
Title Multi-objective influence diagrams with possibly optimal policies

Authors Marinescu, Radu;Razak, Abdul;Wilson, Nic

Publication date 2017

Original Citation Marinescu, R., Razak, A. and Wilson, N. 'Multi-Objective Influence
Diagrams with Possibly Optimal Policies', Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17),
San Francisco, California, USA, 4 – 9 February, pp. 3783 - 3789

Type of publication Conference item

Link to publisher's
version

https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14774

Rights © 2017, Association for the Advancement of Artificial Intelligence
(www.aaai.org). All rights reserved.

Download date 2024-05-01 14:00:59

Item downloaded
from

https://hdl.handle.net/10468/6889

https://hdl.handle.net/10468/6889

Multi-Objective Influence Diagrams with Possibly Optimal Policies

Radu Marinescu
IBM Research – Ireland

radu.marinescu@ie.ibm.com

Abdul Razak and Nic Wilson
Insight Centre for Data Analytics
University College Cork, Ireland

{abdul.razak,nic.wilson}@insight-centre.org

Abstract

The formalism of multi-objective influence diagrams has re-
cently been developed for modeling and solving sequential
decision problems under uncertainty and multiple objectives.
Since utility values representing the decision maker’s pref-
erences are only partially ordered (e.g., by the Pareto order)
we no longer have a unique maximal value of expected util-
ity, but a set of them. Computing the set of maximal val-
ues of expected utility and the corresponding policies can be
computationally very challenging. In this paper, we consider
alternative notions of optimality, one of the most important
one being the notion of possibly optimal, namely optimal
in at least one scenario compatible with the inter-objective
tradeoffs. We develop a variable elimination algorithm for
computing the set of possibly optimal expected utility values,
prove formally its correctness, and compare variants of the
algorithm experimentally.

Introduction

Multi-Objective Influence Diagrams (MOID) (Marinescu,
Razak, and Wilson 2012) are a recent extension of influence
diagrams (ID) (Howard and Matheson 1984) that provide a
general framework for modeling and solving sequential de-
cision making problems under uncertainty and multiple ob-
jectives. They involve both chance variables, where the out-
come is determined randomly based on the values assigned
to other variables, and decision variables, which the deci-
sion maker can choose the value of, based on observations
of some other variables. Uncertainty is represented (like in
Bayesian networks) by a collection of conditional probabil-
ity distributions, one for each chance variable. To cope with
multiple and non-commensurate utility scales on which the
decision maker’s preferences are expressed, it is natural to
consider multi-objective or multi-attribute utility functions
(White, Sage, and Dozono 1984; Keeney and Raiffa 1993;
Roy 1996; Ehrgott 1999). Therefore, the utility values are
vectors in IRp, with p being the number of objectives, and
the overall value of an outcome is given by the sum of a set
of local multi-objective utility functions.

Since the utility values are only partially ordered (for in-
stance by the Pareto ordering) we no longer have a unique
maximal value of expected utility, but a set of them. In gen-
eral, given a MOID, the Pareto ordering on multi-objective

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

utility is a rather weak one; the effect of this is that the set of
maximal values of expected utility and the corresponding set
of decision policies can often become huge. Therefore, the
main drawback of MOIDs is that in most practical situations
the set of undominated decision policies is often too large to
be meaningful to the decision maker. Sometimes, the deci-
sion maker may be happy to provide additional tradeoffs be-
tween objectives, and these can be used to reduce further the
set of undominated expected utility values and their policies
(but typically not to singleton sets) as was recently shown in
(Marinescu, Razak, and Wilson 2012).

Contribution In this paper we take a different approach
and focus on finding optimal values of expected utility with
respect to alternative notions of optimality, such as the no-
tion of possibly optimal solutions considered in (Wilson,
Razak, and Marinescu 2015a) for multi-objective constraint
optimization problems. More specifically, we extend this
approach to multi-objective influence diagrams and look to
compute the set of possibly optimal values of expected util-
ity and the corresponding decision policies. A possibly opti-
mal policy is a policy that is optimal in at least one scenario
that is compatible with the inter-objective tradeoffs. We de-
velop a variable elimination algorithm for computing this
set, and give the key formal properties that ensure the cor-
rectness of the computation. Quite often, the decision maker
is happy to provide some preferences for one multi-objective
utility vector over another; these may arise, for example,
from an iterative elicitation technique. We use such inputs
to infer other preferences and use them to eliminate domi-
nated utility vectors during the computation. Our numerical
experiments demonstrate the efficiency of the proposed al-
gorithm both in terms of solution quality (as the cardinality
of the solution sets obtained) and the solution times.

Proofs and additional experimental results are contained
in a longer version of the paper (Marinescu, Razak, and Wil-
son 2017).

Background

Multi-objective Utility Values

Let p be the number of objectives (or attributes). A
multi-objective utility value is defined to be a vector �u =
(u1, . . . , up) ∈ IRp, where ui represents the utility with
respect to objective i ∈ {1, . . . , p}. We assume the stan-
dard pointwise arithmetic operations, namely �u + �v =
(u1 + v1, . . . , up + vp) and q × �u = (q × u1, . . . , q × up),

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3783

where q ∈ IR. For finite sets A,B ⊆ IRp, we define
A+B = {�u+ �v : �u ∈ A,�v ∈ B}.

DEFINITION 1 (weak Pareto order) Let �u,�v ∈ IRp so that
�u = (u1, . . . , up) and �v = (v1, . . . , vp). We define the bi-
nary relation ≥ on IRp by �u ≥ �v ⇐⇒ ∀i = 1, . . . , p, ui ≥
vi.

