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A B S T R A C T

The role of different technologies in a future low carbon energy system is determined by numerous factors, many
of which are highly uncertain. Their deployment may be a function of dependency on other technologies, or
competition, or wider system effects. In this paper, using a UK example, we explore patterns of interdependency
between technologies using a hierarchical clustering approach across multiple scenarios. We find that tech-
nologies compete in some instances, often on costs, cluster because they co-depend on each other, or emerge
under all conditions, as robust options. Crucially, the broader scenario framing around carbon capture and
storage (CCS) availability and climate policy stringency strongly influences these interdependencies.

1. Introduction

1.1. Contending with technology-related uncertainties in low carbon
transitions

The diffusion of new technologies to enable the transition to a low
carbon energy system is subject to numerous uncertainties. Many
countries are grappling with the options available to move energy
supply to one that is zero emission [1], where different solutions
emerge depending on factors relevant to national circumstances and
assumptions about technology commercialisation. The timescales for
this transition are also squeezed, with Paris Agreement targets sug-
gesting net-zero emissions by, or soon after, 2050 [2]. Therefore, de-
cision makers have to contend with both technological uncertainty and
short timescales, not suited for long term system transition [3], whilst
moving beyond incremental policies to real structural change within
socio-political constraints [4].

Determining the future role of technologies used across the energy
system is an important exercise for a number of reasons. Firstly, it can
help demonstrate the plausibility of different technology pathways to
decision makers. This is important in the context of deep dec-
arbonisation by mid-century [1], a timeframe that many countries have
yet to fully consider but will increasingly need to, as per Article 4.19 of
the Paris Agreement [5]. Modelling analyses during the 2000s in the UK
certainly helped determine multiple technology pathways that could

deliver 60% [6] and then 80% [7] reductions in green house gas (GHG)
emissions, relative to 1990 levels. This provided an important evidence
base that provided confidence for, and underpinned, climate action
legislation. Secondly, it can orientate the research and policymaking
community in a certain direction, pointing to technology focus areas for
R&D and demonstration budgets. A recent example has been the in-
crease in research on greenhouse gas removal (GGR) technologies, with
the UK research council, NERC, launching a large programme of work.1

This research direction is very much in response to the ubiquitous de-
ployment of such technologies in energy systems analysis, notably from
Integrated Assessment Models (IAMs) [8,9].

However, many of the prospective technologies for the low carbon
transition may be conceptual, partially demonstrated and at a very
early stage of technology readiness, or only playing a niche role in the
current system. This means large uncertainties exist concerning the role
that technologies play, driven by many different factors. Take the ex-
ample of solar; when Lewis [10] discussed its prospects, highlighting
some of the key barriers for widespread use, including costs of
$0.25–0.30 per kilowatt-hour (kWh) compared to other generators at
$0.03-$0.05, he, like key scenario providers such as the IEA, would
have had difficulty envisaging this technology now competing with
fossil generation 10 years later.

The question is how do the many technologies recognised as im-
portant for the low carbon transition play out together in the same
system? The uncertainty around R&D, commercialisation, policy
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support, and social acceptability means that there are numerous
eventualities in terms of system design and technology portfolios.
Taking the prevalent example of carbon capture and storage (CCS) in-
cluded in many climate mitigation scenarios [11], this is subject to all
such uncertainties, including techno-economic factors [12]. Their im-
pact on technology deployment will have different degrees of influence
on the role of alternative competing technologies. This raises the
question of how technologies or technology groupings interact, and
whether they enable others, or compete. Possible examples are easy to
identify (e.g. in a severely carbon constrained world and without CCS,
would steam methane reforming be possible for hydrogen generation?),
whilst others may be less obvious. Furthermore, inter-temporal de-
pendencies may emerge, where specific technologies and their use in
the system rely on earlier deployment of others.

1.2. Characterising technology uncertainties in energy modelling

Improved performance and cost reduction across technologies and
their deployment in different societies is complex, and covered ex-
tensively in the fields of technology innovation and socio-technical
transitions [3,13,14]. However, energy system models, such as that
used in this study, typically make simplifying assumptions about the
improvements in costs and performance based on exogenous single
factor learning curves, and historical precedents in terms of deploy-
ment. In other words, there is limited attempt to model other factors,
such as the innovation and learning process in national scale modelling,
largely due the analysis scale and the complexity of process.

Without endogenising these effects, it is still possible to capture the
uncertainty of the assumptions on technology learning and deployment
in the energy system context, using different approaches. These ap-
proaches can provide a view of the many different system configura-
tions, and help to understand the interdependency between technolo-
gies across the system. Most UK modelling analyses have focused on the
development of traditional scenario analysis to explore distinctive low
carbon transitions, either for the system as whole [15,16] or for specific
sectors [17–19]. The use of uncertainty techniques have been less
widely applied to scenario analysis [20], but are becoming increasingly
recognised, both by researchers [21] and decision makers [22], as cri-
tical to facilitating more robust decision making. A recent review of the
application of different uncertainty methods highlights some of the key
modelling approaches deployed [23].

Global sensitivity analysis (GSA) is one such method, to assess and
rank energy system uncertainties (see e.g. Marangoni et al. [24] for an
integrated assessment modelling approach). In the UK context, Fais
et al. [25] employed this approach across binary technology and re-
source dimensions, in order to explore which low-carbon technologies
and resources had most influence on energy system development under
emission reduction targets and the interaction effects between different
low carbon options. The analysis highlighted complementarities and
substitutability between technologies, critical options that are robust to
uncertainty, wider system effects, and path dependencies.

Pye et al. [26] explored the potential for uncertainties across tech-
nologies and resources to undermine reduction targets, if policies were
not robust to such uncertainties. The analysis also highlighted, via a
GSA approach using multivariate regression analysis, which un-
certainties had the largest influence on meeting decarbonisation goals.
Usher [27] undertook a similar analysis, using a GSA known as the
Morris Method, to explore which model uncertainties across a range of
technology and resource groups influenced the model solution the
most. Similar to Pye et al. [26], biomass resource availability and gas
price proved to be highly influential, as did the CO2 emission con-
straint.

While the above analyses focused on parametric uncertainty, other
studies have been undertaken to explore uncertainty relating to model
structure. The Modelling to Generate Alternatives (MGA) technique
[28], with initial application in other fields, has been increasingly used

for energy system analysis [29,30]. In the UK context, using a MGA
technique, Li and Trutnevyte [31] identified many possible near-op-
timal pathways to decarbonising the power sector, highlighting how
system choices are strongly influenced by the model structure and
formulation of optimality.

Different approaches to uncertainty assessment provide useful in-
formation about the impact of uncertainties on model results, and
particularly from the GSA analyses, the ranking of uncertain assump-
tions based on solution influence. However, these analyses typically
provide fewer insights into the explicit enabling or competitive re-
lationships between technologies or technology families in different
systems, and the impacts of deployment of one type of technology on
another. The focus of this paper is to explore the relationships between
technology choices across different system pathways, to understand
potential interdependencies.

1.3. Overview of the paper

In this study, using the Energy System Modelling Environment
(ESME), we consider these issues for the energy system transition in the
United Kingdom, framed to meet the current policy goal of at least an
80% reduction in GHGs in 2050 [32]. The research question tackled in
this paper is ‘Under a transition to a low carbon energy system, what
technologies are typically deployed in combination or competition, and
from these interdependencies, what are the insights for policy stake-
holders?’ We investigate the interplay and interdependencies between
different technologies and technology families by simulating a large
number of plausible pathways under uncertainty. For example, for the
deployment of technology X, influencing deployment may be the
characteristics of technology X, those of technologies Y and Z, and/or
the broader system e.g. carbon price signal, resource availability etc. To
determine the extent to which Y and Z influence the deployment of X,
we use clustering analysis across the many simulations.

