
Title A real-time and robust routing protocol for building fire
emergency applications using wireless sensor networks

Authors Zeng, Yuanyuan;Sreenan, Cormac J.;Sitanayah, Lanny

Publication date 2010-03

Original Citation Yuanyuan, Z., Sreenan, C. J. and Sitanayah, L. (2010) 'A real-
time and robust routing protocol for building fire emergency
applications using wireless sensor networks', 2010 8th
IEEE International Conference on Pervasive Computing
and Communications Workshops (PERCOM Workshops),
Mannheim, Germany, 29 March-2 April, pp. 358-363. doi: 10.1109/
PERCOMW.2010.5470643

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/5470643 - 10.1109/
PERCOMW.2010.5470643

Rights © 2010 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-19 01:51:38

Item downloaded
from

https://hdl.handle.net/10468/8955

https://hdl.handle.net/10468/8955

A Real-Time and Robust Routing Protocol for Building Fire Emergency

Applications Using Wireless Sensor Networks

Yuanyuan Zeng

School of Power & Mechanical Engineering

School of Electronic Engineering

Wuhan University

Wuhan, China

zyywhu@gmail.com

Cormac J. Sreenan

Mobile & Internet Systems Laboratory

Department of Computer Science

University College Cork

Cork, Ireland

cjs@cs.ucc.ie

Lanny Sitanayah

Mobile & Internet Systems Laboratory

Department of Computer Science

University College Cork

Cork, Ireland

ls3@cs.ucc.ie

Abstract—Fire monitoring and evacuation for building

environments is a novel application for the deployment of

wireless sensor networks. In this context, real-time and robust

routing is essential to ensure safe and timely building

evacuation and the best application of fire fighting resources.

Existing routing mechanisms for wireless sensor networks are

not well suited for building emergencies, especially as they do

not explicitly consider critical and rapidly changing network

scenarios. In this paper, a novel real-time and robust routing

protocol (RTRR) is presented for building fire emergency

applications. It adapts to handle critical emergency scenarios

and supports dynamic routing reconfiguration. Simulation

results indicate that our protocol satisfies the criteria necessary

to support building emergency scenarios.

Keywords- wireless sensor networks; building fire; real-time;

robustness; power adaptation

I. INTRODUCTION

In the near future buildings will be equipped with a range

of wireless sensors as part of an overall building

management system to detect and react to building fires [1].

In this context there is a need for real-time and robust

message delivery, in the face of a network topology that can

change rapidly due for example to node failure. However,

most existing routing protocols consider energy efficiency

and network lifetime as the foremost design factors. For

example, related work on tracking forest fires does not

consider evacuation of building occupants and guidance of

fire personnel. This combination of real-time requirements

coupled with changing network topology in a critical

application scenario provides motivation for our research.

We propose a real-time and robust routing mechanism

(RTRR) for building fire emergency using wireless sensor

networks (WSNs). Here, robust means routing can be

reconfigured quickly during the emergency, including route

recovery and avoidance of routing holes due to node failures.

Our approach avoids the need for location information or

time synchronisation. To the best of our knowledge, this is

the first time a real-time and robust routing mechanism for

building fire emergency using WSNs has been proposed.

We believe this protocol is useful in a range of WSN

emergency applications.

II. BACKGROUND AND RELATED WORK

Some WSN applications require real-time communication.

For example, SPEED [2], MM-SPEED [3], RPAR [4] and

RTLD [5] were designed for real-time applications with

explicit delay requirements. Nevertheless, these routing

protocols are not well suited for routing in emergency

applications such as building fires, where critical and

dynamic network scenarios are key factors. In this regard,

the work by Wenning et. al. [6] is relevant - they propose a

proactive routing method that is aware of the nodes’

destruction threat and adapts the routes accordingly.

Other researchers work on emergency guidance and

navigation algorithms with WSNs for buildings. Tseng et. al.

