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SUMMARY

Rocaglates are a diverse family of biologically active
molecules that have gained tremendous interest in
recent years due to their promising activities in
pre-clinical cancer studies. As a result, this family
of compounds has been significantly expanded
through the development of efficient synthetic
schemes. However, it is unknown whether all of the
members of the rocaglate family act through similar
mechanisms of action. Here, we present a compre-
hensive study comparing the biological activities of
>200 rocaglates to better understand how the pres-
ence of different chemical entities influences their
biological activities. Through this, we find that most
rocaglates preferentially repress the translation of
mRNAs containing purine-rich 50 leaders, but certain
rocaglates lack this bias in translation repression.We
also uncover an aspect of rocaglate mechanism of
action in which the pool of translationally active
eIF4F is diminished due to the sequestration of the
complex onto RNA.

INTRODUCTION

Translation is an essential process that enables cells to make

rapid and spatiotemporal alterations to the proteome, and its

regulation is critical to a wide variety of biological processes,

including growth, differentiation, and development. Much of

translation regulation is imposed at the initiation phase, which

is an intricate process involving the coordination of multiple fac-

tors. In the canonical mechanism of initiation, eukaryotic initia-

tion factor (eIF) 4F (comprised of eIF4A, 4E, and 4G) binds to

the mRNA 50 m7GpppN cap to facilitate the recruitment of 43S

pre-initiation complexes (PICs; 40S ribosomal subunit and asso-
Cell Rep
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ciated factors). The 43S PIC then scans the mRNA 50 leader in
search for an initiation codon. Structural barriers within the 50

leader can affect the dependency of an mRNA on eIF4F and

consequently influence its ability to recruit or alter the scanning

efficacy of a 43S PIC (Pelletier and Sonenberg, 2019).

Targeting translation initiation has been recognized as a prom-

ising therapeutic strategy as it is frequently usurped in disease

and manipulation of this process can achieve selective changes

in gene expression. Of particular interest are a family of

compounds collectively known as rocaglates that stabilize

eIF4A:RNA interactions. Rocaglamide A (Roc A) causes eIF4A

to preferentially clamp onto RNA purine-rich regions, and when

this occurs within 50 leader regions, the stabilized eIF4A:RNA

complex is thought to impede 43S PIC scanning (Iwasaki et al.,

2016, 2019). However, purine content was not identified as a

sensitizing element in two other ribosome-profiling studies using

the related rocaglate member silvestrol (Rubio et al., 2014; Wolfe

et al., 2014). Instead, 50 leaders with long, structured sequences,

the presence of G-quadruplexes, and low overall GC content

were identified to be most significant. Whether this discrepancy

can be attributed to the fact that different rocaglate entities were

used in these studies is unknown, and if so, it raises the question

of whether all rocaglates operate through a shared mechanism

of action.

Over 100 rocaglates have been either isolated from natural

sources or synthetically derived, and limitations in accessing

specific structural entities have led to laboratories using different

molecules for their biological studies. In addition to Roc A and sil-

vestrol, commonly used rocaglates include CR-1-31-B, FL3,

RHT, and SDS-1-021 (Figure S1A). In this study, we address

the question of whether universal conclusions can be drawn

across the rocaglate family. To this end, we characterize the bio-

logical activities of >200 rocaglates. In general, we find a strong

correlation between the ability of a rocaglate to stimulate

the binding of eIF4A1 to RNA and their ability to inhibit transla-

tion. However, there were clear outliers suggesting that the

presence of specific chemical groups within rocaglates can
orts 30, 2481–2488, February 25, 2020 ª 2020 The Author(s). 2481
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Different Rocaglates Exhibit Distinct Biological Activities

(A) Polypurine clamping is a correlative, but not universal, predictor of cap-dependent inhibition. The DmP obtained with eIF4A1:poly r(AG)8 RNA was measured

for each compound (10 mM) and is plotted against the fold inhibition for cap-dependent translation (2 mM) of FF-HCV-Ren mRNA in Krebs-2. Note the duplicate

values for RHT (open circles) are due to two preparations of different enantiomeric purity, and the duplicate values for CR-1-31-B (dotted circles) are due to two

different compound batches (see Table S1). Pearson r = �0.62; p < 0.0001.

(B) Rocaglates preferentially stimulate eIF4A binding onto purine-rich RNAs. Different RNA probes were incubated in the presence of 500 nM eIF4A1 and

compound for 30 min before measurement. The DmP in the presence of compound relative to vehicle control is presented; n = 3 ± SEM.

(C) mRNA sensitivity toward CR-1-31-B is correlated to 50 leader purine content. The inhibition of cap-dependent (FLuc) and -independent (RLuc) translation was

measured in response to CR-1-31-B; n = 3 ± SEM.

(D) Dose response of the indicated rocaglates in Krebs-2 extracts programmed with the indicated mRNAs; n = 3 ± SEM.

See also Figures S1, S2, and S3 and Table S1.
differentially modulate eIF4A activity, and caution must be taken

when formulating global generalizations across all rocaglate

family members. We also expand our understanding of the

mechanism of action of rocaglates and show that they can sta-

bilize the eIF4F complex at the cap structure, exerting two previ-

ously unappreciated consequences on the initiation process: (1)

direct inhibition of translation of the target mRNA and (2) a

bystander effect on mRNAs whose sequences are not directly

targeted by rocaglates.

RESULTS

Rocaglate-Induced eIF4A1:RNA Clamping Is Not a
Universal Predictor of Translation Inhibition Potency
We have amassed a collection of >200 synthetic rocaglates and

used this unique resource to characterize their activity as trans-

lation inhibitors in vitro by using Krebs-2 translation extracts to

assess their ability to induce eIF4A1:RNA complexes with
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FAM-labeled r(AG)8 RNA (Iwasaki et al., 2016). Overall, the stim-

ulation of eIF4A:RNA association correlates with inhibition of

cap-dependent translation in vitro (Figure 1A). However, silves-

trol and two synthetic silvestrol derivatives (WGD-57-590 and

WGD-57-591) deviate from this trend, as these compounds ex-

hibited relatively weak activity in the fluorescence polarization

(FP) assay, yet strongly inhibited cap-dependent translation (Fig-

ures 1A and S1B). We also noted compounds that were potent at

inducing eIF4A1:RNA binding but showed weak activity toward

cap-dependent translation in vitro (Figures 1A, pink box, and

S1C). Among these were two cis-diol-containing rocaglaols,

CMLD011166 and CMLD011167. This analysis also uncovered

a potent new class of rocaglates, amidino-rocaglates (Figure 1A,

yellow oval), whose characterization was recently reported (Chu

et al., 2019; Zhang et al., 2019).