The paper is structured as follows; section 2 provides a description
of our approach to modelling technology-focused scenarios and ana-
lysing interdependency between different groups. Results of the ana-
lysis are presented in section 3, followed by a discussion on the insights
of the analysis for policy (section 4), and concluding comments (section
5).

2. Methodology

With our focus on technology interdependency in an energy system,
we use the ESME model to run multiple scenarios based on a range of
techno-economic uncertainties. These pathways are then analysed,
using a hierarchical clustering approach, to analyse interdependency of
technologies.

2.1. The ESME modelling framework

ESME [33], is used due to its whole system representation and in-
tegrated structure, both of which are necessary to reveal inter-
dependency between sector action and technology deployment. The
model is technology-explicit, thereby providing a sufficiently detailed
representation of technology groups, to better understand the char-
acteristics that enable deployment. ESME also features a module for
simulating large numbers of runs to explore parametric uncertainty of
model inputs, through Monte Carlo sampling [26,34]. In addition to
research use, ESME analyses have also informed energy policy and
strategy in the UK, both for the Department for Energy and Climate
Change [35],2 and the UK Committee on Climate Change (CCC)
[36,37]. The ESME model was originally developed by the Energy

2 The department now covering the DECC function is the Department for
Business, Energy and Industrial Strategy (BEIS).
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Technologies Institute (ETI), a public private partnership between
Government and industry, and developed and used in conjunction with
a range of research organisations.

Built in the Advanced Interactive Multidimensional Modelling
System (AIMMS) environment, the model uses linear programming to
assess cost-optimal technology portfolios. The exploration of un-
certainty (capital expenditure levels, fuel costs and resource potential
e.g. biomass imports) is focused across the technology groups. The
number of technologies total around 150. Energy sector representation
is typical of other similar models, and includes power generation, in-
dustry, buildings, transport and other conversion sectors e.g. biofuel
production, hydrogen production. The model endogenously determines
how to meet a set of exogenous energy service demands in a cost-op-
timal manner, through investment in end use technologies (including
efficiency measures), and the production and supply of different energy
forms. Central technology cost projections are exogenously defined,
based on cost reductions envisaged from a move to a low carbon
system, with characterisation of the uncertainty of such estimates (as
discussed below). Further information on the sector structure and data
sources used in the model can be found in the ESME documentation
[38].3

2.2. Modelling uncertainty

Within the ESME model, we construct a number of scenarios using
the inbuilt uncertainty characterisations across different techno-eco-
nomic parameters, with a focus on costs, including capital expenditure
(capex) and energy commodity costs. Other uncertainties applied here
for the scenario generation include specific technology build rates and
biomass resource availability. Build rate uncertainty for CCS and nu-
clear in particular reflects that many other factors determining de-
ployment in addition to cost, with such technologies not market-driven
in the same way as, for example, renewables. Resource limits on do-
mestic and imported biomass are also included. These assumptions are
set out in Table A1 in Appendix 1.

In the main, parameter ranges are established for mature (± 10%),
new (± 30%), and novel/emerging (± 50% or more) technologies (see
Appendix A1). For example, a combined cycle gas turbine (CCGT) plant
has a relatively narrow cost range, as it is well understood given its
maturity, compared to the same plant with CCS, which has a much
wider range. The range distribution is sometimes asymetric, where for a
technology it is unlikely that we would observe cost increases to the
same extent as reductions. It is worth noting that in our analysis the
range of the uncertainty considered is more important than other
characteristics of the distribution – the aim is to generate many sce-
narios with different parameter values, but not draw any conclusions
about how likely specific combinations might be.

The uncertainty distributions in 2050 are sampled using the Monte
Carlo technique. For each simulation, values for intermediate years
(prior to 2050) are determined based on interpolation back to the base
year (2010) value based on an index using the shape of the original
2010 to 2050 trajectory. The interpolation of an uncertain value in
2050 back to 2010 is a simplification for reasons of model tractability.
The increase or decrease in costs and build rates between now and 2050
will of course not follow a linear trajectory but may be subject to vo-
latility over this time horizon, with sudden cost breakthroughs, or rapid

increases or declines in deployment, often due to political driven policy
change.

600 simulations are run, the number based on earlier analyses to
determine coverage of the uncertainty space [39]. While most of the
distributions are independent, some are correlated during the sampling
procedure. This is to ensure that technologies that are similar in nature
(for example, a light duty electric vehicle and an electric car) move in
the same direction.

2.3. Scenario definition

The 600 Monte Carlo simulations are then modelled for a set of
three scenarios (Table 1), resulting in 1800 model runs in total. Sce-
narios reflect major areas of uncertainty that we want to hold constant
due to their large impact on the system, in order to explore whether
technology interdependencies change when a step change in the para-
meter values is introduced. Two scenario dimensions are represented –
i) climate ambition, and ii) the availability of CCS.

Both CP and NCCS meet the UK's legislated climate ambition of at
least an 80% reduction in GHGs in 2050, and the interim carbon bud-
gets needed to deliver the long term target [40]. The difference is that
CP allows for large-scale CCS deployment, while NCCS does not. The
testing of this assumption is important in the UK context, where CCS is
often chosen because it offers a highly cost-effective pathway [15] and
because the credibility of CCS and BECCS (bioenergy with CCS) de-
ployment at scale is coming under increasing scrutiny [41,42]. F2R
provides a lower climate ambition case, due to a ‘failure to ratchet’
ambition, to explore prospects for deployment under weakened ambi-
tion and therefore lower incentives for mitigation. The resulting level of
ambition in 2050 is only marginally higher to that which is required in
2030, under the UK's 5th Carbon Budget. Both CCS availability and
climate ambition are likely to lead to very differently configured sys-
tems, allowing us to observe whether different technology inter-
dependencies emerge.

2.4. Clustering analysis

Clustering algorithms can be used to group scenario metrics based
on information in the dataset about those metrics and their relation-
ships [43]. The objective is that cluster groups will have metric in-
cluded that are similar to each other, and different enough to metrics in
other groups. Given the research objective on technology inter-
dependency, clustering is used to group metrics based on the strength of
their correlation with each other. These are metrics that characterise
the different pathways, for example the level of deployment of different
technologies or level of use across energy resources. The correlation
between such metrics allows us to observe, for example, whether cer-
tain technologies increase or decrease deployment simultaneously,
whether their deployment moves in opposite directions or whether
their deployment appears to be independent from each other.

Specifically, we use agglomerative hierarchical clustering, which is
a common clustering algorithm and has been applied, for example, in
the energy and buildings field [44,45]. In this approach, clusters are
nested meaning that they are merged successively. Each model metric is
clustered with its closest neighbour, meaning where the strongest cor-
relation is found. This cluster pair is then grouped with another, and so
on, until a single cluster is reached that includes all metrics. This tree-
like construction of nested sub-clusters can be visualised as a dendro-
gram, as shown in Appendix A3, representing the structure of the re-
lationship between data metrics. The dendrograms use a dissimilarity
metric to show strength of correlation, with a low value highlighting a
higher positive correlation.

While clusters indicate where the deployment of technologies in-
crease or decrease simultaneously, the algorithm used does not provide
insight as to whether the deployment of individual technologies con-
tributes to the energy system in a meaningful way. In other words, a

3 The data input parameters are available at http://www.eti.co.uk/
programmes/strategy/esme. Note that these data assumptions are for v4.3,
and in the main, are consistent with the input assumptions for v4.2, which is the
version used in this analysis. The key updates in v4.3 are shown in the ‘change
log’ at the end of the document; all have been integrated into the version we are
using (v4.2). Nuclear costs, and uncertainty distributions are based on our own
work (see Appendix A1), and therefore will differ from those published under
the released v4.2.
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cluster could include a power generation technology that barely con-
tributes to overall electricity supply, together with a transport tech-
nology that is key for the transport sector. Therefore, further analysis of
the results is required to complement the cluster analysis. It is also
informative to determine negatively correlated metrics, to identify de-
ployment of groups of technologies moving in opposite directions. To
do this, we constructed a proximity matrix based on the correlations
between any two clusters, represented by the mean of the metrics in-
cluded.