Let � be a partial order on IRp and let �u,�v ∈ IRp. If �u �
�v then we say that �u dominates �v (as usual, the symbol �
refers to the asymmetric part of �). Given finite sets U, V ⊆
IRp, we say that U dominates V , denoted U � V , if ∀�v ∈ V
∃�u ∈ U such that �u � �v. Furthermore, given a finite set
U ⊆ IRp, we define the maximal set max�(U) = {�v ∈
U | ��v ∈ U,�v � �u}. When � is the weak Pareto ordering
≥, we call max≥(U) the Pareto set.

Imprecise Tradeoffs

We assume that the decision maker (DM) provides addi-
tional preferences i.e., a set Θ of pairs of the form (�u,�v)
meaning that they prefer multi-objective vector �u to �v. These
can be viewed as a general kind of tradeoff between the ob-
jectives. We will use this input information to deduce fur-
ther preferences, based on the assumption that the user’s
model is a weighted sum of the objectives (thus being a
simple form of a Multi-attribute Utility Theory (MAUT)
model (Figueira, Greco, and Ehrgott 2005)). The treat-
ment of imprecise tradeoffs is based on the formalism in-
troduced recently in (Marinescu, Razak, and Wilson 2012;
2013; Wilson, Razak, and Marinescu 2015a).

Let W be the set of vectors in IRp with all components
non-negative and summing to 1. Elements of W are known
as weights vectors. Each weights vector �w ∈ W induces a
total pre-order ��w on IRp by, for �u,�v ∈ IRp, �u ��w �v if and
only if �w · �u ≥ �w · �v, where e.g., �w · �u =

∑p
i=1 �wi�ui.

We assume that the user’s preference ordering over multi-
objective vectors IRp is equal to ��w for some weights vector
�w ∈ W (which is unknown to us). For �w ∈ W and prefer-
ence pair (�u,�v), we say that �w satisfies (�u,�v) if �u ��w �v, i.e.,
if �w·�u ≥ �w·�v. We also say, for set of pairs Θ, that �w satisfies
Θ if �w satisfies each pair in Θ; let W(Θ), the set of (con-
sistent) scenarios, be all such �w. If we knew the weights
vector �w, the problem would reduce to a single-objective
problem. However, all we know is that �w ∈ W(Θ). This
leads to the induced preference relation �Θ defined as fol-
lows: �u �Θ �v if and only if �u ��w �v for all �w ∈ W(Θ);
hence, �Θ is equal to the intersection of relations ��w over
all �w ∈ W(Θ). Therefore, �u is preferred to �v if and only if
the preference holds for every consistent scenario. The asso-
ciated strict relation �Θ is given by �u �Θ �v ⇐⇒ �u �Θ �v
and �v
�Θ �u. When Θ is empty, �Θ is just the Pareto or-
dering. We make the weak assumption that �Θ is a partial
order.

Operators PO, CSD and POCSD Let D be a finite set
of utility vectors. There is more than one way of defining
the optimal utility vectors in D. Given input preferences
Θ, define the set CSDΘ(D) to be the �Θ-undominated vec-
tors in D. (CSD stands for Can Strictly Dominate, since
�u ∈ CSDΘ(D) if and only if for all non-equivalent �t ∈ D

there exists a consistent scenario �w in which �u strictly dom-
inates �t, i.e., �u ��w �t (Wilson and O’Mahony 2011).) For
�w ∈ W(Θ), we define O�w(D) to be the vectors �u in D that
are optimal in scenario �w, i.e., that maximize �w · �u. We
define POΘ(D) to be the set of possibly optimal utility vec-
tors, i.e., the vectors �u ∈ D that are optimal in some con-
sistent scenario, i.e., such that there exists �w ∈ W(Θ) with
O�w(D) � �u. Thus, POΘ(D) is equal to the union of O�w(D)
over all �w ∈ W(Θ). We also define operator POCSDΘ by
POCSDΘ(D) = POΘ(D) ∩ CSDΘ(D). We will some-
times abbreviate POΘ to PO, and similarly for CSDΘ and
POCSDΘ.

One can also define the set of necessarily optimal utility
vectors NOΘ, i.e., vectors that are optimal in every scenario.
This will usually be empty. However, if NOΘ is non-empty,
then it is equal to CSDΘ (Wilson and O’Mahony 2011), so
it suffices to compute the latter.

Multi-objective Influence Diagrams

A Multi-objective influence diagrams (MOID) is defined by
a tuple 〈C,D,P,U〉, where C = {C1, . . . , Cn} is a set
of chance variables which specify the uncertain decision
environment and D = {D1, . . . , Dm} is a set of decision
variables which specify the possible decisions to be made.
Ω(Y) denotes the domain of variable Y ∈ C ∪ D, and for
a set S ⊆ C ∪ D such that S = {Yi1 , . . . , Yik}, we define
Ω(S) = Ω(Yi1)× · · · × Ω(Yik).

As in Bayesian networks (Pearl 1988), each chance vari-
able Ci ∈ C is associated with a conditional probabil-
ity table (CPT) Pi = P (Ci|pa(Ci)), where Pi ∈ P and
pa(Ci) ⊆ C ∪ D \ {Ci}. Each decision variable Dk ∈ D
has a parent set pa(Dk) ⊆ C∪D\{Dk}, denoting the vari-
ables whose values will be known at the time of the decision
and may affect directly the decision.