All of the rocaglates tested had a bias for polypurine-contain-

ing RNAs over polypyrimidine substrates (Figures 1B and S1D;

Table S1). In contrast, pateamine A, a structurally unrelated



eIF4A inhibitor, induced eIF4A binding to all of the RNA sub-

strates tested (Figure S1D). All rocaglate-induced eIF4A1:poly

r(AG)8 complexes were significantly more stable in the presence

of the non-hydrolyzable ATP analog adenosine-5’-[(b,g)-imido]

triphosphate (AMP-PNP) than in the presence of ATP (Fig-

ure S1E), as previously reported for eIF4A1:RocA:poly r(AG)8
(Iwasaki et al., 2016).

Rocaglates Show Differing mRNA-Targeting Spectra in
Translation Assays
The in vitro translation experiments described above were per-

formed at a fixed rocaglate concentration (2 mM) using a generic

bicistronic mRNA reporter (Novac et al., 2004). To better eval-

uate the consequences of eIF4A:polypurine clamping, we de-

signed a series of reporters harboring cap-proximal polypurine

tracks of varying lengths (Figure 1C). Through this, we observed

that 53 (AG) was sufficient to elicit maximum inhibition of cap-

dependent translation by CR-1-31-B (Figure 1C).

We next tested the translational response of mRNA reporters

with cap-proximal (AG)10 or (UC)10 sequences in the presence

of select rocaglates (Figure 1D). CR-1-31-B and Roc A selec-

tively inhibited cap-dependent translation of the (AG)10-con-

taining reporter (Figure 1D). Unexpectedly, silvestrol and

WGD-57-591 equally inhibited both mRNA reporters (Fig-

ure 1D), even though they do not stimulate the binding of re-

combinant eIF4A1 to polypyrimidine RNA (Figures 1B and

S1D). The rocaglaol derivative CMLD011167 failed to inhibit

either reporter (Figure S2A), which is consistent with its

apparent lack of in vitro activity in the previous experiments

(Figure 1A). The unrelated eIF4A inhibitors hippuristanol and pa-

teamine A equally repressed cap-dependent translation from

both reporters, demonstrating that purine selectivity in transla-

tion inhibition is not shared among all eIF4A-targeting mole-

cules (Figure S2A).

The difference in the mRNA targeting spectrum observed be-

tween CR-1-31-B and silvestrol was not restricted to cap-prox-

imal polypurine tracks, but was also observed with reporters

where the polypurine-polypyrimidine tracks were situated 15 nt

downstream of the cap, although here, the (AG)10 reporter ap-

peared more responsive to silvestrol than the (UC)10 reporter

(Figure S2B). Positioning a polypurine track within the 30 UTR
did not sensitize the translation to CR-1-31-B, indicating that

the influence of purine richness is 50 leader dependent

(Figure S2C).

To complement the results obtained by FP, we examined the

RNA-binding activity of eIF4A using biotinylated RNA pull-

downs (RPDs) in translation extracts. This was undertaken to

evaluate whether rocaglates induced preferential association

of eIF4A1 to polypurine templates in the presence of other initi-

ation factors and competing RNA-binding proteins. In these ex-

periments, 30-nt biotinylated RNA baits harboring a polypurine

(AG)10 or polypyrimidine (UC)10 track were added to translation

extracts in the presence or absence of rocaglate, followed by

purification using streptavidin beads. RPDs performed with

CR-1-31-B or Roc A showed that eIF4A1 was selectively asso-

ciated with the purine-rich template (Figure S3A). Unlike the re-

sults obtained in the FP experiments, RPDs using rabbit reticu-

locyte lysates showed that silvestrol stabilizes eIF4A1 onto both
the polypurine and polypyrimidine baits (Figure S3A). The bias

in eIF4E retention on a polypyrimidine versus polypurine sub-

strate may reflect a preferential sequence specificity of eIF4G

for oligo-(U) sequences, as previously reported (Zinshteyn

et al., 2017). Retention of eIF4A1 by silvestrol but not CR-1-

31-B on polypyrimidine RNA was also observed when an

ApppG-capped RNA substrate was used (Figure S3B). When

the RPDs were performed using purified eIF4A1 or eIF4F, no

increase in eIF4A1:polypyrimidine RNA association was

observed with silvestrol (Figure S3C). These results suggest

that an additional co-factor present in translation lysates is

likely required to stimulate eIF4A1 binding to pyrimidine

sequences in the presence of silvestrol. Because eIF4A

activity is stimulated when associated with the accessory

factor eIF4H, we assessed whether eIF4H would influence

eIF4A RNA binding in response to silvestrol. The RPD per-

formed using equimolar concentrations of eIF4A1 and

eIF4H showed an increased retention of eIF4A1 onto the

polypyrimidine RNA bait in the presence of silvestrol, but not

CR-1-31-B (Figure S3D). These results suggest that eIF4A-

interacting partners may influence the RNA-targeting spectrum

of rocaglates. Current experiments seek to better define this

phenomenon.

In Cellula Activity of Rocaglates
In addition to comparative assays in vitro, evaluation for bioac-

tivity against NIH 3T3 cells was conducted with all rocaglates.

To assess whether any compounds in our collection acted in

an eIF4A-independent manner, cytotoxicity was also measured

in the CRISPR-modified NIH 3T3 cell line eIF4A1em1JP, which

harbors the rocaglate-resistant eIF4A1(F163L) allele (Chu et al.,

2016). We identified 13 compounds that induced >70% cell

death relative to vehicle-treated cells when tested at 40 nM (Ta-

ble S1). CMLD011166 and CMLD011167, which were inactive

in vitro (Figure 1A), ranked highly among all of the compounds

tested with respect to cytotoxic activity (Table S1). In contrast,

WGD-57-590 and WGD-57-591, which were highly active in

the in vitro translation experiments, were found to be weakly

cytotoxic. All of the cytotoxic rocaglates showed little or signifi-

cantly diminished activity toward the eIF4A1em1JP cell line, indi-

cating that eIF4A1 on-target engagement is critical to the

observed phenotypic response (Figure 2A; Table S1).

