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 

Abstract— Artificial Intelligence (AI) could play a significant 
role in injury prediction in sports due to its capabilities to detect 
and identify hidden patterns across multi-modal heterogeneous 
data sources. This paper aims at providing an up-to-date survey 
of the state-of-the-art in machine learning for injury predictions 
in sports. Finally, a number of considerations have been also 
drawn to discuss about the future research challenges required 
to be tackled to move this field forward.  

I. INTRODUCTION 

Nowadays, athletic performance analysis in sports, in 
terms of technique assessment and injury prevention, has 
experienced a surge in interest amongst the research 
community [1], and these aspects are seen to be of great benefit 
to coaches and athletes. In particular, injury prevention has 
been considered as one of the main priorities in sports due the 
associated high physical, mental, and economical burden on 
the athletes, coaches, and clubs. For instance, in one study, 
more than 50% of subjects in a cohort of elite adolescent 
athletes reported at least one new injury, while 91.6% reported 
a 1-year injury prevalence [2]. As indicated in [3], the lower 
limb accounted for more than one half of all reported injuries. 
Moreover, a player’s recovery and rehabilitation outcome can 
be affected by individual injury experiences, which can 
potentially extend the injury process and player return-to-sport 
[4]. Furthermore, the immediate healthcare costs are 
substantial. As estimated by FIFA, 30 billion dollars are spent 
globally every year for injury treatments in soccer [5]. 
Likewise, it was estimated that, in just a single football season, 
English Premier League clubs lost between 19 and 26 million 
U.S. dollars in players’ wages due to injuries [5]. As a result, 
significant investment in technology has been carried out with 
the goal of preventing injuries based on the principle that an 
objective and systematic performance monitoring and 
evaluation of an athlete’s activities can be useful to improve 
athletic performance while minimizing injury risk [6].  

It is therefore evident that Artificial Intelligence (AI) and 
machine learning (ML), which are already disrupting clinical 
medicine in a number of contexts (e.g. mortality prediction [7], 
rehabilitation [8], disease diagnosis [9], and many more), 
could play a hugely important role in this field based on its 
capabilities to detect and identify hidden patterns from 
heterogeneous data. Given the limited body of literature 
carried out on AI for injury predictions in sports, this paper 
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aims at providing an up-to-date survey of the state-of-the-art 
in the field with the goals of highlighting the few works carried 
out in literature and providing recommendations on research 
challenges to be addressed for future studies. 

II. METHODS 

We searched all the peer-reviewed literature available to 
University College Cork's library via the library's OneSearch 
discovery portal. We used a two-stage search approach.  

In the first stage, we searched for relevant literature review 
or survey articles by prepending (TitleCombined:(review or 
survey)) AND to the following base query: 

((TitleCombined:(injury)) OR (Abstract:(injury))) 
AND ((TitleCombined:(sport OR athlete)) 

     OR (Abstract:(sport OR athlete))) 
AND ((TitleCombined:("machine learning" 
      OR "artificial intelligence" OR predict)) 

     OR (Abstract:("machine learning" 
         OR "artificial intelligence" OR predict))) 

This yielded six hits, two of which [10-11] are relevant. A 
number of relevant papers mentioned in [10-11] were also 
considered in this survey.  

Following this part, we moved to the second stage of the 
search. In this stage, we searched the literature with the base 
query, but limited the search to literature published after May 
2018, the end of the period covered in the most recent review 
[10]. This yielded 122 hits, whose titles and abstracts were 
screened for pertinence and eligibility. We only considered 
publications that: 
1. predict future injuries of the limbs, back, or head in 

individual athletes, 
2. clearly define the considered injuries, 
3. are peer-reviewed, 
4. are methodologically sound, and 
5. quantitatively report results (e.g., accuracy, F1-score, 

etc.). 
This yielded one additional eligible article [12]. Overall, 

eight studies have been currently covered in this analysis. 
Table I lists the results from the pertinent publications. In 
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Section III we briefly discuss each of the pertinent papers from 
the table. 