The multi-objective utility functions U = {U1, . . . , Ur}
are defined over subsets of variables Q = {Q1, . . . ,Qr},
where Qi ⊆ C ∪ D is called the scope of Ui, and rep-
resent the preferences of the decision maker, namely Ui :
Ω(Qi) → IRp. Utility function Ui can be identified in the
obvious way with a function to 2IR

p

, by mapping each el-
ement of Ω(Qi) to a singleton subset of IRp; we abuse no-
tation by using Ui to refer to both functions. The local util-
ity functions define a global multi-objective utility function
that is additively decomposable, as follows: U(C ∪ D) =∑r

j=1 Uj(Qj).
A policy for a MOID is a set of decision rules Δ =

(δ1, . . . , δm) consisting of one rule for each decision vari-
able. A decision rule for the decision Dk ∈ D is a
mapping δk : Ω(pa(Dk)) → Ω(Dk). Therefore, a pol-
icy Δ determines a value for each decision variable Dk

(which depends on the parents set pa(Dk)). We assume
acyclicity of the dependency relation on decision variables.
Given a utility function U , a policy Δ yields a utility func-
tion [U]Δ that involves no decision variables, by assigning
their values using Δ. The expected utility of policy Δ is
EUΔ =

∑
C[(

∏n
i=1 Pi ×

∑r
j=1 Uj)]Δ. We therefore have

EUΔ ∈ IRp.
Solving a MOID means finding the set of policies that

3784

Figure 1: A bi-objective influence diagram.

generate maximal values of expected utility, i.e., values of
utility in the set max�{EUΔ | policies Δ}. We say that a
policy Δ is undominated if the corresponding expected util-
ity vector EUΔ is undominated.
Example 1 In Figure 1 we show the influence diagram of
the oil wildcatter problem (adapted from (Raiffa 1968)). An
oil wildcatter must decide either to drill or not to drill for
oil at a specific site. Before drilling, a seismic test could
help determine the geological structure of the site. The test
results can show a closed reflection pattern (indication of
significant oil), an open pattern (indication of some oil),
or a diffuse pattern (almost no hope of oil). The special
value notest is used if no seismic test is performed. There
are therefore two decision variables, T (Test) and D (Drill),
and two chance variables S (Seismic results) and O (Oil
contents). The probabilistic knowledge consists of the con-
ditional probability tables P (O) and P (S|O, T).

We consider a utility function with two attributes repre-
senting the testing/drilling payoff and damage to the en-
vironment, respectively. The utility of testing (represented
by the component U1(T)) is (−10, 10), whereas the util-
ity of drilling (represented by the component U2(O,D))
is (−70, 18), (50, 12), (200, 8) for a dry, wet and soak-
ing hole, respectively. Therefore, the utility function is
the sum of U1(T) and U2(O,D). The aim is to find op-
timal policies that maximize the payoff and minimize the
damage to environment. The dominance relation is de-
fined in this case by �u ≥ �v ⇔ u1 ≥ v1 and u2 ≤ v2
(e.g., (10, 2) ≥ (8, 4) and (10, 2) � (8, 1)). The Pareto
set max≥{EUΔ | policies Δ} contains 4 elements, i.e.,
{(22.5, 17.56), (20, 14.2), (11, 12.78), (0, 0)}, correspond-
ing to the four optimal (undominated) policies shown below:

Δ1 Δ2 Δ3 Δ4

δT yes no yes no
δD yes (S = closed) yes (S = notest) yes (S = closed) no (S = notest)

yes (S = open) no (S = open)
no (S = diffuse) no (S = diffuse)

EUΔi
{(22.5, 17.56)} {(20, 14.2)} {(11, 12.78)} {(0, 0)}

Optimality Operators

We want to show that MOID computations can be correctly
performed with respect to optimality definitions PO and

POCSD, as well as CSD. In this section, building on work
by (Wilson, Razak, and Marinescu 2015a), we consider a
more general and abstract notion of optimality, defined ax-
iomatically. We show that the operators satisfy properties
that ensure correctness of a variable elimination computa-
tion.

Axioms and Properties

For set of alternatives or outcomes A, OPT(A) is intended
to be the set of optimal ones, with respect to some particular
notion of optimality. Thus, operator OPT is a function that
has input some set of outcomes A (which is a subset of some
universal set D of outcomes), and returns a subset of A.

DEFINITION 2 (optimality operator) Let D be a finite set.
We say that OPT is an optimality operator over D if OPT
is a function from 2D to 2D satisfying the following three
conditions, for arbitrary A,B ⊆ D.

(1) OPT(A) ⊆ A;
(2) If A ⊆ B then OPT(B) ∩A ⊆ OPT(A);
(3) If OPT(B) ⊆ A ⊆ B then OPT(A) = OPT(B).

The properties entail that OPT is idempotent (Lemma 1
of (Wilson, Razak, and Marinescu 2015b)). The following
property, known as Path Independence in the social choice
function literature (Plott 1973; Aizerman and Malishevski
1981; Moulin 1985), is another important consequence of
the axioms, see Proposition 1 of (Wilson, Razak, and Mari-
nescu 2015b):

PROPOSITION 1 Let OPT be an optimality operator over
D. Then OPT satisfies the Union Decomposition property,
i.e., for all A,B ⊆ D, OPT(A ∪ B) = OPT(OPT(A) ∪
OPT(B)).