To address whether differences in behavior among rocaglates

toward the (AG)10 and (UC)10 reporters observed in vitro

extended in cellula, we transfected the mRNA reporters into

293T cells and measured the relative production of luciferase

in the presence of compound (Figure 2B). CR-1-31-B showed

a preference for inhibiting the translation of (AG)10-FF-HCV-

Ren over (UC)10-FF-HCV-Ren mRNA (Figure 2B), although the

differences were not as pronounced as what was observed

in vitro (Figure 1D). However, silvestrol and WGD-57-591 in-

hibited both reporters equally (Figure 2B). CMLD011167

demonstrated a behavior that mirrored CR-1-31-B, with a clear

preference for inhibiting (AG)10-FF-HCV-Ren mRNA (Figure 2B).

The unrelated eIF4A inhibitors pateamine A and hippuristanol in-

hibited both reporters equally (Figure 2C).

Next, we used enhanced crosslinking immunoprecipitation

(eCLIP) to determine whether we could identify instances of
Cell Reports 30, 2481–2488, February 25, 2020 2483
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Figure 2. In Cellula Activity of Rocaglates

(A) Cytotoxicity of rocaglates toward NIH 3T3 (gray circle) and eIF4A1em1JP (red triangle) cells. Cells were exposed to 40 nM compound for 4 days, and viability

was measured using the sulforhodamine B (SRB) assay; n = 3 ± SEM.

(B) Rocaglates show different sequence preferences for inhibiting cap-dependent translation in cellula. HEK293T cells were transfected with the indicatedmRNA

reporters, compounds added 1 h later, and luciferase activity measured; n = 3 ± SD.

(C) Dose response of the indicated mRNAs to hippuristanol and pateamine in HEK293T cells; n = 3 ± SD.

(D) Comparison of the frequencies of quadruplet motifs in 50 leaders of eIF4A1-bound mRNAs upon CR-1-13-B and silvestrol treatments relative to DMSO. The

quadruplet motifs are color-coded: blue is for W4, orange is for R4, and cyan is for NAGT and AGTN. W = A, T; R = A, G. Data are compiled in Table S2.

See also Figure S4 and Table S1.
altered eIF4A1 clamping to endogenous cellular mRNAs. To

facilitate these experiments, we introduced a 3xFLAG tag into

the N terminus of the endogenous eIF4A1 using CRISPR-

Cas9-mediated gene editing in 293T cells (Figure S4A). IP ex-

periments using an anti-FLAG antibody demonstrated that

the tagged eIF4A1 molecule associates with eIF4E and eIF4G

(Figure S4B). Cells were exposed to vehicle, CR-1-31-B

(20 nM), or silvestrol (20 nM) for 1 h, and changes to the

FLAG-eIF4A1:RNA-binding landscape were determined via

eCLIP. Approximately 20%–30% of the unambiguously map-

ped reads aligned to the 50 leader regions, which represents a

2-fold enrichment relative to input (Figure S4C). As expected

for a translation initiation factor, eIF4A1 eCLIP read density

was enriched before the initiation codon (Figure S4D). In line

with the ‘‘clamping’’ model, we observed a negative correlation

between mRNAs whose 50 leaders displayed increased eIF4A1

binding in the presence of silvestrol and previously published
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ribosome-profiling datasets identifying silvestrol-responsive

mRNAs (Figure S4E). The absence of ribosome-profiling data

for CR-1-31-B prevented us from performing the same analysis

with CR-1-31-B. Overall, the changes in eIF4A1 RNA binding

induced by CR-1-31-B and silvestrol were largely similar, with

both compounds displaying a bias toward purine-rich motifs

(orange) and a bias against ‘‘AT’’-rich motifs (dark blue) (Fig-

ure 2D). We observed that ‘‘AGT’’-containing motifs were

more enriched in the CR-1-31-B-treated samples compared

to silvestrol (Figure 2D, cyan; Table S2). Moreover, a number

of differentially targeted transcripts were identified (Figure S5).

For example, JUN showed a higher number of 50 leader

read counts in cells treated with CR-1-31-B compared to sil-

vestrol (Figure S5A). The inverse was observed with PCDH9,

ACTR2, and CTNND1 (Figures S5B–S5D). We then assessed

whether these differences in eIF4A1 RNA binding correlated

with changes in translational efficiency using polysome
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Figure 3. Increased eIF4F Retention Time on mRNA by Rocaglates Inhibits Translation

(A) RPDs performed with m7GpppG-capped RNA in RRL with DMSO or 500 nM rocaglate.

(B) eIF4F:RNA complexes are stabilized by rocaglates. Biotinylated m7GpppG-capped polypurine RNA (1 mM) was incubated in the presence of purified eIF4F

(4 nM) in the presence or absence of CR-1-31-B (500 nM). A 10-fold molar excess of non-biotinylated RNA was then added to the reaction for the indicated

periods of time before the streptavidin pull-down. Complexes retained on the biotinylated RNA were then assessed by immunoblotting.

(C) eIF4F pre-stabilized onto m7GpppG(AG)10-FF-HCV-Ren by CR-1-31-B represses cap-dependent translation. RNA (100 nM), eIF4F (100 nM), and CR-1-31-B

(500 nM) were pre-incubated at 30�C for 10 min and then added to RRL translation extracts.

(D) The presence of m7GpppG-capped but not ApppG-capped purine-rich RNAs sensitizes the RocA/CR-1-31-B-unresponsive m7GpppG(UC)10-FF-HCV-Ren

mRNA reporter. Translation reactions were performed in Krebs-2 extracts with 10 nM mRNA reporter and 250 nM competitor RNA; n = 3 ± SEM.

(E) Addition of purified eIF4F rescues rocaglate-mediated translation inhibition. The m7GpppG(AG)10-FF-HCV-Ren reporter was added to Krebs-2 translation

extracts in the presence of eIF4F (10 nM) and 100 nM of the indicated compound; n R 3 ± SEM.
fractionation. We found that the translation of JUN was more

affected by CR-1-31-B than by silvestrol (Figure S5A).