III. RESULTS AND DISCUSSION 

In 2019, Claudino et al. [10] conducted a systematic review 
of the literature on the use of Artificial Intelligence (AI) for 
injury risk assessment and performance prediction in 
competitive team sports covering scientific journals up to May 
2018. Of the fifty-eight papers that met their inclusion criteria 
— with a pooled sample of athletes (97% male, 25 ± 8 years; 
3% female, 21 ± 10 years) —fifteen studies (≈ 26%) relate to 
injury risk. The 15 studies assessed injury risk in soccer, 
basketball, handball, as well as American and Australian 
football. However, only four of these relate to muscle injury 
prediction, with the remainder concerned with diagnosing 
injuries, identifying injury risk factors, or estimating their 
relative importance.  

Also in 2019, Beal, Norman, and Ramchurn [11] published 
a high-level survey of the literature on how AI is used in team 
sports for match outcome prediction, strategic and tactical 
decision-making, fantasy sport games, and managing injuries. 
However, when it comes to applying AI to the wide range of 
data available to most modern professional sport teams they 
note that: 

“These [GPS-tracker] data alongside the historical medical 
data that are collected by physios and club doctors can give 
a feature set for players who [sic.] has yet to be studied by 

the AI community.” 

They do, however, cite sports medicine research that 
shows that higher (relative) workloads are associated with a 
greater injury risk in soccer, American football, and rugby. 
Specifically, Hulin et al. [13] have shown that higher 
acute:chronic workload ratios (ACWRs1) are associated with 
higher injury risks in Rugby League players. They conclude 
that higher workloads can have either positive or negative 
influences on injury risk. In particular, players with a high 
chronic workload are considered more resistant to injury 
compared with players with low chronic workload; indeed, 
athletes with moderate-low through moderate-high (0.85–
1.35) ACWRs were less resistant to injury when subjected to 
“spikes” in acute workload (e.g., very-high ACWRs ≈1.5). 

 
Looking at each individual paper, Thornton et al. [14] 

used various training load measures (i.e., session RPE × 
session time, GPS distance in different running intensity 
bands) as inputs to a random forest to predict rugby player's 
risk of non-collision injuries. The individualised models (e.g., 
one model per athlete) achieved a mean area under the 
receiver-operator characteristic curve (AUC) of 0.65 ± 0.05 
across all 25 athletes. 

Ruddy et al. [15] used age, hamstring injury history, and 
eccentric hamstring strength as features to predict hamstring 
injury in elite Australian footballers. Within-year models were 
built for two seasons (2013 and 2015), as well as between-year 
hamstring injury prediction models. Median AUC was 0.58 for 
the 2013 models and 0.57 for the 2015 models, while a median 
AUC of 0.52 was obtained for the between-year models. 
 

1 ACWR is defined as 𝐴𝐶𝑊𝑅௧ = 𝐿௧ି଻ 𝐿௧ିଶ଼⁄ , where 𝐿 is the 
player's load and 𝑡 the current day 

Although some iterations of the models achieved near perfect 
prediction, the variance in the estimated AUC highlighted the 
fragility of the data collected. The authors concluded that the 
considered risk factors could not be used to identify athletes at 
an increased risk of hamstring injury consistently [15]. 

López-Valenciano et al. [16] investigated models for 
predicting lower extremity muscle injuries and obtained an 
AUC of 0.747 by using a SmooteBoost technique with cost-
sensitive ADTree as base classifier, with variables 
encompassing personal (demography, history of injury), 
psychological (sleep quality, burnout), and neuromuscular risk 
factors (e.g., dynamic postural control isometric hip abduction 
and adduction strength, joints range of motion, core stability, 
isokinetic knee flexion and extension strength). The prediction 
model showed moderate accuracy for identifying professional 
soccer and handball players at risk of general muscle injuries. 
In [17], the same authors developed a specific model for 
hamstring injury prediction using the same risk factors. The 
prediction model showed moderate to high accuracy. The best 
model was obtained via SmooteBoostM1 with cost-sensitive 
ADTree as base classifier which reported AUC of 0.837. 

While [16-17] only considered risk factors obtained from 
a single screening session, Rossi et al. [18] obtained 
comparable results (AUC = 0.76) by relying on training 
workload (kinematic, metabolic and mechanical features) 
from each training session during the season via GPS devices, 
thus guaranteeing a constant and individualized monitoring of 
each training session workload during the season.  

