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Structural strength analysis of partially crystalline trehalose.
V.A. Maidannyk, Y.H. Roos*
School of Food and Nutritional Sciences, Univer€ibllege Cork, Ireland.

1. Abstract

Strength concept, which is based on the WilliamseedFerry (WLF) model, was developed
using mixed structured powders containing amorpheng crystalline components. At the
present study, semi-crystalline trehalose powdetis various (100:0; 80:20; 60:40; 40:60;
20:80) amorphous to crystalline ratios were analy2enorphous components were prepared
from water solution by freeze-drying. Strength gsil, which included water sorption,
differential scanning calorimetry, dynamic mechah&nalysis and microscopy, was applied.
The results indicated that water content signifijadecreases glass transition (~100°C) and
a-relaxation temperatures (~90°C) as well as strattstrength parameter (~10°C), while,
the effect of crystalline component is less prorwaah This study can be used in processing
and characterization of various partially crystadlifood products including nutritional

formulations and infant formulas.

Keywords: Structural relaxation, WLF, glass transition, s@nyistalline structure.

2. Introduction

The improvement of processing and storage techsigeguires a deep and fundamental
knowledge of thermodynamics and kinetics. Fooddsotian exist in crystalline, amorphous
or partially (e. g. semi) crystalline powders. Gayine and amorphous materials show
significantly different physicochemical properti€Bhandari, Bansal, Zhang & Schuck,
2013), due to differences in microstructure. Cryisia structures have long range molecular
order, while amorphous structures are more disecdé¢short range molecular alignment)
(Nurhadi & Roos, 2016). To preserve the taste dilaand color of food the materials should
be maintained in the amorphous form (Roos & Drustdi5). Amorphous materials are
thermodynamically unstable compared to crystallitnactures, however they are fairly stable
in the glassy state (e. g. glass) (Slade, LevinReSd, 1991). At temperatures close to the
calorimetric glass transition temperaturg)(Physical properties of solids, such as molecular

mobility, viscosity, etc. significantly change amdaterials are converted to supercooled
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liquids (e. g. rubber) showing time-dependent flGAngell, Ngai, McKenna, McMillan &
Martin, 2000). Hence, obtaining the time-dependwharacteristics of thermal, electric and
mechanical changes is practically important. Stnadtstrength concept, proposed by Roos
and co-workers combine temperature differences (Tahd a practically important time
factor (critical change in structural relaxatiomdl) (Roos et al., 2015).

Trehalose is a natural disaccharide of glucose withigh § (Green & Angell, 1989).
Trehalose is widely used in food and biotechnolagyas due to specific physicochemical
properties such as prevention of biomolecules diegian (Crowe, Crowe, Rudolph,
Womersley & Appel, 1985; Uritani, Takai & Yoshingd#®95); preservation of vaccines and
medical proteins capabilities (Xie & Timasheff, T9Miller & de Pablo, 2000).

Amorphicity of materials can be detected gravineeity from changing mass during water
sorption (Buckton & Darcy, 1995; Mackin et al., 20Qehto et al., 2006; Nurhadi & Roos,
2016). Amorphous materials have larger porosity amate hydroscopic properties, hence
amorphous structures show a higher sorption capdledan crystalline forms (Bhandari,
Bansal, Zhang & Schuck, 2013; Nurhadi & Roos, 2016)

Differential scanning calorimetry (DSC) has beeredusas a method for detection and
guantification of the amorphous components in daydoate systems. For this, sample is
heated to above the; To get dehydration @) (endotherm peak in DSC thermogram) and
recrystallization (exotherm peak in DSC thermograrmihe areas of exothermal and
endothermal peaks are proportional to the amorplomment in a partially crystalline
sample. Another approach to detect amorphous coempoim material by DSC is to
determine the change of specific heat capacity ¢&er the glass transition (Saleki-Gerhardt,
Ahlneck & Zografi, 1994; Sebhatu, Angberg & Ahlned®©94; Lehto et al., 2006). Optical
(light) microscopy usually shows that the partiathystalline structure tends to increase in
transparency while approaching the transition teatpee of dehydration without losing their
external morphology (Sussich, Urbani, PrincivalleC&saro, 1998). A dynamic mechanical
analysis (DMA) in multi-frequency mode is a usefidol to characterize mechanical
properties including, B, y-relaxations, which happen due to variation in roolar mobility
below and around gT'(Moates, Noel, Parker & Ring, 2001). Knowing tliequency of
measurements allows obtaining the value of strattetaxation time ofi-relaxation process
(Noel, Parker & Ring, 2000), which may be relategarticle structure, collapse and viscous
flow. As the determination of viscous flow charaisecs at temperatures close to thei§
extremely difficult, strength concept provides astimation of resistance to structural

