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Wave mixing of hybrid Bogoliubov modes in a Bose-Einstein condensate
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Mode-mixing of coherent excitations of a trapped Bose-Einstein condensate is modeled using the Bogoliu-
bov approximation. Calculations are presented for second-harmonic generation between the two lowest-lying
even-paritym=0 modes in an oblate spheroidal trap. Hybridization of the modes of the bre&th@) @nd
surface (=4) states leads to the formation of a Bogoliubov dark state near phase-matching resonance so that
a single mode is coherently populated. Efficient harmonic generation requires a strong coupling rate, sharply-
defined and well-separated frequency spectrum, and good phase matching. We find that in all three respects the
guantal results are significantly different from hydrodynamic predictions. Typically the second-harmonic con-
version rate is half that given by an equivalent hydrodynamic estimate.
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[. INTRODUCTION tum numberg[6,7]. Let the azimuthal angular momentum
quantum number be denoted by. The two lowest-
Observations of coherence of matter wave fields such akequency excitations of symmetrm=0, are a quadrupole
four-wave mixing[1], squeezind2], and harmonic genera- mode, that will act as the pump with frequeney, and the
tion [3], in atomic Bose-Einstein condensates have recentlppreathing modew,. In the hydrodynamic limi{8] the fre-
been reported. The well-defined phase of the condensatpiencies are given by: wi2=1/2wr2(4+ 3\?
means that small amplitude quasiparticle excitations can be \/ox*—16\%+16). The nonlinear interactions caused by
produced that combine, through elastic cohefghiase pre- collisions create mode mixing. This coupling is most
serving atomic collisions, to produce frequency-mixed strongly pronounced when the scattering amplitude is large
modes. We analyze, within the Bogoliubov model],  and temporal phase-matching occurs, i.e., when second-

se_cond—harr_nonic generation of excitations in trapped Sphﬁ_harmonic resonance arises,=2w,. The corresponding
roidal atomic condensates: a process recently observed ifalues of A, the trap aspect ratio, are thus,

experiment[3]. Efficient harmonic generation is predicated _ [ & i
on three elements; a strong coupling rate, a sharply defined 1/6v77e5 145%02683 and 1'9528]'
The effect was first observed in an oblate trap by

and well separated frequency spectrum, and good phaﬁ

. ) : echenblaikner and co-worker§3] for the following
e e e e ot arameters 20000 atoms of R 708, i
w,=2mX 126 Hz. In measurements carried out within the

[5]. The principal reason is that hybridization of degenerate :
. . : range 1.6\ <2.8, strongly enhanced second-harmonic gen-
Bogoliubov states occurs leading to the creation of coherent: ration was found when = 1.93+0.02. The corresponding

matter dark states. Typically, nonhydrodynamic frequenc;fe . . .
shifts and the hybridization process lead to conversion efﬁ5>:>h§m|call_ potgtnht]al tr?f this Conhdensﬁli%’ (SjUCh t_hatt#
ciencies roughly half that given by an equivalent hydrody-~_ " ®r 1es within the range where hydrodynamic theory
namic estimate and create a mode of mixed axial and radizﬁhomd be valid. Indeed, both the frequer)cy of the breathing
symmetry. The presence of a dark Bogoliubov mode near th@Ode_‘”? [6] anq the resonant aspect raNg, m_easured by
wave-mixing resonance means that a single isolated modgPeriment are in very good agreement with linear hydrody-
gamic theory8]. Subsequently a hydrodynamic model of the
control of single-mode harmonic generation may be possibler.]cm“nehar m|xm% of quadSﬁamcIeE_n] was apglled (;o esti-
Consider a condensate of a large finite number of atomirate the ratg of second-harmonic generaff ]1an. gave
N, each of massn,, trapped by a spheroidal potential. The results consistent with experiment. However, this consis-
ar,wgular frequenc; ’of the trap along the pateaxis is o, tency hideg potentially important quantal feature_s not previ-
and the corresponding radial frequencyuis, with the trap ously considered (_)r_observed. This Paper examines the pro-
aspect raticln=w,/w, . Then the trapping potential can be cess of mode mixing and harmonic gene.rathn using a
Written: Vi~ 1/2mawr2(r2+7\222). In the limit of small detailed quantal treatment of the proc@4ktaking into ac-