Conversely, CTNND1 displayed a higher degree of association

with eIF4A1 in the presence of silvestrol and is affectedmore by

silvestrol compared to CR-1-31-B (Figure S5D). PCDH9 and

ACTR2 were similarly responsive to both compounds (Figures

S5B and S5C). While it appears that enrichment of eIF4A1 at

the mRNA 50 leader correlates with inhibition in translation,

we noticed that this was not always the case. For instance,

TAOK2 showed an increased accumulation of eCLIP reads

with both rocaglates, yet its translation was not profoundly

affected by either rocaglate when assessed by polysome frac-

tionation (Figure S5E). Overall, these results indicate that

increased eIF4A1:RNA binding represents one important

aspect of determining rocaglate sensitivity, but it is by no

means the only factor in play.
Rocaglates Sequester eIF4F onto RNA
As eIF4A is a critical component of the eIF4F complex, we

inquired as to whether rocaglates affected the association of

eIF4F toward RNA.WhenRPDswere performed usingm7G-cap-

ped polypurine RNA baits, the increased retention of eIF4E,

eIF4A, and eIF4G was observed in the presence of rocaglates

(Figure 3A). We then measured the stability of eIF4F on RNA in

the presence of competitor RNA (Figure 3B). In the absence of

compound, the eIF4F complex is not efficiently retained on the

RNA (t1/2 < 2min), but in the presence of CR-1-31-B, a significant

proportion of eIF4E and eIF4A remains associated with the bait

RNA up to 10 min following the addition of the competitor (Fig-

ure 3B). The increased eIF4F residence time on the polypurine

RNA in the presence of rocaglate is longer than the rates of

translation initiation (median < 1 min) (Shah et al., 2013; Yan

et al., 2016). To assess whether the rocaglate-induced trapping
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Figure 4. Rocaglates Function through a

Conditional Gain-of-Function Mechanism

(A) Western blot documenting endogenous and

ectopic eIF4A1 levels.

(B) Ectopic expression of WT eIF4A1 sensitizes

rocaglate-resistant cells to cell death. NIH 3T3 or

eIF4A1em1JP cells were infected with an empty

MSCV cassette or by expressing either WT eIF4A1

or eIF4A1(F163L). Viability was assessed following

a 4-day exposure to 40 nM of compound using

SRB assays; n = 3 ± SEM.

(C) Schematic diagram highlighting the different

ways by which rocaglates target translation.
of eIF4F leads to translation inhibition, we pre-assembled eIF4F/

CR-1-31-B/m7GpppG(AG)10-FF-HCV-Ren complexes and added

these to rabbit reticulocyte lysate (RRL) translation extracts.

Upon doing so, we found that the mRNAs associated with a ro-

caglate-stabilized eIF4F complex were less efficiently translated

(Figure 3C).

We hypothesized that prolonged retention of eIF4F on

mRNA may deplete the limited eIF4F pool available for ribo-

some recruitment and lead to a trans-inhibitory effect toward

mRNAs that are not directly affected by clamping. To test

this, we programmed in vitro translation reactions with the

(UC)10 reporter, which is not responsive to CR-1-31-B or Roc

A (Figure 1D), and added 25-fold molar excess of m7GpppG-

(AG)10 or ApppG-(AG)10 competitor RNA to the reaction

(Figure 3D). The addition of m7GpppG-(AG)10 competitor
2486 Cell Reports 30, 2481–2488, February 25, 2020
sensitized m7GpppG(UC)10-FF-HCV-Ren

mRNA to inhibition by CR-1-31-B and

Roc A (Figure 3D). In contrast, the addi-

tion of ApppG-(AG)10 and CR-1-31-B or

Roc A had little impact, demonstrating

this to be a cap-dependent phenomenon

(Figure 3D). Accordingly, the addition of

purified eIF4F partially rescued the cap-

dependent inhibition induced by CR-1-

31-B or silvestrol (Figure 3E).

To further evaluate the significance of

rocaglate-induced gain-of-function activ-

ity of eIF4F in cells, we reasoned that the

expression of wild-type (WT) eIF4A1 in

eIF4A1em1JP cells should resensitize these

cells to rocaglates. To test this, NIH 3T3

and eIF4A1em1JP cells were transduced

with an empty murine stem cell virus

(MSCV) cassette, MSCV/His6-eIF4A1, or

MSCV/His6-eIF4A1(F163L) (Figure 4A).

NIH 3T3 cells overexpressing WT eIF4A1

or eIF4A1(F163L) were similarly sensitive

to rocaglates, and few differences

were noted among them (Figure 4B).

However, the expression of WT eIF4A1

in eIF4A1em1JP cells significantly resensi-

tized these to all of the tested rocaglates

(Figure 4B). Overall, these results are

consistent with the notion that rocaglates
exert their effects by imparting a gain-of-function activity to

eIF4A1.

DISCUSSION

A surprising revelation of this study is that rocaglates can exert

different effects on gene expression. While the degree of

eIF4A1 stabilization onto RNA was generally a good predictor

of the extent of translation inhibition, there were clear outliers

to this trend. We also found differences between rocaglates in

their mRNA-targeting preference. CR-1-31-B and Roc A prefer-

entially inhibited purine-rich mRNAs, whereas this bias was

diminished with compounds like silvestrol (Figures 1D and 2B).

Silvestrol, WGD-57-590, and WGD-57-591 are the only mole-

cules within the collection containing a 1,4-dioxanyloxy moiety,



and these compounds inhibited translation in vitro far more

potently than what could be predicted based on their relatively

weak ability to stimulate eIF4A1:RNA association (Figure 1A; Ta-

ble S1). eCLIP experiments revealed that although the situation

is more complex with cellular mRNAs, there were distinct biases

uncovered between CR-1-31-B and silvestrol (Figure 2D).