changes for amorphous materials above the calagroaset temperature during heating.
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Strength analysis, which included water sorptio®CDand DMA, was successfully applied
for various carbohydrate-protein, carbohydrate-chydrate and miscible models such as
trehalose-whey protein isolate (WPI) (Fan & Rod8l@a, b; Maidannyk & Roos, 2016),
lactose-WPI (Fan & Roos, 2016a, b; Maidannyk & Ra®17), lactose-trehalose (Fan &
Roos, 2016a) and trehalose-maltodextrin (Maidaniykhadi & Roos 2017). These studies
showed that structural strength linearly depends concentration of components and
significantly decreases with increasing water contm a system. However, structural
strength analysis of partially crystalline systdmas not been addressed. The main aim of the
present study was to develop the strength modeigupartially crystalline systems of
trehalose. For this, effect of crystalline compdnen structural strength of amorphous
trehalose was under investigation and effects demeontent on structural strength of the

partially crystalline systems were also studied.

3. Materials and Methods

3.1 Materials

D-(+)-Trehalose crystalline dihydrate (Hayashib&a., Ltd.,, Okayama, Japan) and de-
ionized water (KB scientific, Cork, Ireland) wersead without purification.

3.1.1 Amorphous structure

Amorphous structure was obtained by freeze-dryiypyac GT2, Ster, Hirth, Germany).
For this, trehalose solution (total solid of 20%)water was prepared. After that, 5%1D
aliquots of solution were frozen in pre-weightedi aemi-closed with septum in 1xiQ
glass vials (Schott, Mulheim, Germany) at -20°CZdrh, then at -80°C for 3 h, followed by
freeze-drying for 60 h at pressure p < 10 Pa. Adlsvwere hermetically sealed under the
vacuum conditions inside the freeze dryer at p <PA0and stored over,®s in vacuum
desiccators (Roos & Karel, 1990) at room tempeea{@b + 1°C) to protect samples from

water uptake.

3.1.2 Crystalline structure
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Crystalline trehalose powder was prepared by gmmdiommercial trehalose powder and
stored in a desiccator over® at 25+1°C for 3 days. A small amount of amorphous
structure can be detected after grinding proce@dart, Dujardin, Dudognon, Danede &
Descamps, 2010; Nurhadi & Roos, 2016).

3.1.3 Partially crystalline structures

Partially crystalline trehalose systems were pregdny blending accurately weighted amount
of 100% crystalline and 100% amorphous structurd9@:0; 80:20; 60:40; 40:60; 20:80 and
0:100 amorphous:crystalline ratios. Mixing was dbgespatula and shaking the closed vials
(Nurhadi & Roos, 2016).

3.2 Determination of the initial water content

Samples of trehalose powder with final weight 0.8-@ were dried at 70°C with absolute
pressure R<10° Pa for 24 hours in a WTB Binder vacuum oven (Ma3@chnology,
Tuttingen, Germany) to measure the initial watemtent of the material. The difference in

mass of samples before and after drying was defiseditial water content.

3.3 Water sorption analysis

Partially crystalline systems with various ratiok amorphous and crystalline structures
(described above) were stored at evacuated desiscg25+1°C) for 10 days over the
saturated solutions 0f,®s, LIiCl, CH;COOK, MgCh, K,COs, Mg(NOs),, NaNG,, NaCl and
KCI (Sigma Chemical Co., St. Louis, MO. U.S.A.), ialin at equilibrium provided 0, 0.11,
0.23, 0.33, 0.44, 0.545, 0.66, 0.76 and 0.85respectively. AQUALAB 4 (TE) (Decagon
Devices Inc., Pullman, WA., U.S.A.) water activiteter was used to measure water activity
for each material after storage. Samples were wedgat intervals of 0, 2, 4, 6, 8, 10, 24, 48,
72, 96 and 120 hours upon storage. Possible digatadn of amorphous trehalose was
assessed from the loss of sorbed water. The watgemnt in each mixture was plotted as a
function of time, and the Guggenheim-Anderson-deB&AB) relationship was fitted to
data to know water activity-water content dependesicamorphous trehalose systems (Eq.
1):
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m Ckay,

my a (1-kay)(1 - kay+Cka,,)