[7] proposed a distributed 2D navigation algorithm to direct

evacuees to an exit while helping them avoid hazardous

areas. Based on this, Pan et. al. [8] proposed a novel 3D

emergency service that aims to guide people to safe places

when an emergency occurs. Barnes et. al. [9] presented a

distributed algorithm to direct evacuees to an exit through

arbitrarily complex building layouts in emergency situations.

They find the safest paths for evacuees by taking into

account predictions of the relative movements of hazards,

i.e., fires and evacuees. Tabirca et. al. [11] solved a similar

problem but under conditions where hazards can change

dynamically over time.

There are many robust routing protocols proposed for

WSNs. Deng et. al. [10] proposed a routing mechanism that

can discover new routes after random failure nodes. The

“Routing Hole Problem” is a very important and well-

studied problem. Some existing “face routing” algorithms

have been developed to bypass routing holes using geo-

routing algorithms. Another way to avoid routing holes is to

“jump” over the hole as proposed in [5].

III. DEFINITIONS

Given a homogeneous WSN deployed in a building with

N sensors and M sinks. Each sensor can adjust its

transmission range to one of the k levels: r0, r1, …, rk-1=rmax

using different transmission powers p0, p1, …, pk-1=pmax.

Initially, all sensors use p0 to minimise energy use.

The NEMBES project is funded by the Irish Higher Education
Authority under the PRTLI-IV programme.

Tmax is the maximum acceptable delay of routing from

node to sink, which is defined for the specific application

scenario. Each sensor i will report data packets to a sink

such that:

(1) a communication path from sensor to the sink can be

found if such path exists,

(2) the end-to-end delay of the path is no more than Tmax,

(3) the choice of route is adaptively changed in response to

failed nodes (assumed to be caused by fire), and

(4) a minimised power level (min{p0, p1, …, pk-1}) is

chosen to ensure transmission satisfies (1), (2) and (3)

without unnecessary power dissipation.

Each node in the network exists in one of four states:

(1) safe: node’s initial state while no fire occurs,

(2) lowsafe: it is one-hop away from an “infire” node,

(3) infire: when it detects fire, or

(4) unsafe: it cannot work correctly due to a definite fire.

Each sensor changes its state autonomously according to

fire impact and in response to received messages. A STATE

message is used to propagate the current node state to its

neighbours in a fire.

(1) STATE (INFIRE) message: If a sensor detects the fire,

it enters “infire” by broadcasting the message to denote

a new local fire source.

(2) STATE (LOWSAFE) message: “Safe” nodes that

receive a STATE (INFIRE) message will become

“lowsafe” and notify its neighbours. Other nodes that

receive STATE (LOWSAFE) message only ignore it.

(3) STATE (UNSAFE) message: An “infire” node works

until it cannot work correctly, then it becomes “unsafe”.

A node also becomes “unsafe” and broadcasts a STATE

(UNSAFE) message if its energy is too low to work.

IV. RTRR PROTOCOL DESCRIPTION

A. Initialised Routing Structure

1) Sink Beacon: We assume that sinks are deployed in a

relatively safe place that cannot easily be destroyed. Each

sink periodically generates a HEIGHT message using p0.

This serves to advertise to neighbour nodes and includes a

“height” parameter that represents the hop count toward the

sink and is initialised to 0. The height value is incremented

by each forwarding hop. Each node records the height

information in its local neighbourhood table when it

receives the first HEIGHT message.

2) Delay Estimate: In the HEIGHT message propagation

process, the sink-to-node delay (denoted as delay (sink, i)) is

calculated by noting the cumulative delay on each hop. Our

protocol does not assume any specific medium access

control protocol, and so this delay value is simply an

estimate. As messages propagate, the delay experienced on

the current hop is calculated, updated locally and recorded

in the HEIGHT message. The delay (sink, i) is also recorded

in the neighbourhood table of each node.