Our results also suggest that interacting partners of eIF4A1

may play a role in rocaglate response. While RPDs performed

from cell-free translation systems showed that silvestrol was

able to stimulate eIF4A1 association onto poly r(UC)10, this effect

was not observed in RPDs using recombinant eIF4A1 or purified

eIF4F (Figure S3B). However, the addition of eIF4H to RPDs us-

ing recombinant eIF4A1 yielded results similar to the RPDs per-

formed with the translation extracts, suggesting that co-factors

can modulate the eIF4A1 response toward rocaglates. It would

be of interest to assess whether other eIF4A-associating pro-

teins, such as eIF4B, are capable of exerting effects similar to

eIF4H.

Another class of outliers included CMLD011166 and

CMLD011167, which are the only compounds in our collection

with a cis-1,2-cyclopentanediol core. In spite of their potent

ability to stimulate eIF4A1:RNA association, the cis-diol roca-

glaols did not inhibit translation in in vitro cell-free translation

systems. Nevertheless, these compounds are able to block

translation in cells and are highly cytotoxic (Table S1). Themech-

anism of action of the cis-diol rocaglaols is also eIF4A1 depen-

dent since cells harboring the eIF4A1 F163L mutation were

resistant. Our results caution against generalizations attributing

specific mRNA-responsive features to all biologically active

rocaglates.

The additional mechanisms of action by rocaglates found in

this work complement the recently proposed clamped-barrier

model (Figure 4C). As reported, rocaglates can stabilize eIF4A

to 50 leader regions and block 43S scanning (Figure 4C, step 1)

(Iwasaki et al., 2016). However, this mechanism does not fully

encapsulate the global changes in mRNA translation that are

induced by rocaglates. Our data indicate a more complex

mechanism of action, as we found that rocaglates can also

trap eIF4F complexes at the cap (Figure 3). This is associated

with reduced translation and is likely due to diminished 43S

PIC recruitment to the targeted mRNA (Figure 4C, step 2).

eIF4E has been shown to influence eIF4A-mediated mRNA

restructuring (Feoktistova et al., 2013), and a potential impact

of eIF4E on rocaglate-response remains to be evaluated. By

extending the resident time of eIF4F at the cap (Figure 3B),

rocaglates can also exert a bystander effect that leads to

trans-inhibition of translation on otherwise normally unrespon-

sive mRNAs (Figure 4C, step 3). As this effect is rescued by

the addition of eIF4F, we surmise that it results from a decrease

in the levels of free eIF4F. In providing a better understanding

of the mechanism of translation repression by rocaglates, we

have begun to define the nuances and complexities that this

class of compounds exerts on gene expression.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

FLAG Sigma Cat#: F1804

eIF4A1 Abcam Cat#: ab31217

eIF4E Cell Signaling Cat#: 9742

eIF4G Cell Signaling Cat#: 2498

eIF4H Cell Signaling Cat#: 3469S

eEF2 Cell Signaling Cat#: 2332

Bacterial and Virus Strains

E.coli BL21(DE3)pLys Promega Cat#: L1195

E.coli DH10B New England Biolabs Cat#: C3019I

Chemicals, Peptides, and Recombinant Proteins

Cycloheximide Sigma-Aldrich Cat#: C7698-5G

Sulforhodamine B sodium salt Sigma-Aldrich Cat#: S1402-5G

T3 RNA polymerase New England Biolabs Cat#: M0378S

T7 RNA polymerase New England Biolabs Cat#: M0251L

m7G(50)ppp(50)G RNA cap structure analog New England Biolabs Cat#: S1404S

G(50)ppp(50)A RNA Cap Structure Analog New England Biolabs Cat#: S1406S

AMP-PNP Sigma-Aldrich Cat#: 10102547001

Biotin-11-ATP Perkin Elmer Cat#: NEL544001EA

Biotin-11-UTP Perkin Elmer Cat#: NEL543001EA

His6-eIF4A1 This Paper N/A

RNaseI Ambion Cat#: AM2294

M-MuLV New England Biolabs Cat#: M0253L

DMRIE-C ThermoFisher Cat#: 10459014

Turbo DNase LifeTech Cat#: AM2239

RNaseI LifeTech Cat#: AM2295

FastAP LifeTech Cat#: EF0652

Murine RNase Inhibitor New England Biolabs Cat#: M0314L

T4 PNK New England Biolabs Cat#: M0201L

T4 RNA ligase 1 high concentration New England Biolabs Cat#: M0437M

Proteinase K New England Biolabs Cat#: P8107S

Q5 PCR Master Mix New England Biolabs Cat#: M0494L

AffinityScript Reverse Transcriptase Agilent Cat#: 600107

Exo-SAP-IT Affymetrix Cat#: 78201

Critical Commercial Assays

DC Protein Assay Bio-Rad Cat#: 5000112

Rabbit Reticulocyte Lysate Promega Cat#: L4960

5x Passive Lysis Buffer Promega Cat#: E1941

Anti-FLAG magnetic beads Sigma Cat#: M8823

Agencourt AMPure XP beads Beckman Coulter Cat#: A63881

Dynabeads MyOne Silane LifeTech Cat#: 37002D

Experimental Models: Cell Lines

Mouse: NIH/3T3 ATCC RRID: CVCL_0594

Mouse: eIF4A1em1JP NIH/3T3 cell line generated through

CRISPR/Cas9 editing (Chu et al., 2016)

N/A

Human: HEK293T 3xFLAG-eIF4A1 This Paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

50 6-FAM (Fluorescein) Integrated DNA Technologies N/A

Random Hexamers New England Biolabs Cat#: S1330S

A full list of oligos See Table S3 N/A

Recombinant DNA

pET15b-His6-eIF4A PMID: 16030146 N/A

pKS-FF-HCV-Ren PMID: 14769948 N/A

LeGo-mU6-sg4A1-Cas9(D10A) This Paper N/A

Software and Algorithms

Prism 7.0c Graphpad https://www.graphpad.com/

Bowtie PMID: 19261174 Version 1.1.1

Cutadapt https://cutadapt.readthedocs.io/en/stable/installation.html Version 1.2.1

Python https://www.python.org/downloads/release/python-276/ Version 2.7.6

Other

RefSeq Transcriptome Catalogue PMID: 26553804 Version 80

eCLIP Data https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE142338

GSE142338
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents generated in this study should be directed to and will be fulfilled by the

Lead Contact, Jerry Pelletier (jerry.pelletier@mcgill.ca). All unique/stable reagents generated in this study are available from the Lead

Contact with a completed Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture: All cell lines used in this study were maintained in DMEM supplemented with 10% FBS (Wisent), 100 U/mL penicillin/

streptomycin, and 2 mM L-glutamine at 37�C and 5% CO2. Details describing the generation of the CRISPR-modified NIH/3T3 line,

eIF4A1em1jp can be found in a prior publication (Chu et al., 2016)

METHOD DETAILS

Compounds
Rocaglates were synthesized using ESIPT photocycloaddition of 3-hydroxyflavones with cinnamates as previously reported, fol-

lowed by further functionalizations (Rodrigo et al., 2012; Stone et al., 2015; Yueh et al., 2017). A few compounds are present

more than once in the collection and arose from different synthesis batches or the preparations contain two enantiomers (see Table

S1). Compounds were resuspended in DMSO to a final concentration of 10 mM and stored at �80�C.

