
Title Role of sulfur in vibration spectra and bonding and electronic
structure of GeSi surfaces and interfaces

Authors Hartnett, Mark C.

Publication date 2016

Original Citation Harnett, M. C. 2016. Role of sulfur in vibration spectra and
bonding and electronic structure of GeSi surfaces and interfaces.
PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2016, Mark Christopher Harnett. - http://creativecommons.org/
licenses/by-nc-nd/3.0/

Download date 2025-08-01 12:37:27

Item downloaded
from

https://hdl.handle.net/10468/3665

https://hdl.handle.net/10468/3665


ROLE OF SULFUR IN VIBRATION SPECTRA AND

BONDING AND ELECTRONIC STRUCTURE OF GESI

SURFACES AND INTERFACES

by

MARK CHRISTOPHER HARTNETT

Thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

from the

Department of Physics

National University of Ireland, Cork

November 28, 2016

Supervisors: Professor Stephen Fahy

Head of Department: Professor John McInerney



Dedicated to my parents and Danielle



Abstract

A quantum mechanical density functional theory approach was used to investigate

the structural atomic configuration, vibration mode frequencies and electronic struc-

ture of surfaces and interfaces using germanium. Initially, we investigated the H2S

and H2O-passivated germanium surfaces. A supercell approach is used with the local

density (LDA), generalized gradient (GGA) approximations and van der Waals (vdW)

interactions. The frozen phonon method was used to calculate the vibrational mode

frequencies of these surfaces. For both the H2S and H2O-passivated surfaces, the cal-

culated frequencies in LDA and GGA produce a SH and OH stretch mode, a SH and

OH bond bending mode, a Ge-S and Ge-O stretch mode and a SH and OH wag mode.

The H2O passivated surface shows other modes that are not present in the H2S pas-

sivated surface, these are the Ge-H stretch mode and the Ge-H bending mode. The

differences between the functionals including vdW terms and the LDA or GGA are

less than the differences between LDA and GGA for the vibrational mode frequencies.

These calculated localized mode frequencies, particularly the Ge-S and Ge-O stretch

modes, provide useful vibrational signatures of bonding of both sulfur and oxygen on

Ge(001)-(2x1) surface, which may be compared with vibrational spectroscopy mea-

surements. The Ge-H stretch and bending modes are characteristic in identifying the

difference between the two H2O to the Ge(001)-(2×1) surfaces.

A bare germanium surface is bonded to a bare silicon surface to form a Ge-Si

interface. As germanium has a 4% larger lattice constant than silicon this implies there

are regions on the interface where the germanium and silicon match perfectly and are

completely mismatched. These regions of lattice match are referred to as aligned and

the regions of lattice mismatch are referred to as misaligned. The atomic structure of

the GeSi aligned interface shows the original crystal structure and the projected band



ii

structure shows no interface states in the band gap as expected. The GeSi misaligned

structure forms a (2× 1) configuration with Ge-Ge and Si-Si dimers alternating with

five fold and seven fold rings. The electronic projected band structure shows many

interface states in the band gap.

In order to remove the interface states that were seen in the GeSi interface, sulfur

with its six valence electrons and its flexible chemical bonds is suggested to improve

the interface bonding and remove such interface states. In both regions of aligned and

misaligned GeSSi interfaces, we see different (2× 1) atomic configurations respec-

tively. The projected band structure in both alignment and misalignment cases shows

interface states around the germanium and silicon interface atomic layers and also a

charge density localised around the sulfur interface atoms.

Since the inclusion of sulphur at the interface did not remove electronic traps such

as interface states, we suggested the use of hydrogen on the interfaces. A sulfur termi-

nated germanium surface results in a (1×1) configuration with surface states present

in the band gap. However, a H2S terminated germanium surface results in a (2× 1)

configuration with symmetric Ge-Ge dimers and pushes the surface states into the

bulk region. This implies the presence of hydrogen results in no surface states. When

we include hydrogen on our GeSSi aligned and misaligned interfaces, the atomic con-

figuration remains the same with the hydrogen molecule in the channels and with one

Ge-S bond less in the misaligned case. However, upon looking at the projected band

structures, states are clearly visible in the band gap and when we investigate the charge

density contour plots, interface states do exist. Therefore, the presence of hydrogen

here does not influence the interfaces. We also investigated whether or not moving

the hydrogen in the channels at the interface would cause a bonding of the hydrogen

to either a germanium, silicon or sulfur atom. This did not happen and the hydrogen

molecule always remained in the channels.
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CHAPTER 1

Introduction

This theoretical study, in which we investigate various aspects of the bonding,

vibrational modes and electronic structure of GeSi surfaces and interfaces, was orig-

inally stimulated by the possibilities for development of GeSi avalanche photodiodes

using wafer-bonding techniques to create the GeSi interface.

Avalanche photodiodes (APD) are p-n junction photodiodies made to operate at

high electric fields in order to achieve an internal gain [4]. A p-n junction is formed

by joining p-type (high hole concentration) and n-type (high electron concentration)

semiconductor materials. Electrons diffuse from the n-type side to the p-type side and

similarly holes flow by diffusion from the p-type side to the n-type side. In a p-n junc-

tion, when the electrons and holes move to the other side of the junction, they leave

behind exposed charges on dopant atom sites, which are fixed in the crystal lattice and

are unable to move. On the n-type side, positive ion cores are exposed and on the

p-type side, negative ion cores are exposed thus forming an electric field between the

positive ion cores in the n-type material and negative ion cores in the p-type material.

This region is called the depletion region since the electric field quickly sweeps free

carriers out, hence the region is depleted of free carriers. A built in potential is formed

at the junction due to the electric field.

APD’s are strongly reverse biased photodiode [4]. In such reverse biased photodi-

odes, the electric field increases as the applied voltage is increased causing the kinetic
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energy of the charge carriers injected into the depletion region to increase [5]. By

doing so an electron (or hole) can reach an energy high enough to break a bond when

colliding with lattice atoms, thus generating a new electron-hole (e-h) pair, and losing

part of the energy in the process. This is known as impact ionization.

In APD’s the absorption of an incident photon first produces an e-h pair. The large

electric field in the depletion region causes the charges to accelerate rapidly. Such

charges propagating at high velocities can give part of their energy in the valence

band and excite it to the conduction band, resulting in an additional e-h pair that can

in turn further accelerate and create more e-h pairs. This process leads to an avalanche

multiplication of the carriers [6], [7] and [8].

APD’s are widely used in the fibre-optic communications where high sensitivity is

required. Recent research [9] is focusing on using silicon as the multiplication material

for APD’s but a major disadvantage is the optical absorption of silicon which cuts off

at a wavelength of 1.1µ . This is too short for the optimum window required for fibre-

optic communications at 1.3 or 1.5µ . The use of germanium [10] with its smaller

bandgap energy (0.74 eV compared to 1.17 eV for silicon) overcomes this problem.

While the wavelength sensitivity of the material is very important, another parameter

that can have a major impact on the performance of the APD is the level of noise that

is produced. The main problem with noise [11] in APD arises in the amplification

of shot-noise. Shot-noise is produced due to the random quantum effects such as the

random arrival of photons and thermally excited e-h pairs. Amplification of shot-noise

leads to a degradation of the signal to noise ratio (SNR), which is a measure of how a

signal has been corrupted by noise. SNR is proportional to what is called the excess

noise factor, which is the noise due to the multiplication process and is dependent

on the ratio of the e-h ionization coefficients for impact ionization. The greater this

ratio the lower the excess noise factor will be. Silicon detects in the visible and near

infrared, with low excess noise, while germanium will detect out into the infrared but



3

with high multiplication noise.

The ideal solution is to have an APD with the optical properties of germanium and

the noise properties of silicon [12], thus proposing a GeSi APD seems promising. Re-

cent experimental work demonstrates the germanium growth on epitaxial silicon layer

on silicon substrates [13] and [14]. An alternative approach which avoids the epitax-

ial relationship and could be done with low thermal budget is direct wafer bonding

[15] and [16]. However, looking at the process of wafer-bonding of the two materials,

which is the pressing together of a wafer of silicon to a wafer of germanium using

force to create a bond between the wafers, the interface of the two poses problems.

One such problem is the 4 % mismatch in the lattice constant, which may result in a

high concentration of interface traps [17] and dislocations. However, recent research

by Kang et al. [9] has shown that careful processing and device design can minimize

the impact of dislocations. The fabrication of GeSi heterojunction photodiodes are

described in detail in the work by Gity et al. [18] and [19]. Even in an idealized

picture of bonding between the materials, if the germanium and silicon lattices align

well in some regions of the interface, then they will align poorly in neighbouring re-

gions. (“Aligning regions” imply the silicon atoms lie in the same vertical plane as

the germanium atoms.) We expect the regions of poor alignment may result in broken

bonds and interface states, thus leading to the poor mechanical contact and electri-

cal transmission characteristics. Thus, one of the goals of our study of the interface

is to understand the (idealized) bonding of Si and Ge across a poorly aligned region

of the interface. We will examine whether reconstruction of the interface can elimi-

nate dangling bonds and avoid interface states that could be harmful to the electronic

transmission across the interface.

The bare germanium surface undergoes extensive surface reconstruction, in which

the surface atomic geometry differs significantly from that of the bulk [20],[21]. The

Ge(001) surface reconstructs to form germanium dimers, thereby reducing the number



4

of dangling bonds per surface germanium atom from two to one. Locally, the surface

structure of reconstructed Ge(001) is similar to that of Si(001) in that both exhibit

dimer rows with similar geometrical arrangement.

Clean, idealized Si and Ge surfaces are highly reactive and are usually passivated

in a controlled manner by the adsorption of species that cap the dangling bonds of

the surface. Hydrogen is typically used to passivate the Si surface, giving rise to a

passive reconstructed surface geometry, and hydrogen sulfide has been proposed for

the passivation of Ge surfaces [22]. The possibilities for wafer bonding of two such

surfaces (clean Si with H2S-passivated Ge) are interesting: the two surfaces would be

non-reactive and inert prior to bonding; Sulfur, with its preference for two-fold chem-

ical coordination might provide a flexible link between the Si and Ge surfaces, both in

well-aligned and poorly aligned regions, and molecular H, desorbed from the initial

Si and Ge surfaces during the formation of bonds in the interface, could provide an

atom that would be both relatively mobile within the interface and capable of passivat-

ing dangling bonds and their associated interface states. This thesis will examine this

scenario in detail, calculating equilibrium bonding geometries for interfaces formed

from clean Si and HS-terminated and S-terminated Ge. We will also explore the in-

terface electronic structure, to understand if the above, chemically plausible scenario

might be realized in practice. We will also examine the vibrational properties of the

HS-terminated Ge surface, as infra-red vibrational spectroscopy of adsorbed species

at surfaces [23] can be used as a probe of the condition of the surface prior to wafer

bonding.

Termination of the Ge(001) surface by H2S has been suggested [20] in order to

electrically passivate the surface. Sulfur is an atom with flexible chemical bonds pre-

ferring a two-fold coordinated geometry and thus is expected to make two bonds with

the Ge(001)-(2×1) surface. An experimental study [22] of a Ge(001) surface exposed

to H2S in the gas phase showed 1 monolayer of sulfur coverage with (2× 1) surface
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reconstruction. The amount of sulfur on the germanium surface and the observed pe-

riodicity is explained by formation of disulfide bridges between Ge-Ge dimers on the

surface. A first-principles molecular dynamics study [22] confirmed that the (2× 1)

symmetry is preserved after adsorption of the H2S molecules on the Ge(001)-(2×1)

surface and also predicts formation of (S-H)-(S-H) inter germanium dimer bridges i.e.

disulfide bridges interacting via hydrogen bonding. The computed energy band gap

of this atomic configuration is shown to be free of surface states, a very important

finding for the potential application of germanium in future high performance inte-

grated circuits [24], [25] and [26]. For comparison, using elemental sulfur the surface

reconstruction is a (1×1) structure and the computed density of states clearly shows a

state in the germanium energy band gap [27]. This surface state is attributed to a lone

pair 3pz orbital on the sulfur atom. H2S treatment of the surface results in it being

electrically passivated with the lone pair 3pz orbital on sulfur atoms being pushed into

the valence bands of the H2S passivated surface [22].

Considering the bonding of Si(001) to a S-terminated Ge(001) or H2S-terminated

Ge(001) might be a promising approach to forming a strong, electrically passivated

wafer-bonded GeSi interface. The flexibility of S bonds may allow the S-H sandwich

at the interface to adjust its bonding both in the interface regions where the silicon and

germanium lattices align and misalign.

This work will apply first principles electronic structure theory methods to calcu-

late the structural and vibrational characteristics of a H2S and H2O-terminated ger-

manium surface. Vibrational mode frequencies will be calculated for the germanium,

sulfur and hydrogen atoms at the surface. This will be used as the signature of par-

ticular bonding geometries which can be compared to infrared spectroscopy results.

We will investigate the GeSi interface in regions where the germanium and silicon lat-

tice align and misalign across the interface, along with the relaxed atomic positions.

Sulfur and H2S will be sandwiched between the germanium silicon interface and the
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interface will be investigated. The calculation of the electronic band structure will

be determined to see whether the sulfur or H2S mediated bonding would be effec-

tive in the removal of interface electronic trap states i.e. interface states lying in the

semiconductor gap.

In Chapter 2 of this thesis, we review the methods used to calculate vibrational

mode frequencies and projected band structures in germanium and silicon. These

methods of Density Functional Theory (DFT) allow us in principle to map a many

body interacting electron gas problem into a single particle moving in an effective

potential. In reviewing electronic structure methods, we also discuss structural relax-

ation, the use of plane-waves to represent the single-particle eigenstates that arise

in the DFT formalism and the associated use of pseudopotentials to represent the

electron-ion interaction, and the form of various, approximate exchange-correlation

potentials that will be used in our calculations. The harmonic approximation and dy-

namical matrix are the ingredients for determining the vibrational mode frequencies

using the frozen-phonon method. Band structure calculations around certain paths

in the Brillouin zone are described here also to derive the 2D projected surface and

interface band structures.

In Chapter 3, we begin our study by testing the theoretical methods described in

Chapter 3 against already known theoretical results in the published literature. Our test

is a density functional theory approach of a germanium surface. A surface calculation

for Ge(001) was done, to reproduce the Ge(001)-(2×1) surface reconstruction using

the local density approximation (LDA). Here we show the surface reconstructs to form

asymmetric dimers that are arranged in rows, while in the electronic structure of this

surface, two dangling-bond bands occur within the energy region of the fundamental

gap.

