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Abstract 

We demonstrate that crystalline macroporous GeO2 inverse opals exhibit state-of-the-art 

capacity retention, voltage stability and a very long cycle life when tested as anode materials 

for Li-ion batteries. The specific capacities and capacity retention obtained from GeO2 IOs 

are greater than values reported for other GeO2 nanostructures and comparable to pure Ge 

nanostructures. Unlike pure Ge nanostructures, GeO2 IOs can be prepared in air without 

complex processing procedures, potentially making them far more attractive from an 

industrial point of view, in terms of cost and ease of production. Inverse opals are structurally 

and electrically interconnected, and remove the need for additives and binders. GeO2 IOs 

show gradual capacity fading over 250 and 1000 cycles, when cycled at specific currents of 

150 and 300 mA/g, respectively, while maintaining high capacities and a stable overall cell 

voltage. The specific capacities after the 500
th

 and 1000
th

 cycles at a specific current of 300 

mA/g were ~ 632 and 521 mAh/g respectively, corresponding to a capacity retention in each 

case of ~ 76% and 63% from the 2
nd

 cycle. Systematic analysis of differential capacity plots 
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obtained from galvanostatic voltage profiles over 1000 cycles offers a detailed insight into 

the mechanism of charge storage in GeO2 anodes over their long cycle life. Rate capability 

testing and asymmetric galvanostatic testing demonstrate the ability of GeO2 IO samples to 

deliver significantly high capacities even at high specific currents (1 A/g).  

 

Introduction 

Recent advancements in portable consumer electronics have underscored the challenges 

facing next generation Li ion batteries. The identification of scalable, cost effective electrode 

materials which offer improved electrochemical performance compared to standard 

LiCoO2/graphite cells is paramount to facilitate the production of future consumer-ready 

batteries.[1-4] Consequently, there has been a great deal of research focusing on the 

development of nanostructured anode and cathode materials for Li-ion and post Li-ion 

technologies. [5-9] On the anode side, alloying materials such as Si and Sn have been the 

subject of a tremendous amount of research with many mixed oxides of Sb and Sn 

demonstrating impressive cycling performance. [10-15] Germanium based anode materials 

have also attracted a lot of attention due to the high theoretical capacity of Ge (1384 mAh/g) 

with various nanostructures such as nanowires and nanoparticles being investigated as anode 

materials. [16-22] However the cost of preparing pure Ge nanostructures can be quite high 

due to the use of expensive anhydrous precursors such as diphenylgermane and the need to 

perform synthesis under an inert atmosphere. Low temperature routes to electrodeposited Ge 

microwires for battery anodes have been recently demonstrated using liquid Ga seed sources 

in water electrolytes, and show some promise.[23] High temperatures and costly precursors 

could also impede scaling up the synthesis of these materials for industrial applications. To 

circumvent these issues, we are investigating the electrochemical performance of GeO2 with 

a structured macroporous morphology in the form of an inverse opal (IO), which can be 
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prepared in air using more cost-effective precursors. Previous reports on the electrochemical 

performance of GeO2 as an anode material have indicated that the capacity values obtained 

from the oxide are lower than those obtained from pure Ge. [24-26] However, we 

demonstrate that by preparing a highly ordered, porous, three-dimensionally interconnected 

network of GeO2 in the form of an IO, we can obtain capacity values which match the state of 

the art from pure Ge nanostructures grown from more complex, high temperature precursors. 

In recent years, three-dimensional ordered macroporous (3DOM) materials such as 

IOs have proven very useful for increasing cycling stability and capacity retention. [27-33] 

The inherent physical properties of IO structured materials have many benefits for use as Li-

ion battery electrode materials. The highly porous nature of IO structured materials allows a 

high surface area of the active material to be in direct contact with the electrolyte. [34, 35] 

The thin walls of the IO provide reduced Li ion diffusion path lengths compared to larger 

scale variants of the same material. Furthermore, the 3D networked nature of an IO structure 

can provide continuous transport paths and ensure good electronic and ionic conductivity and 

its interconnected structure has been proven to mitigate material disconnection and breakup 

that affects cycle longevity and capacity fade - polymeric binders are not required. [36]  

Many commonly used Li ion battery materials possess low electronic conductivity. 

[37] The most prevalent method to overcome this issue is to prepare a composite consisting 

of the material under investigation with conductive carbon-based additives to increase the 

electrical conductivity. However, in practice the preparation of an interconnected conductive 

network is difficult to construct due to the tendency for small diameter carbon particles to 

aggregate, leading to non-homogeneous composites and since long life and safe Li batteries 

benefit from new materials development, [38, 39] methods for simple composition, long life 

anodes with stable voltages that compete with pure Li metal, remains an important goal. [40, 

41] The inherent physical properties of an IO structure, discussed above can negate the need 
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for the preparation of conductive composites. For commercial applications, it is essential to 

develop simple, fast and low cost synthesis methods for electrode materials. Engineering 

battery materials into structures which do not need an additional step prior to electrochemical 

testing will reduce cost and ease industrial scale up. Stable material networks that maintain 

performance enhancing porous structure while limiting the reduction in tap density are 

important, and avoiding the need for 3D structured metallic current collectors improves 

gravimetric energy density. [42] We have previously shown that the electrochemical 

performance of V2O5, as a cathode material, can be significantly improved by engineering of 

nanoscale grains of V2O5 into an IO architecture. [43] Likewise we previously demonstrated 

the enhanced electrochemical performance of IO structured electrode materials with a full Li-

ion cell consisting of a Co3O4 IO anode and a V2O5 IO cathode, and long life (>5000 cycles) 

stable cycling using rutile TiO2 anodes in IO form. [44, 45] 

In this report, we outline the nature of Ge nanocrystal-containing GeO2 inverse opal 

Li-ion battery anodes that provide state of the art capacity, voltage stability and variable rate 

cycle life in a binder and conductive additive-free interconnected structure. The 

electrochemical performance of the GeO2 IOs is evaluated via cyclic voltammetry, rate 

capability testing and long cycle life galvanostatic tests. GeO2 IOs demonstrate stable, high 

capacity retention over 250 and 1000 cycles, at specific currents of 150 and 300 mA/g, 

respectively. Through systematic analysis of differential capacity plots (DCPs) from standard 

galvanostatic cycling as well as asymmetric cycling, we present a detailed insight into how 

GeO2 anodes store charge and retain capacity with stable charge voltage during a long cycle 

life. Rate capability testing demonstates that the GeO2 IOs are capable of delivering large 

reversible capacities with considerable capacity retention. Notably, the performance of the 

GeO2 IOs was achieved in the absence of any binders or conductive additives. The ability to 

prepare a Ge-based anode material in air with cost effective precursors, without the need for 
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an inert atmosphere or any additional processing steps, such as the preparation of a slurry, 

which is capable of delivering stable, high capacity values and retention comparable to costly 

pure Ge nanostructures is a significant finding for high capacity Li-ion battery anodes. 