In this paper, the clustering approach is applied to two datasets. The
first uses a range of metrics directly from the model, chosen for their
representation of the main technologies and fuels deployed in pathway
simulations. A second set of metrics is derived from the model outputs
using a decomposition approach called logarithmic mean Divisa index
(LMDI) [46]. This method allows for an understanding of which drivers
are responsible for the change in emission levels of different subsectors
over time, including energy efficiency, conversion efficiency or dec-
arbonisation of the energy supply. Decomposition approaches, such as
LMDI, have been used for decades to study how changes in the level of a
variable (e.g. emissions, energy use) can be attributed to the changes in
its drivers [47], including in energy systems analysis [48–50]. Both sets
of metrics are listed and further described in Appendix A2.

3. Results

Here we first present the results of the clustering analysis. We first
discuss the LMDI clustering analysis, followed by the clustering of the
direct model metrics.

3.1. Clustering of LMDI wedges

LMDI analysis provides an indicator of the contribution of different
types of mitigation “wedges” [51] across sectors in any given simula-
tion. These wedges allocate emission reductions across different sectors
to three different types of measures m: (1) Reduction of energy demands
(Ds) (2) improvements in efficiency (Fs/Ds, includes electrification ef-
fects) and (3) decarbonisation (carbon intensity of final energy), CO2,s/
Fs). The emissions for end use4 sectors are thus expressed:

=CO D F
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s
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The LMDI formulation allows the allocation of mitigation efforts to
individual “wedges”, without leaving a residual. Mitigation between
time t1 and t0, for a specific sector s and measure m can be calculated
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The distribution of relative contributions of measures (that

contribute at least 10% of mitigation in at least one model run) in 2030
and 2050 are shown in Fig. 1 for each scenario. Negative contributions
suggest an increase in emissions, typically for energy service demands
which rise over time and which the model cannot reduce.

Across the scenarios, the importance of electricity decarbonisation
in both 2030 and 2050 (driving higher levels of electrification5) is
evident. There are, however, also clear differences across the scenarios
and the milestone years. Lack of any CCS applications and a stringent
emissions target, for example, forces earlier power decarbonisation in
all NCCS runs, whereas F2R, having the most flexibility of the three
scenarios due to its lower target and full technology portfolio, can in
some runs reduce the contribution from power sector decarbonisation
down to 25% of the full mitigation effort. By 2050, much of this flex-
ibility is gone and F2R relies even more on power sector decarbonisa-
tion than the other scenarios. Decarbonisation of the energy carriers
used in the industry is another key mitigation measures with a wide
range of contributions across the scenarios and runs, contributing on
average 20–30% by 2030 in the scenarios that allow CCS technologies.
Without CCS, however, the carbon intensity generally increases,
turning this mitigation wedge into a source of emissions in most NCCS
runs. For F2R, this mitigation measure has a very wide range, con-
tributing from −30% (i.e. being an emission source) to 65% of all
mitigation by 2030.

Other mitigation measures generally contribute less and vary more
across scenarios and milestone years than between simulation runs. The
differences produced by scenario assumptions are greater than those
based on the parametric uncertainty distributions. For example, in
2050, decarbonisation of passenger car fuels contributes 12–21% of
mitigation in NCCS runs, but no more than 9% in all the simulation runs
in the two other scenarios. In other words, all the uncertainties cap-
tured in the hundreds of CP and F2R runs did not lead to a run that
would have as much passenger car decarbonisation as all of the NCCS
runs did, highlighting how strongly discrete, key assumptions can
change the model results. The small range of contributing mitigation
wedges in 2050 and the limited variation in contribution across the
scenario simulation sets, few meaningful results are observed from the
cluster analysis. Most of the calculated wedges play an insignificant role
by 2050 and thus can contribute little to the cluster analysis.
Conversely, assessing the relationships between the key wedges be-
comes easier to do manually (see below). This highlights that the mi-
tigation effort, at the sector level, is not that responsive to uncertainty,
either as imposed via the scenarios or parameters, although the flex-
ibility from less stringent targets does see more wedges under F2R.

However, the correlations between individual wedges (see
Appendix 4), on which the clustering is based, reveal some useful in-
sights. Focusing on wedges that contribute most, in both RM and NCCS,
early power sector decarbonisation is strongly correlated with con-
tinued power sector contribution and heat decarbonisation in 2050,
suggesting a path dependency for the power sector contribution. In-
terestingly, there is no link to early heat decarbonisation, suggesting

Table 1
Scenarios for modelling.

Scenario Name Climate ambition* Technology availability

NCCS (No CCS) −80% GHG reduction in 2050 (rel. to 1990), −53% in 2030 All low carbon options except CCS
CP (Climate Policy) −80% GHG reduction in 2050 (rel. to 1990), −53% in 2030 All low carbon options
F2R (Failure to ratchet) −64% GHG reduction in 2050 (rel. to 1990), −48% in 2030 All low carbon options

* The 2030 value includes international shipping and aviation emissions, sectors which are not included in the UK carbon budgets but which are included in the 2050
target. To ensure consistency, the 2030 reduction above is on the same basis as the 80% target, and include international transport emissions. This means that the
reduction level is lower than the UK 5th Carbon Budget target of around 57% in 2030.

4 The equation remains the same for the conversion sector, but Ds in the
above equation is replaced by the final energy output of the sector and Fs by the
primary energy use of the sector.

5 For example, in NCCS system wide electricity use accounts for 14% of the
total energy use in 2020, and between 52 and 62% in 2050.
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that the transformation of the heating sector requires a longer time-
frame than power sector decarbonisation due to slower deployment
rates of low carbon options, and higher costs. Decarbonisation of fuels
in the industrial sector by 2050, in turn, is negatively correlated with
decarbonisation of heat in the residential sector and power sector
decarbonisation in the scenarios in which CCS is available. This sug-
gests that CCS brings with it some flexibility to target mitigation at
different part of the system, but the wedge analysis alone does not re-
veal what specific technologies contribute to this dynamic, which we
investigate in the following section.

3.2. Clustering of model metrics

We move from the more aggregated mitigation wedges to clustering
of metrics taken directly from the modelling. These are listed in
Appendix A2, and primarily consist of different energy technologies and
resources, based on their use in the system (in generation or con-
sumption terms). Based on the hierarchical approach, the resulting set
of clusters in 2050 are shown for each scenario-based dendrogram in
Appendix A3, with results presented in Figs. 2 and 3.7

Fig. 2a shows six distinctive clusters under the No CCS (NCCS)

scenario set of simulations. Where a cluster is negatively correlated to
another cluster (based on a coefficient of less than −0.5), this is also
indicated by a red arrow. The two largest clusters in terms of number of
metrics, purple and orange, are negatively correlated. The purple
cluster groups biomass resource levels with biofuel production for use
in transport, including aviation, suggesting higher levels of biofuel
production where biomass resource levels are higher. The orange
cluster includes hydrogen use in the road transport sector and oil in
aviation. The additional inclusion of cost metrics also suggests this is a
higher cost cluster, due to use of electrolysis for hydrogen production,
which is deployed when biofuel production is lower.

