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Preface

To the reader who wants to dip a toe in the water: read chapter 1. The
reader who continues on to chapters 2 and 4 will pick up the rest of the tools.
Subsequent chapters prove the theorems. We assume that the reader is familiar
with elementary differential geometry on manifolds and with differential forms.
These lectures explain how to apply the Cartan–Kähler theorem to problems
in differential geometry. Given some differential equations, we want to decide
if they are locally solvable. The Cartan–Kähler theorem gives a linear algebra
test: if the equations pass the test, they are locally solvable. We give the
necessary background on partial differential equations in appendices A, B, and
the (not so necessary) background on moving frames in appendices D, F, G.
The reader should be aware of [4], which we will follow closely, and also the
canonical reference work [3] and the canonical textbook [19].

I wrote these notes for lectures at the Banach Center in Warsaw, at the
University of Paris Sud, and at the University of Rome Tor Vergata. I thank
Jan Gutt, Gianni Manno, Giovanni Moreno, Nefton Pali, and Filippo Bracci
for invitations to give those lectures, and Francesco Russo for the opportunity
to write these notes at the University of Catania.
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Chapter 1

Exterior differential systems

We define exterior differential systems, and state the Cartan–Kähler theorem.

Background material from differential geometry

By the expression analytic, we mean real analytic. We assume that all of our
manifolds, maps, vector fields and differential forms are analytic. (In a few
exercises, we describe some such thing as smooth, i.e. C∞, not necessarily
analytic.) A submanifold is an immersion of manifolds, defined up to diffeomor-
phism of the domain. Denote the dimension of a manifold M by dimM . The
codimension of a submanifold S of M is dimM − dimS. A hypersurface in a
manifold M is a submanifold of codimension one. A hyperplane in a vector
space V is a linear subspace W ⊂ V so that dim(V/W ) = 1.

Differential equations encoded in differential forms

To express a differential equation 0 = f
(
x, u, ∂u∂x

)
, add a variable p to represent

the derivative ∂u
∂x . Let ϑ ..= du − p dx, ω ..= dx. Let M be the manifold

M ..= { (x, u, p) | 0 = f(x, u, p) } (assuming it is a manifold). Any submanifold
of M on which 0 = ϑ and 0 6= ω is locally the graph of a solution. It is easy to
generalize this to any number of variables and any number of equations of any
order.

Exterior differential systems

An integral manifold of a collection of differential forms is a submanifold on
which the forms vanish. An exterior differential system on a manifold M is an
ideal I ⊂ Ω∗ of differential forms, closed under exterior derivative, and graded,
i.e. splitting into a direct sum

I = I1 ⊕ · · · ⊕ IdimM

of forms of various degrees: Ik ..= I ∩Ωk.

1.1 Prove that any collection of differential forms has the same integral mani-
folds as the exterior differential system it generates.

1



2 Exterior differential systems

Some trivial examples: the exterior differential system generated by

a. 0,

b. Ω∗,

c. the pullbacks of all forms via a submersion,

d. dx1 ∧ dy1 + dx2 ∧ dy2 in R4,

e. dy − z dx on R3.

1.2 What are the integral manifolds of our trivial examples?

By definition I0 = 0, i.e. there are no nonzero functions in I. If we wish
some functions to vanish, we can replace our manifold M by the zero locus
of those functions (which might not be a manifold, a technical detail we will
ignore).

Integral elements

An integral element of an exterior differential system I is a linear subspace of
a tangent space, on which all forms in I vanish. Every tangent space of any
integral manifold is an integral element, but some integral elements of some
exterior differential systems don’t arise as tangent spaces of integral manifolds.
A 1-dimensional integral element is an integral line. A 2-dimensional integral
element is an integral plane.

1.3 What are the integral elements of our trivial examples?

1.4 Suppose that the 1-forms in an exterior differential system span a subspace
of constant rank in each cotangent space. Prove that there is an integral curve
tangent to each integral line.

1.5 Give an example of an embedded integral manifold, whose every tangent
space is a hyperplane in a unique integral element, but which is not a hyper-
surface in an integral manifold.

1.6 Prove that a k-dimensional linear subspace of a tangent space is an integral
element of an exterior differential system I just when all k-forms in I vanish
on it.

The polar equations of an integral element E are the linear functions

w ∈ TmM 7→ ϑ(w, e1, e2, . . . , ek)

where ϑ ∈ Ik+1 and e1, e2, . . . , ek ∈ E, for any k. They vanish on a vector
w just when the span of {w } ∪ E is an integral element. The set of polar
equations of E is a linear subspace of T ∗mM . If an integral element E lies in
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a larger one F , then all polar equations of E occur among those of F : larger
integral elements have more (or at least the same) polar equations.

1.7 What are the polar equations of the integral elements of our trivial exam-
ples?

An integral flag of an exterior differential system is a sequence of nested
integral elements

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ep

with dimensions 0, 1, 2, . . . , p. Danger: most authors require that a flag have
subspaces of all dimensions; we don’t: we only require that the subspaces have
all dimensions 0, 1, 2, . . . , p up to some dimension p. Successive subspaces have
successively larger space of polar equations. The characters s0, s1, . . . , sp of the
flag are the increments in rank of polar equations: Ek has polar equations of
rank s0 + s1 + · · ·+ sk.

Consider all flags inside a given Ep. Polar equations remain linearly indepen-
dent under small motions of a flag. So if a flag in Ep has maximal dimensional
polar equations, i.e. character sums s0, s0 + s1, . . . , s0 + · · ·+ sp, then so do all
nearby flags in Ep. The characters of the integral element Ep are those of any
such flag.

1.8 What are the characters of the integral flags of our trivial examples?

Integral elements as points of the Grassmann bundle

The rank p Grassmann bundle of a manifold M is the set of all p-dimensional
linear subspaces of tangent spaces of M .

1.9 Recall how charts are defined on the Grassmann bundle. Prove that the
Grassmann bundle is a fiber bundle.

The integral elements of an exterior differential system I form a subset of
the Grassmann bundle. We would like to see if that subset is a submanifold,
and predict its dimension.

The Cartan–Kähler theorem

An integral element, say of dimension p and with characters s0, . . . , sp, pre-
dicts the dimension dimM + s1 + 2s2 + · · · + psp. It predicts correctly if the
nearby integral elements form a submanifold of the Grassmann bundle of the
predicted dimension. (We will see that they always sit in a submanifold of the
predicted dimension.) An integral element which correctly predicts dimension is
involutive. An exterior differential system on a manifold M is involutive if each
component of M contains an involutive maximal integral element. (We will
see that involutivity of an exterior differential system implies that involutive
integral elements occur at a dense open subset of points of M .)
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Theorem 1.1 (Cartan–Kähler). Every involutive integral element of any ana-

lytic exterior differential system is tangent to an analytic integral manifold.

1.10 Give an example of an exterior differential system whose characters are
not constant.

Example: Lagrangian submanifolds

We employ the Cartan–Kähler theorem to prove the existence of Lagrangian
submanifolds of complex Euclidean space. Let

ϑ ..= dx1 ∧ dy1 + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn.

Let I be the exterior differential system generated by ϑ on M ..= R2n. Writing
spans of vectors in angle brackets,

Flag Polar equations Characters
E0 = { 0 } { 0 } s0 = 0
E1 = 〈∂x1〉

〈
dy1〉 s1 = 1

...
...

...
En = 〈∂x1 , ∂x2 , . . . , ∂xn〉

〈
dy1, dy2, . . . , dyn

〉
sn = 1

The flag predicts

dimM + s1 + 2 s2 + · · ·+ n sn = 2n+ 1 + 2 + · · ·+ n.

The nearby integral elements at a given point of M are parameterized by
dy = a dx, which we plug in to ϑ = 0 to see that a can be any symmetric
matrix. So the space of integral elements has dimension

dimM + n(n+ 1)
2 = 2n+ n(n+ 1)

2 ,

correctly predicted. The Cartan–Kähler theorem proves the existence of La-
grangian submanifolds of complex Euclidean space, one (at least) through each
point, tangent to each subspace dy = a dx, at least for any symmetric matrix a
close to 0.

1.11 On a complex manifold M , take a Kähler form ϑ and a holomorphic
volume form Ψ , i.e. closed forms expressed in local complex coordinates as

ϑ =
√
−1
2 gµν̄dz

µ ∧ dzν̄ ,

Ψ = f(z) dz1 ∧ dz2 ∧ · · · ∧ dzn,

with f(z) a holomorphic function and gµν̄ a positive definite self-adjoint complex
matrix of functions. Prove the existence of special Lagrangian submanifolds, i.e.
integral manifolds of both ϑ and the imaginary part of Ψ .
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The last character

We always look for integral manifolds of a particular dimension p. For simplicity,
we can assume that our exterior differential system contains all differential forms
of degree p+ 1 and higher. In particular, the p-dimensional integral elements
are maximal. The polar equations of any maximal integral element Ep cut out
precisely Ep, i.e. have rank dimM −p on Ep. We encounter s0, s1, . . . , sp polar
equations at each increment, so rank s0 + s1 + · · · + sp. We can find sp from
the other characters:

s0 + s1 + · · ·+ sp−1 + sp = dimM − p.

For even greater simplicity, we take this as a definition for the final character
sp; we only pretend that our exterior differential system contains all differential
forms of degree p+ 1 and higher.

Example: harmonic functions

We will prove the existence of harmonic functions on the plane with given value
and first derivatives at a given point. OnM = R5

x,y,u,ux,uy , let I be the exterior
differential system generated by

ϑ ..= du− ux dx− uy dy,
Θ ..= dux ∧ dy − duy ∧ dx.

Note that
dϑ = dx ∧ dux + dy ∧ duy

also belongs to I because any exterior differential system is closed under exterior
derivative. Any integral surface X on which 0 6= dx∧ dy is locally the graph of
a harmonic function u = u(x, y) and its derivatives ux = ∂u

∂x , ux = ∂u
∂x .

Each integral plane E2 (i.e. integral element of dimension 2) on which
dx ∧ dy 6= 0 is given by equations

dux = uxxdx+ uxydy,

duy = uyxdx+ uyydy,

for a unique choice of 4 constants uxx, uxy, uyx, uyy subject to the 2 equations
uxy = uyx and 0 = uxx+uyy. Hence integral planes at each point have dimension
2. The space of integral planes has dimension dimM + 2 = 5 + 2 = 7.

Every integral line is the span E1 = 〈v〉 of a vector

v = (ẋ, ẏ, uxẋ+ uy ẏ, uxxẋ+ uxy ẏ, uyxẋ+ uyy ẏ) .

Compute

v

(
dϑ
Θ

)
=
(
ẋ dux + ẏ duy − (uxxẋ+ uxy ẏ) dx− (uyxẋ+ uyy ẏ) dy
ẏ dux − ẋ duy + (uxxẋ+ uxy ẏ) dy − (uyxẋ+ uyy ẏ) dx

)
.
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and
Flag Polar equations Characters
E0={ 0 } 〈ϑ〉 s0 = 1
E1=〈v〉 〈ϑ, v dϑ, v Θ〉 s1 = 2

We are only interested in finding integral surfaces; we compute the final char-
acter from

s0 + s1 + s2 = dimM − 2.

The characters are s0, s1, s2 = 1, 2, 0 with predicted dimension dimM + s1 +
2s2 = 5 + 2 + 2 · 0 = 7: involution. So harmonic functions exist near any point
of the plane, with prescribed value and first derivatives at that point.

1.12 What are the integral elements and integral manifolds of the exterior
differential system generated by du ∧ dx, dv ∧ dx, u du ∧ dv on R4

x,y,u,v?

1.13 Consider the partial differential equation

uxx = f(x, y, u, ux, uy, uxy, uyy).

Apply the Cartan–Kähler theorem to the associated exterior differential system.

1.14∗ Take a coupled system of two 2nd order partial differential equations

uxx = f,

uxy = g,

where

f = f(x, y, u, ux, uy, uyy),
g = g(x, y, u, ux, uy, uyy).

Find the integral lines and integral planes. Under what conditions on the first
partial derivatives of f, g is there more than one integral plane at the generic
point on which dx, dy are linearly independent?

Background material from differential geometry

1.15 Prove: constant rank linear equations, depending analytically on parame-
ters, have a local solution depending analytically on those parameters.

Lemma 1.2 (Cartan’s lemma). Suppose that ξ1, ξ2, . . . , ξk are linearly inde-

pendent analytic 1-forms on some manifold M . (They need not form a basis.)

Suppose that α1, α2, . . . , αk are analytic 1-forms satisfying 0 = α1 ∧ ξ1 + α2 ∧
ξ2 + · · · + αk ∧ ξk. Then there is a unique symmetric matrix A = (aij) of

analytic functions so that αi =
∑
aijξj.

1.16 Prove Cartan’s lemma using the solution of problem 1.15.
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The Frobenius theorem

The pullback of an exterior differential system by a map is the ideal generated
by the pulled back forms.

1.17 Prove that the pullback of an exterior differential system is an exterior
differential system.

A exterior differential system is locally generated by forms with some prop-
erty if every point lies in an open set so that the pullback to that open set is
generated by forms with that property.

Theorem 1.3 (Frobenius). Suppose that I is an exterior differential system

on a manifold M . The following are equivalent; if any, hence all, hold we say

that I is Frobenius.

a. Every integral element of I lies in a unique p-dimensional integral ele-

ment.

b. There is a constant so that I has a p-dimensional integral element at

each point of M , with character s0 equal to that constant, and all other

characters s1, s2, . . . , sp vanishing.

c. I has an involutive p-dimensional integral element at each point of M . I
is locally generated by dimM − p linearly independent 1-forms.

d. I is locally generated as an ideal of differential forms by dimM−p linearly
independent 1-forms.

e. I is locally generated by linearly independent 1-forms θ1, θ2, . . . , θq with

dθi = −
∑
j ξ

i
j ∧ θj for some 1-forms ξij.

f. I is locally generated by linearly independent 1-forms. The vector fields

on which all 1-forms in I vanish are closed under Lie bracket. They span

a p-dimensional linear subspace in each tangent space of M .

g. Each point of M has coordinates x1, . . . , xp, y1, . . . , yq so that I is locally

generated by dy1, dy2, . . . , dyq.

h. The p-dimensional I-integral manifolds form the leaves of a foliation F
of M . I is locally generated by the 1-forms vanishing on the leaves.

1.18 Use a statement of the Frobenius theorem from a differential geometry
textbook, or lemma 7.5 on page 57, to prove the Frobenius theorem.

To solve both ux = f(x, y, u) and uy = g(x, y, u), note

uxy = fy + fuuy = uyx = gx + guux,

the compatibility condition between these equations. The exterior dif-
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ferential system generated by θ = du− f dx− g dy contains

dθ = (fy + fug − gx − guf)dx ∧ dy + (fudx+ gudy) ∧ θ,

so takes the compatibility condition into account. By the Frobenius
theorem, fy + fug = gx + guf everywhere just when there are solutions
with arbitrary initial condition u(x0, y0) = u0.

1.19 Suppose that ϕ : P → Q is a surjective continuous map of manifolds, and
that P carries a Frobenius exterior differential system, on each leaf of which
ϕ restricts to a local homeomorphism to Q. Suppose that, for any two points
of P above the same point of Q, there is a ϕ-invariant homeomorphism of a
neighborhood of one to a neighborhood of the other, which takes leaves to leaves.
Prove that every leaf is a covering space of Q.

1.20∗ Recall from problem 1.14 on page 6 the study of a coupled system of two
2nd order partial differential equations

uxx = f,

uxy = g,

where

f = f(x, y, u, ux, uy, uyy),
g = g(x, y, u, ux, uy, uyy).

If fuyy 6= g2
uyy , prove that there are no integral surfaces.

Let I be the exterior differential system generated by linearly indepen-
dent 1-forms θ1, θ2, θ3 on a 6-dimensional manifold M . At each point
m ∈ M , they vanish on a 3-dimensional linear subspace Vm ⊂ TmM .
So Vm contains all integral elements at m; all lines in Vm are integral
lines. There are infinitely many integral curves through each point. The
differentials dθ1, dθ2, dθ3 are 2-forms on Vm; we want to “draw” them.
Pick a non-zero 3-form Ω on Vm. Each 2-form ξ on Vm is identified with
a vector u ∈ Vm by

ξ(v, w) = Ω(u, v, w),

for any v, w ∈ Vm. A 2-form ξ vanishes on a 2-plane in Vm just when
the associated vector u lies in the 2-plane. Our three differentials are
identified with three vectors in the 3-dimensional vector space Vm; inte-
gral planes are those which contain all three. If those three vectors have
span of dimension:

0: All planes in Vm are integral planes; this holds throughout M just
when I is Frobenius, so that M is foliated by integral 3-manifolds.
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1: There is a circle of integral planes: the planes passing through the
line spanned by u1, u2, u3 in Vm. Take an integral line, say the span
of some vector v, and suppose that v is not in the span of these
u1, u2, u3. The polar equations of that integral line vanish only on
the plane spanned by v and these u1, u2, u3, so a 1-dimensional
space of polar equations added to the s0 = 3 we had. So s1 =
1, s2 = 0. By the Cartan–Kähler theorem, if this occurs throughout
M , I is involutive, with infinitely many integral surfaces through
each point.

2: There is a unique integral plane through m: the plane spanned
by u1, u2, u3 in Vm. The generic integral line doesn’t lie on it, so
s1 = 2, s2 = 0, and the Cartan–Kähler theorem is silent about the
integral surfaces.

3: There are no integral planes nor integral surfaces near m.

Example: surfaces with constant shape operator

In this section, we assume familiarity with appendix D. Use the Frobenius
theorem:

1.21 Prove that, for point x ∈ E3 and plane P in E3 through x, any connected
and embedded surface with zero shape operator passing through x and tangent
to P at x is an open subset of P .

1.22 An oriented surface is c0-round, for a constant c0 > 0, if it has shape
operator II(u, v) = c0u · v at every point. Prove that, for each constant c0 ∈ R,
point x ∈ E3 and oriented plane P through x, there is a c0-round oriented
surface passing through x, with oriented tangent space at x equal to P . If
c0 6= 0, prove that any such surface, if connected and embedded, is an open
subset of a sphere.

1.23 Prove that any connected and embedded surface in E3 with constant
principal curvatures is an open subset of a plane, sphere or cylinder.

1.24 Prove that any connected embedded curve in E3 of constant curvature
and torsion is an open subset of a line, circle or helix.

1.25 An umbilic point is a point of a surface in E3 where the shape operator
is a multiple of the dot product: II(u, v) = c u · v, for some number c. Find
all connected and embedded surfaces in E3 which are everywhere umbilic, with
perhaps varying value of c.

1.26 Find every connected and embedded surface in E3 whose every geodesic
is planar.
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Background material from differential geometry

A collection of 1-forms ω1, . . . , ωn on a manifoldM coframesM , or is a coframe

or coframing of M , if, at every point m ∈M , ω1
m, . . . , ω

n
m are a basis of T ∗mM .

Example: triply orthogonal webs

A triply orthogonal web is a triple of foliations by surfaces whose leaves are
pairwise perpendicular.

Images: Daniel Piker, 2015

Theorem 1.4. There are infinitely many triply orthogonal webs, depending

on 3 functions of 2 variables, defined near any given point of 3-dimensional

Euclidean space.

Proof. Picture a triply orthogonal web. Each leaf is perpendicular to a unique
unit length 1-form ηi, up to ±, which satisfies 0 = ηi ∧ dηi, by the Frobenius
theorem. Denote 3-dimensional Euclidean space by X. Let M be the set of
all orthonormal bases of the tangent spaces of X, with obvious bundle map
x : M → X, so that each point of M has the form m = (x, e1, e2, e3) for some
x ∈ X and orthonormal basis e1, e2, e3 of TxX. The soldering 1-forms ω1, ω2, ω3
on M are defined by

(v ωi)ei = x∗v.

Note: they are 1-forms on M , not on X. Let

ω ..=

ω1
ω2
ω3

 .

As explained in appendix D, there is a unique matrix-valued 1-form π, valued
in antisymmetric 3× 3 matrices and known as the Levi-Civita connection, so
that dω = −π ∧ ω, i.e.

d

ω1
ω2
ω3

 = −

 0 −π3 π2
π3 0 −π1
−π2 π1 0

 ∧
ω1
ω2
ω3

 .
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Our triply orthogonal web is precisely a section X → M of the bundle map
M → X on which 0 = ωi ∧ dωi for all i, hence an integral 3-manifold of the
exterior differential system I on M generated by the closed 3-forms

ω1 ∧ dω1, ω2 ∧ dω2, ω3 ∧ dω3.

Using the equations above, I is also generated by

π3 ∧ ω12, π1 ∧ ω23, π2 ∧ ω31.

The integral manifolds coframed by ω1, ω2, ω3 are locally precisely the triply
orthogonal webs. The reader can find the characters: s1, s2, s3 = 0, 3, 0. The
integral elements coframed by ω1, ω2, ω3 form a manifold of dimension 12 (pa-
rameterized by choice of a point of M and 6 coefficients to determine values of
π1, π2, π3 at each point of M): involution.

The reader familiar with Riemannian geometry will note that this proof works
just as well for any 3-dimensional Riemannian manifold. For more on orthogonal
webs in Euclidean space, see [7, 9, 35, 39].

1.27∗ A question of Alin Albu-Schäffer: suppose we are given an analytic
foliation of an open subset of 3-dimensional Euclidean space by surfaces. Is
there, at least locally, a triply orthogonal web which has this as one of its three
foliations?

Generality of integral manifolds

This section can be omitted without loss of continuity.

If I describe some family of submanifolds as integral manifolds of an exterior
differential system, you might find a different description of the same subman-
ifolds as integral manifolds of a different exterior differential system, perhaps
on a different manifold, with different characters.

A function f(x) of one variable is equivalent information to having a
constant f(0) and a function df/dx of one variable.

We will solve∇×u = f−u for an unknown vector field u in 3-dimensional
Euclidean space two ways: an elementary approach on page 85, and fol-
lowing Cartan’s strategy in problem 2.6 on page 23. The first approach
uses 1 function of 1 variable and 2 functions of 2 variables. The second
approach uses 3 constants, 3 functions of 1 variable and 2 functions of
2 variables.
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Lagrangian submanifolds of Cn depend on 1 function of n variables:
those which are graphs y = y(x) are of the form

y = ∂S

∂x

for some potential function S(x), unique up to adding a constant. On
the other hand, the proof of the Cartan–Kähler theorem builds up each
Lagrangian manifold from a choice of 1 function of 1 variable, 1 function
of 2 variables, and so on.

We will see that Cartan’s proof of the Cartan–Kähler theorem constructs the
general solution of any involutive exterior differential system, using s0 constants,
s1 functions of 1 variable, s2 functions of 2 variables, and so on. We “trust” the
last nonzero sp of an involutive exterior differential system to give the generality
of integral manifolds: they depend on sp functions of p variables, but we don’t
“trust” s0, s1, . . . , sp−1.

Immersed plane curves are the integral curves of I = 0 on M = R2.
Any integral flag has s0, s1 = 0, 1. Immersed plane curves are also the
integral curves of the ideal J generated by

ϑ ..= sinφdx− cosφdy

on M ..= R2
x,y × S1

φ. Here s0, s1 = 1, 1.

What could go wrong?

On M ..= R3
x,y,z, take the ideals I generated by dx ∧ dz, dy ∧ dz and J

generated by dx ∧ dz, dy ∧ (dz − y dx). At the origin, these differential
forms are identical, so the integral elements and characters are the same
at that point. But I has integral surfaces z = constant, while J does
not have integral surfaces.

1.28 Compute characters and dimensions of spaces of integral elements for
these. Show that the Cartan–Kähler theorem does not apply. Find their
integral surfaces.

Generalizations

The Cartan–Kähler theorem also holds for holomorphic exterior differential
systems on complex manifolds, formal power series exterior differential systems,
and Denjoy–Carleman exterior differential systems, with the same proof. In
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particular, any involutive smooth exterior differential system is also a formal
power series system about each point, so has formal power series solutions,
perhaps divergent. The theorem also holds for certain smooth systems [21, 22,
38].





Chapter 2

Tableaux

A tableau is a matrix encoding an exterior differential system, a computational tool
to organize the linear algebra needed to uncover the characters.

Recall triply orthogonal webs on page 10: an exterior differential system
generated by 1-forms θa and by 3-forms of the form

ω12 ∧ π3, ω31 ∧ π2, ω23 ∧ π1,

with coframe θa, ωi, πα. Write these 3-forms as rows of a matrix wedge
product: π3 0 0

0 π2 0
0 0 π1

 ∧
ω12

ω13

ω23



Definition

Take an exterior differential system I on a manifold M . We are looking for
p-dimensional integral manifolds. Take a point m ∈M . Let

Im ..= {ϑm ∈ Λ∗T ∗mM | ϑ ∈ I } .

We carry out all of our work below modulo the ideal (I1
m) ⊆ Im.

a. Take a basis ωi, πα of T ∗mM/I1
m.

b. Write a set of forms generating Im/(I1
m) in a column

ϑ =


ϑ1

ϑ2

...
ϑr

 .

15
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c. Let ωij ..= ωi ∧ ωj , and so on. Let

ω =



ω1

ω2

ω12

ω3

ω13

ω23

ω123

...
ωp

...
ω1···p



,

a column vector of all wedge products of the ωi. Arrange by grades:
grade j consists of all forms ω···j which are wedge products of 1-forms
from among ω1, . . . , ωj , and must contain ωj . We sometimes mark grades
with horizontal lines. (We can drop any entry of ω if it doesn’t appear in
the forms ϑa in our generating set, expanded in our basis.)

d. Write out ϑ = $∧ω+ . . . for a matrix $, the tableau, so that each matrix
entry is a linear combination of πα, and the . . . consists of

1. terms with only ω in them, no πα 1-form wedged into them, the
torsion and

2. terms with two or more πα 1-forms wedged into them, the nonlin-

earity.

We sometimes draw vertical lines in $, marking out grades at widths
matching the grade heights in ω. The nonlinearity we assign grade p.

e. A polar is an entry of $ linearly independent of all entries found in all
earlier grades and above or to the left in the same grade. Highlight all
polars. In practice, each polar is often one of the πα of our basis; we can
always change basis to arrange this.

f. Take any basis θa of I1
m; declare the basis elements to be polars of grade

zero.

The character sj of the tableau is the number of polars in grade j.
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Suppose I is an exterior differential system spanned by

1-forms θ1, θ2, θ3,

a 2-form θ1 ∧ ω3 + ω1 ∧ π1 + ω2 ∧ π2 + ω3 ∧ π3 and
a 3-form π123 − ω12 ∧ π3 + ω13 ∧ π2 − ω23 ∧ π1,

for a coframing
θ1, θ2, θ3, ω1, ω2, ω3, π1, π2, π3.

Dropping multiples of the θa:

no 1-forms
a 2-form ω1 ∧ π1 + ω2 ∧ π2 + ω3 ∧ π3 and
a 3-form − ω12 ∧ π3 + ω13 ∧ π2 − ω23 ∧ π1 + . . . .

So modulo θ1, θ2, θ3:

ϑ =
(

ω1 ∧ π1 + ω2 ∧ π2 + ω3 ∧ π3

−ω12 ∧ π3 + ω13 ∧ π2 − ω23 ∧ π1

)
+
(

0
π123

)
,

= − π1 π2 0 π3 0 0
0 0 π3 0 −π2 π1

( )
s1 s2 s3

1 2 0

∧



ω1

ω2

ω12

ω3

ω13

ω23


+
(

0
π123

)
.

Recall that Lagrangian submanifolds are integral manifolds of

ϑ ..= dx1 ∧ dy1 + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn,

= − π1 π2 . . . πn
( )

s1 s2 . . . sn

1 1 . . . 1

∧


ω1

ω2

...
ωn



with ωi ..= dxi, πi ..= dyi.
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On M = R5
x,y,u,ux,uy , let I be generated by

θ ..= du− ux dx− uy dy,
ϑ ..= dux ∧ dy − duy ∧ dx,

and note
dθ = −dux ∧ dx− duy ∧ dy

also belongs to I. An integral surface X on which 0 6= dx∧ dy is locally
the graph of a harmonic function u = u(x, y) and its derivatives ux = ∂u

∂x ,
uy = ∂u

∂y . Taking

ω1 ..= dx, ω2 ..= dy, π1 ..= dux, π
2 ..= −duy,

gives tableau (
dθ
ϑ

)
= − π1 −π2

π2 π1

( )
∧
(
ω1

ω2

)
.

2.1 As in our example of triply orthogonal webs, construct an exterior dif-
ferential system whose integral 4-manifolds are foliations of open subsets of
3-dimensional Euclidean space. Write out the tableau and find the characters.

Torsion

The tableau is adapted to the flag

Ej ..= (0 = θa = πα = ωj+1 = · · · = ωp).

Any flag has many tableau adapted to it.

2.2 What are the polar equations of each Ej? Prove that the characters as
defined above are the characters as defined in chapter 1, and the polars are a
basis of the polar equations.

2.3 Prove that torsion vanishes just when the flag is integral.

Take an exterior differential system generated by 1-forms θ1, θ2 with

d

(
θ1

θ2

)
= −

 π1 0
π2 π3

 ∧ (ω1

ω2

)
+
(
ω12

0

)
mod θ1, θ2.

Note that dθ1, dθ2 generate I/(I1). The term ω12 is the torsion, as it
has no π in it.
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Let π′1 ..= π1 + ω2:

d

(
θ1

θ2

)
= −

 π′1 0
π2 π3

 ∧ (ω1

ω2

)
mod θ1, θ2;

we absorb the torsion.

Changing bases to arrange that torsion vanishes is absorbing the torsion

A tableau can only examine integral elements coframed by the ωi. Torsion
absorbs just when there is such an integral element.

The exterior differential system I is the true fundamental geometric object;
the choice of tableau is like a choice of coordinate system: a magnifying glass
with which to examine I.

2.4 Take a vector space V and a linear subspace E ⊂ V . Denote by Λ∗V ∗
the exterior algebra of V , i.e. the constant coefficient differential forms on
V . Consider the ideal P ..= (E⊥) ⊂ Λ∗V ∗. A tableau at E is an ideal τ ⊆
Λ≥2V ∗/P 2 which is graded, i.e.

τ = τ2 ⊕ · · · ⊕ τdimV .

Explain how to associate to any integral element of any exterior differential
system a tableau, its torsion, its characters, and how it relates to our definition
above.

Borrowing

Recall triply orthogonal webs on page 10 had exterior differential system
generated by 1-forms θa and by 3-forms of the form

ω12 ∧ π3, ω31 ∧ π2, ω23 ∧ π1,

with coframe θa, ωi, πα:

π3 0 0
0 π2 0
0 0 π1




s2 s3

1 2

∧

 ω12

ω13

ω23



Warning: these s1, s2, s3 are not the characters we computed in chapter 1.
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Reconsider the same example, with new choices of 1-forms ωi. Let
ω′1 ..= ω1, ω′2 ..= ω2, ω′3 ..= ω1 − ω2 + ω3. Write this asω1

ω2

ω3

 =

 ω′1

ω′2

−ω′1 + ω′2 + ω′3

 .

In these 1-forms, the tableau is:

π3 0 0
π2 0 0
π1 0 0




s2 s3

3 0

∧

 ω′12

ω′13

ω′23



These are the characters we computed in chapter 1. We have borrowed

polars from later grades into earlier. We change the choice of integral
flag from

E1 = (0 = ω2 = ω3 = θa = πα),
E2 = (0 = ω3 = θa = πα),
E3 = (0 = θa = πα),

to

E′1 = (0 = ω′2 = ω′3 = θa = πα)
E′2 = (0 = ω′3 = θa = πα),
E3 = (0 = θa = πα) unchanged.

2.5 Prove that the characters depend only on the flag.

Borrowing as many polars as we can, and perhaps permuting the coframe,
the integral flag has largest s1 among all integral flags at that point. Subject
to that s1, it has largest s2, and so on.

Take a row which represents a k-form. Permuting the ωi, we can get any
polar in that row to appear in grade k − 1: πα ∧ ω1... k−1. If there is another
polar in that row, say in grade `, add a multiple of ωk to ω` to borrow it to
grade k. Continue in this way: for one particular row, representing a k-form in
I, we arrange polars in successive grades, starting at grade k − 1, all followed
by any nonpolar entries in that row.

Write wedge products ωi1...iq with i1 < · · · < iq. Order any two wedge
products by last entry iq, then by next to last, and so on. Borrow to have
polars arising in sorted order before any other entries.
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Since this occurs for some linear transformation of ωi, it also occurs for all
linear transformations of ωi except for those with certain minors vanishing. We
can thus borrow simultaneously for all rows, by generic linear transformation.

π1 0
0 π1

( )
∧

(
ω12

ω3

)

has a polar appearing in grade 2. Permuting indices 1 and 3:

0 π1

π1 0

( )
∧

(
ω1

ω23

)

puts it in grade 1.

The torsion is absorbable just when there is an integral element E = (π =
pω). Absorb the torsion by subtracting pω from π. Thus there is a torsion free
tableau just when there is a generic torsion free tableau.

Take a tableau

π1 0
π2 π3

( )
∧
(
ω1

ω2

)
+
(
π4 ∧ π2

0

)

with a polar in the nonlinearity. Add ω2 to π2 to get the polar to appear
in the tableau:

π1 π4

π′2 π3

( )
∧
(
ω1

ω2

)
−
(

0
ω12

)
+
(
π4 ∧ π′2

0

)
.

This produces torsion, but we can absorb it.

(
π1 π2

)
∧
(
ω1

ω2

)
+ π3 ∧ π2

has a polar in the nonlinearity, but we absorb it by ω′2 ..= ω2 − π3.

Some tableaux have nonabsorbable polars in the nonlinearity:(
π1 π2

)
∧
(
ω1

ω2

)
+ π3 ∧ π4

.

Any polar in the nonlinearity can be demoted to a new ωi 1-form, but
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we won’t need to do so.

Integral elements

Picture a tableau
π1 π4 π6

π2 π5
π1 − π5

π3
π2 π1 + π2

π1 − π2 0 π3

 ∧
ω1

ω2

ω3

 .

Take any 3-dimensional linear subspace E of a tangent space of M
coframed by ω1, ω2, ω3 and on which θa = 0. Then E has coefficients
π1 = p1

1ω
1 + p1

2ω
2 + p1

3ω
3 and so on. Plug in to the tableau to find

equations for integral elements. Since ωij = −ωji, each tableau entry
in column i has coefficient of ωj exactly equal to the tableau entry in
column j coefficient of ωi:

p1
2 = p4

1, p1
3 = p6

1, p4
3 = p6

2,

p2
2 = p5

1, p2
3 = p1

1 − p5
1, p5

3 = p1
2 − p5

2,

p3
2 = p2

1, p3
3 = p1

1 + p2
1, p2

3 = p1
2 + p2

2,

p1
2 − p2

2 = 0, p1
3 − p2

3 = p3
1, 0 = p3

2.

Again imagine an exterior differential system generated by 1-forms θa
and by 3-forms of the form

ω12 ∧ π1, ω31 ∧ π2, ω23 ∧ π3,

with coframe θa, ωi, πα. (E.g. triply orthogonal webs; see page 10.) The
tableau:

0 0 π1

0 π2 0
π3 0 0




s2 s3

1 2

∧

 ω12

ω13

ω23





Example: Lie’s third theorem 23

3-dimensional integral elements:π1

π2

π3

 =

 0 p1
2 p1

3
p2

1 0 p2
3

p3
1 p3

2 0

ω1

ω2

ω3


a 6-dimensional space of integral elements at each point.

s1 + 2s2 + 3s3 = 0 + 2(1) + 3(2) = 8 > 6,

involution fails.

The same example, but borrow:ω1

ω2

ω3

 =

 ω′1

ω′2

ω′1 + ω′2 + ω′3

 ,

yielding tableau:

−π1 0 π3

−π2 π2 0
π3 0 0




s2 s3

3 0

∧

 ω′12

ω′13

ω′23



s1 + 2s2 + 3s3 = 0 + 2(3) + 3(0) = 6,

involution: there are 3-dimensional integral manifolds.

2.6 Write the equation ∇× u = f − u, which we unravel in detail on page 85,
as an exterior differential system. Find a tableau. Can you absorb torsion?
What submanifold contains the integral manifolds? Is the exterior differential
system in involution on that submanifold?

Example: Lie’s third theorem

This section can be omitted without loss of continuity.

In this section we assume familiarity with Lie groups [33]. Lie’s third theorem:
every Lie algebra g, say of dimension p, is isomorphic to a Lie algebra of vector
fields spanning every tangent space on a p-dimensional manifold. This theorem
is a first step in constructing a Lie group with a given Lie algebra. Since we
employ differential forms, it is easier for us to prove the dual statement about
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the dual 1-forms to those vector fields. A Maurer–Cartan form is a 1-form ξ
valued in a Lie algebra g, defined on an open subset U ⊂ Rp, so that, at every
point x ∈ U , ξx : Rp → g is a linear isomorphism and dξ + 1

2 [ξξ] = 0.

2.7 Explain how a Maurer–Cartan form determines such vector fields and vice
versa.

Theorem 2.1 (Lie III). Any Lie algebra has a Maurer–Cartan form.

Proof. Choose a basis e1, . . . , ep ∈ g and write out the Lie bracket in the basis:
[eiej ] = ckijek. Any such ξ will then be ξ = ξiei, for a coframing ξi = gij(x)dxj ,
with gij(x) an invertible matrix for each x ∈ U . We want these ξi to satisfy
0 = dξi + 1

2c
jk
i ξ

j ∧ ξk. Let M ..= Rp ×GL(p,R) with coordinates xi, gij . Take
the exterior differential system I generated by the components ϑi of the 2-form

ϑ = d(g dx) + 1
2 [g dx, g dx] .

2.8 Use the Jacobi identity, either in components or directly, to see that 0 = dϑ.

Let ωi ..= dxi.

2.9 If we want ϑi = πij ∧ωj , then πij = dgij + qijk(c)dxk where q = q(c) is some
quadratic polynomial expression in the coefficients ckij . Prove this by computing
q(c).


ϑ1

ϑ2

...
ϑp

 =

π1
1 π1

2 . . . π1
p

π2
1 π2

2 . . . π2
p

...
... . . .

...

πp1 πp2 . . . πpp




s1 s2 . . . sp

p p . . . p

∧


ω1

ω2

...
ωp

 .

Integral elements of dimension p: πij = pijkω
k with pijk = pikj , so the space of

integral elements has dimension dimM + p(p+ 1)/2: involution.

2.10 Uniqueness: prove that any two Maurer–Cartan forms for the same Lie
algebra are locally identified by a diffeomorphism.

Example: surface invariants

This section can be omitted without loss of continuity.
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We suppose that the reader has read appendix D. Does every quadratic form
on a plane through a point arise as the shape operator on the tangent plane of
some surface? If we had such a surface, its adapted frame bundle would satisfy

ω3 = 0,
γ13 = a11ω1 + a12ω2,

γ23 = a21ω1 + a22ω2,

with aij = aji. Let V be the set of all symmetric 2× 2 matrices, with typical
element written as

a =
(
a11 a12
a21 a22

)
.

On the manifold V × ⌜E3 , take the exterior differential system I generated by

ω3, γ13 − a11ω1 − a12ω2, γ23 − a21ω1 − a22ω2.

Every surface in E3 has frame bundle an integral manifold.

2.11 Prove that any I-integral manifold coframed by ω1, ω2, γ12 is locally the
frame bundle of a surface.

Summing over i, j, k, ` = 1, 2, let

Daij ..= daij − aikγkj − ajkγki,

d

 ω3
γ13 − a11ω1 − a12ω2
γ23 − a21ω1 − a22ω2

 =
0 0 0

Da11 Da12 0
Da12 Da22 0




s1 s2 s3

2 1 0

∧

ω1
ω2
γ12

 ,

Integral elements coframed by ω1, ω2, γ12 are

Daij = aijkωk +Aijγ12.

Plug into the tableau: integral elements have aijk symmetric in all 3 indices, and
Aij = 0. Each integral element is identified with III ..= e3aijkωiωjωk, the third
fundamental form on any integral manifold arising from a surface. The space
of integral elements is 4-dimensional at each point of our manifold, involution:
there is an integral manifold coframed by ω1, ω2, γ12 through every point of
V × ⌜E3 .

Theorem 2.2. Shape operators are arbitrary. To be precise, take a point of E3,
a plane through that point, a symmetric bilinear form and a symmetric trilinear

form on that plane, valued in the perpendicular line. There is a surface in E3

through that point, tangent to that plane, and with that bilinear form as shape

operator and that trilinear form as third fundamental form.
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2.12 Prove that there are surfaces in 3-dimensional Euclidean space preserved
by no rigid motions except the identity.

2.13 Are the shape operators of the leaves of a triply orthogonal web arbitrary?



Chapter 3

Example: almost complex structures

This chapter can be omitted without loss of continuity. As an application of the Cartan–
Kähler theorem, we demonstrate the integrability of torsion free almost complex
structures.

Example: the Cauchy–Riemann equations

This section can be omitted without loss of continuity.

Take several complex variables z1, . . . , zn, with real and imaginary parts zµ =
xµ + iyµ. A holomorphic function is a complex valued function f(z1, . . . , zn)
satisfying the Cauchy–Riemann equations [8, 15, 18, 32, 34]

∂f

∂xµ
= i

∂f

∂yµ
, µ = 1, 2, . . . , n.

In real and imaginary parts f = u+ iv, this becomes

∂u

∂xµ
= ∂v

∂yµ
,

∂v

∂xµ
= − ∂u

∂yµ
.

Let M ..= R4n+2
xµ,yµ,u,v,pµ,qµ on which we take the exterior differential system I

generated by

θ1 ..= du− pµdxµ − qµdyµ,
θ2 ..= dv + qµdx

µ − pµdyµ.

d

(
θ1

θ2

)
= −−

dp1 dp2 . . . dpn dq1 . . . dqn

−dq1 −dq2 . . . −dqn dp1 . . . dpn

 
s1 s2 . . . sn sn+1 . . . s2n

2 2 . . . 2 0 . . . 0

∧



dx1

dx2

...
dxn

dy1

...
dyn
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So
dimM + s1 + 2s2 + · · ·+ 2ns2n = 4n+ 2 + n(n+ 1).

Integral elements at each point (x, y, u, v, p, q) are(
dpµ
dqµ

)
=
(
rµν −sµν
sµν rµν

)(
dxν

dyν

)
with r, s symmetric in lower indices. So the space of integral elements has
dimension 4n+ 2 + n(n+ 1), involution with general solution depending on 2
functions of n variables.