. _— . S Cé)unt atom number and quantum pressure corrections.
amplitude excitations, the acoustic equation is separable an

the axial, radial, and angular symmetries provide good quan- L. THEORY

The formalism for the wave-mixing processes in Bose
*Email address:j.f.mccann@gqub.ac.uk condensed gases was developed by Morgan and co-workers
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[4]. At low temperaturesT/T.<0.5 the dynamics of Bose —0+j, and all crossing symmetries, will be significant if
condensed gases are dominated by single quasiparticle exgihasegenergies match and/or the scattering amplituger-
tations. The atom-atom interactions are represented by aex factoy is large.

swave pseudopotential corresponding to a scattering length Allowing for variation of the constantsy;, of the trial
as. The spectrum and mode densities of collective excitafunction (3) in the variational principlg1), and neglecting
tions can be obtained from the Hartree variational principletransitions far from resonance, we ¢é{

1 e ., db *h a—idit
5[ dt| ¢, H0+§gzp Y—ihd || =0, (1) IﬁE:; gM;; b bje "%t (6)
where g=(47%/m,)N a5, Ho=— (A%/2My) V2 + Vyap— a1, Cdb 1 .
and u plays the role of a Lagrange multiplier implying that i = 29Mijb; e'dilt, 7

the number of atomal is approximately constant. The con-

densate and excited modes can be described by the line@hereA. = . — 2w is the detuning. The mode conversion
response ansaf#] where L '

equations are exactly analogous to those in classical nonlin-
ear optics, allowing for two or more excited mode$ (0 be
P(r,1) =bg(t) (r)+ [bi(t)u;(r)e et populated from the pump mode)( The coupling strength
' . I ) : o
>0 (scattering amplitudefor the processVlj; is given by[4]

+b¥ (o (neti], 2

Mj;=2 fdr{¢>*[2ui*vi*uj+vi*vi*vj]
and wherep represents the highly occupied# 1) conden-

sate; that is|bo|~1 while b;<1/{N, j>0. From the varia- +él2ufvivj+ufulul} (8

tion §¢*, and linear expansion in the small parameters

bj,b¥ taken as constant, the stationary Gross-Pitaevskiand for a condensate with uniform phase throughout, all

equation and Bogoliubov equations follow: modes can be written in terms of real functions. In the deri-
vation of Egs.(6) and (7) a fixed condensate population is
Hoo+ 9| ¢|2¢= 0, (3) assumed consistent with the weak-coupling regime where the

quasiparticle amplitudes are small. In the strong-coupling
with (¢,¢)=1. The Bogoliubov modes are solutions of the limit, higher-order processes including the depletion of the
coupled linear equations condensate and the recoupling of the excited modes with the

condensate should be taken into account.

(Ho+29|¢|?)uj+9¢? vj=+ho;u;, (4
lll. ENERGY SPECTRUM
(Ho+29|¢|?)vj+gd*2uj=—fiwp;. (5) o . o
The quasiparticle amplitudes and excitation spectra were