Rommers et al. [12] predicted injuries in elite youth soccer 
players with an XGBoost model from pre-season 
anthropometric measurements (height, weight, and sitting 
height), and physical fitness and motor coordination test 
batteries. The Shapley Additive Explanations (SHAP) analysis 
revealed that the five most important features were higher 
estimated age at peak height velocity (PHV), higher body 
height and leg length, lower fat percentage and average 
performance on the standing broad jump (SBJ). On a 20% 
holdout sample of 143 players, the approach predicted injuries 
with F1-score of 85%. 

Carey et al. [19] investigated the possibility to use training 
load data (quantified using GPS and inertial sensors, as well as 
player perceived exertion ratings) to predict injuries in elite 
Australian footballers. Absolute and relative training load 
metrics were calculated daily for each player. Injury prediction 
models were built for non-contact, non-contact time-loss, and 
hamstring specific injuries. For models of non-contact and 
non-contact time-loss injuries, performance tended to be 
limited (AUC<0.65), while hamstring-specific injury models 
achieved better results (AUC=0.76) obtained with a 
multivariate logistic regression. Moreover, injury prediction 
models built using data from a single club showed poor 
predictive scores when tested on previously unseen data, 
highlighting possible overfitting due to the fragility of the data; 
however, predictive performance improved with increasing 
quantity of data. Even though the authors considered training 
load as possibly an important risk factor in injury prediction, 
due to overfitting and fragility of the data, they did not suggest 



  

the developed model as a possible daily decision tool for real-
world practice. Instead, they recommended future studies 
focus on specific injury types, the adoption of additional 
variables beside training load, and highlighted the need for 

collaboration and larger cohorts rather than single team data 
collections.  

Finally, training loads were also used by Jovanovic [20], 
however with overall poor results in terms of injury prediction. 

TABLE I.  SUMMARY OF PAPERS USING AI TO ESTIMATE/PREDICT ATHLETES’ INJURY RISK 

Reference Sport Data 
Injury 

Location 
Injury 
Rate 

N Best Model(s) Metric Performance 

Ruddy et 
al., 2018 

[15] 

Australian 
football 

Pre-season screening (eccentric 
hamstring strength, demographic 

and injury history) 
Hamstring 53 cases 362  Naïve Bayes AUC 

0.54 (between-
year) 

López-
Valenciano 
et al., 2018 

[16] 

Soccer & 
handball 

Pre-season screening (personal 
questionnaire, psychological 

questionnaires (sleep/burnout), and 
neuromuscular assessment: 

dynamic postural control, isometric 
hip abduction and adduction 

strength, range of motion, core 
stability, isokinetic knee flexion and 

extension strength) 

Lower 
extremity 
muscles 

32 cases 132 

SmooteBoost 
with cost-
sensitive 
ADTree 

AUC 0.747 

Rossi et al., 
2018 [18] 

Soccer 

Demographic and injury history as 
well as training load-related 

features extracted from a 10 Hz 
GPS and a 100 Hz inertial sensor 

worn over one season 

Non-
contact 
injuries 

23 cases 26 Decision Tree AUC 0.76 

Thornton et 
al.,  2017 

[14] 
Rugby 

Internal and external training load 
(RPE scale, sRPE scale, and 

features extracted from a 5 Hz GPS) 
obtained over three seasons 

Non-
contact 
injuries 

156 cases 25 Random Forest AUC 0.64 

Rommers et 
al.,  2020 

[12] 
Soccer 

Pre-season anthropometric 
measurements (height, weight, and 

sitting height) as well as test 
batteries to assess motor 

coordination and physical fitness 
(strength, flexibility, speed, agility, 

and endurance) 

Overuse 
and acute 
injuries 

368 cases 734 

Extreme 
Gradient 
Boosting 

(XGBoost) 

F1 

0.85 (while 
classifying 

overuse vs acute 
injuries had a 

0.78 
performance) 

Ayala et al., 
2019 [17] 

Soccer Same as [16] Hamstring 18 cases 96 

SmooteBoostM1 
with cost-
sensitive 
ADTree 

AUC 0.837 

Carey et al., 
2018 [19] 

Australian 
football 

RPE as well as training load-related 
features extracted from a 10 Hz 

GPS and a 100 Hz inertial sensor 
worn over three seasons 

Non-
contact 
injuries 

and 
hamstring 
specific 

388 (non-
contact 

injuries) / 
49 

(hamstring 
specific) 