  

Experimental Section 

Preparation of GeO2 IO 

GeO2 IO samples were prepared via infilling of a sacrificial polystyrene (PS) sphere template. 

The templates were prepared by drop casting a solution of PS spheres (Polysciences Inc., 

diameter = 500 nm) in isopropanol (IPA) on to 1 cm
2
 pieces of stainless steel; the sphere 

templates were then infilled with a 0.05 M solution of germanium ethoxide (Ge(OC2H5)4) in 

IPA. The infilled sphere templates were heated at 450 
o
C in air for 1 h, to remove the 

templates and to crystallize the samples.  

Material Characterization 

TEM analysis was conducted using a JEOL JEM-2100 TEM operating at 200 kV. SEM 

analysis was performed using an FEI Quanta 650 FEG high resolution SEM at an 

accelerating voltage of 10 kV. XRD analysis was performed using a Phillips Xpert PW3719 

diffractometer using Cu Kα radiation. (Cu Kα, λ = 0.15418 nm, operation voltage 40 kV, 

current 40 mA). Raman scattering spectroscopy was performed using an Ocean Optics 

QE65PRO Raman Spectrometer with a Laser Quantum GEM DPSS single transverse mode 

CW laser emitting at λ = 532 nm and spectra were collected using a CCD camera. The beam 

was focused onto the samples using a 40× objective lens. XPS spectra were acquired on an 

Oxford Applied Research Escabase XPS system equipped with a CLASS VM 100 mm mean 

radius hemispherical electron energy analyzer with multichannel detectors in an analysis 

chamber with a base pressure of 5.0 × 10
–10

 mbar. Survey scans were recorded between 0 and 
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1400 eV with a step size of 0.7 eV, dwell time of 0.5 s, and pass energy of 100 eV. Core level 

scans were acquired with a step size of 0.1 eV, dwell time of 0.5 s, and pass energy of 20 eV 

averaged over 10 scans. A non-monochromated Al Kα X-ray source at 200 W power was 

used for all scans. All spectra were acquired at a take-off angle of 90° with respect to the 

analyzer axis and were charge corrected with respect to the C 1s photoelectric line. Data was 

processed using CasaXPS software where a Shirley background correction was employed and 

peaks were fitted to Voigt profiles. Photoluminescence (PL) spectroscopy was used to probe 

the electronic structure of the GeO2 IOs. Investigation of the samples photoemission was 

carried out at room temperature using a 325 nm He–Cd laser excitation source with power 

density of 2 W/cm
2
. PL spectra were recorded using a Horiba iHR320 spectrometer equipped 

with a thermoelectrically cooled Synapse CCD matrix. 

Electrochemical Characterization 

All electrochemical results presented in this report were performed using a BioLogic VSP 

Potentiostat/Galvanostat. The electrochemical properties of GeO2 IO samples were 

investigated in a half cell configuration against a pure Li counter electrode in a two electrode, 

stainless steel split cell (a coin cell assembly that can be disassembled for post-mortem 

analysis). The electrolyte used consisted of a 1 mol dm
-3

 solution of lithium 

hexafluorophosphate salt in a 1:1 (v/v) mixture of ethylene carbonate in dimethyl carbonate 

with 3 wt% vinylene carbonate. The separator used in all split cell tests was a glass fiber 

separator (El-Cell ECC1-01-0012-A/L, 18 mm diameter, 0.65 mm thickness). The mass 

loading for all GeO2 IO samples was ~ 0.5 – 1.0 mg, no additional conductive additives or 

binders were added. A Mettler Toledo XS205 Dualrange mass balance was used to determine 

the mass of IO material on the stainless steel substrates. The fine range tolerance of the mass 

balance is ± 0.01 mg and consequently the typical tolerance of our reported capacity values is 

± 15 mAh/g. Cyclic voltammetry was performed using a scan rate of 0.1 mV s
-1

 in a potential 
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window of 1.5 – 0.01 V (vs Li/Li
+
). Galvanostatic cycling was performed using a range of 

specific currents (250 – 1000 mA/g) in a potential window of 1.5 – 0.01 V (vs Li/Li
+
). During 

the discussion of the electrochemical results, the lithiation process for our GeO2 IO anode 

samples is referred to as the charging process and the delithiation process is referred to as the 

discharging process. 

 

Results and discussion 

GeO2 IO samples were prepared via infilling of a PS sphere template, prepared on stainless 

steel, with a germanium (IV) ethoxide (Ge(OC2H5)4) precursor solution. Thermal treatment 

of the infilled templates resulted in the decomposition of the sacrificial PS sphere template 

and the formation of a highly porous, crystalline, interconnected IO network as shown in the 

SEM and TEM images shown in Figure 1. Large regions of IO material are formed as shown 

in Figure 1a and the pore size for the GeO2 IOs is typically ~ 450 nm as shown in Figure 1b. 