We denote T (i, sink) as the estimated delay from a node

to the sink. In WSNs, data is reported from nodes to the sink,

while less traffic such as control command is delivered by

the sink to nodes. However, since there is just a single

transmission queue, it is not unreasonable to assume that the

queuing delay is independent of whether a packet is going to

or from the sink. We use delay (sink, i) to estimate delay

from nodes to the sink in routing discovery to find a route

that is likely to meet a lower delay threshold, i.e., using

delay (sink, i) to estimate T (i, sink). If necessary, nodes can

increase power and thereby reduce the realistic delay, while

keeping the estimated delay as the base upper bound. In this

way, we can provide a high probability of real-time delivery

from nodes to the sink.

B. Routing Mechanism Details

1) Forwarding Choice: Each node in the neighbourhood

table is associated with a forward_flag and a timeout. The

flag is used to identify the best next-hop forwarding choice.

The timeout is the valid time for the current forwarding

node to prevent stale neighbourhood information. If the

timeout of a forwarding choice expires, its forwarding flag

is set to 0 to evict the stale relay node.

In order to select the best forwarding choice from the

local neighbourhood table:

(1) we choose nodes with lower height,

(2) then we choose nodes with sufficient slack time, based

on the estimated residual time to the sink,

(3) then we filter the remaining choices by node state in the

priority from “safe” to “infire”, and

(4) if there is more than one node that satisfies, we select

the best forwarding choice with the highest residual

energy. Finally, if there is still a tie, we choose the

lowest node ID.

If we cannot find a suitable forwarding choice with the

current transmission power, we say that a “hole” exists, i.e.,

we are stuck in a local minimum.

2) Hole Problem: The solution is to increase the

transmission power gradually by levels to find another

neighbour or to invoke a new neighbour discovery. If we

can find a node in the neighbourhood table by adapting the

transmission power, we increase the power level and name

this neighbour as a forwarding choice. If this fails, a

notification message is sent to its upstream node (i.e., its

parent) to stop sending data packets to the current node.

Then, a routing recovery is invoked. We increase power

gradually but not directly to the maximum level because the

larger the power, the larger the interference (and energy use).

Moreover, it is common in today’s sensor nodes to have

only a handful of transmission power levels.

Fig. 1 illustrates two sinks and eight sensor nodes. The

number on each node represents the “height” of the node

toward the nearest sink. Node i reports data to sink1. As the

route {i, a, sink1} with power level p0 is invalid because the

slack does not satisfy the estimated delay; so node i is in the

“hole”. If there are no existing eligible neighbours, i

increases its power to p1 to reach node j and delivers packets

to sink2 using route {i, j, sink2} if the slack on this route is

no less than the estimated delay.

b

i

a
d

e

j

f

sink2

sink1

0

2

1

2

2

1

1

1 0

c

2

p0

p1

Figure 1. New neighbour discovery to solve routing “hole”

Recall that a sensor has k power levels p0, p1, …, pk-1 and

can be in k levels of transmission range r0, r1, …, rk-1. We

defined a formula to increase the transmission power:

 p = pcur+ι+1; ι = 1, 2, 3, …, k-1 (1)

cur is the current transmission range level, ι is the count of

unsuccessful attempts. A sensor will increase its

transmission power gradually if it cannot find an eligible

new neighbour. A node increases its power according to

formula (1) until one of the following conditions is satisfied:

(1) it finds a node as a forwarding choice in “safe” state

and that satisfies the height and estimated delay, or

(2) when p = pmax. In this case, it either finds a new

neighbour as a forwarding choice using the height,

estimated delay, and in a priority from “safe”,

“lowsafe” to “infire”. Otherwise, no eligible new

neighbour is found.

In the new neighbour discovery process, node i will

broadcast a Routing Request (RTR) message in which it

piggybacks height, slack and the newly adapted power p1. If

a node j receives the message and the estimated end-to-end

delay is no more than slack, its height is lower than height (i,

sink), and its state is “safe”, j is selected as a new neighbour.