Building sector clusters include district heating (blue) and building
electrification (yellow), which are negatively correlated, suggesting
competition between technologies. However, the level of electricity use
is quite stable across simulations, with a low distribution so competition
is based on marginal changes. The building electrification cluster in-
cludes heat storage in buildings, and building retrofits, both important
to reduce demand and manage electricity loads, and improve building
performance for heat pump uptake. The other two clusters include
transport sector electrification (sky blue), and renewable generation
(green). The absence of negative correlations for these clusters high-
lights that they are not ‘crowded out’ and are typically prevalent in
most simulations, due to the increasing importance of electrification,
particularly in the absence of CCS. This is particularly true of transport
sector electrification, with limited results spread (as shown in Fig. 2a
box plot).

For the climate policy case with CCS availability (CP), the main
difference in clusters, compared to NCCS, relates to hydrogen (H2)
production, now produced using CCS (Fig. 2b). A purple cluster reveals

Fig. 1. Contribution of different mitigation wedges to emission reduction in 2030 (upper panel) and 2050 (lower panel, NCCS =green, CP=Blue,
F2R =orange). Positive values represent a mitigation driver reducing emissions, and vice versa for negative value. The box corresponds to the inter-quartile range
(IQR) and the whiskers represent the extent of values 1.5 times the IQR. Letters in the first part of the label denote sector [PWR=power; IND= industry;
TCR=passenger cars; TAV= aviation; BLDH=building heat; CBF= biofuels production; CH2=hydrogen production], while second part denotes type of driver
[EE= efficiency improvement; DEM=demand reduction; DCB=decarbonisation] 6.

6 Excluding outliers, i.e. data points that are at least 1.5 times the inter-
quartile range above/below 3rd/2nd quartile. There are a handful of runs like
this, but not many.
7 While we pre-defined the algorithm to search for 10 clusters, the number is

not crucial because the dendrogram (built based on the correlation coefficients)
retains the same structure irrespective of the cluster number. Only clusters.
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biomass availability associated with bioenergy-based H2 production
with CCS, and transport oil use, indicating that more bioenergy re-
source increases it use for H2 production with CCS, in turn allowing
headroom for transport emissions and more oil use. This cluster is ne-
gatively correlated with three other clusters including H2 production
and use in transport (orange), renewable generation (green), and pas-
senger car electrification (sky blue). These include clusters with a
stronger focus on end use sector mitigation in the transport sector
(orange, sky blue), including biofuels in aviation, partly required when
offsetting from BECCS is lower. The renewables cluster (green) is as-
sociated with costs metrics implying higher cost in higher renewable
deployment cases. This is not because the unit generation cost of re-
newables is higher than alternatives but due to the more cost-effective
system wide mitigation (offsetting) that CCS with bioenergy is able to
provide. Similar to NCCS, the building electrification cluster (pink) is
one that also sees heat storage in buildings and retrofitting to reduce
energy requirements, and is again negatively correlated with the dis-
trict heating cluster.

Finally, we consider the F2R, which assumes a weaker climate
policy, based on ‘failure to ratchet’ ambition. As with the CP case, a
cluster (brown) emerges to include H2 production with CCS for use in
industry, and transport oil use, enabled due to emissions headroom.
This cluster is negatively correlated with the pink cluster, which in-
cludes transport biofuel use. However, the use of these fuels in this
scenario are relatively low, so do not have a huge impact on the results.

Biomass availability and its use by industry are clustered (olive
green) with gas use in buildings, indicating that higher mitigation ef-
forts in industry see a reduction in the need for action in the building
sector. This allocation of bioenergy, which differs from the higher

allocation for use with CCS under the CP case, suggests stringency has
an important impact on resource allocation across sectors (as reflected
in the discussion on flexibility across mitigation wedges). This cluster
negatively correlates with the yellow cluster, which includes H2 in in-
dustry, the electrification of buildings, and cost metrics. On the cost
metrics this is not surprising given how influential biomass resource
availability is on system costs. Finally, the pale pink cluster includes gas
CCS, and is negatively correlated with a non-CCS generation cluster
(green), highlighting competition between generation types.

4. Discussion

There are a number of insights that emerge from the clustering
analyses. First, the approach provides a useful basis for understanding
key interdependencies between different technologies and where these
do not exist. Second, it highlights how the overarching scenario drivers
appear to have a strong impact on patterns of technology inter-
dependency. Third, the LMDI analysis highlights limited change in the
pattern of sectoral contribution, and points to observed changes driven
by scenarios rather than the uncertainty ranges across input para-
meters.

4.1. Technology interdependency revealed

Whilst all technology options can be deployed in a given pathway,
the clusters indicate what technologies move together and so are in-
terdependent, and therefore would have a tendency to deploy at rela-
tively higher levels together, and in such instances of high deployment,
identify other technology groups that deploy at lower levels (where

Fig. 2. NCCS and CP scenario clusters (top) and results distribution (bottom) in 2050. Clusters are identified in the top of the figure, with negative correlations
shown by red connectors, the value indicating the correlation coefficient. More information on the technologies included in each cluster can be found in Appendix A3.
The distribution of results underpinning the clusters are shown in the bottom part of the figures, with metrics (top left, going clockwise) on total energy use, power
generation, building fuel use and transport fuel use.
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negative correlations are revealed). A clear example is for the buildings
sector, where electrification is tied to building storage and retrofit,
highlighting the requirement for the system to manage increasing in-
termittent supply and peak demand. The negative correlation with
district heating suggests some competition between these systems de-
pending on cost uncertainties. For both high ambition scenarios (NCCS,
CP), these relationships hold.

Where CCS is not available (NCCS), three transport sector clusters
emerge - biofuels, H2 and electrification. The negative correlation be-
tween biofuels and H2 clusters is driven by biomass availability,
whereby higher availability leads to more biofuel production and use,
and less H2, which can only be produced via higher cost electrolysis.

Where CCS is available, hydrogen from biomass gasification with CCS
clusters with system oil use, and is negatively correlated with biofuel
and electrification clusters. Dissimilar to NCCS, the H2 production
cluster here is most cost-effective, due to the biomass availability and
system wide role of CCS in offsetting mitigation effort required in other
sectors; hence the higher oil use in transport as CCS use increases.

For the power sector, analysis shows that wind generation always
deploys at scale (between 40 and 50% of total generation in NCCS and
CP), as the largest generation source in the absence of CCS, or in the top
two generators where CCS is available, showing it to be fairly robust
under all cases. In the NCCS case, renewable generation is clustered
with H2 storage, due to its role in production via electrolysis. Where

Fig. 3. F2R scenario clusters (top) and results distribution (bottom) in 2050. Clusters are identified in the left hand side of the figure, with negative correlations
shown by red connectors, the value indicating the correlation coefficient. More information on the technologies included in each cluster can be found in Appendix A3.
The distribution of results underpinning the clusters are shown on the right hand side, with metrics (top left, going clockwise) on total energy use, power generation,
building fuel use and transport fuel use.
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CCS is available, renewable generation is negatively correlated with
CCS-based clusters; in F2R and CP, CCS directly competes with re-
newable generation, and indirectly in CP by providing more emissions
headroom due to offsets, meaning less renewable generation for low
carbon electrification in end use sectors.

4.2. Scenario drivers influence on interdependency

The above insights on technology interdependency are clearly im-
pacted by overarching scenario assumptions for CCS availability and
climate ambition. This is evident in some quite distinctive cluster pat-
terns; for example, bioenergy availability is clustered with H2 produc-
tion using CCS under CP, but with biofuels production in NCCS, while
in F2R, biomass availability is associated with its use in industry. This is
because such assumptions have strong system wide effects. CCS com-
bined with bioenergy provides negative emissions, which can offset
hard-to-treat sectors that would require higher cost mitigation options.8

In addition, important low carbon energy production is also provided,
such as hydrogen or electricity production. Even high CCS cost-low
bioenergy simulations in CP are lower cost than any simulation in
NCCS. CCS for example is valued by the system to the extent that it
brings the marginal abatement costs of mitigation in 2050 down to an
average £450 per tCO2 (range £320–595) in CP, from £1500
(£885–2115) in NCCS. The value of CCS, particularly with bioenergy, is
reflected in a range of other analyses, both at a national [25,52] and
global levels [8].