The cross-sectional thickness of a typical GeO2 IO is ~ 13.4 µm, as shown in the tilt-

corrected SEM image in Figure 1c. The thin walls of the GeO2 IO, measured to be ~72 nm 

thick, the large surface area and the high level of porosity provide continuous transport paths 

for Li ions through the active phase (walls) and the electrolyte phase (pores). The high level 

of porosity and inherent interconnected structure of the 3D IO network is further 

demonstrated in the TEM image in Figure 1d. Similar to our previous work on transition 

metal oxide IOs prepared from chlorides, [43, 45, 46] the walls of GeO2 IOs consist of an 

agglomeration of nanoparticles (NPs). Additional TEM images of the GeO2 NP sub-structure 

of the IO walls are shown in Figure S1. The average diameter of the NPs which make up the 

walls of the GeO2 IOs is ~25 nm, as shown in the histogram in Figure S1e. The electron 
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diffraction (ED) pattern for a typical GeO2 IO shown in Figure 1f, suggests a polycrystalline 

structure of pure hexagonal phase GeO2.  

 

Figure 1. SEM images of showing (a) and (b) a top down view and (c) the cross-sectional 

thickness of a typical GeO2 IO. TEM images of a typical GeO2 IO showing (c) the porous 

structure and (d) the nanoparticles which comprise the walls of the IO. (f) Electron diffraction 

pattern of a typical GeO2 IO. 

 

The XRD pattern for a GeO2 IO sample prepared on a stainless steel substrate is 

shown in Figure 2a. The reflections can be readily indexed to pure hexagonal GeO2 (JCPDS 

No. 00-036-1463) with a P3221 space group. From analysis of the XRD pattern, the 

calculated lattice parameters for our GeO2 IO are a ~ 5.01 Å and c ~ 5.61 Å, giving a cell 

volume of ~ 121.95 Å
3
. The Raman spectrum in Figure 2b for an as-prepared GeO2 IO shows 

six Raman-active fundamental modes. The highest intensity peak at 419 cm
-1

, as well the 

peaks at 234 and 253 cm
-1

 correspond to the A1 mode of hexagonal GeO2. [47] The peak 

present at 509 cm
-1

 corresponds to a characteristic mode of E symmetry split into a transverse 
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optical (TO) mode for hexagonal GeO2. [48] These phonon modes from GeO2 IO are in 

excellent agreement with previous reports for hexagonal GeO2,[49, 50] and are in agreement 

with our crystallographic analysis from XRD and electron diffraction. The two modes present 

at 305 and 575 cm
-1

 correspond to the first and second-order transverse optical (TO) phonon 

mode of crystalline Ge, indicating that there is some metalloid Ge present throughout the IO. 

[49, 51] An EDS spectrum for a GeO2 IO was acquired over the area shown in the SEM 

image in the inset of Figure 2c. The spectrum confirms the presence of Ge, O and C within 

the IO structure. The characteristic C peak at ~ 0.27 keV is present due to the thermal 

decomposition of the germanium ethoxide (Ge(OC2H5)4) precursor solution and the PS 

sphere template, as well as adventitious carbon on the surface of the IO. The atomic 

percentages (at.%) of each element present are listed in Table S1. From analysis of the at.%, 

the ratio of Ge:O is ~1:2, indicating a predominance of stoichiometric GeO2 and some Ge 

phase throughout the IO volume. 

To explore the chemical state of the crystalline Ge phases, an XPS spectrum of a 

GeO2 IO sample displaying the Ge 3d core-level photoemission is shown in Figure 2d. Three 

main peaks can be seen at ~ 33.2, 34.6 and 36.2 eV, corresponding to the presence of Ge, 

GeO and GeO2, respectively. [52] Comparison of the integrated peak areas associated with 

each Ge valence state indicates that the majority (~77.3%) of the Ge on the surface is present 

as Ge, ~14.9% is present in the GeO phase and ~7.8% is as GeO2. As discussed, XRD 

analysis suggests that the IO samples are pure GeO2 whereas Raman analysis indicates the 

IOs are GeO2 with a presence of metalloid Ge. XPS analysis is in close agreement with 

observations from the Raman spectrum and suggests that the IOs may have a core-shell like 

electronic structure with the Ge present in the outer shell having a different oxidation state 

than in the inner core. 
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A photoluminescence (PL) spectrum was acquired to further investigate the presence 

of metalloid semiconducting crystalline Ge within the IO material, as shown in Figure 2e. 

Radiative band-to-band PL emission from indirect bandgap semiconductors such as Ge is 

possible in the quantum confinement (QC) regime [53], if the nanocrystal dimensions are 

below the exciton Bohr radius of ~24 nm for Ge. This value is very close to the average 

particle diameter measurements for the agglomerated nanocrystal-containing walls of the 

GeO2 IOs. The PL emission consists of three peaks observed at ~490, 567 and 643 nm, 

corresponding to blue, green and orange emission, respectively. The broad PL peak with a 

band width from 510 to 710 nm was deconvoluted to demonstrate the relative intensity 

contributions from green and orange emissions, in Figure S2. A comparable blue emission at 

~470 nm was observed in the PL spectrum for butyl-terminated Ge nanoparticles with an 

average diameter of 6.2 nm[54], however recent measurements reaffirm the doubt 

surrounding size-dependent bandgap values for nanocrystalline Ge in the blue region, and 

this emission most probably results from matrix effects, notably defects within the GeOx. [55] 

Our measurements suggest that Ge nanocrystalline regions of dimensions less than 24 nm are 

also present throughout the IO material, and agrees with phonon mode analysis of crystalline 

Ge from Raman scattering spectra, but with a quantity too low to be detectable by XRD 

among crystalline GeO2. A similar green emission has previously been reported for pure 

GeO2 hollow walnuts and from a range of other complex, defective GeO2 nanoparticle 

systems, thus confirming the presence of GeO2, as seen from XRD and Raman analysis. [56] 

The orange band has previously been reported to originate from substoichiometric 

germanium oxides (GeOxs), like many transition metal oxides, due to O vacancies.[57] 

Observations from the PL spectrum indicate that the IOs consist of nanoscale Ge–Ge bonded 

material (elemental Ge) and Ge–O bonded material, and this composition has implications for 

alloying reactions with Li.  
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Figure 2. (a) XRD pattern for a GeO2 IO prepared on a stainless steel substrate (reflections 

labelled # are stainless steel peaks). (b) Raman spectrum for a GeO2 IO sample. (c) EDS 

spectra for a GeO2 IO acquired from the area represented in the SEM image in the inset. (d) 

XPS spectra of the Ge 3d region for a GeO2 IO. (e) Photoluminescence spectrum of a GeO2 

IO. 