After the theoretical methods have been tested and resulted in good agreement

with the published literature, Chapter 4 is the beginning of our study. Chapter 4 looks
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at the vibrational mode frequencies of H2S and H2O-terminated Ge(001)-(2×1) sur-

faces. As both H2S and H2O-terminated Ge(001)-(2× 1) surfaces remove the elec-

tronic states at the surface, and having confirmed the presence and bonding of H2S

and H2O on the Ge(001) surface, a calculation of the vibrational mode frequencies

may provide a useful signature of particular bonding geometries, which can be de-

tected by infrared spectroscopy. Using our first principles, density functional theory,

supercell approach, the vibrational mode frequencies are obtained using the frozen-

phonon method, which involves the calculation of the structural energy and atomic

forces as functions of atomic displacement from equilibrium using different exchange-

correlation functionals. This allows a dynamical matrix to be obtained. Diagonaliza-

tion of the dynamical matrix gives the vibrational mode frequencies and corresponding

atomic motions for the H2S and H2O adsorbed on a Ge(001)-(2x1) surface. These vi-

brational mode frequencies can then be compared to those of the isolated molecules.

We also report the various bond lengths at the surface, along with the bond breaking

energies of both H and SH on the H2S-terminated Ge(001) surface and H and OH on

the H2O-terminated Ge(001) surface.

The GeSi interface is presented in Chapter 5. Due to the lattice constant of ger-

manium being 4% greater than that of silicon, we investigate the regions where the

lattice of germanium align with silicon and also the regions of misalignment. We

calculate the relaxed geometries of both regions. From our structural relaxation cal-

culations, strain of the lattices is an important factor and we include a full analysis of

the interfaces with strain. We use self-consistent calculations to determine the band

lineups of the germanium and silicon band structures and we produce the projected

band structure plots to see if interface states exist in the band gap.

In Chapter 6 we investigate the bonding and electronic states of interfaces formed

from Si and SH-terminated Ge surface. As we initially expected that interface states

may exist in the misaligned GeSi interface, we propose the use of both sulfur and
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H2S to remove such interface states. We investigate the regions of alignment and

misalignment with the presence of sulfur and H2S sandwiched between the GeSi in-

terface, providing structural relaxations, bond lengths at the interface, along with the

corresponding electronic structure such as band lineups and projected band structures.

Here in all the interfaces studied, interface states do exist in the band gap, thus pro-

viding the evidence that a GeSi clean interface is electronically more suitable than the

interface involving HS.
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Electronic Structure Methods

In this chapter, we review the theoretical approaches used in first-principles calcula-

tions to solve the many-body problem. The starting point is the Hamiltonian for a

system of electrons and nuclei,

Ĥ =− h̄2

2me
∑

i
∇

2
i −∑

i,I

ZIe2

|ri−RI|
+

1
2 ∑

i6= j

e2∣∣ri− rj
∣∣−∑

I

h̄2

2MI
∇

2
I +

1
2 ∑

I 6=J

ZIZJe2

RI−RJ
, (2.1)

where the coordinates ri, mass me and charge e represent the electrons, and the nu-

clei are denoted by the coordinates RI, mass MI and charge eZI . The first term in the

Hamiltonian is the electron kinetic energy operator, the second term is the electron-

nuclei interaction and the third term is the electron-electron interaction. The last two

terms represent the nuclear kinetic energy and the nuclei-nuclei interaction respec-

tively. The only term that is considered small in the Hamiltonian is the one with

the inverse mass of nuclei 1
MI

. Setting the mass of the nuclei to be infinitely heav-

ier than the electrons then this kinetic energy of the nuclei can be ignored. This is

more commonly known as the Born-Oppenheimer or adiabatic approximation [28].

The interaction of the nuclei with one another does contribute to the total energy of

the system but is not relevant to the problem of describing the electrons. Thus the

Hamiltonian reduces to

Ĥ = T̂ +V̂ext +V̂int . (2.2)
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If we adopt Hartree atomic units h̄ = me = e = 1
4πε0

= 1, then the terms may be written

in the simplest form. The kinetic energy operator for the electrons T̂ is

T̂ =−1
2 ∑

i
∇

2
i , (2.3)

V̂ext is the fixed external potential acting on the electrons due to the nuclei

V̂ext =−∑
i,I

ZI

|ri−RI|
, (2.4)

and V̂int is the electron-electron interaction

V̂int =
1
2 ∑

i 6= j

1∣∣ri− rj
∣∣ . (2.5)

The Hamiltonian must satisfy the time-independent Schrödinger equation

Ĥ |Ψ〉= E |Ψ〉 , (2.6)

where E is the energy eigenvalue of the many-body wavefunction for the electrons

Ψ = Ψ(ri), that depends on the position of the electrons and their spin (both included

in the coordinate ri). There are many sophisticated methods for solving the many-

body Schrödinger equation based upon the expansion of the wavefunction. However,

calculating the electronic density is a far less demanding problem computationally.

Density functional theory (DFT) provides [29] a framework that uses the electronic

charge density as the principal variable, which can be used to calculate the ground

state properties of the system. This chapter describes the basis of DFT, and the way it

is used to solve the problem for periodic crystals using plane waves and pseudopoten-

tials. An introduction to structural relaxations and exchange-correlation functionals

is also given, as well as theory behind the frozen phonon method and projected band

structure calculations.
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2.1 Density Functional Theory

Density functional theory (DFT) allows one to map a many-body interacting electron

system onto a single particle moving in an effective potential problem. This theory

was put on a firm theoretical footing by the two Hohenberg-Kohn [30] theorems:

• Theorem I: For any system of interacting particles in an external potential Vext(r),

the potential Vext(r) is uniquely determined by the ground state particle density

n0(r), except for a constant.

• Theorem II: For any external potential Vext(r), there exists a universal functional

for the energy E[n] in terms of the density n(r). For any particular Vext(r), the

exact ground state energy of the system is the global minimum value of this

functional.

A more general alternative formulation of these theorems has been given by Levy

[31, 32, 33] and Lieb [34, 35, 36].

Since all properties such as kinetic energy, are uniquely determined if the density

n(r) is specified then each such property can be viewed as a functional of n(r). The

total energy functional is

EHK[n] = T [n]+Eint [n]+
∫

d3r Vext(r)n(r)+EII, (2.7)

where EII is the nuclei interaction energy. We define the functional FHK[n] as all

internal energies of the interacting electron system

FHK[n] = T [n]+Eint [n], (2.8)

which must be universal by construction as the kinetic energy and interaction energy

of particles are functionals only of density.
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From the Hohenberg-Kohn theorems, all properties of the system can be deter-

mined from the ground state density and the functional E[n] determines the ground

state energy and density. However, we are still faced with the fact that no method has

been given to find the functional other than the original definition in terms of many-

body wave-functions. An approach was proposed by Kohn and Sham [37] to replace

the difficult interacting many-body problem obeying the Hamiltonian (see Eq. 3.1 in

[29]) with an auxiliary problem that can be more easily solved. They assume that the

ground state density of the original interacting system is equal to that of some cho-

sen non-interacting system. This leads to the independent-particle equations for such

a non-interacting system which can be considered to be exactly soluble with all the

difficult many-body terms incorporated into an exchange-correlation functional of the

density. Solving such equations gives the ground state density and energy of the orig-

inal interacting system bounded by the accuracy limited to the exchange-correlation

functional approximation.

The approach of Kohn and Sham is based upon two assumptions:

• 1. The exact ground state density can be represented by the ground state density

of an auxiliary system of non-interacting particles

• 2. The auxiliary Hamiltonian is chosen to have the usual kinetic energy operator

and an effective local potential Ve f f (r) acting on an electron at r

The auxiliary Hamiltonian for this non-interacting system is

Ĥaux =−1
2

∇
2 +Vs(r), (2.9)

where Vs is the effective one particle potential. The single particle orbitals ψi satisfy

Ĥauxψi(r) = εiψi(r), (2.10)
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and the density

n(r) =
N

∑
i=1
|ψi(r)|2 , (2.11)

where εi are the Kohn-Sham energy eigenvalues (in order of increasing energy) and N

is the total number of electrons. The non-interacting kinetic energy is given by

Ts =
1
2

N

∑
i=1
〈ψi|∇2|ψi〉=

1
2

N

∑
i=1

∫
d3r |∇ψi(r)|2 . (2.12)

We define the classical Coulomb interaction energy of the electron density n(r) inter-

acting with itself

EHartree[n] =
1
2

∫
d3r d3r′

n(r)n(r′)
|r− r′|

. (2.13)

The Kohn-Sham approach is to rewrite the total energy functional of an interacting

system in the form

EKS[n] = TS[n]+
∫

d3rVext(r)n(r)+EHartree[n]+EII +EXC[n], (2.14)

where here Vext is the external potential due to the nuclei, EII is the interaction between

nuclei and all the many-body effects of exchange and correlation are grouped into the

exchange-correlation energy EXC. Comparing the Hohenberg-Kohn and Kohn-Sham

expressions for the total energy, the exchange-correlation can be written as

EXC[n] = 〈T̂ 〉−TS[n]+ 〈V̂int〉−EHartree[n], (2.15)

which shows that EXC is the difference of the kinetic and internal interaction energies

of the interacting many-body problem from those of the independent-particle system



2.1. Density Functional Theory 14

with the electron-electron interaction replaced by the Hartree energy. Thus, if EXC

were known, the exact ground state energy and density of the many-body problem

could be found upon solving the Kohn-Sham equations for independent particles.

Minimisation of the energy with respect to the wave-functions gives the following

equation

δEKS

δψi(r)
=

δTS

δψi(r)
+ [

δEext

δn(r)
+

δEHartree

δn(r)
+

δEXC

δn(r)
]

δn(r)
δψi(r)

= 0, (2.16)

which is explained in detail in page 139 of Martin [29]. This results in an expression

for Vs(r), the potential of non-interacting electrons

Vs(r) = Vext(r)+
∫

d3r′
n(r)
|r− r′|

+VXC(r), (2.17)

where VXC(r) = δEXC
δn(r) . As EXC[n] is still not known, the genius of the Kohn-Sham

approach is that by explicitly separating the independent particle kinetic energy and

the Hartree terms, the remaining EXC[n] can be approximated as a local functional of

the density

EXC[n] =
∫

d3r n(r)εXC([n],r), (2.18)

where εXC([n],r) is an energy per electron at point r that depends upon the density

n(r) in some neighbourhood of n(r). It is possible to make simple approximations

for the exchange-correlation energy which work well, and the simplest of these is the

local desity approximation (LDA). In the LDA, the contribution to EXC from each

infinitesimal volume in space, dr, is taken to be the value it would have if the space

were filled with a homogeneous electron gas with the same density as is found in dr.

The exchange-correlation energy for the homogeneous electron gas has been calcu-
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lated by Ceperley and Alder [38] using Monte Carlo methods. The most common

parametrisation for the LDA is that of Perdew and Wang [39].

An initial guess of the density n(r) is used to calculate the effective potential Vs.

The Kohn-Sham equation is then solved, producing a new wave-function, that gives a

new density, which in turn will yield a new potential. This method continues until the

input density coincides with the density resulting from the solution of Ĥaux.

2.2 Structural Relaxations

The calculation of the total energy with respect to atomic positions will allow us to

find the equilibrium configuration of the crystal structure. The Hellmann-Feymann

theorem [40], which relates the derivative of the total energy with respect to a param-

eter, to the expectation value of the derivative of the Hamiltonian with respect to the

same parameter. Using the atomic coordinates RI as the parameter, the force FI on

atom I can be calculated as

FI =− δE
δRI

=−〈ψ
∣∣∣∣ δH
δRI

∣∣∣∣ψ〉. (2.19)

All the forces vanish at equilibrium and thus we can find the equilibrium geometry of

the cell and the position of the atoms within it.

2.3 Plane Waves

Plane waves provide solutions of differential equations such as the Schrödinger equa-

tion. As we are concerned with periodic crystals, plane waves are especially appro-

priate for such periodic solids where they provide intuitive understanding as well as

simple algorithms for practical applications. Using Bloch’s theorem, which states that
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the wave-function of a periodic solid is composed of a plane wave and a periodic part

ui,k(r),

ψi,k(r) =
1√

Ncell
eik.rui,k(r), (2.20)

where Ncell is the number of primitive cells, the index i denotes the eigenstate for each

wave vector k and ui,k(r) satisfies

ui,k(r+a) = ui,k(r), (2.21)

where a is a lattice vector. The periodic part of the wave-function can be written in

terms of the reciprocal lattice vectors Gn using a Fourier transform,

ui,k(r) =
1√

Ωcell
∑
n

ci,n(k)eiGn.r, (2.22)

where Ωcell is the volume of the primitive cell. The reciprocal lattice vectors are

defined to satisfy the condition

G.a = 2πδi j. (2.23)

The wave-function can now be rewritten as

ψi,k(r) =
1√
Ω

∑
n

ci,n(k)ei(k+Gn).r, (2.24)

where Ω = NcellΩcell . We rewrite the Kohn-Sham equation in terms of plane waves

∑
n′

[
1
2
|k+Gn|2 δn,n′+Vs(Gn−Gn′)ci,n′(k) = εi(k)ci,n, (2.25)

where the Fourier transform of the effective potential is
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Vs(G) =
1

Ωcell

∫
Ωcell

Vs(r)e−iG.r dr. (2.26)

Since the Schrödinger equation is defined for each k, each state can be labelled by the

wavevector k and the eigenvalues and eigenvectors for each k are independent unless

they differ by a reciprocal lattice vector. In the limit of large volume Ω, the k-points

become a dense continuum and the eigenvalues εk become continuous bands.

All possible eigenstates are specified by the wavevector k within any one primi-

tive cell of the periodic lattice in reciprocal space. The best possible cell is the first

Brillouin zone as it is the most compact cell possible with its boundaries being the

bisecting planes of the G vectors. Inside the Brillouin zone the bands must be contin-

uous.

For a periodic system, integrals over the first Brillouin zone in reciprocal space, are

performed by summing the function values of the integrand (for instance the charge

density) at a finite number of points in the Brillouin zone, called the k-point mesh.

Choosing a sufficiently dense mesh of integration points is crucial for the convergence

of the results, and is therefore one of the major objectives when performing conver-

gence tests. It should be noted that there is no variational principle governing the

convergence with respect to the k-point mesh. This means that the total energy does

not necessarily show a monotonous behaviour when the density of the k-point mesh is

increased. The k-points are chosen according to the scheme proposed by Monkhorst

and Pack [41].

2.4 Pseudopotentials

A solution to the Kohn-Sham equations is possible upon careful selection of a k-

point mesh and using a plane wave energy cut-off in the Fourier expansion of the
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wavefunctions. However, the use of plane-waves as a basis for the wave-functions

does not work so well, as a very large number of plane-waves are required to describe

the wavefunctions of electrons in the core region. Most physical properties of solids

are dependent on the valence electrons to a greater extent than the non-valence tightly

bound core electrons.