For a complex notation, let ωµ ..= dxµ+i dyµ, θ ..= θ1+iθ2, πµ ..= dpµ+i dqµ
and ωµ̄ ..= ωµ = dxµ − i dyµ. A tableau in complex differential forms will have
terms expressed in wedge products with ωµ, ωµ̄. But for the Cauchy–Riemann
equations we find

dθ = −
(
π1 π2

. . . πn
)
∧


ω1

ω2

...
ωn


with no ωµ̄ terms. The characters count complex polars, so double them to count
real and imaginary parts: s0, s1, s2, . . . , sn = 2, 2, . . . , 2. Integral elements are
πµ = pµνω

ν , with complex numbers pµν = pνµ, so n(n+1)/2 complex numbers,
hence n(n+ 1) real and imaginary parts.

Example: almost complex structures

This section can be omitted without loss of continuity.

We can turn a real vector space into a complex vector space, just by picking a
real linear map J so that J2 = −I. An almost complex structure on an even
dimensional manifold M is a choice of complex vector space structure on each
tangent space, analytically varying, in that is described by an analytic map
J : TM → TM , acting linearly on each tangent space, with J2 = −I.

Complex Euclidean space has its usual almost complex structure J(x, y) =
(−y, x), preserved by biholomorphisms (i.e. holomorphic diffeomorphisms) be-
tween open sets, as their derivatives are complex linear maps. Any complex
manifold M has an almost complex structure, defined by using holomorphic
coordinates to identify locally with complex Euclidean space.

On an even dimensional manifold, a complex coframing is a collection of
complex valued 1-forms ωµ so that their real and imaginary parts coframe. It
is complex linear for an almost complex structure if each ωµ is a complex linear
map on each tangent space, i.e. ωµ ◦ J =

√
−1ωµ for every µ.

3.1 Prove that every almost complex structure has, near each point, some
complex linear complex coframing.
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3.2 Prove that every complex coframing is complex linear for a unique almost
complex structure.

Complex coframings are a useful way to exhibit almost complex structures.

The complex coframing

ω1 ..= dz,

ω2 ..= dw − w̄ dz̄

yields a unique almost complex structure on the space parameterized by
two complex variables z, w.

3.3 Prove that any two complex coframings ωµ, ω′µ yield the same almost
complex structure just when ω′µ = gµνω

ν for a unique matrix g = (gµν ) of
complex-valued functions.

Any complex differential form is expressed in any complex coframing ωµ as
a sum of wedge products of ωµ and ω̄µ. Following convention, write ω̄µ as ωµ̄.
A (p, q)-form is a differential form expressed with p factors of ωµ and q of ωµ̄.
For example, ωµ is (1, 0) while ωµ̄ is (0, 1). In particular,

dωµ = tµµσω
ν ∧ ωσ + tµνσ̄ω

ν ∧ ωσ̄ + tµν̄σω
ν̄ ∧ ωσ + tµν̄σ̄ω

ν̄ ∧ ωσ̄,

for unique complex valued functions t, antisymmetric in lower indices. The
exterior derivative of any (p, q)-form is uniquely expressed as a sum of forms
with (p, q) raised by (2,−1), (1, 0), (0, 1) or (−1, 2). We thus split up

d = τ + ∂ + ∂̄ + τ̄ :

τωµ = 0, ∂ωµ = tµνσω
ν ∧ ωσ,

τ̄ωµ = tµν̄σ̄ω
ν̄ ∧ ωσ̄, ∂̄ωµ = tµνσ̄ω

ν ∧ ωσ̄ + tµσ̄νω
σ̄ ∧ ων .

Let ω ..= (ωµ). Expanding out in the coframing, we find that 0 = τ = τ̄ on all
differential forms if and only if τ̄ω = 0. Change coframing: replace ω by some
gω:

d(gω) = dg ∧ ω + gdω,

expands out to

τ(gω) = 0, ∂(gω)= (∂g) ∧ ω + g ∂ω,

τ̄(gω) = g τ̄ω, ∂̄(gω)= (∂̄g) ∧ ω + g ∂̄ω.

Hence τ̄ω = 0 just when τ̄(gω) = 0. So vanishing of τ̄ is a property of the
almost complex structure.

3.4 Prove that τ̄ = 0 just when τ = 0.

3.5 Construct a tensor whose vanishing is equivalent to τ̄ = 0.
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The complex coframing

ω1 ..= dz,

ω2 ..= dw − |w|2 dz̄

has

τ̄ω1 = 0,
τ̄ω2 = −w dw̄ ∧ dz̄,

= wω1̄ ∧ ω2̄,

6= 0.

Therefore the associated almost complex structure is not a complex
structure.

A complex valued function f : M → C on an almost complex manifold is
holomorphic if df is complex linear.

Lemma 3.1. An almost complex manifold which admits holomorphic functions

with arbitrary complex linear differentials at each point has τ̄ = 0.

Proof. Denote by 2n the dimension ofM as a real manifold. Since this problem
is local, we can assume that M has a global complex linear coframing ωµ.
Take the manifold M ′ ..= M × Cz × CnZ , and the exterior differential system
generated by dz−Zµωµ. Any integral manifold on which ωµ are complex-linearly
independent is locally the graph of a holomorphic function, and vice versa. The
tableau

d(dz − Zω) = −dZ ∧ ω − Z dω,
= −DZ ∧ ω − Z τ̄ω,

where
DZµ ..= dZµ + Zσ(tσνµων + 2tσν̄µων̄).

The torsion, where Z 6= 0, consists of the expression Z τ̄ω = Zµτ̄ω
µ.

3.6 Find all holomorphic functions for the almost complex structure of the
complex coframing

ω1 ..= dz,

ω2 ..= dw − w̄ dz̄

Any wedge product π ∧ ω of complex valued 1-forms can be rewritten as a
real wedge product in real and imaginary parts(

π1 −π2

π2 π1

)
∧
(
ω1 −ω2

ω2 ω1

)
.
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If π∧ω occurs in a tableau, at some grade, it contributes 2 linearly independent
1-forms:  π1 −π2

π2
π1

 ∧ (ω1 −ω2

ω2 ω1

)
.

Count with a complex tableau as if it were real linear, but double the characters.

Theorem 3.2. An analytic almost complex structure has τ̄ = 0 just when it

arises from a complex structure.

This theorem remains true with milder assumptions than analyticity [17].

Proof. On a complex manifold with holomorphic coordinates zµ, the 1-forms
ωµ = dzµ are complex linear for the standard almost complex structure, and
have dωµ = 0, so no torsion.

Take an almost complex structure J which has τ̄ = 0. Our problem is
to construct local holomorphic coordinate functions locally identifying J with
the standard complex structure on complex Euclidean space. Again take the
exterior differential system generated by θ ..= dz − Zω:

dθ = − DZ1 DZ2 . . . DZn
( )

s1 s2 . . . sn

2 2 . . . 2

∧


ω1

ω2

...
ωn

 .

Integral elements are DZµ = pµνω
ν , pµν = pνµ, n(n+ 1)/2 complex constants,

so n(n+ 1) real constants, involution. So there are holomorphic functions with
arbitrary differentials at a point, i.e. local holomorphic coordinates.

The complex coframing

ω1 = dz,

ω2 = dw − w dz̄,

determines a complex structure.

The expression τ̄ωµ = tµν̄σ̄ω
ν̄ ∧ωσ̄ is antisymmetric in ν̄, σ̄. It vanishes if

M has complex dimension 1, i.e. real dimension 2: every almost complex
manifold of real dimension 2 is a Riemann surface.

In this example, we assume familiarity with matrix groups [33]. The
manifold SU3 is the collection of all 3 × 3 complex unitary matrices
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z = (zµν̄) of determinant 1. Write zµ̄ν to mean z̄µν̄ , so that z∗ has
entries z∗µν̄ = zν̄µ. Unitarity is zµσ̄zν̄σ = δµν̄ . Note that SU3 is a real
submanifold, not a complex submanifold, of the 3× 3 complex matrices,
as this unitarity equation is not complex analytic.

Since SU3 is a submanifold of matrices, each tangent vector to SU3
is a matrix. The tangent space TI SU3 at the identity matrix, denoted
su3, is the set of all traceless skew adjoint 3× 3 complex matrices.

It is traditional to write the identity function on any group as g, so
g(z) = z. The Maurer–Cartan 1-form ω ..= g−1dg is a 1-form on SU3,
valued in su3, i.e. to each tangent vector v ∈ Tz SU3, which we identify
with a matrix A, v ω = z−1A. Write out ω as a matrix of complex
valued 1-forms

ω =

ω11̄ ω12̄ ω13̄
ω21̄ ω22̄ ω23̄
ω31̄ ω32̄ ω33̄


with ωµν̄ = −ων̄µ.

3.7 Prove that ω is invariant under left translation.

3.8 Calculate that dω = −ω ∧ ω.

In matrix entries, dωµν̄ = −ωµσ̄ ∧ ωσν̄ . Consider the coframing

ω11̄ + iω22̄, ω12̄, ω13̄, ω23̄,

3.9 Take exterior derivatives and find torsion vanishing: SU3 has a left
invariant complex structure.

3.10 On the other hand, if we conjugate one of the last three 1-forms
in the coframing, prove that we arrive at a left invariant almost complex
structure which is not complex.

3.11∗ Prove theorem 3.2 on the previous page by complexifying variables locally,
and applying the Frobenius theorem.

Almost complex submanifolds

This section can be omitted without loss of continuity.

An almost complex submanifold of an almost complex manifold M is a subman-
ifold whose tangent planes are complex linear subspaces. Suppose that M has
real dimension 2(p+ q). Let’s look for almost complex submanifolds of dimen-
sion 2p. Take a complex linear coframing ω1, . . . , ωp, π1, . . . , πq. Take an almost
complex submanifold of real dimension 2p on which ω1, . . . , ωp have linearly
independent real and imaginary parts. Then on that submanifold, π = pω for
a complex matrix p. Our almost complex submanifold is an integral manifold
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of the exterior differential system π = pω on M × Cpq. Let θ ..= π − pω. On
any integral manifold 0 = τ̄ θ = τ̄π − p τ̄ω.

3.12 Prove that, for any p > 1, if there is an almost complex submanifold of
real dimension 2p tangent to any complex linear subspace of complex dimension
p in any tangent space, then M is a complex manifold.

A holomorphic curve, often called a pseudoholomorphic curve, in an almost
complex manifold M is a map C →M from a Riemann surface, with complex
linear differential.

3.13 Prove the existence of embedded holomorphic disks, i.e. embedded holo-
morphic curves C → M where C is the unit disk in the complex plane, in
every analytic almost complex manifold, tangent to every complex line in every
tangent space.





Chapter 4

Prolongation

In our next example, we will see what to do when the Cartan–Kähler theorem does
not apply to an exterior differential system.

Notation

In this chapter, for convenience of notation, we drop our convention of writing
ω12 to mean ω1 ∧ ω2 etc. We use freely the notation and terminology of
appendix D.

Example: isometric immersion, involution fails

Take a surface S in 3-dimensional Euclidean space E3. Naturally we are cu-
rious to bend the surface, without stretching it or squishing it. An isometric

immersion ϕ : S → E3 is a map preserving the lengths of all curves on S, i.e.
not stretching or squishing.

This surface (viewed from various angles)

is the image of an isometric immersion of a piece of this paraboloid

On the frame bundle ⌜S of oriented orthonormal frames, denote the soldering
forms as ω = ω1 + iω2 and the connection by 1-form) α so that dω = iα ∧ ω
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and dα = (i/2)Kω ∧ ω̄. On ⌜E3 there is a soldering 1-form ω′i and a connection
1-form γ′ij so that dω′i = −γ′ij ∧ ω′j and dγ′ij = −γ′ik ∧ γ′kj . Let α′ ..= γ′12.

Suppose that there is an isometric immersion ϕ : S → E3. Its adapted frame

bundle X ..= Xϕ ⊂M ..= ⌜S × ⌜E3 is the set of all tuples

(x, e1, e2, x
′, e′1, e

′
2, e
′
3)

where x ∈ S with orthonormal frame e1, e2 ∈ TxS and x′ ∈ E3 with orthonormal
frames e′1, e′2, e′3 ∈ Tx′E3, so that ϕ∗e1 = e′1 and ϕ∗e2 = e′2. Let I be the exterior
differential system on M generated by the 1-formsθ1

θ2
θ3

 ..=

ω′1 − ω1
ω′2 − ω2
ω′3

 .

Along X, all of these 1-forms vanish, while the 1-forms ω1, ω2, α coframe.

4.1 Prove that all integral manifolds coframed by ω1, ω2, α are locally frame
bundles of isometric immersions.

For the moment, we concentrate on asking whether we can apply the Cartan–
Kähler theorem.

d

θ1
θ2
θ3

 = −
0 α′ − α 0

− (α′ − α) 0 0
−γ′13 −γ′23 0




s1 s2 s3

2 1 0

∧

ω1
ω2
α

 mod θ1, θ2, θ3

Each 3-dimensional integral element has ω′ = ω, so is determined by the linear
equations giving γ′1, γ′2, γ′3 in terms of ω1, ω2, α on which dθ = 0: γ′13

γ′23
α′ − α

 =

a b 0
b c 0
0 0 0

ω1
ω2
α

 .

Therefore there is a 3-dimensional space of integral elements at each point. But
s1 + 2s2 = 4 > 3: not involutive, so we can’t apply the Cartan–Kähler theorem.

4.2 Is the existence of a p-dimensional involutive integral element precisely the
condition that p + s0 + s1 + · · · + sp ≤ dimM on every integral element of
dimension p?

There is another way to look at the failure of involution. In chapter 7, we
will see that the Cartan–Kähler theorem can only apply if the generic integral
line sits in an integral plane. The equations on integral lines are ω′1 = ω1,
ω′2 = ω2, ω′3 = 0. On any integral plane α′ = α. The generic integral line does
not sit in an integral plane, because it doesn’t have to satisfy α′ = α.
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What to do?

On every integral element, we said that γ′13
γ′23

α′ − α

 =

a b 0
b c 0
0 0 0

ω1
ω2
α

 .

Make a new manifold M ′ ..= M × R3
a,b,c, and on M ′ let I ′ be the exterior

differential system generated byθ4
θ5
θ6

 ..=

 γ′13
γ′23

α′ − α

−
a b 0
b c 0
0 0 0

ω1
ω2
α

 .

Prolongation

What should we do if there are no involutive integral elements? Take an exterior
differential system I on a manifold M . We can always suppose, without loss
of generality, that all maximal integral elements have the same dimension, say
p. Denote by GrpM the Grassmann bundle of p-dimensional linear subspaces
of tangent spaces of M . Take the subset M ′ ⊂ GrpM of all p-dimensional
integral elements. Cut out any point of M ′ near which M ′ is not a submanifold
of GrpM . Write out a tableau in 1-forms θ, ω, π. Write each linear subspace
coframed by ω as the solutions of the linear equations π = pω, θ = qω for some
constants p, q. On an open subset of GrpM , p, q are functions valued in some
vector spaces. Pull back the 1-forms θ, ω, π to that open subset via the map
(m,E) ∈ GrpM 7→ m ∈ M . The subset M ′ is cut out by the equation q = 0
and various equations among the p. On M ′, let θ′ ..= π − pω The exterior
differential system I ′ on M ′ generated by ϑ′ is the prolongation of I.

More abstractly, without choosing a local basis of 1-forms: a 1-form θ on
GrpM is contact if, at each point E ∈ GrpM , θE is the pullback of a cotangent
vector vanishing on E. The ideal I ′ is generated by the restrictions toM ′ of the
contact 1-forms. Any integral manifold X ⊂M determines an integral manifold
x ∈ X 7→ TxX ∈ M ′. Recall that the fibers of a map are the preimages of
points. All integral manifolds on M ′ nowhere tangent to the fibers of M ′ →M
arise in this way.

Roughly speaking, prolongation is differentiation:

4.3 Write an exterior differential system associated to the partial differential
equation ux = uyy. Consider the system of differential equations obtained by
differentiating both sides of the equation once in each of the variable:

ux = uyy

uxx = uyyx uxy = uyyy

(... )x (... )y

Explain why the prolongation is associated to that system.
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Some theorems prove that, under some hypotheses, exterior differential
systems become involutive after sufficiently many prolongations [3] p. 255
theorem 3.2, [26] p. 68 theorem 4.11.

Example: isometric immersion, prolonging

Returning to our example of isometric immersion of surfaces, prolong:θ4
θ5
θ6

 ..=

 γ′13
γ′23

α′ − α

−
a b 0
b c 0
0 0 0

ω1
ω2
α

 .

Note that 0 = dθ1, dθ2, dθ3 modulo θ4, θ5, θ6, so we can forget about them.
Calculate the exterior derivatives:

d

θ4
θ5
θ6

 = −

 Da Db 0
Db Dc 0
0 0 0

 ∧
ω1
ω2
α

+

 0
0

tω1 ∧ ω2

 mod θ1, . . . , θ6

where DaDb
Dc

 ..=

 da+ 2bα+ a1ω1 + a2ω2,
db+ (a− c)α+ b1ω1 + b2ω2,
dc+ 2bα+ c1ω1 + c2ω2,


where a1, a2, b1, b2, c1, c2 can be chosen as we like, as long as

a2 = b1,

b2 = c1.

(We will take advantage of the freedom to choose the remaining a1, b1, c1, c2
quantities later; see chapter 8.) The torsion is

t ..= ac− b2 −K.

This torsion clearly has to vanish on any 3-dimensional I ′-integral element, i.e.
every 3-dimensional I ′-integral element lives over the subset of M ′ on which
K = ac− b2. To ensure that this subset is a submanifold, we let M ′0 ⊂M ′ be
the set of points where this equation is satisfied and at least one of a, b, c is not
zero. Clearly M ′0 ⊂M ′ is a submanifold, on which we find Da,Db,Dc linearly
dependent. On M ′0:

d

θ4
θ5
θ6

 = −
Da Db 0
Db Dc 0
0 0 0




s1 s2 s3

2 0 0

∧

ω1
ω2
α

 mod θ1, . . . , θ6.
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There are 2 dimensions of integral elements at each point, involution: there is
an integral manifold through each point of M ′0, and in particular above every
point of the surface. The prolongation exposes the hidden necessary condition
for existence of a solution: the relation K = ac− b2 between the curvature of
the surface and the shape operator.

4.4 Prove that any integral manifold of the exterior differential system con-
structed above coframed by ω1, ω2, α is locally the frame bundle of a isometric
immersion.

The reader familiar with Riemannian manifolds can easily generalize these
computations:

Theorem 4.1. Take any surface S with Riemannian metric and a point x0 ∈ S.
Denote the Gauss curvature by K. Take any 3-dimensional manifold X ′ with
Riemannian metric, a point x′0, and a linear isometric injection Φ : Tx0S →
Tx′0X

′. Let R′ be the sectional curvature tensor of X ′ on the image of Φ. Pick

a nonzero quadratic form q on the tangent plane Tx0S so that det q = K −R′.
Then there is an isometric immersion ϕ of some neighborhood of x0 to X ′, so
that ϕ′(x0) = Φ and so that ϕ induces shape operator q at x0.

4.5 Prove that every sufficiently small spherical cap on the unit sphere admits
an isometric embedding to E3 not contained in a surface of revolution.

For more on isometric immersions, see [16].





Chapter 5

Cartan’s test

We explain how involutivity can be seen as having the generic integral line lie in an
integral plane and so on.

Generic points and generic submanifolds

When we say that the generic point of some manifold has some property, we
mean that those points which fail to have that property lie in a closed, nowhere
dense set. The generic submanifold has some property if the property holds for
all submanifolds whose tangent spaces avoid some closed, nowhere dense subset
of the Grassmann bundle. The definition of generic in analysis is usually more
sophisticated; we could use a more sophisticated definition without changing
any of our proofs or results, but we won’t need to.

Cartan’s strategy

Draw a point, an integral curve through that point, an integral surface through
that curve, and so on up to some required dimension. We fail unless the integral
curve is extendable, i.e. lies inside an integral surface, and so on. Integral curves
are not always extendable. Don’t try to draw all integral curves, surfaces, and
so on, but only the generic ones: ask whether the generic integral curve is
extendable, and the generic integral surface, and so on.

Cartan’s test

An integral line is extendable if it lies in an integral plane, and so on. We can
imagine that extendability of generic integral manifolds is related to extendabil-
ity of generic integral elements.

5.1 Prove that any integral element is extendable just when its codimension in
the tangent space of the manifold exceeds the rank of its polar equations.

A 0-dimensional integral element is regular if its polar equations have locally
maximal rank. Locally maximal rank is the same as locally constant rank, as
linearly independent polar equations remain linearly independent nearby.

An integral element is ordinary if it contains a regular hyperplane, and
regular if in addition its polar equations have locally maximal rank. Regularity
and ordinarity are difficult to test directly, so we will prove:

41
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Theorem 5.1 (Cartan’s test). An integral element is involutive if and only if

it is ordinary.

Corollary 5.2. In each component of the space of integral elements, either

none are involutive or the generic one is involutive.

Ordinarity occurs precisely when the generic integral line sits in an integral
plane, and so on:

5.2 Prove that an integral plane E2 is ordinary just when, for any integral line
E1 ⊂ E2, every integral line close enough to E1 sits in an integral plane.

5.3 Recall from problem 1.14 on page 6 the study of a coupled system of two
2nd order partial differential equations

uxx = f,

uxy = g,

where

f = f(x, y, u, ux, uy, uyy),
g = g(x, y, u, ux, uy, uyy).

Suppose that fuyy = g2
uyy and

0 = fy−gx+fuuy−guux+fuxg−guxf+fuyuyy−guyg−guyy (gy+guuy+guxg+guyuyy).

Prove that there are infinitely many integral surfaces through every point.

Differentiating on the Grassmann bundle

Each differential form ϑ yields an equation 0 = ϑ, satisfied by the integral
elements of the exterior differential system it generates. At any given point
m0 ∈M , integral elements are points of the Grassmannian GrpTm0M .

5.4 Identify the polar equations at an integral element with the differentials
of those equations on the Grassmannian.

Corollary 5.3. Take an involutive integral element E of any exterior differ-

ential system I. Take a subsystem I ′ ⊆ I and a flag in E. If the I ′-characters
of that flag are the I-characters of E, then I and I ′ have the same integral

elements near E, and so the same integral manifolds with tangent spaces near E.

Proof. The I ′-integral elements lie in a submanifold of the Grassmann bundle,
with codimension equal to the number of linearly independent polar equations,
by problem 5.4. This submanifold has the same dimension as the set of I-
integral elements, which it contains.
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Extending integral elements

Lemma 5.4. Every ordinary integral element is involutive.

Proof. Impose p−1 generic linear constraints; they cut down our given ordinary
integral element E to an integral line. They also cut down nearby integral
elements to nearby integral lines. On the other hand, a line satisfying those
generic constraints is integral just when it satisfies s0 linearly independent
polar equations. Pick another p− 1 generic linear constraints. A line satisfying
these will sum to our integral line to span an integral plane, just when it
satisfies the s0 + s1 linearly independent polar equations of our integral line.
By induction, the general p-dimensional integral element near E is cut out by
solving ps0+(p−1)s1+· · ·+sp−1 equations. Solutions form an analytic manifold
by problem 1.15 on page 6, of dimension dimM + s1 + 2s2 + · · ·+ psp.

5.5 Prove theorem 5.1 on the preceding page.

5.6 Prove that the generic linear subspace Ek ⊂ Ep of dimension k of an
involutive integral element is involutive with the same characters s1, s2, . . . , sk
as Ep, up to dimension k.

5.7 Take a subset E of a Grassmann bundle of a manifold. Let E⊥ be the set
of all differential forms vanishing on all elements of E. Use the Cartan–Kähler
to prove that E is an open subset of the set of involutive integral elements of
an exterior differential system if and only if E⊥ is the unique maximal such
system.

View from a tableau

5.8 Prove that, for any involutive integral element E ⊂ Tm0M of an exterior
differential system I, there is a tableau defined near m0, with characters equal
to those of I, generating an exterior differential system with the same characters
and integral elements as I near E.

5.9 Prove in addition that locally (not just at a point) some change of coframing
absorbs torsion.

Put all polars πα of grade i into the entries of a column vector πi, with si
rows. Write the equations for integral elements by plugging πi = pijω

j into the
tableau. The grade of pij is i− j.

For the moment, suppose there is no nonlinearity. Plug into the tableau to
get linear equations solving for all coefficients pij for i < j in terms of various
coefficients pβi , with a smaller subscript. Inductively, we solve for all negative
grade coefficients in terms of semipositive grade coefficients (where semipositive

means not negative). (There may be other equations as well, from entries that
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are not polars; ignore these.) We solve for p1
i , for i = 2, 3, . . . , p, hence (p− 1)s1

equations. Similarly for the other grades, a total of

(p− 1)s1 + (p− 2)s2 + · · ·+ sp−1

equations at least, on p(s1 + s2 + · · · + sp) variables. Each integral element
at this point is determined by the values of its semipositive coefficients. The
number of semipositive coefficients is the difference between number of variables
and number of equations:

s1 + 2s2 + · · ·+ psp.

We assumed no nonlinearity. Each nonlinearity term puts a quadratic or
higher order expression into each of these equations. By the implicit function
theorem, near an integral element, say arranged to be at the origin, higher order
terms do not alter the possibility to solve the equations locally analytically.

This tableau is only computed at one point. Extend the 1-forms in which it
is expressed to be defined nearby as well. Careful: there might be differential
forms in I which vanish at the point where we computed the tableau; we are
ignoring them. So when we extend the forms of the tableau to nearby points,
we obtain a tableau for some subsystem of I, but maybe not all of I.

The space of integral elements thus locally lies in a submanifold of the
Grassmann bundle of dimension

dimM + s1 + 2s2 + · · ·+ psp,

parameterized by choices of point ofM and semipositive grade coefficients. Near
a given integral element, the space of integral elements is a submanifold of that
dimension just when the tableau is involutive at that integral element. Involutiv-
ity holds just all other equations arising on integral elements are consequences
of those above which solved for negative grade coefficient. The semipositive
grade coefficients can then vary in some open set.

Differential equations

All polars are linearly independent at our starting point, so we can assume that
at some given point they are differentials of coordinate functions πα = duα,
and that ωi = dxi. We can extend the ωi to anything we like at nearby points,
so can assume ωi = dxi nearby. We can only arrange that the polars at nearby
points are various multiples of dxi, duα. Careful: at nearby points, some other
tableau entries might become linearly independent, i.e. more polars, and so
more equations. Careful: there need not be any actual integral elements near
this one; the equations we generate are only necessary conditions for an integral
element. Nonetheless, by the implicit function theorem again, each equation of
negative grade coefficients of each polar πα can be written as an equation of
negative grade coefficients of some duα, and vice versa, hence as functions of
the semipositive ones and the coordinates x, u.
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Let ui be the column vector of functions uα associated to polars πα of grade
i. The equations become differential equations

∂ui

∂x>i
= some function

(
x, u,

∂uj

∂x≤j

)
,

for negative grade derivatives in terms of semipositive grade. We see one
differential equation for each polar equation on each integral element in our
flag.

So far, we have not assumed involutivity: every integral manifold of every
exterior differential system satisfies such equations. Involutivity is the condition
that the tableau yields no more differential equations on integral manifolds.

Choose any initial values

ui(x1, . . . , xi, 0, . . . , 0),

so si functions of i variables, i = 0, 1, . . . , p. The differential equations become
determined, so have local solutions near the origin by the Cauchy–Kovalevksaya
theorem (theorem A.2 on page 82).

The first differential equation solves for u0 along the x1 axis, from initial
values at the origin.

x1

u

x2

The second solves for u0 and u1, in the x1, x2 plane, from initial values along
the x1 axis.

x1

u

x2

But is the first differential equation still satisfied by u0, at any constant value
of x2?

x1

u

x2

In other words, we need to see that these equations are compatible with one
another.
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5.10 Suppose that these differential equations are compatible, i.e. the final
resulting u(x) functions have graphs integral manifolds, subject only to open
conditions on values and first derivatives of the initial value functions. Explain
how to construct a manifold of p-dimensional integral elements, of the expected
dimension.

5.11 Write out these differential equations for the exterior differential system
of the Cauchy–Riemann equations in two complex variables. Can you solve
these differential equations, by specifying initial data as above?

5.12 Prove that any involutive integral element of dimension p, whose charac-
ters all vanish except perhaps sp−1 and sp, is tangent to an integral manifold.

5.13 Use the Cartan–Kähler theorem to prove that every involutive integral
element of any exterior differential system lies tangent to a leaf of a foliation
by integral manifolds, foliating some open set. How many functions of how
many variables do such foliations depend on? Prove that any involutive integral
manifold is covered in open sets, each of which is a leaf in a foliation by integral
manifolds, foliating some open set.

Compatibility and involutivity

Geometrically, we sweep a point into an integral curve, sweep that into a surface,
and so on. Compatibility asks that the surface is an integral surface, and so
on. Suppose that the differential equations are compatible, i.e. we can pick any
initial values in the domain of our coordinates, and obtain an integral manifold.
Then we can also pick initial values for the same differential equations nearby
in those coordinates. The space of integral elements, parameterized by the
semipositive derivatives

∂uj

∂x≤j
,

has the predicted dimension at all nearby points. So compatibility implies
involutivity.

An incompatibility, arising as an additional differential equation, might
vanish, perhaps to high order, at the particular point where we are working,
but obstruct at nearby points. So we check the dimension of the space of
integral elements nearby.

Incompatibilities can arise from commuting partial derivatives in our dif-
ferential equations. Any exterior differential system is closed under exterior
derivative, expressing the commutativity of first partial derivatives. So we ex-
pect that all incompatibilities are already present in the differential equations.
So we expect that incompatibilities force the dimension of nearby integral el-
ements below the predicted dimension. So we expect that compatibility is
involutivity; chapter 7 gives a proof.
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Generality of integral manifolds

This section can be omitted without loss of continuity.

As above, Cartan’s strategy constructs integral manifolds of an involutive system
by solving a sequence of determined equations, with initial data si functions of i
variables, i = 0, 1, 2, . . . , p. Count Taylor coefficients of initial data: the Taylor
series of order k of integral manifolds, at a chosen point in our coordinates,
form a manifold of dimension

s0 +
(
k

0

)
s1 +

(
k + 1

1

)
s2 + · · ·+

(
k + p− 1
p− 1

)
sp.

As we vary k, these dimensions of determine all of the characters.
Any other choice of determined systems of differential equations, giving rise

to the same integral manifolds (or at least to the same Taylor series of integral
manifolds at each order), injectively on each order of Taylor series, also has
general solution depending on s0 constants, s1 functions of one variable, s2
functions of two variables, and so on.

Deformation

This section can be omitted without loss of continuity.

A local deformation of an integral manifold X is an analytic map φ defined
on an open subset of X × R containing X × { 0 } so that, for each constant
t, x 7→ φ(x, t) is an integral manifold, where defined, with φ(x, 0) = x. The
velocity of the deformation is the projection of ∂φ

∂t

∣∣∣
t=0

to the normal bundle
of X. By deforming initial data, any integral manifold of any determined
system is covered in open sets admitting local deformation with velocity any
solution of the linearization. We have not yet justified Cartan’s strategy to
prove the Cartan–Kähler theorem, but we can already see that, since the
strategy is a sequence of determined problems, we can apply the same reasoning;
any involutive analytic integral manifold of any exterior differential system is
covered in open sets admitting local deformation with velocity any solution of
the linearization. Local analytic velocity fields exist in the same generality as
integral manifolds, solving linear determined problems.

The Holmgren uniqueness theorem [20] p. 80 proves that, on any analytic
involutive integral manifold, any continuously differentiable velocity field is
uniquely determined by its continuously differentiable initial data at each step in
the sequence of linear determined problems. However, existence of continuously
differentiable velocity fields is not guaranteed.

Prolongation

This section can be omitted without loss of continuity.
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When we prolong, we form new equations π = pjω
j for each polar. Only the

semipositive coefficients pi≤i can vary freely. (For noninvolutive systems, not all
of them vary freely.)

d


π1 − p1

iω
1

π2 − p2
iω

1

...
πp − ppiωi

 = −


dp1

1 ∗ ∗ . . . ∗
dp2

1 dp2
2 ∗ . . . ∗

...
...

...
...

...
dpp1 dpp2 . . . . . . dppp

 ∧

ω1

ω2

...
ωp


modulo torsion, since we haven’t included dπi terms and dωi terms. The ∗
terms are dpij of negative grade, each solved for in terms of semipositive grade,
so generate no polar. There is no nonlinearity. Some of these dp might be
linearly dependent, due to noninvolutivity, so we don’t know where to highlight
polars, but the polars lie in some spots in among these semipositive dp, on or
below the diagonal.

Consider the characters s′j of the prolongation. There are s1 + s2 + · · ·+ sp
rows to this tableau, one for each polar, each representing a 1-form in I ′. Grade
zero in I ′ also includes I1, so

s′0 = s0 + s1 + · · ·+ sp.

In the first column, there is at most one dp polar in each row:

s′1 ≤ s1 + s2 + · · ·+ sp.

In the second column,
s′2 ≤ s2 + s3 + · · ·+ sp,

and so on, with finally s′p ≤ sp: the last nonzero character cannot increase.
These inequalities are equalities just for involutive exterior differential systems.



Chapter 6

The characteristic variety

We give a geometric description of the characteristics of the associated partial differ-
ential equations of exterior differential systems.

Linearization

The reader unfamiliar with linearization of partial differential equations, or
characteristics, might look at appendix B. Take an exterior differential system
I on a manifold M , and an integral manifold X. Suppose that the flow of
a vector field v on M moves X through a family of integral manifolds. The
tangent spaces of X are carried by the flow of v through integral elements of I.
Equivalently, the flow pulls back each form in I to vanish on X. So 0 = Lvϑ|X
for any ϑ ∈ I.

6.1 Prove that all vector fields v tangent to X satisfy this equation.

More generally, suppose that E ⊂ TmM is an integral element of I. If
a vector field v on M carries E through a family of integral elements, then
0 = Lvϑ|E for each ϑ ∈ I.

6.2 Compute Lvϑ|E in coordinates.

Take any submanifold X. Suppose that a differential form ϑ vanishes on
the linear subspace E ..= TmX. Writing X as the graph of some functions, the
expression ϑ|X , as a nonlinear first order differential operator on those functions,
has linearization ϑ 7→ Lvϑ|E . That linearization is applied to sections v of the
normal bundle TM |X /TX.

6.3 In coordinates, prove that the linearized operator at the origin of our
coordinates depends only on the integral element E = TmX, not on the choice
of submanifold X.

Linearize any exterior differential system about any integral element by
linearizing its differential forms, i.e. by linearizing the differential equations
given by asking that those forms vanish on submanifolds. The linearization at
a p-dimensional integral element depends only on Ipm: the set of all values ϑm
of forms in Ip.
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6.4 If P ..= (E⊥) ⊂ Λ∗T ∗mM , identify the linearized exterior differential system
with

(
Im + P 2) /P 2 ⊂ P/P 2 = E⊥ ⊗ Λ∗E∗.

In a tableau, P is generated by the polars, so the linearization is precisely
the same tableau, modulo the nonlinearity, as in problem 2.4 on page 19. So
the linearization about an involutive integral element is involutive. On the
other hand, the linearization at a noninvolutive integral element may or may
not be involutive.

6.5 Compute the linearization of uxx = uyy+uzz+u2
x around u = 0 by setting

up this equation as an exterior differential system.

6.6 For a section v of the normal bundle of X which vanishes at a point m,
compute the linearization Lvϑ|E .

The symbol

6.7 Compute the symbol of the linearization of a differential form ϑ about an
integral element E of that form, to find

σ(ξ) v = ξ ∧ (v ϑ)|E .

The same works with a column ϑ of differential forms arising in a tableau
for an exterior differential system. To compute the symbol from a tableau:

a. Drop the nonlinearity.

b. Turn each polar πα into a formal expression vαξ where ξ = ξiω
i.

c. Expand out the tableau, and collect up terms in each ωI .

d. Write out these terms, each a linear expression in the variables vα, as a
product of a matrix row with a vector of components of v: the symbol
σ(ξ) v.

To see this, compute ξ ∧ (v ϑ)|E by plugging in v to each polar πα, yielding
vα, and wedge in a factor of ξ. Danger: in the recipe above, we are missing a
part of the symbol: the θa-components va of v also show up in ξ ∧ v ϑ|E , in
expressions

ξ ∧ v θa|E = vaξ = vaξiω
i.

Each yields an expression vaξi, giving a row to the symbol matrix, with one
nonzero entry ξi in column a, for all i, a. We will ignore these rows in our
computations because, as we will see, they make a trivial and predictable
contribution to the symbol and the characteristic variety, so we can just assume
that va = 0 for each θa.

6.8 Find the symbol of the prolonged isometric embedding exterior differential
system from chapter 4.
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More invariantly, without choosing any tableau, the symbol of an exterior
differential system I at an integral element E ⊆ TmM is

σ : ξ ∈ E∗, v ∈ TmM/E, ϑ ∈ Ipm 7→ ξ ∧ (v ϑ)|E ∈ Λ
pE∗,

so
σ ∈ E ⊗ E⊥ ⊗

⊕
p

Ip∗m ⊗ ΛpE∗.

The characteristic variety

An integral element is noncharacteristic if it is a hyperplane in precisely one
integral element. An integral manifold is noncharacteristic (or characteristic)
if all of its tangent spaces are. A characteristic hypersurface in an integral
manifold could perhaps lie in more than one integral manifold, a potential
nontangential intersection of integral manifolds. Glue along such an intersection,
to create a “crease” along an integral manifold. So we imagine that integral
manifolds are more flexible along characteristic hypersurfaces, although there
is no theorem to prove that.

6.9 Find the characteristics of the wave equation as an exterior differential
system. Show creasing of solutions along characteristics, and not along non-
characteristic curves.

Lemma 6.1. Take an integral manifold X of an exterior differential system I,
a point x ∈ X, and let E ..= TxX. The characteristic variety Ξx ⊂ PE∗ of the
linearization is the set of characteristic hyperplanes in E.

Proof. The characteristic variety Ξx is the set of hyperplanes [ξ] = (ξ = 0)
associated to nonzero cotangent vectors ξ ∈ E∗ for which there is some section
v of the normal bundle of X with v(x) 6= 0 and 0 = σ(ξ) v.

σ(ξ) (v)ϑ = ξ ∧ (v ϑ)|E .

for every ϑ ∈ Ipm. This says precisely that the vector v can be added to
the hyperplane E ∩ (0 = ξ) ⊂ E to make an integral element enlarging the
hyperplane.

This lemma allows us to define the characteristic variety of any integral
element, even if not tangent to any integral manifold: the characteristic variety

of an integral element E is the set of characteristic hyperplanes in E, denoted
ΞE ⊂ PE∗.

If the symbol matrix has more columns than rows, then (linear algebra!)
some such v exists for any ξ: the characteristic variety consists of all hyper-
planes in the integral element. If the symbol matrix has at least as many
rows than columns, then the determinants of the minors of the symbol matrix
are the equations of Ξ, as the existence of such a section v is precisely the
noninvertibility of any submatrix.
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6.10 Continue problem 6.8 on page 50 by computing the characteristic variety
of the prolonged isometric immersion system.

Note: as in this problem, when we compute characteristic variety of a
tableau, the peculiar 1× 1 blocks vaξj of the symbol, occuring for every va and
ξj , can be dropped from the computation of Ξ, since they just put in products
of all ξj into the determinants, and at least one of the ξj must be nonzero, so
we can just assume that all va vanish for all θa, and simplify the symbol to
omit those columns.

6.11 For an involutive integral element, prove that the following are equivalent:

a. the integral element contains a noncharacteristic hyperplane,

b. every regular hyperplane is noncharacteristic,

c. the final character is zero.

6.12 More equations, fewer characteristics: if J ⊂ I, prove that ΞI ⊂ ΞJ .

6.13 What is the characteristic variety of a Frobenius exterior differential
system?

Determined systems

A p-dimensional integral element E ⊂ Tm0M of an exterior differential system I
is determined if E contains a noncharacteristic hyperplane and Ipm has constant
dimension s0 + s1 + · · ·+ sp−1 for m near m0. Note that then sp = 0.

Theorem 6.2. Take an analytic exterior differential system. Every noncharac-

teristic analytic integral manifold X, whose every tangent space is a hyperplane

in a determined integral element, is a hypersurface in an analytic integral man-

ifold. Any two analytic integral manifolds containing X as a hypersurface share

a set, open in both, containing X.

Proof. As above, the symbol σ(ξ) at each p-dimensional integral element E is
a linear map in

TmM/E → Ip∗m ⊗ ΛpE∗,
square at each determined integral element E. The dimension of Ipm cannot drop
below s0 + s1 + · · ·+ sp, because it generates that many polar equations at E,
and hence near E. Pick out that number of linearly independent p-forms from I:
they span Ip at every point nearby. The determined exterior differential system
they generate has the same p-dimensional integral manifolds, polar equations,
and symbol.

6.14 Prove that every real immersed curve in an almost complex manifold lies
in an immersed holomorphic disk.

6.15 Prove that if E ⊂ E+ is characteristic, and E+ has dimension p then
sp > 0.
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For the tableau of triply orthogonal webs
π3 0 0
0 π2 0
0 0 π1

 ∧
 ω12

ω13

ω23


we findv3 0 0

0 v2 0
0 0 v1

 ξ ∧

ω12

ω13

ω23

 =

v3 0 0
0 v2 0
0 0 v1

 ξ3
−ξ2
ξ1

ω123,

=

 0 0 ξ3
0 −ξ2 0
ξ1 0 0

v1

v2

v3

ω123,

= σ(ξ) vω123.

So detσ(ξ) = ξ1ξ2ξ3: the characteristic variety Ξ is the triple of lines
(ξ1 = 0), (ξ2 = 0) and (ξ3 = 0). Any 3-dimensional integral element
coframed by ω1, ω2, ω3 has characteristic hyperplanes 0 = ξ1ω

1 + ξ2ω
2 +

ξ3ω
3 for any one of the three coefficients vanishing, i.e. containing any

one of the three axes.

Theorem 6.3. Take an embedded analytic surface S ⊂ E3. Pick or-

thonormal analytic vector fields e1, e2, e3 along S, none tangent to S.
Then there is a triply orthogonal web near S in E3 with leaves perpen-

dicular to e1, e2, e3 at each point of S. Any two such agree near S.