We take the conventional normalization of modes;,¢;)  found through discretization of the set of E¢®)— (5)] using
—(vi,vj)=6;;. Although the spectrumw; is unique, the the method of Ref[11]. We define a dimensionless interac-
mode amplitudes may contain arbitrary components of théion parameter, proportional to the number of atoms con-
kernel, thew=0 component. After diagonalization, it is con- densedC=8mnNag(%/2m,w,)~ *'2, so thatC— 0 represents
venient to enforce orthogonalifg]. Gram-Schmidt orthogo- the ideal gas limit. In the hydrodynamic approximation the
nalization avoids the eigenmodes overlapping the conderchemical — potential is ~ simply given  by: u"
sate: Uj—u;—(4,u)¢ and vj—v;+(u;,$)$*. This =(15C\/64m)%hw,. The hydrodynamic regime can be
ensures gauge invariance, that is adding an arbitrary constavery roughly characterized by=(u"/iw,)>1. An ex-
to the external potential will not mix condensate and excitecample of the spectra of Bogoliubov states @ 1000 (that
modes, while preserving the orthogonality relations. Withinis x~7) is shown in Fig. 1. This would correspond, for
the Bogoliubov approximation it is assumed that the condenexample, toN~4500 atoms of®’Rb with scattering length
sate density and phase do not vary with time. In fact, densitp~ 1108, within a trap of frequencyw,=27X126 Hz. In
and phase fluctuations will arise from second-order mixingthe inset of Fig. 1 we plotfor referencg the equivalent
of the quasiparticle statgd] and thus only affect the wave- N-independent hydrodynamic results. The main feature of
mixing process at the third and fourth order of perturbationthe quantal spectrum, compared with the hydrodynamic re-
theory. Such an approximation would not be valid forsults, is the very large differences in the hightate frequen-
strongly perturbed condensates over long time sddlgd€).  cies. We find that in the quantal regime these surtaagh)
Since the trapped condensate is at rest there is no phas@des, in particular the state labeled4, interact with the
gradient within the condensate and its wave function andgecond-harmonic breather mode and play an important role
those of the quasiparticles can be taken as real function# harmonic generation efficiency.
Suppose that the condensdteode Q containsN particles, For lown,| states, the quantum corrections for the fre-
and a single quasiparticle modeof excitation is weakly quencies are rather small for this number of atoms. For ex-
populated. Then mode-mixing collisions of the type;i ample, at\ =1 the solution of Eqs(4) and(5) for the quad-
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Trap aspect ratio : A= /® FIG. 2. Hybridization and formation of the Bogoliubov dark
T state. The normalized quasiparticle amplitudés,z) are plotted as
FIG. 1. Frequencies of the the four lowest even-panity:0 a function of radial coordinate (horizontal axi$ and axial coordi-

excitations in units of the radial trap frequeney. Present Bogo- natez (vertical axig for C=1000. Red indicates positive values and
liubov theory forN= 4650 atoms €= 1000) is compared with hy- blue negative values of the amplitudeincreases from left to right:
drodynamic predictionéinsed (C—=). The labeling of the curves 1-39, 1.60, 1.65, and 1.75. The upper row of pictures depicts-the
in the main graph corresponds to the quantum numbers for a sphefiyPrid and the lower set the- hybrid. Below the crossing.
cal trap:A =1. The (+) hybrid mode is marked by the short-dashed = 1-35, the surfaceuppe) and breathefower) modes are distinct.
line, and the ¢) hybrid by the long-dashed line. The pump mode At )\:' 1.65, the modes combine to form the dark state hybrid.
(I=2m=0) is the solid line. Hybridization of the Bogoliubdv ~ AAS M increases the monopole symmetry transfers to the upper(
=0 mode occurs near=0.80, 1.63, and 2.60. Second-harmonic NYbrid (Fig. 1)
resonance between the pump ane) (hybrid occurs at =1.989.

o —

centrifugal barrier pushing the mean radius towards the sur-
face of the condensate. At=1.60 (Fig. 2 the|=0 andI

=4 states hybridize and lose the character of conventional
classification scheme$6,7]. Above the degeneracy the
modes separate and regain their character. Identical features
were found at the other crossings nea=0.80 andA
=2.60 corresponding to interaction with=4 andn=1

=2 states, respectively. The hybridization, although prima-
rily a quantal feature, persists for much larger numbers of
%toms. Consideringc=2000, that isSN~10* the second-
harmonic resonance occursigt=1.980 and we find a slight
displacement of the avoided crossing fromp=1.65 to A