Additive Decomposition Suppose that D is a subset of
IRp for some p = 1, 2, We say that OPT : 2D →
2D satisfies the Additive Decomposition property if for any
A,B ⊆ D such that A + B ⊆ D, OPT(A + B) =
OPT(OPT(A)+OPT(B)). This property is necessary for
the correctness of our variable elimination approach.

PO, CSD and POCSD as Optimality Operators

Proposition 4 of (Wilson, Razak, and Marinescu 2015a)
shows that POΘ, CSDΘ and POCSDΘ are optimality op-
erators and satisfy Union Decomposition and Additive De-
composition.

Influence diagram computation involves multiplication of
a set of utility vectors by a positive real (probability value).
The Scaling property relates to this. We say that OPT sat-
isfies Scaling if for any A ⊆ D and λ ∈ IR with λ > 0,
we have OPT(λA) = OPT(λOPT(A)), whenever λA
and λOPT(A) are in D. The fact that �t ��w �u if and
only if λ�t ��w λ�u, leads to OPT(λA) = λOPT(A), for
OPT ∈ {PO,CSD,POCSD}, which, applying OPT to
both sides and using idempotence, implies Scaling.

PROPOSITION 2 Operators POΘ, CSDΘ and POCSDΘ

satisfy Scaling.

3785

Example 2 Continuing Example 1, suppose that we have
the input tradeoff Θ = {((3, 0), (6,−4))}, where the −4
represents 4 units of environmental damage. Then, CSD =
{(11,−12.78), (20,−14.2), (0, 0)} (where the minus sign
indicates that the corresponding objective value is to be min-
imized) because (20,−14.2) �Θ (22.5,−17.56). We have
that PO = {(20,−14.2), (0, 0)} because the utility value
(11,−12.78)
∈ PO since ��w ∈ W(Θ) satisfying the lin-
ear inequalities −1.5w1 + 2w2 ≥ 0, −9w1 + 1.42w2 ≥ 0,
11w1 − 12.78w2 ≥ 0, w1 + w2 = 1 and w1 ≥ 0, w2 ≥ 0.
Similarly, we can check that the utility values (20,−14.2)
and (0, 0) are possibly optimal with respect to the scenar-
ios (0.5, 0.5) and (0.4, 0.6), respectively. Consequently, we
also have that POCSD = {(20,−14.2), (0, 0)}.

Equivalences using Convex Closure

For sets of utility vectors we consider a form of equivalence
based on convex closure, i.e., two sets are equivalent if and
only if they have same convex closure: A ≡C B if and only
if C(A) = C(B), where C(A) is the convex hull of A.

We also make use of another form of equivalence ≡, given
partial order � = �Θ defined above. For U ,V ⊆ IRp, we
say that U � V if every element of V is (weakly) dominated
by some element of U , and define U ≈ V if and only if
U � V and V � U . Given U ,V ⊆ IRp, we define the
equivalence relation ≡ by U ≡ V if and only if C(U) ≈
C(V). Therefore, two sets of utility vectors are considered
equivalent if, for every convex combination of elements of
one, there is a convex combination of elements of the other
which is at least as good (with respect to the partial order �
on IRp). Note that if A ≡C B then A ≡ B. We have that:

PROPOSITION 3 Suppose that A,B ⊆ D are such that
A ≡C B. Then PO(A) ≡C PO(B).

Variable Elimination

We now describe the main contribution of this paper, that is
a variable elimination algorithm that eliminates chance vari-
ables and decision variables, respectively, using marginal-
ization operators

∑
X and

∨
X , to compute the set of OPT-

optimal values of expected utility and their corresponding
decision policies, where OPT is an optimality operator.

The decision variables are assumed to be temporally or-
dered. This property which is known as regularity induces a
strict partial order ≺ over all the variables C∪D, given by
I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dm ≺ Im, where I0, . . . , Im are
disjoint sets of chance variables, and for each k, 0 < k < m,
Ik are the chance variables observed between Dk and Dk+1,
I0 are the initial evidence variables, while Im are the unob-
served variables. Consequently, the variables must be pro-
cessed along a legal elimination ordering that respects the
partial order ≺ induced by the decision variables, namely
the reverse of the elimination ordering is some extension
of ≺ to a total order (Jensen, Jensen, and Dittmer 1994;
Dechter 2000; Marinescu, Razak, and Wilson 2012). The
set of OPT-optimal expected utility values can be found by

Algorithm 1: MOVE(OPT)
Data: A MOID M = 〈C,D,P,U〉 with p > 1 objectives, a legal

elimination ordering τ = (Y1, . . . , Yt) of the variables C ∪ D,
optimality operator OPT

Result: Set of OPT-optimal expected utility values and corresponding
decision policies

1 Let Φ = {φ|φ ∈ P}, Ψ = {ψ|ψ ∈ U};
2 foreach variable Y in τ = (Y1, . . . , Yt) do

3 Create bucket BY and its associated sets ΦY and ΨY ;
4 Let ΦY = {φ|φ ∈ Φ, Y ∈ sc(φ)} and Φ ← Φ \ ΦY ;
5 Let ΨY = {ψ|ψ ∈ Ψ, Y ∈ sc(ψ)} and Ψ ← Ψ \ ΨY ;

6 foreach variable Y in ordering τ = (Y1, . . . , Yt) do

7 if Y ∈ C is a chance variable then

8 φY ← ∑
Y

∏
φ∈ΦY

φ;

9 foreach ψ ∈ ΨY do

10 ψY ← 1
φY

∑
Y (

∏
φ∈ΦY

φ) × ψ;