(1)

where, m is water content,oms the monolayer value and C and k were respdgtive
calculated from m
Equation 2 was used to determine the combined teffeE amorphous and crystalline

components (Bronlund & Paterson, 2004):

Wmixture - Iﬁ'lVVcrystaIIine'Fn2Wamorphous 2)

where, Whixwre IS the total equilibrium water content in the mapd; n; and n, are mass
fractions of crystalline and amorphous componemthée systemng+n, = 1); Werystaline and

Wamorphous@€ water contents in crystalline and amorphouspoment.
3.4 Differential Scanning Calorimetry (DSC)

Differential scanning calorimeter (DSC) (Mettlerl@do Schwerzenbach, Switzerland) was
used to measure the glass transition temperatuehyddation and spontaneous
recrystallization of partially crystalline trehatsnixtures with 0, 0.11, 0.23, 0.33 and 0.44
ay. Samples of all mixtures were transferred to pedggivted standard DSC aluminium pans
(40 pL, Mettler Toledo, Schwerzenbach, Switzerland) &edmetically sealed. An empty
punctured pan was used as a reference. For antsydiygatems only, the lids of DSC
aluminium pans were punctured to allow evaporatioin residual water upon the
measurement. All samples were scanned witt/rGin heating rate. The onset of, heat
capacity of endotherm and exotherm were determinyethe STAR software version 8.10

(Mettler Toledo, Schwerzenbach, Switzerland).
3.5 Dynamical Mechanical Analyses (DMA)

Dynamic mechanical analyzer (DMA) (Tritec 2000 DMAjriton Technology Ltd.,
Grantham, Lincolnshire, UK) was used to measure haweical properties (E” — loss
modulus, E’ — storage modulus and &an E”/E’) of anhydrous and humidified partially

crystalline trehalose systems (described abovetlier DSC experiments). The DMA
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instrument was balanced or set at zero to deterthieezero displacement position before
starting. Approximately 60 g of ground samples wspeead on a metal pocket-forming sheet
(Triton Technology Ltd., UK). This sheet was fixbdtween the stationary and drive shaft
clamps inside the measuring head of the DMA. Lengildth and thickness were measured
for each sample. All results were obtained usi$.D0 DMA software version. To control
temperature the DMA was connected to a liquid gero tank (1L; Cryogun, Brymill
Cryogenic Systems, Labquip Ltd., Dublin, Irelan8&gamples were scanned from ~ 50°C
below to over theo-relaxation region with cooling rate ofG/min and heating rate of
2°C/min using the single cantilever bending mode (BaRoos, 2016a, b; Maidannyk &
Roos, 2016). The-relaxation temperatures {)Twere determined from peaks of dambove
the glass transition.

Equation 3 was used to calculate the relaxatioegif) of peak T, measured by DMA at
various frequencied)((Noel, Parker & Ring, 2000):

T=— 3)

3.6 Optical light microscopy

Microscope observation (OLYMPUS BX51 (Olympus Cagimn, Tokyo, Japan), with
magnification x20) was done on humidified (0, 0.0123 and 0.44,3 partially crystalline
trehalose powders (described above for the DSCrimpants) placed between cover glass
and mounted Linkam 120 (TP 94) temperature comirgtage. The samples were scanned
from 5 to 150°C, with 2°C/min heating rate.

