribbons prepared by using P123 as a structural directing agent, showing the circular 

mesochannels running parallel to the longitude axis of the ribbons. 
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Figure 6.  TEM image of carbon structures prepared by using CTAB as a structural 

directing agent. 
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Figure 7.  Top-view TEM images of mesoporous carbon nanofibres showing the 

influence of the size and shape of the AAO pores on the arrangement of the 

mesochannels. 
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Figure 8.  (a) AFM image of the surface of AAO membrane embedded with the carbon 

nanofibres after mechanical polishing and chemical etching, (b) C-AFM current map of 

the area shown in (a) at 150 mV and (c) the linear I (V) curve acquired from a single 

carbon nanofibres. 
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