The reader familiar with Riemannian geometry may recognize that
this proof works identically replacing E3 by any analytic Riemannian
3-manifold. Any symmetry of S and e1, e2, e3 on S is shared by the
triply orthogonal web, by uniqueness.

In proving Lie’s third theorem, we had tableau
π1

1 π1
2 . . . π1

p

π2
1 π2

2 . . . π2
p

...
... . . .

...
πp1 πp2 . . . πpp

 ∧

ω1

ω2

...
ωp

 ,
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i.e. 0 = πij ∧ ωj . We plug in πij = vαξ, to get

0 = 1
2(vijξk − vikξj)ωkj .

Our linear expressions are vijξk−vikξj . One particular solution v to these
equations is vij ..= ξj for all i. So every hyperplane in every p-dimensional
integral element is characteristic. This is not surprising: any diffeomor-
phism takes every Maurer–Cartan form to a Maurer–Cartan form; we
can pick a diffeomorphism which is very close to the identity except
along a hypersurface “bending” every Maurer–Cartan form “along” that
hypersurface.

6.16 Find the characteristic variety of ∇× u = u− f .

6.17 Find the characteristic variety for the exterior differential system of har-
monic functions in the plane. Show that it doesn’t satisfy the conditions of the
Cauchy–Kovalevskaya theorem as described in theorem 6.2 on page 52. (Harder:
can you “fix it”, i.e. use the Cauchy–Kovalevskaya theorem to nonetheless prove
the existence of local integral surfaces?)



Chapter 7

Proof of the Cartan–Kähler theorem

Cartan’s strategy II

This section can be omitted without loss of continuity.

Pick a hypersurface, a hypersurface in the hypersurface, and so on, a flag of sub-
manifolds, stopping at codimension p. Imagine that the generic p-dimensional
integral manifold locally intersects each submanifold of our flag transversally:
intersecting the smallest in a point, the next smallest in an integral curve, the
next smallest in an integral surface, and so on.

Construct an integral manifold by Cartan’s strategy: draw a point inside the
smallest submanifold of the flag, an integral curve through that point inside the
next smallest, an integral surface through that curve inside the next smallest,
and so on. Trouble: there might be many integral curves, passing through that
point, lying on that flag submanifold. Inside the flag submanifold, pick a smaller
submanifold, a restraining manifold, cutting down dimensions so that our point
lies on a unique integral curve in the restraining manifold. We choose nested
restraining manifolds, one in each flag submanifold, starting from the largest
and going down in dimension. Start from the smallest and go up in dimension:
pick a point in the smallest restraining manifold, sweep out an integral curve
through it in the next restraining manifold, and so on. We will see that each
restraining manifold is locally the choice of sk functions of k variables.

Fix a flag. Construct integral manifolds by varying the restraining manifolds
inside the submanifolds of that fixed flag. We will see that different selections
of restraining manifolds give rise to a different integral manifold in the final
stage. In this sense, integral manifolds depend on s0 constants, s1 functions of
one variable, and so on.

We wrote out differential equations on page 45. The flag:

Mi = (0 = xi+1 = · · · = xp)

is the choice of the variables over which to solve differential equations.
The restraining manifolds are the initial data:

Rp = (up = up(x1, . . . , xp))

and, for i = p− 1, p− 2, . . . , 2, 1, 0,

Ri = Ri+1 ∩Mi ∩ (ui = ui(x1, . . . , xi, 0, . . . , 0)).

55



56 Proof of the Cartan–Kähler theorem

7.1 For the equation ∇×u = f−u from problem 2.6 on page 23, write flag and
restraining manifolds in coordinates, and the associated differential equations.

Chapter summary

Theorem 7.1 (Cartan–Kähler I). Take an analytic exterior differential system

and a noncharacteristic analytic integral manifold X with locally maximal rank

polar equations in every tangent space. Then X is a hypersurface in an analytic

integral manifold, locally unique in that any two analytic integral manifolds in

which X is a hypersurface both contain a subset, open in both and containing X.

A submanifold R of M restrains an integral manifold X of an exterior
differential system if the exterior differential system pulls back to R to make X
noncharacteristic, with each tangent space of X having locally maximal rank
polar equations.

Corollary 7.2. If an analytic manifold restrains an analytic integral manifold

of an analytic exterior differential system, then the integral manifold is a hy-

persurface in a locally unique analytic integral submanifold of the restraining

manifold.

Take an integral element E ⊂ TxM of an exterior differential system. A
linear subspace V ⊂ TxM restrains E if E ⊆ V and

a. all nonzero polar equations of E, being linear functions on TxM , pull back
to nonzero linear functions on V and

b. the vectors in V on which those polar equations vanish form a subspace
containing E as a hyperplane.

Theorem 7.3 (Cartan–Kähler II). Take an exterior differential system I on

a manifold M and an integral manifold X with locally maximal rank polar

equations. Take a submanifold R containing X so that, for each x ∈ X, TxR
restrains TxX. Then R restrains X, corollary 7.2 applies.

Proof. When we pull back to R, the polar equations of integral elements near
TxX also pull back without losing rank. So polar equations on TxX have
locally maximal dimension among all nearby integral elements tangent to R.
At each x ∈ X, TxX is a hyperplane in a unique integral element in TxR: the
vanishing locus of the polar equations. So X is noncharacteristic in R; apply
theorem 7.1.

Corollary 7.4. If the tangent spaces of an analytic integral manifold of an

analytic exterior differential system have locally maximal rank polar equations,

then the following are equivalent:

a. that rank is less than the codimension of the integral manifold,
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b. the integral manifold is covered in open sets, each of which is a hypersur-

face in an analytic integral manifold.

Proof. In one tangent space TxM , pick covectors, linearly independent modulo
the polar equations of TxX, so that the subspace on which they and the polar
equations vanish is a hyperplane containing TxX. That hyperplane can be any
one that contains TxX and satisfies the polar equations of TxX, so in particular
we can make TxX noncharacteristic in it. Pick any submanifold R normal to
those covectors.

Extending an integral manifold

Proof of theorem 7.1 on the preceding page.

Proof. Let p ..= 1 + dimX; denote X as Xp−1. At each x ∈ Xp−1, there is a
unique p-dimensional integral element Ep ⊂ TxM containing Ep−1 ..= TxXp−1.
By the solution of problem 6.11 on page 52, sp = 0 on Ep.

By problems 5.8 and 5.9 on page 43, we can take a torsion-free tableau for
I, defined in some open set, adapted to a generic flag which includes Ep−1 and
Ep. Each polar

ϑ = · · ·+ π ∧ ωI + . . .

has I ⊆ { 1, 2, . . . , p− 1 }, since sp = 0. Let J ..= { 1, 2, . . . , p− 1 } − I, and
ϑ′ ..= ϑ∧ ωJ . So ϑ′ is ϑ “raised up” to become a p-form of grade p− 1, shifting
its polar to that grade. Similarly, if ϑ is one of the coframing 1-forms θa, let

ϑ′ = θa ∧ ω1...p−1.

Let I ′ be the exterior differential system generated by these p-forms ϑ′.

7.2 Prove that Xp−1 is a hypersurface in some I ′-integral manifold Xp.

We need to see that I = 0 on Xp. The 1-forms ω1, . . . , ωp coframe Xp near
x. Every p-form in Ip on Xp is wedged up a form ϑ ∈ I by some ωJ . If p /∈ J ,
then ϑ ∧ ωJ ∈ I ′ vanishes on Xp. So every p-form in Ip on Xp is a multiple of
ωp. We will see in lemma 7.6 on the following page that I = 0 on Xp.

Background material from differential geometry

Lemma 7.5. For any (p+ 1)-form ϑ and vector fields v0, . . . , vp,

dϑ(v0, . . . , vp) = (−1)ivi(ϑ(v0, . . . , v̂i, . . . , vp))

+
∑
i<j

(−1)i+jϑ([vi, vj ], v0, . . . , v̂i, . . . , v̂j , . . . , vp).

7.3 Prove lemma 7.5.
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Compatibility

Cartan’s strategy picks out a determined subset of differential equations, sweep-
ing an integral curve into a surface, and so on. Why is the surface integral?
In other words, why are the differential equations sweeping out the surface
compatible with those which swept out the curve?

Lemma 7.6. On a connected p-dimensional manifold X+, take a locally finitely

generated analytic exterior differential system I. Suppose that I has an analytic

integral hypersurface. Suppose that Ip = Ip−1 ∧ ω for some 1-form ω. Then

I = 0.

Proof.

7.4 Why does it suffice to prove that Ip−1 = 0?

7.5 Why does it suffice to assume that ω 6= 0 everywhere on X+?

Denote ω as ωp. Perhaps replacing X+ by an open subset, choose analytic
1-forms ω1, . . . , ωp−1 on X+ which coframe X so that ω1, . . . , ωp coframe X+.
Pick differential forms φa ∈ Ip−1 generating I. In particular, dφa, φa ∧ ωi ∈
Ip = Ip−1 ∧ ωp. Let φ be the column vector with entries φa:

dφ = hφ ∧ ωp,
φ ∧ ωi = hiφ ∧ ωp, i = 2, . . . , p− 1

for matrices h, hi whose entries are analytic functions.
Denote the vector fields dual to ω1, . . . , ωp by e1, . . . , ep. Because ω1, . . . , ωp−1

coframe X, ep is not tangent to X. Write eı̂ to denote

e1, . . . , êi, . . . , ep.

7.6 Use lemma 7.5 on the previous page to find a determined linear system
satisfied by f ..= φ(ep̂).

By the Cauchy–Kovalevskaya theorem (theorem A.2 on page 82), there is
a unique solution f near X with given values on the noncharacteristic hyper-
surface X; these values are f = 0, so the solution is f = 0. So φ ∧ ωp = 0, so
φ ∧ ωi = 0 for all i, so Ip−1 = 0.
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Chapter 8

Cauchy characteristics

Often an exterior differential system can be written in a smaller number of variables
than we would at first expect.

Redefinition of exterior differential system

A symmetry vector field of an exterior differential system is a vector field whose
flow preserves the system. It might seem natural to define a symmetry vector
field as one whose flow permutes integral manifolds, but we have no test for this.
The flow of a vector field might not be defined globally, while all of the forms
in an exterior differential system are defined globally. Moreover, we want to
test whether a vector field is a symmetry by local computation. So we consider
a different concept of exterior differential system, in which the forms need only
be defined locally.

An exterior differential system I on a manifold M is an ideal IU ⊂ Ω∗U of
differential forms on each open set U ⊆M so that

a. d-closed: the exterior derivative takes IU → IU and

b. restricts: if U ⊆ V ⊆ M are open sets, then restricting forms takes
IV → IU , and

c. glues: if U =
⋃
a Ua, then a differential form belongs to IU just when its

restriction to each Ua belongs to IUa , and

d. graded: IU = I1
U ⊕ I2

U ⊕ · · · ⊕ IdimM
U , IkU ..= IU ∩ΩkU .

All of our theorems so far hold, with the same proofs, for this definition of
exterior differential system.

8.1 Give an example of an exterior differential system J in the sense of the
old definition which is not the ideal IM of an exterior differential system I in
the sense of the new definition.

Take any collection of differential forms defined on various open subsets of
a manifold. Without changing the submanifolds on which they vanish, we can
add forms to our collection until we obtain an exterior differential system.
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Convergence

Differential forms converge when their component functions do in local coordi-
nates, as analytic functions p. 99.

Theorem 8.1. Every exterior differential system is closed under convergence.

Proof. Take a convergent sequence ϑi → ϑ, with ϑi ∈ I. Take coordinates with
origin at some chosen point. A differential form ϑ = fIdx

I is a vector valued
map, valued in Λ∗Rn. Germs of forms from I constitute a submodule of the
germs of forms. By theorem C.4 on page 100, the germ of ϑ is among those
germs. So ϑ ∈ IU for some open set U around the chosen point.

8.2 Give an example of an exterior differential system, according to our old
definition, not closed under convergence.

Symmetries

8.3 Prove that, for any vector field v and differential form ϑ defined near some
point, the point lies in an open set in which

etv∗ϑ =
∑ tk

k!L
k
vϑ.

8.4 For any exterior differential system I and vector field v, prove that the
following are equivalent:

a. v is a symmetry of I,

b. LvIU ⊆ IU for all open sets U ,

c. LvIU ⊆ IU for some open sets U forming a basis for the topology of M .

8.5 What are the symmetry vector fields of a Frobenius system?

8.6 Prove that the symmetry vector fields of any exterior differential system
form a Lie algebra.

8.7 Give an example of a smooth exterior differential system I and a complete
analytic vector field v, so that LvI ⊆ I but the flow of v does not preserve I,
nor permute integral manifolds.

8.8 Give an example of an analytic exterior differential system I with no
nonzero smooth symmetry vector field, so that the smooth exterior differential
system it generates has a nonzero smooth symmetry vector field.

8.9 Give an example of a complete vector field whose flow preserves the integral
elements of an exterior differential system, but does not preserve the exterior
differential system.

8.10 For a smooth exterior differential system I, prove
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a. if I is locally finitely generated, v is a nowhere vanishing vector field, and
LvI ⊆ I, then v is a symmetry.

b. if I is closed under uniform convergence on compact sets with all deriva-
tives, and v is a symmetry, then LvI ⊆ I.

Finite type

An exterior differential system I on a manifold M has finite type if every point
ofM lies in an open set U ⊆M on which there are finitely many forms ϑj ∈ IU
so that, for any point m ∈ U , and form ϑ from I defined near m, there are
forms φj defined near m, so that ϑ =

∑
φj ∧ ϑj near m.

Any exterior differential system generated by finitely many globally de-
fined differential forms has finite type; this includes all of our examples.

8.11 Give an example of an infinite type exterior differential system. Is your
example in involution?

8.12 Prove that, in the definition of finite type, we can always assume that
these φj are functions, i.e. 0-forms.

8.13 Prove compatibility (lemma 7.6 on page 58) for finite type exterior dif-
ferential systems. Give an infinite type counterexample.

8.14 Give an example of an infinite type involutive exterior differential system.

8.15 Prove that, for any finite type exterior differential system, a vector field
v is a symmetry just when every point lies in an open set U on which a finite
set of forms ϑi generate IU with Lvϑi ∈ IU .

Pointwise linear independence

This section can be omitted without loss of continuity.

An exterior differential system I is bundled if it is generated by forms in certain
degrees, and in these degrees is locally spanned by pointwise linearly indepen-
dent forms.

Any exterior differential system generated by finitely many globally de-
fined differential forms, all of the same degree, everywhere linearly inde-
pendent, is bundled; this includes all of our examples.

8.16 Prove that every bundled exterior differential system is of finite type.

8.17 Give an example of an unbundled finite type exterior differential system
I on a manifold M .
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8.18 Solve problem 8.4 on page 62 for bundled smooth systems.

8.19 Give an example of an unbundled finite type involutive exterior differential
system.

8.20 We assume familiarity with vector bundles [6]. Prove that an exterior
differential system I is bundled just when there are vector subbundles Ip ⊆
ΛpT ∗M for various values of p = p1, p2, . . . , p` and M is covered by open sets
Ua ⊆M on which

a. IpUa is the collection of differential forms from Ip on Ua, p = p1, p2, . . . , pk
and

b. IUa is generated by these sections.

Cauchy characteristics

The exterior differential system generated by dy− p dx on M ..= R4
x,y,p,q

doesn’t make use of the variable q. We can build a quotient manifold
M̄ ..= R3

x,y,p, map (x, y, p, q) ∈ M 7→ (x, y, p) ∈ M̄ . Maximal integral
manifolds in M are locally the preimages of maximal integral manifolds
of dy− p dx on M̄ . Our aim in this section is to find “unused variables”,
and quotient them out.

A vector field v is Cauchy characteristic for an exterior differential system
I if v I ⊆ I.

8.21 Prove that the Cauchy characteristic vector fields of an exterior differential
system form a Lie subalgebra of the vector fields.

Denote by Im the set of values ϑm ∈ Λ∗TmM∗ of forms ϑ ∈ IU for some open
set U with m ∈ U . A Cauchy characteristic vector of an exterior differential
system I is a vector v ∈ TmM so that v Im ⊆ Im. The rank of Cauchy
characteristic vectors at each point is their dimension as a vector space.

8.22 We assume familiarity with vector bundles [6]. Prove that Cauchy char-
acteristic vectors have constant rank just when they form a vector subbundle
of the tangent bundle TM .

8.23 Prove: if the Cauchy characteristic vectors have constant rank then a
vector field is a Cauchy characteristic vector field if and only if its value at each
point is a Cauchy characteristic vector.

8.24 Give an example of an involutive exterior differential system, on a connnected
manifold, whose Cauchy characteristic vectors do not have constant rank.
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The retracting space of an exterior differential system I is the collection of
1-forms vanishing on its Cauchy characteristic vectors. A Cauchy characteristic

is an integral submanifold of the retracting space. The pullback π∗Ī by a map
π : M → M̄ of an exterior differential system Ī is the exterior differential system
generated by pullbacks π∗ϑ̄ of differential forms ϑ̄ from Ī.

8.25 If I = π∗Ī is the pullback by a submersion π, prove that a submanifold
of M is the π-preimage of an Ī-integral manifold just when it is an I-integral
manifold and contains any of fiber of π it touches.

8.26 How do characters behave when we pull back?

Clearly the pullback of a finite type system is finite type. The pushforward

π∗I by a map π : M → M̄ of an exterior differential system I is the exterior
differential system consisting of the forms ϑ̄ on M̄ whose pullback π∗ϑ̄ lies in
I.

8.27 Prove that Ī ⊆ π∗π∗Ī.

8.28 Prove that π∗π∗I ⊆ I.

8.29 Prove that the vectors on which π∗ = 0 are Cauchy characteristic vectors
for I ..= π∗Ī, and that π∗Ω1

M̄
lies in the retracting space of I.

8.30 Take an exterior differential system with characters si at an integral
element transverse to the fibers of a map. Suppose that its push forward by
that map has characters s′i. Prove that the restriction to each preimage of each
integral manifold has characters si − s′i.

8.31 Suppose that I is an exterior differential system on a manifold M , and
that the retracting space of I has constant rank. Prove:

a. The retracting space generates a Frobenius exterior differential system
lying inside I and

b. every point of M lies in an open set U so that the retracting space of
IU is the pullback π∗Ω1

Ū
of a surjective submersion π : U → Ū to some

manifold Ū .

8.32 Give an example of a finite type exterior differential system on a manifold
M , and a submersion π : M → M̄ with Cauchy characteristic fibers, so that
I 6= π∗π∗I.

Theorem 8.2. Suppose that I is a finite type exterior differential system on a

manifold M . Take a submersion π : M → M̄ with Cauchy characteristic fibers.

Suppose that for any two components of any fiber of π, there is a diffeomorphism

of M preserving I and π and interchanging these components. Then I = π∗π∗I
and π∗I has finite type.
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Proof. Let Ī ..= π∗I. We know that π∗π∗I ⊆ I, i.e. that π∗Ī ⊆ I.
If we can cover M in open sets so that every element of I defined on one of

those sets lies in π∗Ī, we glue. So we need only prove that the elements of I
defined near an arbitrary point lie in π∗Ī, i.e. are multiples of pullbacks from
Ī.

Take an open set U ⊆M . Take a Cauchy characteristic vector field v defined
and nonzero near some point of U . Shrink U if needed to arrange that v is
defined in U and, by finite type, that the forms in I near any point of U are
generated by finitely many forms ϑi. But IU is Lv-closed, so, after perhaps
shrinking U again,

Lvϑ
i = f ijϑ

i,

for some functions f ij on U ; denote this equation Lvϑ = fϑ. Pick a hypersurface
H ⊂M through m0 transverse to v. After perhaps shrinking U , we can define
functions g = (gij) by g = I along H and

Lvg = −gf.

If ϑ̄ ..= gϑ ∈ IU , Lvϑ̄ = 0, and ϑ = g−1ϑ̄ so IU is generated by v-invariant
forms.

Similarly, for any finite set of commuting and nonvanishing vector fields
v1, . . . , vk, after perhaps shrinking U , we can generate IU by forms invariant
under all of these. In particular, after perhaps shrinking U , we can pick these
vector fields to give a basis of local sections of the kernel of π′, i.e. of the vertical
vector fields. Generators become invariant generators.

Take coordinates xi, ya on M so that these x coordinates are pulled back
from M̄ . Taking as v the various ∂ya , we have seen that IU is generated by
invariant differential forms, i.e. forms which, expanded out as ϑ = fIAdx

I∧dyA,
have fIA = fIA(x). We need to arrange that there are no dya terms in our
generators. Since ϑ ∈ IU , we know that v ϑ ∈ IU for each v = ∂ya , and
similarly if we wedge several ∂ya vector fields in, so fIA(x)dxI ∈ IU , for each
dyA, so we can replace ϑ by the various fIA(x)dxI .

So I is locally generated by pulled back differential forms. Since Cauchy
characteristic vector fields are symmetries, these pullback forms continue to
generate on open sets invariant under Cauchy characteristics.

8.33 Finish the proof.

8.34 Does theorem 8.2 on the preceding page generalize to infinite type?

8.35 Prove that, for any surjective submersion π : M → M̄ and exterior differ-
ential system Ī on M̄ , Ī = π∗π

∗Ī.

8.36 Under the hypotheses of theorem 8.2 on the previous page, prove that I
is bundled just when π∗I is.

8.37 Under the hypotheses of problem 8.35, prove that Ī is bundled just when
π∗Ī is.
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8.38 Give an example of an exterior differential system which is pulled back
via a map with connected Cauchy characteristic fibers, but not locally spanned
by pointwise linearly independent forms.

8.39 A exterior differential system is local if it is closed under locally finite sums.
Prove a variant of theorem 8.2 on page 65, for smooth local exterior differential
systems, using either the old or the new definition of exterior differential system.
Give an analytic counterexample, for the old definition.

To find Cauchy characteristics: in some local coframing, write out a set of
differential forms which span an exterior differential system. Any 1-forms of
the coframing which do not appear in the spanning set of the system are dual
to Cauchy characteristic vector fields.

Example: surface invariants

Return to the study of surface invariants on page on page 25. Note that I has
a Cauchy characteristic: the vector fields v on which γ12 6= 0 but

0 = ω1 = ω2 = ω3 = γ3i − aijωj = Daij .

We can quotient locally by this Cauchy characteristic, so that each integral
manifold X coframed by ω1, ω2, γ12 projects to a surface S in the quotient
space ofM = ⌜E3 ×V by the orthogonal group of the plane. We can in addition
quotient by a reflection e3 7→ −e3, A 7→ −A. The quotient space M̄ is the set of
all choices of point x ∈ E3, plane P through x, and symmetric quadratic form
A valued in the normal line to P at x.

Example: isometric immersion, Cauchy characteristics

Recall the isometric immersion notation:

• S is a surface in E3 with Gauss curvature K,

• ⌜S , ⌜E3 are the orthonormal frame bundles,

• Identify R3
a,b,c with the set of 2× 2 symmetric matrices

A =
(
a b
b c

)
.

• M ′0 ⊂ ⌜S × ⌜E3 × R3
a,b,c is the subset on which A 6= 0 and K = detA.

• ω1, ω2 are the soldering forms on S, and α is the connection form,

• ω′1, ω
′
2, ω
′
3 are the soldering forms on ⌜E3 , and γ′12, γ

′
23, γ

′
31 are the connec-

tion forms; we let α′ ..= γ′12.
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We let DaDb
Dc

 ..=

 da+ 2bα+ a1ω1 + a2ω2,
db+ (a− c)α+ b1ω1 + b2ω2,
dc+ 2bα+ c1ω1 + c2ω2,


with a1, a2, b1, b2, c1, c2 any functions chosen so that

a2 = b1,

b2 = c1,

Write dK = K1ω1 +K2ω2.
Note that we still have some freedom to pick these a1, a2, b1, b2, c1, c2; it is

convenient to pick them to satisfy in addition

K1 = 2bb1 − ac1 − ca1,

K2 = 2bb2 − ac2 − ca2,

so that 0 = cDa+ aDc− 2bDb, a simple relation among the differential forms
in the exterior differential system. (we can write this formally as D(ac−b2) = 0,
although, to be precise, we haven’t really defined an operator D, so this is just
formal nonsense.) We can always pick such a choice of a1, a2, b1, b2, c1, c2, near
any point of M ′0, using the fact that one of a, b, c is not zero.

The ideal for isometric immersions on M ′0 is generated by the 1-forms γ′13
γ′23

α′ − α

−
a b
b c
0 0

(ω1
ω2

)
,

which have exterior derivatives

−

 Da Db 0
Db Dc 0
0 0 0

 ∧
ω1
ω2
α

 mod θ1, . . . , θ6.

How do we spot Cauchy characteristics? On M ′0, the 1-forms

ω1, ω2, ω
′
1−ω1, ω

′
2−ω1, ω

′
3, α
′−α, γ′13−(aω1+bω2), γ′23−(bω1+cω2), Da,Db,Dc, α+α′

form a basis, except for the one relation cDa+ aDc = 2bDb. When we write
out the tableau in our basis, we don’t use the last basis element: α+ α′. So in
this basis, α+ α′ is dual to a Cauchy characteristic vector field v, i.e. v hooks
to zero in every 1-form appearing in the tableau, and so hooks the exterior
differential system into itself.

We can do a little better. Let G be the group of all orthogonal 3×3 matrices
g preserving the vertical axis:

g =
(
h 0
0 (−1)k

)
,
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with k = 0 or 1, h an orthogonal 2× 2 matrix. Recall that r∗gω′ = g−1ω′ and
r∗gγ
′ = g−1γ′g. Extend the G-action to M ′0:

rg(x, e, x′, e′, A) = (x, eh, x′, e′g, (−1)kh−1Ah).

Problem D.9 on page 110 shows that this action preserves M ′0 and the exterior
differential system. Check that

v = d

dt

∣∣∣∣
t=0

rg(t),

where
g(t) =

(
cos t − sin t
sin t cos t

)
.

The quotient space M̄ ′0 of M ′0 by the G-action is the space of choices of
linear isometry F : TxS → Tx′E3 together with a quadratic form q 6= 0 on TxS
so that K = det q. By problem 8.33 on page 66, I ′ on M ′0 is pulled back from
a unique exterior differential system Ī ′ on M̄ ′0. But, unlike M ′0, the manifold
M̄ ′0 does not have a canonical choice of coframing. We would struggle to write
out the quotient exterior differential system Ī ′. Except for α, the other 1-forms
in our tableau vanish on the Cauchy characteristics, so define a tableau for the
quotient exterior differential system:θ4

θ5
θ6

 =

 γ′1
γ′2

α′ − α

−
a b
b c
0 0

(ω1
ω2

)
,

d

θ4
θ5
θ6

 = − Da Db

Db Dc

( )
s1 s2

2 0

∧
(
ω1
ω2

)
mod θ1, . . . , θ6.

Example: isometric immersion, noncharacteristic data

The asymptotic curves of a surface are those on which the shape operator
vanishes.

8.40 Show that the characteristic curves of the isometric immersion problem
on any integral surface are the asymptotic curves.

Since we have assumed that a, b, c do not all simultaneously vanish, the
shape operator is nowhere zero, so not every curve is asymptotic.

A ribbon is a choice of curve, its spine, and a ruling line at each point
of the spine, perpendicular to the tangent line to the spine, and analytically
varying along the spine. A ribbon is nondegenerate if the ruling line is nowhere
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perpendicular to the curvature vector of the spine. A nondegenerate ribbon has
a unit tangent vector along its spine, and a curvature vector, and their cross
product, so imposes a basis, orienting the perpendicular space to every ruling
line.

Take a surface S in E3 and an embedded connected curve C in S with an
orientation of S defined along C. Take a nondegenerate ribbon in E3, with
spine C ′, and an isometry ι : C → C ′. Use the isometry to identify an orientation
of C with one of C ′. Use the orientation defined along C to extend ι∗ to a
linear isometry of each tangent plane to the perpendicular to each ruling line.

Theorem 8.3. The isometry of curve to spine extends to a locally unique

isometric immersion normal to the ruling lines of its ribbon.

Draw an infinitely long curve on the peel of an orange, accumulating
only toward two points, so embedded in the sphere with those points
deleted. Slice the peel close that curve, and lay out the peel tangent to
an infinitely long ribbon: an isometric immersion.

Take a Möbius strip S and a closed curve C so that S is not orientable
in any neighborhood of C. Take a nondegenerate ribbon whose spine
has the same length as C. An isometry of curve to spine exists, but
cannot extend to an isometric immersion. It can’t even extend to an
isometry of tangent spaces of the surface to perpendicular planes to the
ruling line, as the ruling lines are oriented.

Proof. Take e′1 to be the unit tangent to C ′ and e′3 to be the unit tangent vector
to the ruling lines. Locally extend e′1, e′3 into an orthonormal basis e′1, e′2, e′3,
giving an immersed curve in ⌜E3 , on which γ′31 = aω′1 and γ′32 = bω′1 for some
functions a, b. The ruling lines are nowhere perpendicular to the curvature
vector, i.e. e′3 is nowhere perpendicular, i.e. a 6= 0. Clearly we must then let

c ..= b2 −K
a

at every point. Since a 6= 0, this curve in M ′ is not characteristic:

aω2
1 + 2bω1ω2 + cω2

2 = aω2
1 6= 0.

An isometric immersion arises as in this theorem precisely when it has
nonzero shape operator everywhere.
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Example: conformal maps of surfaces

We use the Cartan–Kähler theorem to prove the existence of local conformal maps
between surfaces. We assume familiarity with appendix D.

Conformal maps

A conformal map is a local diffeomorphism φ : S → S′ between surfaces in E3

preserving angles between curves.

Mercator projection, a conformal map of an open subset of the sphere.
By Strebe - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=16115307!

Theorem 9.1. Given two surfaces S, S′ in E3, and points x0 ∈ S, x′0 ∈ S′,
there is a conformal map φ : U → U ′ from an open set U ⊂ S containing x0 to

an open set U ′ ⊂ S′ containing x′0 so that φ(x0) = x′0.

See [10] for an elementary proof for smooth surfaces.

9.1 Prove that a linear isomorphism of the plane preserves angles just it is
uniquely expressed as a product of a rotation, a rescaling, and perhaps a
reflection:

r

(
cos θ − sin θ
sin θ cos θ

)
or

r

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)
.

9.2 Given two surfaces of revolution, show that we can explicitly compute a
rotationally invariant conformal map from one to the other by solving a first
order ordinary differential equation for one function of one variable. If one of
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the surfaces is a cylinder or a sphere, explain how to reduce the construction of
the conformal map to solving an integral, rather than an ordinary differential
equation.

The graph of a conformal map as an integral manifold

It is convenient to write the conformal scaling factor not as r but instead as e−u.
Suppose that φ : S → S′ is a conformal map. Inside the 7-dimensional manifold
M ..= ⌜S × ⌜S′ × Ru, consider the 3-dimensional submanifold X consisting of
points (x, e, x′, e′, u) with (x, e) ∈ ⌜S and (x′, e′) ∈ ⌜S′ so that

x′ = φ(x),
e′1 = e−uφ′(x)e1,

e′2 = e−uφ′(x)e2.

Recall the structure equations dω = iα ∧ ω on S and dω′ = iα′ ∧ ω′ on S′.

9.3 On X, show that ω′ = e−uω and du+ i(α′−α) = u′ω for a unique function
u′ on X.

On the 7-dimensional manifold M , take the exterior differential system
I generated by ω′ − e−uω. Any conformal map φ : S → S′ has associated
submanifold X of ⌜S × ⌜S′ an integral manifold. The tableau is

d(ω′ − e−uω) = e−u(du+ i(α′ − α)) ∧ ω.

In real and imaginary parts, the tableau du+ i(α′ − α) is

du −(α′ − α)
α′ − α du

( )
s1 s2

2 0

The integral elements are the complex numbers u′ so that du+ i(α′−α) = u′ω,
i.e. the real and imaginary parts of these numbers, s1 + 2s2 = 2 + 2(0) = 2 = s,
involution: an integral manifold X ⊂M exists through any point of M .

Finally, we need to prove that our integral manifold is actually constructed
from some conformal map φ. Since u is real, du + i(α′ − α) has real part du
and imaginary part α′−α. Note that I has a Cauchy characteristic: the vector
fields v on which α 6= 0 but

0 = ω1 = ω2 = ω′1 = ω′2 = du = α′ − α.

We can in addition quotient by a reflection e2 7→ −e2, e
′
2 7→ −e′2. The quotient

space M̄ is the set of all conformal linear maps from tangent spaces of S to
those of S′, as we are quotienting out by conformally changing the frame e1, e2
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and correspondingly the frame e′1, e′2. So M̄ is a 3-manifold, and X projects to
a surface X̄ in M̄ . As ω1, ω2, α are linearly independent on X, X̄ has ω1, ω2 still
linearly independent, since both ω1 and ω2 vanish on the Cauchy characteristic
vectors. Therefore X̄ projects to S by a local diffeomorphism. Similarly, X̄
projects to S′ by a local diffeomorphism. So X̄ injects into S×S′, as the graph
of a local diffeomorphism, say φ : S → S′.

We need to prove that φ is conformal. Take some tangent vector v ∈ TxS.
Pick a point

(x, e, x′, e′) ∈ X.
Write the vector v as v = v1e1 + v2e2. We make a vector v̂ on X which projects
to v, by asking that

v̂

ω1
ω2
α

 =

v1
v2
0

 .

Then v̂ projects to S′ to a vector v′ with v′ = v′1e
′
1 + v′2e

′
2 given by

v̂

(
ω′1
ω′2

)
=
(
v′1
v′2

)
.

But on X, ω′1 = e−uω1, ω′2 = e−uω2 so(
v′1
v′2

)
= e−u

(
v1
v2

)
.

In other words, v′ = e−uv1e
′
1 + e−uv2e

′
2, so that φ is a conformal map.

Characteristics

Theorem 9.2. Take any two surfaces S, S′ in E3, and embedded curves C ⊂ S
and C ′ ⊂ S′. Every local diffeomorphism φ : C → C ′ extends to a conformal

map φ : U → U ′ from an open set U ⊂ S containing C to an open set U ′ ⊂ S′
containing C ′. Any two such maps agree on any connected open neighborhood

of C on which both are defined.

Note that the curves C,C ′ may be closed curves here; the result is global as
regards the curves, but local in that we only construct a conformal map near
the curves.

Near each point of any surface, there is a conformal map to the plane,
i.e. there are coordinates x, y, called isothermal, identifying angle mea-
surements with those of the plane

Proof. Our tableau:

π1 −π2

π2 π1

( )
= du −(α′ − α)

α′ − α du

( )



74 Example: conformal maps of surfaces

To find its characteristic variety, replace each polar πα in the tableau with vαξ:

0 =
(

v1ξ v2ξ

−v2ξ v1ξ

)
∧
(
ω1

ω2

)
=
(
v2ξ1 − v1ξ2
v1ξ1 + v2ξ2

)
ω12 =

(
−ξ2 ξ1
ξ1 ξ2

)(
v1

v2

)
ω12.

The characteristic variety equation is the determinant of the symbol matrix:
ξ2
1 + ξ2

2 = 0, i.e. there are no real characteristics, an elliptic determined system
after we mod out the Cauchy characteristics. So any integral curve in M̄ lies in
a unique integral surface. A curve in the 6-dimensional manifold M̄ is a choice
of curve C in S, a curve C ′ in S′, a diffeomorphism between the curves, and a
conformal factor e−u along the curve. Such a curve is an integral curve of the
system just when ω′i = e−uωi, i.e. u is determined by the ratio of the lengths
of the tangent vector to C and that to C ′.
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Example: Weingarten surfaces

Weingarten surfaces

A Weingarten surface is an oriented surface S in E3 whose Gauss and mean
curvature satisfy some relation, i.e.

(H,K) : S →W,

for some curveW in the plane. For example, we could ask that K = 1 or H = 0.
The “generic” surface has no such relation, as we saw on page 25. Every surface
of revolution has such a relation: the Gauss and mean curvature are invariant
under the revolution, so have values determined along any one meridian.

Weingarten surfaces as integral manifolds

10.1 Prove that, on any surface in E3, H2 ≥ K with equality just at umbilic
points.

If a surface consists entirely of umbilic points, it is a plane or sphere. So
suppose thatW is a curve in the plane, lying in the open set of points (x, y) ∈ R2

so that x2 > y, and S is a Weingarten surface associated to W . On its frame
bundle ⌜S in ⌜E3 , we have

ω3 = 0,(
γ13
γ23

)
=
(
a11 a12
a12 a22

)(
ω1
ω2

)
,

0 = a12 − a21,

K = a11a22 − a2
12,

H = a11 + a22

2 ,

(H,K) ∈W.

Let Ŵ be the set of symmetric matrices

a =
(
a11 a12
a12 a22

)
so that (

tr a
2 ,det a

)
∈W.

75
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Then X ..= ⌜S is a 3-dimensional integral manifold in M ..= ⌜E3 × Ŵ ofθ0
θ1
θ2

 =

 ω3
γ13 − (a11ω1 + a12ω2)
γ23 − (a21ω1 + a22ω2)


on which ω1, ω2, ω12 are linearly independent. Calculate the tableau:

d

θ0
θ1
θ2

 = −


0 0 0
π1 π2 0
π2 π3 0

 ∧
ω1
ω2
γ12


where π1

π2
π3

 = d

a11
a12
a22

+

 0 2 0
−1 0 1
0 −2 0

a11
a12
a22

 γ12.

Locally, we can write W as the set of solutions of an equation f(x, y) = 0 in
the plane with df 6= 0. So on S,

0 = f

(
tr a
2 ,det a

)
.

Let
fH ..= ∂f

∂H
, fK ..= ∂f

∂K
.

Compute out that this gives

0 =
(
da11 + da22

2

)
fH + (a22da11 + a11da22 − 2a12da12) fK .

In terms of π1, π2, π3 this relation is

0 =
(
π1 + π3

2

)
fH + (a22π1 + a11π3 − 2a12π2) fK

This equation has coefficients of π1, π2, π3 given by

a11fK + fH , a22fK + fH , a12fK .

10.2 Prove that all of these vanish, i.e. there is no addition linear relation
among π1, π2, π3, precisely when a11 = a22 and a12 = 0, i.e. an umbilic point.

Since our curve W lies inside H2 > K (“away from umbilic points”), our
exterior differential system has characters s1 = 2, s2 = 0, s3 = 0 so involution.
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Cauchy characteristics

The Cauchy characteristics are the rotations of frame tangent to the surface.
The 6-dimensional quotient manifold M̄ is the set of choices of point in E3,
plane through that point, unit normal vector to that plane, and symmetric
bilinear form on that plane, with half trace and determinant lying in W . On
M̄ , the exterior differential system is determined. Each Weingarten surface S
gives an integral surface of that exterior differential system, mapping each point
of S to its tangent plane and shape operator on that tangent plane.

Characteristic variety

The symbol matrix is(
−ξ2 ξ1

fH
2 ξ1 + fK (a22ξ1 − a12ξ2) fH

2 ξ2 + fK (a11ξ2 − a12ξ1)

)

which has determinant

−fK
(
a11ξ

2
2 − 2a12ξ1ξ2 + a22ξ

2
1
)
− fH

2
(
ξ2
1 + ξ2

2
)
.

Recall that the characteristic variety consists of the hyperplanes

0 =
∑
i

ξiωi = 0,

satisfying these equations. A vector v = v1e1 + v2e2 lies in such a characteristic
hyperplane just when 0 = ξ1v1 + ξ2v2, so then, up to scaling

(ξ1, ξ2) = (v2,−v1) .

Plug this in to see that the characteristics are

0 = fK
(
a11v

2
1 + 2a12v1v2 + a22v

2
2
)

+ fH
2
(
v2

1 + v2
2
)
.

i.e. in classical notation,
0 = fKII + fH

2 I.

So the characteristics are the curves on S with velocity v satisfying this
quadratic equation. Since we have assumed that our surface contains no umbilic
points and that df 6= 0, not every curve is characteristic.

Initial data

Take a ribbon along a curve C in E3. At each point of that curve, draw the
perpendicular plane to the ruling line of the ribbon. On that plane, take a
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symmetric bilinear form II with two distinct eigenvalues, analytically varying
along C. Let H ..= tr II/2, K ..= det II. The form II is nondegenerate if, on
every tangent line to C, the homogeneous cubic form

dH II + dK

2 I

is not zero, where I is the Euclidean inner product.
Consider what a noncharacteristic curve looks like in the 6-dimensional

manifold M = ⌜E3 × Ŵ . Such a curve consists of a ribbon x(t), e3(t), together
with the additional data of e1, e2 and the values aij . The curve x, e, a is an
integral curve of the exterior differential system, i.e. ω3 = 0 and γi3 = aijωj .
The equation ω3 = 0 is just the requirement that e3 ⊥ ẋ, i.e. a ribbon. Since
we can rotate the frame e1, e2, we can ask that e1 be tangent to the curve x(t).
So then γi3 = aijωj just when

II(e1, e1) = −e3 ·
de1

dt
,

II(e1, e2) = −e3 ·
de2

dt
.

So the shape operator is partly determined by the ribbon. Noncharacteristicity
is precisely that

e3 ·
de1

dt
fK 6=

fH
2 .

10.3 Prove that the Weingarten equation f = 0 locally recovers the coefficient
a22, hence the entire shape operator, from the data of the ribbon.

Parameterize a curve C by arc length as x(s), and let e1 ..= ẋ. Take a ribbon
on that curve and write the direction of the ruling line as e3. Let e2 be the vector
so that e1, e2, e3 is a positively oriented orthonormal frame along C. A form II
is compatible with the ribbon if II(e1, e1) = −e3 · ė1 and II(e1, e2) = −e3 · ė2.
Compatibility is independent of the choice of arc length parameterization and
of rotation of e1, e2. Define H and K, the trace and determinant of II. Define
an immersed curve W : the image of the s 7→ (H(s),K(s)).

Theorem 10.1. Take an analytic ribbon along a connected curve C in E3, and
a symmetric bilinear form II, defined in the perpendicular plane of the ruling

line of the ribbon at one point of C, nondegenerate and compatible with the

ribbon. Then II extends uniquely locally to be defined along an open subset

of C, analytically varying, nondegenerate and compatible with the ribbon. If II
extends to all of C, then there is an analytic Weingarten surface S in E3

containing C whose shape operator is II at each point of C and whose Gauss

and mean curvature lie in the image of C in the plane under the map (H,K).
Any two such surfaces agree near C.