3.7 Calculation of WLF model constants and StrucairStrength

The WLF equation in the form of (Eq. 4) was useditdMA and DSC data (Williams,
Landel & Ferry, 1955):

T _ n _ —Ci(T-Tg)
logio o logio ne G (T—T,) 4)
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where, 7 is relaxation timeyzs is reference relaxation time, is viscosity,#s is reference
viscosity, T is temperaturely is glass transition temperatuf@®, andC, are constants.
The WLF equation in the form of (Eq. 5) suggesteat the plot of Ag(z/zs) versus KT-Tg)

gives a linear correlation:

1 _ 1 G
g~ € Ci(T-Ty) (5)

Ts

The WLF constant€; andC, were derived from the slope and intercept of thaiglt line
(Roos & Drusch, 2015).
Mathematically, structural strength parameter €Shased on WLF relationship and can be

calculated by Equation (6):

dc,
Ci—d

(6)

whered is a parameter, showing the critical decreaséaénnumber of logarithmic decades
for the flow (e.g., 100 s to 0.01 s correspondd to4; can be chosen for each system as an
integer depending on the critical time for the gex (Fig. 4))C: andC; are “non-universal”
constants in the WLF equation.

Equation 7 was used to predict structural streagthifferent water contents:

W1$1 +kW252

S = ()

W1+kW2
wherew; — weight fraction of dry solidw, — weight fraction of watek — coefficient;S, —
structural strength for anhydrous syste®;— structural strength of pure wates, & 6.0)
(Maidannyk & Roos, 2017).

3.8 Data analysis

All experiments were performed in triplicate. Medata of the water sorption analyses, DSC,
DMA were calculated from 3 replicates with standdediations expressed in error bars.
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4. Results and discussion

4.1 Water sorption analysis

Table 1 and Figure 1 shows experimental water condé partially crystalline trehalose
systems, over the whole range of water activitteZba1°C.

Crystalline structures humidified at low water waities (0-0.76 @) adsorb very little amount
of water while at high water activities (0.85-0.89 the amount of sorbed water increases
exponentially (Table 1) due to capillary condermatind dissolution (Bronlund & Paterson,
2004).

Steady-state water contents of each mixture ahb2@s were used in GAB model. The GAB
model was fitted to experimental data of 100:0 grhous:crystalline systems below 0.55 a
(Labuza, 1984; Maidannyk & Roos, 2016). Howevehigher water activities0.55 g), the
crystallization of trehalose occurred and extrafgalasorption data from GAB relationship
give misleading results for sorbed water conteRtsds, 2014). Fractional isotherm approach
(Eq. 2) allowed calculating water contents at highter activities. Using previously
published data for pure amorphous trehalose (Maglan& Roos, 2016; Maidannyk,
Nurhadi & Roos, 2017) and experimental data foeparystalline trehalose, the GAB model
was fitted to obtain sorption isotherms at highewalctivities (Fig. 1). Amorphous structure
adsorbs around 100 times more water than crystafitructure (Table 1). That's why the
presence of a small amount of amorphous compomerryistalline structure results in
significant difference to the water sorption isotheof material. Water sorption isotherm and
Eq. 2 allows predicting water content for partiathystalline trehalose at all water activities

and all amorphous:crystalline ratios.

4.2 Differential Scanning Calorimetry and Microscgp

The onset of calorimetric glass transition tempemi(T;) was obtained by DSC for each
anhydrous and humidified (0-0.4dapartially crystalline trehalose system (Table 2).
Detected values ofgbelong to amorphous component in partially cryisialsystems. The
obtained data for pure anhydrous trehalose is neeagent with previous study (Green &
Angell, 1989; Roos 1993; Miller & de Pablo, 2000aidlannyk & Roos, 2016; 2017 a). As

expected crystalline fraction has no significarieetf on the § of the amorphous fraction in
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the partially crystalline systems (Table 2). Glasssition is that of the amorphous fraction
which is shown by the proportional decrease of baptcity (G) over the T region. A slight
decrease of Jvalue with increase of crystalline component cohti@ the systems is in
agreement with water sorption data (Table 1). Wa®ra good and strong plasticizer
significantly increases mobility of molecules oethmorphous component, which results in
the decrease ofglvalues with increasing water content (MaidannykR&os, 2016). For
example, in the present study &f 100:0 amorphous:crystalline system decreasenh fr
112°C (at 0 @) to 15°C (at 0.44,9 due to water plasticization.