Thus a pseudopotential approximation is used in order to attempt to replace the

strong Coulomb potential and core electrons by an effective pseudopotential which

is much weaker. The valence electron wave-functions, which oscillate rapidly in the

core region, are then replaced by pseudo-wave-functions, which vary smoothly in the

core region, as shown in Fig. 2.1.

The valence wavefunctions oscillate rapidly in the core electron region in order to

maintain orthogonality with the core electrons. The pseudopotential is constructed so

that there are no radial nodes in the pseudo wavefunction in the core region and that

the pseudo wavefunctions and potential are identical to the all electron wavefunction

and the potential outside a cut-off radius, rc. The pseudopotential is also constructed

so that the scattering properties of the pseudo wavefunctions are identical to the scat-

tering properties of the ion and core electrons, which will be different for each angular

momentum component of the valence wavefunction. Thus the pseudopotential is de-

pendent on the angular momentum and is referred to as non-local pseudopotential. In

general, the pseudopotential is formed with local and non-local parts,

Vps(r) = Vlocal(r)+∑
l,m

Vl(r) |Ylm〉〈Ylm| , (2.27)

where |Ylm〉 are the spherical harmonics and Vl(r) is the pseudopotential for angular

momentum l.

Norm-conserving pseudopotentials are one of the most common type of pseudopo-

tentials used in modern plane-wave ab initio codes. We use the pseudopotentials of
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Figure 2.1: The all electron wavefunction Ψ and potential (dashed lines) plotted
against distance r, from the nucleus. The pseudo wavefunction Ψpseudo and poten-
tial is plotted (solid line). Outside the cut-off radius rc, the all electron and pseudo
electron values are identical.

Hartwigsen, Goedecker and Hutter [42] and Troullier and Martins [43] in this work.

2.5 Exchange-Correlation Functionals

As already mentioned in Section 2.1, the simplest approximation to calculating the

exchange-correlation functional is to assume the density can be treated as an uniform

electron gas. The exchange-correlation energy at each point in the system is the same

as that of an uniform electron gas of the same density. This approximation which was

originally introduced by Kohn and Sham, which is called the local density approxi-
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mation (LDA) [39] is given by

ELDA
XC [n] =

∫
d3r n(r)εXC([n],r) (2.28)

where εXC(n) is the exchange-correlation energy per particle of an uniform electron

gas of density n. The exchange-correlation potential is given as

V LDA
XC [n(r)] =

δELDA
XC

δn(r)
= εXC([n],r)+n(r)

∂εXC([n],r)
∂n

(2.29)

This can then be inserted into the equation for Vs(r).

As LDA approximates the energy of the true density by the energy of a local

constant density, it fails in situations where the density undergoes rapid changes such

as in molecules. An improvement to this can be made by considering the gradient

of the electron density called the generalized gradient approximation (GGA) [44],

written as

EGGA
XC = EXC[n(r),∇n(r)]. (2.30)

There are several different parameterizations of the generalized gradient approxima-

tion, some of which are semi-empirical, in that experimental data (e.g. atomization

energies) is used in their derivation.

Methods for calculating the van der Waals (vdW) interactions are important in

understanding bulk solids and surface phenomena. For homogeneous systems such

as simple metals and semiconductors, LDA is appropriate for the interaction effects.

For inhomogeneous systems such as transition metals and ionic crystals, GGA works

very well. Thus the local density and generalized gradient approximations are quite

accurate in hard materials and covalently bonded molecules, in which they depend

on the density in local and semi-local ways. Today DFT describes cohesion, bonds,
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structure and other properties very well for dense molecules and materials as shown

in recent studies [45] and [46]. However, these approximations give no account of

the fully nonlocal vdW interaction. Spares systems, including soft matter and van der

Waals complexes are at least as abundant. They have inter-particle separations, for

which nonlocal, long-ranged interactions such as van der Waals forces, are influential.

First-principles approaches for how vdW can be treated in DFT were first pro-

posed for the asymptotic interaction between fragments [47, 48, 49]. These ulti-

mately evolved into the van der Waals density functional for arbitrary geometries

[50, 51, 52, 53]. In the work by Dion et al. [50], they develop and apply a van der Waal

density functional (vdW-DF) for general geometries to supplement the planar vdW-DF

that was applied to several layered materials [54]. Despite its success for describing

dispersion in a breadth of systems better than any other non-empirical method [55],

vdW overestimates equilibrium separations [50, 51, 55] and underestimates hydrogen-

bond strengths. [56, 57]

In the further work proposed by Lee et al. [58], they propose a second version of

the vdW-DF of Dion et al. [50]. They propose a more accurate semi-local exchange-

correlation functional [59, 60] with the use of a large-N asymptote gradient correction

in determining the vdW kernel [50]. Lee shows that the vdW-DF2 substantially im-

proves the equilibrium separations, hydrogen-bond strengths and vdW interactions at

intermediate separations longer than the equilibrium ones.

The key to the vdW-DF method is the inclusion of a long-range piece of the cor-

relation energy Enl
XC[n], a fully nonlocal functional of the density n. This piece is

evaluated using a plasmon pole approximation for the inverse dielectric function [50].

A single parameter model for the pole position was used, with the pole residue set

by the law of charge-current continuity, and the pole position at the large wave vector

set by the constraint that there be no self-Coulomb interaction. The single parameter

is determined locally from electron-gas input via gradient corrected LDA [50]. The
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non-local correction of the correlation energy is of the form

Enl
XC[n] =

∫
d3r d3r′n(r)φ(r,r′)n(r′), (2.31)

where the kernel φ is given as a function of R f (r) and R f (r′) and R = |r− r′| and

f (r) is a function of n(r) and its gradient. The function f (r) in fact is proportional to

the exchange-correlation energy density εXC of a gradient corrected LDA at the point

r. A full analysis of this vdW-DF2 method is explained in greater detail in the work

by Lee et al. [58].

2.6 Harmonic Approximation

In this thesis we are concerned with using density functional theory to calculate vi-

brational mode frequencies of adsorbed species on a germanium surface. Here we

review the relevant theory of lattice dynamics within the harmonic approximation that

are used in this work.

Consider a system of N atoms, let Mi be the mass of atom i and dα(i) be the

displacement from equilibrium in the direction α(x,y,or z). The total energy E of

the crystal structure is a function of atomic position, assuming an adiabatic approx-

imation, stating that the electrons are in their ground state for any particular atomic

arrangement [61] and using a Taylor series, we expand the total energy about the equi-

librium structure.

E = E0 +∑
i,α

φ
1
α(i)dα(i)+

1
2 ∑

i, j,α,β

φ
2
αβ

(i, j)dα(i)dβ ( j)

+
1
6 ∑

i, j,k,α,β ,γ

φ
3
αβγ

(i, j,k)dα(i)dβ ( j)dγ(k)+ ...., (2.32)
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where E0 is the total energy when the atoms are in the equilibrium position. The

coefficients φ 1
α(i), φ 2

αβ
(i, j) and φ 3

αβγ
(i, j,k) are the derivatives of the total energy

with respect to displacement evaluated at equilibrium. As the forces on all atoms are

zero at equilibrium,

Fα(i) = −
(

δE
δdα(i)

)∣∣∣∣
equilib

=−φ
1
α(i), (2.33)

the coefficient φ 1
α(i) vanishes and the remaining coefficients are given by

φ
2
αβ

(i, j) =
(

δ 2E
δdα(i)δdβ ( j)

)∣∣∣∣
equilib

, (2.34)

and

φ
3
αβγ

(i, j,k) =
(

δ 3E
δdα(i)δdβ ( j)δdγ( j)

)∣∣∣∣
equilib

. (2.35)

Within the harmonic approximation we neglect terms beyond the quadratic one. As

the equilibrium energy E0 can be set to zero and the second term of Eq. 2.32 is equal

to zero, we therefore obtain

E ≈ 1
2 ∑

i, j,αβ

φ
2
αβ

(i, j)δdα(i)δdβ ( j) (2.36)

2.7 Dynamical Matrix

The dynamical properties of a crystal structure are described by its dynamical matrix

containing the second partial derivatives of the total energy E with respect to the dis-

placement of the atoms about their equilibrium position. Upon substitution of a mass

weighted displacement,
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eα(i) =
√

Midα(i) (2.37)

yields the energy from Eq. 2.36 as

E =
1
2 ∑

i, j,α,β

(MiM j)−
1
2 φ

2
αβ

(i, j)eα(i)eβ ( j). (2.38)

The dynamical matrix D is defined as

Dα,β (i, j) = (MiM j)−
1
2 φ

2
αβ

(i, j). (2.39)

To calculate the dynamical matrix, the force constant matrix, defined as the second

partial derivative of the total energy with respect to the atomic displacement must be

known. The matrix elements are found upon calculating the forces on atom i in the

direction α , Fα(i), due to the displacement of atom j the direction in β , dβ ( j),

Fα(i) =−φαβ (i, j)dβ ( j) (2.40)

This matrix describes the forces on each atom due to small displacements of the sys-

tem from the equilibrium. The dynamical matrix has the following properties (a) the

matrix is symmetric of order 3N and (b) all the matrix elements are real.

Upon diagonalization of the dynamical matrix we obtain the eigenvalues λk = ω2
k

and the normalized eigenvectors |uk〉, where

〈i,α〉uk = uk(i,α) =
√

Misk(i,α) (2.41)

where sk is the amplitude of motion of atom i in the direction α for the vibrational

mode k.
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2.8 Projected Band Structure

In this thesis we are interested in the electronic structure of interfaces, particularly if

such interface states exist in the band gap. At the beginning of Chapter 3, we show a

germanium surface that has two dangling bonds. These dangling bonds are referred to

as surface states and appear in the band gap of a projected band structure calculation.

Surface states are electronic states found at the surface of materials. They are formed

due to the sharp transition from solid material that ends with a surface and are found

only at the atom layers closest to the surface. The termination of a material with a

surface leads to a change of the electronic band structure from the bulk material to the

vacuum. In the weakened potential at the surface, new electronic states can be formed,

so called surface states. Here we provide the background into how we visualise such

states using a projected band structure calculation.

Bulk crystals are three-dimensional and the wavevectors k and the Brillouin zone

are three-dimensional vectors and objects, respectively. A surface breaks the lattice

periodicity in one direction and the three-dimensional lattice-periodic translational

symmetry reduces to two directions parallel to the surface. The unit cell for the atoms

is semi-infinite in the direction normal to the surface, thus reducing the symmetry of

the underlying crystal. For example, in a cubic crystal when the symmetry is low-

ered, the wavevector k=(k⊥,k‖) is no longer a good quantum number, whereas the

two-dimensional parallel component k‖ remains a good quantum number. Thus elec-

tronic states are described by two-dimensional wavevector k‖ and by two-dimensional

Brillouin zones called surface Brillouin zones.

An ideal surface is obtained by slicing through the crystal with an infinite two-

dimensional plane along crystal planes. The band structure of this semi-infinite space

is obtained by projecting the three-dimensional band structure on the two-dimensional

surface Brillouin zone, thus
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εk = ε(k‖,k⊥) = εk‖(k⊥) (2.42)

The resulting band structure is called the projected band structure. From Fig. 2.2 it is

clear that in the case of the (001) surface all states of k⊥ between Γ and X contribute

to the two-dimensional k‖-point Γ̄.

Figure 2.2: High symmetry points of a face centred cubic three-dimensional Brillouin
zone projected onto a surface Brillouin zone.

First we consider a surface slab model to calculate a band structure around a sur-

face Brillouin zone path which is two-dimensional. Then, using the bulk structure for

the material (i.e, a small primitive cell), we run many conventional band structure cal-

culations around a path that is equivalent to the surface Brillouin zone path but offset

along k⊥ by an increasing value. The difficulty is translating the path from the surface
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Brillouin zone back to the equivalent path in the bulk Brillouin zone. We then take that

same set of k-points and add a constant k⊥ for increasing values of k⊥ until you reach

the Brillouin zone boundary. Once this is done for a sufficient number of k⊥ values,

plotting the bandstructures overlaying each other it is easy to see which regions are

forbidden and so on. The projected band structure is generally shaded and we then

overlay the actual surface slab band structure to see which surface states exist.



CHAPTER 3

Germanium (001)-(2×1) Surface

The structural and electronical characteristics of a

Ge(001)-(2× 1) surface are calculated in a supercell ap-

proach using first-principles density functional theory in the

local density approximation (LDA). Self-consistent calcula-

tions determine the atomic structure and the projected band

structure calculation shows that surface states do exist in

the band gap. These states are described as dangling bond

states due to the up atom and down atom of the Ge-Ge

dimer.

3.1 Introduction

In this chapter we begin with reproducing the work by Rohlfing et al. [27] of a clean

Ge(001) surface using the density functional theory methods that have been described

in detail in Chapter 2. This is a benchmarking exercise to show that our DFT calcula-

tions of a germanium surface produce the same results as published in the literature.

This then provides us with the correct foundations using DFT, to investigate theoret-

ically the vibrational mode frequencies of adsorbed species on a germanium surfaces

in Chapter 4, the GeSi interfaces in Chapter 5 and finally the presence of both sulfur

and hydrogen on the GeSi interface in Chapter 6.

Clean Ge(001) surfaces have been studied intensively in both experiment [62, 63]

and theory [64, 65, 66, 67]. This surface is an interesting example of a system that
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possesses both a strong short-range interaction as well as an energetically weaker,

longer-range ordering. The basic (2×1) reconstruction is generally accepted to entail

the formation of dimers, created through pairing of nearest neighbor surface atoms

[68, 69]. However, Chadi [70, 71, 72] introduced a symmetry reducing distortion in a

model of the Si(001) surface by using asymmetrical rather than symmetrical dimers.

In this empirical tight-binding total-energy calculation, the optimal (2× 2) and (4×

2) [73, 74, 75, 76] surface reconstructions correspond to different arrangements of

buckled asymmetric dimers with partially ionic bonds between dimer atoms.

Detailed studies of the surface electronic structure of Ge(001)-(2× 1) [77] have

been performed with angle-resolved photoemission [78], whereby surface states or

resonances, i.e. the dangling-bond state and two different back-bond resonances are

observed [79]. A full analysis of these surface states are found in Ref [80, 81, 82, 83].

In the work produced by Rohlfing et al. [27], on the clean Ge(001)-(2× 1) sur-

face, asymmetric dimers are formed that are arranged in rows, while in the electronic

structure of this surface, two dangling-bond bands occur within the energy region of

the fundamental gap.