10.4 Which analytic curves in E3 are geodesics on minimal surfaces?
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The Cauchy–Kovalevskaya theorem

We prove the Cauchy–Kovalevskaya theorem: analytic determined systems of partial
differential equations have local solutions, with arbitrary initial conditions.

Formal Taylor series

For x1, x2, . . . , xn real variables and a1, a2, . . . , an nonnegative integers, let

x ..= (x1, x2, . . . , xn),
a ..= (a1, a2, . . . , an),
xa ..= xa1

1 . . . xann ,

a! ..= a1! . . . an! and

∂a ..= ∂a1

∂xa1
1
. . .

∂an

∂xann
.

A formal Taylor series is an expression
∑
ca (x− x0)a with real constants ca,

not required to converge.

A.1 Prove that the formal Taylor series
∑
n(2n)!tn diverges for t 6= 0.

We add, subtract, multiply, differentiate and compose in the obvious way:
finitely many terms at a time. Crucially, each output term depends only on input
terms of lower or equal order (or, for the derivative, on just one order higher),
so on only finitely many input terms. When we add, multiply, differentiate or
compose, each step is only adding or multiplying coefficients. In particular, the
sum, product, derivative (in any variable) and composition of formal Taylor
series with positive terms has positive terms.

A formal Taylor series
∑
bax

a majorizes another
∑
cax

a if ba ≥ |ca| for all a.
If a convergent series majorizes another, the other is absolutely convergent. If f
majorizes g and umajorizes v then f◦u, f+u, fu, ∂af majorizes g◦v, g+v, gv, ∂ag
respectively.

The geometric series

1
1− t = 1 + t+ t2 + . . .

has a Taylor series with positive coefficients. A formal Taylor series c0 +c1t+ . . .
with all |cj | < 1 converges absolutely for |t| < 1, because the geometric series
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converges and majorizes it. Rescaling t and our series, we see that if a formal
Taylor series is majorized by a geometric series, then it converges near the origin,
i.e. if |cj | are bounded by a geometric series, in other words |cj | ≤ Mrj for
some M, r > 0, then c0 + c1t + . . . converges absolutely near the origin. An
analytic function is one which is locally the sum of a convergent Taylor series.

Lemma A.1. A formal Taylor series converges to an analytic function just

when it is majorized by a product of geometric series in one variable each.

Proof. We give the proof for one variable around the point x = 0, and let the
reader generalize. Take any analytic function f(x) with convergent Taylor series
f(x) =

∑
cnx

n. Since it converges absolutely for x near 0,
∑
|cn| rn converges

for r near 0, so the terms of this series are bounded. Rescale to get a bound of
1, i.e. |cn| rn < 1 for all n. Therefore

|cn| ≤
1
rn

i.e. f(x) is majorized by 1/(1− x).

A.2 Prove that any two formal Taylor series which converge near the origin to
the same analytic function agree.

A.3 Prove that an analytic function given by a convergent Taylor series around
some point is also given by a convergent Taylor series around every nearby point.

A.4 Prove that any two analytic functions defined on a connected open set
which agree near some point agree everywhere.

The derivative and composition of analytic functions is analytic, and the
analytic inverse and implicit function theorems hold with the usual proofs
[24, 31].

Complexification

Every Taylor series converging in some domain of real variables continues to
converge for complex values of those variables, with small imaginary parts, by
the same majorization. Hence every analytic function of real variables extends
to an open set in a domain of complex variables. By elementary complex
analysis [1], sums, differences, products and derivatives of analytic functions on
an open set are analytic, as are quotients, wherever the denominator doesn’t
vanish, and the analytic inverse and implicit function theorems hold.

Solving for Taylor series using a differential equation

Let’s solve a simple partial differential equation ut = ux. Think about the
vector field X = ∂t − ∂x in the tx-plane.
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Clearly Xu = 0 just when u satisfies our equation; but this happens just when
u is constant along the flow lines of X. The flow lines of X are the diagonal
lines, i.e. t+ x constant, so the solutions of our partial differential equation are
u(t, x) = U(t+x) for any function U . Solutions of partial differential equations
can involve arbitrary functions, as in this example. Each solution u(t, x) is
determined by its value at “time” t = 0. If we pick our initial data function U
not smooth at a point, then u(t, x) is not smooth along the flow line of that
point. So solutions can be worse than the initial data from which we construct
them.

A.5 Suppose that X is an analytic vector field on a manifold M and that
H ⊂ M is an embedded analytic hypersurface and X is not tangent to H at
any point of H. Pick analytic functions v : H → R and f : M × R→ R. Prove
that there is an analytic function u : open ⊂ M → R so that u(m, 0) = v(m)
for m ∈ H and Xu(m) = f(m,u(m)) wherever u is defined. Prove that any
two such functions u = u1 and u = u2 agree near H.

Take the differential equation ut = u2 + t. Differentiate both sides:

utt =2uut + 1,
=2u

(
u2 + t

)
+ 1.

Our differential equation allows us to replace differentiation in t with
some expression without any derivatives.

The differential equation ut = u2uxx + sin(u) allows us, using the chain
rule, to replace any number of t derivatives by complicated expressions
in x derivatives. We can calculate any Taylor coefficient in any power of
t as a function of finitely many Taylor coefficients involving only powers
of x, i.e. Taylor coefficients of u(x, 0). Danger: after we compute all
of the Taylor coefficients, we have no guarantee that they sum up to a
convergent Taylor series.

A formal solution of an analytic differential equation is a formal Taylor
series so that expanding out the compositions term by term, all terms in the
equation turn to zeroes. As above, for any formal Tayor series u(0, x), there
is an associated formal Taylor series solution u(t, x) of each partial differential
equation ut = f(t, x, u, ux, uxx, . . . , ux...x) for any smooth function or formal
Taylor series f .
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The heat equation ut = uxx has a unique formal Taylor series solution
with intial condition

u|t=0 = 1
1 + x2 ,

given by

u(t, x) =
∞∑

j,k=0
(−1)j+k(2(j + k))! t

j

j!
x2k

(2k)!

which doesn’t converge anywhere except at t = 0.

The method of majorants

Theorem A.2 (Cauchy–Kovalevskaya). An analytic system of partial dif-

ferential equations of the form ut = f(t, x, u, ux), defined in an open set of

t ∈ R, x ∈ Rn, u ∈ Rp, with any analytic initial conditions u = U(x) at t = t0,
has an analytic solution near t = t0. Any two solutions agree near t = t0.

Proof. Instead of looking at Taylor series of solutions, look at Taylor series of
equations. Start with a simpler problem: take a differential equation ut =
f(t, u) with initial condition u(0) = u0. Go back to our expressions for Taylor
coefficients:

ut(0) = f(0, u0) ,
utt(0) = ft(0, u0) + fu(0, u0)ut,

= ft(0, u0) + fu(0, u0) f(0, u0) ,
uttt(0) = . . . .

If u0 ≥ 0 and all of the Taylor coefficients of f are ≥ 0 then inductively all of
the Taylor coefficients of u are ≥ 0. In other words, if u0 ≥ 0 and f majorizes
0 then u majorizes 0.

By the same reasoning, if we have two differential equations ut = f(t, u)
and vt = g(t, v) with initial conditions u(0) ≥ v(0), and if f majorizes g, then
by the same induction, u majorizes v. In particular, if the Taylor series of u
converges, then so does that of v.

A.6 Check that the function

u(t) = 1−
√

1 + 2 log(1− t)

satisfies the toy equation

ut = 1
(1− t)(1− u)

with initial condition u = 0 at t = 0.
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Don’t expand the unpleasant function u(t) but expand the toy equation

ut = 1
(1− t)(1− u) ,

=
(
1 + t+ t2 + . . .

) (
1 + u+ u2 + . . .

)
,

=
∑
jk

tjuk :

a geometric series. Suitable rescaling of t and u produces any convergent
geometric series we like. By lemma A.1 on page 80, any analytic function
f(t, u) is majorized by a geometric series in t, u. So the equation ut = f(t, u) is
majorized by the toy equation, after some rescaling of variables. So the solution
u(t) to ut = f(t, u) with u(0) = 0 is majorized by the toy solution, so has
convergent Taylor series.

We will generalize this toy example several times, to get a larger class of
examples of majorizing equations. The function

u(t, x) = 1− x−
√

(1− x)2 − 2t

satisfies
ut = 1 + ux

1− x
with u = 0 at t = 0. With suitable rescalings of x, t, u, this equation majorizes
any equation of the form ut = f(x, u) + g(x, u)ux for any analytic f, g, with
x, u ∈ R in a suitable open set. Therefore all such equations have local analytic
solutions so that u = 0 when t = 0.

To allow more x variables: if u(t, s) is the function above

u(t, s) = 1− s−
√

(1− s)2 − 2t

and we let v(t, x) = u(t, s) where we let s =
∑
i xi where x ∈ Rn, then

vt =
1 + 1

n

∑
vxi

1−
∑
xi

and v = 0 at t = 0. Again, with a little rescaling, this equation majorizes any
equation of the form ut = f(x, u)+g(x, u)ux for any analytic f, g, and t, u ∈ R,
x ∈ Rn in some open set. Of course the same trick works even if we allow many
u functions, i.e. u ∈ Rp.

To allow the t variable to enter into the right hand side, we add a new
equation vt = 1 with initial condition v = 0 at t = 0, so we are just forcing
v = t everywhere. Then any system like ut = f(t, x, u)+g(t, x, u)ux with u = 0
when t = 0 is equivalent to

ut =f(v, x, u) + g(v, x, u)ux,
vt =1,
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with u = v = 0 when t = 0. We have already seen that such systems have
solutions near the origin,

If we want to solve a system of the form ut = f(t, x, u, ux), invent a new
variable v and solve instead

ut = f(t, x, u, v) ,
vt = fx(t, x, u, v) + fu(t, x, u, v) v + fv(t, x, u, v) vx,

with u = v = 0 when t = 0, to force v = ux.
Suppose that we want to solve a system ut = f(t, x, u, ux) with u = U(x)

at t = 0 instead of u = 0 at t = 0. Replace the system by the system vt =
f(t, x, v+U, vx+Ux) with v = 0 at t = 0 and then let u(t, x) = v(t, x)+U(x).

Given a solution u to the wave equation utt = uxx with initial conditions
u = U and ut = W at t = 0, let

v(t, x) =
∫
W (x) dx+

∫ t

0
ux(s, x) ds

so that vt = ux. Differentiate under the integral sign and apply the
fundamental theorem of calculus to find that vx = ut. Therefore u, v
satisfy

ut = vx,

vt = ux

with initial conditions u = U and v = W at t = 0. Conversely, any
solution to this system of equations recovers our solution u to the wave
equation. An analytic solution of the wave equation is uniquely deter-
mined by the initial height and velocity of the waves.

To solve a second order system

utt = f(t, x, u, ux, ut, uxx, uxt) ,

with initial conditions u = U(x) and ux = W (x) at t = 0, let p = ux and q = ut.
Then

ut = q,

pt = qx,

qt = f(t, x, u, p, q, px, qx) ,

with initial conditions u = U(x), p = U ′(x), q = W (x) at t = 0. Any solution
or formal solution of this system arises from a solution or formal solution to
the original system and vice versa. This same trick reduces any system of any
order to a first order system in more variables.
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Is there a vector field u so that ∇× u = f for a given vector field f in
E3? Write u =

(
u1, u2, u3) and f =

(
f1, f2, f3) and let

u1
x2

..= ∂u1

∂x2
, etc.

Our equation ∇× u = f expands out to

u3
x2
− u2

x3
= f1,

u1
x3
− u3

x1
= f2,

u2
x1
− u1

x2
= f3 :

3 first order equations for 3 unknowns. By analogy with the Cauchy–
Kovalevskaya theorem, we expect to find a unique solution with initial
values of u1, u2, u3 given on some surface in E3

x1,x2,x3
. This expectation

is not correct. Taking ∇· on both sides of our equations reveals 0 = ∇·f .
If 0 6= ∇·f then there is no solution u. If 0 = ∇·f then the solutions are
u = u0 +∇φ for any one fixed solution u0 and for any twice continuously
differentiable function φ. So the local solutions depend on one function
φ of 3 variables, not on initial data from a surface in E3.

We might spot trouble on the horizon when we notice that we can’t
solve our equations for the derivatives with respect to x1, since there are
only two of them, and similarly for x2 and for x3. Nonetheless, we can
easily make more complicated examples of systems of partial differential
equations to which the Cauchy–Kovalevskaya theorem does not apply,
with complicated “compatibility conditions” needed to ensure existence
of a solution.

Is there a vector field u so that ∇× u = f − u for a given vector field
f in E3? Our equation ∇× u = f − u expands out to

u3
x2
− u2

x3
= f1 − u1,

u1
x3
− u3

x1
= f2 − u2,

u2
x1
− u1

x2
= f3 − u3 :

3 first order equations for 3 unknowns. Again we might expect to find a
unique solution with initial values of u1, u2, u3 given on some surface in
E3
x1,x2,x3

. Again this intuition is not correct. Taking ∇· on both sides
of our equations reveals 0 = ∇ · f −∇ · u, i.e.

u1
x1

+ u2
x2

+ u3
x3

= f1
x1

+ f2
x2

+ f3
x3
,

a fourth first-order equation which is linearly independent of the other
three.
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Split the four equations as:

u3
x2
− u2

x3
= f1 − u1,

and

u1
x3
− u3

x1
= f2 − u2,

u2
x1
− u1

x2
= f3 − u3,

u1
x1

+ u2
x2

+ u3
x3

= f1
x1

+ f2
x2

+ f3
x3
.

Solve the first of these equations:

u3
x2
− u2

x3
= f1 − u1,

but just along the surface x1 = 0, using the Cauchy–Kovalevskaya
theorem in the variables x2, x3, starting with any choice of functions
u1, u2 on the surface x1 = 0 and any function u3 on the curve x1 = x2 =
0. Apply the Cauchy–Kovalevskaya theorem to the last 3 equations:

u1
x3
− u3

x1
= f2 − u2,

u2
x1
− u1

x2
= f3 − u3,

u1
x1

+ u2
x2

+ u3
x3

= f1
x1

+ f2
x2

+ f3
x3
.

in all 3 variables x1, x2, x3, by treating x1 as the variable we differentiate
in: u1

u2

u3


x1

=

−u2
x2
− u3

x3
+∇ · f

u1
x2

+ f3 − u3,

u1
x3
− f2 + u2

 .

The tricky question is whether the resulting functions actually solve the
original problem. In fact, they do: we have solved the first equation

u3
x2
− u2

x3
= f1 − u1,

at x1 = 0. But if we differentiate that expression in x1, check that(
u3
x2
− u2

x3
− f1 + u1)

x1
= 0

modulo the 3 other equations, so vanishes by construction. The general
solution to ∇ × u = f − u is given by picking one arbitrary function
of one variable, and 2 arbitrary functions of two variables, again not
what we would guess from familiarity with the Cauchy–Kovalevskaya
theorem.

Again, we might spot trouble on the horizon when we notice that
we can’t solve our equations for the derivatives with respect to x1, since
there are only two of them, and similarly for x2 and for x3.
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Smooth counterexamples

For functions which are not analytic, there are numerous theorems to prove the
existence of solutions, under a wide variety of hypotheses, but there are some
surprising counterexamples:

a. The Cauchy–Riemann equations admit only analytic solutions: no solu-
tion has smooth nonanalytic initial data.

b. Some linear determined equations Lu = f with analytic L have no solu-
tions for any smooth f unless f is analytic [25].





Appendix B

Symbol and characteristic variety

We define the notion of symbol of a system of partial differential equations.

The problem

The Cauchy–Kovalevskaya theorem says that we can solve a system of differen-
tial equations, if we can write it as solving for the highest derivative in a single
variable t in terms of all other derivatives, in all variables, and the values of
independent and dependent variables. If we can’t do this in the variables we
are given, we might be able to do it after a change of variables. So we need
a coordinate free description of “how many derivatives” are taken in a given
direction.

The Laplace operator in the plane: u 7→ uxx + uyy. At first glance,
it appears to take two derivatives along each coordinate axis, and no
derivatives in any other directions. But the Laplace operator is invari-
ant under rotation, so it actually “feels” the second derivatives in all
directions.

The symbol of a linear operator

If you differentiate a high frequency wave in a direction in which it oscillates,
it gets bigger. If you differentiate in a direction in which the wave is constant,
it gets killed. We can detect the derivatives taken by a differential operator by
plugging in waves.

Take a large number λ and any function f(x) vanishing at the origin. Near
the origin, the function eiλf looks like a high frequency wave: expand f in a
Taylor series f(x) =

∑
ξixi + . . .,

eiλf = eiλ
∑

ξixi+....

89
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Any linear differential operator,

P =
∑
|a|≤m

ca(x)∂a

is a polynomial P = P (x, ∂) in the operators ∂xi ; the coefficients are functions
of x. Write this polynomial

P (x, ξ) =
∑
|a|≤m

ca(x)ξa.

Let Pm be the highest order terms, also called the symbol:

Pm(x, ξ) =
∑
|a|=m

ca(x)ξa,

also denoted σP (ξ), for ξ = ξidx
i ∈ T ∗M a 1-form. To see “how many deriva-

tives” P takes in some direction, expand:

e−iλfP
[
eiλfu

]
=
∑
|a|≤m

e−iλfca(x)∂a
(
eiλfu

)
,

Every time a derivative hits eiλfu, it either hits the exponential factor, pulling
down a power of λ, or hits the u, so no power of λ. So the leading order term
in λ is

e−iλfP
[
eiλfu

]
= imλm

∑
|a|=m

ca(x)ξau+O(λ)m−1,

= imλmPm(x, ξ)u+O(λ)m−1.

where ξ = df(x). Without taking coordinates,

σP (df)u = lim
λ→∞

e−iλfP
[
eiλfu

]
imλm

for any continuously differentiable function f vanishing at x. The symbol
vanishes on the momentum df of a high frequency wave eiλfu(x) at a point
x = x0 just when that wave solves P = 0 to leading order in wave frequency λ.
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The heat operator in the plane is

Pu = ut − uxx − uyy

for a function u = u(t, x, y), and the symbol is σP (c dt+ a dx+ b dy) =
−a2 − b2.

All along we could have allowed u to be valued in, say, Rq, and allow the
coefficients ca(x) to be p × q matrices. Then σP (ξ) is a p × q matrix. The
matrix entries are functions of x and polynomials of degree m in ξ.

B.1 Find the symbol of the Cauchy–Riemann operator

P

[
u
v

]
=
(
ux − vy
uy + vx

)
.

B.2 If we are interested in a linear system of equations 0 = Pu, rather than
an operator P , the equations have the same solutions if we rescale both sides
by some invertible matrix g(x). Similarly, we could rescale the u variable by a
matrix h(x). Check that

σgPh(ξ) = gσP (ξ)h.

If we change variables by a diffeomorphism y = h(x), then ∂xi =
∑
j
∂yj
∂xi

∂yj

and for any 1-form ξ =
∑
j ξjdyj =

∑
ij ξj

∂yj
∂xi

dxi, so when we substitute ξi for
∂yi ,

σh∗P (ξ) = σP (h∗ξ) .
We knew this already: the symbol σP (ξ) is defined independently of coordinates.

Taking exterior derivative d as our differential operator,

e−iλfd(eiλf ) = iλdf ∧ ω + dω,

so the symbol is
σd(ξ) = ξ∧,

i.e. the symbol is the linear transformation ω 7→ ξ ∧ ω, where ξ is a
1-form.

Background material from projective geometry

The projective space PV of a vector space V , over any field, is the set of lines
through the origin of V [29]. If V has dimension n+ 1, we may write PV as Pn.
For any v ∈ V with v 6= 0, [v] ∈ PV is the line through v. Any nonzero linear
function f on V vanishes on a hyperplane in V . This hyperplane determines f
up to rescaling, and vice versa. So each point [f ] of PV ∗ is naturally identified
with a hyperplane in V .
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The characteristic variety

The characteristic variety of a linear differential operator P is

ΞP,m = { [ξ] ∈ PT ∗mM | kerσP (ξ) 6= 0 } .

Let TC∗
m M ..= T ∗mM⊗C. The complex characteristic variety consists of complex

lines in a complex vector space:

ΞC
P,m =

{
[ξ] ∈ PTC∗

m M
∣∣ kerσP (ξ) 6= 0

}
.

A 1-form ξ belongs to the characteristic variety just when the operator P takes
“exceptionally few” derivatives in the direction of ξ.

For the heat operator, the characteristic variety is the set of [c, a, b] ∈ P2

so that a2 + b2 = 0, i.e. the single point [c, a, b] = [1, 0, 0] ∈ P2, while
complex characteristic variety consists of the complex number solutions
to the same equations: [c, a,±a], i.e. b = ia and b = −ia, a union of
two complex lines.

Take exterior derivative d on k-forms as our differential operator. The
symbol is σd(ξ) = ξ∧, so the characteristic variety is the set of all lines
[ξ] spanned by 1-forms ξ 6= 0 so that ξ ∧ ω = 0 for some ω 6= 0. If
we work with only 0-forms ω, then this forces ξ = 0: the characteristic
variety is empty. If k > 0, then any ξ has ξ ∧ ω = 0 for some ω 6= 0:
take any ω of the form ξ∧η. So the characteristic variety of the exterior
derivative on k-forms is

Ξd,m =
{
empty, if k = 0,
PT ∗mM, if k > 0.

The same calculation computes the complex characteristic variety:

ΞC
d,m =

{
empty, if k = 0,
PTC∗

m M, if k > 0.

For the heat operator, the characteristic variety at each point consists
of the single hyperplane dt = 0. This hyperplane is the tangent plane
to each surface representing space at constant time.

For a vector field X, thought of as a differential operator Pu = Xu, the
characteristic variety is the set of [ξ] so that ξ(X) = 0, i.e. the set of all
hyperplanes containing the vector X.
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For the wave operator, Pu = utt − uxx − uyy, the symbol is
σP (t, x, y, c, a, b) = c2 − a2 − b2. Up to rescaling, we can arrange c = 1,
so the characteristic variety is a circle [1, a, b] ∈ P2 so that a2 + b2 = 1.
As a family of hyperplanes, this circle is the set of hyperplanes tangent
to the “light cone” dt2 = dx2 + dy2.

Points of the complex characteristic variety are complex hyperplanes in the
spaces of complexified tangent vectors.

B.3 Find the characteristic variety of Maxwell’s equations in the vacuum.

Linearization

Take a nonlinear differential equation, say ut = uxxu+sin(ux), and take
a solution u(t, x). Take a function v(t, x) and plug in u+ εv instead of
u to both sides, supposing that u+ εv is also a solution, at least up to
an error smaller than ε:

ut + εvt = (uxx + εvxx) (u+ εv) + sin(ux + εvx) ,
=uuxx + sin(ux) + ε (uxxv + vxxu+ cos(ux) vx) +O(ε)2

using the Taylor series of sin. Since u satisfies the differential equation,
we can cancel off ut = uuxx + sin(ux) from both sides, and divide by ε
and send ε→ 0:

vt = uxxv + vxxu+ cos(ux) vx,

a linear differential equation in v, but with coefficients which depend on
the solution u that we perturbed about.

More generally, for any expression P [u] = F (x, u, ux) (a differential operator,
perhaps nonlinear), and any function u for which P [u] = 0, the linearization of
P about u is the linear differential operator

P ′[u]v = Fu(x, u, ux) v + Fux(x, u, ux) vx,

and similarly for higher order operators.

B.4 Let ∆ = ∂xx+∂yy. Linearize the equation ∆u = |du|2 around the solution
u = 1.

B.5 Let ∆ = ∂xx+∂yy. Linearize the Liouville equation ∆ log u = −u2 around
the solution u = 1

2 log
(

4
(1−x2−y2)2

)
.

When we take about a differential equation 0 = F (x, u, ux), defined for
x ∈ Rn, u ∈ Rk, ux ∈ Rnk lying in some open set (x, u, ux) ∈ U ⊂ Rn+k+nk, we
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implicitly assume that F is analytic and that the set M of all (x, u, p) ∈ U ⊂
Rn+k+nk where F (x, u, p) = 0 is a manifold and that the map (x, u, p) ∈M 7→
(x, u) is a submersion (so the differential equation doesn’t, locally, constraint
the value of the independent or dependent variables).

If we are given the values of u and ux at just one point x, then we can
calculate F (x, u, ux) at that one point, and if 0 = F (x, u, ux) then we can also
calculate the linearization P ′[u] at x, or in other words we can calculate the
coefficients of the linearization at x:

Fu(x, u, ux) and Fux(x, u, ux) .

Therefore we can calculate the characteristic variety Ξx,u,ux of our differential
equation, by which we mean that of the linearization at (x, u, ux).

The linearization of ut = uuxx+uyy+u2 is vt = vuxx+uvxx+vyy+2uv,
so the characteristic variety is 0 = 0 + uξ2

x + ξ2
y + 0, if we write the

components of a 1-form ξ as ξ = ξt dt+ ξx dx+ ξy dy.

Initial value problems

A differential equation is determined just when the symbol matrix σ(ξ) is square,
and invertible for some ξ.

Lemma B.1. A differential equation 0 = F (x, u, ux) can locally be written in

the form of the Cauchy–Kovalevskaya theorem in some coordinates just when it

is determined.

Proof. If we linearize the equation around some point (x, u, p), we get the linear
equation

0 = Fu(x, u, ux)v + Fp(x, u, ux)vx,

with symbol σ(ξ) v = Fp(x, u, ux)ξv. So if we write coordinates as xi, ua, pai ,
then the symbol matrix is

σ(ξ) = Fpiξi.

We want to see when we can somehow smoothly solve, at least locally, the
equation 0 = F (x, u, ux) for some uxi as a function of x, u and the other uxj .
By the implicit function theorem, we can do this just when Fpi is an invertible
square matrix. Note that

σ(dxi) = Fpi .

On the other hand, if σ(ξ) is an invertible square matrix for some ξ, we can
linearly change variables to arrange that ξ = dxi and reverse our steps.

The problem of specifying initial data for nonlinear equations is much more
complicated than for linear equations. Take a hypersurface H ⊂ Rn of the
x-variables and maps u(x) and p(x) defined along H so that p(x)v = u′(x)v for
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any tangent vector v to H. The maps u(x), p(x) are noncharacteristic initial

data if (x, u(x), p(x)) ∈M for each x ∈ H and TxH is noncharacteristic for the
the linearization of our equation at each point (x, u(x), p(x)).

Lemma B.2. A determined system of equations has some analytic noncharac-

teristic initial data through any point (x, u, p).

Proof. Since the symbol matrix is somewhere invertible, the characteristic va-
riety Ξm is not all of PT ∗mM , where m = (x, u, p).

Theorem B.3. Take a determined system of differential equations and non-

characteristic initial data along an embedded hypersurface, all analytic. There

is an analytic solution to the differential equations agreeing with the initial data

along the hypersurface. Any two such agree near the hypersurface and agree in

any connected open set where both are defined.

Proof. If we can prove uniqueness of local solutions, then we can glue them
together to get a unique global solution. So it suffices to prove the result locally.
By an analytic change of variables, arrange that our hypersurface is t = 0 in
some (t, x) variables. By the implicit function theorem, if we have a smooth map
F (t, x, u, p, q), we can locally smoothly solve F (t, x, u, p, q) = 0 for a variable p
as a function of the other variables just when Fp is a matrix of full rank. We
can rewrite the equation F (t, x, u, ut, ux) = 0 in the Cauchy–Kovaleskaya form,
i.e. solve for ut as a function of the other variables, just when Fut is a matrix
of full rank, i.e. when t = 0 is not characteristic for the linearization of the
differential equation.

Corollary B.4. A determined analytic system of differential equations has a

local analytic solution near any point.

Take the equation u2
t + u2

x = 1 with initial data u = 0 at t = 0. Differ-
entiating the requirement that u = 0, we require ux = 0 too at t = 0, as
part of our initial data. The differential equation then says that ut = ±1
at t = 0. The linearization at any point is

2utvt + 2uxvx = 0.

Along our initial data, this is

2vt = 0.

The linearization is determined, so the nonlinear equation is, and our
theorem guarantees a solution near t = 0. Easier: we could have just
solved

ut = ±
√

1− u2
x

without using the theorem above, and then any initial data u(0, x) with
−1 < ux < 1 all along t = 0 would give rise to a unique solution u(t, x)
near t = 0.
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Higher order differential equations

Consider a linear differential operator Pu = uxx; its symbol is σP (ξ) =
−ξ2. Take a first order operator with the same kernel:

Q

(
u
v

)
=
(
vx
ux

)
=
(

0 1
1 0

)
∂x

(
u
v

)
.

The symbol of Q is
σQ(ξ) =

(
0 ξ
ξ 0

)
.

The characteristic variety is ΞQ =
(
ξ2 = 0

)
= ΞP .

If there are many functions u of many variables x, this σP is a matrix-valued
quadratic form, and the same steps tell us that ΞQ = ΞP and ΞQ(C) = ΞP (C):
replacing a system of differential equations by its equivalent first order system
doesn’t change the characteristic variety.

The minimal surface equation(
1 + u2

x

)
uyy − 2uxuyuxy +

(
1 + u2

y

)
uxx = 0,

representing surfaces which have locally least area with given boundary,
has empty characteristic variety at every point. If we pick any embedded
real curve in the plane, and along that curve pick functions f, p, q, there
is a unique solution near that curve so that u = f, ux = p, uy = q along
the curve.

B.6 Find the characteristic variety of the Euler–Tricomi equation utt = tuxx.

B.7 If P = ∂xx + ∂yy, then the associated equation Pu = 0 is the equation
of an electrostatic potential energy u: the Laplace equation, and ∆ ..= P (D)
is the Laplace operator. Show that the characteristic variety is cut out by the
equation 0 = ξ2 + η2, which has (ξ, η) = (0, 0) as its only solution.

B.8 Calculate the linearization, symbol and complex characteristic variety of
the minimal surface equation around a solution u(x, y).

B.9 Suppose that 0 = F (x, u, ux) is an analytic system of partial differential
equations, and the symbol of the linearization about any point (x, u, ux) has
a covector ξ for which σ(ξ) is a surjective linear map, with kernel of rank k
say. Prove that we can locally add k additional equations to make the system
determined, and conclude that there are local solutions. What is the correct
notion of noncharacteristic initial data?
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Counterexamples

Linear analytic scalar equations which are not determined fail to have either
existence or uniqueness of solutions, with analytic initial data [23]. For functions
which are not analytic, uniqueness can fail even for determined equations:

a. Some smooth linear determined equations have smooth solutions which
agree on one side of a noncharacteristic hypersurface and disagree on the
other [2].

b. Some analytic nonlinear determined equations have smooth solutions
which agree on one side of a noncharacteristic hypersurface and disagree
on the other [28].

There are some results ensuring analytic local solutions of analytic differential
equations with initial data characteristic at some points [11].





Appendix C

Analytic convergence

Convergence

A sequence f1, f2, . . . of analytic functions of real variables, defined on some
open set, converges to an analytic function f just when that set lies in an open
set in complex variables to which f and all but finitely many fi extend and
where fi converge uniformly to f on compact sets. By the Cauchy integral
theorem [1] p. 120, convergence is uniform with all derivatives on compact sets.

C.1 Prove: a sequence f1, f2, . . . of analytic functions converges to an analytic
function f just when we can cover their domain in compact sets, and cover each
compact set by an open set in complex variables, to which f and all but finitely
many fi extend and are bounded, and on which fi converge uniformly to f .

Commutative algebra

A graded ring is a ring R which is the direct sum of abelian groups R0, R1, . . . so
that RiRj ⊆ Ri+j , elementary if generated by R0 and R1. An R-module M is
graded if a direct sum of abelian groups Mi with RiMj ⊆Mi+j ; asymptotically

simple if R1Mk = Mk+1 for all sufficiently large k; elementary if each Mk is
finitely generated as an R0-module.

Lemma C.1 (Phat Nguyen [30]). An elementary graded module over an ele-

mentary graded ring is finitely generated if and only if asymptotically simple.

Proof. Suppose M is finitely generated over R, hence by M0 +M1 + · · ·+Mk.
For any j ≥ k,

Mj+1 = Rj+1M0 +RjM1 + · · ·+R1Mj .

Since R is elementary

Mj+1 = Rj+1
1 M0 +Rj1M1 + · · ·+R1Mj ⊆ R1Mj .

But R1Mj ⊆Mj+1, so Mj+1 = R1Mj for all j ≥ k. Therefore M is asymptoti-
cally simple.

Conversely, assume M asymptotically simple: R1Mj = Mj+1 for any j ≥ k.
As an R-module, M is generated by M0 + M1 + · · · + Mk. Because M is
elementary, we can select a finite set of generators from each of M0, . . . ,Mk as
an R0-module, hence as an R-module.

99



100 Analytic convergence

A module M over a ring R is Noetherian if every R-submodule is finitely
generated; R is Noetherian if every ideal is finitely generated.

Theorem C.2 (Krull Intersection Theorem [30]). Suppose that R is a Noethe-

rian commutative ring with identity, I ⊆ R an ideal, M a finitely generated

R-module, and

N ..=
∞⋂
j=0

IjM.

Then there is an element i ∈ I so that (1 + i)N = 0. If all elements of 1 + I
are units of R, then N = 0.

Proof. Write R, I,M,N as R0, I0,M0, N0. Define elementary graded ring and
modules:

R ..=R0 ⊕ I0 ⊕ I2
0 ⊕ . . . ,

M ..=M0⊕ I0M0⊕ I2
0M0⊕ . . . ,

N ..=N0 ⊕N0 ⊕N0 ⊕ . . . .

Since M is asymptotically simple, M is finitely generated over R. Since R0 is
Noetherian, R is Noetherian, so M is Noetherian as an R-module. Because
N0 ⊂ Ij0M0 for j = 1, 2, . . ., N is a graded R-submodule of M , so finitely
generated over R. By lemma C.1 on the previous page, N is asymptotically
simple, so I0N0 = N0.

Take generators na ∈ N0. Then na =
∑
b jabnb for some jab ∈ I0. Let

J = (jab), a matrix, and n = (na) a vector. So (I − J)n = 0. Multiply by
the adjugate matrix (the transpose of the matrix of cofactors) of I − J to get
det(I − J)n = 0; set 1 + i = det(I − J).

Germs

The germ of an analytic function at a point is its equivalence class, two functions
being equivalent if they agree near that point. A sequence of germs converges
just when it arises from a convergent sequence of analytic functions. By ma-
jorizing, this is just when the Taylor coefficients converge to those of an analytic
function. Germs form a ring, under addition and multiplication of functions.
Pick a finite dimensional real vector space. Germs of analytic maps to that
vector space form a module over that ring.

Theorem C.3 (Hilbert basis theorem [8] p. 81 theorem 2.7, [18] p. 161 lemma
6.3.2, theorem 6.3.3, [34] p. 44 theorem 3.4.1). Every submodule of that module

is finitely generated.

Theorem C.4 (Henri Cartan [5] p. 194 corollaire premiere, [12] p. 46, [15] p.
85 theorem 3, [34] p. 274 theorem 11.2.6). Every submodule of that module is

closed under convergence.
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Proof. Pick a submodule S. Take a convergent sequence fi → f of map germs,
with fi ∈ S. We need to prove that f ∈ S. Let R be the the ring of analytic
function germs at the origin, I ⊂ R the germs vanishing at the origin, T the R-
module of analytic map germs, which we identify with their Taylor series. The
k-th order Taylor series are the elements of T/Ik+1T , and form a vector space
of finite dimension, containing a linear subspace S/Ik+1S, which is therefore a
closed subset, so contains the k-th order Taylor coefficient of f . Let M ..= T/S,
so f ∈ IkM for all k = 1, 2, . . .. The set 1 + I is the set of germs of functions
equal to 1 at the origin, so units in R. By Krull’s intersection theorem, f = 0
in M , i.e. f ∈ S.





Appendix D

The moving frame

In most chapters of these notes, we study geometry that is invariant under diffeomor-
phisms. In this chapter, we study geometry that is invariant under rigid motions of
3-dimensional Euclidean space. We want examples of exterior differential systems.
For simplicity, we look to surface theory: differential equations governing surfaces in
3-dimensional Euclidean space. Naturally, we demand that our differential equations
be invariant under rigid motion. But there are no differential forms on Euclidean
space invariant under rigid motion. We will instead find invariant differential forms
on the frame bundle of Euclidean space.

Notation

Warning: We use the notation E3 instead of R3 to mean Euclidean space, i.e.
R3 with its usual metric.

Warning: In this chapter, e1, e2, e3 denotes an arbitrary orthonormal basis of
E3, not necessarily the standard basis.

Orthonormal frames

An orthonormal frame is a pair (x, e) where x ∈ E3 and

e = (e1 e2 e3)

is an orthonormal basis of E3 arranged into the columns of a matrix.

x

e1

e2

e3

D.1 For any two frames (x, e), (x′, e′), there is a unique rigid motion ϕ, i.e.
a distance preserving transformation, taking one to the other: x′ = ϕ(x),
e′i = ϕ∗ei.
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Each rigid motion ϕ has associated frame (x, e) which is the frame that arises
when we apply ϕ to the standard basis frame at the origin. Let O(3) be the set
of 3× 3 orthogonal matrices. To each orthonormal frame (x, e) ∈ ⌜E3 , associate
the matrix

h =
(

1 0
x e

)
giving a map

h : (x, e) ∈ ⌜E3 7→ h(x, e) ∈ E3 nO(3) .

D.2 Let x0 be the origin and e0 the standard frame, consisting of the standard
basis vectors. Associate to each rigid motion ϕ this matrix h(x, e) = hϕ(x0, e0)
as above. Prove that this association is an isomorphism of groups from the
group of rigid motions of Euclidean space to the group O(3) n E3 of such
matrices. We see a matrix description of the rigid motion that takes the origin
to x and the standard basis to e. Prove that

h(x, eg) = h(x, e)
(

1 0
0 g

)
for any orthogonal 3× 3 matrix g.

Frames on curves

Take a curve in E3

and consider all of the frames (x, e) with x a point of the curve.

At each point x of the curve, any two such frames agree up to orthogonal
transformation; the set of all such frames is a 4-dimensional manifold. If a rigid
motion takes one curve to another, it takes these frames along the one curve to
those along the other curve. If the curve is immersed, a frame (x, e) is adapted
if e1 is tangent to the curve.
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At each point x of the curve, any two adapted frames agree up to changing
the direction of e1, and rotating or reflecting e2, e3 in the plane normal to the
tangent line; the set of all such frames is a surface inside that 4-dimensional
manifold. This surface of adapted frames is built by attaching to each point
of C four circles: take any one adapted frame, and then rotate e2, e3 to form
one circle, then reflect the plane of e2, e3 to form another, and then reflect e1
to carry those into two more. We will carry out computations directly inside
this surface. For a connected curve, this surface has 4 components.

Every rigid motion is determined by where it moves any chosen frame. Any
rigid motion preserving an immersed curve takes any frame adapted to the curve
to another frame adapted to the curve. So we can guess that the group of rigid
motions preserving an immersed curve is at most a 2-dimensional submanifold
of the 6-dimensional group of rigid motions. If the curve is a straight line,
we can slide a frame along the line, and rotate around the line, so we see a
2-dimensional group of rigid motions.

Frames on surfaces

Similarly, a frame is adapted to a surface if x is a point of the surface and e3 is
normal to the surface.

The set of adapted frames (x, e) of a surface is a 3-dimensional manifold, as we
can move the point x along the surface, and rotate e1, e2 around e3. Hence the
group of rigid motions preserving an immersed surface is at most a 3-dimensional
submanifold of the 6-dimensional group of rigid motions.

The frame bundle

The frame bundle ⌜E3 of Euclidean space E3 is the set of all orthonormal frames.
Any rigid motion ϕ of E3 takes e1, e2, e3 to ϕ∗e1, ϕ∗e2, ϕ∗e3. If you pick an
orthonormal frame (x, e) and I pick another one, say (x, e′) at the same point
x, then yours and mine must agree up to a unique orthogonal matrix, because
they are orthonormal bases of the same vector space E3. So e′j =

∑
i gijei for

a uniquely determined orthogonal 3× 3 matrix g = (gij); denote this e′ as eg.
An orthonormal frame (x, e) with e = (e1 e2 e3) has e ∈ O(3) an orthogonal
matrix, so ⌜E3 = E3 ×O(3) and the expression eg is matrix multiplication.
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Adapted frames for a curve

Take a curve C in E3. At each point c ∈ C, take e1 to be a unit vector tangent
to C. We can pick an adapted frame (x, e), uniquely up to replacing (x, e) by
(x, eg) for any orthogonal matrix

g =
(
±1 0
0 h

)
, h ∈ O(2) .

The curvature vector of C at a point is the acceleration as we move along C at
unit speed. The choice of unit speed parameterization is known as an arclength

parameterization. The arclength parameterization is unique up to adding a
constant or changing the direction of motion, i.e. the sign. Changing direction
changes the sign of velocity, but we hit two sign changes when we take two
derivatives, so the curvature vector is independent of the choice of arclength
parameterization. In particular, the curvature vector is defined without selecting
any orientation of the curve C.

Write the (perhaps local) inverse of an arclength parameterization as a
function s on an open subset of C, uniquely determined up to sign and adding a
constant. The identity function x 7→ x on E3 restricts to a function x : C → E3,
and clearly

e1 = dx

ds
,

when we take e1 to point in the direction of increasing s, i.e. use s to orient C.
Differentiating again, the curvature vector of C is

κ ..= de1

ds
.

If κ = 0 at every point of the curve then the curve is a straight line. If κ 6= 0 at
some point, then we can uniquely determine a unit normal vector e2 to C by

e2 ..= κ

|κ|
,

and then define the curvature to be k ..= |κ|. Having chosen e1, e2 at each point
of our curve, e3 is determined up to sign, and can be chosen smoothly.

D.3 Calculate that

de2

ds
= −ke1 + te3,

de3

dt
= −te2,

for some function t, the torsion.

The sign of t depends on the choice of e3, which is unique up to sign, so te3
is defined independent of choice of e3. But te3 still depends on the choice of
sign of e1, i.e. the direction of motion. So we could say that the complicated
expression te3 ds, a 1-form valued in the normal line to the curve, is an invariant
independent of any choices.
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The frame e1, e2, e3 of an oriented curve of nonzero curvature is the Serret–

Frenet frame. Note that we can change sign of e1, i.e. change orientation,
and independently change sign of e3. So the frame bundle of C contains four
Serret–Frenet frames above each point of C. As we move along C, these four
points trace out four curves in the frame bundle. The torsion changes sign if
we change the sign of e3, so it is not really a function on the curve C. We can
pick out one choice of Serret–Frenet curve by orienting both C and E3. We can
guess that the isometries of E3 which preserve a nonlinear curve are at most
1-dimensional.