If j receives the RTR with pmax and its height is lower than

height (i, sink), j is selected as a new neighbour when j is

not in the “unsafe” state. j will reply to i using the same

power that i is using, after a random backoff to avoid

collisions. The forwarding choices send a reply message

using power(i) merely to reach i. For communicating with

other neighbours they revert to their previous power level.

Upon receiving the reply, i inserts the new neighbour into

its neighbourhood table. During the RTR and reply message

exchange, we can estimate the delay between i and its new

neighbour j as follows:

 Ave_delay (i, j) = Round_trip_time / 2 (2)

For meeting a real-time constraint, the forwarding choices

should satisfy that slack is no less than the average delay

between i and j plus the estimated delay at j:

 Slack (i) ≥ Ave_delay (i, j) + delay (sink, j) (3)

If there is more than one new neighbour found, the best

forwarding node is selected using the priority of the state

from “safe”, “lowsafe” to “infire”. If there is still a tie, the

best relay is selected as the node with the highest residual

energy and the lowest node ID.

A node decreases the transmission power to improve

energy efficiency and network capacity when the delay

deadline is well satisfied. So, when a node detects good

connectivity with a safe node that is larger than a predefined

threshold, i.e., |Neighboursafe| > N_threshold, the power

decrease process is invoked.

We defined a formula to decrease the power as follows:

 p = pcur-ι’; ι = 1, 2, 3, …, k-1 (4)

cur is the current power level and ι' is the count of

decrement. A node is eligible for power decrement until:

(1) the minimum power has been reached,

(2) there are two consecutive power levels such that at the

lower level the required delay is not met but at the

higher level the required delay is met, and

(3) there are two consecutive power levels such that at the

lower level the required safe neighbourhood

connectivity N_threshold is not met but at the higher

level it is met.

C. Routing Recovery

We assume that: (1) the minimal time interval between

“infire” and “unsafe” state of a node is a parameter known

as tunsafe, and (2) we use necessary transmission range for

connectivity between nodes (according to the selected

power level) to approximate the minimum fire spreading

time between two nodes. When a forwarding choice is used

for routing, we add a timeout to avoid the use of stale and

unsafe paths, i.e., every node on the path from source s to

destination d has a timeout to record the valid time of each

link on this route. The timeout is updated when node state

changes occur among the neighbourhood. The forwarding

choice that exceeds the timeout is considered invalid and

then evicted. We assign an initialised large constant value to

represent the estimated valid time for the node in “safe”

state.

When a neighbour node j is caught in fire, a STATE (IN-

FIRE) message is broadcast. If a “safe” node i receives the

message from its neighbour, then i enters the “lowsafe” state.

The timeout of i is updated as the minimum time this node

may be caught in fire until it is cannot function:

 timeout (i) = min_spread_time (i, j) + tunsafe (5)

The timeout of both downstream and upstream links that are

adjacent to i are also updated accordingly. If i becomes

“infire”, the timeout of adjacent links are updated as tunsafe,

i.e., timeout (i) = tunsafe. However, if i becomes “unsafe” by

local sensed data and threshold, timeout (i) and the timeout

of the adjacent links are set to 0.

The link timeout is updated as the state of the node

adjacent to the link changes. When a node state changes in

the fire, the upstream and the downstream links that are

adjacent to this node will update the timeout on both links.

For each link (i, j), the timeout for this link is calculated as:

 timeout (path (i, j)) = min(timeout (i), timeout (j)) (6)

timeout (i) and timeout (j) represent the valid time for i and

j in fire.

In a building fire, node failures due to fire damage will

trigger routing tree reconfigurations. If a link timeout is

lower than a threshold (i.e., the route will be invalid soon), a

route reconfiguration is invoked to find another available

path before the current one becomes invalid. The

reconfiguration is only invoked by an upstream node i of the

link (i, j) whose valid time is no less than the timeout of the

link, i.e., timeout (i) ≥ timeout (path (i, j)). The routing

reconfiguration of the node is invoked as a routing recovery

by broadcasting a RTR message to set up a new route search.