The theoretical work for this surface has been carried out using density functional

theory in the local density approximation (LDA) as the exchange-correlation func-

tional. This allows for a very accurate analysis of the atomic structure by total-energy

minimization. LDA has proven in a large range of bulk and surface systems to yield

geometrical structures in excellent agreement with experimental data. However agree-

ment is not so good with the band structure calculations. The energy band gap between

occupied and unoccupied electronic states of a semiconductor system is underesti-

mated by using LDA.

For surface states the problem becomes even more complicated. As stated in [27],

for many systems the LDA error in the surface gap is different from that in the bulk

gap. Furthermore, the LDA energy of occupied surface states may not be reliable in
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some cases [84].

3.2 Method of Calculation

We use the Teter-Pade parameterization [39] of the local density approximation (LDA)

for the exchange-correlation functional, which allows for an accurate analysis of the

atomic structure by total energy minimisation. We use the ABINIT [85] code to cal-

culate the ground state energies and Hellmann-Feymann(HF) forces. [40] We use

the pseudopotentials of Hartwigsen, Goedecker and Hutter for germanium [42] and

Troullier and Martins [43] for hydrogen. The plane-wave cutoff energy was set at

10 Ha. The method of special k-point generation is based on the Monkhorst-Pack

[41] scheme. We have used an (4×4×4) k-point mesh for all supercells considered.

Structures are optimised until the residual HF forces are less than 0.026 eV/Åand the

surface is relaxed with atomic forces using the Broyden method [86].

The germanium surface is modelled using a nine-layer periodic slab of germanium

atoms with a vacuum layer of 11 Å in a (2× 1) supercell geometry, as shown in

Fig. 3.1(a). Each germanium atomic layer has 2 atoms per layer. The bottom surface

is terminated with hydrogen atoms to represent the underlying bulk, giving a total

of 22 atoms (18 germanium and 4 hydrogen). The lattice constant is held fixed at

the calculated equilibrium value of 5.58 Å for bulk germanium, which is about 1%

smaller than the experimental value of 5.65 Å.

3.3 Results

On relaxation, the germanium surface results in a Ge(001)-(2× 1) reconstructed sur-

face, with Ge-Ge asymmetric dimers arranged in rows as shown in Fig. 3.1(b). The

Ge-Ge buckled dimer has a bond length of 2.43 Å and a buckling angle of 19◦ which
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is in agreement with the work by Rohlfing et al. Ref. [27].

(a) (b)

Figure 3.1: A nine layer slab of germanium atoms, terminated with H on the bottom
surface. (a) Is the initial atomic configuration before structural relaxation. The grey
line represents the (2× 1) supercell geometry. (b) The final relaxed geometry of the
Ge(001)-(2×1) surface.

The more important features of the electronic structure are presented in the pro-

jected band structure in Fig. 3.2(a). The projected band structure for the Ge(001)-

(2×1) surface shows a band gap of 0.26 eV which is consistent with [77]. This value

is much less that the experimental band gap of 0.66 eV [87], which is typical of the

LDA calculation. Two distinct dangling-bond states Dup which is occupied and Ddown

which is unoccupied are shown in Fig. 3.2(a). They are mainly formed by the 4pz

orbitals of the germanium dimer atoms. These states throughout the surface Brillouin

zone are localized at the up or down atoms of the asymmetric dimer, respectively, as

shown in the charge density plots in Fig. 3.2(b) and Fig. 3.2(c) and consistent with

the work presented in [77] and [27]. Both the Dup and Ddown charge density contour

plots in Fig. 3.2(b) and Fig. 3.2(c) are calculated at the K-point. The back bond state

B which is an occupied state induced by the surface is shown in Fig. 3.2(d).

It is important to note the following. The formation of dimers using chemical
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bonding arguments: each Ge atom carries four valence electrons. The outermost sur-

face atoms accommodate two valence electrons each in bonding orbitals with the layer

of atoms underneath, while the remaining two electrons occupy one surface dangling

bond each. This leads to four half-filled orbitals for each pair of surface Ge atoms.

In these conditions it is energetically more favourable for the structure to rearrange to

have only three orbitals occupied, two dangling ones and a third one in between the

two atoms of a dimer. The dangling bonds will be singly occupied while the dimer

bond will be doubly occupied. The double occupation of a dimer bond instead of two

dangling bonds is energetically favourable. In Ge(001)-(2× 1) reconstruction each

dimer carries two identical half occupied dangling bonds and it is possible to reduce

the total energy by tilting the dimer in such a way as to make these orbitals inequiv-

alent. In the tilted configuration which we see in Fig. 3.1(b) called the asymmetric

dimer model (ADM), since the two dangling bonds are inequivalent they must have

different energies, hence the two electrons will both occupy the orbital with the low-

est energy. The calculation shows the four electrons localised around the higher Ge

atom of the dimer while only three electrons approximately localise around the lower

Ge atom. This is an example of a broken symmetry leading to a stabilisation of the

structure. This is the reason why the dangling bond state Dup in Fig. 3.2(b) is fully

occupied and the Ddown in Fig. 3.2(c) is unoccupied.

3.4 Conclusion

In conclusion we have reproduced the theoretical results of [27] for a Ge(001)-(2×1)

surface using density functional theory methods. The asymmetric dimer is produced

at the Ge(001)-(2×1) surface. The projected band structure shows two distinct states

in the band gap, which are dangling-bond states on the surface germanium atoms.
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Figure 3.2: (a) Projected band structure of the clean Ge(001)-(2×1). The shaded area
denotes the projected bulk band structure. Two distinct dangling-bond states Dup and
Ddown and a back bond state B are shown in green. Calculated charge density at the
K-point for the dangling-bond states (b) Dup and (c) Ddown and the back bond state
(d) B.



CHAPTER 4

Vibrational Mode Frequencies of

Adsorbed Species on Ge Surfaces

The equilibrium geometry and vibrational modes of H2S

and H2O-terminated Ge(001)-(2× 1) surfaces are calcu-

lated in a supercell approach using first-principles density

functional theory in the local density (LDA), generalized

gradient (GGA) approximations and van der Waals (vdW)

interactions. Mode frequencies are found using the frozen

phonon method.

4.1 Introduction

Clean and adsorbed Ge(001) surfaces have been studied both in theory and experi-

ment. [20, 27] The bare Ge(001) surface undergoes reconstruction, forming buckled

dimers arranged in rows and reducing the number of dangling bonds from two to one.

This germanium surface exhibits dangling-bond states in the fundamental energy gap,

[27] making it reactive and unsuitable for electronic applications. To reduce such sur-

face states on the Ge(001) surface, a passivation process is required to saturate the

dangling bonds.

Hydrogen, sulphur and water have been studied as absorbates on the Ge surface.

[27, 88] An absorbed monolayer of hydrogen completely passivates the Ge surface,
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with Ge-H bonding states lying far below the fundamental energy gap [27] in a (2×1)

symmetric dimer structure. A monolayer of sulfur causes the bare (2×1) Ge surface

to reconstruct, restoring the (1×1) bulk-like geometry but leaving surface electronic

states in the fundamental gap. [27]

To further passivate the sulfur-terminated surface, termination of the Ge(001) sur-

face by H2S has been studied, [22] showing that the terminated surface forms a (2×1)

reconstruction with (S-H) bonded on each of the Ge dimer atoms. The computed en-

ergy band gap of this configuration is free of surface states, which is of relevance to

the future application of germanium in high performance integrated circuits.

Water, a contaminant in many growth and fabrication processes, also passivates the

Ge(001) surface. [88] Lee et al. [88] showed that terminating the Ge(001) surface with

−OH and−H removes the surface states and thus proposed that H2O might be used at

low temperature for surface passivation. Besides the practical interest in passivation

by both molecules in their own right, given the chemical similarities between H2O and

H2S, it is of interest to compare their bonding with the Ge surface.

Infrared spectroscopy is often used to confirm or investigate proposed bonding

geometries at surfaces, as pioneered in work of Chabal. [23] In this chapter, having

confirmed previously proposed bonding geometries of both H2S, [22] and H2O, [89]

on the Ge(001) surface using density functional theory, we calculate and compare the

vibrational mode frequencies for these structures for different exchange-correlation

functionals, with and without van der Waals interactions, providing useful vibrational

signatures of particular bonding geometries. Our results may be used in combination

with infrared spectroscopy to confirm the surface geometries proposed in Refs. [22]

and [89].

Van der Waals (vdW) interactions [90] or dispersive forces between two atoms

or two molecules arise from the interaction of induced dipole moments, because the

charge fluctuations in one part of the system are electrodynamically correlated with
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charge fluctuations of another. These dispersive forces at one point therefore depends

on charge events at another. Thus, this quantum mechanical phenomenon is a nonlocal

correlation effect.

4.2 Method of Calculation

In our calculations the surfaces are represented in a supercell geometry [29]. Structural

total energies and atomic forces are calculated using first-principles density functional

theory [91] in both the local density (LDA) and generalized gradient (GGA) approx-

imations [91]. Vibrational mode frequencies are obtained using the frozen phonon

method [92], in which the dynamical matrix is calculated from the fitted restoring

forces in the harmonic limit. Diagonalization of the dynamical matrix gives the vi-

brational mode frequencies and corresponding atomic motions for the H2S and H2O

adsorbed on a Ge(001)-(2× 1) surface. We also report the equilibrium bond lengths

and angles at the surface and the energies required for breaking these surface bonds.

We use local density approximation (LDA) of Perdew-Wang [39] and the gen-

eralized gradient approximation (GGA) proposed by Perdew-Burke-Ernzerhof [44],

as provided in the ab initio codes used which we will discuss later. Both exchange-

correlation functionals allow for an accurate analysis of the atomic structure by total

energy minimisation. We calculate results with both to give an indication of the un-

certainties arising from the specific form of the exchange-correlation functional used.

We use the QUANTUM ESPRESSO [91] code to calculate the ground state energies

and Hellmann-Feymann(HF) forces. [40] The ab initio separable pseudopotentials

used by QUANTUM ESPRESSO have been computed in both LDA and GGA with

the code of the Fritz-Haber-Institute (FHI) [93] implementing the scheme of Troullier-

Martins [43], so that the 3d states of Ge have been fully treated as valence states. The

plane-wave cutoff energy was set at 10 Ha and 20 Ha for calculations involving sul-
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fur and oxygen, respectively. The method of special k-point generation is based on

the Monkhorst-Pack [41] scheme. We have used an 8 k-point mesh for all supercells

considered.

The germanium surface is modelled using a nine-layer periodic slab of germanium

atoms with a vacuum layer of 11 Å, as shown in Fig. 4.1(a). The bottom surface is

terminated with hydrogen atoms to represent the underlying bulk. The lattice constant

is held fixed at the calculated equilibrium value of 5.57 Å for bulk germanium, which

is about 1% smaller than the experimental value of 5.65 Å. On relaxation, the Ge

surface results in a Ge(001)-(2×1) reconstructed surface, with a Ge-Ge buckled dimer

bond length of 2.43 Å and a buckling angle of 19◦, in agreement with Ref. [27] where

the dimer bond length is 2.42 Å and the buckling angle is 19◦.

Two H2S molecules are then positioned above the calculated equilibrium Ge(001)-

(2×1) surface containing the Ge-Ge buckled dimers, as shown in Fig. 4.1(b) [22] and

the structure is relaxed with atomic forces using the Broyden quasi-Newton algorithm

[86]. One of the two H2S molecules is adsorbed onto the surface, by bonding of the

S atom to one of the Ge dimers (forming a Ge-S-H bond) while the other H atom

is adsorbed onto one of the Ge dimers from the neighbouring dimer row, forming

a Ge-H bond, as shown in Fig. 4.1(c). The Ge-H bond has been reported to break,

with desorption of H from the surface at temperatures in the range of 200− 250 ◦C,

[94] and since the temperature used for H2S exposure is 330 ◦C, [22] breaking of

the Ge-H bond should occur. As we cannot simulate such a scenario directly with our

molecular dynamics, we artificially cause the H desorption by breaking the Ge-H bond

and moving the H atom away from the surface. With the Ge-H bond broken, another

H2S molecule adsorbs onto the surface. The equilibrium geometry after structural

relaxation produces Ge-S-H bonds on a (2× 1) reconstructed surface, as shown in

Fig. 4.1(d).

Weak van der Waals (vdW) interactions during the adsorption process might ap-
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pear to be a concern when some species are neither entirely desorbed nor adsorbed. In

order to investigate if such vdW interactions do occur, we complete an analysis with

a larger unit cell (vacuum layer ≈ 30 Å) to ensure negligible interaction of the des-

orbed species with the surface, as is physically required. First-principles approaches

for how vdW can be treated in DFT were proposed by Lee et al. [58], where they

propose a second version of the vdW density functional of Dion et al. [50]. The

structures Fig. 4.1(c) and Fig. 4.1(d) are re-relaxed as before with this larger unit cell

and the vdW density functional as described in Ref. [58]. In LDA, the H2S molecule

in Fig. 4.1(c) is located ≈ 0.4 Å above its initial position due to vdW as shown in

Fig. 4.2(a) and with an energy gain of ≈ 36 eV per supercell. While in GGA the

molecule is closer to the surface by ≈ 0.1 Å as shown in Fig. 4.2(a) and with an en-

ergy gain of ≈ 28 eV per supercell. The H2 molecule in Fig. 4.1(d) for LDA is ≈ 2.1

Å further away due to vdW as shown in Fig. 4.2(b) and with an energy gain of ≈ 36

eV per supercell. While again GGA predicts the H2 molecule closer to the surface by

≈ 0.3 Å as shown in Fig. 4.2(b) and with an energy gain of ≈ 28 per supercell. A full

list of the total energies per supercell is given in the Appendix in Table A.1

However, it should be noted that in the initial and final physical geometries, all

chemical species are considered to be either covalently bonded to the surface or are

completely desorbed and far from the surface. Thus, we expect the weak vdW in-

teractions will not be relevant to the final results presented. The differences between

functionals including vdW terms and the LDA or GGA are expected to be substantially

less than the differences between LDA and GGA.

The dissociation of the H2S molecule should this occur results in a equilibrium

surface geometry as shown in Fig. 4.1(d). The total energy gain after dissociative

adsorption from Fig. 4.1(c) to Fig. 4.1(d) is 0.25 eV (0.25) in LDA (GGA). This con-

firms that the H2S-terminated Ge(001)-(2×1) surface in Fig. 4.1(d) is the most stable

bonding geometry. Using vdW interactions in our geometry relaxation calculations,
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the total energy gain after dissociative adsorption from Fig. 4.1(c) to Fig. 4.1(d) is

0.30 eV (0.31) in LDA (GGA), thus confirming Fig. 4.1(d) as the most stable struc-

ture. The calculated equilibrium lengths of the surface bonds are shown in Table 4.1.