D.4 For a curve with nonzero curvature vector, prove that its torsion vanishes
if and only if the curve lies in a plane.

Intuitively, torsion controls the rate at which the curve twists out of its
tangent plane, while the curvature controls the rate at which the curve
twists in its tangent plane.

With only rigid motions, we can turn a circle around, slide a line along
itself, and twist a helix along itself, and allow reflections in direction.
The adapted frames of these curves are taken one to another by these
rigid motions. So the curvature and torsion functions are constant,
except that the torsion changes sign if we change the choice of e3, or of
direction of motion along the curve.

D.5 Compute the curvature and torsion of a helix. Prove that any constant
values of curvature and torsion can arise for a suitable choice of helix.

Theorem D.1. Take an interval I ⊂ R. Given a continuous positive function

k : I → (0,∞) and a continuous function t : I → R, there is a curve C in E3

with twice continuously differentiable unit speed parameterization x : I → E3

and with curvature k and torsion t. Any two such curves are identified by a

unique rigid motion of E3.

Proof. To each adapted frame (x e), associate the matrix

g =
(

1 0
x e

)
.

This g maps each adapted frame (x e) of the curve to the rigid motion g(x e)
which takes the origin to x and the standard basis to e. For the adapted frames
of a curve, the above gives

dg

ds
= g


0 0 0 0
1 0 −k 0
0 k 0 −t
0 0 t 0

 .
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These equations are linear, so there are global continuously differentiable solu-
tions, by the existence and uniqueness theorem for linear ordinary differential
equations, with any initial data. Expand out to

dx

ds
= e1,

d

ds

(
e1 e2 e3

)
=
(
e1 e2 e3

)0 −k 0
k 0 −t
0 t 0


If e1, e2, e3 are orthonormal at one point s0 ∈ I, then

d

ds
e1 · e1 = 2e1 · ke2 = 0,

etc., so remains an orthonormal frame. The choice of initial conditions at a
single point determines the curve and the frame. If we translate x or rotate
x, e1, e2, e3 by a constant rotation, check that this takes us to another solution.
Since e1(s) is continuously differentiable and dx/ds = e1, x is twice continuously
differentiable.

Any curve of constant positive curvature and constant nonzero torsion is
a helix, by existence (from the problem above) and uniqueness. Similarly,
any curve of constant positive curvature and zero torsion is a circle, and
any curve of zero curvature is a line.

D.6 For a given curve in 3-dimensional Euclidean space, with nowhere van-
ishing curvature vector, find every other curve so that, parameterized by arc
length, points on the two curves which have the same arclength parameter also
have the same direction of curvature vector.

Adapted frames for a surface

An adapted orthonormal frame (or just frame for short) on a surface S in E3 is
an orthonormal frame (x, e) ∈ ⌜E3 so that x ∈ S and e1, e2 are tangent to S at
x, and therefore e3 is normal to S.

If S is the unit sphere in E3, we can write the points of S as

x =

x1
x2
x3
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with 1 = x2
1 + x2

2 + x2
3. Away from the north or south pole, we can take

e1 = 1√
x2

1 + x2
3

 x3
0
−x1

 , e2 = 1√
x2

1 + x2
3

 x1x2
−
(
x2

1 + x2
3
)

x2x3


tangent and

e3 =

x1
x2
x3


normal. Alternatively, we could instead have taken e3 to be the negative
or this, and we could also have taken e1 and e2 to be any rotation or
reflection of these in the tangent plane.

The frame bundle ⌜S is the set of all adapted orthonormal frames for S. The
manifold ⌜S is a 3-dimensional submanifold of ⌜E3 = E3 ×O(3).

D.7 Explain why, if S = S2 ⊂ E3 is the unit sphere around the origin, then ⌜S
is diffeomorphic to two disjoint copies of O(3), given by the equation x = ±e3.

Each orthogonal 3× 3 matrix g preserving the horizontal plane

g =
(
h 0
0 n

)
with h ∈ O(2) and n ∈ O(1) = {±1}, acts on ⌜S as (x, e)g = (x, eg).

The soldering forms

If v is a tangent vector on the manifold ⌜E3 , we can write v as (ẋ, ė), an
infinitesimal motion ẋ of the point x, and an infinitesimal rotation ė of the
frame e. We can write out any tangent vector ẋ in terms of the basis e1, e2, e3,
say as ẋ = a1e1 + a2e2 + a3e3. The soldering forms are the 1-forms ω1, ω2, ω3
on ⌜E3 given by (ẋ, ė) ωi = ai. So the soldering forms measure, as we move a
frame, how the base point of the frame moves, as measured in the frame itself
as a basis.

The identity function on E3, which we write as x, is defined as x(p) = p
for any point p ∈ E3. Of course dx(v) = v for any vector v, i.e. dx = I is the
identity matrix. We define x also on ⌜E3 by x(p, e) = p. We can write the
1-forms ω1, ω2, ω3 on ⌜E3 as ω1 = e1 · dx, ω2 = e2 · dx, ω3 = e3 · dx. On our
vector v = (ẋ, ė), we have v ωi = ei · ẋ = ai.

The connection forms

When we move a frame (x, e), the soldering forms measure the motion of the
underlying point x. We want to measure the rotation of the vectors e1, e2, e3.
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Infinitesimal rotations are complicated. Write the inner product on E3 as
x · y = x1y1 + x2y2 + x3y3. So

ei · ej =
{

1 if i = j,

0 if i 6= j.

If we rotate an orthonormal basis e1, e2, e3 through a family of orthonormal
bases e1(t), e2(t), e3(t), along some curve x(t), these still have the same constant
values of ei(t) · ej(t) at every time t. Differentiate: 0 = ėi(t) · ej(t) + ei(t) · ėj(t).
Therefore we can write any infinitesimal rotation of frame as ėj =

∑
i aijei

for an antisymmetric 3× 3 matrix A = (aij). The quantity aij measures how
quickly ej is moving toward ei.

The Levi-Civita connection forms are the 1-forms γij = ei ·dej , i.e. v γij =
aij : so γij measures the tendency of ej to move toward ei as the frame moves.
In particular, 0 = γij + γji. These ωi and γij are defined on ⌜E3 , not on E3,
because they depend on x and e. If we move a frame, we said it moves by a
velocity vector v = (ẋ, ė) with ėi =

∑
j ajiej for an antisymmetric matrix aij ,

so
v γij = v ei · dej = ei · ėj = aij .

So the 1-forms ωi restrict to any “moving frame” (x(t), e(t)) to describe how the
velocity of the moving point x(t) is expressed in the moving frame e(t), while
the 1-forms γij describe how the infinitesimal rotation of the moving frame e(t)
is expressed at each moment in the moving frame e(t).

Write our soldering forms as ω, thought of as a column of 1-forms

ω =

ω1
ω2
ω3


and our connection 1-forms as

γ =

γ11 γ12 γ13
γ21 γ22 γ23
γ31 γ32 γ33

 =

 0 γ12 γ13
−γ12 0 γ23
−γ13 −γ23 0


an antisymmetric matrix of 1-forms, the Levi-Civita connection.

D.8 Prove that the soldering and Levi-Civita connection forms satisfying the
structure equations of Euclidean space:

dωi = −
∑
j

γij ∧ ωj ,

dγij = −
∑
k

γik ∧ γkj .

D.9 For g any 3×3 orthogonal matrix, if we write rg(x, e) to mean (x, eg), and
g> for the transpose of g, prove that r∗gω = g>ω and r∗gγ = g>γg. Expanding
out, this means r∗gωi =

∑
j gjiωj and r∗gγij =

∑
k` gkiγk`g`j .



Curves and forms 111

Curves and forms

In this section, we adopt the notation that i, j, k, ` = 2, 3. Take a curve C in
E3. At each point of ⌜C , e2, e3 are perpendicular to TxC, so 0 = ω2 = ω3 on ⌜C .
Note that ω1 = e1 · dx = ds, if we pick e1 to agree with the direction in which
the arclength function s increases. So dω1 = 0. From the structure equations
of Euclidean space,

0 = dω2 = −γ21 ∧ ω1.

0 = dω3 = −γ31 ∧ ω1.

Therefore γ21 = k2ds, γ31 = k3ds for unique smooth functions k2, k3 on ⌜C , but
these change sign if we change the direction in which we measure arclength s.
We can move any adapted frame (x, e) of C with x moving along C, or with
the ei rotating among frames of the tangent line. The 1-forms measuring those
motions ω1, γ23 are all linearly independent, together forming a coframing on
⌜C , i.e. a collection of linearly independent 1-forms spanning the 1-forms at
each point. We obtain the structure equations of a curve C in E3:

dω1 = 0,
dγ23 = 0.

Each of the 4 curves in the frame bundle, from the 4 Serret–Frenet framings,
have their own arclength function s, defined to agree in direction with e1, but
only defined up to adding a constant. In other words, since dω1 = 0, locally
ω1 = ds for a function s defined up to a constant. On the frame bundle of C,
we can turn e2, e3, so have a nonzero 1-form γ23.

D.10 Prove that the vector k2e2 + k3e3 is actually defined down on C, and
equals the curvature vector.

If the curvature vector is nonzero, we can define the Serret–Frenet frames to
be those on which k2 > 0 and k3 = 0. The set of Serret–Frenet frames consists
of 4 curves in the frame bundle. It has k3 = 0, so γ31 = 0, and γ21 = kω1 6= 0,
so differentiate 0 = γ31 to get

0 = −γ32 ∧ γ21,

= −kγ32 ∧ ω1.

so γ32 = tω1 for a unique function t on those 4 curves. We can see a gen-
eral pattern emerging: write out the structure equations, get the geometry to
impose some relation on the 1-forms in the structure equations, and differen-
tiate repeatedly, applying Cartan’s lemma when possible, until the invariants
pop out, and the structure equations reduce down to having only the linearly
independent 1-forms in them.
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Surfaces and forms

The expression dx · dx is the Euclidean inner product in Euclidean space, so is
well defined on tangent vectors to any curve or surface in Euclidean space. Take
a surface S in E3. The unit normal e3 is defined up to sign at each point of S.
Hence de3 is also defined up to sign, as is de3 · dx, and so e3(de3 · dx) is defined
on S, called the shape operator, or the second fundamental form, denoted II.
Let us find a different way to write this.

As we move along a curve in S, take e1 to be tangent to that curve, and
travel at unit speed; pick e2, e3 to give an adapted frame along the curve. The
vector e2 moves in the direction of e1, i.e. the curve turns in the tangent plane
to the surface, as the ω1 component of e1 · de2 = γ12. So this component is the
curvature of the curve in the surface. Recall that e3 is normal to the surface;
stand on the surface, with e3 pointing straight upward. The vector e3 moves
down toward e1, i.e. the surface bends down as we move along the curve, as
the ω1 component of e1 · de3 = γ13. The vector e3 moves toward e2, i.e. the
surface twists like a screw, as we move along the curve, as the ω1 component
of e2 · de3 = γ23.

From here on, adopt notation i, j, k, ` = 1, 2. At each point of ⌜S , e3 is
perpendicular to TxS, so ω3 = 0 on ⌜S . From the structure equations of
Euclidean space,

0 = dω3 = −
∑
i

γ3i ∧ ωi.

Therefore γ3i = −
∑
j aijωj for unique smooth functions aij = aji on ⌜S . So

aij measures the tendency of ei to move toward e3 as we move in direction of
ej , i.e. we measure how the surface twists like a screw. This measurement is
(not obviously) symmetric in i, j: if the surface twists as we move in a certain
direction, it twists just as much if we move in the orthogonal direction. These
aij are the components of the shape operator:

II = e3(de3 · dx),
= e3((ei · de3)(ei · dx)),
= e3(γi3ωi),
= e3(aijωjωi).

We can move any adapted frame (x, e) of S with x moving along S and the
ei rotating among frames of the tangent space. The 1-forms measuring those
motions ω1, ω2, γ12 are all linearly independent, together forming a coframing

on ⌜S , i.e. a collection of linearly independent 1-forms spanning the 1-forms at
each point. On our surface, 0 = ω3, so often forget ω3 and let ω ..= ω1 + iω2.
To simplify notation, let α ..= γ12 (because the letter α looks like γ rotated in
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the plane). We obtain the structure equations of a surface S in E3:

dω = iα ∧ ω,

dα = i

2Kω ∧ ω̄

where K is the Gauss curvature. From the structure equations of Euclidean
space, dα = dγ12 = −γ13 ∧ γ32, so K = a11a22 − a2

12.

Rotate the frame

This section can be omitted without loss of continuity.

Recall that we write each orthogonal 3× 3 matrix g preserving the horizontal
plane as

g =
(
h 0
0 n

)
with h ∈ O(2) and n = ±1. Write h as a product of a rotation matrix eiθ and
zero or one complex conjugation matrices, which we write as C. Expanding out
the equation r∗gω = g>ω with ω3 = 0 gives r∗gω = h>ω. In complex notation

r∗eiθω = e−iθω,

r∗Cω = ω̄,

r∗nω = ω.

Expanding out the equation r∗gγ = g>γg into 3× 3 matrices gives

r∗gα = (deth)α,

r∗g

(
γ13
γ23

)
= nh>

(
γ13
γ23

)
.

If
a ..=

(
a11 a12
a21 a22

)
,

then r∗ga = nh>ah. In our complex notation, with α ..= γ12,

r∗eiθα = α,

r∗Cα = −α,
r∗nα = α.

Mean curvature

The mean curvature is H = 1
2 (a11 + a22). The mean curvature vector is He3.
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D.11 Prove that the mean curvature vector is defined on the surface, a vector
field pointing normal to the surface. Why might the mean curvature not be
defined as a function on the surface?

The sphere E3 of radius r0 has frame bundle consisting of the (x, e) ∈ ⌜E3

so that x = ±r0e3. Therefore γi3 = ei · de3 = ±ei · dx/r0 = ±ωi/r0, so
a = ±I/r0 depending on orientation. Gauss curvature is 1/r2

0. Mean
curvature is H = ±1/r0, depending on orientation. The mean curvature
vector is 2x/r0, independent of orientation.

For a flat plane, e3 lies perpendicular to the plane, while x, e1, e2 are
tangent to it, so 0 = e3 · dx = e3 · de1 = e3 · de2, i.e. 0 = ω3 = γ31 = γ32,
so a = 0.

D.12 Compute the shape operator and mean and Gauss curvature of a cylinder
of radius r0.

D.13 We know that II is defined on tangent vectors to S, independent of frame;
check this again using the rules above for how aij change when we change frame.

Principal curvatures

The shape operator of a surface is a symmetric bilinear form on the tangent
place TxS valued in the normal line to the tangent plane, so orthogonally
diagonalizable. Its eigenvalues are the principal curvatures. If it has only one
principal curvature, i.e. a is a multiple of the identity matrix, the point x is
an umbilic of the surface. On the other hand, if it has two distinct principal
curvatures then its two perpendicular eigenlines are the principal directions.

Higher fundamental forms

D.14 Let

Da ..= da+ α

(
2a12 a22 − a11

a22 − a11 −2a12

)
.

Differentiate the equations γi3 = aijωj to reveal that Daij =
∑
k aijkωk where

aijk is symmetric in all lower indices.

The third fundamental form is III ..= e3aijkωiωjωk.

Local picture of a surface

Take a point x0 of a surface S and let n be a unit normal vector to S at x0,
say n = −e3 at x0. Fixing that constant value of n, take the linear function
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f(x) ..= n · x. The differential of f is

ei df = ei d (n · x) = n · ei,

for i = 1, 2, vanishing at x0. The second derivative matrix of f at x0 is

f ′′(ei, ej) = ei d (n · ej) ,
= ei n · dej ,
= −ei e3 · dej ,
= −ei γ3j ,

= aji.

Similarly f ′′′(ei, ej , ek) = aijk. Translate the surface to get x0 the origin, and
Tx0S the horizontal plane, and n the unit vertical vector. Then S is locally the
graph of x3 = f(x1, x2), and f has a critical zero at the origin, so

x3 = 1
2aijxixj + 1

6aijkxixjxk +O(x)4.

We can pick the frame e1, e2 at our point to diagonalize the shape operator, say
with eigenvalues (i.e. principal curvatures) k1, k2:

x3 = k1

2 x
2
1 + k2

2 x
2
2 + 1

6aijkxixjxk +O(x)4.

So if we can match up tangent spaces, first, second and third fundamental forms,
we can match surfaces up to third order (viewed as graphs of functions).

D.15 Prove that, if the Gauss curvature is positive at x0 then S lies on one
side of its tangent plane near x0, and if the Gauss curvature is negative then it
doesn’t.

D.16 Prove that every compact surface in E3 has a point of positive Gauss
and mean curvature.

Take a smooth function f defined in an open subset of E3. Let M ⊂ E3 be
a level set M ..= (f = c0) of f on which df 6= 0.

D.17 Compute that on the frame bundle of M ,

γi3 = ei D2f

|df |
.

So the shape operator of each level set M = (f = c0) of f , at each point
x ∈M where df 6= 0, is

II = γi3ωi =
D2f

∣∣
TxM

|df |
.



116 The moving frame

If f is a polynomial function of degree at most two, then D2f on each
tangent plane TmM of M = (f = c0) is just the quadratic terms in
f . The nonzero level sets of a positive definite quadratic function have
positive mean and Gauss curvature.
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Curvature of surfaces

Example: surfaces of revolution

Take a curve C in the plane, and rotate it around a line in that plane (the
axis of revolution) to create a surface of revolution S. Suppose for simplicity
that the curve doesn’t touch the axis of revolution. Place the axis of revolution
vertically. Write the points of E3 in cylindrical coordinates (r cos θ, r sin θ, z).
Our plane is θ = 0, and our axis of revolution is r = 0. Our plane curve C is
arclength parameterized as x′(s) = (r(s), 0, z(s)). Take adapted frames (x′, e′)
for the curve in the plane, but swap e′2 and e′3 so that e′2 is normal to the plane
and e′3 tangent to the plane but normal to the curve:

e′1(s) = dx′

ds
= (cosϕ(s), 0, sinϕ(s)),

e′2(s) = (0, 1, 0),
e′3(s) = (− sinϕ(s), 0, cosϕ(s)).

Let ρ(θ) be the rotation matrix rotating E3 about the axis of revolution by
an angle θ. Make an adapted frame at each point of the surface as

x(s, θ) = ρ(θ)x′(s) = (r cos θ, r sin θ, z),
e(s, θ) = ρ(θ)e′(s),

E.1 Find all ωi, γij .

The shape operator:(
γ13
γ23

)
=
(−ϕ̇ 0

0 − sinϕ
r

)(
ω1
ω2

)
.

So the Gauss curvature of a surface of revolution is

K = ϕ̇ sinϕ
r

= − r̈
r
,

while the mean curvature is

H = −1
2

(
ϕ̇+ sinφ

r

)
.

117
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Take a function H(s) and try to construct a curve x′(s) in the plane, so
that the associated surface of revolution has mean curvature H(s). To
do this, we have to solve the equations

ṙ(s) = cosϕ(s),

ϕ̇(s) = −2H(s)− sinϕ(s)
r(s)

with r > 0. Each initial value r = r0 > 0 and ϕ = ϕ0 at some
s = s0 determines a unique local solution, by the existence and
uniqueness theorem for ordinary differential equations. Solve for z by
z(s) =

∫
sinϕ(s) ds, again unique up to adding a constant.

E.2 If we want H to be constant, say equal to a constant H0, can you integrate
this coupled system of ordinary differential equations? Hint: is r

√
1− ṙ2 +H0r

2

constant along solutions?

Similarly, we can prescribe Gauss curvature K(s) arbitrarily by solving
the equation r̈ +Kr = 0. For example, the surfaces of revolution with
zero Gauss curvature are the circular cones given by rotating a line
segment. More generally, for constant Gauss curvature K = K0, the
solutions are (with k0 ..=

√
|K0|)

r(s) =


a cos k0s+ b sin k0s, if K0 > 0,
a+ bs, if K0 = 0,
a cosh k0s+ b sinh k0s, if K0 < 0.

For K0 > 0, translate s to arrange b = 0, so write

r(s) = r0 cos k0s,

so that
ż2 = 1− ṙ2 = 1− r2

0K0 sin2 k0s,

giving
z =

∫ √
1− r2

0K0 sin2 k0s ds,

an elliptic integral, usually denoted E(k0s | r2
0K0)/k0. Similar remarks

apply to K0 < 0.

E.3 Take a curve C0 in the plane R2. Prove that there is a curve C1 in the
plane E2 whose associated surface of revolution satisfies (H,K) ∈ C0 at every
point.
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Orientations

We could have used only positively oriented frames e1, e2, e3 of E3. We could
then look at an oriented surface, and define its adapted frames to have e1, e2 a
positively oriented basis of the tangent plane, and e1, e2, e3 a positively oriented
basis of E3. The expression

g =
(
h 0
0 n

)
simplifies to having h a rotation matrix, and n = 1, so

g =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,

which we just write as eiθ.

E.4 Over an oriented surface, prove that the 2-form dA ..= ω1 ∧ ω2 is the
pullback of a unique 2-form dA on the surface, the area form.

E.5 Over an oriented surface, prove that the mean curvature is the pullback
of a unique function on the surface.

E.6 Prove that, on any surface, oriented or not, the shape operator admits a
unique expression as

q

2ω
2 + H

2 (ωω̄ + ω̄ω) + q̄

2 ω̄
2.

for functions q : ⌜S → C, H : ⌜S → R. How are the aij related to q,H?

The expression qω2 is the Hopf differential.

E.7 If the surface is oriented, prove that the Hopf differential descends to the
surface, as a complex valued quadratic form on tangent vectors.

The Gauss map of a surface is e3, mapping the frame bundle to the unit
sphere.

E.8 Prove that the Gauss map of an oriented surface is the composition of the
map (x, e) ∈ ⌜S 7→ x with a unique map x ∈ S 7→ e3(x), also called the Gauss

map.

Recovering a surface from its inner products and shape operator

This section can be omitted without loss of continuity.

Theorem E.1 (Bonnet). If two connected oriented surfaces in 3-dimensional

Euclidean space are identified by a diffeomorphism preserving orientation and

the inner product and shape operator on every tangent space, then the diffeomor-

phism is induced by an orientation preserving rigid motion of 3-dimensional

Euclidean space.
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Proof. Note that we use the orientations of the surfaces in identifying the shape
operators: we have a well defined normal vector on each surface, so we treat
the shape operator as a symmetric bilinear form on tangent spaces. Such a
diffeomorphism S → S′, clearly identifies positively oriented orthonormal frames
e1, e2 of tangent spaces of S with those of S′. Taking the usual orientation of
E3, these extend uniquely into positive oriented orthonormal frames e1, e2, e3 =
e1×e2, a diffeomorphism of the adapted frames, clearly identifying the soldering
1-forms ω1, ω2 and ω3 = 0. Differentiate to find that the Levi–Civita connection
1-form γ12 matches. Having the same shape operator ensures precisely that
γ31, γ32 match. It then follows by antisymmetry of γij that all connection
1-forms agree. Let

h = h(x, e) =
(

1 0
x e

)
as above, and h′ in the same way for the corresponding surface:

h−1dh = h′−1dh′ =
(

0 0
ω α

)
,

under the diffeomorphism. So h and h′ satisfy the same first order linear
ordinary differential equation

dh =
(

0 0
ω α

)
h

along any curve in the frame bundle ⌜S . Apply a rigid motion to one of the
two surfaces, so that their frame bundles contain at least one frame in common.
By existence and uniqueness for linear ordinary differential equations, h = h′

along any curve in ⌜S starting at that frame. The adapted frames which are
positively oriented for E3 and with e1, e2 positively oriented on the surface form
a connected manifold. Hence h = h′.

Parallel surfaces

This section can be omitted without loss of continuity.

Start with a surface S with a chosen normal direction, i.e. a unit normal
vector e3 at each point, smoothly varying. Let S′ be the translation of S
in that direction by a distance t. So then x′ = x + te3, dx′ = dx + t de3 and
e3 ·dx′ = e3 ·dx+te3 ·de3 = 0, so e3 is still normal to S′ at x′. Hence Tx′S′ = TxS
is constant in t, and the Gauss map is unchanged. Identify ⌜S′ ∼= ⌜S by

Φ : (x, e) 7→ (x′, e′) = (x+ te3, e).
The soldering 1-forms are

ω′i = ei · dx′,
= ei · dx+ tei · de3,

= ωi + tγi3,

= ωi + taijωj ,
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which we can write as ω′ = (I + ta)ω. The Levi-Civita connection 1-form is

γ′12 = e1 · de2 = γ12.

The shape operator is

γ′i3 = ei · de3,

= γi3,

= aijωj

If we write this as γ′∗3 = aω, then

γ′∗3 = aω = a(I + ta)−1ω′,

so
a′ = a(I + ta)−1.

In any frame in which a is diagonalized, so is a′:

a =
(
k1 0
0 k2

)
in principal curvatures, so

a′ =
(
k′1 0
0 k′2

)
=
(

k1
1+tk1

0
0 k2

1+tk2

)
.

Hence Gauss curvature

K ′ = det a
det(I + ta) = K

1 + 2Ht+Kt2

and mean curvature
H ′ = H +Kt

1 + 2Ht+Kt2
.

In particular, the parallel surface will not be smooth enough to compute such
quantities at any point x′ = x + te3 where 1 + tk1 or 1 + tk2 vanish. But if
these don’t vanish, then the differential of the map is

dx′ = dx+ t de3 = ωi ei + taijωjei

an immersion. Surfaces parallel to a Weingarten surface are also Weingarten,
but for a different relation between mean and Gauss curvature.

Constant mean curvature surfaces

This section can be omitted without loss of continuity.

On an oriented surface, a complex differential is an expression of the form fωk

on the frame bundle, but which is in fact defined on the surface. In other words,
it doesn’t transform as we right translate by eiθ. Since ω transforms by e−iθ,
we need f to transform by eikθ:

r∗eiθf = eikθf.
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E.9 Differentiating this, show that

df + ikfα = Dfω + D̄fω̄,

for unique complex functions Df, D̄f .

A holomorphic differential is one for which 0 = D̄f , i.e. df+ikfα is complex
linear.

A holomorphic chart on an oriented surface in E3 is a chart on an open
subset of the surface with differential dz a holomorphic differential. Any two
such charts locally agree up to complex analytic transition maps. The Korn–
Lichtenstein theorem says that any oriented surface is covered by domains of
holomorphic charts. Hence any oriented surface in E3 is a Riemann surface.

E.10 Compute that the Hopf differential satisfies

dq + 2iqα = Dqω + D̄qω̄,

where D̄q = 2(H1 −H2i) where H is the mean curvature, and dH = H1ω1 +
H2ω2. Thereby, prove:

Theorem E.2. An oriented surface has constant mean curvature just when its

Hopf differential is holomorphic.

The Riemann–Roch theorem [13] p. 99 shows that a compact Riemann
surface of genus g has a space of quadratic differentials of complex dimension:

0, g = 0,
1, g = 1,
3g − 3, g ≥ 2.

It is well known that there is precisely one genus zero compact Riemann surface,
up to holomorphic diffeomorphism: the Riemann sphere [13] p. 125. Applying
Bonnet’s theorem:

Corollary E.3. For any constant H0 6= 0, the sphere has at most one immer-

sion in E3 with constant mean curvature equal to H0, up to rigid motion: as a

round sphere of radius 1/|H0|, with suitable orientation.

Away from umbilics

Recall that principal curvatures of a surface are the eigenvalues of its shape
operator. Suppose that they are distinct k1 6= k2, i.e. there are no umbilic
points. A Darboux frame is one in which e1, e2 are eigenvectors of the shape
operator with eigenvalues k1 < k2. The set of Darboux frames of the surface is
a surface, as each Darboux frame is uniquely determined up to signs. On that
surface γi3 = kiωi, for i = 1, 2.
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E.11 Differentiate the equations of a Darboux frame to see that

d

(
k1
k2

)
=
(
k11 k12
k21 k22

)(
ω1
ω2

)
,

for some functions kij , perhaps not symmetric in lower indices, while

γ12 = k12ω1 + k21ω2

k2 − k1
.

Expand 0 = d2ki to find that, if we let

Dki1 = dki1 + ki2γ12,

Dki2 = dki2 − ki1γ12,

then Dkij = kijkωk with kijk = kikj . Recall that Gauss curvature is K = k1k2.
Plug into the equation

dγ12 = Kω1 ∧ ω2.

to get

d

(
k12ω1 + k21ω2

k2 − k1

)
= k1k2ω1 ∧ ω2.

Expanding this out gives

0 = k122 − k211

k2 − k1
+ 2k2

12 + 2k2
21

(k2 − k1)2 + k1k2.

Lemma E.4. If a surface bears a point at which the larger principal curvature

is maximal and the smaller minimal, then either the point is umbilic or the

Gauss curvature is not positive at that point.

Proof. We can assume that k2 > k1 near that point, and then adapt frames
as above. At a critical point of k2 and k1, 0 = dk1 = dk2, so kij = 0 and so
γ12 = 0, so Dkij = dkij = kijkωk. Since k2 is maximal, along the flow of e1,
k211 ≤ 0. Since k1 is minimal, along the flow of e2, k122 ≥ 0. Plug in above to
get K = k1k2 ≤ 0.

Theorem E.5 (Liebmann). Suppose that S is a connected compact surface

in E3 of (i) constant Gauss curvature or (ii) constant mean curvature with

Gauss curvature not having any critical zeroes. Then S is a round sphere.

Proof. By problem D.16 on page 115, there is a point of positive Gauss and
mean curvature, so the constant is a positive constant. At any point at which
the principal curvatures are as far apart from one another as possible, one is
maximal and the other minimal, as their product is constant. Apply lemma E.4
to find a point of nonpositive Gauss curvature where the Gauss curvature is
critical.
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E.12 Suppose that S is a connected surface in E3 and that one principal
curvature is a nonzero constant, and always distinct from the other. Prove that
S is a union of circular arcs of constant radius, with centres on a curve.

We define completeness in appendix G; for the moment, we only need know
that on a complete surface, every bounded vector field is complete.

Theorem E.6 (Hilbert). No complete surface in E3 has constant negative

Gauss curvature.

Proof. Take a surface of constant negative Gauss curvature; rescale to make
the Gauss curvature equal to −1. We can assume the surface is connected,
and replace it by its universal covering space if needed, so assume it is simply
connected. Let u be half the angle between the asymptotic curves, so 0 < u <
π/2.

e1

e2

u

A surface of negative Gauss curvature has no umbilics. Check that the principal
curvatures are − cotu, tan u. Differentiate the equations

γ13 = − cotuω1,

γ23 = tan uω2.

Differentiate both of these equations, using the structure equations, to find

γ12 ∧ ω1 = − tan u du ∧ ω2,

γ12 ∧ ω2 = − cotu du ∧ ω1.

Check that ω1/ sin u and ω2/ cosu are closed 1-forms; noting that 0 < u < π/2,
so the denominators don’t vanish. Because the surface is connected and simply
connected, there are functions s1, s2 so that

ds1 = ω1/ sin u,
ds2 = ω2/ cosu,

unique up to constant and with ds1, ds2 linearly independent.
The surface is complete, so e1, e2 have complete flows. The indefinite integral∫

ω1 along curves ω2 = 0 is an unbounded function, defined up to constant. But
s1 grows at least as fast, so is also unbounded along curves on which ds2 = 0,
and vice versa. So the map (s1, s2) from our surface to the plane is onto, and
a local diffeomorphism.

The vector fields ∂s1 = sin u e1, ∂s2 = cosu e2 are complete and commuting.
Flows of these for times s1, s2 invert our previous map, hence a diffeomorphism.
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Let x ..= (s2−s1)/2, y ..= (s1 +s2)/2. The level sets of x and y are precisely
the asymptotic curves. Check that γ12 = −uxdx+ uydy, and that the relation
dγ12 = Kω1 ∧ ω2 becomes the sine–Gordon equation for the angle θ = 2u:

θxy = sin θ.

Note also that 0 < θ < π, so sin θ > 0.
Apply Stokes’s theorem to a rectangle R in the xy-plane, using the xy-

coordinate orientation on R: ∫
∂R

γ12 =
∫
R

dγ12,

to find
θ(x, y)− θ(0, y) = θ(x, 0)− θ(0, 0) +

∫
sin θ dx dy.

Two observations from this equation:

• The difference in values of θ along the top of any rectangle is at least as
large as the difference along the bottom since sin θ > 0.

• The area of R is the integral of ω1 ∧ ω2, in the orientation of the surface.
In the xy-plane orientation, it is

−
∫
R

ω1 ∧ ω2 =
∫
R

dγ12,

=
∫

sin θ dx dy,

= θ(x, y)− θ(0, y)− θ(x, 0) + θ(0, 0).

Since 0 < θ < π, the area of the rectangle, in the geometry of our surface,
is less than 2π.

Our coordinates are global, so any measureable subset of the surface has
area no more than 2π. Let us compare to the area as measured in the Euclidean
metric of the xy-plane. Each set of infinite Euclidean area has only at most
2π area in the surface geometry, i.e. at most 2π integral of sin θ. So that set
contains sets of large Euclidean area where sin θ gets small, so θ gets close to 0
or π.

Suppose that θ is not constant on some horizontal line. Change the sign of
x and y if needed, to arrange that θ increases along a horizontal line segment.
Split that line segment into three line segments. On the leftmost, suppose that
θ increases by some amount εL, and on the rightmost by some amount εR.

εL εR
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Draw the half strips above the line segments. So θ increases by at least εL across
each parallel line segment across the left half strip. But θ > 0 everywhere, so
in the middle strip, θ > εL. Similarly, in the middle strip, θ < π − εR. So sin θ
is bounded away from zero in the middle strip, a contradiction to the infinite
Euclidean area of the strip.

Hence θ is constant on every horizontal line, i.e. 0 = θx, so 0 = θxy = sin θ,
a contradiction.

E.13 Use the Frobenius theorem to construct a surface of constant negative
Gauss curvature out of any smooth solution of the sine–Gordon equation, re-
versing the story in Hilbert’s theorem.



Appendix F

The Gauss–Bonnet theorem

We prove that the integral of Gauss curvature over a compact oriented surface in
3-dimensional Euclidean space is a diffeomorphism invariant.

Length and curvature of curves

F.1 Suppose that x(t) is a smooth curve in E3 so that x′(t) 6= 0 for every t
with t0 ≤ t ≤ t1. Prove that there is a reparameterization y(t) = x(τ(t)) for
some function τ(t) so that y′(t) is a unit length vector, i.e. y(t) has unit speed.
Prove that τ(t) is uniquely determined up to adding a constant. Prove that the
length of y(t) for a ≤ t ≤ b is equal to the length of x(t) for τ(a) ≤ t ≤ τ(b).

Take an oriented curve C, in other words an oriented 1-dimensional manifold,
smoothly immersed in a surface S. An adapted frame for C at a point c ∈ C is
a pair (c, e) for S, where (x, e) ∈ ⌜S and x is the point of S at which the point
c ∈ C lies, and e1 is a positively oriented basis of the tangent line to C at m.
Let ⌜SC be the set of all adapted frames for C.

F.2 Prove that the set ⌜SC is a curve in C × ⌜S .

Map (c, e) ∈ ⌜SC 7→ (x, e) ∈ ⌜S . Using this map to pullback ω1, ω2 and
α = γ12. If we parameterize C, say as x(t), then e1(t) is the unit vector in
the direction of x′(t), so that ω1 = e1(t) · dx = e1(t) · dxdt dt = |ẋ(s)| dt. So
ω1 is a well defined 1-form on the curve C and

∫
C
ω1 is the length of the

curve C. Meanwhile e2 is perpendicular to the tangent line to C, so on ⌜SC ,
ω2 = e2 · dx = e2 · dxdt dt = 0. Therefore 0 = dω2 = α ∧ ω1.

Applying Cartan’s lemma, α = −κ2 ω1 for some function κ2. The 1-form
ω1 is a basis for the 1-forms on ⌜SC . The equations ω2 = 0 and α = −κ2ω1 are
precisely the linear equations that cut out the tangent spaces of ⌜SC inside ⌜S .

F.3 Prove that κ2e2, the geodesic curvature of the curve C at the point c, is the
projection of the curvature vector of C (as a space curve in E3) to the tangent
plane of S.

F.4 Prove that the geodesic curvature of an oriented curve is unchanged if we
reorient the curve.
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A flat plane P ⊂ E3 is perpendicular to a constant unit vector e3, so
0 = de3 = e3 · dx = e3 · de1 = e3 · de2. Therefore on ⌜P , the shape
operator vanishes. Given a curve in the plane, the adapted frames have
ω2 = 0 and α = −κ2ω1. If the curve is given by s 7→ (x1(s), x2(s)) in
an arclength parameterization then we write the velocity vector as a

e1 = (ẋ1, ẋ2) = (cosφ, sinφ) ,

and then, rotating by a right angle,

e2 = (−ẋ2, ẋ1) = (− sinφ, cosφ) ,

so that
−α = e2 · de1 = φ̇(s) ds,

i.e. κ = φ̇(s), the curvature is the rate of rotation of the unit tangent
vector. We can recover a curve from its curvature κ, by integrating κ to
find φ, and then integrating

dx

ds
= (cosφ, sinφ)

to recover the curve. Constants of integration represent rotation and
translation of the curve.

To get a curve of constant curvature κ = κ0 in the plane, we integrate
to find φ = κs, up to a constant, and then up to a constant,

x(s) = 1
κ0

(− sin κ0s, cosκ0s) ,

a circle.

Lemma F.1. Take a curve C on a surface S in E3. Suppose that C has

curvature vector as a space curve nowhere perpendicular to S. Take θ to be

the angle between that curvature vector and its projection to the surface S. Its

surface invariants (geodesic curvature vector κ and shape operator a) are related
to its invariants as a space curve (the curvature k and torsion t of C) by

κ= k cos θ e2 geodesic curvature
a(ẋ, ẋ) = k sin θ e3 normal curvature

a(ẋ, ẋ⊥) = (θ̇ + t) e3 geodesic torsion

where ẋ is its unit speed velocity in either orientation, and ẋ⊥ is the unit tangent

vector to S normal to C which is closest to the curvature vector.

Proof. Write the Serret–Frenet frame to C as e1, e
′
2, e
′
3, and all adapted frames

to the surface S for which e1 is tangent to the curve C as e1, e2, e3. Since
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e1 is the same for both frames, the other two pairs of legs are orthogonal
transformations of one another:

e′2 = cos θe2 ∓ sin θe3,

e′3 = sin θe2 ± cos θe3.

The angle θ is at most π/2, and equal just when the curvature vector as a
space curve is perpendicular to the normal line on S, which we suppose never
happens. Pick e3 so that ± = +. The Serret–Frenet equations are

ẋ = e1,

ė1 = ke′2,

ė′2 = −ke1 + te′3,

ė′3 = −te′2.

Geodesic curvature is κds = −α. The connection forms are −α
−a11ds
−a12ds

 =

γ21
γ31
γ32

 ,

=

e2ė1
e3ė1
e3ė2

 ds,

=

 k cos θ
±k sin θ

e3
d
ds (cos θe′2 + sin θe′3)

 ds.

F.5 Expand out the last line to finish the proof.

F.6 Suppose that a surface has a straight line on it, through every point, in
every tangent direction through that point. Prove that it is a plane.

The Gauss map

Consider first a surface S in E3. On its frame bundle we have ω1, ω2 and γ12,
so that

dω1 = −γ12 ∧ ω2,

dω2 = γ12 ∧ ω1,

dγ12 = Kω1 ∧ ω2.

where K is the Gauss curvature of the surface. We can find a geometric
description of Gauss curvature. Take the unit vector e3, which is uniquely
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determined at each point of S up to sign, being normal to S. Differentiate this
vector, and write its derivative in the frame itself:

de3 = (e1 · de3) e1 + (e2 · de3) e2 + (e3 · de3) e3,

= γ13e1 + γ23e2 + γ33e3,

but γ33 = 0 because γ is antisymmetric,

= (a11ω1 + a12ω2) e1 + (a12ω1 + a22ω2) e2.

So if we move in the e1 direction, the unit vector e3 moves by a11e1 + a12e2,
while if we move in e2 direction, the unit vector e3 moves by a12e1 + a22e2.
The unit square e1 ∧ e2 in the tangent plane TxS maps by e′3 = de3 to the
parallelogram

e3∗(e1 ∧ e2) =
(
a11a22 − a2

12
)
e1 ∧ e2.

But the Gauss curvature is K = a11a22 − a2
12. Therefore the Gauss curvature

is the area stretch factor of the Gauss map e3. While e3 is only defined on the
frame bundle of S, nonetheless it is defined locally on S up to sign; the sign
doesn’t alter the value of the area stretch factor. Gauss curvature also doesn’t
depend on orientation.

The Gauss–Bonnet theorem

Take a vector field X on an oriented surface S. Away from the zeroes of X, the
unit vector field

e1 ..= X

|X|
is defined. Extend it to an oriented orthonormal basis e1, e2. This choice of
orthonormal frame gives a section of ⌜S → S over the points where X 6= 0.

Take a point x0 ∈ S at which X has an isolated zero. In any positively
oriented chart near x0, draw a circle C0 around x0, so that x0 is the only zero
of X inside the circle. The index of X at x0 is the number of times that the
frame e1, e2 turns around the origin, as measured in some choice of orthonormal
frame e′1, e′2 defined near x0. Write(

e1
e2

)
=
(

cos θ − sin θ
sin θ cos θ

)(
e′1
e′2

)
near C0. The angle θ varies by a multiple of 2π, say 2πn0, around C0, and the
index of X at x0 is n0. Clearly the index doesn’t change if we continuously
vary X while the surface S moves continuously in space E3. The sum of indices
is the Euler characteristic χX .

F.7 Prove that the vector field

X = ax
∂

∂x
+ by

∂

∂y

on the plane has index 1 if a, b > 0 or a, b < 0 and index −1 if a and b have
opposite signs.
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F.8 Calculate out that

α = e2 · de1 = e′2 · de′1 − dθ = α′ − dθ.

The Euler characteristic of a compact oriented surface S is

χS ..= 1
2π

∫
S

K dA.

Theorem F.2. Suppose that X is a vector field on a compact oriented surface S
with only isolated zeroes. Then χX = χS.