 

Cyclic voltammograms were acquired to investigate the Li
+
 reaction mechanism for 

the GeO2 IOs. The 1
st
, 2

nd
, 5

th
 and 10

th
 CV scans acquired at a scan rate of 0.1 mV/s are 

shown in Figure 3a. The broad peak centred at 1.15 V in the first cathodic sweep, which 

migrates to ~0.96 V from the second cycle onwards, (as shown in Figure S3a) can be 

attributed to the formation of amorphous LixGeO2. [58, 59] The distinct peak at 0.78 V is 

likely due to the formation of the SEI layer as a peak at this potential is not observed in 

subsequent cycles. A peak attributed to the formation of the SEI layer at 0.75 V was reported 

for GeO2 nanocrystals. [60] The cathodic peak at 0.45 V can be attributed to the reduction of 

LixGeO2 and remaining GeO2 into Ge and Li2O.  The sloping region in the first cathodic scan 

from ~ 0.3 to 0.01 V corresponds to the lithiation of crystalline Ge. [61] This may suggest 

that crystalline Ge is formed during the first cathodic scan via the electrochemical reduction 

of GeO2 and from the second cycle onwards, the IO material is cycled as amorphous Ge. The 
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irreversible reduction of GeO2 to Ge and subsequent cycling via alloying with Li has 

previously been reported for other GeO2 nanostructures. Through in-situ XRD analysis Yoon 

et al. demonstrated that upon Li insertion (charging), the hexagonal phase of GeO2 

completely disappeared and after discharging the hexagonal phase did not reappear. [62] This 

will be discussed in greater detail through analysis of voltage-dependent differential capacity 

plots (DCPs) determined from galvanostatic cycling. From the second cycle onwards the 

sloping region begins at the higher potential of ~0.40 V, which is consistent with the 

lithiation of the a-Li15Ge4 (~0.35 V) and c-Li15Ge4 phases (~0.15 V). [63] The large broad 

asymmetric peak in the first anodic scan at ~ 0.50 V can be deconvoluted into two distinct 

peaks centred at 0.43 and 0.51 V, as shown in Figure S3b. These two peaks correspond to the 

delithiation of c-Li15Ge4 and a-Li15Ge4 phases respectively. [64] The broad asymmetric peak 

is shifted to the higher potential of ~0.55 V for the 5
th

 and 10
th

 cycles. 

The electrochemical performance of GeO2 IOs was also investigated via galvanostatic 

testing. A series of charge and discharge curves are shown in Figure 3b and c for a GeO2 IO 

cycled 250 times using a specific current of 150 mA/g. The voltage profiles for the 1
st
 charge 

and discharge are shown in Figure 3b. The initial charge and discharge capacities were 2939 

and 695 mAh/g, respectively, corresponding to an initial Coulombic efficiency (ICE) of ~ 

24%. The large initial charge capacity can be attributed to the formation of an SEI layer on 

the surface of the IO as well as the formation of quasi reversible Li2O. [65] A previous study 

on transition metal oxides suggested that thermal treatment under O2/H2O can introduce 

defects, such as cation vacancies, which can electrochemically exchange Li ions and serve as 

additional charge-storage sites. [66] Even though this ICE appears similar to the prevalent 

initial capacity loss in Ge and Si nanomaterial electrodes, oxide contributions prior to 

reduction to facilitate efficient reversible alloying, are major contributors to the ICE here. 

The preparation of our GeO2 IOs via annealing at 450 °C in air may have resulted in similar 
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defect sites which could contribute to the large initial capacity. Since the as-made IO contains 

nanocrystalline Ge interspersed within the GeO2 IO matrix, and GeO2 reduced (detailed 

further on) to Ge, the large initial coulombic efficiency loss issue of Si and Ge anodes is not 

as severe in our IO, since part of the charge arises from oxide interactions and GeO2 

reduction. For practical use, particularly in full Li-ion cells, the ICE of the GeO2 IOs would 

need to be increased. Low ICE remains an issue for Ge and Si based anode materials 

however, there are some reports demonstrating that the prelithiation of Si nanostructures via 

mechanical pressing of Li metal onto the working electrode, in the presence of electrolyte, 

can improve ICE values. [67, 68] 

The first charge curve consists of three distinct regions; a sloping region from 1.5 – 

0.85 V, a sloping region from 0.85 – 0.35 V and a long plateau from 0.35 V – 0.01 V. These 

regions correspond to the formation of amorphous LixGeO2 and the SEI layer, the reduction 

of LixGeO2 and GeO2 and the alloying of Ge with Li, respectively. [69] The voltage ranges 

for each region are in close agreement with the cathodic peaks observed in the first CV scan 

shown in Figure 3a. The 1
st
 discharge curve consists of 2 sloping regions from 0.3 – 0.7 V 

and 0.9 – 1.4 V, which correspond to dealloying of LixGe and the oxidation of Ge. [59] In the 

voltage profiles of the 2
nd

 charge to the 50
th

 charge, the voltage gradually decreases from 1.5 

to 0.35 V, followed by a long plateau corresponding to the alloying of Ge with Li, however 

from the 100
th

 to 250
th

 cycles there is a more sudden decrease in potential from 1.5 to 0.35 V. 