Microscope observation, carried out on the samepksmplaced between cover glasses,
showed that crystalline and amorphous componentsebflose became more transparent
during heating to abovey THowever, at the same time the external morpholofyhe
structure was not changed until the temperaturetab®6°C, that the “solid” sample appears
to change morphological shape (“edge roundnessH) an increasing mobility of the phase,
although still firm (sticky) (Sussich et al, 1998)jgure 2). These observations were the same
for anhydrous and humidified (0.11, 0.23, 0.33 &xMg,) partially crystalline trehalose
systems.

4.3 Dynamical Mechanical Analyses (DMA)

Partially crystalline trehalose systems with défetr ratios of amorphous and crystalline
components (described above for DSC experimentse vgeanned by DMA in multi-
frequency mode.

The rapid changes in mechanical properties, whatdted to the amount of energy converted
to heat during relaxation can be detected by DMAilevDSC directly detects the difference
in the amount of heat (Gonnet, Guillet, Sirakovichuron & Seytre, 2002; Roos & Drusch,
2015). Figure 3 shows typical frequently-dependbatmogram obtained by DMA. The
relaxation temperature values were determined fileentemperature peak of tarat ~ 20-
30°C above the onset of thg. Bystems with high amount of crystalline comporstrawed
slightly lowered a-relaxation temperature peak with less intensitye do significant
difference between crystalline and amorphous parsizes (crystalline particles needs less
mechanical energy than amorphous ancklaxations occurs at lower temperature). Also
crystalline phase may slightly decreaserklaxation temperature due to sliding effect iesid
the partially crystalline system (Cano-Chauca,ngtreta, Ramos & Cal-Vidal, 2005). The

big differences (~6-10°C) were observed for anhysrgartially crystalline trehalose



297  systems, while for humidified systems (0.4¢) these differences were not significant (~2-
298  5°C) andu-relaxation occurred at similar temperatures aamdbrphous and crystalline ratios
299 (Table 3).

300 Water as a good plasticizer, increases free volumthe systems as well as molecular
301  mobility of amorphous components (Slade et al.,11$8yall et al., 2005; Meinders and van
302  Vliet, 2009) that result in significant decreas8%%C for 100:0 amorphous:crystalline) of the
303 T, for every partially crystalline system with inceg@g water content. These results are in
304 agreement with previous studies (Fan & Roos, 2016 Maidannyk & Roos, 2016; 2017;
305 Maidannyk, Nurhadi & Roos, 2017).

306

307 4.4 Applications of WLF equation and Strength

308

309  Williams-Landel-Ferry or WLF model (Eq. 4) is a pigr equation, which can describe
310 dependence of relaxation time and viscosity ontémeperature close to onsej. Driginal
311  relationship (Williams et al., 1955) showed thadsyl formers possessed similar decreases in
312 relaxation times over the temperature range pfol' Ty + 100 K. Because of that authors
313  offered “universal” values for WLF constants; €17.44 and €= 51.6 for many different
314 materials (inorganic and organic). However, usindgPAMequation with “non-universal’
315 constants ¢ and G provides more realistic modelling with good fit éxperimental data
316  (Ferry, 1980; Peleg, 1992; Slade & Levine, 1999¢#& Chinachoti, 1996; Roos & Drusch,
317 2015;). In the present study, WLF constants @dd G were calculated by Eg. 5 and
318 summarized in table 4.;Gnd G constants were determined with 0.9651, 0.921Q11G9
319 0.9491 and 0.7622%Ror 100:0; 80:20; 60:40; 40:60 and 20:80 amorphoystalline ratios
320 at RH 0%; 0.9707, 0.8933, 0.9281, 0.9681 and 0.221RH 11%; 0.8079, 0.8694, 0.7596,
321 0.9664 and 0.7279 at RH 23%; 0.9987, 0.9491, 0.98(8527 and 0.7639 at RH 33%;
322 0.7440, 0.9742, 0.9715, 0.9807 and 0.9698 at RH reditectively.