Proof. Take a set Dk diffeomorphic to a closed disk in some chart around each
zero xk of X and let Ck = ∂Dk. The framing e1, e2 lifts

S′ ..= S −
⋃
k

Dk

to a compact surface with boundary in ⌜S . Integrate:∫
S′
K dA =

∫
S′
dα,

=
∫
∂S′

α,

= −
∑
k

∫
Ck

α,

= −
∑
k

∫
Ck

e1 · de2,

= −
∑
k

∫
Ck

e′1 · de′2 +
∑
k

∫
Ck

dθ,

= −
∑
k

∫
Ck

K dA+
∑
k

2π indexxk X,

so that ∫
S

K dA = 2π
∑
k

indexxk X.

Degree

Suppose that ϕ : P → Q is a continuously differentiable map between two
oriented manifolds of equal dimension, perhaps with corners. The sign of ϕ at
a regular point p ∈ P is 1 if ϕ is orientation preserving near p, and −1 is ϕ is
orientation reversing near p. Suppose that q0 ∈ Q is a regular value and that
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there are only finitely points p ∈ P mapped to q0 by ϕ. The degree of ϕ above
q0 is the sum of signs at these points p:

degq0 ϕ =
∑

ϕ(p)=q0

(sign of ϕ at p) .

The following two theorems are proven in [27].

Theorem F.3. Consider a proper continuously differentiable map ϕ : P → Q
between oriented manifolds (perhaps with corners). Suppose that Q is connected.

The degree of ϕ is the same at all regular values.

Theorem F.4. Suppose that ϕ : P → Q is a proper continuously differentiable

map between two oriented manifolds (perhaps with corners) of the same dimen-

sion, say n, and that Q is connected. For any n-form ω on Q, which vanishes

outside some compact set, ∫
P

ϕ∗ω = degϕ
∫
Q

ω.

The Gauss map

For any oriented surface S in E3, the Gauss map e3 taking each point x ∈ S its
unit normal vector, a point of the unit sphere, has degree

deg e3 =
∫
K dA

4π = χS
2 .

Theorem F.5. On any compact oriented surface S in E3 with Gauss map

e3 : S → S2, 2 deg e3 = χX , for any vector field X on S with only isolated

zeroes.

Theorem F.6. Every compact oriented surface S in E3, twice continuously

differentiable, has a continuously differentiable vector field X with only finitely

many zeroes, each of index 1 or −1.

Proof. The Gauss map is onto: take any unit vector n, and look at the points
x ∈ S on which the linear function f(x) ..= 〈n, x〉 has its maximum value.
By Sard’s theorem, almost every point n in the unit sphere is a regular value
of the Gauss map. For such a value of n, the differential of the Gauss map
has full rank. Its differential has determinant given by the Gauss curvature,
so the Gauss curvature is nonzero at every point x ∈ S for which ν(x) = n.
The function f restricted to S has critical points at the points x where n is
perpendicular to TxS. Again by Sard’s theorem, we can arrange that these
points are regular values of the Gauss map, i.e. have nonzero Gauss curvature.
In any orthonormal framing e1, e2, e3, the differential of f is

ei df = ei (n · x) = n · ei,
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for i = 1, 2. The second derivative matrix of f at a critical point is

f ′′(ei, ej) = ei d (n · ej) ,
= ei n · dej ,
= ei (±e3) · dej ,
= ±ei γ3j ,

= ∓aji.

So the function f has f ′′ a rank 2 quadratic form on each tangent space where
f is critical. In particular, if we write df = f1ω1 + f2ω2, then the vector field

X = ∇f = f1e1 + f2e2

has only finitely many zeroes. Since we can vary our surface continuously
without changing indices, we can see that the index doesn’t change as we vary
S and f so that f remains critical at some point x0 with f ′′ nondegenerate
at x0. In particular, we can arrange that S is flat near x0 with f a quadratic
function instead, without changing the index. But we saw above that the index
of X = ∇f at x0 is then 1 if det f ′′(x0) > 0 and −1 if det f ′′(x0) < 0.

Corollary F.7. Diffeomorphic surfaces have equal Euler characteristic.
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Geodesics on surfaces

Geodesics are locally shortest paths on a surface. We prove that they exist and that
they are smooth.

Geodesic flow

Each point (xo, eo) ∈ ⌜E3 moves along a path x(t) = xo+teo1, e(t) = eo. In other
words, don’t rotate the frame, but slide the base point x along the direction of
the first leg of the frame.

. . . . . .

Define a vector field X(x, e) ..= (e1, 0) on ⌜E3 ; these paths are its flow lines.
Imitate this vector field on the frame bundle of a surface S in E3. Write

points of ⌜S × E2 as (x, e, y) for y ∈ E2. The geodesic spray of S is the vector
field X on ⌜S × E2 given by

X (ω, α, dy) = (y, 0, 0)

This expression does not involve γ13 or γ23, since these are not linearly in-
dependent 1-forms on ⌜S . The flow of X is the geodesic flow. The vector
field X moves every frame (x, e), moving x in the direction of

∑
yiei, and

“not rotating” the frame e, since X γ12 = 0. Intuitively, X twists frames
only in the normal directions (in the γ13, γ23 directions), not tangentially
(the α = γ12 direction), while keeping e1, e2 tangent to the surface S. Map
(x, e) ∈ ⌜S → (x, e, (1, 0)) ∈ ⌜S ×E2, so that ⌜S is identified with a submanifold
of ⌜S × E2, making ⌜S invariant under the geodesic flow. Write a> for the
transpose of a matrix a. Let g ∈ O(2)×±1 act on ⌜S × E2 by

(x, e, y)g = (x, eg, a>y).

if
g =

(
a 0
0 b

)
.

Lemma G.1. On ⌜S × E2, r∗g (ω, γ12, dy) =
(
g>ω, γ12, g

> dy
)
while rg∗X = X.

135
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Proof. The reader can check how the 1-forms pull back. The equations defining
X imply invariance under O(2)×±1.

Let p : (x, e, y) ∈ ⌜S × E2 7→ (x, v) ∈ TS by v =
∑
yiei.

Proposition G.2. There is a uniquely determined vector field X on TS, also
called the geodesic spray, so that p∗X = X.

Proof. Calculate that at a point z = (x, e, y), for any g ∈ O(2)×±1,

p′(zg)X(zg) = p′(zg)r′g(z)X(z),
= (p ◦ rg)′ (z)X(z),
= p′(z)X(z).

The reader can check that O(2)×±1 acts transitively on the points z = (x, e, y)
lying above a given point (x, v) = p(z). Therefore the vector p′(z)X(z) is
independent of the point z, depending only on (x, v) = p(z).

A geodesic is a curve in S which is a projection to S of a flow line of X in
TS.

G.1 Take a surface S in E3. Prove that any geodesic x(t) of S, as a curve in
E3, has geodesic curvature a(ẋ, ẋ). Prove that a = 0 just when all geodesics of
S are geodesics of E3, i.e. straight lines, so that S is locally an open subset of
a plane.

Lemma G.3. A smooth curve C on a surface S in E3 has vanishing geodesic

curvature just when it is a geodesic.

Proof. The geodesic spray vector field X points along the tangent line cut out
by the equations ω2 = 0 and α = 0 and has X ω1 = 1. The tangent spaces of
⌜SC are cut out by the equations ω2 = 0 and α = −κ2ω1. The geodesic spray
X lies tangent to ⌜SC just when the geodesic curvature of C vanishes, which
therefore occurs just when the projection of the flow lines of X lie along C, i.e.
C is a geodesic.

First order deformation

Take a plane curve (x(s), y(s)) ∈ R2. Draw a vector field along this curve:
a vector (u(s), v(s)) at each point (x(s), y(s)). The smooth homotopy s, t 7→
(x(s) + tu(s), y(s) + tv(s)) pushes out each point (x(s), y(s)) in the direction of
our vector field. In the same way, if we have any compactly supported vector
field v(s) along a curve x(s) in an open set in E3, we can let xt(s) = x(s) +
tv(s), and then xt(s) will be defined for some interval of time t. Alternatively,
we could create many other smooth homotopies xt(s) with x0(s) = x(s) and
∂
∂t

∣∣
t=0 xt(s) = v(s); we say that v(s) is the first order deformation of xt(s). A

vector field v along a curve x(s) on a surface S is a smooth choice of vector
v(s) ∈ Tx(s)S at each point. As long as the vector field v(s) has compact
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support in a single chart, we can use the chart to identify an open set of the
surface with an open set in the plane, the curve with a plane curve, and each
vector field along the curve with a vector field along a plane curve, so create a
homotopy with given first order deformation.

Lemma G.4. Take a curve C (perhaps with boundary) on a surface S in

E3, and a compactly supported vector field v along C. Then v is a sum v =
v1 + v2 + · · · + vk of vector fields along C, so that each vector field vj is the

first order deformation of a smooth homotopy of C.

Proof. Cover C by charts and take a partition of unity.

Smooth homotopies and variation of length

Lemma G.5. On a surface S in E3, take a vector field v(s) along a unit-speed

curve x(s) on S. Suppose that v vanishes at s = s0 and at s = s1. Let κ(s) be

the geodesic curvature of x(s). Suppose that there is a smooth homotopy xt(s)
with first order deformation v(s) along x0(s) = x(s), so xt (s0) = x (s0) and

xt (s1) = x (s1) for all values of t. Then

d

dt

∣∣∣∣
t=0

length xt =
∫
κ · v ds

Proof. Our homotopy is a map x : X → S for some domain X ⊂ R2 in the s, t-
plane. Since x(s) has nowhere zero velocity, by continuity the curve s 7→ xt(s)
has nonzero velocity for t near 0. If we restrict t to a small enough interval,
we can ensure that ∂x

∂s 6= 0 for all (s, t). An adapted frame for the homotopy
x(s, t) is a frame e so that ∂x

∂s is a positive multiple of e1, and therefore is
perpendicular to e2, e3. So e1 = e1(s, t) is a field of vectors, pointing in the
direction of each curve in the homotopy. Since e1 = e1(s, t) is actually now
defined on the st-plane, ω1 = e1 dx becomes well defined as a form on the
st-plane as well. At each point (s, t, e) of the adapted frame bundle, we can
write the first deformation v = ∂x

∂t of each of the curves xt as ∂x
∂t = v1e1 + v2e2.

Denote the set of adapted frames of the homotopy by ⌜Sx ; we leave the reader to
check that this set is a manifold. On ⌜Sx , we have ω2 = v2 dt. Taking exterior
derivative of both sides of this equation,

0 = dω2 − dv2 ∧ dt,
= α ∧ ω1 − dv2 ∧ dt.

By Cartan’s lemma (lemma 1.2 on page 6), there are unique smooth functions
κ2, a2, b2 on ⌜Sx so that

−α = κ2ω1 + a2 dt,

dv2 = a2 ω1 + b2 dt.

Checking dimensions, the tangent spaces of ⌜Sx are cut out by the equations
ω2 = v2 dt and −α = κ2ω1 + a2 dt.
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Let `(t) = length xt and let π(s, t) = t. Write π∗ for integration over the
fibers of π.

`(t) =
∫
|ẋt| ds,

=
∫
x∗ω1,

= π∗x
∗ω1.

Therefore

d` = π∗x
∗dω1,

= π∗x
∗ (−α ∧ ω2) ,

=
∑
i

π∗x
∗ (κ2 ω1 ∧ v2 dt) ,

= π∗x
∗ (κ · vω1 ∧ dt) ,

=
(∫

κ · vω1

)
dt.

Along t = 0, since our curve is unit-speed, ω1 = ds.

Lemma G.6. If a smooth curve locally minimises length between its points,

then it is a geodesic.

Proof. If C is a smooth curve of minimal length between two points, then
0 =

∫
κ · v ds for any first order deformation v. Any vector field v along C is

a sum of first order deformations, so again 0 =
∫
κ · v ds. In particular, we

can take v a positive multiple of κ near some point of C, and zero away from
there.

The exponential map

Write the flow of X on the tangent bundle as (x, v) 7→ etX(x, v), defined for all
(x, v) with v close enough to zero. The projection map is πS : (x, v) ∈ TS 7→
x ∈ S. For each point x ∈ S, the exponential map is expx : v ∈ open ⊂ TxS 7→
πS
(
eX(x, v)

)
∈ S. The exponential map might only be defined near v = 0.

G.2 Prove that π′S(x, v)X(x, v) = v.

Lemma G.7. The exponential map on a surface S in E3 has derivative

exp′(0) = id: T0TxS = TxS → TxS.

Proof. Going back to the definition of X, for any constant c ∈ R, cX(x, e, y) =
X(x, e, cy). Therefore the flow satisfies etX(x, e, cy) = ectX(x, e, y) for any con-
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stant c ∈ R. In particular,

X(x, e, y) = d

dt

∣∣∣∣
t=0

etX(x, e, y),

= d

dt

∣∣∣∣
t=0

eX(x, e, ty).

Taking the projection down to TS,

v = d

dt

∣∣∣∣
t=0

πS ◦ eX(x, tv).

This gives us

exp′x(0)v = d

dt

∣∣∣∣
t=0

expx(tv),

= d

dt

∣∣∣∣
t=0

πS ◦ eX(x, tv),

= d

dt

∣∣∣∣
t=0

πS ◦ etX(x, v),

= π′S(x, v)X(x, v),
= v.

We need locally uniform control on geodesics. The injectivity radius of a
surface S in E3 at a point x ∈ S is the supremum of numbers r > 0 so that
expx is a diffeomorphism on the ball of radius r in TxS.

Lemma G.8. For any compact subset K ⊂ S of a surface S in E3 there is a

lower bound r = rK > 0 on the injectivity radius of all points x ∈ K. If x ∈ K
and y ∈ S is within distance r of x then there is a unique geodesic of length

less than r from x to y.

Proof. Consider the map f : TS → S × S given by f(x, v) = (x, expx v). As
above, f ′(x, 0)(u, v) = (u, u + v), so f is a diffeomorphism of an open neigh-
borhood of UTS ⊂ TS of { (x, 0) | x ∈ S } to a open neighborhood US×S of
{ (x, x) | x ∈ S } ⊂ S × S. Take any compact set K ⊂ S. Consider a sequence
of points xj , yj with xj ∈ K and yj ∈ S with distances between xj and yj get-
ting small. By compactness, after replacing with a subsequence, our sequence
converges to a point (x, x), which lies in US×S . But US×S is open, so all but
finitely many pairs (xj , yj) belong to US×S . Suppose that there are arbitrarily
close points xj , yj with xj ∈ K with no unique shortest geodesic. Then (xj , yj)
is not in the image of f , i.e. not in US×S , a contradiction. Similarly, we cannot
find arbitrarily close points xj , yj with xj ∈ K where f−1 is not defined. But
f−1(x, y) = exp−1

x y, so expx y is defined for near enough points x and y, and
is a diffeomorphism because f is a diffeomorphism.
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Geodesic polar coordinates

G.3 Suppose that η1, η2 are an orthonormal coframing of an oriented surface S
in E3, i.e. η1, η2 yield an orthonormal basis of each cotangent space. Let u1, u2
be the dual vector fields, also orthonormal, and take u3 to be the positively
oriented normal vector field. Define a map f : x ∈ S 7→ (x, u1(x), u2(x), u3(x)) ∈
⌜S . Prove that f∗ωi = ηi.

For this reason, we prefer to just denote any choice of orthonormal coframing
η1, η2 as ω1, ω2, and the associated 1-form f∗γ12 as just γ12, which we say is
the connection 1-form of this coframing.

Take the exponential map expx0 and use it to identity Tx0S with an open
set around x0 in S. Make an isometric linear isomorphism Tx0S

∼= E2. Take
polar coordinates on E2. The direction ∂r is, by definition of the exponential
map, the direction of the geodesics moving at unit speed away from x0, so is
a unit vector field. Take ω1, ω2 an orthonormal coframing so that ω1 = 1 and
ω2 = 0 on ∂r. So

ω1 = dr + a(r, θ) dθ,
ω2 = h(r, θ) dθ.

Differentiate, denoting ∂h
∂r as hr, and so on, to find that

α = −arω1 + hrω2

h
.

The curves ω2 = 0 have geodesic curvature ar/h, which vanishes because they
are geodesics, so a = a(θ).

G.4∗ Prove that a(θ) = 0 and h(r, θ) → 0 and hr(0, θ) → 1 as r → 0. Differ-
entiate α to find the Gauss curvature K.

Summing up:

Lemma G.9. Any surface, in geodesic normal coordinates, has orthonormal

coframing, connection form and curvature:

ω = dr + ih(r, θ)dθ,
α = −hrdθ,

K = −hrr
h
,

h(r, θ)→ 0 as r → 0,
hr(0, θ)→ 1 as r → 0,

h(r, θ + 2π) = h(r, θ).

The equation hrr+Kh = 0 is linear in h, and uniquely determines h subject
only to h = 0 and hr = 1 at r = 0. By uniqueness h(r, θ + 2π) = h(r, θ).
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For example, if K = 1 is constant along a geodesic ray, then h = sin r along
that ray. (Note that h cannot be zero as ω2 = h dr, so the exponential map is
not a diffeomorphism and geodesic polar coordinates are not defined for r ≥ π.
Similarly, if K = 0 along a geodesic ray, then h = r along that ray, just as on
a flat plane. Similarly, if K = −1 along a geodesic ray, then h = sinh r along
that ray.

A length preserving diffeomorphism of surfaces is a diffeomorphism preserv-
ing the lengths of all curves.

Theorem G.10. Any surface of constant Gauss curvature K = K0 is locally

length preserving diffeomorphic to any other.

Proof. In our geodesic normal coordinates,

ω1 = dr, ω2 = h(r) dθ

where k0 ..=
√
|K0| and

h(r) =


sin k0r
k0

, if K0 > 0,
r, if K0 = 0,
sinh k0r
k0

, if K0 < 0.

Matching up the values of r, θ on our two surfaces then matches up ω1, ω2 and
so matches up lengths of any curves, as the length of a curve (r(t), θ(t)) is∫ √

ω2
1 + ω2

2 .

More generally, the function h(r, θ) is constant in θ just when the surface
admits “rotations”, i.e. rotation of θ, as symmetries, fixing the point about
which the geodesic coordinates are computed. One easily checks that the surface
is then length preserving diffeomorphic near that point to a surface of revolution,
with that point fixed under the revolution: an intrinsic description of the shape
of a surface of revolution. The length of the circle of radius r around the fixed
point is `(r) =

∫
ω2 = 2πh(r), and the curvature is K = −`′′(r)/`(r): two

surfaces of revolution are length preserving diffeomorphic near fixed points just
when their curvatures are equal as functions of distance from fixed point.

Geodesics are locally minimal

Theorem G.11. Geodesics are locally minimal, and every locally minimal

curve is a geodesic.

Proof. In geodesic polar coordinates, r increases at unit rate as we move along
the radial curves given by constant θ, and at less than unit rate as we move at
unit speed in any other direction. Note that these are geodesics, by definition
of the coordinates. Hence the length of a piece of curve increases by at least
the increase in r across its end points, and exactly by this amount precisely for
the radial curves. So the shortest curves of given increase in r, i.e. shortest
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paths between circles of constant r, are these radial curves. For any path, any
two points on it sufficiently close together are each in the injectivity radius
of the other, so the geodesic polar coordinates are defined, and the unique
shortest path between those points is the unique geodesic between them in
those coordinates.

The length metric distance between two points p, q ∈ S of a surface S in E3

is the infimum of lengths of paths from p to q. As above, the geodesics between
sufficiently close points have minimal length, so their length achieves the length
metric distance.

G.5 Prove that if the length metric distance between points goes to zero, then
the distance in E3 also goes to zero.

Corollary G.12. Every invertible map ϕ : P → Q of surfaces P,Q in E3 which

preserves lengths of curves is a diffeomorphism.

Proof. The map takes geodesics to geodesics, since they are precisely the locally
shortest paths. The map identifies each point p0 ∈ P with a point q0 ∈ Q, and
the circle around p0 of a given radius with the corresponding circle around q0
of the same radius. The lengths of geodesic segments are preserved, so if a
point moves at unit rate along a geodesic on P then its image in Q does the
same. Indeed, the same is true for a point moving along any curve (for example,
along a circle), because the path is approximated by piecewise geodesic paths.
Therefore at every point near p0, except at p0 itself, ϕ∗e1 = e1 and ϕ∗e2 = e2.
Therefore ϕ is continuously differentiable at all those points. By lemma G.8 on
page 139, every point p ∈ P is near enough but not equal to some such point
p0 to use this argument to prove that ϕ is continuously differentiable at p. The
same applies to ϕ−1.

Corollary G.13. On any connected surface S in E3 the following are equiva-

lent:

a. The surface S is complete in the length metric, i.e. length metric Cauchy

sequences converge.

b. The surface S is proper in the length metric, i.e. all length metric balls

are compact.

c. The exponential map on S has flow defined for all time through all points.

d. Every geodesic on S defined on an open interval extends uniquely to a

geodesic defined on a closed interval.

e. There is a point x0 ∈ S so that every shortest path x : [a, b) → S with

x(a) = x0 extends uniquely to a continuous path x : [a, b]→ S.

In particular, if S is a closed subset of E3, then all of these hold.
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Proof. Every geodesic on S, parameterised by arc length, is defined on a maxi-
mal open interval, since the geodesics are the solutions of an ordinary differential
equation.

We recall some facts about metric spaces [14]. A length space is a metric
space in which the distance between points is the infimum of lengths of paths
between them. A minimal geodesic in a length space X is a path x(t) on which
the distance between points x(t0), x(t1) is |t1 − t0|. A geodesic is a path which
is locally a minimal geodesic. By the Hopf–Rinow theorem for metric spaces
[14, 27], any locally compact length space is complete just when any geodesic
defined on an open interval extends to be defined on a closed interval.

In any complete surface, geodesics then extend further to be defined on
larger open intervals, since they continue to solve their differential equation. So
if S is complete, geodesics are defined for all time. But if geodesics are defined
for all time, they extend, so by Hopf–Rinow S is complete.

G.6 Prove that, on any complete surface, vector fields of bounded norm are
complete.

Corollary G.14. Any two local isometries f, g : P → Q of the length metric

between two connected surfaces are identical just when there is a point p0 ∈ P
at which both f(p0) = g(p0) and f ′(p0) = g′(p0).

Proof. Each vector v ∈ Tp0P is taken to the same vector f ′(p0)v = g′(p0)v, so
exponentiates to the same point of Q, if v is small enough. Because f and g
are local isometries, they locally identify the geodesics of P and Q, and the
exponential maps, so

f ◦ expp0 = expq0 ◦f
′(p0) = expq0 ◦g

′(p0) = g ◦ expp0 ,

and since the exponential map is a local diffeomorphism, f = g near p0. So the
set of points where f = g is both open and closed.

Theorema Egregium

A circle on a surface is the set of points at given length metric distance from
a given point of the surface. We would like to see that the Gauss curvature
controls the speed at which circles grow with radius. Along each geodesic
coming out of a given point o, erect a frame with e1 tangent to the geodesic
and e2 normal, a point of the frame bundle associated to each point near (but
not equal to) o. Motion along e1 takes us away from o at unit speed, while
motion along e2 spins us around the circles around o at unit speed.

h(r, θ) = r − K(o)
2 r2 + o(r)2

.

The length of the circular arc of radius r about o between two angles θ0, θ1 is∫
ω2 =

∫ θ1

θ0

h(r, θ) dθ = |θ1 − θ0|r
(

1− K (o) r
2

)
+ o(r)2

.
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Theorem G.15 (Theorema Egregium). Any isometry of length metric between

analytic surfaces is analytic and preserves Gauss curvature.

Proof. Distances are preserved, so circles (points of given distance) are pre-
served. Lengths are preserved, so lengths of circles are preserved, so Gauss
curvature is preserved. Geodesics coming out of a given point are mapped to
geodesics out of the corresponding point. The geodesics coming out of o have
constant values of θ, and these are preserved. So θ changes under isometry only
as a function of θ, independent of r. Since r is preserved, lengths of circular
arcs are preserved, so the absolute differences of values of θ are preserved. So
all isometries have the form r, θ 7→ r,±θ + c, for some constant c. Arrange by
choice of coordinates that the rays θ = 0 are matched, and the direction of
increasing θ is matched: r, θ 7→ r, θ.

G.7 Suppose that S is a surface in E3 diffeomorphic to a triangle in the plane,
say with interior angles α, β, γ, and with geodesic sides (a “geodesic triangle”).
Prove that

α+ β + γ = π +
∫
S

K dA.

In particular, negatively (positively) curved geodesic triangles have larger
(smaller) angle sums than Euclidean triangles.

The Hessian

We will prove:

Theorem G.16. Take an open set on a surface in E3, with smooth boundary

of nonnegative geodesic curvature. Whenever a geodesic enters the interior of

that open set, it is not tangent to the boundary.

Take a function f : S → R. Pulling f back to the frame bundle of S, because
df is semibasic, df = f1ω1 +f2ω2 for some functions f1, f2. Differentiate to find

d

(
f1
f2

)
+
(

0 α
−α 0

)(
f1
f2

)
=
(
f11 f12
f21 f22

)(
ω1
ω2

)
for unique functions fij = fji. Check that the operator

D2f ..= fijωiωj

is a symmetric bilinear form on tangent spaces of S, the Hessian of f . The
differential df restricts to any curve to become

df = df

ds
ds = f1ω1

measuring the rate at which f increases along the curve, and the Hessian
becomes

d2f

ds2 = df1

ds
= f11,
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the acceleration of f along the curve. Any curve on which the Hessian is positive
has f accelerating, so at any point of that curve, if df vanishes at that point
of the curve, i.e. the curve is tangent to a level set of f , then f increases on
either side of that point, i.e. the curve stays outside of the sublevel set.

If df 6= 0, we can pick out a particular choice of frame: make e1 tangent
to level sets of f . So df = f2ω2, i.e. f1 = 0, on this subbundle of the frame
bundle, adapted to f . We can further orient the surface by requiring f2 > 0.
Our equations simplify to

f2α = f11ω1 + f12ω2,

df2 = f21ω1 + f22ω2.

On any one level set ω2 = 0 so

α = −κ2ω1 = −f11

f2
,

so the geodesic curvature of the level set is

κ2 = f11

f2
,

so the sign of the geodesic curvature of each level set is the sign of the acceleration
of f along that level set. In particular, the level sets are geodesic just when the
Hessian vanishes along all of them.

Given any curve C, we can locally make a function f with that curve as
level set. Take two curves C0 and C1 tangent at a point. Suppose they are both
oriented, and lie on an oriented surface. Write each as a level set of functions f0
and f1, with differentials pointing on the positive side of the oriented tangent
line. At the point of tangency, both functions have vanishing differential on
both curves. Clearly f0 has larger Hessian on that tangent line just when C0
has larger curvature. So then f0 − f1 has positive Hessian on that tangent line,
and so f0 − f1 grows nearby on C1. But f1 is constant on C1. So f0 grows on
C1 at all points nearby. So C1 has just one point of tangency with C0 near that
point, and everywhere else nearby leaves the sublevel set of f0. In particular,
if C1 is a geodesic, f1 has vanishing Hessian along C1, proving theorem G.16
on the facing page.

G.8 Suppose that M is a complete surface in 3-dimensional Euclidean space,
and f is a smooth proper function on M whose only critical point is a single
local minimum. Suppose that all level sets of f are positively curved. Prove
that every geodesic on M enters each compact set only finitely many times.

Abstract surfaces

A surface is a manifold of dimension 2. A Riemannian metric on a surface is a
choice of inner product in each tangent space, so that inner products of locally
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defined analytic vector fields are analytic functions. For simplicity of notation,
write inner products as dot products. An orthonormal frame (x, e) is a choice
of point x of S and a choice of orthonormal basis e1, e2 of the tangent plane
TxS. The tangent frame bundle of S is the collection of orthonormal frames of
tangent spaces of S. Note that for a surface S in E3, this is not the same as
the frame bundle we constructed previously in appendix D on page 103, which
we could refer to as the bundle of ambient adapted frames. The tangent frame
bundle of a surface in E3 is the quotient of the ambient adapted frame bundle
by ignoring e3, giving a 2− 1 covering map. Nonetheless, we will use the same
notation ⌜S for the tangent frame bundle.

Take any two linearly independent vector fields on an open subset U ⊆ S
of our surface. Apply the Gram–Schmidt orthogonalization procedure to them
to construct orthonormal vector fields, say e′1, e′2, defined on U . Over U , any
orthonormal frame e1, e2 is uniquely expressed as

e1 = cos θ e′1 ± sin θ e′2,
e2 = − sin θ e′1 ± cos θ e′2.

In this way, we identify ⌜U ∼= U × (S1 ∪ S1), so the tangent frame bundle
becomes a manifold. Let p : (x, e) ∈ ⌜S 7→ x ∈ S. The soldering forms ω1, ω2
on ⌜S are defined by

p′(m, e1, e2)v = ω1(v)e1 + ω2(v)e2.

If the dual 1-forms to e′1, e′2 on U are ω′1, ω′2 then(
ω1
ω2

)
=
(

cos θ ± sin θ
− sin θ ± cos θ

)(
ω′1
ω′2

)
.

Suppose henceforth that the surface S is oriented. We pick out only the
positively oriented frames, to get rid of ± so (using the same notation to also
denote the bundle of positively oriented orthonormal frames) ⌜U ∼= U ×S1. Let
ω ..= ω1 + iω2, and write this as

ω = eiθω′.

The area form dA ..= ω′1 ∧ ω′2 pulls back to dA = ω1 ∧ ω2, independent of the
choice of e′1, e′2, so globally defined on S. Since dA is a nonzero area form,
dω′1, dω

′
2 are multiples of it, say

dω′1 = −a1dA,

dω′2 = −a2dA.

Let α′ ..= a1ω
′
1 + a2ω

′
2. Take exterior derivative of both sides to see that

dω′ = iα′ ∧ ω′ on U , and that

dω = i (α′ + dθ) ∧ ω.
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The real-valued 1-form α′ on U is uniquely determined by 0 = dω′ − iα′ ∧ ω′.
So the real-valued 1-form α ..= α′ + dθ is as well, giving 0 = dω − iα ∧ ω for a
unique real-valued Levi-Civita connection 1-form α. Take exterior derivative
of that equation to see that dα = Kω1 ∧ ω2, for a unique function K on the
tangent frame bundle. But on ⌜U , dα = d(α′ + dθ) = dα′ is the same for any
choice of framing, i.e. K is a function well defined on the surface S.

G.9 Suppose that S is not orientable. Prove that K is nonetheless well defined
on S, while the area form dA = ω1 ∧ ω2 is not. Prove that the curvature form
K dA is well defined on S if and only if K = 0.

Theorem G.17 (Theorema egregium). The Levi-Civita connection 1-form and

the Gauss curvature of a Riemannian metric on a surface depend only on the

Riemannian metric, not on any choice of isometric immersion into Euclidean

space.

Geodesic normal coordinates work out exactly the same. But on abstract
surfaces, we can reverse their construction. Take any function K(r, θ); there is
a unique solution h to hrr + Kh = 0 with h = 0 and hr = 1 at r = 0: every
function K defined near the origin of the plane is the Gauss curvature of some
abstract Riemannian metric dr2 + h2dθ2 near the origin.

G.10 Prove that this metric is smooth at the origin.

If K < 0 then hrr = −Kh > 0 for h > 0, so h > r; if K is defined in the
entire plane, r, θ are geodesic normal coordinates, so this metric is complete.

Theorem G.18. Any connected surface bearing a complete metric of negative

Gauss curvature has exponential map at any point a smooth universal covering

map from the plane.

Proof. The exponential map is defined in the plane by completeness, but h
has no zeroes so the exponential map is a local diffeomorphism. The pullback
metric is complete:

ω2
1 + ω2

2 = dr2 + h2dθ2 ≥ dr2 + r2dθ2.

Take a closed disk on the surface, say of radius r. Its preimage is a union of disks
in the pullback metric, closed by completeness. Each sits in a Euclidean disk of
smaller radius. If, no matter how small we make r, some of these disks overlap,
then there are points of arbitrarily small Euclidean distance mapping to the
same point of the surface. Take a convergent sequence of these, a contradiction.
So the exponential map covers each small enough embedded closed disk on the
surface with disjoint embedded closed disks, and so is a covering map.

Smoothness of isometries and the Gauss–Bonnet theorem follow, with the
same proof, for any oriented surface with Riemannian metric.
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Hints

Il ne me suffit pas de lire que les sables des plages sont doux ; je veux que
mes pieds nus le sentent . . . Toute connaissance que n’a pas précédée
une sensation m’est inutile.
It is not enough for me to read that the sand on the seashore is soft.
My bare feet must feel it . . . All knowledge that is not preceded by a
sensation is useless to me.

— André Gide
Les nourritures terrestres

1.2.

a. All submanifolds.

b. Any discrete set of points.

c. Take a 0-dimensional submanifold of the image. Its preimage is a submanifold.
Take any submanifold of that submanifold.

d. If dx1 ∧ dx2 6= 0, these are locally yi = ∂S
∂xi

; in general the integral surfaces are
the Lagrangian surfaces.

e. If dx 6= 0 these are y = y(x), z = dy/dx; in general they are Legendre curves.

1.3.

a. All linear subspaces of all tangent spaces.

b. The zero subspaces of all tangent spaces.

c. The linear subspaces tangent to the fibers.

d. If dx1 ∧ dx2 6= 0, these are dyi = aijdxj with aij = aji; in general they are zero
subspaces, lines, or Lagrangian planes.

e. If dx 6= 0 these are dy = z dx, dz = a dx for any real numbera.

1.5. M = R, I = (x dx), X = { 0 }
1.9. Take any local coordinates on M , say xi, ua, near a point m0. Every p-plane
E ⊂ TmM , with m near m0, and with dx1 ∧ · · · ∧ dxp 6= 0 on E, is the set of tangent
vectors on which dua = qai dx

i, for uniquely determined numbers qai . As a short hand,
write this as du = q dx. The functions xi, ua, qai on GrpM are local coordinates. The
map (m,E) ∈ GrpM 7→ m ∈ M is (x, u, q) 7→ (x, u), a submersion. We leave the
change of coordinates to the reader.
1.10. If θ = du− q2 dx then dθ = −2q dq ∧ dx.

151
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1.13. Take M ..= R7
x,y,u,ux,uy,uxy,uyy with the exterior differential system I generated

by

θ1 ..= du− ux dx− uy dy,
θ2 ..= dux − f dx− uxy dy,
θ3 ..= duy − uxy dx− uyy dy.

The polar equations of the zero dimensional integral element 〈0〉 are 〈θ1, θ2, θ3〉. Com-
pute

dθ1 = −dux ∧ dx− duy ∧ dy,
dθ2 = −df ∧ dx− duxy ∧ dy,
dθ3 = −duxy ∧ dx− duyy ∧ dy

where

df = fxdx+ fydy + fudu+ fuxdux + fuyduy + fuxyduxy + fuyyduyy.

A 1-dimensional integral element is the span of some nonzero vector v so that

0 = v θ1 = v θ2 = v θ3.

We are only looking for integral surfaces which are graphs of x, y. So we can suppose
that v has nonzero ∂x or ∂y component, i.e. projection to the x, y-plane. If we write
out

v = a ∂x + b ∂y + c ∂u + e ∂ux + g ∂uy + k ∂uxy + ` ∂uyy ,

plug in to find precisely the equations

c = aux + buy,

e = af + buxy,

g = auxy + buyy.

So the 1-dimensional integral elements on which dx 6= 0 are parameterized by, scaling
to get a = 1, the values of b, k, `, or for those with dy 6= 0, scaling to get b = 1, the
values of a, k, `.

The polar equations of a 1-dimensional integral element 〈v〉 on which dx 6= 0 are
spanned by θ1, θ2, θ3 together with

v dθ1 = dux − f dx− uxydy + b(duy − uxydx− uyydy),
= θ2 + bθ3,

v dθ2 = (fy − k)dy −Adx+ fudu+ fuxdux + fuyduy

+ (fuxy + b)duxy + fuyyduyy,

v dθ3 = −k dx+ duxy − ` dy + b duyy

where

A = fyb+ fu(ux + buy) + fux(f + buxy)
+ fuy (uxy + buyy) + fuxyk + fuyy `.

With generic choice of k, we find linearly independent dux, dy, duxy components. So
the generic integral line has a 5-dimensional space of polar equations. The polar
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equations have increased from 3 to 5, so s1 = 5 − 3 = 2. So s0 = 3, s1 = 2; by our
general recipe if we want to enforce that the maximal integral elements will have
dimension 2, s0 + s1 + s2 = dimM − 2, so s0, s1, s2 = 3, 2, 0.

Each 2-dimensional integral element on which dx ∧ dy 6= 0 is parameterized by
choosing two such vectors, one with a = 1, b = 0 and the other with a = 0, b = 1, say

v = ∂x + ux ∂u + f ∂ux + uxy ∂uy + k ∂uxy + ` ∂uyy ,

w = ∂y + uy ∂u + uxy ∂ux + uyy ∂uy +K ∂uxy + L∂uyy .

But these coefficients are not arbitrary: they still have precisely to pass the test of
making 0 = dθ1 = dθ2 = dθ3 so that the span 〈v, w〉 is an integral plane. Plug in to
see that

dθ1(v, w) = 0,
dθ2(v, w) = fy + fuuy + fuxuxy + fuyuyy + fuxyK + fuyyuyy − k,
dθ3(v, w) = K − `.

So 〈v, w〉 is an integral plane just when these vanish, giving an equation for k and one
for `, hence the values of K,L are arbitrary, a 2-dimensional space of integral elements
at each point of the 7-dimensional manifold M . The space of integral elements has
therefore dimension 9. The generic flag predicts dimension dimM + s1 + 2s2 =
7 + 2 + 0 = 9. The predicted dimension equals the dimension, so the Cartan–Kähler
theorem applies: the generic integral plane lies tangent to an analytic integral surface.
There is an involutive integral element at every point of M , so at each point, the
generic integral plane lies tangent to an analytic integral surface, so there are integral
surfaces through every point.
1.14. Let

M ..= R6
x,y,u,ux,uy,uyy ,

with the exterior differential system I generated by

θ0 = du− uxdx− uydy,
θ1 = dux − uxxdx− uxydy,

= dux − f dx− g dy
θ2 = duy − uxydx− uyydy,

= duy − g dx− uyydy.

The integral surfaces of I on which dx, dy are linearly independent are precisely the
local solutions of the coupled system.

Consider the integral lines, i.e. 1-dimensional integral elements. Any integral line
is the span of some nonzero vector

v = ẋ∂x + ẏ∂y + u̇∂u + u̇x∂ux + u̇y∂uy + u̇yy∂uyy .

The span of v is an integral element just when 0 = θ0 = θ1 = θ2 on v, i.e.

u̇ = uxẋ+ uy ẏ,

u̇x = fẋ+ gẏ,

u̇y = gẋ+ uyy ẏ.
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Each integral line is determined by choosing ẋ, ẏ, u̇yy arbitrarily, not all zero. These
choices are uniquely determined then by the integral line up to scaling all three by
any nonzero constant. So there is a 2-dimensional space of integral lines at each point
of the 6-dimensional manifold M , and this space is a real projective plane.

Before we find the integral planes, we need the exterior derivatives of θ0, θ1, θ2.
Compute modulo θ0, θ1, θ2: dθ0 = 0 and

dθ1 = −df ∧ dx− dg ∧ dy,
= dx ∧ df + dy ∧ dg,
= dx ∧ (fxdx+ fydy + fudu+ fuxdux + fuyduy + fuyyduyy)

+ dy ∧ (gxdx+ gydy + gudu+ guxdux + guyduy + guyyduyy),
= (fy − gx)dx ∧ dy

+ (fudx+ gudy) ∧ du
+ (fuxdx+ guxdy) ∧ dux
+ (fuydx+ guydy) ∧ duy
+ (fuyydx+ guyydy) ∧ duyy

= (fy − gx)dx ∧ dy
+ (fudx+ gudy) ∧ (uxdx+ uydy)
+ (fuxdx+ guxdy) ∧ (f dx+ g dy)
+ (fuydx+ guydy) ∧ (g dx+ uyydy)
+ (fuyydx+ guyydy) ∧ duyy

= (fy − gx + fuuy − guux + fuxg − guxf + fuyuyy − guyg)dx ∧ dy
+ (fuyydx+ guyydy) ∧ duyy
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and

dθ2 = dx ∧ dg + dy ∧ duyy,
= dx ∧ (gxdx+ gydy + gudu+ guxdux + guyduy + guyyduyy)

+ dy ∧ duyy,
= gydx ∧ dy

+ gudx ∧ du
+ guxdx ∧ dux
+ guydx ∧ duy
+ (guyydx+ dy) ∧ duyy

= gydx ∧ dy
+ gudx ∧ (ux dx+ uy dy)
+ guxdx ∧ (f dx+ g dy)
+ guydx ∧ (g dx+ uyydy)
+ (guyydx+ dy) ∧ duyy

= gydx ∧ dy
+ guuydx ∧ dy
+ guxgdx ∧ dy
+ guyuyydx ∧ dy
+ (guyydx+ dy) ∧ duyy

= (gy + guuy + guxg + guyuyy)dx ∧ dy
+ (guyydx+ dy) ∧ duyy

Each integral plane, i.e. 2-dimensional integral element, is spanned by a pair of
vectors X,Y which themselves span integral lines, and which together satisfy

0 = dθ0 = dθ1 = dθ2.

Since we are concerned only with integral curves and integral surfaces that project
by local diffeomorphism to the xy-plane, we need consider only the integral planes
that project by linear isomorphism to the xy-plane. Any basis of the xy-plane has a
unique basis of the integral element projecting to it. So we take the standard basis of
the xy-plane, and insist that X,Y project to it. This gives us the ∂x, ∂y components
of X,Y , and the equations on integral lines determine the

∂u, ∂ux , ∂uy

components as above. Putting this together,

X = ∂x + ux∂u + f∂ux + g∂uy + a∂uyy ,

Y = ∂y + uy∂u + g∂ux + uyy∂uy + b∂uyy ,

for two constants a, b, which have to satisfy some more equations. So far, we have
only ensured that X,Y project to the standard basis and each separately spans an
integral line. To in addition span together an integral plane, we need them to satisfy

0 = dθ0 = dθ1 = dθ2.
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We check that
dθ0(X,Y ) = 1 · g − 1 · g = 0.