This implies that the processes observed in the initial cycles in this potential range, i.e. the 

formation of amorphous LixGeO2 and the reduction of LixGeO2 and GeO2, may no longer 

occur after ~ 100 cycles and the material reversibly cycles via the alloying and dealloying of 

Ge with Li. This effect will be further investigated when discussing DCPs obtained from 

1000 galvanostatic cycles at a specific current of 300 mA/g. It has previously been reported 

that irreversible capacity loss (ICL) occurs for many reasons such as the nature of crystal 
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structure and the particle size of the active material, as well as the typically low operating 

voltage range used for alloying materials. [70-72] 

 

Figure 3. (a) Cyclic voltammograms showing the 1
st
, 2

nd
, 5

th
 and 10

th
 cycles, for a GeO2 IO 

sample cycled in a potential window from 1.5 – 0.01 V at a scan rate of 0.1 mV/s. Charge and 

discharge voltage profiles for (b) the 1
st
, 2

nd
, 5

th
,10

th
 and 50

th
  cycles and (c) the 100

th
, 150

th
, 

200
th

 and 250
th

 cycles for a GeO2 IO at a specific current of 150 mA/g in a potential window 

of 1.50 – 0.01 V (vs Li/Li
+
). (d) Comparison of the specific capacity values and coulombic 

efficiency obtained for a GeO2 IO over 250 cycles.  

 

The specific capacity values obtained over 250 cycles and their related coulombic 

efficiency values are shown in Figure 3d. GeO2 IO anodes offer large capacity values with 

stable capacity retention over 250 cycles. The charge capacity after the 2
nd

 cycle was 988 

mAh/g, this decreased to 895 mAh/g after the 5
th

 cycle and decreased slightly to 872 mAh/g 

after the 10
th

 cycle. From the 10
th

 cycle onwards, the capacity retention is remarkably stable 

for directly grown, non-slurried IO. The charge capacities after the 100
th

, 200
th

 and 250
th

 

cycles were 836, 757 and 714 mAh/g respectively. The excellent capacity retention is also 

evident in the stable coulombic efficiency values obtained over 250 cycles. Initial low 
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coulombic efficiencies are common for GeO2 and alloying anode materials such as Ge and Si 

[73] and may be attributed to the formation of the SEI layer as well as oxygen defect sites as 

previously mentioned. However, after the first 10 cycles the coulombic efficiency values 

were > 95% over the subsequent 240 cycles.  

The specific capacity values obtained for our GeO2 IO anodes are higher than values 

previously reported for other nanostructured GeO2 anodes [25, 26, 74-83] and comparable to 

values reported for pure Ge nanostructures. [73, 84-86] To our knowledge our results 

represent some the best the electrochemical performances ever reported for nanostructured 

GeO2 anodes and composites of GeO2 and carbon/graphene [79, 81], as demonstrated by the 

comparison of capacities obtained for various reports of GeO2 nanostructures shown in Table 

S2. It is well known that carbon and its various forms actively store charge within the 

potential range in which GeO2 is typically cycled. Yoo et al. previously reported on the 

electrochemical performance of graphite and graphene nanosheets (GNS) cycled in half-cells 

against Li metal. [87] Both anode materials demonstrated voltage plateaux below 1 V (vs 

Li/Li
+
), which is within the potential range that GeO2 is cycled in. The reversible capacities 

for graphite and GNS at a specific current of 50 mA/g were found to be 320 and 540 mAh/g, 

respectively. This suggests that a portion of the charge stored by composites of GeO2 with 

graphene or reduced graphene oxide is likely being stored by graphene. The GeO2 IOs we 

show in this work, achieved state of the art response as an anode in the absence of any 

binders and conductive additives. It is not necessary to prepare composites with graphene to 

obtain high specific capacities with a stable response from our IO material, and complex 

oxide reduction to semiconducting Ge, and its associated phase changes via reversible 

alloying do not alter electronic conductivity nor structural modification that affects cell 

voltage and energy low during cycling. This represents a significant advancement for 

nanostructured GeO2 anode materials.  
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The improved performance is likely due to the inherent porous structure of the IO, 

which provides a large surface area of material in direct contact with the electrolyte and 

anchoring to the current collector. It is clear from the stable capacity retention values we 

observe over the course of hundreds of cycles, shown in Figure 3d, that there is good 

adhesion of the IO material to the stainless steel substrate. Mechanical adhesion prevents 

capacity fading from electrically disconnection of material. Previous papers have also 

discussed the importance of good adhesion between the current collector and active materials. 

[88, 89] It is well known that Ge undergoes a significant volume expansion as a result of 

alloying with Li during the charging process. [90, 91] The pores of the IO can accommodate 

volume changes due to the insertion and removal of Li
+
 via expansion into the voids between 

the walls of the IO. We have previously reported that the electrochemical performance of 

TiO2, in terms of capacity values and capacity retention, can be significantly improved by 

arranging nanoparticles of TiO2 into a highly ordered, porous, 3D interconnected network in 

the form of an IO. [45] Likewise, we demonstrate that engineering nanoparticles of GeO2 into 

a 3D porous structure significantly improves capacity retention compared to other GeO2 

nanostructures.  

To investigate the performance of the GeO2 IOs at a faster rate, a sample was cycled 

1000 times at a specific current of 300 mA/g. A range of the resulting charge and discharge 

curves over the course of the 1000 cycles are shown in Figure 4a, b and c. The voltage profile 

for the 1
st
 charge was consistent with the profile observed at the lower specific current of 150 

mAh/g, shown in Figure 3b. The charge and discharge capacities after the 1
st
 cycle were 2995 

and 689 mAh/g, respectively. This corresponds to an initial Coulombic efficiency of ~23%, 

which is in close agreement with the initial Coulombic efficiency observed at 150 mA/g 

(24%). From Figure 4b and c, the voltage profiles are very stable over hundreds of cycles, 

maintaining a similar charge-discharge curve shape throughout. This stability is also evident 
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from the capacity values obtained over 1000 cycles. The charge capacity after 50 cycles was 

732 mAh/g and this value decreased marginally to 722 mAh/g after 100 cycles. The charge 

capacity gradually decreased to a value of 657 mAh/g after 300 cycles, 611 mAh/g after 600 

cycles and decreased slightly further to 547 mAh/g after 900 cycles. The gradual decrease in 

specific capacities obtained over the course of 1000 cycles demonstrates the exceptional 

capacity retention of the GeO2 IOs. 