11 else if Y ∈ D is a decision variable then

12 foreach φ ∈ ΦY do

13 Let S = sc(φ) \ {Y };
14 Compute φY as follows: ∀x ∈ Ω(S), φY (x) = φ(xy) for

any value y ∈ Ω(Y) ;

15 ψY ← ∨
Y

∑
ψ∈ΨY

ψ ;

16 Place each of the φY (resp. ψY) to the set ΦZ (resp. ΨZ) of the highest
bucket BZ corresponding to a variable Z in sc(φY) (resp. sc(ψY));
If Y is the last variable then add φY to Φ0 and ψY to Ψ0;

17 Let E = OPT((
∏

φ∈Φ0
φ) × (

∑
ψ∈Ψ0

ψ));

18 foreach variable Y in reversed ordering τ̃ = (Yt, . . . , Y1) do

19 if Y ∈ D is a decision variable then

20 ψ ← (
∏

φ∈ΦY
φ) × (

∑
ψ∈ΨY

ψ);

21 Let S = sc(ψ) \ {Y }, δ′ : Ω(S) → 2Ω(Y);
22 foreach x ∈ Ω(S) do

23 y′ = {y|ψ(xy) ∈ OPT(
⋃

y∈Ω(Y) ψ(xy))};

24 δ′(x) = y′;

25 ΔY = {δY |δY (x) = y, ∀x ∈ Ω(S), y ∈ δ′(x)}

26 Let Δ∗ = {(δ1, . . . , δm)|∀δY ∈ ΔY , Y ∈ D};
27 return (E,Δ∗)

computing:

∑
I0

∨
D1

· · ·
∑
Im−1

∨
Dm

∑
Im

⎛
⎝

n∏
i=1

Pi ×
r∑

j=1

Uj

⎞
⎠ (1)

For a real valued function f defined over a set of variables
S, f : Ω(S) → IR, and a variable X ∈ S, the func-
tion (

∑
X f) is defined over U = S \ {X} as follows.

For every u ∈ Ω(U), (
∑

X f)(u) =
∑

x∈Ω(X) f(u, x).

Similarly, for g : Ω(S) → 2IR
p

, the functions (
∨

X g)
and (

∑
X g) are defined as: for every u ∈ Ω(U),

(
∨

X g)(u) = OPT(
⋃

x∈Ω(X) g(u, x)), and (
∑

X g)(u) =

OPT(
∑

x∈Ω(X) g(u, x)) (here
∑

x denotes the repeated ap-
plication of the + operator defined for sets of utility vectors).

Algorithm MOVE

Algorithm 1 describes our variable elimination procedure,
called MOVE, for solving MOIDs. It takes as input an opti-

3786

mality operator OPT (e.g., PO), a legal elimination order-
ing τ = Y1, . . . , Yt of the variables, and partitions the input
functions into a set of buckets, such that each bucket BY is
labeled by a single variable Y and is associated with sets ΦY

and ΨY containing all input probability and utility functions
whose highest variable in their scope is Y .

MOVE processes each bucket, top-down from the first to
the last, by a variable elimination procedure that computes
new probability (denoted by φ) and utility (denoted by ψ)
components which are then placed in corresponding buckets
(lines 6-16). For a chance variable Y , the φY component
is generated by multiplying all probability functions in that
bucket and eliminating Y by summation (line 8). The ψY

component is computed as the average utility in that bucket,
normalized by the bucket’s compiled φ (line 10). Most im-
portantly, the operator

∑
Y uses OPT during elimination to

ensure that only OPT-optimal utility values are kept in ψY .
For a decision variable Y , we compute the ψY component

by summing all the utility functions in that bucket and elim-
inating Y by operator

∨
Y which prunes away non OPT-

optimal utility values (line 15). Each of the probability func-
tions in this bucket is a constant when viewed as a function
of the bucket’s decision variable and therefore the compiled
φY is a constant as well (lines 12-14) (Jensen, Jensen, and
Dittmer 1994; Wilson and Marinescu 2012).

The set E of OPT-optimal expected utility values is ob-
tained after eliminating the last variable, by combining all
remaining constant utility and probability functions.

In a second, bottom-up step, MOVE generates all poli-
cies that produce expected utility values in set E (i.e., OPT-
optimal policies). The decision buckets are processed in re-
versed order, from the last to the first. Let Y be the current
decision variable. The algorithm computes the set ΔY of
OPT-optimal decision rules associated with Y as follows.
It first combines all utility and probability functions residing
in bucket BY into a temporary function ψ which is defined
on Y and its parent-set pa(Y). Then, for each configura-
tion x of the parent-set pa(Y), it records the subset of do-
main values y′ ⊆ Ω(Y) that correspond to OPT-optimal
values of ψ (lines 21-24). The sets y′ are used to generate
the decision rules δY ∈ ΔY , by δY (x) = y, for each con-
figuration x ∈ Ω(pa(Y)) and y ∈ y′ (line 25). Finally, the
algorithm enumerates all OPT-optimal policies by select-
ing iteratively for each decision variable Y an OPT-optimal
decision rule δY from the corresponding set ΔY (line 26).

Complexity Based on previous work (Dechter 2000;
Marinescu, Razak, and Wilson 2012), the complexity of
MOVE can be bounded (time and space) by O(K ·N · kw∗

),
where N is the total number of variables, k bounds the do-
main size, and w∗ is the induced width of the legal elimina-
tion ordering. Since the utility values are vectors in IRp, it
is not easy to bound K, the size of the set of OPT-optimal
expected utility values.