Recombinant DNA Constructs
Plasmids expressing the (AG)10- and (UC)10-reporters were constructed through modification of pKS-FF-HCV-Ren vector (Novac

et al., 2004). To facilitate the replacement of 50 leader sequences, MluI and NdeI restriction sites were introduced upstream of

the T3 promoter and of the FF AUG start codon, respectively. These sites were added as part of G blocks and cloned into the

pKS-FF-HCV-Ren vector using PciI and NarI restriction sites. Different 50 leader sequences were then introduced to the reporters

by annealing two overlapping phosphorylated oligonucleotides with the desired sequences, and directionally cloned into the vector

using the engineered MluI and NdeI restriction sites.

Cell Culture and Retroviral Transduction
All cell lines used in this study were maintained in DMEM supplemented with 10% FBS (Wisent), 100 U/mL penicillin/streptomycin,

and 2 mM L-glutamine at 37�C and 5% CO2. For overexpression studies with eIF4A1 in NIH/3T3 or eIF4A1em1jp cells, ecotropic

Phoenix cells were first transfected with retroviral vectors expressing codon optimized His6-tagged eIF4A1 (WT or F163L).

Forty-eight hours post-transfection, the viral supernatant was harvested, filtered, and added to NIH/3T3 or eIF4A1em1jp cells in

the presence of 4 mg/mL polybrene once every 12 h for a total of 4 infections. Two days after the final infection, cells were seeded

for SRB assays (described below) and western blotting.
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CRISPR/Cas9 Mediated Gene Editing
A guide sequence overlapping the translation start codon of eIF4A1 (5

0
GACATGATCCTTAGAAACTA30) and complementary to the

DNA coding stand (Figure S4A) was cloned into an all-in-one LeGO-based vector expressing Cas9-D10A. A donor sequence con-

taining 900 bp homology flanking both sides of the 3X FLAG sequence was synthesized by IDT and cloned into the pUC57 EcoRV

site. To introduce the 3X FLAG tag into the endogenous eIF4A1 locus, 293T cells were seeded to 70% confluency in a 10 cm dish and

transfected with 20 mg of donor plasmid and 10 mg of the targeting vector using calcium phosphate. The cells were refreshed with

media the next day. To screen for cells containing the 3X FLAG modification, two rounds of limiting dilution were performed. For

the first round, 10 cells were seeded per well in a 96well format two days following transfection. Approximately 2weeks after seeding,

when cells approached confluency, the plate was replicated and one plate evaluated using immunofluorescence (IF) with anti-FLAG

antibody (Sigma, F1804). Wells that contained cells that were positive for 3X FLAG eIF4A1 (as determined by IF) were expanded and

then seeded for a second round of limiting dilution, in which one cell was seeded per well in a 96 well format. The presence of suc-

cessful homologous recombination as well as homogeneity of cell line was evaluated using immunofluorescence.

Immunofluorescence
Cells were first washed with PBS and then fixed using 3.7% freshly prepared paraformaldehyde for 15 min at room temperature. Af-

terwards, the cells were washed twice with PBS and then permeabilized with 0.3% Triton X-100 in PHEM (60 mM PIPES [pH 7.2],

25mMHEPES, 10mMEGTA, 4 mMMgSO4) for 10min at room temperature and then washed with PBS. The cells were then blocked

with 5% goat serum in PHEM for 1 h at room temperature. To detect FLAG peptides, monoclonal anti-FLAG antibody (Sigma, F1804)

was prepared at a 1:1000 dilution in 5% goat serum/PHEM and then incubated overnight with the fixed cells at 4�C. The cells were

washed 5 times with PBS (10 minutes between washes) before incubation with secondary antibody coupled to Alexa Fluor 594. In-

cubation was performed at room temperature for 1 h and the cells were then washed 5 times with PBS (10 minutes per wash). During

the second PBS wash, the cells were counterstained with DAPI (1:10000 in PBS).

Co-immunoprecipitation Experiments
Parental 293T or 3xFLAG-eIF4A1 293T cells were lysed with a buffer containing 50 mM HEPES [pH 7.5], 150 mM KCl, 2 mM EDTA,

0.5%NP-40, 1mMNaF 1 1mMPMSF, 4 mg/mL aprotinin, 2 mg/mL leupeptin, and 2 mg/mL pepstatin. Lysates were cleared via centri-

fugation and protein concentrations were determined using a DC assay (Bio-Rad). For each sample, 30 ml of anti-FLAG magnetic

beads (Sigma, M8823) was washed twice with lysis buffer and then added to 500 mg lysate. The beads were incubated end-over-

endwith the lysates for 1 h at 4�Cand thenwashed 3 timeswith lysis buffer (eachwashwas incubated for 10minutes at 4�C). Proteins
were eluted from the beads through the addition of 1X SDS sample buffer and analyzed using immunoblotting.