Then

dθ1(X,Y ) = (fy − gx + fuuy − guux + fuxg − guxf + fuyuyy − guyg)dx ∧ dy(X,Y )
+ (fuyydx+ guyydy) ∧ duyy(X,Y ),

= fy − gx + fuuy − guux + fuxg − guxf + fuyuyy − guyg
+ fuyyb− guyya,

while

dθ2(X,Y ) = (gy + guuy + guxg + guyuyy)dx ∧ dy(X,Y )
+ (guyydx+ dy) ∧ duyy(X,Y ),

= gy + guuy + guxg + guyuyy

+ guyyb− a.

This equation solves for a:

a = gy + guuy + guxg + guyuyy + guyyb.

So there is at most a 1-dimensional space of integral planes at each point of the
6-dimensional manifold M .

To have a 1-dimensional space of integral planes, we need precisely that this choice
of a satisfies the previous equation on a, b coming from 0 = dθ1:

0 = fy − gx + fuuy − guux + fuxg − guxf + fuyuyy − guyg
+ fuyyb− guyy (gy + guuy + guxg + guyuyy + guyyb),

= fy − gx + fuuy − guux + fuxg − guxf + fuyuyy − guyg

+ fuyyb− guyy (gy + guuy + guxg + guyuyy)− g2
uyyb),

= fy − gx + fuuy − guux + fuxg − guxf + fuyuyy − guyg − guyy (gy + guuy + guxg + guyuyy)
+ (fuyy − g

2
uyy )b,

The space of integral planes at each point is 1-dimensional just when the linear term
vanishes so that it doesn’t constrain b:

fuyy = g2
uyy

and the constant term vanishes, so that every b solves:

0 = fy−gx+fuuy−guux+fuxg−guxf+fuyuyy−guyg−guyy (gy+guuy+guxg+guyuyy).

If the linear term in b doesn’t vanish then, at every point of M , there is a unique
integral plane on which dx, dy are linearly independent. We will reconsider this
problem in problem 1.20 on page 8.

If the linear term vanishes, and the constant term doesn’t, then there are no
integral planes on which dx, dy are linearly independent: any choice of X,Y will not
span an integral plane. Tangent planes of any integral surface are integral planes. So
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there are no integral surfaces on which x and y are local coordinates. So there are no
local solutions u = u(x, y) to the original pair of partial differential equations.

If the linear term and the constant term both vanish, we don’t know if there are
any integral surfaces. We will reconsider this problem in problem 5.3 on page 42.
1.15. Suppose that, to each point x ∈M of a manifoldM , we have an associated p×q
matrix ϕ(x), with entries analytic functions on M . Let K be the set of pairs (x, v) so
that x ∈M and v is a vector in the kernel of ϕ(x). If ϕ(x) has rank independent of
x, let us prove that K is an embedded submanifold of M × Rq. Let’s also prove that,
for any map w : M → Rp, the following are equivalent:

a. At every point x ∈M , there is a vector v so that ϕ(v) = w(x).
b. Near every point x ∈ M , there is an analytic vector valued function v on an

open subset of M , so that ϕ(v(x)) = w(x); if ϕ is 1-1 at every point x ∈ M ,
then v is unique.

We can change ϕ by multiplying by arbitrary invertible matrices of analytic functions.
Since ϕ has constant rank, for any chosen point of M , we can permute rows and
columns to get the upper left corner to be invertible at that point, and hence near
that point, of the same rank as ϕ:

ϕ =
(
A B
C D

)
,

with A invertible. Multiply by (
A−1 0

0 I

)
,

to get A = I. Having rank exactly that of the upper left corner is precisely D = CB.
Multiply: (

I 0
−C I

)
ϕ

(
I −B
0 I

)
=
(
I 0
0 I

)
.

The reader familiar with vector bundles [6] may generalize.
1.16. We prove it in each tangent space separately. Real analyticity then follows
from the uniqueness of solutions of the linear equations by problem 1.15 on page 6.
So we prove it for constant coefficient 1-forms in Rp. Choose basis in Rp so that in
coordinates

x1, x2, . . . , xk, y1, y2, . . . , yp−k

our 1-forms are ξi = dxi. Write αi =
∑

aijdxj +
∑

bi`dy`, say. The equation
0 = α1 ∧ ξ1 + α2 ∧ ξ2 + · · ·+ αk ∧ ξk is precisely

0 =
∑
j

aijdxj ∧ dxi +
∑
`

bi`dy` ∧ dxi,

= 1
2
∑
j

(aij − aji) dxj ∧ dxi +
∑
`

bi`dy` ∧ dxi,

Plugging in the unit vectors pointing along various coordinate axes, we find aij = aji
and bi` = 0.
1.19. Take a point q0 ∈ Q and a leaf L. Take some point p0 ∈ P so that ϕ(p0) = q0.
Then ϕ is a homeomorphism of some open subset U ⊂ L containing p0, to some open
subset Ū ⊂ Q. We can assume that Ū is connected, by perhaps replacing Ū by its
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component containing q0 and replacing U by its intersection with ϕ−1Ū . Composing
ϕ with any ϕ-invariant automorphism of the Frobenius system allows us to vary U
with the choice of p0, but keep the same Ū for the given q0. The inverse image of Ū up
in L is therefore a union of open subsets of the leaf L. Suppose two of these overlap,
say U0, U1 ⊆ L both contain some point p1, and are both mapped homeomorphically
to Ū by ϕ. Let ϕ0 ..= ϕ|U0

and ϕ1 ..= ϕ|U1
. Since ϕ0 is a homeomorphism to a

connected topological space Ū , U0 is connected. The map ϕ−1
1 ◦ ϕ0 : U0 → U1 is a

homeomorphism equal to the identity map precisely in U0 ∩ U1, which is an open
set. But the points where a continuous map is the identity form a closed set, hence a
component, hence all of U0.
1.20. Recall from the solution of problem 1.14 on page 6, there is precisely one integral
element through each point of the 6-dimensional manifold

M ..= R6
x,y,u,ux,uy,uyy .

From the Frobenius theorem, there is at most one integral surface through each point,
and there is one through every point just when the 2-forms dθ0, dθ1, dθ2 vanish modulo
θ0, θ1, θ2. We already found 0 = dθ0 modulo θ0, θ1, θ2. When we mod out θ0, θ1, θ2, we
are left with three linearly independent 1-forms dx, dy, duyy. Expressing our 2-forms
in these 1-forms, the 2-forms vanish just when their coefficients vanish. The dy∧duyy
term of dθ2 is 1, so the Frobenius theorem never applies: if fuyy 6= g2

uyy , through the
generic point of M there is no integral surface on which x and y are local coordinates.

1.21. This is already clear geometrically: the shape operator is the curvature of
geodesics. Let M ..= ⌜E3 be the frame bundle of E3. The frame bundle ⌜S of any
surface S in E3 satisfies ω3 = 0 and(

γ13
γ23

)
=
(
a11 a12
a21 a22

)(
ω1
ω2

)
for some smooth functions a11, a12 = a21, a22. To have vanishing shape operator,
0 = a11 = a12 = a22, so 0 = ω3 = γ13 = γ23.

Consider on M the exterior differential system with equations ϑ0 = ω3, ϑ1 =
γ13, ϑ2 = γ23. The frame bundle ⌜S of any surface with vanishing shape operator is a
3-dimensional integral manifold. To be precise, each component of ⌜S is an integral
manifold, since S might have more than one orientation, so ⌜S might have more than
one component. Check that the exterior differential system is Frobenius, so there is a
unique integral manifold through each point of M . But we already have an example
of such an integral manifold, so that must be the only one.
1.22. Again take M = ⌜E3 with the exterior differential system

ω3, γ13 − c0ω1, γ23 − c0ω2,

Again the system is Frobenius, so there is only one 3-dimensional integral manifold
through each point. Rotate and translate a sphere of suitable radius to see one such
integral manifold through each point of M , the frame bundle of that sphere.
1.23. Problem 1.22 on page 9 handles the case of one principal curvature, so assume
that there are two principal curvatures. After picking a frame on a surface S so that
e1 and e2 are in the principal directions, we find 0 = ω3 = γ13−k1ω1 = γ23−k2ω2, for
constants k1, k2. Differentiate all three equations to find that 0 = (k1 − k2) γ12∧ω2 =
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(k1 − k2) γ12 ∧ ω1, forcing γ12 = 0 by Cartan’s lemma. Differentiating the equation
γ12 = 0, we find 0 = k1k2ω1 ∧ω2 so that either k1 = 0 or k2 = 0. We can assume that
k1 = 0, i.e. γ13 = 0. But then

de1 = (e1 · de1) e1 + (e2 · de1) e2 + (e3 · de1) e3,

= γ11e1 + γ21e2 + γ31e3,

= 0.

Therefore e1 is constant as we travel along the surface. So the surface is a collection
of straight lines, in this e1 direction, all placed perpendicular to a curve in the e2, e3-
plane. On that curve, ω1 = 0, and dω2 = 0 so we can write locally ω2 = ds for some
function s. Then we find

de2 = (e1 · de2) e1 + (e2 · de2) e2 + (e3 · de2) e3,

= γ12e1 + γ22e2 + γ32e3,

= −k2dse3.

and

de3 = (e1 · de3) e1 + (e2 · de3) e2 + (e3 · de3) e3,

= γ13e1 + γ23e2 + γ33e3,

= k2dse2.

Check that the vectors E2 = k2 cos(s)e2 +k2 sin(s)e3, E3 = −k2 sin(s)e2 +k2 cos(s)e3
are constant. Rotate so that E1 = e1, E2, E3 are the standard basis vectors of E3, to
see that the surface S is a right circular cylinder of radius 1/ |k2|.
1.27. Start by looking at the geometry of the given foliation. Suppose that the
foliation is of an open subset U of 3-dimensional Euclidean space. Consider the 4-
dimensional manifoldM of all orthonormal frames e1, e2, e3 at points x ∈ U for which
e3 is perpendicular to the leaf through x of the given foliation. By the Frobenius
theorem,

0 = ω3 ∧ dω3,

= ω3 ∧ (γ13 ∧ ω1 + γ23 ∧ ω2),
= γ13 ∧ ω1 ∧ ω3 + γ23 ∧ ω2 ∧ ω3.

So on M , (
γ13
γ23

)
=
(
a11 a12 a13
a21 a22 a23

)(ω1
ω2
ω3

)
for some functions aij on M . Plugging these in above, we find that a12 = a21. Clearly
a11ω

2
1 + a12ω1ω2 + a21ω2ω1 + a22ω

2
2 is the shape operator of each leaf of the foliation.

Now consider the problem of constructing a triply orthogonal web incorporating
this foliation as one of its three. We need to find a choice of e1, e2 at each point to
construct a frame, so that e1 will be perpendicular to the leaves of the first foliation,
and e2 perpendicular to the leaves of the second foliation, and the third foliation will
be the one we started with, already perpendicular to e3. So we will need to solve the
exterior differential system

0 = ω1 ∧ dω1 = ω2 ∧ dω2
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on M , i.e. with the equations(
γ13
γ23

)
=
(
a11 a12 a13
a21 a22 a23

)(ω1
ω2
ω3

)

already in force.
Note that on M , ω1, ω2, ω3, γ12 are linearly independent 1-forms. We are looking

for an integral 3-manifold X of that exterior differential system, on which we want
ω1, ω2, ω3 to be linearly independent, i.e. X projects by local diffeomorphism to
3-dimensional Euclidean space.

It might be simpler to write our foliation shape operator as(
γ13
γ23

)
=
(
a131 a132 a133
a231 a232 a233

)(ω1
ω2
ω3

)

and then we are imposing only the relations a132 = a231, i.e. symmetry in these two
outer indices.

Differentiate the equations of our exterior differential system to find that on any
integral 3-manifold X:

0 = ωi ∧ dωi,

= −ωi ∧
∑
j

γij ∧ ωj ,

which forces γij to be a linear combination

γij =
∑
k

aijkωk,

with aijk = −ajik since γij = −γji. But plug in to get

0 = ωi ∧
∑
jk

(aijk − aikj)ωk ∧ ωj

so that aijk = aikj if i, j, k are all distinct. So for distinct indices, aijk is symmetric in
jk, but antisymmetric in ij. These two involutions generate the permutation group,
and so the sign of aijk is a representation of the permutations on 3 letters. But any
two involutions are conjugate in the permutation group, so they must force the same
sign change. Hence aijk = 0 for i, j, k distinct. This is precisely the demand that
the shape operators of the leaves of all three foliations are thus diagonal in the frame
e1, e2, e3. In other words, each leaf of each foliation lies normal to each leaf of each
other foliation, and intersects tangent to a principal direction, i.e. along a principal
curve.

We can assume that U is connected. Either

a. the leaves of the given foliation are everywhere umbilic, hence each leaf is an
open subset of a sphere or plane, and so a132 = 0 and a131 = a232, or else

b. the vectors e1, e2 have to be chosen in principal directions and this determines
them up to 4 choices, at least on a dense open subset of U .
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Suppose that the leaves are spheres or planes, so a132 = 0 and a131 = a232, say.
The exterior differential system is generated in dimension 3 by γ12 ∧ ω1 ∧ ω2 = 0,
so every line or plane in any tangent space of M is an integral element. Planes, i.e.
integral planes, generically have ω1, ω2 linearly independent on them, so are generically
of the form

γ12 = p1ω1 + p2ω2,

ω3 = q1ω1 + q2ω2,

so lie in a unique 3-dimensional integral element γ12 = p1ω1 + p2ω2. The polar
equations of any integral point or line are trivial, but the generic integral plane has
polar equation γ12 − p1ω1 − p2ω2, so s1 = 0, s2 = 1, s3 = 0, solutions depend on 1
function of 2 variables.

We can explicitly construct the web: take any leaf of our given foliation, the
initial leaf , and draw on it any foliation by curves. On that same surface, draw the
orthogonal foliation by curves. Drag each leaf of each of those foliations along the
flow of e3, through space, to trace out a surface.

We want to see that this construction always creates a triply orthogonal web. Any
triply orthogonal web containing the given foliation has to arise from this construction:
the leaves of the other two foliations intersect the initial leaf in curves, and the vector
field e3 is tangent to every leaf of the other two foliations.

Conversely, take a foliation of the initial leaf by curves. Locally pick any orthonor-
mal vector fields e1, e2 tangent to that leaf, with e1 tangent and e2 perpendicular to
that curve foliation. Drag, as above. We produce two more foliations of Euclidean
space, defined near that leaf. But it is not clear whether they remain perpendicular.
The leaves of the two new foliations both contain e3, and they start off perpendicular
along the initial leaf.

Compute the change in the Euclidean metric along the flow of e3:

Le3ωiωi = 2ai3jωiωj .

So umbilicity of the given leaves is precisely the condition that the Euclidean metric
varies only by scaling as we flow along e3, on the perpendicular vectors to e3, and so
any pair of planes in a tangent space which start perpendicular will remain so. Hence
the construction always succeeds.

Suppose now that the leaves are nowhere umbilic. We will see that each foliation
by nonumbilic surfaces lies in at most one, and typically no, triply orthogonal web.
We need e1, e2 to diagonalize the shape operator, i.e. to lie in principal directions.
Imagine drawing the principal curves, i.e. the curves in those directions, on each
leaf. Our given foliation by surfaces has now, on each surface, two foliations by
perpendicular curves. We want to see whether, when we flow along the unit normal
vector field e3 of the foliation, these principal curves flow into one another. For a
generic foliation by surfaces, the flow of e3 will spin the principal curves of one leaf
around into various curves on other leaves, not necessarily principal.

We need a132 = 0, so the shape operator is diagonalized, i.e. e1, e2 point in
principal directions, and we suppose the leaves are not umbilic, so a131 6= a232. Our
frames form a 3-manifold X in the frame bundle. We have to decide whether X is an
integral manifold. On X, γij =

∑
k
aijkωk, for some functions aijk = −ajik. To have

a triply orthogonal web, we need precisely that aijk = 0 if i, j, k are distinct, i.e. the



162 Hints

shape operators are diagonalized. This is precisely the condition that the prinicipal
curves flow into one another.
2.1. We can ask that e1 be perpendicular to the leaves of our foliation. (If you use
e3 instead of e1 here, you will find it more complicated to write out the tableau.) So
then ω1 ∧ dω1 = 0 on the foliation. Expand out

dω1 = −γ12 ∧ ω2 − γ13 ∧ ω3

to arrive at the tableau

γ12 γ13

( )
∧

(
ω1 ∧ ω2

ω1 ∧ ω3

)
.

so s1 = 0, s2 = 1, s3 = 1, foliations of open sets of 3-dimensional Euclidean space
depend on 1 function of 3 variables. We can see them as the level sets of 1 function of 3
variables, but the function is defined only up to composition with a strictly increasing
or strictly decreasing function.
2.2. The polar equations of Ej are given by plugging into each k-form k − 1 vectors
from among e1, . . . , ej dual to ω1, . . . , ωj , and then seeing what 1-form is left over:
the polar equation. Since Ep is an integral element, the polar equation vanishes on
E, so is a linear combination of πα 1-forms. All terms with 2 or more π vanish as
do all terms with any ωi for i > j. So set ωi = 0 for i > j, and plugging in, with
πα = 0 on Ej , and kill all nonlinearity: we are left precisely with the polars in grades
0, 1, 2, . . . , j as a basis of the polar equations of Ej . Hence the characters of Ep are
the numbers of polars in each grade.
2.4. The torsion of a tableau τ is τ + P ⊆ Λ∗V ∗/P . Let τ̂ be the preimage of τ in
Λ∗V ∗. To any

ϑ⊗ (e1 ∧ · · · ∧ ek) ∈ τ̂k+1 ⊗ ΛkE∗

associate the covector in E⊥ which maps

w ∈ V 7→ ϑ(e1, . . . , ek, w)

a linear map
τ̂∗+1 ⊗ Λ∗E∗ → E⊥.

The covector will be zero if ϑ ∈ P 2. Therefore we can replace τ̂ by τ = τ̂ + P 2. Pick
a flag 0 = E0 ⊂ E1 ⊂ · · · ⊂ Ep = E. Restrict our map

τ∗+1 ⊗ Λ∗E∗i → E⊥.

The characters of this flag are the increments in dimensions of images of these maps.
The characters of the tableau are the characters for flags for which those dimensions
are maximal.

Pick a point m ∈M in a manifold M with an exterior differential system I. On
the linear subspace V ..= (I1

m)⊥ ⊆ TmM , we have an ideal J ..= Im/(I1
m) ⊆ Λ≥2V ∗.

Pick a linear subspace E ⊆ V , say of dimension p. (We will picture that ωi ∈ V ∗
can be any covectors that restrict to E to give a basis for E∗ and that πα can be any
basis for E⊥ ⊆ V ∗, but we prefer not to pick any bases.) The torsion of E is clearly
the pullback to the subspace E ⊆ V :

J 7→ Λ∗E∗,
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vanishing just when E ⊆ V ⊆ TmM is an integral element; equivalently, the torsion is
J + P . (In terms of differential forms, we are setting all πα to zero, i.e. pulling back
to E, and then asking if there are any nonzero forms left, i.e. terms left purely in ωi.)
The torsion vanishes just when J ⊆ P . The nonlinearity is J ∩ P 2. The tableau is

τ ..= J /(J ∩ P 2) ⊆ Λ∗V ∗/P 2.

The torsion vanishes just when
τ ⊆ P/P 2.

Suppose that the torsion vanishes. The polar equations of any element of P 2 ∩ Im
vanish (having two or more πα in them, each of which vanishes on E). (In terms of
the forms, this plugs in vectors dual to the ωi on which the πα vanish, and splits out
elements in the span of the πα, giving those linear combinations of $α which appear
in the rows of the tableau. We don’t really need any more of τ than just any set of
generators, since every πα which appears in any element will already have to appear
somewhere in any generating set. The image of this map is the collection of linearly
independent $α that appear in columns 1, 2, . . . , i of the tableau.) The ranks of these
linear maps are precisely the dimensions of polar equations, so their increments are
precisely the characters of the flag. (In terms of differential forms, these ranks are
precisely the numbers of linearly independent $α in columns 1, 2, . . . , i, when we pick
our ωi to have Ei = (ωj = 0)j>i.)
2.6. Take R15 with coordinates xi, ui, uij for i, j = 1, 2, 3. Note that our differential
equations, spelled out as algebraic equations

u3
2 − u2

3 = f1 − u1,

u1
3 − u3

1 = f2 − u2,

u2
1 − u1

2 = f3 − u3,

cut out a submanifold M ⊂ R15 of dimension 12. Take ωi ..= dxi, θi ..= dui − uij dxj ,
and πij ..= duij . It will help to denote ∂fi

∂xj
by f ij . The equations of M force 3 linear

relations among the πij :
du3

2 − du2
3 =

(
f1
i − u1

i

)
dxi,

modulo θ1, θ2, θ3, and so on, i.e.

π2
3 = π3

2 −
(
f1
i − u1

i

)
ωi,

π1
3 = π3

1 +
(
f2
i − u2

i

)
ωi,

π1
2 = π2

1 −
(
f3
i − u3

i

)
ωi.

Our tableau: modulo θ1, θ2, θ3,

d

θ1

θ2

θ3

 = −


π1

1 π1
2 π1

3

π2
1 π2

2 π2
3

π3
1 π3

2 π3
3

 ∧
ω1

ω2

ω3



= −


π1

1 π2
1 π3

1

π2
1 π2

2 π3
2

π3
1 π3

2 π3
3

 ∧
ω1

ω2

ω3

+

τ1

τ2

0
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where the torsion is(
τ1

τ2

)
=
(
f3

1 − u3
1

0

)
ω12 +

(
u2

1 − f2
1

f1
1 − u1

1

)
ω13 +

(
u2

2 − f2
2 + u3

3 − f3
3

f1
2 − u1

2

)
ω23

We can try to absorb torsion, for example by usingπ′11π′21
π′22

 ..=

π1
1

π2
1

π2
2

+

 0 0 u2
1 − f2

1

u3
1 − f3

1 0 0
0 0 f1

2 − u1
2

ω1

ω2

ω3

 ,

which we denote as π instead of π′ to simplify notation. Our tableau: modulo θ1, θ2, θ3,

d

θ1

θ2

θ3

 = −


π1

1 π2
1 π3

1

π2
1 π2

2 π3
2

π3
1 π3

2 π3
3

 ∧
ω1

ω2

ω3

+

uii − f ii0
0

ω23.

The torsion is uii − f ii (Einstein notation: implicitly summed over i). Take the
submanifold M ′ ⊂ M cut out by the equation uii = f ii . For simplicity, denote this
submanifold as M henceforth. On M ,

0 = d(uii − f ii ) = πii − f iijωj .

Our tableau: modulo θ1, θ2, θ3,

d

θ1

θ2

θ3

 = −


π1

1 π2
1 π3

1

π2
1 π2

2 π3
2

π3
1 π3

2 −π1
1 − π2

2 + f iijω
j

 ∧
ω1

ω2

ω3

 .

Let (
π′31
π′32

)
=
(
π3

1

π3
2

)
−
(
f ii1
f ii2

)
ω3,

and once again just write these as π instead of π′. Our tableau: modulo θ1, θ2, θ3,

d

θ1

θ2

θ3

 = −
π1

1 π2
1 π3

1

π2
1 π2

2 π3
2

π3
1 π3

2 −π1
1 − π2

2




s1 s2 s3

3 2 0

∧

ω1

ω2

ω3

 .

Integral elements πij = pijkω
k. We highlight certain coefficients, to be discussed in

chapter 5:
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p1
12 = p2

11 (1)

p1
13 = p3

11 (2)

p2
13 = p3

12 (3)

p2
12 = p2

21 (4)

p2
13 = p3

21 (5)

p3
12 = p3

21 (6)

p3
13 = −p1

11 − p2
21 (7)

p3
23 = − p1

12 − p2
22. (8)

These coefficients are solved for in terms of others, except for the 3rd and 8th equations.
But we use the 6th equation to fix up the 3rd, and the 1st equation to fix up the
8th, to solve for highlighted coefficients in terms of others. Hence the space of
integral elements at each point of the 11-dimensional manifold M ′ has dimension
given by counting the other coefficients: 7 dimensions of integral element at each
point. Involution, with the general solution depending on 2 functions of 2 variables.
2.9. qijk = cim`(gmk g`j − gmj g`k)
2.12. Choose the third fundamental form so that the Gauss curvature and the squared
mean curvature have linearly independent differentials. Replace the surface by an
open subset on which the Gauss curvature and the squared mean curvature are global
coordinates invariant under rigid motion of the surface. Pick the eigenvalues so that
the mean curvature is not zero; the surface is not symmetric under reflection in the
tangent plane. So rigid motions fix every point of the surface, and also fix a normal
direction, so are trivial.
3.5. If uµ, vµ are the vector fields dual to the real and imaginary parts of the ωµ, the
torsion tensor, or Nijenhuis tensor

T ..= (uµ + ivµ)τωµ

depends only on the almost complex structure, a section of Ω0,2
M ⊗ TM ⊗ C.

3.7. Consider left action of SU3 on itself: Lhz = hz. The identity function g(z) = z
behaves like (L∗hg)(z) = g(Lhz) = g(hz) = hz = hg(z), so L∗hg = hg. Thus for any
constant matrix h ∈ SU3,

L∗hω = L∗h(g−1dg),
= (L∗hg)−1dL∗hg,

= (hg)−1d(hg),
= g−1h−1h dg,

= g−1 dg,

= ω.
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3.8. Differentiating ω = g−1 dg, i.e. dg = gω,

0 = dg ∧ ω + g dω,

= gω ∧ ω + g dω,

dω = −ω ∧ ω.

3.11. [36] pp. 36–37
4.1. Take an integral manifold X coframed by ω1, ω2, α. We need to prove that every
point of X lies in an open subset of X which is also an open subset of a frame bundle
of an isometric immersion. Note that X ⊂M ..= ⌜S × ⌜E3 .

We use a slightly imprecise notation: the map taking(
x, e1, e2, x

′, e′1, e
′
2, e
′
3
)
7→ x

we will simply denote by x, and so on. At each point(
x, e1, e2, x

′, e′1, e
′
2, e
′
3
)
∈ X,

the vectors e1, e2 ∈ TxS are an orthonormal basis of TxS. Since ω1, ω2 are linearly
independent on X, there are vectors tangent to X on which ω1, ω2 take any given
values. But ω1 = e1 · dx and ω2 = e2 · dx measure dot products of dx with e1, e2. So
there are tangent vectors to X for which the map x : X → S has differential dx taking
these vectors to have any given values of dot products with e1, e2. Hence x : X → S
has rank 2, i.e. full rank, a submersion. We can replace X by an open subset of X,
and S by an open subset of S, so that this submersion is a fiber bundle map with
connected fibers. Moreover, ω1, ω2 vanish just on the directions where dx = 0, i.e.
the fibers.

On X, ω′1 = ω1, ω′2 = ω2 and ω′3 = 0. So dx′ = 0 just on the tangent vectors to
X on which 0 = ω′1 = ω′2, i.e. on which 0 = ω1 = ω2, i.e. on which dx = 0, i.e. on
the fibers of x. So x′ is constant on each fiber of x. So x′ is defined and smooth on
the base S of the fiber bundle map x : X → S, i.e. x′ factors through x. Write this
factorization as x′ = ϕ(x), ϕ : S → E3, a commutative diagram of maps:

X

S E3.

x x′
ϕ

Compute

x′∗ = ϕ∗x∗,

= ϕ∗
∑
i

(ei · x∗)ei,

=
∑
i

ϕ∗ei(ei · dx),

=
∑
i

ϕ∗eiωi.
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But

x′∗ = dx′,

=
∑
i

(e′i · dx′)e′i,

=
∑
i

e′iω
′
i,

=
∑
i

e′iωi.

So finally on X, ∑
i

e′iωi =
∑
i

ϕ∗eiωi.

By linear independence of ω1, ω2:

e′i = ϕ∗ei.

Each point x ∈ S lies in the image of some point(
x, e1, e2, x

′, e′1, e
′
2, e
′
3
)
∈ X

and
ϕ′(x) : e1, e2 7→ e′1, e

′
2,

so ϕ′(x) takes some orthonormal basis e1, e2 to an orthonormal basis e′1, e′2. Hence ϕ
is an isometric immersion. Moreover, X consists of isometrically matched orthonor-
mal bases, i.e. X ⊂ Xϕ, an open subset since both X and Xϕ are 3-dimensional
submanifolds of M .
5.3. By problem 5.2 on page 42, to prove involution, we only have to show that the
generic integral line lines in an integral plane. Recall from the solution of problem 1.14
on page 6, the span of a nonzero vector v is an integral line just when

v = ẋ∂x + ẏ∂y + (uxẋ+ uy ẏ)∂u + (fẋ+ gẏ)∂ux + (gẋ+ uyy ẏ)∂uy + u̇yy∂uyy

where ẋ, ẏ, u̇yy are arbitrary except for not being all zero.
Each integral plane coframed by dx, dy is the span of

X = ∂x + ux∂u + f∂ux + g∂uy + a∂uyy ,

Y = ∂y + uy∂u + g∂ux + uyy∂uy + b∂uyy ,

where
a = gy + guuy + guxg + guyuyy + guyyb

and b is arbitrary; write this as a = a0 + guyyb. The space of integral elements
at a point has positive dimension, so if the system is involutive, it has at least one
Cartan character positive, and therefore has an infinite dimensional family of solutions
through each point.

So then once v is given, we are given ẋ, ẏ, u̇yy, and we compute

v − ẋX − ẏY = (u̇yy − ẋa+ ẏb)∂uyy .

To be able to acheive an arbitrary value of u̇yy, we need the linear function

b 7→ ẋa+ ẏb
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to acheive arbitrary values, i.e.

ẋa0 + (ẋ+ guyy ẏ)b

to have a nonzero coefficient of b, i.e. ẋ+ guyy ẏ 6= 0. Since we only need this for the
generic integral line, we can arrange it by choice of ẋ, ẏ.
5.4. Take a ϑ-integral element

E0 = 〈e1, e2, . . . , ep〉 .

Move it:
Et =

〈
e1 + tw1 +O(t)2, . . . , ep + twp +O(t)2〉 .

Every motion through p-dimensional subspaces has this form locally. Expand:

ϑ|Et = t
∑
i

ϑ(e1, . . . , ei−1, wi, ei+1, . . . , ep) +O(t)2.

The differentials, i.e. linear terms, are sums of polar equations. Set all but one
wi to zero: every polar equation is a differential. In coordinates, E0 = (du = 0),
Et = (du = q(t) dx), let wi(t) ..= qai (t)∂ua .
5.5. If an integral is not ordinary, we can find integral elements nearby with characters
“borrowed” downward, so larger s0, or the same s0 but larger s1, or some such. As
p + s0 + · · · + sp = dimM , borrowing raises one character and lowers some later
character, decreasing the dimension

dimM + s1 + 2s2 + · · ·+ psp,

of the submanifold containing all nearby integral elements.
5.6. Generic linear subspaces are regular, so ordinary, so involutive. The polar
equations along a generic integral element are the same.
5.7. Clearly E⊥ is an ideal of differential forms, and homogeneous (i.e. the direct
sum of its intersections with forms each degree). But E⊥ might not be d-closed. Take
its d-closure E∨; it has the same integral manifolds as E⊥. Suppose that there is an
exterior differential system I with E among its integral elements:

I ⊂ E
⊥ ⊂ E

∨.

Every I-integral manifold has tangent spaces from E, so an E⊥-integral manifold, so
an E∨-integral manifold. So I,E⊥,E∨ share the same integral manifolds.

Suppose now that E is an open subset in the set of involutive maximal dimensional
I-integral elements. Every element of E arises as the tangent space of an I-integral
manifold, by the Cartan–Kähler theorem, so as the tangent space of a E∨-integral
manifold. So E lies among the E∨-integral elements, which lie among the I-integral
elements. The differential of any form vanishing on E lies in E∨, so also vanishes on
E. So E⊥ = E∨.

Consider an E∨-integral element E. Being an I-integral element, if E lies close
enough to a linear subspace E′ of some element of E, then E lies in a maximal
dimensional involutive I-integral element, so an element of E, so in a maximal dimen-
sional E∨-integral element. So E∨ is involutive near E. But E∨-integral elements near
elements of E are I-integral elements, so elements of E.
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5.8. Pick a tableau at m0 which is generic in the usual sense: having maximal s1
among all tableaux for the same system, and maximal s2 subject to that s1, and so
on. Let I′ ⊆ I be the exterior differential system generated by the θa and the rows
of the tableau. It is possible that various forms in I vanish at m0, and near m0 lie
outside I′. Note that the characters of I′ at any I-integral element are no larger than
those of I since I′ ⊆ I.

Suppose now that I is involutive. The characters of I are locally constant by
problem 5.6 on page 43. The characters of I′ are at least as large as those of the
tableau, which match those of I at m0. So I′ and I have the same characters, and
both are involutive on all of their integral elements, with the same dimensions of
spaces of integral elements. Hence they have the same integral elements where the
tableau maintains those same characters.

5.9. “Generic” is just a condition on linear independence of π 1-forms, so holds locally.
Torsion is absorbable at a point just when there is a torsion free integral element
coframed by ω1, . . . , ωp. Absorbing torsion is solving a system of linear equations of
constant rank; apply problem 1.15 on page 6

5.10. We get to pick ui(x1, . . . , xi, 0, . . . , 0) arbitrarily, so get to pick the values of
the semipositive grade derivatives

∂ui

∂x1 , . . . ,
∂ui

∂xi
,

at a single point, arbitrarily, a total of isi numbers. The resulting integral manifold,
the graph of u(x), has tangent space at that point given by those values, with the
values of all other first derivatives of u(x), the negative grade, at that point solved
for using our differential equations. So there are s1 + 2s2 + · · ·+ psp numbers we can
freely choose to construct each p-dimensional integral element.

6.2. Take local coordinates x1, x2, . . . , xp, y1, y2, . . . , yq, where E is the graph of
dy = 0. If ϑ = cIAdx

I ∧ dyA, we will see that

Lvϑ|E = ∂va

∂xj
cIadx

Ij + va
∂cI
∂ya

dxI .

Let (−1)I mean (−1)m if I consists of m indices. Write

v = vj
∂

∂xj
+ vb

∂

∂yb
.

Note that
v cIdx

I = (−1)JvicJiKdxJK .

Commuting with exterior derivative,

Lvdx
i = ∂vi

∂xj
dxj + ∂vi

∂yb
dyb,

Lvdy
a = ∂va

∂xj
dxj + ∂va

∂yb
dyb.
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By the Leibnitz rule,

Lvϑ = vi
∂cIA
∂xi

dxI ∧ dyA + va
∂cIA
∂ya

dxI ∧ dyA

+ cJiKAdx
J ∧
(
∂vi

∂xj
dxj + ∂vi

∂yb
dyb
)
∧ dxK ∧ dyA

+ cIBaCdx
I ∧ dyB ∧

(
∂va

∂xj
dxj + ∂va

∂yb
dyb
)
∧ dyC .

On E, dy = 0 so

Lvϑ|E = vi
∂cI
∂xi

dxI + va
∂cI
∂ya

dxI

+ cJiKdx
J ∧ ∂vi

∂xj
dxj ∧ dxK

+ cIadx
I ∧ ∂v

a

∂xj
dxj .

This is not quite the same as

v dϑ|E = vi
∂cI
∂xi

dxI + va
∂cI
∂ya

dxI

+ (−1)jIv` ∂cI`k
∂xj

dxjIK .

Write the tangent part of v as
v′ = vi

∂

∂xi
.

Let A be the linear map A : E → E given by

Aij = ∂vi

∂xj

and apply this by derivation to forms on E as

(Aξ)(v1, . . . , vk) = ξ(Av1, v2, . . . , vk)− ξ(v1, Av2, v3, . . . , nvk) + . . . .

Then
Lvϑ|E = v′ dϑ

∣∣
E

+ va
∂cI
∂ya

dxI + Aϑ|E + cIadx
I ∧ ∂v

a

∂xj
dxj .

Since 0 = ϑ|E = dϑ|E , we find

Lvϑ|E = va
∂cI
∂ya

dxI + cIadx
I ∧ ∂v

a

∂xj
dxj .

6.3. Take local coordinates x1, x2, . . . , xp, y1, y2, . . . , yq, where E is the graph of
dy = 0. Write ϑ = cIAdx

I ∧ dyA. Write X as the graph y = y(x), so

ϑ|X =
∑

cIA(x, y)dxI ∧ ∂y
a1

∂xj1
dxj1 ∧ · · · ∧ ∂y

a`

∂xj`
dxj` .

so
Lvϑ|E = va

∂cI
∂ya

dxI + cIadx
I ∧ ∂v

a

∂xj
dxj .
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depends only on knowledge of the point m where we compute coefficients of ϑ and of
E = TmX, so that we drop dy terms.
6.4. In coordinates, the linearization of an exterior differential system I about an
integral element E ⊂ TmM does not involve any dy ∧ dy terms but depends on the
terms with no dy and with one dy explicitly. But P =

〈
E⊥
〉

= 〈dya〉.
6.6.

Lvϑ|E = cIadx
I ∧ ∂v

a

∂xj
dxj

6.7.

σ(df) v = lim
λ→∞

e−iλfLeiλfvϑ

iλ
,

= lim
λ→∞

e−iλf
(
d
(
eiλfv ϑ

)
+ eiλfv dϑ

)
iλ

,

= lim
λ→∞

e−iλf
(
iλdf eiλf ∧ v ϑ+ eiλfd(v ϑ) + v dϑ

)
iλ

,

= lim
λ→∞

(iλdf ∧ v ϑ+ d(v ϑ) + v dϑ)
iλ

,

= df ∧ v ϑ

This holds for any df , so for any linear combinations of such, so for any 1-form ξ. In
our coordinates above, we compute the symbol of the associated system of partial
differential equations by replacing ∂vα

∂xi
by vαξi. We immediately see that it agrees

with this result: ξ ∧ v ϑ.
6.8. Recall the tableau:

d

(
θ4
θ5

)
= − Da Db 0

Db Dc 0

( )
s1 s2 s3

2 0 0

∧

(
ω1
ω2
α

)
mod θ1, . . . , θ6

(skipping zero rows) on the manifold M on which ac − b2 = K and not all of a, b, c
are zero. Since the matrix (

a b
b c

)
is symmetric and nonzero, and conjugated by rotation of frames, we arrange that
a 6= 0 at the point where we are working. We find

Dc = − c
a
Da+ 2b

a
Db.

To fit our notation better, write Da,Db as π1, π2 and α as ω3. So the tableau is

d

(
θ4

θ5

)
= −

π1 π2 0

π2 − c
a
π1 + 2 b

a
π2 0

( )
s1 s2 s3

2 0 0

∧

ω1

ω2

ω3

 mod θ1, . . . , θ6,
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skipping zero rows. Write a vector v ∈ TmM/E with components V a = θa(v), written
with a capital V to avoid confusion with components vα = πα(v). We compute the
symbol for each of the forms

θ1, . . . , θ6, dθ4, dθ5

and then stack these symbols on top of one another as one big matrix, the symbol of
the exterior differential system. For an arbitrary ξ = ξ1ω

1 + ξ2ω
2 + ξ3ω

3,

ξ ∧ v θa = V aξ1ω
1 + V aξ2ω

2 + V aξ3ω
3,

contributes rows for each of the six θa, one row for each ωi, so 6 · 3 = 18 rows:

ξ1 0 0 0 0 0 0 0
ξ2 0 0 0 0 0 0 0
ξ3 0 0 0 0 0 0 0
0 ξ1 0 0 0 0 0 0
0 ξ2 0 0 0 0 0 0
0 ξ3 0 0 0 0 0 0
0 0 ξ1 0 0 0 0 0
0 0 ξ2 0 0 0 0 0
0 0 ξ3 0 0 0 0 0
0 0 0 ξ1 0 0 0 0
0 0 0 ξ2 0 0 0 0
0 0 0 ξ3 0 0 0 0
0 0 0 0 ξ1 0 0 0
0 0 0 0 ξ2 0 0 0
0 0 0 0 ξ3 0 0 0
0 0 0 0 0 ξ1 0 0
0 0 0 0 0 ξ2 0 0
0 0 0 0 0 ξ3 0 0





V 1

V 2

V 3

V 4

V 5

V 6

v1

v2



These are the trivial and predictable rows, as we said above. (We also said that
they can be ignored when we compute the characteristic variety.) They are the only
rows containing any V a components. (So all V a components are irrelevant to the
characteristic variety, since these rows will just force all V a components to vanish,
as we will see.) The remaining rows come from working out the various ωi ∧ ωj
components of ξ ∧ v dθa|E , a = 4, 5, 6. For example,

ξ ∧ v dθ4 = (ξ1ω1 + ξ2ω
2 + ξ3ω

3) ∧ (v1ω1 + v2ω2),
= (ξ1v2 − ξ2v1)ω12 + ξ3v

1ω31 + ξ3v
2ω32.

We add a row representing ξ1v2 − ξ2v1, i.e.

(
0 0 0 0 0 0 −ξ2 ξ1

)


V 1

V 2

V 3

V 4

V 5

V 6

v1

v2
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We add two more rows representing ξ3v1, ξ3v2:(
0 0 0 0 0 0 ξ3 0
0 0 0 0 0 0 0 ξ3

)
Similarly, dθ5 yields rows0 0 0 0 0 0 − c

a
ξ1 2 b

a
ξ1 − ξ2

0 0 0 0 0 0 0 −ξ3
0 0 0 0 0 0 c

a
ξ3 −2 b

a
ξ3


Finally, the symbol is

σ(ξ) =



ξ1 0 0 0 0 0 0 0
ξ2 0 0 0 0 0 0 0
ξ3 0 0 0 0 0 0 0
0 ξ1 0 0 0 0 0 0
0 ξ2 0 0 0 0 0 0
0 ξ3 0 0 0 0 0 0
0 0 ξ1 0 0 0 0 0
0 0 ξ2 0 0 0 0 0
0 0 ξ3 0 0 0 0 0
0 0 0 ξ1 0 0 0 0
0 0 0 ξ2 0 0 0 0
0 0 0 ξ3 0 0 0 0
0 0 0 0 ξ1 0 0 0
0 0 0 0 ξ2 0 0 0
0 0 0 0 ξ3 0 0 0
0 0 0 0 0 ξ1 0 0
0 0 0 0 0 ξ2 0 0
0 0 0 0 0 ξ3 0 0
0 0 0 0 0 0 −ξ2 ξ1
0 0 0 0 0 0 ξ3 0
0 0 0 0 0 0 0 ξ3
0 0 0 0 0 0 − c

a
ξ1 2 b

a
ξ1 − ξ2

0 0 0 0 0 0 0 −ξ3
0 0 0 0 0 0 c

a
ξ3 −2 b

a
ξ3



.