(This relaxed geometry is used as the initial atomic structure to calculate the GGA

relaxed surface as shown also in Fig. 4.1(d))

4.3 Results and Discussion

A comparison of the bond lengths for LDA, GGA, vdW, experimental values and

calculated covalent radii are presented in Table 4.1. The LDA Ge-Ge dimer bond

length of 2.49 Å is in good agreement with the experimental value of 2.45± 0.06 Å

measured using the grazing incidence x-ray diffraction from the clean Ge(001)-(2×1)

surface [2]. The Ge-S bond lengths we calculated using LDA and LDA vdW and the

H-S bond length using LDA provide better approximations when compared to the sum

of their corresponding covalent radii [1].

Table 4.1: Calculated bond lengths (in Å) for H2S on a Ge(001) surface for the LDA,
GGA and vdW relaxed structures shown in Fig. 4.1(d). Experimental bond lengths
and calculated covalent radii from aRef. [1] and bRef. [2] are given. Note that the
error bar associated with the bonding length in bRef. [2] is in the order of 0.6 Å due
to the limited data set.

LDA LDA vdW GGA GGA vdW Expt Cov Radii
Ge-S Fig 4.1(d) 2.22 2.23 2.27 2.29 2.24a

Ge-Ge dimer Fig 4.1(d) 2.49 2.51 2.52 2.56 2.45b 2.44a

H-S Fig 4.1(d) 1.38 1.36 1.37 1.36 1.39a

H-H molecule Fig 4.1(d) 0.78 0.73 0.75 0.73 0.74a

The vibrational mode frequencies and atomic vibration amplitudes are determined

upon diagonalization of the dynamical matrix. Within the harmonic approximation,

the displacement dβ ( j) of atom j in the direction β creates a force on atom i in the

direction α:
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(a) (b)

(c)

(d)

Figure 4.1: (a) A nine layer periodic slab of Ge atoms, terminated with H on the bot-
tom surface. (b) Initial atomic configuration of the Ge(001)-(2× 1) surface exposed
to H2S. (c) After structural relaxation one H2S is adsorbed onto the surface with the
formation of Ge-S-H and Ge-H bonds. (d) Artificial breaking of the Ge-H bond al-
lows another H2S molecule to be adsorbed onto the surface, producing a more stable
equilibrium geometry. Two distinct surface sites on the Ge(001)-(2× 1) surface are
illustrated in red.
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(a)

(b)

Figure 4.2: The (a) H2S and (b) H2 molecule in LDA (GGA) are positioned above
the Ge(001)-(2×1) surface from Fig. 4.1(c) and Fig. 4.1(d), respectively. A reference
line is shown in red. Upon re-relaxing the equilibrium geometry using van der Waals
interactions, the H2S molecule in (a) and the H2 molecule in (b) moves further from
the surface in LDA (GGA).
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Fα(i) =−Φαβ (i, j)dβ ( j). (4.1)

Once the fully relaxed structure (Fig. 4.1(d)) has been obtained for the H2S on the

Ge(001)-(2×1) surface, we compute the force constant matrix Φαβ (i, j), calculating

the Hellman-Feynman forces Fα(i) induced by making a displacement dβ ( j) of each

surface atom in the three orthogonal directions. Displacements at intervals of 0.01 Å

from equilibrium were used, up to a maximum of 0.04 Å. A good fit was obtained

when the force on each atom i was fitted with a polynomial of order two in the dis-

placement dβ ( j) and the corresponding element of the force constant matrix Φ(i, j)

was taken as minus the derivative of the fitted force at zero displacement. Diagonaliza-

tion of the dynamical matrix, D(i, j) = Φ(i, j)/√mim j, where mi is the mass of atom

i, results in the eigenvalues λk = ω2
k and the eigenvectors |uk〉, which give the relative

direction and amplitude of the displacement (scaled by
√

mi) of each atom i for each

vibrational mode. Because we are concerned only with the calculation of localized

vibration modes, whose frequency is above the range of the bulk germanium phonon

bands, it is not necessary to calculate the full dynamical matrix including all atomic

displacements; only motion of the H, S and O atoms and their nearest neighbour Ge

atoms are considered. [95] (We find the corrections to the localized mode frequencies

due to the nearest neighbour Ge atom recoil are small and corrections [95] for the

motion of Ge atoms further into the bulk are negligible.)

We did an initial calculation of the recoil effect with the ABINIT code [85] us-

ing the Teter-Pade parameterization [39] of the local density approximation and the

pseudopotentials of of Hartwigsen, Goedecker and Hutter for germanium [42] and

Troullier and Martins [43] for hydrogen and sulfur. Here we displaced the hydrogen

atoms only bonded to the sulfur atoms on the surface and calculated the vibrational

mode frequencies as reported in Table 4.2. We repeated the calculation moving the
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hydrogen and sulfur surface atoms only and also moving the hydrogen, sulfur and

germanium surface atoms only as shown in Table 4.2. We see the S-H stretch mode

only varies by 36 cm−1 in these three different calculations, the S-H bending mode

by 12 cm−1, the Ge-S stretch mode by 63 cm−1 and the S-H wag mode by 6 cm−1.

The largest variation here is in the Ge-S stretch, however the correction is still small

and all these modes are around the 350 cm−1. This provides the evidence that the

mode frequencies due to the nearest neighbours recoil are small, thus we are confident

that calculating the vibration mode frequencies for the germanium atoms in the bulk

is unnecessary.

Table 4.2: Calculated vibrational mode frequencies (in cm−1) for H2S on a Ge(001)
surface for the relaxed structures shown in Fig. 4.1(d)

S-H Stretch S-H Bend Ge-S Stretch S-H Wag
Fig. 4.1(d) LDA 2381 697 292
(Displace H) 2345 684
Fig. 4.1(d) LDA 2417 707 323 295
(Displace H & S) 2380 695 308
Fig. 4.1(d) LDA 2417 709 393 298
(Displace H, S & Ge) 2380 697 384

359

We report the localized vibrational mode frequencies of structures in Fig. 4.1(d)

for LDA and GGA, with and without vdW in Table 4.3. For reference, a calcula-

tion was carried out to determine the vibrational mode frequencies of an isolated H2S

molecule and compared to the experimental data. [3] The H2S molecule was placed

in a large cubic cell (20 Bohr) and after relaxation using LDA (GGA), produced a S-H

bond length of 1.36 Å (1.36 Å) and a bond angle of 91◦ (91.6◦). The calculated bond

length is 2% (2%) greater than the experimental value. Upon relaxation, using the

vdW correction, LDA (GGA) produced a S-H bond length of 1.35 Å (1.36 Å) and a

bond angle of 92.5◦ (92.6◦), which is 1% (2%) greater than the experimental value.

The vibrational mode frequencies, given in Table 4.3, were found to be 2545 cm−1

(2547) and 2562 cm−1 (2565) for the S-H symmetric and anti-symmetric stretch, re-
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(a)

(b)

Figure 4.3: (a) A GeS−H and (b) a Ge−SH bond is broken on the surface and the H
and SH atoms are moved respectively, 5 Å from the germanium surface.
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Table 4.3: Calculated vibrational mode frequencies (in cm−1) for H2S adsorbed on
a Ge(001) surface for the relaxed structure shown in Fig. 4.1(d) and the isolated
molecule using both LDA and GGA. Experimental frequencies for H2S molecule from
Ref. [3] are also shown.

S-H Stretch S-H Bend Ge-S Stretch S-H Wag
Fig. 4.1(d) LDA 2438 718 396 328

2419 706 374
Fig. 4.1(d) LDA vdW 2492 748 364 333

2473 736 346
Fig. 4.1(d) GGA 2495 708 373 337

2484 704 353
Fig. 4.1(d) GGA vdW 2481 729 352 315

2469 719 332
Molecule LDA 2562 1117

2545
Molecule LDA vdW 2541 1187

2524
Molecule GGA 2565 1140

2547
Molecule GGA vdW 2525 1179

2508
Molecule Experiment 2733.4 1214.5

2721.9
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spectively, and 1117 cm−1 (1140) for the bond bending mode. For LDA (GGA) with

vdW interactions, the symmetric and anti-symmetric stretch are 2524 cm−1 (2508)

and 2541 cm−1 (2525) respectively, and a bond bending mode of 1187 cm−1 (1179).

We see from Table 4.3 that LDA produces stretch and bond bending modes to within

6% and 8% respectively, of experimental values for the H2S only, while GGA pro-

vides a slightly better approximation, with both stretch and bending mode within 6%

of experiment. With the vdW interaction, LDA produces a stretch to within 7% of

experiment but the bending mode is much improved to be within 2%. Similarly GGA

with vdW, overestimates the stretch to 8%, while the bending is closer to the exper-

imental value by 3%. Given that the calculated equilibrium bond lengths are larger

than the experimental value in LDA, GGA and vdW cases, it is not surprising that our

calculated mode frequencies for the molecule using both LDA and GGA are somewhat

less than experiment.

Two different surface sites exist on the H2S passivated Ge(001)-(2×1) as seen in

Fig. 4.1(d), with the frequency difference of 19 cm−1 (11) between S-H stretch modes

on these two sites. As the modes on the two sites are similar, we averaged the vibra-

tional frequencies. The LDA (GGA) calculated average S-H stretch mode frequency

of 2429 cm−1 (2490) in the H2S passivated Ge(001)-(2×1) surface is approximately

125 cm−1 (66) less than the stretch mode in isolated H2S molecule. Thus, bonding to

germanium weakens the S-H bond and reduces the mode frequency, consistent with

the slightly longer S-H bond 1.38 Å (1.37) following adsorption. In this calculation

GGA results in a S-H stretch mode of 61 cm−1 greater than LDA, as expected from the

smaller S-H bond length in GGA. A comparison of these results with those produced

with the vdW interaction, we see a difference in the LDA (GGA) S-H averaged stretch

of 54 cm−1 (15), which is somewhat less than the difference between LDA and GGA

without vdW.

The LDA (GGA) averaged S-H bond bending mode of 712 cm−1 (706), is signif-
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icantly less than the bond bending mode frequency of 1117 cm−1 (1140), calculated

for the H2S molecule. In the isolated molecule, the bond-bending mode involves a

symmetric oscillation of both H atoms, resulting in a frequency

ω =

√
k

mred
=
√

2k
mH

(4.2)

where k is the force constant associated with the bond-bending motion and mred =

mH/2 is the reduced mass of the two H atoms. When S-H is bonded to Ge on the

surface, the bond bending mode involves primarily the motion of the H atom, the am-

plitude of motion of the heavy Ge atom being much smaller, and the mode frequency

is approximately

ω =
√

k
mH

(4.3)

Thus, if the Ge-S-H bonding bending force constant were the same as the H-S-H

bending force constant, the bending mode frequency would be a factor of
√

2 smaller

for the adsorbed species than for the free H2S molecule. A reduction of the LDA

(GGA) calculated molecular frequency by
√

2 results in a frequency of 790 cm−1

(806), 78 cm−1 (100) greater than the calculated Ge-S-H bond bending frequency.

This indicates slightly softer bond-bending forces for the Ge-S-H bond, compared to

the H-S-H, again consistent with the longer S-H bond for the adsorbed species. Both

LDA and GGA produce very similar frequencies for the bending mode, despite the fact

that GGA produces a better bending mode frequency in the isolated molecule. VdW

with LDA (GGA) produces a larger bending mode frequency of 742 cm−1 (724),

which is consistent with the smaller S-H bond length.

The Ge-S stretch mode at 377 cm−1 (363) in LDA (GGA), characterizes the bond-

ing of S to Ge. Since this value lies above the maximum germanium bulk vibration

frequency of about 301 cm−1 [96], this localized Ge-S stretch mode may be observ-
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able in infrared spectroscopy. The inclusion of vdW interactions with LDA (GGA)

increases the Ge-S bond length and as expected reduces the stretch mode to 355 cm−1

(342). There is no great difference in the vibrational results for LDA, GGA and vdW.

A S-H wag mode of 328 cm−1 (337) in LDA (GGA) may also be visible, despite

the fact that this mode is near the germanium bulk vibration frequency of about 301

cm−1. Similarly in vdW with LDA (GGA), we see such a mode at 333 cm−1 (315).

We calculated the localized vibrational mode frequencies also for the structure in

Fig. 4.1(c) for LDA and GGA, with and without vdW. We also calculated the vibra-

tional mode frequencies for the structures in Fig. 4.1(c) and Fig. 4.1(d) without the

desorbed molecules and all the results are reported in Table A.2 in Appendix A.

To calculate the energies to break the Ge−SH and GeS−H bonds in the relaxed

structure (Fig. 4.1(d)), we artificially move the SH and H, respectively, 5 Å from the

germanium surface as shown in Fig. 4.3(a) and Fig. 4.3(b). The energy difference

between this relaxed structure and the bonded structure in Fig. 4.1(d) is the bond

breaking energy for LDA (GGA) calculations. A bond breaking energy of 3.59 eV

(3.03) and 4.27 eV (4.02) is required to break the Ge−SH and GeS−H bonds, re-

spectively; an extra 0.68 eV (0.99) is required to break the Ge−SH bond compared to

the GeS−H bond. Including vdW with LDA (GGA), an energy of 3.07 eV (2.83) and

3.94 eV (3.80) is required to break the Ge−SH and GeS−H bonds, respectively.

We reported in Table A.1 the total energy per (2× 1) supercell for Fig. 4.1(c)

and Fig. 4.1(d). Two further calculations were done: first we removed the relevant

molecule completely from the supercell, re-relax the structure to calculate a new en-

ergy, and secondly we calculate the energy of the molecule on its own in the supercell.

These energies are presented also in Table A.1. In LDA, LDA vdw and GGA vdW,

the configuration in Fig. 4.1(c) is more stable than the configuration with the H2S

molecule entirely desorbed, while for GGA the opposite is the case. With Fig. 4.1(d),

the case where the H2 molecule is removed from the surface is more stable.
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Using the same starting Ge(001)-(2×1) configuration as shown in Fig. 4.1(d), we

replace the H2S with H2O [97, 98] and repeat the same structural relaxation as that was

performed previously for H2S. Using LDA (GGA) the relaxed structure in Fig. 4.4(b)

[99, 100] is much more stable than that of Fig. 4.4(c), with a total energy lower by 0.15

eV (0.32) per (2×1) supercell. The more energetically favourable structure for both

LDA and GGA, Fig. 4.4(b), produces a Ge-O-H and Ge-H configuration consistent

with that of Jung et al. [89]. However with the inclusion of the vdW interaction, LDA

produces the stable structure (Fig. 4.4(b)) with a total energy lower by 0.07 eV, while

GGA results in Fig. 4.4(c) being the more stable geometry by 0.1 eV. A comparison

of the bond lengths for LDA, GGA, vdW, experimental values and calculated covalent

radii are presented in Table 4.4 for the H2O passivated Ge(001)-(2×1) surfaces.