Similarly, the lower ambition in F2R see costs of £38 per tCO2
(range £34–42), meaning lower incentives for a range of technologies,
although CCS still plays a role. The absence of CCS (in NCCS) means
cost uncertainty matters less, as the system has reduced flexibility and
has to take specific options with limited prospects for fossil fuels.

In addition to highlighting the difference, the robustness of some
insights are evident by the fact that they do not change across the
scenarios. For example, the higher cost clusters are in each case nega-
tively correlated with the clusters with more biomass availability. This
is due to the high value of biomass in the system and its influence on
energy system costs [53]. The building electrification clusters always
see a similar composition, and are negatively correlated with district
heating in the CP and NCCS cases. The absolute changes across simu-
lations are indeed limited by the building sector being the end use
sector with near total decarbonisation by 2050. Another similarity
across scenarios is that a renewable generation cluster is identified for
each scenario, although its composition typically differs, as do the
clusters to which it is negatively correlated. In the ‘with CCS’ scenarios,
it is negatively correlated with CCS dominated clusters, while in NCCS,
it is not negatively correlated with any clusters but with a single
technology i.e. nuclear generation.

The strength of scenario drivers also highlights that technology in-
terdependency is more sensitive to broader analysis framing than the
technology uncertainty ranges. This raises questions as to whether
uncertainty ranges sufficiently cover a wide enough range or indeed the
necessary types of system uncertainty.

4.3. Aggregation impacts on clustering results

While technology clustering (3.2) highlights how parametric un-
certainty and scenario framing can reveal interdependency, the LMDI
metrics suggest that these same uncertainties do not radically change
the share of sector mitigation (i.e. technologies within the sector may
change, but the total sector contribution does not). This either tells us
something about the robustness of the results as to the level and timing

of sector contribution, or suggests that the model is structurally pre-
disposed to determining such patterns, despite the uncertainties in-
troduced into the modelling. This lack of variation across wedges re-
sults in clustering being ineffective. As most simulations rely on a
handful of key mitigation wedges, most wedges become meaningless for
the clustering and the dimensions of the analysis are reduced to a level
at which clustering does not provide much benefit. Conversely, focusing
on the key wedges, it is possible to identify very strong correlation
between specific wedges, which reinforce the relationships observed in
the technology clustering. Additional observations are that scenario
drivers have a stronger effect on the distributions than the technology
level uncertainties, reinforcing the idea that the uncertainty distribu-
tions may be limited in range, and to the assumptions to which they
apply.

5. Conclusions

This type of analysis provides decision makers with insights on the
interdependencies of technologies, arising from competition on cost
(electrification versus district heating), co-dependence (electrification
plus storage), or system wide effects (absence or inclusion of key
technologies e.g. CCS, policy ambition). Understanding inter-
dependency in a system is important; it helps identify what technolo-
gies work together and which tend to compete, under different system
level conditions. It also provides insights into why technology deploy-
ment may be low, if negatively correlated to a competing technology
deployed at scale.

The negative correlations between biomass availability and higher
cost clusters highlight the strong influence of this commodity on costs.
Similarly, the negative correlation between CCS with bioenergy clusters
and other end use options (in the CP case), for example for transport
sector decarbonisation, highlight how such options might be sig-
nificantly reduced by the inclusion of another (such as CCS). This type
of approach therefore provides enhanced understanding of multiple
pathways under uncertainty, through clustering options and revealing
negative correlations.

There are a number of specific insights for UK policy. First, the
prevalence of CCS, due its cost-effectiveness, suggests it is a critical
technology to develop and scale. This is an important message – it is a
clear opportunity. However, the inclusion of CCS also hides other so-
lutions, reducing the diversity of option type, and delaying their de-
ployment. There is a danger that the pervasive effect of this technology
on the wider system as shown by this analysis is not fully recognised,
which is problematic given the real risks of it not scaling in a timely
fashion. It is not simply an alternative electricity generation option but
one that can offset action in end use sectors (via BECCS), allow for a
slower transition away from fossil fuels, and delays direct mitigation in
end use sectors like transport. Arguably this analysis shows the need for
robust action, given CCS’ influence and risks of non-delivery, to ensure
options that allow for dynamic policy making as the situation evolves
[54]. Notably, recent Government projections perhaps underlie fading
optimism as to the role CCS can play in the next 20 years, with almost
no deployment envisaged prior to 2035 [55].

Second, interdependencies are strongly influenced by biomass re-
source assumptions. It is important to observe that this commodity has
huge value in the analysis, and that its allocation varies markedly for
given climate ambition and CCS deployment. Third, renewable elec-
tricity deployment levels appear less impacted by system level or
technology uncertainty, highlighting the robustness of this technology
as a major player for electricity generation in the long term. This is not
the case for nuclear, which is much more dependent on the scaling or
not of CCS. Given that wind generation is proven with rapidly falling
costs, it appears an extremely robust option, which makes lack of UK
government support for onshore wind all the more questionable.

Finally, the interdependency shown by clusters highlights some
important insights on planning policy actions in parallel. High building

8 Imported bioenergy is not fully carbon neutral, with 30% of total emissions
from its use counted due to consideration of life cycle emissions. For domestic
bioenergy, the accounted level is 10%.
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electrification requires thinking about building efficiency and storage to
allow for strong deployment of heat pumps. Hydrogen production is
only cost-effective alongside CCS, allowing for gas steam methane re-
forming (SMR) technology or the opportunity to generate negative
emissions via BECCS. Importantly, negative correlations between clus-
ters do not indicate that policy makers need to take an either-or deci-
sion, but rather what technology groups may compete under different
system configurations.

Whilst useful insights for policy, it is also worth highlighting the
limitations of this type of techno-economic modelling. System choices
are driven by rational economic choices and perfect information, with
limited consideration of other barriers. In reality, there are a range of
other factors that will influential deployment of different technologies,
particularly in the socio-political domain. For example, many technol-
ogies are subject to political influence, such as onshore wind planning
barriers in the UK and support for nuclear, or the lack of support for
nuclear and push for renewables in Germany [56]. Community accep-
tance is an oft cited additional factor, linked to influencing the political
agenda [57]. Other technologies have received very little support in the
past due to range of governance and social factors e.g. district heating
[58]. Therefore, the implementation of different strategies for dec-
arbonisation will need policies designed that further consider some of
the key issues around barriers, including convenience, choice and ac-
ceptance.

Reflecting on the analysis, future efforts could focus on widening
both the existing uncertainty ranges and the type of uncertainties

included in the simulations e.g. climate policy incentives, energy de-
mands. It is interesting how narrow some of the results ranges were –
and the comparative strength of the scenario drivers. Reflecting on the
above point around socio-political uncertainty, further research on the
interface between modelled and non-modelled uncertainties would
appear to be a worthwhile avenue for research [59,60]. It would also be
informative to consider scenario exploration techniques that gave
stronger insights into the determinants of different clusters [61]. In
summary, the use of clustering for enhanced understanding of how
technologies interplay or not in a system context adds to the toolbox of
modelling approaches that can assist decision makers.
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Appendices

A1. Uncertainty parameterisation

The table below lists the input parameters subject to uncertainty distributions, with the distribution range in the right hand columns. Further
information on the data input parameters can be found at http://www.eti.co.uk/programmes/strategy/esme. Note that these data assumptions are
for v4.3, and in the main, are consistent with the input assumptions for v4.2, which is the version used in this analysis. The key updates in v4.3 are
shown in the ‘change log’ at the end of the document; all have been integrated into the version we are using (v4.2). Nuclear costs, and uncertainty
distributions are based on our own work, and therefore will differ from those published under the released v4.2.