The search of the forwarding choice is invoked in its

neighbourhood table to find whether one of the existing

neighbours is eligible to act as a relay or not by adapting the

power to the setting recorded in local neighbourhood.

Otherwise, we will start a new neighbour discovery process

by increasing its power gradually. The recovery stops when

it finds another forwarding choice with a valid route cached

toward one of the sinks. It is assumed that data

acknowledgements are sent at the link layer. When a node

does not receive an acknowledgement after a certain time,

we assume the downstream link is invalid and then the

routing is reconfigured.

V. ANALYSIS

Lemma1. The routing graph of the WSN is loop-free.

Proof: Suppose that there exists a loop

ABCDE…A. Each node selects the next node

which has lower height toward the sink. When a node is

stuck in a local minimum, the node could increase its

transmission range to find another node that has lower

height toward the sink if it exists. Therefore, height (A) < …
< height (E) < height (D) < height (C) < height (B) < height

(A). This is a contradiction. □

Theorem1. If a route from a node to the sink exists,

RTRR can find a route toward the sink.

Proof: From Lemma 1, we know that there is no loop in

the routing graph. Since the number and height of nodes is

limited, the route will lead to the sink as long as the real-

time route exists. □

Theorem2. If the real-time route from a node to the sink

exists, RTRR can find such a route.

Proof: We denote delay (sink, i) as the estimated delay;

that is the average minimum delay from the sink to a node,

while delay (i, sink) as the delay from the node to the sink

on the counterpart route path. We denote T (i, sink) as the

realistic delay experienced from the node to the sink.

The queuing delay Tq (sink, i) ≤ Tq (i, sink) and is

bounded by the maximum queuing delay Tq (i, sink) ≤ Tqmax.

When assuming the same radio and link quality for

downstream and upstream links on the counterpart route, we

get delay (i, sink) ≤ delayqmax (sink, i). delayqmax (sink, i) is

the maximum queuing delay from the sink to node i. Then

our estimated delay and realistic delay on route T satisfy

that delay (sink, i) ≤ T ≤ delayqmax (sink, i). So, Tq (sink, i) ≤

Tq (i, sink). Also recall that when assuming same link

quality, delay (sink, i) ≤ delay (i, sink) ≤ T (i, sink).

In RTRR we use delay (sink, i) to estimate delay from a

node to the sink in routing discovery to find a route that

meets the lower delay threshold, i.e., using delay (sink, i) to

estimate T (i, sink). In this way, we can improve the real-

time delivery ratio from nodes to the sink. Since we measure

average delay with HEIGHT using power p0, we get the

maximum delay estimation delay (sink, i) on the minimum

delay route from the sink to a node within different power

levels. We find a relay node i where the delay T from i to

the sink should be no more than the estimated delay on the

route, i.e., T (i, sink) ≤ delay (sink, i). Otherwise, we

increase the power level to find another forwarding choice j.

Node j (with increasing power) must satisfy: delay (sink, j)

+ Ave_delay (i, j) ≤ Tslack; where Tslack = Tmax – T (s, i).

The end-to-end delay T must also satisfy: T (s, sink) = T (s, i)

+ T (i, sink) ≤ T (s, i) + Ave_delay (i, j) + delay (sink, j) ≤

T (s, i) + Tslack ≤ Tmax. So, we find a route from node s to the

sink that satisfies T (s, sink) ≤ Tmax.