 

Figure 4. Charge and discharge voltage profiles for (a) the 1
st
, 2

nd
, 10

th
, 25

th
 and 50

th
  cycles, 

(b) the 100
th

, 200
th

, 300
th

, 400
th

 and 500
th

 cycles and (c) the 600
th

, 700
th

, 800
th

, 900
th

 and 

1000
th

 cycles for a GeO2 IO at a specific current of 300 mA/g in a potential window of 1.50 – 

0.01 V (vs Li/Li
+
). Differential capacity plots for (d) the 1

st
 charge and (e) a range of charges 

from the 2
nd

 to the 1000
th

 charge (every 50
th

 curve shown after the 2
nd

, 5
th

, and 10
th

 charge). 

(f) Differential capacity plots for a range of discharges from the 1
st
 to the 1000

th
 discharge 
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(every 50
th

 curve shown after the 1
st
, 2

nd
, 5

th
, and 10

th
 discharge).  (g) Comparison of the 

specific capacity values and coulombic efficiency obtained for a GeO2 IO over 1000 cycles. 

 

In order to further investigate the electrochemical processes occurring during the 1000 

cycle galvanostatic test, DCPs were plotted for a range of charge and discharge curves from 

the 1
st
 to the 1000

th
 cycle as shown in Figure 4d, e and f. The sharp peak at 0.28 V in the first 

charge curve is due to the lithiation of crystalline Ge (c-Ge) and was not observed in 

subsequent cycles. A similar sharp peak at 0.33 V has previously been reported in the first 

DCP for Ge NWs, which does not reappear in additional cycles. Mullane et al. proposed that 

the disappearance of this peak indicated that the Ge NWs became completely amorphous 

upon delithiation. [63] This suggests for our GeO2 IOs that during the 1
st
 charge, GeO2 is 

reduced to c-Ge, which is lithiated at ~0.28 V. From the 2
nd

 cycle onwards the IO samples are 

reversibly cycled as an alloy with amorphous Ge (a-Ge). The DCP for the 2
nd

 charge 

consisted of two broad peaks at 0.53 and 0.37 V and a sharp peak at 0.15 V. The two broad 

peaks can be attributed to the formation of amorphous Li-Ge alloys (a-LixGe → a-Li15Ge4) 

and the sharp peak is due to the formation of c-Li15Ge4. [92, 93] The relative intensities of 

these three peaks suggests that most of the charge stored in the second charging event is due 

to the formation of c-Li15Ge4. Over the course of 1000 cycles the relative intensities of these 

peaks characteristically change in the IO anode. We observe a suppression of the reduction 

peak associated with c-Li15Ge4 formation, while the differential charge capacity for a-Li15Ge4 

increases. This suggests that, with longer cycling, less of the crystalline alloy is formed and 

consequently a greater proportion of the total charge is stored through the formation of a-

Li15Ge4 but importantly, without any adverse effect on the voltage nor capacity fade. 

 This trend was also observed in the DCPs from the discharge curves, shown in Figure 

4f. The DCP for the 1
st
 discharge consisted of a strong, wide asymmetric peak from 0.15 to 
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0.65 V and weak band at 1.15 V. The asymmetric peak can be deconvoluted into two distinct 

peaks centred at 0.39 and 0.49 V, corresponding to the delithiation of the c-Li15Ge4 and a-

Li15Ge4 phases, respectively [94, 95] , as shown in Figure S4. During cycling the intensity of 

the peak associated with the delithiation of c-Li15Ge4 reduces, giving way to a corresponding 

increase in the peak associated with the delithiation of a-Li15Ge4. The gradual switch in the 

relative intensities of these dealloying peaks tracks how the IO anode efficiently maintains 

reversible Li alloying reactions that cause a crystalline-amorphous phase transition of the 

alloyed phase, even during modulated Li mole fractions for each charge and discharge 

portion of extended cycling. This is in close agreement with the observations made in the 

DCPs for the charging process. The weak band at 1.15 V in the DCP for the 1
st
 discharge is 

attributed to the oxidation of Ge. [59] This weak band is not observed after the 10
th

 discharge 

indicating that the oxidation process only occurs for the initial cycles and the IO subsequently 

cycles reversibly as amorphous Ge. The formation of amorphous and crystalline phases of a 

Li-Ge alloy is evident from the electrochemical data presented in the DCPs shown in Figure 4 

as well as in Figures S5, S6 and S7.  

The specific capacity values obtained over 1000 cycles at a specific current of 300 

mA/g and the corresponding coulombic efficiencies are shown in Figure 4g. The specific 

capacity after the 2
nd

 charge was ~830 mAh/g and after 20 cycles this decreased to ~740 

mAh/g. From the 20
th

 cycle onwards there was a significant increase in the capacity retention 

and the decrease in capacities became far more gradual. We propose that the increased 

stability is due to the complete reduction of GeO2 over a number of cycles and the subsequent 

cycling of amorphous Ge, in a material that is structured to accommodate associated material 

volume changes in binder-free format. The GeO2 IO demonstrated impressive stable capacity 

retention when cycled at a specific current of 300 mA/g retaining capacities of 682, 632 and 

521 mAh/g after the 200
th

, 500
th

 and 1000
th

 cycles respectively. These values correspond to 
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capacity retentions of 82%, 76% and 63% from the 2
nd

 cycle at relatively high rate. Retaining 

such a high level of capacity even after 500 and 1000 cycles clearly demonstrates the 

viability of the GeO2 IOs for use as an anode material in practical commercial full Li-ion 

cells. The average charge capacity for the GeO2 IO over 1000 cycles was ~630 mAh/g. This 

useful capacity retention characteristic of easily processed GeO2 IO is also evident in the 

Coulombic efficiency values obtained over 1000 cycles. Similar to the galvanostatic cycling 

test at 150 mA/g, the initial Coulombic efficiency is characteristically low but after 10 cycles 

the Coulombic efficiency is >95% and remarkably remains above this value for the remainder 

of the 1000 cycles.  

The high-rate performance of GeO2 IO samples was further investigated by rate 

capability testing using a series of different specific currents ranging from 250 – 1000 mA/g. 