323 In calculations, the viscosity and relaxation tiofesupercooled liquid approached*iBa s
324 and 100 s respectively. Upon heating, values alogsy and relaxation time were decreasing
325 down to 10Pa s and 1&'s respectively (Angell, 1991; Angell, Ngai, McKenhcMillan &

326  Martin, 2000; Roos & Drusch, 2015; Maidannyk & Rp®816). Using 15 Pa s and 100 s as
327 reference values of viscosity and structural reiaxaime respectively, Roos and co-workers
328 (Roos et al., 2015; Fan & Roos, 2016 a ,b; Maidan®yRoos, 2016; 2017; Maidannyk,
329 Nurhadi & Roos, 2017) adapted WLF equation in apsémand convenient form, named

330 “Strength” concept. Structural strength measurdel dtow characteristics of amorphous
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materials above grand links the material state with a practicallyportant time factor. As
large and critical changes in structural relaxatiore upon heating happened between 100 s
and 0.01 s (between 2 and -2 in logarithmic sc@te). 4), the corresponding temperature
difference, T-T, was defined as strength, S (Eq. 6) (Roos e2@l5; Fan & Roos, 2016 a ,b;
Maidannyk & Roos, 2016; 2017; Maidannyk, NurhadR&os, 2017).

S was obtained (at = 4) for partially crystalline trehalose systentsah ratios (Table 5).
Strength curves, which show structural strengtheddpnce on water content, were
calculated by Eq. 7, which allows predicting S eaht all water contents (from 0 to 100
0/100g of dry Solids) (Fig. 5). The k value was215326.0, 17.1, 21.0 and 26.0 for 100:0,
80:20, 60:40, 40:60 and 20:80 amorphous:crystaltielealose systems respectively.

Table 5 and Figure 5 shows that for anhydrous BystdlRH 0%) the S value significantly
decreased AS = 9.1°C) with increasing crystalline component ainsystem, while for
humidified systems (RH 44%) these differences vmateso pronounced\S = 1.7 °C). This
result is similar to our previous findings and dam explained by molecular mobility of
amorphous component and by strong plasticizatiopgaties of water (Roos et al., 2015; Fan
& Roos, 2016 a, b; Maidannyk & Roos, 2016; 2017jddanyk, Nurhadi & Roos, 2017).
Even small variation in material structure sigrafitly changes the structural strength in a
system (Fig. 6). Amorphous systems show more “gtrbehavior compare to “weak” highly
crystalline trehalose systems. However, this diifiee is significant only for anhydrous
systems, while humidified systems shows very simiialues of strength for all partially
crystalline system. Hence, the presence of watel isery important factor, which
significantly influences a structural strength astidicture of food material. Despite the fact
that for humidified systems, the values of S analar, they are still decreasing linearly (with
R? 0.9879, 0.9310, 0.9045, 0.8860, 0.8816, 0.878F,67, 0.8750, 0.8743 and 0.8737 at 0%,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90%abémrespectively) with increasing
crystalline content in partially crystalline systeffig. 7).

Knowing structural strength of pure amorphous conend and reference partially crystalline
systems allows calculation of S value for systemsrgy crystalline content at any water
content, as well as prediction of crystalline comt® unknown partially crystalline system.
Therefore, the present study showed that streragthept is a suitable model for determining
crystalline content in partially crystalline systemd allows controlling stability and quality

in various food systems.

5. Conclusions
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This study was focused on applying and further greent of the structural strength
concept. For this, strength analysis was appliegbartially crystalline trehalose system.
Water sorption analysis allows controlling watentemts in different partially crystalline
mixtures at low and high water activities. The glamnsition andi-relaxation temperatures
were detected by DSC and DMA respectively. Theeslof T, and T, as well as structural
strength are significantly decreasing with incregsivater content in a system. At very low
content of amorphous component in a system, thermetation of strength is practically
complex. However, strength analysis showed goodistency in predicting the crystalline
content in unknown systems at different water catsteThe structural strength shows linear
decrease with increase of crystalline content igyatem and significant decrease with
increase of the water content in a system. Herrcetatal strength concept can be used in
adaptation of processing and characterization abua food materials as well as in quality

and stability control during production and storage
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474  Table 1. Water content of partially crystallinetisdose systems (ratios of components 100:0,
475  80:20, 60:40, 40:60, 20:80, 0:100) stored at diffier water activities (0.11, 0.23, 0.33, 0.44,
476 0.55, 0.65, 0.76, 0.85, 0.99) for 120 hours at?%.