IV. BOGOLIUBOV HYBRID MODES =1.54, but hybridization of the type discussed is still

_ _ present.
The quantal breather state undergoes a series of avoided

crossings with higher-states as\ varies(Fig. 1). The fre-
guency of thd =4 quantal mode is greatly different from the
hydrodynamic predictions. For example, at=1 the | The results for the coupling strengths are shown in Fig. 3.
=4m=0 mode has angular frequency=2.426v,(C The data are presented in scaled dimensionless units in order
=1000), and w=2.291w,(C=2000) compared withw to compare with hydrodynamic theory[9]: m;
=2.00Q», as C—x. While at \=2, ©=3.1640,(C  =2(fi/muw,)¥H u "o, )N"¥M;;. The states are labeled
=1000), and w=3.042»,(C=2000), compared withw and identified by the adiabatic noncrossing curves in Fig. 1.
=2.732», asC—o. As a result, hydrodynamic theory does At the degeneracy\~1.65 the strong mixing of states is
not predict a degeneracy of the4 and monopole states. reflected in the changes in coupling strength. Coupling to the
Near the avoided crossings in Fig. 1, the Bogoliubovupper (+) hybrid mode drops suddenly at this point due to
modes mix symmetries. The hybridization of the modes isdestructive interference between the mode components. The
illustrated by the the excitation functions(r,z), shown in  effect is analogous to an optically dark state, that is a coher-
Fig. 2; a key finding of this paper. Below the crossing\at ent superposition of states such that the dipole moments can-
=1.35, thel =0 andl =4 amplitudes resemble the spherical cel [12]. The interference effect is still apparent near 2
pattern and thé-labeling is certainly appropriate. The radial when the (+)-state is predominantly breather-like and reso-
density of thd =4 mode is dominated by the presence of thenant with the quadrupole second harmonic. In contrast the

rupole state gives;=1.4808v, for C=1000. This changes
to w,=1.457w, for C=2000, and reaches the hydrodynamic
limit (C— ) atw,=1.4142», . Then=1=0 breather fre-
quency is w,=2.210k, for C=1000, shifting to w,
=2.2195 for C=2000, tending tow,=2.236ks, for C
—o. However, while the quantal frequencies for these low-
lying modes agree well with hydrodynamic theory fGr
~1000, the agreement does not extend to wave-mixin
process.

V. HARMONIC GENERATION
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FIG. 3. Coupling strengtim;; from them=0 quadrupole state 0 10 20 30 1 40 50
for C=1000 as a function of trap aspect rako coupling to the time ((0 )
s

(+) hybrid mode (short-dashed line to the (—) hybrid mode
(long-dashed ling and to then=1,1=2 state(dot-dashed ling
The hydrodynamic calculation for the breather m¢#gis shown
as the dotted line. Second-harmonic resonance for thehybrid
mode occurs neax=0.68 and\ = 1.95 according to hydrodynamic
theory[8] and Fig. 1, as indicated by the vertical lines.

FIG. 4. Mode conversion fo€=1000 and 10% pump popula-
tion. (@) A=2.00: population of fundamentah&O0,|=2, m=0)
guadrupole modéefull line); population of the off-resonant~)
mode fi=0,|=4,m=0) (long-dashed ling population of reso-
nant second-harmonicH) moden=1,1=0,m=0 (short-dashed
line). (b) Mode conversion foh =1.65. The () dark-state hybrid
off-resonant ) hybrid, which is surface-like foh~2 is  has negligible conversion: population of fundameritaladrupolg
strongly coupled near the degeneracy. mode(full line); population of (+) dark-state hybridshort-dashed