It is immediately clear from the resulting specific capacities in Figure 5a that the GeO2 IOs 

provide outstanding rate capability performance (compare to Table S2). The specific capacity 

obtained after 20 cycles at a specific current of 250 mA/g was ~ 685 mAh/g. The average 

capacity obtained at a specific current of 500 mA/g was ~616 mAh/g, this decreased slightly 

to 591 mAh/g at 750 mA/g, and decreased slightly further to 576 mAh/g at 1000 mA/g. When 

the specific current was returned to the initial value of 250 mA/g the specific capacity 

recovered to 636 mAh/g after the 81
st
 charge and increased further to 706 mAh/g after the 

82
nd

 charge. From the specific capacity values obtained from galvanostatic testing, presented 

in Figure 3d and Figure 4g, as well as from the rate capability test shown in Figure 5a it is 

clear that the GeO2 IO anodes demonstrate significant reversible capacity with consistent and 

stable capacity retention. GeO2 IO samples offer increased capacity retention compared to 

previously reported rate test performances of other GeO2 nanostructures, cycled at similar 

specific currents/ C-rates. [24, 25] 
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The rate capability test demonstrates the ability of GeO2 IO samples to deliver 

significantly high capacities even at a high specific current (1000 mA/g). To further 

investigate the high rate performance of the GeO2 IOs, a sample was galvanostatically cycled 

asymmetrically, mimicking ‘quick charging and normal use’ of a battery. The IO sample was 

charged with a specific current of 300 mA/g and discharged with a specific current of 1000 

mA/g. A selection of the resulting charge and discharge curves over 200 cycles are shown in 

Figure 5b and c. The initial charge and discharge capacities were 3219 and 479 mAh/g, 

respectively. This corresponds to an initial Coulombic efficiency of ~ 15%, which is lower 

than the efficiency obtained when charged and discharged at 300 mA/g (23%). The lower 

initial efficiency is most likely due the asymmetry in the specific current used for charging 

and discharging. The specific capacity after the 2
nd

 charge was 627 mAh/g and this decreased 

to 551 mAh/g after the 10
th

 charge. From the 10
th

 cycle onwards the capacity retention was 

significantly improved, with the IO sample demonstrating charge capacities of 524 and 508 

mAh/g after the 50
th

 and 150
th

 cycles, respectively. The capacity values obtained during the 

asymmetric test are lower that the galvanostatic test performed at 300 mA/g, (Figure 4) 

however the capacity retention is just as impressive. Analysis of DCPs will be used to 

determine the reason for this decrease in specific capacity values. 

As Li-ion battery anodes typically undergo asymmetric charging and discharging 

during daily use, we investigated the effect of fast discharging of the anode following 

relatively slow charging. In parallel, we assessed the influence of this asymmetry cycling 

profile on the alloying/dealloying processes. The same specific current used for the test 

shown in Figure 4 (300 mA/g) was applied to charge the anode, and a larger specific current 

of 1000 mA/g was used during discharging (note: discharging an anode is opposite to the 

cathode, i.e. from low to high voltage). To determine the effect of charging at a higher 

specific current on the lithiation/delithiation processes, DCPs were plotted from the 
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asymmetric charge and discharge curves from Figure 5b and c. The resulting DCPs are 

shown in Figures S5. The DCP for the first charge curve contains a sharp peak at 0.27 V 

which is attributed to the lithiation of c-Ge and this peak was not observed in from the 2
nd

 

cycle onwards. This is in close agreement with the DCP shown in Figure 4d which was 

determined from a GeO2 IO also charged at a specific current of 300 mA/g. This 

demonstrates the consistency of the electrochemical response of the GeO2 IOs. The 

remaining DCPs from charging at 300 mA/g are also in excellent agreement with the curves 

presented in Figure 4e. From the 2
nd

 charge onwards, the DCPs consist of two peaks at 0.35 

V and 0.15 V, corresponding to the formation of a-Li15Ge4 and c-Li15Ge4, respectively. With 

increased cycling, the data confirms that the dominant phase for charge storage switched 

from c-Li15Ge4 to a-Li15Ge4. 
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Figure 5. (a) Rate capability test for a GeO2 IO over 100 cycles, using specific currents 

ranging from 250 to 1000 mA/g. (b) Charge and discharge voltage profiles for (b) the 1
st
, 2

nd
, 

10
th

, 25
th

 and 50
th

  cycles, (c) the 100
th

, 125
th

, 150
th

, 175
th

 and 200
th

 cycles for a GeO2 IO 

charged at a specific current of 300 mA/g and discharged at a specific current of 1000 mA/g, 

in a potential window of 1.50 – 0.01 V (vs Li/Li
+
). (d) Comparison of the specific capacity 

values and coulombic efficiency obtained for a GeO2 IO cycled asymmetrically over 200 

cycles. 
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The DCPs determined from the charge curves obtained at a specific current of 300 

mA/g are in close agreement with those presented in Figure 4d and e, however there is a 

significant difference in the DCPs determined from the discharge curves. The DCP for the 1st 

discharge at 300 mA/g shown in Figure S4 consists of 2 peaks centred at ~ 0.40 and 0.50 V, 

corresponding to the delithiation of the c-Li15Ge4 and a-Li15Ge4 phases, respectively. 

However, the DCP for the 1
st
 charge at 1000 mA/g, shown in Figure S5c, consists of only one 

peak at 0.40 V, implying that only the c-Li15Ge4 phase was delithiated. To further investigate 

this, the wide peak from 0.01 to 0.75 V, present in each of the DCPs for the discharge curves, 

was deconvoluted and the resulting fitted peaks are shown in Figure S6 and S7. It can be 

clearly seen in Figure S6a and b, that the peak associated with the delithiation of the a-

Li15Ge4 phase is not present in the DCPs for the first two discharges. This explains why the 

initial Coulombic efficiency for the asymmetric test was lower than the other galvanostatic 

tests and may also explain why the specific capacities are lower also. By not fully delithiating 

the a-Li15Ge4 phase, during discharging, less charge will be stored in subsequent cycles and 

consequently the specific capacities are suppressed. From Figure S6c a weak peak associated 

with the delithiation of the a-Li15Ge4 phase was observed from the 10
th

 cycle onwards and the 

intensity of this peak increased with additional cycling, as shown in Figure S7. The DCPs 

demonstrate that both the c-Li15Ge4 and a-Li15Ge4 phases are formed during charging at 300 

mA/g, however, initially only the c-Li15Ge4 phase is delithiated during discharge at the higher 

specific current of 1000 mA/g, resulting in lower specific capacity values than those obtained 

via standard symmetric galvanostatic cycling. SEM images of GeO2 IO samples after 250 

galvanostatic cycles using a specific current of 150 mA/g and after 1000 cycles using a 

specific current of 300 mA/g are shown in Figure S8. After long term cycling the overall IO 

morphology no longer remains, which, is most likely due to reduction of the initial GeO2 IO 
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to GeO and Ge metal and the repeated alloying of Ge with Li over the course of hundreds of 

cycles. 