Experimental water content for partially crystallin e (amorphous:crystalline)

Ay trehalose systems (g/100 g of solids)
100:0 80:20 60:40 40:60 20:80 0:100
0.11 2.2+0.1 1.7+0.1 1.3+0.1 0.9+0.1 0.4+0.1 0.010+0.01
0.23 4.1+0.4 3.310.1 2.5+£0.3 1.7+0.2 0.8+0.2 0.014+0.03
0.33 5.9+0.4 4.7+0.2 3.7£0.1 2.4+0.2 1.2+0.2 0.019+0.03
0.44 9.0+0.2 6.9+0.2 5.310.1 3.4+0.3 1.8+0.2 0.023 +0.05
0.55 9.5+0.1 7.6+£0.1 5.6+0.3 3.8+0.3 1.9+0.3 0.029+0.04
0.65 9.4+0.3 7.6+0.2 5.7¢0.1 3.810.1 1.9+0.3 0.037x0.02
0.76 8.8+0.4 7.2+0.3 5.5+0.2 3.6+£0.2 1.8+0.2 0.049x0.05
0.85 9.5+0.4 7.6+£0.1 5.5+0.2 3.7+£0.2 1.9+0.3 0.066%0.02
0.99 9.7+0.3 7.8+0.3 5.7+£0.3 3.8+0.3 2.3+0.2 0.598+0.09

477
478



479
480
481

482
483

Table 2. The onset of calorimetric glass transitiemperatures () of anhydrous (0.4 and

humidified (0.11-0.44 @ partially crystalline trehalose systems (amorp$icuystalline)

stored for 120 hours at 23°C.

Glass transition temperature (Ty) of partially

crystalline (amorphous:crystalline) trehalose systas, °C

aw 100:0 80:20 60:40 40:60 20:80

0 11243 112+2 11143 111+2 111+2
0.11 62+1 61+3 60+2 59+2 59+2
0.23 4312 43+1 42+3 42+1 41+1
0.33 32+2 32+1 32+2 31+3 31+2
0.44 15+2 15+3 15+2 15+1 14+3




484 Table 3.a-Relaxation temperature (I detected by DMA for partially crystalline trehak®
485 systems with different amorphous:crystalline ratiequilibrated at different relative
486  humidities (RH).

RH 0% Amorphous:Crystalline trehalose
100:0 80:20 60:40 40:60 20:80
f, Hz logr, s Ta, °C Ta, °C Ta, °C Ta, °C Ta, °C
0.1 0.20 123+2 12242 118+2 117+2 116+1
0.5 -0.49 125+1 123+1 119+1 118+1 116+2
1.0 -0.80 12742 12542 120+2 119+2 11742
2.0 -1.10 128+2 126+3 121+1 120+2 118+1
5.0 -1.50 128+3 127+1 123+3 12142 11943
10.0 -1.80 130+1 128+2 124+2 122+1 12042
RH 11% Amorphous:Crystalline trehalose
100:0 80:20 60:40 40:60 20:80
f, Hz logr, s Ta, °C Ta, °C T, °C T, °C Ty, °C
0.1 0.20 71+2 68+2 66+2 64+2 64+2
0.5 -0.49 73+2 69+2 67+2 65+2 65+2
1.0 -0.80 75+1 7013 68+2 66+2 65+3
2.0 -1.10 77+2 71+2 69+1 6712 66+1
5.0 -1.50 78+2 73x1 70+2 68+3 67+2
10.0 -1.80 79+3 752 7242 69+3 68+2
RH 23% Amorphous:Crystalline trehalose
100:0 80:20 60:40 40:60 20:80
f, Hz logr, s Ta, °C Ta, °C Ta, °C Ta, °C Ta, °C
0.1 0.20 52+1 51+2 50+3 49+1 4742
0.5 -0.49 53+1 52+3 50+2 50+2 47+1
1.0 -0.80 53+2 52+2 51+2 51+3 48+2
2.0 -1.10 54+2 53+2 52+3 51+1 48+2
5.0 -1.50 55+1 54+3 53+1 52+1 49+2
10.0 -1.80 57+2 55+3 53+2 52+2 50+2
RH 33% Amorphous:Crystalline trehalose
100:0 80:20 60:40 40:60 20:80
f, Hz logr, s Ta, °C Ts, °C T, °C Ty, °C Ts, °C
0.1 0.20 38+2 38+1 37+1 36+1 36+1
0.5 -0.49 40+2 39+2 39+1 37+2 36+1
1.0 -0.80 4142 401 39+2 38+2 37+1
2.0 -1.10 42+3 4142 41+1 39+1 38+2
5.0 -1.50 433 4242 4142 39+2 38+2
10.0 -1.80 44+2 43+1 4142 40+2 39+2
RH 44% Amorphous:Crystalline trhalose
100:0 80:20 60:40 40:60 20:80
f, Hz logr, s Ta, °C Ta, °C T, °C Ty, °C Ts, °C