Table 4.4: Calculated bond lengths (in Å) for H2O on a Ge(001) surfaces for the LDA,
GGA and vdW relaxed structures shown in Fig. 4.4(b) and Fig. 4.4(c). Experimental
bond length and calculated covalent radii from aRef. [1] and bRef. [2] are given.

LDA LDA vdW GGA GGA vdW Expt Cov Radii
Ge-O Fig 4.2(b) 1.80 1.79 1.86 1.87 1.95a

Ge-H Fig 4.2(b) 1.53 1.50 1.54 1.53 1.59a

Ge-Ge dimer Fig 4.2(b) 2.46 2.50 2.53 2.57 2.45b 2.44a

H-O Fig 4.2(b) 0.98 0.97 0.98 0.98 1.10a

H-O molecule Fig 4.2(b) 1.00 0.98 0.99 0.98 1.10a

Ge-O Fig 4.2(c) 1.77 1.78 1.84 1.85 1.95a

Ge-Ge dimer Fig 4.2(c) 2.48 2.53 2.56 2.60 2.45b 2.44a

H-O Fig 4.2(c) 0.99 0.97 0.98 0.98 1.10a

H-H molecule Fig 4.2(c) 0.78 0.73 0.75 0.73 0.74a

The localized mode frequencies for the structures shown in Fig. 4.4(b) and Fig. 4.4(c)

are given in Table 4.5.

A reference calculation for the H2O molecule gave a H-O bond length of 0.98

Å (0.97 Å) which is 2% (1%) greater than the experimental value. The vibrational

mode frequencies for LDA (GGA) were found to be 3602 cm−1 (3602), 3713 cm−1

(3709) and 1581 cm−1 (1624) for the symmetric, anti-symmetric and bond bending

modes. In these reference calculations, despite the greater LDA H-O bond length,
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(a)

(b)

(c)

Figure 4.4: (a) Initial atomic configuration of the Ge(001)-(2×1) surface exposed to
H2O. (b) After structural relaxation one H2O is adsorbed onto the surface with the
formation of a Ge-O-H and Ge-H bonds. (c) Artificial breaking of the Ge-H bond
allows another H2O molecule to be adsorbed onto the surface. The resulting structure
in (c) is less stable than that in (b).
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Table 4.5: Calculated LDA and GGA vibrational mode frequencies (in cm−1) for H2O
on a Ge(001) surface for the relaxed structures shown in Fig. 4.4(b) and Fig. 4.4(c)
and for the isolated molecule. Experimental frequencies for H2O molecule from Ref.
[3] are also shown.

H-O Stretch H-O Bend Ge-H Stretch Ge-H Bend Ge-O Stretch H-O Wag
Fig. 4.2(b) LDA 3590 921 1995 538 609 342

455
Fig. 4.2(b) LDA vdW 3583 947 2067 543 621

531
Fig. 4.2(b) GGA 3600 940 1991 486 559 336

469
Fig. 4.2(b) GGA vdW 3552 951 2000 504 579 401

483 538
Fig. 4.2(c) LDA 3593 984 677 381

3498 909 654
Fig. 4.2(c) LDA vdW 3557 972 652 347

3555 937 612
Fig. 4.2(c) GGA 3577 969 621 340

3575 942 586
Fig. 4.2(c) GGA vdW 3548 970 587 362

3524 942 537
Molecule LDA 3713 1581

3602
Molecule LDA vdW 3677 1635

3573
Molecule GGA 3709 1624

3602
Molecule GGA vdW 3624 1591

3584
Molecule Experiment 3942.5 1648.5

3833.2



4.3. Results and Discussion 52

both LDA and GGA provide very similar stretching modes, while GGA results in a

more accurate bond bending mode frequency. With the vdW interactions, the H2O

molecule gave a H-O bond length of 0.98 Å (0.98 Å) which is 2% (2%) greater than

experiment. The corresponding LDA (GGA) frequencies were found to be 3573 cm−1

(3584), 3677 cm−1 (3624) and 1635 cm−1 (1591) for the symmetric, anti-symmetric

and bond bending modes. VdW produces results here that are less accurate, compared

to the experimental values for the stretch modes, while LDA bending mode frequency

is almost identical to experiment.

In LDA (GGA) the H-O stretch mode is about 120 cm−1 (109) less than the iso-

lated molecule stretch mode, a shift very similar to that found for the H-S stretch.

This, despite the fact that the O-H bond length of 0.98 Å (0.98 Å) in the adsorbed

species is the same as in the molecule. The LDA vdW produces a H-O stretch mode

of 3583 cm−1, 7 cm−1 less than the LDA mode without vdW. However, the bond

bending mode of 921 cm−1 (940) is 196 cm−1 (208) smaller than 1581/
√

2 = 1117

cm−1 (1148), the frequency we should expect if the Ge-O-H bending force constant

were the same as the H-O-H constant, indicating a substantially softened O-H bond

in the absorbed species. Similarly with vdW, the bending mode of 947 cm−1 is 209

cm−1 smaller than the expected value of 1156 cm−1.

A Ge-O stretch mode is reported at 609 cm−1 (559), which characterizes the bond-

ing of O to Ge. A slightly higher mode is produced from vdW at 653 cm−1, again

consistent with the shorter Ge-O bond length.

The presence of the Ge-H stretch mode distinguishes the equilibrium surface in

Fig. 4.4(b) from the equilibrium surface in in Fig. 4.4(c), with the LDA (GGA) stretch

mode reported at 1995 cm−1 (1991). A Ge-H bond bending mode is seen at 498

cm−1 (478). With the vdW interaction, the Ge-H stretch is higher at 2067 cm−1 and

the bending mode at 537 cm−1. No large differences are seen between the LDA, GGA

and LDA vdw vibrational frequencies for the surfaces except for the Ge-H stretch
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mode, where LDA vdw is 72 cm−1 higher.

For the relaxed GGA vdW surface (Fig. 4.4(c)), we report a H-O stretch of 3536

cm−1, H-O bending of 956 cm−1 and a Ge-O stretch of 562 cm−1.

The same procedure as discussed earlier in this chapter which is shown in Fig. 4.3(a)

and Fig. 4.3(b) followed for H2S is repeated to calculate the bond breaking energies

for the H2O passivated Ge(001)-(2× 1) surface (Fig. 4.4(b)). In LDA (GGA) an en-

ergy of 4.88 eV (4.11) is required to break the Ge−OH bond, 5.30 eV (5.08) for the

GeO−H and 3.94 eV (3.73) for Ge−H. In vdW, LDA (GGA) require an energy of

4.47 eV (4.11) is required to break the Ge−OH bond, 4.93 eV (4.86) for the GeO−H

and 3.9 eV (3.69) for Ge−H. The difference between the bond breaking energies of

Ge−OH bond and GeO−H is 0.42 eV (0.97), and in vdW, 0.46 eV (0.75), indicating

in both cases of the H2S and the H2O bonded to the germanium surface, the H−S and

H−O bonds are stronger than the Ge−SH and Ge−OH. The Ge−H bond being the

weakest bond on this H2O passivated germanium surface.

We report the total energy per (2× 1) supercell for Fig. 4.4(b) and Fig. 4.4(c) in

Table A.1 . For Fig. 4.4(b) the original case where the H2O molecule is near the

surface is energetically favourable, while for structure Fig. 4.4(c), a mixture of both

the H2 molecule close to the surface and completely removed exist.

Vibrational mode frequency calculations were repeated for all H2S and H2O ad-

sorbed on Ge(001)-(2× 1) surfaces with the desorbed molecule removed from the

calculation, and are reported in Table 4.3 and Table 4.5. The difference in the vi-

brational frequencies with the molecules removed only affects the results by a few

wavenumbers.
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4.4 Conclusions

In conclusion, we see both similarities and differences in the bonding of H2S and

H2O to the Ge(001)-(2×1) surface. The differences between the exchange-correlation

functionals including vdW terms and the LDA or GGA are less than the differences

between LDA and GGA, thus vdW does not greatly alter the vibrational mode fre-

quencies. Two distinct absorption sites of H-S exist for the more stable H2S structure,

whereas only one is present for OH in the stable (LDA, GGA and LDA vdW) H2O

structure. The bond bending mode for the adsorbed H2S is of the order of
√

2 of the

bond-bending frequency in the free molecule, while the corresponding modes of the

H2O is considerably less, indicating a much greater weakening of bonding bending

forces. These calculated localized mode frequencies, particularly the Ge-S and Ge-O

stretch modes, provide useful vibrational signatures of bonding of both sulfur and oxy-

gen on Ge(001)-(2x1) surface, which may be compared with vibrational spectroscopy

measurements. The Ge-H stretch and bending modes are characteristic in identifying

the difference between the two H2O to the Ge(001)-(2× 1) surfaces (Fig. 4.4(b) and

Fig. 4.4(c)).



CHAPTER 5

Ge-Si Interfaces

The structural and electronic characteristics of a Ge-

Si(001) interface are calculated in a supercell approach

using first-principles density functional theory in the local

density approximation (LDA) for regions where the germa-

nium and silicon atoms align and misalign. Self-consistent

calculations determine the atomic structure and the band

lineup of the germanium and silicon band structures. Pro-

jected band structure calculations show the existence of in-

terface states in the band gap.

5.1 Introduction

In this chapter we are investigating a theoretical approach to the wafer bonding of

germanium to silicon, which is the pressing together of a wafer of germanium to a

wafer of silicon using force, to create a bond between the two wafers. One problem

with this is the mismatch in the lattice constant. If the germanium matches the silicon

well in some regions, which we define as the lattices aligned, then they will match

poorly in neighbouring regions, which we define as the lattices are misaligned. Both

the aligned and misaligned regions of the interface are shown in Fig. 5.1. The aligned

regions imply that the germanium atoms lie in the same vertical plane as the silicon

atoms where we expect no broken bonds, thus leading to good mechanical and elec-
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trical characteristics. The misaligned regions imply the silicon atoms do not lie in the

same vertical plane as the germanium atoms and we expect such regions of misalign-

ment to result in broken bonds and interface states, thus leading to poor mechanical

contact and electrical transmission characteristics.

Figure 5.1: The GeSi interface showing the regions where the germanium and silicon
interface atoms are aligned and misaligned.

With the lattice constant of germanium being about 4 % larger than silicon, we

would require a calculation of a (30× 30) size supercell to represent the regions of

going from alignment to misalignment. However, such a supercell is too large for

us to calculate using density functional theory so we investigate the best and worst

case scenarios only, that being the region of perfect alignment and complete misalign-

ment, respectively. We expect the region of lattice alignment to show a good interface,

meaning good chemical bonds and no interface states, while in the region of misalign-

ment we expect to see an interface reconstruction in order to adjust the bonding at the

interface and also the presence of interface states due to dangling bonds.

An important point must be made here with regard to all calculations. As the calcu-

lations involve a supercell approach using a first-principles density functional theory

calculation, we need to choose the size of the lattice for the supercell. It is simply not

possible to run a calculation with a germanium bulk wafer bonded to a silicon bulk and

have the lattice constants of both being used in the structural relaxation and electronic
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properties. We run all calculations for the structural relaxation and electronic proper-

ties such as projected band structures, potential energy and charge density first using

the germanium lattice constant and we repeat all these calculations with the silicon

lattice constant. From this we expect the true wafer bonded results for both structural

and electronic properties lay somewhere between the result of using the germanium

and silicon lattice constants.

5.2 Method of Calculation

In our calculations the interfaces are represented in a supercell geometry [29]. Struc-

tural total energies and atomic forces are calculated using first-principles density func-

tional theory [85]. We use the Teter-Pade parameterization [101] of the local density

approximation. We use the ABINIT [85] code to calculate the ground state energies.

We use the pseudopotentials of Hartwigsen, Goedecker and Hutter for germanium

[42] and Troullier and Martins [43] for hydrogen and silicon. The plane-wave cut-

off energy was set at 20 Ha. The method of special k-point generation is based on

the Monkhorst-Pack [41] scheme. We have used a 32 k-point mesh for all supercells

considered.

The germanium slab is modelled using a nine-layer periodic slab of germanium

atoms. The bottom surface is terminated with hydrogen atoms to represent the un-

derlying bulk. Silicon is modelled in the same way as germanium and is placed over

the germanium slab as shown in Fig. 5.2(a). In the aligned case the GeSi interface

is represented using a (1×1) supercell geometry, with one atom per layer in the ger-

manium and silicon layers, implying a total of 22 atoms (9 germanium, 9 silicon and

4 hydrogen). The misaligned case is represented using a (2× 1) supercell geometry.

Each germanium and silicon atomic layer has 2 atoms per layer, giving a total of 44

atoms per supercell (18 germanium, 18 silicon and 8 hydrogen). For the silicon lattice
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to be misaligned with germanium, the silicon slab is shifted so that the silicon atoms

do not lie in the same vertical plane as the germanium atoms, as shown in Fig. 5.2(c).

The supercell has a vacuum layer of 18 Å. The lattice constant is held fixed at the

calculated equilibrium value of 5.58 Å for bulk germanium, which is about 1% smaller

than the experimental value of 5.65 Å. We also relaxed the aligned and misaligned

structures using the lattice constant of silicon, at the calculated value of 5.41 Å which

is about 0.4% smaller than the experimental value of 5.43 Å. Structures are optimised

until the residual HF forces are less than 0.026 eV/Å and all interfaces are relaxed

with atomic forces using the Broyden method as described in the paper by Schlegel

[86]. The atoms on the three atomic layers on both sides of the GeSi interface as

shown in Fig. 5.2(a) and Fig. 5.2(c) are only allowed to relax. All the other atoms

in the GeSi slab are held fixed in position to represent the underlying bulk. This

method of confining the relaxation was tested in the Ge(001)-(2×1) surface where all

atomic layer were relaxed and only the top three layers were involved in the surface

reconstruction. With the relaxation confined to these layers near the interface in both

slabs, the structure is allowed to relax. After relaxation the silicon slab is brought

closer to the germanium slab, thus reducing the interface separation and the interface

is allowed to relax again as before. This process is continued until a minimum energy

is found for the supercell, which gives the final relaxed geometry.

5.3 Interface using the Germanium Lattice Constant

5.3.1 Structural Relaxation

On relaxation using the lattice constant for germanium for our GeSi supercell, the

GeSi aligned interface results in a GeSi(001)-(1× 1) structure, with a Ge-Si bond

length of 2.39 Å as shown in Fig. 5.2(b). The relaxed GeSi mismatched lattice re-
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sults in a GeSi(001)-(2× 1) reconstructed interface as shown in Fig. 5.2(d), with the

presence of alternating 5-fold and 7-fold rings in the mismatched regions to adjust the

bonding at the interface. This bonding region has a Ge-Ge and Si-Si symmetric dimer

bond length of 2.43 Å and 2.50 Å respectively, and a Ge-Si bond length of 2.41 Å.