The specific capacity values obtained over 200 cycles from asymmetric cycling and 

the related coulombic efficiencies are shown in Figure 5d. As previously mentioned, the 

capacity retention of the GeO2 IO was significantly improved from the ~10
th

 cycle onwards, 

with a more gradual decrease in capacity values observed from that point. The specific 

capacities after the 100
th

 and 200
th

 charges were ~524 and 480 mAh/g respectively, 

corresponding to a capacity retention of ~95 and 87% from the 10
th

 charge. This 

demonstrates that even when cycled asymmetrically the GeO2 IOs maintain an impressively 

high level of capacity retention. The stable capacity retention is also observed in the 

Coulombic efficiency values obtained over 200 cycles. The initial efficiencies are <90%, 

possibly due to lack of the delithiation of the a-Li15Ge4 phase over the first few cycles. 

However, from the 10
th

 cycle onwards the Coulombic efficiency is > 95% and remains above 

this value for the remainder of the 200 cycles. 

In summary, GeO2 IOs were prepared via thermal treatment of a sacrificial PS sphere 

template which was infilled with a germanium ethoxide solution. The hexagonal crystal 

structure of our GeO2 IO samples was confirmed via XRD and ED. Raman, XPS and PL 

analysis indicates that there is some metallic Ge present in the IO samples, possibly in the 

form of Ge nanocrystals embedded in a GeO2 matrix. Galvanostatic cycling at a specific 

current of 150 mA/g demonstrated the exceptional capacity retention properties of the GeO2 

IOs, achieving a reversible capacity of ~ 856 and 714 mAh/g after the 50
th

 and 250
th

 cycles 

respectively. These values are greater than previously reported values for other GeO2 

nanostructures and comparable to values obtained from pure Ge nanostructures. The long 

cycle life performance of the GeO2 IOs was investigated by galvanostatic cycling with a 

specific current of 300 mA/g for 1000 cycles. The excellent stability of the GeO2 IO samples 
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was evident again from the capacity values obtained during cycling. The specific capacities 

after the 500
th

 and 1000
th

 cycles were 632 and 521 mAh/g respectively, corresponding to 

capacity retentions of 76 and 63% from the 2
nd

 cycle.  

Rate capability testing demonstrated the ability of the GeO2 IOs to deliver large 

reversible capacities when cycled using high specific currents (1000 mA/g), with tolerance to 

cumulatively higher rates with minimal capacity fading. The high rate performance of the 

GeO2 IO samples was further evaluated through asymmetric galvanostatic cycling. GeO2 IOs 

demonstrated large stable capacities (~500 mAh/g) over 200 cycles when discharged at a 

specific current that was >3× the specific current used to charge the anode. DCPs were used 

to investigate the differences in charge storage when GeO2 IOs are cycled asymmetrically 

compared to standard galvanostatic cycling. It was determined that at faster rates, initially 

only the c-Li15Ge4 phase is delithiated during discharge, resulting in lower specific capacity 

values than those obtained via standard galvanostatic cycling.  

The specific capacity results presented in this report, to our knowledge, represent one 

of the best the electrochemical performances ever reported for GeO2. Additionally, the 

impressive electrochemical performance of our GeO2 IO samples was achieved in the 

absence of any binders or conductive additives. We propose that the superior specific 

capacities and capacity retention obtained with the GeO2 IOs are due to the initial highly 

porous, complex, 3D interconnected network, which is a characteristic of the IO structure, 

and this structure ensure an structurally stable, interconnected material that facilities 

efficiency alloying reaction with the nanoparticulate walls of the IO structure to boost 

Coulombic efficiency. GeO2 IOs are a Ge-based anode material, which can be prepared in air 

with cost effective precursors, without the need for an inert atmosphere or any additional 

processing steps, such as the preparation of a slurry, which can deliver capacity values and 

retention greater than other GeO2 nanostructures and comparable to pure Ge nanostructures. 
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The impressive electrochemical performance of the GeO2 IOs in terms of specific capacities, 

capacity retention and voltage stability over 1000 cycles demonstrates that they are a very 

promising anode material for long cycle life Li-ion batteries. 

 

Supplementary material 

Experimental details for the preparation of GeO2 IO samples and for the structural and 

electrochemical characterization. TEM images showing the walls of the GeO2 IO samples 

consist of nanoparticles. Deconvoluted anodic scan from the first CV scan for GeO2 IO 

cycled in a potential window from 1.5 – 0.01 V (vs Li/Li
+
) at a scan rate of 0.1 mV/s. DCPs 

from galvanostatic cycling with a specific current of 150 mA/g and 300 mAh/g and from 

asymmetric charge-discharge testing. The asymmetric testing consisted of charging with a 

specific current of 300 mA/g and discharging with a specific current of 1000 mA/g.  
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Highlights 

 

 Crystalline macroporous GeO2 inverse opals exhibit state-of-the-art capacity 

retention, voltage stability and a very long cycle life. 

 The anode uses structured porosity to remove the need for conductive 

additives or binders to form a slurry or electrode casting. 

 Detailed insight in to the mechanism of reversibly lithiation of Ge from 

interconnected GeO2 nanocrystals. 

 Exceptional voltage stability and rate performance, with high capacity up to 1 

A/g rates. 

 Relatively low temperature route to Ge-based nanomaterials for high capacity 

Li-ion battery anodes. 
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