6.10. We can make a submatrix of the symbol, cutting out various rows, which has
determinant ξ8

3 , so ξ3 = 0 on the characteristic variety. So plug in ξ3 = 0 to the
symbol matrix and start again. We can similarly pick out 8 rows whose determinant
is

ξa1 ξ
b
2 det

(
−ξ2 ξ1
p1ξ1 p2ξ1 − ξ2

)
for any a + b = 6: pick any a rows which have ξ1 as their only nonzero entry, all in
different columns, and similarly for ξ2. We must have ξ 6= 0, i.e. one of ξ1, ξ2, ξ3 is
not zero. We know ξ3 = 0, so one of ξ1, ξ2 is not zero. Therefore the vanishing of
these determinants is precisely the vanishing of

det
(
−ξ2 ξ1
− c
a
ξ1 2 b

a
ξ1 − ξ2

)
= 1
a

(cξ2
1 − 2bξ1ξ2 + aξ2

2).



174 Hints

We have assumed that a 6= 0. So the characteristic variety is the set of hyperplanes
[ξ] for

ξ = ξ1ω
1 + ξ2ω

2 + ξ3ω
3

for which ξ3 = 0 and 0 = cξ2
1−2bξ1ξ2 +aξ2

2 . The equation ξ3 = 0 cuts out a projective
line in the projective plane PE∗, while the quadratic equation cuts out zero, one, or
two points in that projective line, depending on the determinant of(

a b
b c

)
,

the proposed shape operator of the surface associated to an integral manifold.

6.11. Suppose E ⊂ E+ is a noncharacteristic hyperplane. By uniqueness of extension
E+, the polar equations of E cut out precisely E+ inside TmM , i.e. the dimension of
polar equations of E is the dimension of TmM/E+. The polar equations of any regular
hyperplane in E+ are satisfied on E+, so have same rank. So the regular integral
elements are also noncharacteristic. If p ..= dimE+, the rank of polar equations of E
is s0 + s1 + · · · + sp−1, while the dimension of TmM/E+ is s0 + · · · + sp. So sp = 0
on E+ just when every regular hyperplane in E+ is noncharacteristic.

6.12. Any hyperplane E− ⊂ E is I-characteristic just when it lies in some other
I-integral element E′ of same dimension as E. But then E′ is also a J -integral
element, so E− is J -characteristic: ΞIE ⊂ ΞJE .

6.13. At each point, there is a unique maximal integral element, so every hyperplane
in it lies in that unique maximal integral element: ΞE is empty.

6.15. The choices of p-dimensional integral element arise from the semipositive grade
coefficients: k coefficients of each polar in grade k, so ksk in that grade in all. So if
sp = 0 then there is a unique p-dimensional integral element containing E. If E+ is
involutive, then the semipositive grade coefficients pαi are arbitrary. In an adapted
tableau, E is determined by pαi for i < p, which are all of the coefficients just when
sp = 0.

6.16. In terms of the tableau we gave previously in solving problem 7.1 on page 56,
the complex points in the projective plane satisfying the equations of the minors are

[0, 1, 0], [i, 1, 0], [−i, 1, 0], [i, 0, 1], [−i, 0, 1], [1, 1,
√

2i], [1, 1,−
√

2i].

The real ones for the characteristic variety as defined above, i.e. just [0, 1, 0] corre-
sponding to the hyperplane 0 = dx2.

6.17. For the harmonic function exterior differential system I,

I2
(x,y,ux,uy) = 〈Θ, dϑ, ϑ ∧ (dx, dy, dux, duy)〉

has dimension 6. The characters are s0, s1, s2 = 1, 2, 0, summing to 3, as we see from
the tableau

duy −dux
dux duy

( )
∧

(
dx

dy

)
So the symbol is not square: s0 + s1 + s2 = 3 < 6 = dim I2

(x,y,ux,uy).
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Here is a way to “fix” this problem. Let I′ be the ideal generated by the 2-forms
ϑ ∧ dx,Θ, dϑ. The tableau of I′ is

ϑ 0
duy −dux
dux duy


 ∧

(
dx

dy

)

with characters s′0, s′1, s′2 = 0, 3, 0. But now

I′2(x,y,ux,uy) = 〈Θ, dϑ, ϑ ∧ dx〉

has dimension 3. Take an I′-integral surface S coframed by dx, dy and containing
an I-integral curve C on which dx 6= 0, say with y = y(x). On S, ϑ ∧ dx = 0 so
ϑ = f(x, y) dx locally. On C, 0 = ϑ = f(x, y(x)) dx. So f(x, y(x)) = 0. On S,
0 = dϑ = df ∧ dx, so f = f(x) and f(x, y) = f(x) = f(x, y(x)) = 0, hence ϑ = 0 on
S. We conclude that any I-integral curve C on which dx 6= 0 lies in a locally unique
integral surface S. The problem with directly applying the Cauchy–Kovalevskaya
theorem is that I-integral curves are not arbitrary curves.
7.1. The exterior differential system lies on an 11-dimensional manifoldM with tableau
modulo θ1, θ2, θ3

d

θ1

θ2

θ3

 = −


π1

1 π2
1 π3

1

π2
1 π2

2 π3
2

π3
1 π3

2 −π1
1 − π2

2

 ∧
ω1

ω2

ω3

 .

Denote our manifold as M11 to indicate that it is 11-dimensional. Take the flag
M8

0 ⊂M9
1 ⊂M10

2 ⊂M11 given by

M8
0

..= (0 = x1 = x2 = x3),
M9

1
..= (0 = x2 = x3),

M10
2

..= (0 = x3).

We have ωi ..= dxi, θi = dui − uijdxj , and πij = duij modulo θa, ωi.
Pick a submanifold R8

2 ⊂M10
2 of codimension s2 = 2 given by equations

u2
2 = u2

2(x1, x2),
u3

2 = u3
2(x1, x2),

a submanifold R4
1 ⊂ R8

2 ∩M9
1 of codimension s1 = 3 given by equations

u1
1 = u1

1(x1),
u2

1 = u2
1(x1),

u3
1 = u3

1(x1),

and a point R0
0 ⊂ R4

1 ∩M8
0 of codimension s0 = 3 given by equations

u1 = c1,

u2 = c2,

u3 = c3,
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for functions uij and constants c1, c2, c3. Since there are no free derivatives to restrain
in the final column of the tableau, there is no further restraining manifold.

So R0
0 is a point. On R4

1, the equations 0 = θ1 = θ2 = θ3 become ordinary
differential equations for functions u1, u2, u3 of x1, which have a unique solution
through the point R0

0. Check that on R4
1, all of the tableau vanishes, so we don’t have

to solve any other equations than 0 = θ1 = θ2 = θ3 to produce an integral curve.
One R8

2, the tableau expands out to give derivatives in x2:

∂u1
1

∂x2 = ∂u2
1

∂x1 + u3
1 − f3

1 ,

∂u2
1

∂x2 = ∂u3
2

∂x1 ,

∂u3
1

∂x2 = ∂u3
2

∂x1 .

The last two have right hand sides expressed in terms of the restraining manifold data:

u2
1(x1, x2) = u2

1(x1) +
∫

∂u3
2

∂x1 dx
2,

u3
1(x1, x2) = u3

1(x1) +
∫

∂u3
2

∂x1 dx
2.

With these solved for, the first equation then solves:

u1
1(x1, x2) =

∫ (
∂u2

1
∂x1 + u3

1 − f3
1

)
dx2.

It is not clear that the graph of these functions is an integral surface.
Finally, we expand out the tableau to find equations for derivatives in x3:

∂u1
1

∂x3 = ∂u3
1

∂x1 ,

∂u2
1

∂x3 = ∂u3
2

∂x1 ,

∂u2
2

∂x3 = ∂u3
2

∂x2 + u1
2 − f1

2 ,

∂u2
1

∂x3 = −∂u
1
1

∂x1 −
∂u2

2
∂x1 −

∂f ii
∂x1 ,

∂u3
2

∂x3 = −∂u
1
1

∂x2 −
∂u2

2
∂x2 + ∂f ii

∂x2 .

Any 3-dimensional integral manifold will arise by solving this determined system, with
initial data from the integral surface. The proof of the Cartan–Kähler theorem shows
that this procedure always constructs a 3-dimensional integral manifold, which is not
obvious.
7.2. Two proofs:

a. Writing out I in local coordinates as differential equations:

∂ui

∂x>i
= some function

(
x, u,

∂uj

∂x≤j

)
,
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as on page 45, I′ yields only the subset of those differential equations which
have the form

∂ui

∂xp
= some function

(
x, u,

∂uj

∂x≤j

)
.

Apply the Cauchy–Kovalevskaya theorem to these equations.

b. The I′-polar equations on Ep−1 are precisely those of I. The I′-integral el-
ements containing Ep−1 are therefore those of I. So Ep−1 lies in a unique
integral element of I′, which is Ep. The characters of I′ are

s′0 s′1 . . . s′p−2 s′p−1 s′p
0 0 . . . 0 s0 + · · ·+ sp−1 0

Apply theorem 6.2 on page 52.

7.4. For k ≤ p, if Ik = 0 then Ik−1 ∧Ω1 ⊆ Ik, so 0 = Ik−1 ∧Ω1 and so 0 = Ik−1.
7.5. If ω is identically zero, then Ip−1 ∧Ω1 = 0 so Ip−1 = 0. Assume that ω is not
identically zero. Write X locally as X = (0 = f) for some function f with df 6= 0. If
ω = 0 at every point of X, replace ω by ω/f , and repeat until ω 6= 0 at some point of
X. Replace X+ by the open subset of X+ containing a point of X at which ω 6= 0.
7.6. Since ei form a basis, [ei, ej ] = ckijek for some functions ckij . Write e, eı̂, eı̂̂ to
denote

e1, . . . , ep, e1, . . . , êi, . . . , ep, e1, . . . , êi, . . . , êj , . . . , ep.

By lemma 7.5 on page 57,

dφ(e) = (−1)i+1ei (φ(eı̂)) +
∑
i<j

φ([ei, ej ], eı̂̂).

Plug in dφ = hφ ∧ ωp and φ(eı̂) = (−1)p−iφ ∧ ωi(e) and similarly that

φ(ek, eı̂̂)

= (−1)p+i+j
(
δj=kφ ∧ ωi − δi=kφ ∧ ωj

)
(e)

to get
epf = −

∑
i<p

ei(hif) +Hf,

where
H ..= (−1)p+1h+

∑
i<j

(cjijh
i − ciijhj).

8.1. Pick a noncompact manifold M of positive dimension, and a discrete infinite
set D ⊂ M . Let J 0 be the set of functions f : M → R so that f vanishes at all but
finitely many points of D. Let J k = ΩkM for k ≥ 1.
8.2. On M ..= R, let I0 be the analytic functions vanishing at all but finitely many
integers, and I1 ..= Ω1

M . Recall the infinite product expansion

sinπx
πx

=
∞∏
k=1

(
1− x2

k2

)
,
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convergent in the complex plane [1] p. 197, [37] p. 239 12·14. So

fn(x) ..=
∞∏

k=n+1

(
1− x2

k2

)
→ 1

as analytic functions, but fn(x) = 0 for x integer, except at x = −n,−n+1, . . . ,−1, 0, 1, . . . , n−
1, n.
8.3. Where v 6= 0, straighten out, i.e. take coordinates in which v = ∂x1 . Where
v = 0, add a small multiple of a nonzero vector field and take a limit. For a more
detailed proof: recall that for any function f ,

∂

∂t
etv∗f = etv∗Lvf.

Apply induction, to get
∂k

∂tk
etv∗f = etv∗Lkvf.

Taylor expand in t in any coordinates, so the result holds for any function f . Taking
exterior derivative, the result holds for df . If the result holds for two differential forms,
then it holds for their wedge product: expand. Any differential forms are locally
obtained by repeated wedging and exterior differentiating on functions.
8.4. If v is a symmetry then

Lvϑ = d

dt

∣∣∣
t=0

etv∗ϑ

so LvI ⊆ I.
If LvI ⊆ I, then in problem 8.3 on page 62, each term lies in the ideal. By

closure under convergence (theorem 8.1 on page 62), v is a symmetry.
8.5. For simplicity, let us just consider the system I on the planeM = R2

x,y generated
by dy. A vector field v = a(x, y)∂x + b(x, y)∂y is a symmetry vector field just when
Lvdy = f dy for some function f .

Lvdy = dLvy,

= db,

= bx dx+ by dy,

we see that b(x, y) depends only on y, i.e. v = a(x, y)∂x + b(y)∂y. Geometrically,
v flows points with equal y-value to points with equal y-value, i.e. its y-component
depends only on y.
8.7. Take any nonzero compactly supported function f on any manifold M . (We
could even take M = R.) Take any nonzero complete vector field v, with the support
of f contained in the interior of the support of v, so that the flow of v takes some
point in the support of f outside of the support of f . (We could even take v = ∂x.)
Generate I with f,Lvf, . . .. Each of these functions is supported in the support of f ,
so under the flow of v is taken out of I.
8.8. On M = R, for each open set U ⊆ M , let IU be generated by all analytic
functions vanishing at the points x = 1, 1/2, 1/3, . . . which lie in U . So if 0 ∈ U , then
IU = 0. A vector field v vanishing at those points, and at the origin, and having
compact support, is a symmetry of the smooth exterior differential system. Any
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analytic symmetry of I has to vanish at all of those points, so vanishes to all orders
at the origin, so vanishes.
8.10. Pick local generators ϑi. Write Lvϑi in those generators: Lvϑi = ajiϑi. Pick
an embedded smooth hypersurface H on which v 6= 0. Make a function g = I on H
and extend g off of H as a local solution of Lvg = −ga. By straightening out, such a
function g exists, at least near each point of H. Check that Lv(gϑ) = 0, so gϑ is a
v-invariant collection of local generators of I.

For a symmetry v,
Lvϑ = d

dt

∣∣∣
t=0

e−tv∗ϑ.

8.11. Take any manifold M of positive dimension and a foliation defined in some
open set. Take an open set W so that the foliation is defined on the closure of W ,
and a point m0 on the boundary of W near which the boundary of W is an analytic
hypersurface of M . For any open set U ⊆M , define IU to be

a. the forms pulling back to zero on each leaf of the foliation, if U intersects W ,
and

b. IU ..= Ω∗U otherwise.

Every point of W lies in a unique integral manifold: its leaf.
Every open set U ⊆ M containing m0 intersects W , so IU consists of the forms

vanishing on the leaves. The foliation extends beyond W . If the leaf through m0
is tangent to the boundary of W near m0, then it is an integral manifold near m0.
Otherwise there is no integral manifold through m0, although there is an integral
manifold with boundary. At every point outside the closure ofW , there are no integral
manifolds of dimension p. So the union of the integral manifolds might be neither
open nor closed.

The space of integral elements is a manifold with boundary nearm0, so the system
is not involutive, as the definition of involution requires the integral elements to form
a manifold without boundary.
8.14. Let M ..= R3

x,u,v, W ⊂ M an open subset not equal to M . For any open set
U ⊆M , define IU to be

a. generated by du ∧ dx, dv ∧ dx if U intersects W ,

b. generated by du ∧ dx, dv ∧ dx, du ∧ dv otherwise.

For any point on the boundary of W , and open set U containing that point, we don’t
have du ∧ dv in IU , so for an open set U ′ ⊂ U not intersecting W , du ∧ dv ∈ IU′ is
not generated by any generators of IU . The 1-dimensional integral elements du =
u′ dx,dv = v′ dx are involutive.
8.17. x dx
8.18. The problem is local: we can assume that I is globally generated by pointwise
linearly independent differential forms ϑi. The flow of v acts on the differential form
bundle, as linear transformations of its fibers. We need to prove that the flow of v
preserves the vector subbundles. Take a pointwise basis ϑi, ϑI of the differential forms.
Write Lvϑ = aϑ, for a block matrix

a =
(
aij 0
aiJ aIJ

)
.
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Then
etv∗ϑ = gϑ,

for a unique smooth function g(x, t) for (x, t in some open subset of M × R:

∂

∂t
ϑ = ∂

∂t
etv∗ϑ,

= Lve
tv∗ϑ,

= etv∗Lvϑ,

= etv∗(aϑ),
= (etv∗a)gϑ,

so that
g−1 ∂g

∂t
= etv∗a,

has derivative lying in a block matrix of the prescribed form. Since g(0) = I is also
such a block matrix, g(t) is such a block matrix for all t.
8.19. du ∧ dx, dv ∧ dx, u du ∧ dv on R4

x,y,u,v

8.21. Apply the Cartan formula Lvϑ = d(v ϑ) + v dϑ to a Cauchy characteristic
vector field v, so see that v is a symmetry vector field. If v and w are Cauchy
characteristic vector fields, then

[v, w] ϑ = LvLwϑ− LwLvϑ,

= Lv(d(w ϑ) + w dϑ)− . . .

we expand out L = d + d.
8.22. Fix a point m. Take a set of forms ϑa ∈ IU on some open set U containing m,
giving a basis of Im. In particular, the forms are linearly independent at m, so span
a vector subbundle of the differential form bundle near m. Pick additional forms ϑµ
so that ϑa, ϑµ is a basis of the exterior algebra at m. These forms remain linearly
independent nearby, so form a basis of the differential forms near m. Every tangent
vector v has v ϑa = λab (v)ϑb + λaµ(v)ϑµ, for unique λab , λaµ ∈ T ∗mM , hence linearly
independent. The Cauchy characteristic subspace at m is exactly the kernel of the
various λaµ. For nearby points, the same linearly independent forms have a kernel of
the same rank, containing the Cauchy characteristics. By constancy of dimension of
Cauchy characteristics, this kernel is still the space of Cauchy characteristics.
8.23. Suppose constant rank. As in problem 8.22 on page 64, the equation of Cauchy
characteristic vectors becomes a kernel of a constant rank vector bundle map, and
so the local sections of that vector bundle are the local sections in the kernel of that
map. The vector bundle map is the map quotienting v ϑa by ϑb, so the kernel lies
inside the set of Cauchy characteristic vector fields. But each Cauchy characteristic
vector field lies in the kernel.
8.24. dx ∧ du, dx ∧ dv, y dy ∧ du ∧ dv has involutive integral plane 〈∂x, ∂y〉.
8.29. Note that π∗v = 0 just when v π∗ϑ = 0 for any ϑ ∈ Ω∗

M̄
, so v is a Cauchy

characteristic of I.
8.30. Consider a push forward. Take a generic tableau for the push forward, and
pull it back. Add forms to it as needed, and make their rows generic as well. So we
treat it, locally, as a part of the tableau for the original system. Take an integral
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manifold for the push forward. Restrict the original system to the preimage of the
integral manifold. The rows in the tableau that were pulled back are now zero. But
the polars of the other rows are still linearly independent.
8.31. By problem 1.15 on page 6, the space of Cauchy characteristics is a vector
subbundle of the tangent bundle. Above we saw that Cauchy characteristics are
bracket closed. Problem 1.18 on page 7 shows that the retracting space is therefore
Frobenius, so π exists locally.
8.33. Invariance of our generators under the flows of the Cauchy characteristic vec-
tor fields extends their definition to the largest set invariant under those flows and
containing their domain. Each diffeomorphism φ preserving I and π interchanging
components allows us to extend that domain further, so that it becomes the preimage
of an open set in M̄ .
8.35. Let I ..= π∗Ī and J̄ ..= π∗I. Easily Ī ⊆ J̄ . Take some ϑ̄ ∈ J̄ , a differential
form on M̄ . On M , ϑ̄ = φi ∧ ϑ̄i for some forms φi and some forms ϑ̄i from Ī.

Suppose that π is a surjective submersion. Take coordinates xi on some open
subset of M̄ . Pullback and extend to coordinates xi, ya on some open subset of M .
So

ϑ̄ = fI(x)dxI = φi ∧ ϑ̄i = gJA(x, y)dxJ ∧ dyA ∧ f iI(x)dxI .
Average over y: all coefficients are functions of x only. Drop any terms with dy in
them, as they must cancel out.
8.38. For example, on M = R4

x,y,z,w, the exterior differential system I generated
by dy − z2 dx is generated by pullbacks of forms in the exterior differential system Ī
generated by dy−z2 dx on M̄ = R3

x,y,z. But I2 consists of the 2-forms z f(x, y, z) dz∧
dx, all of which vanish at z = 0.
8.40. The characteristic variety for the isometric immersion problem emerges from
plugging Da = vaξ, Db = vbξ and Dc = vcξ into the tableau, but with aDc+ cDa =
2bDb, so a vc + c va = 2b vb, giving

0 =
(
va vb

vb vc

)(
ξ ∧ ω1
ξ ∧ ω2

)
,

=
(
va(−ξ2) + vbξ1

vb(−ξ2) + vcξ1

)
ω12,

=
(

−vaξ2 + vbξ1

−vbξ2 + 1
a

(2bvb − cva)ξ1

)
ω12,

=
(
−ξ2 ξ1
− c
a
ξ1 −ξ2 + 2b

a
ξ1

)(
va

vb

)
ω12.

After we drop the Cauchy characteristics, the characteristic variety is the determinant
of this matrix, i.e.

0 = −cξ2
1 + 2bξ1ξ2 − aξ2

2 .

Recall that the characteristic variety consists of the lines

0 =
∑
i

ξiωi = 0,

satisfying these equations. A vector v = v1e1 + v2e2 lies in such a characteristic line
just when 0 = ξ1v1 + ξ2v2, so then, up to scaling

(ξ1, ξ2) = (v2,−v1) .
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Plug this in to see that the characteristics are the curves whose velocities satisfy

0 = av2
1 + 2bv1v2 + cv2

2 .

9.3.

ω′1 = e′1 · dx′,

= e−u
(
φ′(x)e1

)
· dφ(x),

= e−u
(
φ′(x)e1

)
· φ′(x) dx,

= e−ue1 · dx,

= e−uω1,

and similarly ω′2 = e−uω2. So ω′ = e−uω. Differentiate to get

dω′ = iα′ ∧ ω′ = d(e−uω),

which we expand out to find

(du+ i(α′ − α) ∧ ω′ = 0.

By the complex linear form of Cartan’s lemma (which the reader can state and prove),
we get the result.
10.1. If the eigenvalues of the shape operator at a point are λ1, λ2, then

H = 1
2 (λ1 + λ2) ,K = λ1λ2,

so
0 ≤ (λ1 − λ2)2 = 4

(
H2 −K

)
.

10.3.

∂f

∂a22
= fH

∂H

∂a22
+ fK

∂K

∂a22
,

= fH
2 + fKa11,

= fH
2 − e3 ·

de1

dt
fK ,

6= 0.

A.2. [31], p. 68.
A.3. [31], p. 69.
B.1.

P (x, y, ∂x, ∂y) =
(
∂x −∂y
∂y ∂x

)
so turning derivatives ∂x, ∂y into Greek variables ξ, η:

P (x, y, ξ, η) =
(
ξ −η
η ξ

)
.
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B.3. If we write each antisymmetric matrix( 0 z −y
−z 0 x
y −x 0

)

as [x, y, z], Maxwell’s equations become

∂tE = [∂x, ∂y, ∂z]H,
∂tH = −[∂x, ∂y, ∂z]E.

As an operator

P

[
E
H

]
=
(

∂tI −[∂x, ∂y, ∂z]
[∂x, ∂y, ∂z] ∂tI

)
so if we write 1-forms as ξ dx+ η dy + ζ dz + τ dt, the symbol matrix is

σP =
(

τI −[ξ, η, ζ]
[ξ, η, ζ] τI

)
a square matrix with determinant(

τ2 − ξ2 − η2 − ζ2)2 τ2.

The characteristic variety consists of the hyperplanes tangent to the light cone and
the hyperplane τ = 0 tangent to space at constant time.
D.3. Since e is orthogonal, its transpose is e> = e−1, i.e. e>e = I, i.e. ei · ej = 1 if
i = j, 0 otherwise. Differentiate: ė>e+ e>ė = 0, i.e. e>ė = −ė>e = −(e>ė)>, i.e. e>ė
is antisymmetric, with entries ei · ėj . Since ė1 = ke2,

e>ė =

(0 ? ?
k ? ?
0 ? ?

)
.

By antisymmetry,

e>ė =

(0 −k 0
k 0 −t
0 t 0

)
for some t.
D.5. For any constants α, β, γ, let(

x1
x2
x3

)
..=

(
α cosβs
α sin βs
γs

)
.

so (
ẋ1
ẋ2
ẋ3

)
=

(−αβ sin βs
αβ cosβs

γ

)
,

|ẋ|2 = α2β2 + γ2.
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So we need this to equal 1. Clearly α = 0 or β = 0 is a line, and γ = 0 is a circle. We
ignore those cases and so the equation α2β2 + γ2 = 1 can be solved for any of these
three constants in terms of the other two. We can reflect in the x1x2 plane to arrange
that α, β > 0 and in the x3 axis to arrange that γ > 0. We get

e1 =

(−αβ sin βs
αβ cosβs

γ

)
so

ė1 = ke2 =

−αβ2 cosβs
−αβ2 sin βs

0

 ,

so
k = αβ2

and

e2 = −

(cosβs
sin βs

0

)
.

Differentiate

ė2 =

(
β sin βs
−β cosβs

0

)
so

te3 = ė2 + ke1 = te3 =

 βγ2 sin βs
−βγ2 cosβs

αβ2γ

 .

Finally,
t = ±βγ,

and

e3 = ±

(
γ sin βs
−γ cosβs

αβ

)
.

So if we set

β ..=
√
k2 + t2,

α ..= k

β2 ,

γ ..= ± t
β
,

we get a helix with prescribed constant values of k, t.
D.6. If e′2 = e2, then e1, e3 and e′1, e′3 are orthonormal bases of the same plane e⊥2 .
Choose the sign of e3 to get

e′1 + ie′3 = eiθ(e1 + ie3)

for some angle θ. Differentiate to get

de′1 + i de′3 = θ̇eiθ(e1 + ie3) + eiθ(ė1 + iė3).
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Expand to get
(k′ − it′)e2 = θ̇eiθ(e1 + ie3) + eiθ(k − it)e2

Differentiate e2 = e′2 to get −k′e′1 + t′e′3 = −ke1 + te3. Hence

k′ + it′ = e−iθ(k + it).

So θ̇ = 0, a constant rotation.
On the other hand, we can now pick any constant θ, and define:

e′1 + ie′3 ..= eiθ(e1 + ie3),
e′2 ..= e2,

k′ + it′ ..= e−iθ(k + it),

x′ =
∫
e′1 ds

and check that the Serret–Frenet equations are satisfied, so these yield the Serret–
Frenet frame of a curve.
D.8. The proof requires some unwinding of notation: the expression ωi = ei · dx
means that ωi =

∑
j
ejidxj , which allows us to unwind the following formal steps:

dωi = d (ei · dx) ,
= dei ∧ dx,

=
∑
j

(ej · dei) ∧ (ej · dx) ,

=
∑
j

γji ∧ ωj .

Similarly, the expression γij = ei · dej means that γij =
∑

k
ekidekj , so:

dγij = d (ei · dej) ,
= dei ∧ dej ,

=
∑
k

(ek · dei) ∧ (ek · dej) ,

=
∑
k

γki ∧ γkj .

D.9. Here are two proofs:

a. If we think of x and e as functions on ⌜E3 , then r∗gx = x, r∗ge = eg. Hence
r∗gdx = dx and r∗gde = (de)g. So r∗gω = r∗g(e> dx) = (eg)>dx = g>e>dx = g>ω
and r∗gγ = r∗g(e>de) = (eg)>d(eg) = g>e>de g = g>γg.

b. The action is rg(x, e) = (x, eg), where (eg)i =
∑

j
gjiej . Hence

r′g(x, e)(ẋ, ė) = (ẋ,
∑
j

gjiėj).
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(r∗gω)(x,e)(ẋ, ė) = ωrg(x,e)r
′
g(x, e)(ẋ, ė),

= ω(x,eg)(ẋ,
∑
j

gjiėj),

= (eg) · ẋ,

=
∑
j

gjiej · ẋ,

=
∑
j

gjiω(x,e)(ẋ, ė).

D.13. For any tangent vectors u, v ∈ TxS,

II(u, v) = II(v, u) =
∑
ij

aijuivje3,

We can write II as II(u, v) =
∑

aijωi(u)ωj(v)e3, i.e. II = ω>aωe3, so

r∗gII = r∗gω
>aωe3 = (h>ω)>(nh>ah)(h>ω)(ne3) = ω>aωe3 = II,

i.e. r∗gII = II so II is invariant.
D.16. Take any point p0 ∈ E3. At a point x0 where the surface acheives maximal
distance from some point p0 ∈ E3, differentiate distance to see that Tx0S is perpen-
dicular to the ray from p0 to x0. Translate x0 to the origin, and rescale and rotate to
get p0 a unit vector above the origin. Apply our local picture of surfaces to see that S
being inside the unit sphere around p0 forces S to be locally the graph of a function
with critical zero at the origin, and eigenvalues of the second derivative both at least
1.
D.17. Let

fi ..= ∂f

∂xi
, fij ..= ∂2f

∂xix2
j

.

Note that
e3 =

fj∂xj√∑
f2
k

.

So

de3 = d

(
fj√∑
f2
k

)
∂xj ,

= −fj
1
2

(∑
f2
k

)−3/2
2fkfk`dx`∂xj + fjkdxk√∑

f2
k

∂xj ,

= −
(
e3

D2f

|df |

)
e3 + fjkdxk

|df | ∂xj .

Note that ei · e3 = 0 for i = 1, 2, so

γi3 = ei · de3 = ei D2f

|df | .
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E.1. Note that ρ rotates the point x′ of our plane around on a circle perpendicular
to e1, e3 and tangent to e2, with radius r, so that

dρ

dθ
x′ = re2.

Therefore

ω1 = e1 · dx,

= e1 · d
(
ρx′
)
,

= e1 · ρ dx′ + e1 ·
dρ

dθ
x′ dθ,

= e1 · ρ e′1ds+ e1 · re2 dθ,

= e1 · e1ds

= ds.

Similarly, ω3 = 0 and

ω2 = e2 · dx,

= e2 · d
(
ρx′
)
,

= e2 · ρ dx′ + e2 ·
dρ

dθ
x′ dθ,

= e2 · ρ e′1 + e2 · re2 dθ,

= r dθ.

Note that

de′1 = ϕ̇ e′3ds,

de′2 = 0,
de′3 = −ϕ̇ e′1ds,

and

dρ = ρ

(0 −1 0
1 0 0
0 0 0

)
dθ.

Compute

de1 = d(ρe′1),
= dρ e′1 + ρ de′1,

= ρ

(0 −1 0
1 0 0
0 0 0

)
e′1dθ + ρϕ̇e′3ds,

= ρ

(0 −1 0
1 0 0
0 0 0

)(cosϕ
0

sinϕ

)
dθ + ϕ̇e3ds,

= ρ

( 0
cosϕ

0

)
dθ + ϕ̇e3ds,

= cosϕe2dθ + ϕ̇e3ds.
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and similarly

de2 = d(ρe′2),
= dρ e′2,

= ρ

(0 −1 0
1 0 0
0 0 0

)
e′2dθ

= −ρ

(1
0
0

)
dθ

= −

(cos θ
sin θ

0

)
dθ.

Finally,

de3 = d(ρe′3),
= dρ e′3 + ρ de′3,

= ρ

(0 −1 0
1 0 0
0 0 0

)
e′3dθ − ρϕ̇e′1ds,

= ρ

(0 −1 0
1 0 0
0 0 0

)(− sinϕ
0

cosϕ

)
dθ − ϕ̇e1ds,

= ρ

( 0
− sinϕ

0

)
dθ − ϕ̇e1ds,

= − sinϕe2dθ − ϕ̇e1ds.

Therefore

γ12 = −γ21,

= −e2 · de1,

= −e2 · (cosϕe2dθ + ϕ̇e3ds),
= − cosϕdθ.

γ13 = e1 · de3,

= −ϕ̇ ds,

γ23 = e2 · de3,

= − sinϕdθ.
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E.2. If sinϕ = 0 everywhere, the curve is a horizontal line and the surface of revolution
an annulus. Suppose that sinϕ is not everywhere zero; pick an interval on which
sinϕ 6= 0, and let ε be the sign of sinϕ. Differentiate to find that the function

β ..= εr
√

1− ṙ2 +H0r
2

is constant along solutions, say equal to β0. Solve for ṙ:

ṙ2 = 1− β0 −H0r
2

r2 .

Substitute u = r2:
u̇ = 2

√
H0u2 + u− β0.

Integrate: ∫
du

2
√
H0u2 + u− β0

= s.

This integral can be solved in elementary functions giving s = s(r); for example, if
H0 > 0,

s =
(4β0H0 + 1) log

(
2
√
H0
√
H0u2 + u− β0 + 2H0u+ 1

)
16H3/2

0

,

=
(4β0H0 + 1) log

(
2
√
H0
√
H0r4 + r2 − β0 + 2H0r

2 + 1
)

16H3/2
0

,

The surfaces of revolution of constant positive mean curvature are obtained by solving
implicitly for r = r(s).
E.6. Taking real and imaginary parts q = q1 + iq2:(

a11 a12
a12 a22

)
=
(
H + q1 −q2
−q2 H − q1

)
.

So H = (a11 + a22)/2 is the mean curvature, and

q = a11 − a22 − 2i a12

2 .

Note that |q|2 = qq̄ = H2 −K, so q = 0 precisely at umbilic points.
E.9. In our complex notation, we are identifying the matrix(0 −1 0

1 0 0
0 0 0

)

with the complex number i. The fibers of ⌜S → S have the form

(x(t), e(t)) = (x0, e0e
it).

So if we write out γ = e>de in our complex notation, on each fiber,

γ = i dt,
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so α = γ12 = −dt. We are given that

f(x(t), e(t)) = f(x0, e0e
it) = eiktf(x0, e0),

so on the fiber
df

dt
= ikf,

i.e.
df + ikfα = 0.

So in complex notation, df + ikfα vanishes on vertical vectors for ⌜S → S, i.e. is a
multiple of ω, ω̄.
E.10.

Dq = a111 − 3a122 + i(a222 − 3a112),
D̄q = 2(H1 − iH2).

E.11.

0 =
(
d(γ13 − k1ω1)
d(γ23 − k2ω2)

)
=
(
−γ12 ∧ γ23 − dk1 ∧ ω1 + k1γ12 ∧ ω2
−γ21 ∧ γ13 − dk2 ∧ ω2 + k2γ21 ∧ ω1

)
=
(
−γ12 ∧ k2ω2 − dk1 ∧ ω1 + k1γ12 ∧ ω2
γ12 ∧ k1ω1 − dk2 ∧ ω2 − k2γ12 ∧ ω1

)
= −

(
dk1 ∧ ω1 + (k2 − k1)γ12 ∧ ω2
(k2 − k1)γ12 ∧ ω1 + dk2 ∧ ω2

)
E.12. Arrange e1, e2 to diagonalize the shape operator, so

γ13 = k1ω1,

γ23 = k2ω2,

with k1 constant. Differentiate to find that γ12 is a multiple of ω2. So then along the
flow of e1, γ12 = 0 and γ23 = 0 i.e. e2 is constant, so e1, e3 rotate in the plane, with
γ13 = k1, so at a constant rate, i.e. on a circle.
E.13. Suppose that θ(x, y) is a smooth solution of the sine–Gordon equation

θxy = sin θ,

on an open subset U ⊂ R2 of the x, y plane. Take the exterior differential system
generated by

ω1 − sin(θ/2)d(y − x),
ω2 − cos(θ/2)d(x+ y),
ω3,

2γ12 + θx dx− θy dy,
γ13 + cos(θ/2)d(y − x),
γ23 − sin(θ/2)d(x+ y)
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on U × ⌜E3 . We want to prove that this system is Frobenius. It is invariant under
rigid motion, so its integral surfaces are permuted by rigid motion. We want to prove
that its maximal integral surfaces are immersed into R3 by the obvious projection.
Hence it determines a unique surface in Euclidean 3-space, up to rigid motion, with
constant negative Gauss curvature equal to −1.

To prove that the system is Frobenius, take exterior derivatives, modulo the 1-
forms written above, and plug in that our given θ satisfies the sine–Gordon equation.
So the 8-dimensional manifold U×⌜E3 is foliated by integral surfaces of these 6 linearly
independent 1-forms, leaves of a foliation. Each integral surface has dx, dy linearly
independent, and so has ω1, ω2 linearly independent. So it projects by immersion to
3-dimensional Euclidean space. Proceed as in the solution of problem 4.1 on page 36.
Careful: on a multiply connected domain U ⊂ R2, it is possible that a solution θ(x, y)
of sine–Gordon might give rise to a surface which is a nontrivial covering of U .
F.5.

e3
d

ds

(
cos θe′2 + sin θe′3

)
= e3

(
−θ̇ sin θe′2 + cos θė′2 + θ̇ cos θe′3 + sin θė′3

)
,

= e3
(
−θ̇ sin θe′2 + cos θ(−ke1 + te′3) + θ̇ cos θe′3 − t sin θe′2

)
,

= e3
(
−θ̇ sin θe′2 + t cos θe′3 + θ̇ cos θe′3 − t sin θe′2

)
,

= θ̇ sin2 θt cos2 θθ̇ cos2 θ + t sin2 θ,

= θ̇ + t.

F.6. We get ė1 = 0 along such a curve, at that point, so 0 = γ21 = γ31, so a11 = 0.
Since this occurs in all directions, a = 0.
G.4. The fact that exp′x0 = I means that at the origin,

ω2
1 + ω2

2 = dx2 + dy2,

in rectangular coordinates, i.e. near the origin

ω2
1 + ω2

2 − dr2 − r2 dθ2

is smooth. Expand out, and plug in

r dθ = cos θ dy − sin θ dx

to see that

ω2
1 + ω2

2 = dr2 + r2 dθ2 +
((

h

r

)2
− 1
)
r2dθ2,

= dx2 + dy2 +
((

h

r

)2
− 1
)

(cos θ dy − sin θ dx) .

In particular,
h

r
→ 1

as r → 0. Hence h→ 0 as r → 0 and

∂rh→ lim
r→0

h

r
= 1.
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G.7. Gauss–Bonnet
G.8. If our geodesic is x(t), then f(x(t)) has local minima as its only critical points.
Moreover, they are isolated, as f(x(t) is critical only where x(t) reaches the minimum
of f or becomes tangent to a level set of f . If f(x(t) stays bounded as t→∞, then
x(t) stays in a compact sublevel set of f . But f(x(t)) increases for large enough t,
so x(t) approaches the boundary of that sublevel set, i.e. a level set. Geodesics near
each level set enter or leave soon, a contradiction.
G.10. The differential equation forces h = r−Kr3/3! +O(r)4, and inductively forces
∂kr ∂

`
θh = O(r)`. Note that

∂x = cos θ∂r −
sin θ
r

∂θ,

∂y = sin θ∂r + cos θ
r

∂θ.

So h2 − r2 is a smooth function of x, y at the origin.

dr2 + h2dθ2 = dr2 + r2dθ2 + (h2 − r2)dθ2,

= dr2 + r2dθ2 + (h2 − r2)(−x dy + y dx)
r2 ,

= dx2 + dy2 − K(x2 + y2) +O(r)3

3 (−x dy + y dx)

is smooth at the origin.
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Taylor series, 77

frame, 106
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convergence, 98

grade, 41
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elementary, 97

ring, 97
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Hilbert
basis theorem, 98
surface theorem, 122
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curve, 31
differential, 120

Hopf differential, 117
Hopf–Rinow theorem, 141
hyperplane, 1
hypersurface, 1

index
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injectivity radius, 137
integral

element, 2
ordinary, 39
regular, 39

flag, 3
line, 2
manifold, 1
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involutive, 3
isothermal coordinates, 71

Jacobi identity, 22

Kähler
Eric, 146

Korn–Lichtenstein theorem, 120
Kovalevskaya
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Krull intersection theorem, 98
Kuranishi

Masatsugu, 147

Lagrangian submanifold, 15
special, 4
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equation, 94
operator, 94

lemma
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Phat Nguyen, 97

length space, 141
Levi-Civita connection, 10

forms, 108
Lie
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third theorem, 21
Lie’s third theorem, 51
Liebmann, H., 121
line

integral, 2
linearization, 47, 91
local deformation, 45
locally generated, 7
locally unique, 54

majorize, 77
manifold

integral, 1
restraining, 53, 54

Maurer–Cartan form, 21, 30
mean curvature, 111

vector, 111
minimal geodesic, 141
minimal surface

equation, 94

Nijenhuis tensor, 162
Noetherian, 98
nondegenerate ribbon, 67

orange, 68
ordinary

integral element, 39
orthonormal frame, 101, 144

parallel surfaces, 118
peel, 68
Phat Nguyen lemma, 97
plane

integral, 2
polar, 14
polar equation, 2
predicted dimension, 3
principal

curvatures, 112
directions, 112

projective space, 89
prolongation, 35
pullback, 7

exterior differential system, 63
pushforward

exterior differential system, 63

radius
injectivity, 137

regular
integral element, 39

restraining manifold, 53, 54
retracting space, 63
ribbon, 67

nondegenerate, 67
Riemannian metric, 143
ruling line, 67

Sard’s theorem, 130
second fundamental form, 110
semipositive, 41
Serret–Frenet frame, 105
shape operator, 110
sign

of map between manifolds of equal
dimension, 129

sine–Gordon equation, 123
soldering forms, 9, 107
solution

formal, 79
special Lagrangian submanifold, 4
spray

geodesic, 133
structure equations, 109, 111

of Euclidean space, 108
submanifold, 1

special Lagrangian, 4
surface

complete, 122, 140
of revolution, 115
principal curvatures, 112
principal directions, 112
Weingarten, 73

symbol, 88
symmetry vector field, 59

tableau, 14
Taylor series

formal, 77
test

Cartan’s, 40
theorem

Bonnet, 117
Cartan–Kähler, 4, 54
Cauchy–Kovalevskaya, 80, 87, 92
Frobenius, 7, 9, 50, 63, 177
Gauss–Bonnet, 129, 145
Hilbert, 122
Hilbert basis, 98
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Hopf–Rinow, 141
Korn–Lichtenstein, 120
Krull intersection, 98
Lie’s third, 21, 51
Sard, 130

theorema egregium, 142, 145
third fundamental form, 112
torsion, 36

absorbing, 17
of a curve, 104
tensor, 162

triply orthogonal web, 9

umbilic, 9, 112

variety
characteristic, 49

vector bundle, 62, 155
vector field

complete, 60, 122

Weingarten surface, 73
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