0.1 0.20 19+1 18+2 18+1 18+1 17+1




0.5
1.0

2.0
5.0

10.0

-0.49
-0.80

-1.10
-1.50

-1.80

19+1
20+2
21+1
23+1
25+1

19+2
20+1
21+1
22+1
2412

19+1
20+2
21+2
23+1
2312

19+1
20+2
21+2
22+1
23+1

18+2
19+1
20+1
20+1
2242
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489 Table 4. Calculated WLFz{ = 100s; s = 10" Pa s) constants and G for partially

490 crystalline trehalose systems, stored at variolatinee humidities (RH).

Amorphous: RH 0% RH 11% RH 23% RH 33% RH 44%

Crystalline

Trehalose <SS &°C  -G;s  -G°C -Gs -G°C -G,s -G °C -G, s -G, °C
100:0 5.0+0.3 40.7+0.5 23.7+0.5 123.8+2.4 3.8+0.9 25.8+1. 31.8+2.6 111.4+2.3 -10.0+0.7 -14.6x1.1
80:20 5.5+0.3 38.7+0.6 27.4+1.5 104.0+3.1 3.2+1.1 21.6+1. 11.9+1.3 43.6+1.2 -9.6+0.5 -12.5+1.0
60:40 15.1+0.3 61.0£0.5 20.9+0.7 70.8£1.3 3.8+1.4 22.1+0. 24.0x2.1 71.5+1.6 -9.5%0.9 -12.3+0.7
40:60 11.9+0.2 43.6%1.2 36.4+1.1 101.1+1.7 2.8+0.6 174+1  10.7+0.9 33.9+2.9 -11.1+1.3 -15.0+0.9
20:80 44.6+0.2 109.6+2.7 9.1+0.6 28.4+2.1 4.6+1.3 18.8+1. 8.9+1.1 25.9+1.4 -13.4+1.6 -18.8+2.0
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493
494 Table 5. “Strength” S (calculated at d = 4) for gaally crystalline trehalose systems at all
495  ratios (amorphous:crystalline) stored at differeatative humidities (RH).

496
497

Amorphous:
Crystalline RH 0% RH11% RH 23% RH 33% RH 44%
Trehalose
100:0 18.1+2.9 17.9+2.1 13.2+1.8 12.5+1.2 9.7+1.1
80:20 16.2+25 13.2+1.9 11.6+1.3 10.9+1.1 8.9+1.4
60:40 12.842.3 11.4+1.1 11.4+1.1 10.2+2.1 9.0+0.4
40:60 10.941.7 10.0£1.2 10.3%0.9 9.2+1.3 8.4+0.5
20:80 9.0+£0.9 8.7+0.4 8.7+0.5 8.1+0.7 8.0+0.7
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502 Eq. 1 (empty symbols): (b) for 100:8,¢), 80:20 (4,2), 60:40 ¢,¢) partially crystalline

503 systems; (c) for 40:6((0), 20:80 ¢,:), 0:100 @) partially crystalline systems.
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Figure 2. Microscope observation of 60:40 amorphoystalline trehalose, stored at 0.11
aw, scanned at 2 K mihat the temperature of (a) 20°C; (b) 100°C; (c) 18%nd (d) 150°C.
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The concept of strength was devel oped using partially crystalline trehal ose systems.

Strength shows linear decreasing with increasing of crystalline content in a system.

Fractional water sorption analysis was used in partialy crystaline systems.

DSC shows crystalline phase-independent glass transition temperature.

The water content dependence on strength was shown.