Similar effects, including the formation of another dark line); population of () hybrid (long-dashed ling
state, occur ak~2.6 corresponding to the crossing between
I=0 andn=1,1=2 as shown in Fig. 3. This highlights the pling times areT9=14.60 ms compared witfi"=6.78 ms.
fact that it is not only surface modes which can hybridizeHowever, the true situation is more complex since this is not
with the | =0 state, but any degenerate mode with the 5 two-level system. The presence of the hybrid pair changes
=0 symmetry. The result of hydrodynamic theory for the the coupling times and efficiencies dramatically. A numerical
quadrupole to breather coupling strenffiis shown in Fig.  sojution of Eqs(6) and(7) for a pump population of 10% at
3 as the dotted line. The agreement with the quantal calcula = 2 shows the interplay of the hybrid modes: FigadThe
tion is quite good near =1 but near and beyond the avoided nonresonant surface hybrid grows faster due to the larger
crossing point\.=1.65 the hydrodynamic model does not coupling strength, but is not as efficiently converted as the
reflect the rapid quantal variation due to hybridization. At theresonant breather hybnd state. The fundamental mode re-
harmonic generation resonance nkar2 the hydrodynamic vives[4] after ~40 ms for these parameters. Since the two
model severely overestimates the coupling strength of th@ybrid modes differ in frequency and symmetry this phe-
breather mode by a factor of two, and neglects the contribunomenon should be detectable by observation of the radial
tion of thel =4 state. and axial density variations as developed in current experi-

The solutions of the Eqg6) and (7) describing the rela-  ments[3]. In Fig. 4b) corresponding to. = 1.65, low con-
tive populations in modesandj are well known13]. Fora  version efficiency is observed due to poor phase-matching.
resonant two-state model the characteristic Coupling time iMOreover, in this case the dark-state hybf'ﬁhort_dashed
T=|\2hlg M;;bi(0)|. In terms of the dimensionless matrix |ine) is completely suppressed.

elementsmﬂ , this can be written
15\ -1380 (150 -3 VI. CONCLUSIONS
ey b (0) (6477) ©) In conclusion, we have analyzed wave-mixing processes
e ' in the weak-coupling regime for Bose condensates We find

L the hybridization of Bogoliubov modes plays a vital role in

For A~1.95, andC=1000 the quantal prediction isnf;  mode mixing, both in the coupling strength and resonant
=0.013 compared with the hydrodynamic resi@il |mi;  frequency. Another consequence is the creation of dark co-
=0.028(the dotted line in Fig. B The difference should be herent states. The conversion rate for second-harmonic gen-
both observable and measurable. Suppose that the condesration to the breather mode is substantially lower than the
sate is perturbed so that only 5% of atoms were seeded intgydrodynamic theory, while the off-resonant surface mode is
the pump mode, that i (0)|2=0.05. Then, taking for ex- converted with almost equal efficiency. This hybridization
ample a trap containindg~4500 Rb atoms withw, =27  persists for much larger numbersl{ 10 of atoms where
X126 Hz and\=1.95, it follows that the respective cou- quantal effects were thought to be negligible. Although the
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hybridization lowers the conversion efficiency in the case we-50 ms. A detailed description of condensate excitations in-
studied, the presence of a dark Bogoliubov mode near theluding terms beyond the Bogoliubov model in the time do-
wave-mixing resonance means that a single isolated mod®ain is provided in Refs[14,15. The results presented in
can be excited rather than the doublet and therefore bett@ur paper would form the basis for further investigation
control of single-mode harmonic generation may be possiblealong the lines indicated in this work.

One important consideration is decoherence due to ther- Finally, we note that another potentially interesting case
mal damping or higher-order excitations of the condensat€l6] is that of second-harmonic resonant coupling between
that impose limits on coherent wave mixing procegsls  circulating modes. Then=+2 andm= —2 quadrupoles of
Density fluctuationd4] and phase fluctuationsl0] of the  an oblate spheroidal condensate can combine to populate
condensate arise from second-order mixing of the quasipar0,+4,—4 monopole modes. In this case a crossing of the
ticle states. This affects the wave-mixing process at the thirtn=0 and m=4 modes occurs at the resonance condition
and fourth order of perturbation theory, and such correctiona = \/16/7. While them=0 andm=4 modes do not hybrid-
would be significant for strongly perturbed condensates oveize to first order, the indirect coupling via the pump modes
long time scales~150 ms. However, according to experi- will create mixing. The investigation of this particular degen-
ment, thermal damping is expected to be the most importargrate transition would provide further evidence of the effects
decoherence proceg8] over the time scales of interest we have discussed.
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