Purification of Recombinant Proteins
pET15b-His6-eIF4A1 was transformed into BL21 (DE3) bacteria, plated onto LB-Agar plates, and single colonies were used to inoc-

ulate an overnight starter culture in LB containing 100mg/L ampicillin. This culture was expanded the following day at a 1:50 dilution,

and the bacteria was further cultured at 37�C until the OD600 reached 0.6-0.8. At this point, the cultures were induced with 1mM IPTG

and grown for an additional 3 h. The bacteria was pelleted and resuspended in buffer containing 20 mM Tris [pH 7.5], 10% glycerol,

0.1 mM EDTA, 200 mM KCl, 0.1% Triton X-100, 3.4 mM b-mercaptoethanol. Cells were lysed via sonication and cellular debris were

cleared via centrifugation. The cleared lysates were supplemented with 20 mM imidazole and then loaded onto a Ni-NTA agarose

column (QIAGEN). The column was washed 3 times with 4 column volumes of wash buffer 1 (20 mM Tris [pH 7.5], 10% glycerol,

0.1 mM EDTA, 800 mM KCl, 20 mM imidazole), followed by 3 washes using 4 column volumes of wash buffer 2 (Wash buffer 1 con-

taining 300 mM KCl). Purified proteins were eluted with wash buffer 2 containing 200 mM imidazole. The eluate was dialyzed over-

night in buffer containing 20 mM Tris [pH 7.5], 10% glycerol, 0.1 mM EDTA, 100 mM KCl, and 2 mM DTT. The next day, the dialyzed

samples were subjected to further purification through a Q-Sepharose Fast Flow (Amersham) column, and eluted with a 100 mM-

500 mM KCl gradient in 20 mM Tris [pH 7.5] 10% glycrerol and 0.1 mM EDTA. The final dialysis was performed in a buffer containing

20 mM Tris [pH 7.5], 10% glycerol, 0.1 mM EDTA and 2 mM DTT.

In Vitro Translation Assays
In vitro translation assays performed in Krebs-2 cell extracts with the addition of 5 mMMgCl2, 30 mM Tris-HCl [pH 7.5], 1.5 mM ATP,

0.1 mMGTP, 0.6 mMCTP, 10mMdipotassium creatine phosphate, 80 mg/mL creatine kinase, and 0.04mM amino acids. The in vitro

transcribed mRNA reporters were added to the Krebs-2 extracts to a final concentration of 10 ng/ml and incubated for 60 min at 30�C
prior to the measurement of luciferase activities.

Fluorescence Polarization Assays
Unless otherwise specified, 500 nM recombinant eIF4A1 was added to 10 nM FAM-labeled RNA in a buffer containing 14.4 mM

HEPES-NaOH [pH 8], 108mMNaCl, 1 mMMgCl2, 14.4% glycerol, 0.1%DMSO, 2mMDTT and 1mMAMPPNP in black, low volume

384 well plates (Corning 3820). Binding reactions were allowed to equilibrate for 30 min at 22�C in the dark prior to measuring po-

larization values on a Pherastar FS microplate reader (BMG Labtech). For the dissociation experiments, the eIF4A:FAM-(AG)8 com-

plexes were pre-assembled in the presence of 50 mM compound, incubated at 22�C for 30 min in presence of either 1 mM ATP or
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AMP-PNP, at which point 100 mMunlabelled (AG)8 RNAwas added andmeasurementswere performed. For conditions involving ATP

and DMSO, 50 mM eIF4A was used instead of 1 mM due to the low affinity of eIF4A for RNA.

RNA Transfections
HEK293T cells were transfected in a 24 well plate with 0.25 mg/well of in vitro transcribed m7GpppG(AG)10-FF-HCV-

Ren or m7GpppG(UC)10FF-HCV-Ren mRNA using DMRIE-C following the manufacturer’s instructions (ThermoFisher, 10459014).

One hour later, cells were exposed to the indicated concentrations of compounds for an additional 6 h. Following this,

extracts were prepared using passive lysis buffer (PLB, Promega) and luciferase activity measured on a Berthold Lumat LB 9507

luminometer.

Sulforhodamine B (SRB) assay
One thousand cells were seeded per well in a 96 well format and then cultured in the presence of 40 nM compound (unless indicated

otherwise). Cells were grown for 4 days before processing. Plates were washed with PBS, fixed with 50% cold trichloroacetic (TCA)

acid for 1 h, and stained with 0.5% sulforhodamine B (dissolved in 1% acetic acid) for 15 min. The unbound dye was removed by

washing the plates 5 times with 1% acetic acid. The plates were then dried, and the remaining dye was solubilized in 10 mM Tris

[pH 9] before measuring OD510 nm values on a Spectramax M5 (Molecular Devices).

RNA Pull Down (RPD) Experiments
RNAs were synthesized via in vitro transcription using T7 RNA polymerase (New England Biolabs). Annealed DNA ultramers

(Integrated DNA Technologies) served as templates. Biotin-11-UTP or Biotin-11-ATP (Perkin Elmer) were added at a final con-

centration of 0.1 mM (which is 10-fold less relative to unmodified NTPs) to the in vitro transcription reactions to generate

biotinylated (AG)10U10 or (UC)10A10, respectively. Rabbit reticulocyte lysates (Promega) were pre-incubated with 500 nM of

the indicated compound for 15 min at 30�C prior to the addition of m7GpppG- or ApppG-capped biotinylated RNAs (added

to a final concentration of 1 mM biotinylated RNA bait). Reactions were incubated for an additional 15 min at 30�C and then

diluted 10x with ice cold wash buffer (0.5% v/v NP-40, 50 mM HEPES [pH 7.3], 150 mM KCl, 2 mM EDTA, 2 mM MgCl2,

200 mg/ml heparin). Magnetic streptavidin beads (NEB) were used to capture the biotinylated RNA baits and the reactions

were incubated end over end for 1 h at 4�C. The beads were then washed three times with ice cold wash buffer (10 min per

wash) and the RNA bound proteins were eluted by digesting with 50 U of RNaseI (Ambion, AM2294) for 15 min at 37�C. Eluted
proteins were analyzed by western blotting.