The focus of the uncertainty assessment is on costs of technologies and energy commodities. Annual maximum build rate uncertainties are also
applied to nuclear and CCS technologies whose deployment are subject to many additional factors e.g. planning, social acceptability, political
support. The uncertainty distributions in 2050 are sampled using the Monte Carlo technique. For each simulation, values for intermediate years
(prior to 2050) are determined based on interpolation back to the base year (2010) value based on an index using the shape of the original 2010 to
2050 trajectory.

Table A1
Model input parameter assumptions, and uncertainty ranges

Technology
type

Technology Parameter type Values Units (£/unit for cost para-
meters)

2050 distribution
range

2010 2050 Low High

Storage Battery - Li-ion Capital Cost 668 267 kWh −50% 50%
Battery - NaS Capital Cost 241 229 kWh −10% 10%
Compressed Air Storage of Electricity Capital Cost 10 10 kWh −30% 30%
Flow battery - Redox Capital Cost 443 266 kWh −50% 50%
Flow battery - Zn-Br Capital Cost 280 252 kWh −10% 10%

Power Biomass Fired Generation Capital Cost 2417 2357 kW −10% 10%
CCGT Capital Cost 589 496 kW −10% 10%
CCGT with CCS Capital Cost 997 777 kW −42% 60%
Gas Macro CHP Capital Cost 562 489 kW −10% 10%
Geothermal Plant (EGS) Electricity & Heat Capital Cost 9507 8556 kW −50% 50%
Geothermal Plant (HSA) Electricity & Heat Capital Cost 25869 23282 kW −30% 30%
Geothermal Plant (HSA) Heat Only Capital Cost 1459 1313 kW −10% 10%
H2 Turbine Capital Cost 590 500 kW −10% 10%
IGCC Biomass Capital Cost 1911 1507 kW −50% 50%
IGCC Biomass with CCS Capital Cost 4069 2661 kW −50% 50%
IGCC Coal Capital Cost 1827 1369 kW −30% 30%
IGCC Coal with CCS Capital Cost 2343 1719 kW −25% 100%
Incineration of Waste Capital Cost 1712 1472 kW −10% 10%
Nuclear (Gen III) Capital Cost 6000 4200 kW −20% 50%

(continued on next page)
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Table A1 (continued)

Technology
type

Technology Parameter type Values Units (£/unit for cost para-
meters)

2050 distribution
range

2010 2050 Low High

Nuclear (Gen III) Max annual build rate 1000 2000000 kW −90% 25%
Nuclear (Gen IV) Capital Cost 6000 4200 kW −20% 50%
Nuclear (Gen IV) Max annual build rate 100 240000 kW −90% 25%
Nuclear (small modular reactor, or SMR) Capital Cost 6500 6500 kW −20% 50%
Nuclear (small modular reactor, or SMR) Max annual build rate 100 1200000 kW −100% 20%
Offshore Wind (fixed) Capital Cost 3000 1500 kW −30% 15%
Offshore Wind (floating) Capital Cost 3000 1261 kW −30% 15%
Onshore Wind Capital Cost 1489 1250 kW −30% 30%
PC Coal Capital Cost 1565 1326 kW −10% 10%
PC Coal with CCS Capital Cost 2868 2232 kW −42% 60%
Severn Barrage Capital Cost 2330 2330 kW −30% 50%
Solar PV (Domestic) Capital Cost 3300 673 kW −30% 30%
Solar PV (Farm) Capital Cost 1400 449 kW −30% 30%
Tidal Range Capital Cost 3030 2580 kW −50% 50%
Tidal Stream Capital Cost 1890 1050 kW −50% 50%
Waste Gasification Capital Cost 3750 3750 kW −50% 50%
Waste Gasification with CCS Capital Cost 5800 5800 kW −50% 50%
Wave Power Capital Cost 7810 3540 kW −50% 50%

Fuel production Biodiesel Production Capital Cost 168 168 kW −30% 30%
Biokerosine Production Capital Cost 219 219 kW −50% 50%
Biopetrol Production Capital Cost 883 641 kW −30% 30%
Biopetrol Production with CCS Capital Cost 883 671 kW −30% 30%
H2 Plant (Biomass Gasification with CCS) Capital Cost 1204 828 kW −50% 50%
H2 Plant (Biomass Gasification) Capital Cost 1061 763 kW −50% 50%
H2 Plant (Coal Gasification with CCS) Capital Cost 950 698 kW −50% 50%
H2 Plant (Electrolysis) Capital Cost 1266 611 kW −30% 30%
H2 Plant (steam methane reforming (SMR) with
CCS)

Capital Cost 553 459 kW −50% 50%

SNG Plant (Biomass Gasification with CCS) Capital Cost 1209 831 kW −50% 50%
SNG Plant (Biomass Gasification) Capital Cost 969 764 kW −50% 50%

Transport Bus (BEV) Capital Cost 182574 117300 vehicle −50% 50%
Bus (Dual Fuel Direct Flywheel Hybrid) Capital Cost 152920 112579 vehicle −30% 30%
Bus (Dual Fuel Direct) Capital Cost 146002 108100 vehicle −30% 30%
Bus (Dual Fuel Port) Capital Cost 146002 110300 vehicle −30% 30%
Bus (Flywheel Hybrid) Capital Cost 138085 110615 vehicle −30% 30%
Bus (Gas SI Flywheel Hybrid) Capital Cost 148570 109252 vehicle −30% 30%
Bus (Gas SI) Capital Cost 141002 104400 vehicle −30% 30%
Bus (Hybrid) Capital Cost 224700 156600 vehicle −30% 30%
Bus (Hydrogen FCV) Capital Cost 520000 153800 vehicle −50% 50%
Bus (ICE) Capital Cost 130000 106400 vehicle −10% 10%
Bus (Wireless PHEV) Capital Cost 165000 112700 vehicle −30% 30%
Car Battery (A/B Segment) Capital Cost 18200 7567 vehicle −10% 75%
Car Battery (C/D Segment) Capital Cost 25373 13161 vehicle −10% 75%
Car CNG (A/B Segment) Capital Cost 10667 8186 vehicle −10% 10%
Car CNG (C/D Segment) Capital Cost 16781 12949 vehicle −10% 10%
Car Hybrid (A/B Segment) Capital Cost 10348 6125 vehicle −10% 15%
Car Hybrid (C/D Segment) Capital Cost 15603 9146 vehicle −10% 15%
Car Hydrogen FCV (A/B Segment) Capital Cost 33064 8192 vehicle −10% 75%
Car Hydrogen FCV (C/D Segment) Capital Cost 52221 14234 vehicle −10% 75%
Car Hydrogen ICE (A/B Segment) Capital Cost 29927 9207 vehicle −10% 50%
Car Hydrogen ICE (C/D Segment) Capital Cost 47488 14847 vehicle −10% 50%
Car ICE (A/B Segment) Capital Cost 7631 5662 vehicle −10% 10%
Car ICE (C/D Segment) Capital Cost 11123 8456 vehicle −10% 10%
Car PHEV (A/B Segment) Capital Cost 17710 6832 vehicle −10% 25%
Car PHEV (C/D Segment) Capital Cost 26594 10328 vehicle −10% 25%
HGV (Dual Fuel Direct Flywheel Hybrid) Capital Cost 97212 64767 vehicle −30% 30%
HGV (Dual Fuel Direct) Capital Cost 92228 59253 vehicle −30% 30%
HGV (Dual Fuel Port) Capital Cost 81807 58143 vehicle −30% 30%
HGV (Flywheel Hybrid) Capital Cost 81109 60965 vehicle −30% 30%
HGV (Gas SI Flywheel Hybrid) Capital Cost 83286 62200 vehicle −30% 30%
HGV (Gas SI) Capital Cost 71807 56698 vehicle −10% 10%
HGV (Hydrogen FCV) Capital Cost 1728053 455325 vehicle −10% 75%
HGV (ICE Euro 6) Capital Cost 72337 57578 vehicle −10% 10%
LGV (BEV) Capital Cost 65865 21200 vehicle −10% 75%
LGV (Dual Fuel Direct) Capital Cost 39140 38640 vehicle −10% 10%
LGV (Dual Fuel Port) Capital Cost 38140 37640 vehicle −10% 10%
LGV (Gas SI) Capital Cost 31120 30620 vehicle −10% 10%
LGV (Hybrid) Capital Cost 30290 16680 vehicle −10% 10%
LGV (Hydrogen FCV) Capital Cost 84780 25737 vehicle −10% 75%
LGV (Hydrogen ICE) Capital Cost 81911 28773 vehicle −10% 50%
LGV (ICE) Capital Cost 21871 15350 vehicle −10% 10%
LGV (PHEV) Capital Cost 36335 17050 vehicle −10% 25%