Correctness of the MOVE Computation

We will prove the correctness of the variable elimination al-
gorithm, showing that the set of expected utility values com-
puted is equivalent to the set of OPT-optimal utility values,

where OPT is an alternative optimality operator.

Algorithm MOVE(I): MOVE without Pruning

We first consider the version MOVE(I) of the algorithm
which uses the identity optimality operator I given by
I(A) = A, for all A. This is equivalent to removing the
OPT operator from the marginalization operators

∑
X and∨

X , and lines 17 and 23 of Algorithm 1.
Given an MOID M, let HM be the set of all values

of (expected) utility generated by all possible policies, so
that �u is in HM if and only if there exists some policy
with expected utility of �u. The set of possibly optimal val-
ues of utility is equal to POΘ(HM). The set of undomi-
nated values of utility is equal to CSDΘ(HM), which equals
max�Θ

(HM). The algorithm in (Marinescu, Razak, and
Wilson 2012) computes CSDΘ(HM) up to ≡-equivalence.

The following result follows directly from Theorem 4 and
Proposition 5 of (Wilson and Marinescu 2012) (using �
equalling =, since then ≡ in Theorem 4 equals convex clo-
sure equivalence).

THEOREM 1 Let G be the output of MOVE(I). Then, G ≡C
HM.

Using Proposition 3, this immediately implies the follow-
ing corollary, stating that if we apply the PO operator to
the result of the no-pruning algorithm, then we obtain, up to
convex-closure-based equivalence, the set of possibly opti-
mal values of utility.

COROLLARY 1 Let G be the output of MOVE(I). Then
PO(G) ≡C PO(HM).

However, using the no-pruning algorithm to generate G
first will tend to be very computationally expensive. Instead
one would like to be able to apply the PO operator at inter-
mediate stages of the algorithm. The algorithm involves ap-
plying the operations of union, addition and scalar multipli-
cation to sets of utility vectors. The fact that the PO opera-
tor satisfies Union Decomposition, Additive Decomposition
and Scaling implies that, if we apply PO to sets of utility
vectors generated during the algorithm, the result is equal
to PO(G). This leads to the theorem below, which shows
that MOVE(PO) computes PO(HM), the set of possibly
optimal utility vectors, up to convex closure equivalence. A
related result holds for MOVE(POCSD) (see (Marinescu,
Razak, and Wilson 2017) for details).

THEOREM 2 Let F be the set of utility vectors generated
by MOVE(PO). Then F ≡C PO(HM), i.e., F is convex-
closure-equivalent to the set of possibly optimal utility vec-
tors.

Experiments

We evaluate empirically the performance of the proposed
variable elimination algorithms on random multi-objective
influence diagrams with tradeoffs. The problem instances
were generated using the random problem generator from
(Marinescu, Razak, and Wilson 2012) using 2, 3 and 5 ob-
jectives, respectively. We consider algorithms MOVE(PO)
and MOVE(POCSD), which compute sets of PO and

3787

size w∗ MOVE(PARETO) MOVE(CSD) MOVE(PO)
(C,D,O) # time avg stdev med # time avg stdev med # time avg stdev med

K = 1; T = 0

(15,5,2) 9 9 139.58 2,714 2,864 1,673 100 0.1 22 93 1 100 0.21 3 6 1
(25,5,2) 11 7 18.25 2,344 2,614 269 97 35.87 75 296 1 100 0.29 4 7 1
(35,5,2) 14 2 283.29 9,115 8,934 9,024 96 52.34 105 537 1 100 15.09 29 122 1
(45,5,2) 16 2 397.72 7,596 7,536 7,566 90 133.68 159 561 1 100 9.40 13 31 1
(55,5,2) 18 4 717.68 10,422 5,851 14,896 94 98.68 136 537 1 97 45.19 8 21 1

K = 2; T = 1

(15,5,3) 9 6 10.69 4,889 4,069 5,830 98 25.85 224 824 1 98 30.37 52 232 1
(25,5,3) 11 2 4.42 4,000 3,938 3,969 84 216.88 582 2170 1 85 197.31 149 699 1
(35,5,3) 14 0 95 73.81 203 623 1 99 17.47 15 33 2
(45,5,3) 16 2 242.68 15,431 1,729 8,580 78 270.45 266 989 4 86 181.96 23 55 4
(55,5,3) 18 0 77 243.52 73 334 2 85 196.51 13 35 2

K = 6; T = 3

(15,5,5) 9 3 65.73 15,062 12,229 14,741 98 24.13 36 143 2 97 36.56 8 25 2
(25,5,5) 11 1 50.35 21,074 0 21,074 95 63.40 155 659 4 97 42.05 14 34 4
(35,5,5) 14 0 88 152.95 299 1499 2 92 118.76 29 92 2
(45,5,5) 16 0 79 217.52 230 996 2 88 150.42 23 47 3
(55,5,5) 18 0 82 245.84 191 569 2 93 107.75 22 44 3

K = 1; T = 0

(15,10,2) 12 5 91.82 6,856 8,280 3,175 88 154.35 304 975 1 89 182.40 207 848 1
(25,10,2) 17 1 808.94 4,964 0 4,964 85 220.18 15 49 1 91 138.48 26 149 1
(35,10,2) 20 0 61 510.36 154 721 1 82 338.56 24 65 1
(45,10,2) 22 0 20 816.32 287 653 6 22 783.43 10 17 3
(55,10,2) 26 0 7 1004.2 45 87 1 6 1028.83 16 18 7