Western Blotting
Cells were pelleted, washed with PBS and lysed with NP40 lysis buffer (150 mMNaCl, 2 mM EDTA, 0.5%NP40, 20 mM Tris (pH 7.3),

1mMPMSF, 4 mg/mL aprotinin, 2 mg/mL leupeptin, 2 mg/mL pepstatin). The cellular debris was pelleted by centrifugation at 16000 x g

for 5 min and the protein concentration of the lysates was quantitated using DC assay (BioRad) according to manufacturer’s instruc-

tions. The prepared lysates were then resolved on a 10% NuPAGE gel. The antibodies used for protein expression analysis were

directed against eIF4A1 (Abcam, ab31217), eIF4E (Cell Signaling, #9742), eIF4G (Cell Signaling, #2498), eIF4H (Cell Signaling,

#3469S), FLAG (F1804, Sigma), and eEF2 (Cell Signaling, #2332).

eCLIP
Briefly, 20 million 293T FLAG eIF4A1 cells were exposed to 0.05% DMSO, 20 nM CR-1-31-B or silvestrol for one hour prior to cross-

linking (254 nm, 400mJ/cm2, Hoefer UVC 500). The cells were then harvested and processed as originally described in Van Nostrand

et al. (2016). The only modification made to the protocol was the use of anti-FLAGM2magnetic beads (Sigma, M8823) for the FLAG-

eIF4A1 pulldown.

Polysome fractionation
HEK293T cells were exposed to vehicle, 20 nM CR-1-31-B or 20 nM silvestrol for 1 h and washed 2 times with ice-cold PBS con-

taining 100 mg/ml cycloheximide. The cells were pelleted and washed oncemore prior to lysis using a hypotonic lysis buffer ((5 mM

Tris-HCl [pH 7.5], 2.5mMMgCl2, 1.5 mM KCl, 2 mMDTT, 1% Triton X-100, 0.5% sodium deoxycholate, 100 mg/ml cycloheximide).

Lysates were cleared and loaded onto a 10%–50% sucrose gradient. The gradients were centrifuged at 35000 rpm for 2 h and

15 min, then fractionated using the Teledyne ISCO Foxy R1 collector. RNA was extracted from each fraction using Trizol and

cDNA was synthesized using M-MuLV reverse transcriptase (NEB, M0253L) and random hexamers (NEB, S1330S) following

the manufacturer’s instructions. Relative distribution of the indicated mRNAs across the polysome profile was assessed with

RT-qPCR using SsoFast EvaGreen mastermix (Bio-Rad). The primer pairs used in this experiment are as follows: JUN-f

(5
0
ATCAAGGCGGAGAGGAAGCG30), JUN-r (5

0
TGAGCATGTTGGCCGTGGAC30), ACTR2-f (5

0
GGCAGTTCTGACTTTGTACGC30),

ACTR2-r (5
0
CCAGTCTCCTGGTAAGATGAGG30), CTNND1-f (5

0
GTGACAACACGGACAGTACAG30), CTNND1-r (5

0
TTCTTGCG

GAAATCACGACCC30), PCDH9-f (5
0
CTGCTCTGATTGCCTGTTTAAGG30), PCDH9-r (5

0
ACCAGTCTGTAGACAAGGCTG30), TAOK2-f

(5
0
GGACTTTGGTTCTGCGTCCAT3

0
) and TAOK-2-r (5

0
TCGATGCAGGTTATCCCCAAG30).
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eCLIP data analysis
The cDNA libraries obtained from eCLIP experiments (in 3 biological replicates for each condition) were multiplexed and sequenced

to produce a dataset consisting of 900 million 50 bp paired end reads. The adaptor sequence (5
0
AGATCGGAAGAGCGTCGTGTAG30)

was removed with Cutadapt (Martin, 2011). The sequencing library was demultiplexed using a custom python script (see Table S2 for

barcodes). The readswere first aligned to rDNA using bowtie with (-a -v 3) parameters (Langmead et al., 2009). Approximately 40%of

the reads mapped to rDNA and were removed from further analysis. The remaining reads were aligned to the RefSeq catalog of hu-

man transcripts using bowtie with (-a -m 100 -v 2) parameters which resulted in the mapping of 5%–10% of the reads (depending on

the demultiplexed library). The RefSeq catalog was downloaded on 22 March 2017 from NCBI and it corresponds to version 80.

Reads that ambiguously mapped to transcripts derived from different gene loci were removed using a custom python script. Mapped

reads aggregated from all three replicates (ranging from 2.1 million reads to 3.8 million reads depending on the library) were used to

produce plots in the figures. The 30 ends of reads were used to mark the positions of the reads in the alignment with an exception of

when the reads were assigned to functional mRNA categories (Figure S4C) where the 50 end of the read was used for assigning the

read location. Differential expression analysis was carried out using the Z-score approach in which genes are first binned based by

lowest raw read count across the two treatments (DMSO, treated) and then log2 fold change of each gene is standardized (Andreev

et al., 2015).

To produce metagene profiles relative to CDS start (Figure S4D), read densities were normalized for each transcript to avoid

disproportional influence from highly abundant transcripts and the mean density values were used. For the relative enrichment of

nucleotide quadruplet motifs, the regions of the transcripts from the 50 end to the first 30 nucleotides of the coding region were

used. The log2 fold difference (treated/DMSO) for each motif frequency was normalized by the average log2 fold difference across

all motifs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were carried out in Prism 7.0. Data represents themean of at least 3 biological replicates ± SEM, unless indicated

otherwise. All of the statistical details can be found in the figure legends.

DATA AND CODE AVAILABILITY

The accession number for the eCLIP data originating from this study is GEO: GSE142338.
Cell Reports 30, 2481–2488.e1–e5, February 25, 2020 e5


	Rocaglates Induce Gain-of-Function Alterations to eIF4A and eIF4F
	Introduction
	Results
	Rocaglate-Induced eIF4A1:RNA Clamping Is Not a Universal Predictor of Translation Inhibition Potency
	Rocaglates Show Differing mRNA-Targeting Spectra in Translation Assays
	In Cellula Activity of Rocaglates
	Rocaglates Sequester eIF4F onto RNA

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Lead Contact and Materials Availability
	Experimental Model and Subject Details
	Method Details
	Compounds
	Recombinant DNA Constructs
	Cell Culture and Retroviral Transduction
	CRISPR/Cas9 Mediated Gene Editing
	Immunofluorescence
	Co-immunoprecipitation Experiments
	Purification of Recombinant Proteins
	In Vitro Translation Assays
	Fluorescence Polarization Assays
	RNA Transfections
	Sulforhodamine B (SRB) assay
	RNA Pull Down (RPD) Experiments
	Western Blotting
	eCLIP
	Polysome fractionation
	eCLIP data analysis

	Quantification and Statistical Analysis
	Data and Code Availability