5.3.2 Band Lineup

A fundamental problem in deriving band lineups at interfaces is that for a bulk solid

there is no intrinsic zero of energy to which all energies are referred [102], and there-

fore there exists no unique reference to compare the potentials of two different solids.

In order to derive the potential shift which occurs at the interface of germanium and

silicon, we perform a calculation where the average local potential V loc(z) is given as

V loc(z) =
∫

V (r)dxdy (5.1)

where the variation of space coordinate r is limited to the perpendicular component

z to the interface and the potential is averaged over the parallel components x and y.

The local potential is the total Kohn-Sham potential which is defined as the sum of the

local pseudopotential, the Hartree potential and the exchange-correlation potential.

The local potential of the GeSi aligned and misaligned slab interfaces are presented in

Fig. 5.3(a) and Fig. 5.3(b), respectively.

In the regions far from the interface, the slab structure returns to the properties

of the bulk. We averaged the potential over a fixed number of repetitions (6 in the

aligned slab and 3 in the misaligned slab) in the bulk-like regions to get the average

local potential levels V Ge and V Si. The potential shift

∆V = V Ge−V Si, (5.2)
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(a) (b)

(c) (d)

Figure 5.2: (a) The initial atomic configuration of the GeSi aligned structure. (b)
After structural relaxation a GeSi(001)-(1× 1) is produced. (c) The initial atomic
configuration of the GeSi misaligned structure. (d) The final relaxed geometry results
in a GeSi(001)-(2×1) interface.
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Figure 5.3: The local potential V loc(z) averaged over the parallel components x and y
as a function of the perpendicular coordinate z, to the interface for (a) the aligned and
(b) misaligned GeSi interface. The dashed line in both the germanium and silicon is
represented as V Ge and V Si, respectively, defined as the average local potential over
six periodic potential cycles in (a) and three in (b) in each section of the slab.

is defined as the difference in the average local potential level of germanium and

silicon in the interface slab and is illustrated in Fig. 5.4. This potential shift ∆V = 2.16

eV for the aligned interface and ∆V = 2.23 eV for the misaligned interface.

In order to derive the values for the band lineups, we need to calculate the average

local potential as a function of the perpendicular coordinate for both bulk germanium

and silicon as we did with the GeSi interface slab. This averaged bulk germanium po-

tential is aligned with that of the bulk-like germanium potential section in the slab as

shown in Fig. 5.9(a) and Fig. 5.9(c) for the aligned and misaligned slabs. A curve fit-

ting procedure is applied to both potential curves over three periodic potential cycles.

Second order polynomials are fitted to the curves in the potential plots and polynomi-

als of order one are fitted to the linear parts of the potential plots as shown in Fig. 5.5.

The energy difference between the bulk and slab germanium is taken in intervals of

∆z = 0.01 Å along the perpendicular coordinate z and the averaged energy difference

is denoted as ∆Ei where i represents germanium or silicon.

∆Ei = V loc(z)|i,bulk−V loc(z)|i,slab. (5.3)
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Figure 5.4: Derivation of band lineups: relative position of the average potentials V Ge
and V Si and of the germanium and silicon bulk bands. The dashed lines are the average
potentials of bulk materials.

We define an error associated to this energy difference δ (∆Ei) as half the differ-

ence between the maximum and minimum energy difference.

δ (∆Ei) =
1
2
(∆Ei,max−∆Ei,min). (5.4)

The results for ∆EGe are shown in Table 5.1 and illustrated in Fig. 5.4.

However, we are faced with a problem with regard to looking at aligning the po-

tentials in silicon. Upon relaxation of the GeSi slab interface using the germanium

lattice constant, the silicon atoms strain in order to match the germanium atoms in the

parallel interface plane. This stretching of the atoms also causes the silicon atoms in

the perpendicular direction to compress, resulting in a reduced slab thickness. Before

we proceed to calculate the energy separation in the silicon side of the interface, we

need to address how the strain affects bulk silicon and its band structure.
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Figure 5.5: The averaged local potentials for the bulk (blue) and corresponding region
of the GeSi slab (red) as a function of the perpendicular coordinate z. The green line
represents the second order polynomial fit to the bulk and slab averaged local potential
data and the purple dashed line is the first order polynomial fit.

5.3.2.1 Strain

In order to investigate and understand the strain in this interface, we look at the relaxed

geometry atomic layer separation in the both the germanium and strained silicon sides

of the slab structure. The layer separation di is defined as di = zatomi+1−zatomi , which is

the difference in the perpendicular coordinate z, of the atoms in one atomic layer to the

atomic layer directly below it, as shown in Fig. 5.6. The separation d1 is the difference

in length of the perpendicular component of the germanium atom in the second atomic

layer (zGe2) with the perpendicular component of the germanium atom in the first

atomic layer (zGe1). We calculate this atomic layer separation as a function of the

perpendicular coordinate z as shown in Fig. 5.7(a) and Fig. 5.7(b) for the germanium

and strained silicon sides of the interface slab respectively.

The interface in these plots is located in the region from 12 Å to 16 Å. In Fig. 5.7(a)

we see the germanium layer separation in the (001) direction (z-direction) in the bulk

(from 4 Å to 10 Å) matches well to the theoretical value of 1.39 Å as derived from the
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Figure 5.6: The GeSi interface slab shows the layer separations d1,d2, ...., where the
layer separation d1 is defined as the difference in the perpendicular coordinate z of the
germanium atoms in atomic layer two and atomic layer one, given by d1 = zGe2−zGe1 .

layer separation for germanium of aGe
4 , where aGe = 5.58 Å is the lattice vector of ger-

manium. Silicon is strained so that it matches the germanium lattice in the interface

plane (x and y components) and this leads to the compression of the respective layers

in the perpendicular direction. We optimise the lattice parameter in the perpendicular

direction using the Abinit code. Here in this calculation we set the parallel compo-

nents of the lattice vectors of strained silicon to be equal to the lattice constant of bulk

germanium and allow the cell to be optimised only in the perpendicular direction. The

lattice vector calculated from this optimization for strained silicon in this perpendicu-

lar z direction is aSi,strained = 5.25 Å. This results in silicon matching the germanium

atoms in the parallel interface plane causing a strain of about 3.1%, while the silicon

cell size is reduced in the perpendicular direction by about 3% from 5.41 Å to 5.25

Å. As the layer separation d = a
4 , where a is the lattice constant, the layer separation
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for strained silicon is now derived to be 1.31 Å. In Fig. 5.7(b) we see that this layer

separation value of 1.31 Å represented by the green line coincides with the layer sep-

aration of the strained silicon side of the interface slab represented by the blue line

(in the region from 16 Å to 23 Å). The layer separation for unstrained bulk silicon

is shown in red in Fig. 5.7(b). This allows one to see the z interlayer compression

of strained silicon. Similarly for the misaligned GeSi interface we see in Fig. 5.7(c)

and Fig. 5.7(d) the layer separation of the bulk regions in the slab match well to the

predicted layer separation values.
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Figure 5.7: Atomic layer separation d (blue line) in the relaxed GeSi slab as a function
of position z perpendicular to the plane of the interface. The region with z < 13 Å [in
(a) and (c)] is unstrained germanium and the region with z > 14 Å [in (b) and (d)]
is silicon with the in-plane lattice constant matched to unstrained germanium. Panels
(a) and (b) show results for the "aligned" interface geometry and panels ( c) and (d)
show results for the "misaligned" geometry. The red lines indicate the corresponding
unstrained bulk layer separation and the green line indicates the z interlayer separation
found in bulk silicon, when its x− y lattice constant is constrained to match that of
unstrained germanium (see main text).
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To further investigate the effects of strain, band structure calculations for the bulk

materials of cubic germanium and strained silicon are done to see what effects this

strain has on the electronic bands and the band gap. It must be pointed out here that

the theoretical local density approximation band gaps in each material do not agree

with experiment. This is a well-known problem that the band gaps of semiconductor

materials are severely underestimated, while the topology of all the bands in germa-

nium and silicon is generally good.

The reduced coordinates (in the primitive reciprocal lattice basis) for the high sym-

metry points in the Brillouin zone of the face centred cubic structure are given as:

L = (0.5,0.0,0.0), (5.5)

Γ = (0.0,0.0,0.0), (5.6)

X = (0.0,0.5,0.5), (5.7)

Γ = (1.0,1.0,1.0) (5.8)

The band structure calculation for bulk germanium results in a band gap of 0.26 eV as

shown in Fig. 5.8(a) moving along the path LΓXL, while in strained silicon, the band

gap is 0.42 eV as shown in Fig. 5.8(b) going from Γ(0.0,0.0,0.0) to X(0.0,0.5,0.5).

However when we move along the ∆ line from Γ(0.0,0.0,0.0) to X(0.5,0.5,0.0)

the band gap reduces to -0.13 eV as shown in Fig. 5.8(c). In this case, the mini-

mum of the conduction band along the ∆ line is much lower than in the unstrained

case. In Fig. 5.8(d) and Fig. 5.8(e), we superimpose the strained silicon case us-

ing X(0.0,0.5,0.5) and X(0.5,0.5,0.0), respectively over the unstrained silicon band

structure.

As mentioned earlier in Section 5.3.2 the procedure for the lineup of the bulk

germanium potential with the potential of the germanium side of the interface slab,
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Figure 5.8: Bulk band structures along the path LΓXL for (a) germanium, (b) strained
silicon going from Γ(0,0,0) to X

(
0, 1

2 , 1
2

)
and (c) strained silicon going from Γ(0,0,0)

to X
(1

2 , 1
2 ,0
)
. (d) and (e) compare bulk unstrained silicon in red to the strained silicon

in (b) and (c), respectively.
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we repeat the method now for strained silicon. The silicon is aligned as before as

shown in Fig. 5.9(b) and Fig. 5.9(d) for both aligned and misaligned and the results

for ∆ESi are given in Table 5.1 and illustrated in Fig. 5.4.

Table 5.1: Calculated energy shift (in eV) of the average local potential from bulk
germanium to that in the germanium side of the GeSi slab (aligned and misaligned).
We also show the corresponding quantities for the strained silicon side of the slab.

GeSi Aligned GeSi Misaligned
∆EGe 3.27±0.05 3.41±0.07
∆ESi 4.78±0.12 4.83±0.06
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Figure 5.9: Comparison of the averaged local potential in bulk (blue) and correspond-
ing region of GeSi slab (red) as a function of the perpendicular coordinate z for (a)
germanium side of slab in "aligned" geometry, (b) silicon side of slab in "aligned"
geometry, (c) germanium side in "misaligned" geometry and (d) silicon side of slab in
"misaligned" geometry.
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5.3.3 Projected Band Structures

So far, we have used the results of self-consistent calculations to derive the potential

shift ∆V of the interface slab and also the bulk band structures to derive the positions

of the bands with respect to the average local potentials V loc. In order to investigate

the presence of interface states we need to first project a 3D band structure on the 2D

surface Brillouin zone. Here we follow a surface path ΓJKJ′Γ as shown in Fig. 2.2

in Chapter 2. We run a series of conventional band structure calculations around a

path that is equivalent to the surface Brillouin zone path but offset along k⊥ by an

increasing value for bulk germanium and strained silicon. As mentioned in Chapter 2

on the section on projected band structures, the difficulty is translating the path from

the surface Brillouin zone back to the equivalent path in the bulk Brillouin zone. We

take that same set of k-points and add a constant k⊥ for increasing values of k⊥ until

you reach the Brillouin zone boundary is reached.

Using the values in Table 5.1 for ∆EGe and ∆ESi derived when aligning the aver-

aged potentials of the bulk to the corresponding slab averaged potential, the projected

band structure of bulk germanium is shifted by 3.27 eV and strained silicon by 4.78

eV. We superimpose these band structures onto each other and this gives the projected

bulk bands for germanium and strained silicon. The projected band structure along

the same surface path ΓJKJ′Γ for the GeSi for the aligned interface slab is shown in

Fig. 5.10(a). The projected bulk band structure is generally shaded and we then over-

lay the actual interface slab band structure to see if interface states exist as shown in

Fig. 5.12(a). No interface electronic states are present in the gap for this GeSi aligned

structure, as initially expected due to the diamond crystal cubic structure exhibited

throughout and thus, no dangling bonds are found at the interface.

In the misaligned case where we have a GeSi(001)-(2×1) interface reconstruction,

the cell size has doubled in size compared to the aligned GeSi(001)-(1×1) interface.
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Figure 5.10: Projected electronic bands along the surface path ΓJKJ′Γ in the Brillouin
zone for (a) the GeSi aligned (1×1) interface and (b) the misaligned (2×1) interface.
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The lattice vectors for such a (2×1) cell are

a1 =
a
2
(1,−1,0), (5.9)

a2 =
a
2
(2,2,0), (5.10)

a3 =
a
2
(0,0,n) (5.11)

where a is the lattice constant, n is an integer for the number of cells in the z direction.

The vector a2 is twice the size of the corresponding vector in the (1× 1) cell. Using

the condition

ai.g j = 2πδi j (5.12)

where δi j is the Kronecker delta and the reciprocal lattice vectors g j for this cell are

given as

g1 =
2π

a
(1,−1,0), (5.13)

g2 =
2π

a
(
1
2
,
1
2
,0), (5.14)

g3 =
2π

a
(0,0,

2
n
) (5.15)

where g2 is halved from the (1× 1) cell. This means that the Brillouin zone has

halved as shown in Fig. 5.11 and also the surface path is halved. We follow along the

path of the reduced Brillouin zone denoted as ΓJKJ′Γ. It is important here to note

that the reduced coordinates for the points Γ, J, K, J′ and Γ are the same as that in

the (1×1) surface Brillouin zone, however when calculating the bulk projected band

structures for bulk germanium and strained silicon, care is required as the Brillouin
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zone is halved in the conventional cell. The projected band structure for this mis-

aligned (2×1) interface is shown in Fig. 5.12(b). When we overlay the interface slab

band structure with that of the bulk materials as shown in Fig. 5.12(b), we see states

exist in the band gap. Five states exist in the gap in Fig. 5.12(b) of which four of these

exist near the valence band edge and the other state exists higher up in the gap near the

conduction band edge. The charge densities for these states as shown in Fig. 5.13(a) -

5.13(e) are calculated at the K-point to view if these states are actually interface states.

The charge density contour plot shown in Fig. 5.13(a) represents the state nearest the

valence band edge, ascending in order to Fig. 5.13(e) representing the state nearest the

conduction band edge.