K = 2; T = 1

(15,10,3) 12 0 99 12.52 17 113 2 99 15.09 3 5 2
(25,10,3) 17 0 49 627.47 146 936 1 54 576.97 10 27 1
(35,10,3) 20 0 30 823.64 521 1597 2 39 747.22 46 138 2
(45,10,3) 22 0 20 962.45 46 165 3 23 636.289 60 131 4
(55,10,3) 26 0 0 9 841.95 34 52 5

K = 6; T = 3

(15,10,5) 12 0 99 17.37 1340 868 3 97 42.83 19 107 2
(25,10,5) 17 0 65 415.73 222 1362 1 70 412.24 26 94 1
(35,10,5) 20 0 33 732.06 553 1137 16 42 728.14 40 62 17
(45,10,5) 22 0 19 468.08 7 14 1 22 705.79 3 3 1
(55,10,5) 26 0 0 1 1195.74 97 0 97

Table 1: Results comparing algorithms MOVE(PARETO),
MOVE(CSD), and MOVE(PO). Time limit 20 minutes.

POCSD expected utility values. We also ran MOVE(CSD)
for computing sets of CSD expected utility values.

We generated consistent random tradeoffs between the
objectives of a given problem instance using the approach
from (Marinescu, Razak, and Wilson 2012). The random
tradeoffs are mainly characterized by the parameters K and
T , where K is the number of pairwise or binary tradeoffs
and T is the number of 3-way tradeoffs, respectively.

For reference, we also ran MOVE(PARETO) for comput-
ing Pareto optimal sets without any tradeoffs (Marinescu,
Razak, and Wilson 2012). All algorithms were written in
C++ and the experiments were run on a 2.6GHz processor
with 4GB of RAM.

Comparison between the Pareto, CSDs and POs Table
1 compares cardinalities of the sets of Pareto, CSD and PO
expected utility values for random influence diagrams with
2, 3 and 5 objectives, respectively. The tradeoff instances
were generated with (K = 1, T = 0) for 2 objectives,
(K = 2, T = 1) for 3 objectives, and (K = 6, T = 3)
for 5 objectives, respectively. For each problem size (char-
acterized by the number of chance variables C, number of
decision variables D, number of objectives O), we generated
100 random instances. We report the average cardinality of
these expected utility sets (together with the standard devi-
ation and median), the CPU time in seconds, as well as the
number of problem instances solved. All algorithms were
allotted a 20 minute time limit per problem instance. An
empty cell in the table denotes that the respective algorithm
could not solve any of the problem instances. For comput-
ing CSDs we take the approach from (Marinescu, Razak,
and Wilson 2012), where we replaced the faster dominance
checks between the multi-objective utility values using the

Figure 2: Number of solved instances as a function of pair-
wise tradeoffs. Time limit 20 minutes.

matrix multiplication presented in (Marinescu, Razak, and
Wilson 2013).

We can see that the POs become much smaller than
the corresponding CSDs, especially when the difficulty of
the problems increases. For example, for problems with
5 objectives, 25 chance variables and 5 decision, POs
are more than ten times smaller than CSDs. In addition,
MOVE(PO) is able to solve slightly more problem instances
than MOVE(CSD). Although applying the PO operator is
relatively expensive, because of the repeated checking of
the optimality condition using a linear programming solver,
the algorithm for computing POs is faster than the algo-
rithm for computing CSDs, which implies that the former
prunes more effectively than the latter. We also observed
that MOVE(PO) and MOVE(POCSD) performed very sim-
ilarly, in many cases solving the same number of instances
with exactly the same cardinality of the corresponding sets,
and therefore, the computed set PO being a subset of the
computed set CSD. It may well be the case that the ran-
domly generated tradeoffs lead to the set PO almost always
being a subset of CSD.

Impact of Increasing the Number of Tradeoffs Figure
2 shows the impact of the number of pairwise tradeoffs K
for random influence diagram instances with 5 objectives,
25 chance variables and 5 decision variables. We fixed the
number of 3-way tradeoffs to T = 3. Results were taken
over 100 problem instances with a 20 minute time limit per
instance. We can see that, as K increases, the PO and
POCSD algorithms solve more problems and consequently
the running time decreases substantially.

Related Work

Our notion of possible optimality is related to the con-
vex coverage sets introduced by (Roijers, Whiteson, and
Oliehoek 2013; 2014) in the context of multi-objective co-
ordination graphs. The algorithms proposed therein are also
based on variable elimination and therefore time and space
exponential in the induced widths of the underlying graphs.

More recently, (Benabbou and Perny 2015) proposed a
multi-objective A* search approach for computing possi-
bly optimal solutions in the context of multi-objective com-
binatorial optimization. An incremental elicitation mech-
anism is also embedded into the search so as to reduce

3788

the set of admissible scenarios until a nearly-optimal so-
lution is found. For soft constraint problems with miss-
ing preferences, (Gelain et al. 2010) describes a branch and
bound search algorithm augmented with a preference elic-
itation scheme for computing possibly optimal solutions.
Similarly, in computational social choice (Xia and Conitzer
2011) presents methods to determine possible and necessary
winners when incomplete preferences are available.