(continued on next page)
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Table A1 (continued)

Technology
type

Technology Parameter type Values Units (£/unit for cost para-
meters)

2050 distribution
range

2010 2050 Low High

MGV (Dual Fuel Direct Flywheel Hybrid) Capital Cost 61302 43621 vehicle −30% 30%
MGV (Dual Fuel Direct) Capital Cost 59721 38369 vehicle −30% 30%
MGV (Dual Fuel Port) Capital Cost 56350 40050 vehicle −30% 30%
MGV (Flywheel Hybrid) Capital Cost 49446 39621 vehicle −30% 30%
MGV (Gas SI Flywheel Hybrid) Capital Cost 52339 41928 vehicle −30% 30%
MGV (Gas SI) Capital Cost 46350 36597 vehicle −30% 30%
MGV (Hydrogen FCV) Capital Cost 1728053 455325 vehicle −10% 75%
MGV (ICE Euro 6) Capital Cost 44779 35643 vehicle −30% 30%

Buildings District Heating (HD) Capital Cost 3376–7059 3376–7059 dwelling −30% 30%
District Heating (MD) Capital Cost 5818–9906 5818–9906 dwelling −30% 30%
District Heating (LD) Capital Cost 8365–12903 8365–12903 dwelling −30% 30%
Retrofix (LD) Capital Cost 16363 10187 dwelling −20% 10%
Retrofix (MD) Capital Cost 11904 7284 dwelling −20% 10%
Retrofix (HD) Capital Cost 7629 4917 dwelling −20% 10%
Retroplus (LD) Capital Cost 25495 18237 dwelling −20% 10%
Retroplus (MD) Capital Cost 18974 13608 dwelling −20% 10%
Retroplus (HD) Capital Cost 14765 10246 dwelling −20% 10%
Heat Pump (Air Source, Hot Water) Capital Cost 750 585 kW −30% 30%
Heat Pump (Air Source, Space Heat) Capital Cost 750 585 kW −30% 30%
Heat Pump (Ground Source, Hot Water) Capital Cost 1200 936 kW −30% 30%
Heat Pump (Ground Source, Space Heat) Capital Cost 1200 936 kW −30% 30%
Heat Pump (Large Scale Marine) Capital Cost 300 300 kW −30% 30%
Solar Thermal (Domestic non south facing) Capital Cost 3046 2264 kW −50% 50%
Solar Thermal (Domestic south facing) Capital Cost 1616 1249 kW −50% 50%

Resources Biomass Importing Max annual build rate 1.08E+10 3.40E+10 kWh −100% 200%
Biofuel Imports Resource Cost 6.01 5.46 p/kWh −31% 50%
Biomass Imports Resource Cost 1.94 2.27 p/kWh −21% 58%
Coal Resource Cost 0.78 0.61 p/kWh −22% 51%
Gas Resource Cost 1.41 1.86 p/kWh −39% 16%
Liquid Fuel Resource Cost 4.62 4.20 p/kWh −31% 50%
Nuclear Resource Cost 0.16 0.34 p/kWh(th) 0% 39%
UK Biomass Resource Cost 1.87 1.87 p/kWh −30% 30%
UK Biomass Max Resource

Quantity
1.89E+10 1.17E+11 kWh −30% 30%

Industry CCS Max annual build rate 1 100000 industrial units −90% 50%
Other CCS Max annual build rate 100 20000000 kW −90% 50%

A2. Metrics used in clustering analysis

These following metrics used in the technology clustering analysis (section 3.2) are taken directly from the model results, and consist of different
energy technologies and resources, based on their use in the system (in generation or consumption terms).

Table A2a
Model scenario metrics using in technology clustering analysis

Metric Units Abbreviation

Marginal abatement cost £/tCO2 SYS-MCC
Total discounted costs £bln SYS-TDC
Biomass system wide consumption TWh RSR-BIO
Coal system wide consumption TWh RSR-COA
Electricity system wide consumption TWh RSR-ELC
Gas system wide consumption TWh RSR-GAS
Oil system wide consumption TWh RSR-OIL
Wind generation level TWh ELC-WND
Nuclear generation level TWh ELC-NUC
CCS generation level TWh ELC-CCS
Other renewable generation level TWh ELC-ORE
Fossil generation level TWh ELC-FOS
Building bioenergy consumption TWh BLD-BIO
Building electricity consumption TWh BLD-ELC
Building gas consumption TWh BLD-GAS
Building oil consumption TWh BLD-OIL
Building district heating consumption TWh BLD-DH
Building solar energy consumption TWh BLD-SOL
CCS in biofuel production MtCO2 captured CCS-BFL
CCS in hydrogen production MtCO2 captured CCS-H2
CCS in industry MtCO2 captured CCS-IND
CCS in power generation MtCO2 captured CCS-ELC

(continued on next page)
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Table A2a (continued)

Metric Units Abbreviation

BECCS in biofuel production MtCO2 captured CCSB-BFL
BECCS in hydrogen production MtCO2 captured CCSB-H2
BECCS in industry MtCO2 captured CCSB-IND
BECCS in power generation MtCO2 captured CCSB-ELC
Retrofitted dwellings 000s dwellings DWL-RTR
Imported biofuel TWh BFP-IMP
Domestic biofuel production TWh BFP-DOM
H2 production by biomass gasification with CCS TWh H2-BCCS
H2 production by coal gasification with CCS TWh H2-CCCS
H2 production by electrolysis TWh H2-ELC
H2 production by gas (steam methane reforming (SMR)) with CCS TWh H2-GCCS
H2 production by gas (steam methane reforming (SMR)) TWh H2-GAS
Industry bioenergy consumption TWh IND-BIO
Industry coal consumption TWh IND-COA
Industry electricity consumption TWh IND-ELC
Industry gas consumption TWh IND-GAS
Industry hydrogen consumption TWh IND-H2
Industry oil consumption TWh IND-OIL
H2 storage GWh STR-H2
Building level storage GWh STR-BLD
District heating storage GWh STR-DH
Imported biofuel TWh BFL-IMP
Domestic biofuel production TWh BFL-DOM
Aviation & shipping - gas TWh TAS-GAS
Aviation & shipping - oil TWh TAS-OIL
Aviation & shipping - biofuel TWh TAS-BFL
Cars - electricity TWh TCAR-ELC
Cars - gas TWh TCAR-GAS
Cars - H2 TWh TCAR-H2
Cars - oil TWh TCAR-OIL
Cars - biofuels TWh TCAR-BFL
Heavy goods vehicles - electricity TWh THGV-ELC
Heavy goods vehicles - gas TWh THGV-GAS
Heavy goods vehicles - H2 TWh THGV-H2
Heavy goods vehicles – oil TWh THGV-OIL
Heavy goods vehicles - biofuels TWh THGV-BFL
Light goods vehicles - electricity TWh TLGV-ELC
Light goods vehicles - H2 TWh TLGV-H2
Light goods vehicles - oil TWh TLGV-OIL
Light goods vehicles - biofuels TWh TLGV-BFL
Other transport - electricity TWh TOTH-ELC
Other transport - gas TWh TOTH-GAS
Other transport - H2 TWh TOTH-H2
Other transport - oil TWh TOTH-OIL
Other transport - biofuels TWh TOTH-BFL

This following LMDI derived mitigation wedges provide an indicator of the contribution of different types of mitigation across sectors (as used in
section 3.1). These wedges allocate emission reductions across different sectors to three different types of measures: (1) Reduction of energy demands
(2) improvements in efficiency and (3) decarbonisation.