75 

Random Forest 
(non-contact 

injuries) / 
Logistic 

Regression 
(hamstring 
specific) 

AUC 

< 0.65 (non-
contact injuries) / 
0.76 (hamstring 

specific) 

Jovanovic, 
2018 [20] 

N/A 
Day-to-day training load 

proprietary metrics collected over 
two seasons 

Hamstring 25 cases 52 
Logistic 

Regression 
AUC < 0.65 

 N: number of athletes, AUC: Area Under the Curve 



  

IV. FUTURE CHALLENGES 

This survey provides an up-to-date overview on the state-
of-the-art in ML for injury predictions in sports. Although, a 
few literature reviews were published in the field [10-11], they 
only covered studies until 2018 and did not focus specifically 
on AI for injury prediction, thus an up-to-date overview was 
lacking. 

Despite the large academic interest in the field, only a 
limited amount of work has been published that leverages the 
potentially positive effects of machine learning. This may be 
due to the logistic problems associated with carrying out large 
prospective studies, which require collecting data from ideally 
hundreds of athletes over several sport seasons. To this 
purpose, the development of collaborative research clusters 
and consortia for the support of large-scale pilots, which could 
collect large datasets and make them openly available to the 
research community, is essential to accelerate the development 
of high-performing data-hungry AI models for this problem. 
As a consequence, the creation of common standards in terms 
of protocols (e.g., test batteries to be adopted, variables 
collected), device interoperability (to allow the exchange and 
sharing of a multitude of heterogeneous data sources), security 
(to preserve athletes’ privacy and confidentiality), and ethical 
principles are a must to allow the implementation of this data 
collection on large cohorts. Likewise, to guarantee that the AI 
models developed are unbiased and do not show performance 
drops when applied on unseen data, best practices need to be 
identified and disseminated across industry and academia [21]. 

The works discussed in this survey generally considered 
variables that either involved lab tests at pre-season (e.g., 
flexibility, strength) or adopted features extrapolated from 
wearable data. Only [19] considered a mix of both approaches. 
As confirmed in [11], taking advantage of wearable devices in 
this field is still limited. Across the wearable space, GPS and 
inertial sensors worn on the upper body for training load 
estimation still seem the most considered option, despite the 
huge range of biomedical sensors currently investigated by 
researchers for health biomarkers in sport (i.e., biochemical 
markers, heart rate, muscle oxygen saturation, etc.) [22]. 
Despite a number of companies that provide wearable 
products for continuous athlete monitoring and injury 
prevention [22-23], those products generally lack AI 
capabilities and, moreover, there is a lack of validation studies 
of most of those products in relevant sport cohorts. An 
increasing number of companies (i.e. Zone7 [24]) are currently 
raising funding to deliver products combining wearables, 
video technology, and AI for injury prediction for elite athletes 
in a variety of team sports. Those systems are, however, cloud-
based which may have implications on the data security, 
system infrastructure, communication latency, network 
bandwidth, and system scalability. Thus, the use of edge 
analytics on those wearable systems has recently gained much 
interest in literature because of the possibility to offer data 
processing services as close as possible to the data source and 
to compute part of these data locally, instead of relying on 
cloud services. The edge computing paradigm offers therefore 
several benefits on the system infrastructure, helps to main the 
privacy of the athletes, and allows a fast and real-time decision 
support system which is adaptive and relies on personal data 
[25]. Finally, requirements related to the explainability of the 

model developed (e.g.,  models which are not black-boxes and 
whose predictions are interpretable and easy-to-understand by 
humans while maintaining a high level of learning 
performance), as well as the introduction of prescriptive 
analytics (which not only predict the probability that an event 
may occur but also recommend the best decisions and 
highlight their implications), are still in their infancy in this 
field [26]. A summary of the described challenges is shown in 
Figure 1. 

 

 
Figure 1. Summary of logistic and technical challenges 

 
In conclusion, while machine learning for injury prediction 

has become an established concept that is gaining attention in 
the research community, very few studies have been carried 
out yet, as shown in this survey. We discussed the challenges 
that hamper the use of AI for injury prediction in sports, and 
highlighted some promising areas for future research to move 
this field forward.  
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