From the above, if a real-time route exists, our protocol

can find a route satisfying that the end-to-end delay is

within the delay requirement Tmax. □

VI. SIMULATIONS

We verify our RTRR routing protocol using well-known

ns2 simulator based on the parameters of MICAz motes as

summarised in Table 1. All nodes have three power levels

and the traffic pattern is many-to-one. In this simulation, we

use a grid topology, which would be expected to conform to

an in-building deployment. The network topology is shown

in Fig. 2. We randomly select four nodes as source nodes

and place one to four sinks (node 99, 98, 97 and 96) in the

simulation area. Each source generates constant bit rate

(CBR) traffic periodically. The real-time packet miss ratio is

the ratio of all packets missed because of the delay bound to

the total of packets sent. A fire breaks out 30 seconds after

the simulation is started and in a random location. We use a

fire model where fire spreads to its neighbours continuously

every 10 seconds. When fire reaches a node, the node

becomes unsafe after 10 seconds.

TABLE I. SIMULATION PARAMETERS

Parameter Value

Propagation model Shadowing
PhyType Phy/WirelessPhy/802_15_4

MacType Mac/802_15_4

CSThresh_ (carrier sense threshold) 5.29754e-11
RXThresh_ (receive threshold) 5.29754e-11

Pt_(transmit power) 5.35395e-05 / 0.000214158 / 0.000481855

Freq_ 2.4e+9
Traffic CBR

Traffic packetSize_ 70

Traffic Interval_ 0.0969

Node Initial energy 3.6 J

Figure 2. Simulation grid

Fig. 3 shows the end-to-end delay as the delay bound

increases. The end-to-end delay decreases as the number of

sink increases, because more sinks incur more packet

delivery within the bound. Fig. 4 shows the miss ratio when

the delay bound increases. The miss ratio decreases as the

number of sink increases from one to four. Fig. 5 shows

nodes’ average residual energy in the simulation until the

300
th

 second when the delay bound is 70 ms. The average

energy does not vary greatly when the number of sink

increases, as more sinks result in more packets are delivered

and less routing trials with increased power are performed.

0 20 40 60 80 100

0

20

40

60

80

E
n
d
-t

o
-e

n
d
 D

e
la

y(
m

s)

Delay Bound(ms)

 1 sink

 2 sinks

 3 sinks

 4 sinks

Figure 3. End-to-end delay as delay bound increases

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

110

M
is

s
R

a
tio

 P
e
rc

e
n
ta

g
e
 (

%
)

Delay Bound (ms)

 1 sink

 2 sinks

 3 sinks

 4 sinks

Figure 4. Miss ratio percentage as delay bound increases

0 50 100 150 200 250 300

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
v
e
 N

o
d
e

 E
n

e
rg

y
 (

J
)

Simulation time (s)

 1 sink

 2 sinks

 3 sinks

 4 sinks

Figure 5. Average node energy when delay bound = 70 ms

Fig. 6 illustrates the end-to-end delay with and without

power adaptation using one and three sinks. Fig. 7 shows

the miss ratio with and without power adaptation. The miss

ratio rises greatly if we adapt the power level to increase the

probability of real-time packet delivery. Fig. 8 illustrates the

average energy in the simulation when the delay bound is

set to 50 ms. Fig. 9 shows the miss ratio of real-time packet

delivery with one sink. While RTRR achieves the best real-

time delivery, RPAR [4] is not suitable for fire. Because,

even though it can adapt its power level to find a real-time

delivery path, its performance is bad in fire situations.

0 20 40 60 80 100

0

20

40

60

80

100

120

E
n

d
-t

o
-e

n
d

 D
e

la
y(

m
s)

Delay Bound(ms)

 1 sink with power adaptation

 1 sink without power adaptation

 3 sinks with power adaptation

 3 sinks without power adaptation

Figure 6. End-to-end delay with and without power adaptation

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

M
is

s
 R

a
ti
o

(%
)

Delay Bound (ms)

 1 sink with power adaptation

 1 sink without power adaptation

 3 sinks with power adaptation

 3 sinks without power adaptation

Figure 7. Miss ratio with and without power adaptation

0 50 100 150 200 250 300

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
A

v
e
 N

o
d
e
 E

n
e
rg

y
 (

J
)

Simulation time (s)