Table A2b
LMDI metrics using in mitigation wedge clustering analysis

Sector Mitigation wedge Abbreviation

Buildings – heat Demand reduction BLDH_DEM
Buildings – heat End use efficiency BLDH_EE
Buildings – heat Decarbonisation BLDH_DCB
Industry Demand reduction IND_DEM
Industry End use efficiency IND_EE
Industry Decarbonisation IND_DCB
Transport – aviation Demand reduction TAV_DEM
Transport – aviation End use efficiency TAV_EE
Transport – aviation Decarbonisation TAV_DCB
Transport – car Demand reduction TCR_DEM
Transport – car End use efficiency TCR_EE
Transport – car Decarbonisation TCR_DCB
Transport – road freight Demand reduction TFR_DEM
Transport - road freight End use efficiency TFR_EE
Transport - road freight Decarbonisation TFR_DCB
Transport – shipping Demand reduction TSP_DEM
Transport – shipping End use efficiency TSP_EE

(continued on next page)
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Table A2b (continued)

Sector Mitigation wedge Abbreviation

Transport - shipping Decarbonisation TSP_DCB
Power generation Conversion efficiency PWR_CEF
Power generation Decarbonisation PWR_DCB
Conv - biofuel production Decarbonisation (based on FE) CBF_DEM
Conv - biofuel production Conversion efficiency CBF_CEF
Conv - biofuel production Decarbonisation CBF_DCB
Conv - district heating Decarbonisation (based on FE) CDH_DEM
Conv - district heating Conversion efficiency CDH_CEF
Conv - district heating Decarbonisation CDH_DCB
Conv - H2 production Decarbonisation (based on FE) CH2_DEM
Conv - H2 production Conversion efficiency CH2_CEF
Conv - H2 production Decarbonisation CH2_DCB
Conv - Other Decarbonisation (based on FE) COT_DEM
Conv - Other Conversion efficiency COT_CEF
Conv - Other Decarbonisation COT_DCB

A3. Technology clustering results

The following tables describe the clusters of technologies under each of the scenarios, and the negatively correlated clusters. These are the results
presented in section 3.2.

Table A3a
NCCS cluster descriptions. Negatively correlated clusters identified where the coefficient value is greater than 0.5

Cluster
colour

Cluster name Cluster metrics Negatively correlated clusters

Purple Transport biofuels
and gas

System wide biomass and gas use; domestic biofuel production and use across modes; oil and gas us in
freight (in addition to biofuels)

Orange (−0.87)

Sky blue Transport electrifica-
tion

Electricity use across road transport (passenger and freight) None

Green RE with H2 storage Wind and other renewables; H2 storage None (but strong with nuclear
generation)

Blue District heating District heating (and storage). Clustered with 2 metrics of transport biofuel use but weak correlation. Yellow (−0.98)
Yellow Building electrifica-

tion
Electrification of the building stock; storage capacity in buildings (hot water); building retrofit; nuclear
generation.

Blue (−0.98)

Orange H2 for transport H2 production via electricity; H2 in passenger road transport; cost metrics; oil in aviation; system wide oil
use

Purple (−0.87)

Table A3b
CP cluster descriptions. Negatively correlated clusters identified where the coefficient value is greater than 0.5

Cluster
colour

Cluster name Cluster metrics Negatively correlated clusters

Orange H2 production with gas for trans-
port

H2 production (via gas steam methane reforming (SMR)) and use in the transport sector. Brown (−0.51)

Green Renewable generation Renewable power generation options, costs metrics, selected transport electrification. Brown (−0.48)
Sky blue Passenger car electrification Passenger transport electrification; system electricity; aviation biofuels. Brown (−0.66)
Brown H2 with bio CCS, car oil use Biomass resource; H2 production with CCS & bioenergy; oil in cars; system oil use; H2 and

oil use in industry.
Orange (−0.51), Green (−0.48), Sky
blue (−0.66)

Pink Building electrification, power gen.
w/CCS

Electrification of buildings – as per the description in Table A3a; CCS in power sector, and
system gas use.

Blue (−0.94)

Blue District heating District heating (and storage). Clustered with transport biofuel use but weak correlation. Pink (−0.94)

Table A3c
F2R cluster descriptions. Negatively correlated clusters identified where the coefficient value is greater than 0.5.

Cluster colour Cluster name Cluster metrics Negatively correlated clus-
ters

Green Non-CCS generation Generation types including nuclear, wind and other renewables Pale pink (−0.84)
Pink Biofuel production (w/CCS) Biofuel production with use across the transport sector Brown (−0.85)
Brown H2 with CCS, transport oil use As per purple cluster under CP (Table A3b), except for biomass resource. Pink (−0.85)
Olive green Biomass resource Biomass availability; industry biomass; gas use in buildings. Yellow (−0.76)
Yellow End use sector decarbonisa-

tion
System electricity; building sector electrification; H2 in industry; system costs. Olive green (−0.76)

Pale pink Gas CCS System gas use; electricity generation with CCS (as in pink CP cluster). Green (−0.84)
(continued on next page)
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Table A3c (continued)

Cluster colour Cluster name Cluster metrics Negatively correlated clus-
ters

Blue District heating District heating (and storage). As in NCCS/CP, clustered with transport biofuel use but weak
correlation.

The following figures show the dendrograms based on the technology clustering analysis (section 3.2), by scenario. The different colours in the
figures denote the clusters, based on a predetermined ten cluster set. The dissimilarity score, at the lowest level between two metrics, is estimated as
(1 – [correlation coefficient between two metrics]), with very low values suggesting a high positive correlation. As clusters begin to grow through
aggregating individual metrics/subsets of metrics, the dissimilarity value is recalculated to represent the relationship between two clusters, instead
of the relationship between individual technologies in the two clusters. A dissimilarity score of 2 between two larger clusters indicates that there is a
higher chance that a technology in one cluster will have a negative correlation with a technology in the other cluster.

Fig. A3a-c. Hierarchical clustering dendrogram of ESME simulations in 2050 for each scenario. Note that the lower the dissimilarity score, the stronger the
positive correlation. The low dissimilarity scores for pairs of industrial fuels reflect very limited variation between simulations and are excluded from the results
descriptions.
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A4. Correlations between mitigation wedges (used in the LMDI analysis)

Fig. A4. Correlations between mitigation wedges in RM (top panel), NCCS (middle panel) and F2R (bottom panel).Wedges for 2030 and 2050 both are given
and only the ones with at least 10% share for the milestone year in at least one run are included. Correlations above 0.8 and below −0.8 are highlighted. Fill colours
indicate over 10% share in at least one run for 2030 only (yellow), for 2050 only (blue) or for both 2030 and 2050 (green).
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