The work that is closest in spirit with ours is that by
(Roijers, Whiteson, and Oliehoek 2015) who introduce
the notion of optimistic linear support for multi-objective
POMDPs. The basic idea is to solve a series of scalarized
single-objective POMDPs, each corresponding to a different
weighting of the objectives. The output is a set of policies
that are optimal for some weighting (or scenario), which is
very similar to our approach. However, their solving method
is an iterative one which looks at different weightings one
at a time (reusing results from previous iterations), whereas
ours is based on dynamic programming and uses a linear
programming formulation for checking possibly optimal so-
lutions.

Conclusion

We introduced a variable elimination algorithm for comput-
ing the set of OPT-optimal values of expected utility (and
the corresponding decision policies) for multi-objective in-
fluence diagrams with tradeoffs, where OPT is an optimal-
ity operator. We also gave the key formal properties and
proved the correctness of the computation. Our experimen-
tal results indicate that computing PO and POCSD sets of
expected utility values is generally faster and can scale up
to more difficult problems involving more decisions and ob-
jectives. Moreover, the PO/POCSD sets are often consider-
ably smaller than the corresponding CSD ones, thus yielding
fewer policies. This is important because the decision maker
can be presented with the PO/POCSD policies first before
making any decision or eliciting more tradeoffs.

Acknowledgements

This work was supported in part by the Science Foundation
Ireland grant SFI/12/RC/2289. We are grateful to the re-
viewers for their helpful comments.

References

Aizerman, M., and Malishevski, A. 1981. General theory of best
variants choice: Some aspects. IEEE Transactions on Automatic
Control 26:1030–1040.
Benabbou, N., and Perny, P. 2015. Incremental weight elicitation
for multiobjective state space search. In Proc. AAAI-2015, 1093–
1099.
Dechter, R. 2000. A new perspective on algorithms for optimiz-
ing policies under uncertainty. In Artificial Intelligence Planning
Systems (AIPS), 72–81.
Ehrgott, M. 1999. Multicriteria optimization. Springer.
Figueira, J.; Greco, S.; and Ehrgott, M. 2005. Multiple Criteria
Decision Analysis—State of the Art Surveys. Springer International
Series in Operations Research and Management Science Volume
76.

Gelain, M.; Pini, M. S.; Rossi, F.; Venable, K. B.; and Walsh, T.
2010. Elicitation strategies for soft constraint problems with miss-
ing preferences: Properties, algorithms and experimental studies.
Artif. Intell. 174(3-4):270–294.
Howard, R., and Matheson, J. 1984. Influence diagrams. In Read-
ings on the Principles and Applications of Decision Analyis, 721–
762.
Jensen, F.; Jensen, V.; and Dittmer, S. 1994. From influence dia-
grams to junction trees. In Proc. UAI-94, 367–363.
Keeney, R., and Raiffa, H. 1993. Decisions with multiple ob-
jectives: preferences and value tradeoffs. Cambridge University
Press.
Marinescu, R.; Razak, A.; and Wilson, N. 2012. Multi-objective
influence diagrams. In Proc. UAI-2012, 574–583.
Marinescu, R.; Razak, A.; and Wilson, N. 2013. Multi-objective
constraint optimization with tradeoffs. In Proc. CP-2013, 497–512.
Marinescu, R.; Razak, A.; and Wilson, N. 2017. Multi-
objective Influence Diagrams with Possibly Optimal Poli-
cies (extended version available online). http://ucc.insight-
centre.org/nwilson/POIDAAAI17longer.pdf.
Moulin, H. 1985. Choice functions over a finite set: a summary.
Social Choice and Welfare 2(2):147–160.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann.
Plott, C. R. 1973. Path independence, rationality, and social choice.
Econometrica 41:1075–1091.
Raiffa, H. 1968. Decision analysis. Addison-Wesley.
Roijers, D.; Whiteson, S.; and Oliehoek, F. 2013. Computing
convex coverage sets for multi-objective coordination graphs. In
Proc. ADT-2013, 309–323.
Roijers, D.; Whiteson, S.; and Oliehoek, F. 2014. Linear support
for multi-objective coordination graphs. In Proc. AAMAS-2014,
1297–1304.
Roijers, D.; Whiteson, S.; and Oliehoek, F. 2015. Point-based plan-
ning for multi-objective POMDPs. In Proc. IJCAI-2015, 1666–
1672.
Roy, B. 1996. Multicriteria methodology for decision analysis.
Kluwer Academic Press.
White, C.; Sage, A. P.; and Dozono, S. 1984. A model of multiat-
tribute decision-making and trade-off weight determination under
uncertainty. IEEE Transactions on Systems, Man, and Cybernetics
14(2):223–229.
Wilson, N., and Marinescu, R. 2012. An axiomatic framework for
influence diagram computation with partially ordered utilities. In
Proc. KR-2012, 210–220.
Wilson, N., and O’Mahony, C. 2011. The relationships between
qualitative notions of optimality for decision making under logical
uncertainty. In Proc. AICS-2011.
Wilson, N.; Razak, A.; and Marinescu, R. 2015a. Computing pos-
sibly optimal solutions for multi-objective constraint optimisation
with tradeoffs. In Proc. IJCAI-2015.
Wilson, N.; Razak, A.; and Marinescu, R. 2015b. Com-
puting Possibly Optimal Solutions for Multi-Objective
Constraint Optimisation with Tradeoffs (extended version
of IJCAI-15 paper available online). http://ucc.insight-
centre.org/nwilson/POIJCAI2015longer.pdf.
Xia, L., and Conitzer, V. 2011. Determining possible and necessary
winners under common voting rules given partial orders. Journal
of Artificial Intelligence Research 41(1):25–67.

3789