 1 sink without fire

 1 sink with fire

 2 sinks without fire

 2 sinks with fire

 3 sinks without fire

 3 sinks with fire

 4 sinks without fire

 4 sinks with fire

Figure 8. Average node energy when delay bound = 50 ms

0 20 40 60 80 100

30

40

50

60

70

80

90

100

110

M
is

s
 R

a
ti
o

 (
%

)

Delay Bound(ms)

 RTRR

 RPAR

 Minimal hop count

Figure 9. Miss ratio percentage as delay bound increases

Fig. 10 shows the average node energy in the simulation

when the delay bound is 50 ms. The three routing protocols

compared in this simulation have similar energy efficiency.

RTRR increases its power level in order to increase real-

time packet delivery, but it consumes more energy.

50 100 150 200 250

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
v
e
 N

o
d
e
 E

n
e
rg

y
 (

J
)

Simulation Time (s)

 RTRR

 Minimal hop count

 RPAR

Figure 10. Average node energy when delay bound = 50 ms

VII. CONCLUSIONS AND FUTURE WORK

We present a novel real-time and robust routing

mechanism that is designed specifically for emergency

applications such as building fire. The probability of real-

time data delivery is achieved by maintaining a desired

delay based on message propagation estimate and power

level adaptation. The design is adaptive to realistic

application characteristics including fire expanding,

shrinking and diminishing. Our routing mechanism is

designed as a localised protocol that makes decisions based

solely on one-hop neighbourhood information. The

simulation results prove that RTRR achieves good real-time

packet delivery in fire situation when compared with other

related protocols. We have recently validated our protocol

on a 4-node TinyOS testbed and will in future deploy on a

20-node testbed for building fire response experiments.

REFERENCES

[1] Networked Embedded Systems (NEMBES), http://www.nembes.org.

[2] T. He, J. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A Stateless
Protocol for Real-time Communication in Sensor Networks,”
ICDCS’03, 2003.

[3] E. Felemban, C.–G. Lee, E. Ekici, R. Boder, and S. Vural,
“Probabilistic QoS Guarantee in Reliability and Timeliness Domains
in Wireless Sensor Networks,” IEEE InfoCom’05, 2005.

[4] O. Chipara, Z. He, G. Xing, Q. Chen, et. al., “Real-time power-aware
routing in sensor networks,” 14th IEEE International Workshop on
Quality of Service, 2006.

[5] A. Ahmed and N. Fisal, “A real-time routing protocol with load
distribution in wireless sensor networks,” Computer Communications,
31(14), pp.3190-3203, 2008.

[6] B.-L. Wenning, D. Pesch, A. Timm-Giel, and C. Gorg,
“Environmental monitoring aware routing: making environmental
sensor networks more robust,” Telecommunication Systems, 2009.

[7] Y.-C. Tseng, M.-S. Pan, and Y.-Y. Tsai, “Wireless sensor networks
for emergency navigation,” IEEE Computer, 39(7), pp. 55-62, 2006.

[8] M.-S. Pan, C.-H. Tsai, and Y.-C. Tseng, “Emergency guiding and
monitoring applications in indoor 3D environments by wireless
sensor networks,” Int. J. of Sensor Networks, 1(2), pp. 2-10, 2006.

[9] M. Barnes, H. Leather, and D. K. Arvind, “Emergency evacuation
using wireless sensor networks,” 32nd IEEE Conference on Local
Computer Networks(LCN), 2007.

[10] J. Deng, R. Han, and S. Mishra, “A robust and light-weight routing
mechanism for wireless sensor networks,” 1st Workshop on
Dependability Issue in Wireless Ad hoc networks and Sensor
Networks, 2004.

[11] T. Tabirca, K. Brown, C.J. Sreenan. “A Dynamic Model for Fire
Emergency Evacuation Based on Wireless Sensor Networks,” 8th
International Symposium on Parallel and Distributed Computing
(ISPDC), 2009.