Figure 5.11: Surface Brillouin zone for the face centred cubic structure for (1×1) cell
in black and the (2× 1) cell in red. High symmetry points are shown on the (2× 1)
cell.

The lowest state in the gap is shown in Fig. 5.12(b), only appears in the gap around
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Figure 5.12: Projected electronic bands along the surface path ΓJKJ′Γ in the surface
Brillouin zone using the germanium lattice constant. The slab electronic bands are
represented in green and the bulk bands is the purple shaded area in (a) for the GeSi
aligned interface, where no states are present in the band gap and (b) for the misaligned
interface with states present in the band gap.
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(a) (b) (c)

(d) (e)

Figure 5.13: The charge density contour plots for the misaligned GeSi interface for
the states shown in Fig. 5.12(b). All plots are calculated at the K-point. (a) represents
the state nearest the valence band edge, ascending in order to (e) which shows the state
nearest the conduction band edge. Panels (b) and (d) are displayed in a drawing plane
perpendicular to that of the other panels.
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the K-point and remains in bulk throughout the rest of the Brillouin zone. The charge

density for this occupied state at the K-point is shown in Fig. 5.13(a), where the largest

percentage of charge density is located on the germanium side of the interface. The

charge density appears as a bridge bond on a germanium atom deep in the slab and

on the Ge-Si interface bond, thus implying an interface state. The charge density

of the next occupied state is shown in Fig. 5.13(b) and is displayed in a drawing

plane perpendicular to that of the other panels. The charge density contour lines are

concentrated around the germanium and silicon atoms in a layer below the interface.

These contour lines represent what is known as a back bond interface state induced

by the interface. Such a back bond state exist also on the Ge(001)-(2× 1) surface as

shown in Fig. 3.2(a) of Chapter 3 and appears in the projected band structure in a very

similar manner to that of the GeSi the interface. The third state near the valence band

edge which is occupied appears in the gap at the J-point and follows the valence band

edge until it re-enters the bulk again at 1
2KJ′. Contour lines are present at the Ge-Si

interface bond in Fig. 5.13(c), thus representing an interface state. We also see a large

proportion of charge density is located at a silicon atom deep in the bulk as a bridge-

bond state. The last state near the valence band edge enters the gap at the J-point

and does not re-enter the bulk until 1
4J′Γ. This occupied state is the most dominant

state in the gap and the charge density plot for this state is shown in Fig. 5.13(d)

and is displayed in a drawing plane perpendicular to that of the other panels. The

charge density is mainly concentrated around a germanium atom at the interface layer

as a back-bond state and similarly around a silicon atom at the interface thus again

implying the presence of an interface state. Finally the unoccupied state in the gap

near the conduction band edge appears along J to 1
2JK and again at K as shown in

Fig. 5.12(b). The charge density plots in Fig. 5.13(e) show contour lines around both

the Ge-Ge and Si-Si interface dimers along with Ge-Si interface bond, thus this does

represent an interface state.



5.4. Interface using the Silicon Lattice Constant 76

5.4 Interface using the Silicon Lattice Constant

The aligned and misaligned GeSi interface were also relaxed using the lattice constant

of silicon, at the calculated value of 5.41 Å which is about 0.4% smaller than the

experimental value of 5.43 Å. The aligned structure is shown in Fig. 5.2(b) with a

Ge-Si bond length of 2.36 Å. The misaligned structure is shown in Fig. 5.2(d) with a

Ge-Ge and Si-Si symmetric dimer bond length of 2.56 Å and 2.69 Å respectively, and

a Ge-Si bond length of 2.39 Å.

The band line ups at the interface are calculated as already mentioned in this chap-

ter in Section 5.3.2 using the averaged local potential as a function of the perpendicular

coordinate. The potential shift of the aligned and misaligned GeSi slab are ∆V = 2.75

eV and ∆V = 2.54 eV, respectively. Since we are now repeating the calculations us-

ing the silicon lattice constant, we are faced with the problem that germanium is now

strained. Before we proceed in calculating the projected band structures where we

require the energy separation between relative parts of slab potential to their corre-

sponding bulk potentials, an investigation of the strain in germanium is required.

With the germanium now aligning with the silicon lattice, the germanium strains

so that it matches the silicon lattice constant in the interface plane (x and y) and this

leads to the expansion of the respective layers in the perpendicular direction z. As

mentioned already in Section 5.3.2.1, we calculate the layer separation di from the

slab and compare this to the cell parameter of strained germanium in the perpendicular

direction as optimized using the ABINIT code. The lattice vector calculated from this

optimization for strained germanium in this perpendicular z direction is aGe,strained =

5.71 Å. The layer separation for strained germanium is derived at d = 5.71
4 = 1.43 Å.

In Fig. 5.14(a) we see the strained germanium layer separation in the (001) direc-

tion (blue line) in the slab matches well to the optimized value of 1.43 Å (green line).

The unstrained germanium layer separation is shown in red in Fig. 5.14(a). The layer
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Figure 5.14: Atomic layer separation d (blue line) in the relaxed GeSi slab as a func-
tion of position z perpendicular to the plane of the interface. The region with z < 13 Å
[in (a) and (c)] is strained germanium with the in-plane lattice constant matched to
unstrained silicon and the region with z > 14 Å [in (b) and (d)] is unstrained silicon.
Panels (a) and (b) show results for the "aligned" interface geometry and panels ( c)
and (d) show results for the "misaligned" geometry. The red lines indicate the corre-
sponding unstrained bulk layer separation and the green line indicates the z interlayer
separation found in bulk germanium, when its x− y lattice constant is constrained to
match that of unstrained silicon.
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separation for silicon on the silicon side of the interface slab described by the blue line

in Fig. 5.14(b) is slightly less (≈ 0.5%) than the value derived from the silicon lattice

constant of d = 5.41
4 = 1.35 Å (red line). Similarly for the misaligned GeSi interface

we see in Fig. 5.14(c) and Fig. 5.14(d) the layer separation of bulk regions in the slab

match well to the predicted layer separation values.

Moving along the path LΓXL in the Brillouin zone, the band structure calculation

for bulk silicon is shown in Fig. 5.15(a) with a band gap of 0.44 eV. Strained germa-

nium has a band gap of 0.10 eV in the cases where we move from Γ(0.0,0.0,0.0) to

X(0.0,0.5,0.5) as shown in Fig. 5.15(b). However when we move from Γ(0.0,0.0,0.0)

to X(0.5,0.5,0.0) the band gap increases to 0.18 eV as shown in Fig. 5.15(c). Bulk

germanium has its valence band maximum at the Γ-point and its conduction band

minimum at the L-point. In Fig. 5.15(d) and Fig. 5.15(e), we superimpose the strained

germanium case using X(0.0,0.5,0.5) and X(0.5,0.5,0.0), respectively over the un-

strained germanium band structure. We see in Fig. 5.15(d), the valence band max-

imum remains at the Γ-point, however the conduction band minimum occurs along

the ∆ line and in Fig. 5.15(e) the conduction band minimum returns to bulk-like and

occurs at the L-point.

We can now calculate the energy separation ∆Ei for the strained germanium side

of the slab potential with its corresponding strained germanium bulk potential and also

the silicon. In order to align the bulk bands with the GeSi slab bands as before, we

find the energy separation for the aligned and the misaligned slab, and the results are

shown in Table 5.2

Using these values the projected band structures for the aligned and misaligned

GeSi slab using the silicon lattice constant as shown in Fig. 5.16(a) and in Fig. 5.16(b)

respectively. As expected no interface states exist in the aligned interface slab, while

for the misaligned slab, states appear in the band gap but are pushed more into the bulk
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Figure 5.15: Bulk band structures along the path LΓXL for (a) silicon, (b) strained
germanium going from Γ(0,0,0) to X

(
0, 1

2 , 1
2

)
and (c) strained germanium going from

Γ(0,0,0) to X
(1

2 , 1
2 ,0
)
. (d) and (e) compare bulk unstrained germanium in red to the

strained germanium in (b) and (c), respectively.
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Table 5.2: Calculated energy shift (in eV) of the average local potential from strained
germanium to that in the germanium side of the GeSi slab (aligned and misaligned).
We also show the corresponding quantities for the silicon side of the slab.

GeSi Aligned GeSi Misaligned
∆EGe 3.05±0.07 3.14±0.08
∆ESi 4.53±0.11 4.98±0.16

than in the case where we use the germanium lattice constant as shown in Fig. 5.12(b).

Five states exist in the gap in Fig. 5.16(b) of which four of these exist near the valence

band edge and the other state exists higher up in the gap near the conduction band

edge. The charge densities for these states as shown in Fig. 5.17(a) - 5.17(e), where

the states near the valence band edge are calculated at the K-point and the one state

near the conduction band edge is calculated at J-point. The charge density contour plot

shown in Fig. 5.17(a) represents the state nearest the valence band edge, ascending in

order to Fig. 5.17(e) representing the state nearest the conduction band edge. The

charge density of the lowest occupied state in the gap as shown in Fig. 5.17(a), shows

the existence of contour lines around the Ge-Si interface bond implying an interface

state. It must also be noted, a large proportion of the charge density is located around

germanium atoms and silicon atoms in bridge bond like states deep in the germanium

and silicon sides of the slab respectively. The charge density of the next occupied state

in Fig. 5.17(b) is a back-bond state where the contour line exists on the germanium

and silicon atoms in a layer below the interface. This is similar to the back bond state

we see on the Ge(001)-(2× 1) in Chapter 3. This state shown here is an interface

state as it is induced by the interface. This state is displayed in a drawing plane

perpendicular to that of the other panels. The contour lines of the next occupied state

is shown in Fig. 5.17(c) are around the germanium and silicon atoms on the interface

layer showing an interface state. In Fig. 5.17(d), the contour lines are localised around

germanium atoms deep in the slab like a bridge-bond state, however this is again an
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interface state as the contour lines are induced by the interface. This occupied state is

also displayed in a drawing plane perpendicular to that of the other panels. The final

state in the gap near the conduction band edge appears only around the J-point and is

the only unoccupied state in the band gap. The charge density in Fig. 5.17(e) shows

the charge located around three silicon atomic layers at the interface and on the Ge-Ge

dimer at the interface. This is an interface state.

5.5 Conclusion

In conclusion, after we perform calculations for structural relaxations and electronic

band structures using both the germanium and silicon lattice constants, we see that the

GeSi aligned interface structure follows the diamond cubic crystal structure across the

interface. Strain was an important feature in all our calculations due to the indepen-

dent use of a particular lattice constant in each calculation. Upon calculation of the

projected band structures, no interface states are present in the band gap as expected

due to no dangling bonds being present at the interface.

The GeSi misaligned interface reconstructs to a (2×1) structure with the presence

of Ge-Ge and Si-Si dimers and alternating 5-fold and 7-fold rings in the mismatched

regions to adjust the bonding at the interface. The projected band structure for this

misaligned GeSi interface using both the germanium and silicon lattice constants show

the presence of states in the band gap. Four states are present near the valence band

edge in which all are occupied and one state appears near the conduction band edge

which is unoccupied. All these states in the gap are interface states whereby the charge

densities are located around the germanium and silicon interface layers or the charge

densities are located in the slab induced by the GeSi interface. However the only state

that is of concern in the development of a GeSi APD is the unoccupied state as it has

the potential to create an electronic trap for the carriers. The projected band structure
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Figure 5.16: Projected electronic bands along the surface path ΓJKJ′Γ in the surface
Brillouin zone using the silicon lattice constant. The slab electronic bands are repre-
sented in green and the bulk bands is the purple shaded area in (a) for the GeSi aligned
interface, where no states are present in the band gap and (b) for the misaligned inter-
face with states present in the band gap.
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(a) (b) (c)

(d) (e)

Figure 5.17: The charge density contour plots for the misaligned GeSi interface for
the states shown in Fig. 5.16(b). (a) represents the state nearest the valence band edge,
ascending in order to (e) which representing the state nearest the conduction band
edge. Panels (b) and (d) are displayed in a drawing plane perpendicular to that of the
other panels. (a)-(d) are calculated at the K-point and (e) is calculated at the J-point.



5.5. Conclusion 84

using the silicon lattice constant shows the states in the band gap are positioned nearer

the valence band edge than that of the germanium lattice constant case. Again the

states near the valence band edge are all fully occupied. The unoccupied state that

existed near the conduction band edge using the germanium lattice constant, is pushed

more into the bulk region when using the silicon lattice constant and the state only

appears slightly around the J-point. Thus if we were to able to calculate the exact

wafer bonded GeSi interface using first-principle calculations we would expect the

electronic bands to be somewhere in the middle region between the germanium and

silicon lattice constant calculations.

Finally examining the best and worst case scenario of aligned and misaligned re-

gions of the GeSi interface, we see good bonding in both cases at the interface. We

also see that one unoccupied interface state exists in the band gap in the GeSi mis-

aligned interface using the germanium and silicon lattice constants, thus this has the

potential to be a problem in the development of a GeSi avalanche photodiode. We

will look at the use of sulfur in the interface in order to possibly remove this interface

state.



CHAPTER 6

Ge-S-Si and Ge-S-H-Si Interfaces

The structural and electronical characteristics of a Ge-

Si(001) interface are calculated in the previous chapter.

Sulfur is an atom with flexible chemical bonds and we inves-

tigate if this flexibility will adjust the bonding in the inter-

face regions where the germanium and silicon lattices align

and misalign. We also investigate the presence of both sul-

fur and hydrogen at the interface as the presence of both

species on the germanium surface removes surface states.

We use the same supercell approach using first-principles

density functional theory in the local density approximation

(LDA). Self-consistent calculations determine the atomic

structure and the band lineup of the germanium and sili-

con band structures. Projected band structure calculations

show that interface states do exist in the band gap despite

the qualitative considerations that led us to expect sulfur

and hydrogen would assist in passivating the interface.

6.1 Introduction

Germanium and silicon interfaces across the aligned and misaligned regions show dif-

ferent bonding configurations and electronic structure. In the aligned lattice the slab
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follows the diamond crystal structure, while in the misaligned region a (2×1) recon-

struction is present. The aligned GeSi interface is free of interface electronic states as

shown in Chapter 5. It is widely known that both the silicon and germanium surfaces

form a (2×1) reconstruction with the presence of dangling bond states present in the

band gap. We have shown in Chapter 5 that the misaligned GeSi interface shows the

(2×1) reconstruction at the interface and has one interface state present on the Ge-Ge

and Si-Si dimers in the (2×1) reconstruction of the interface region.

Here we investigate the possibility that the use of sulfur [103], [104] and [105]

with its flexible chemical bonds may improve the bonding across the interface of ger-

manium [106] and silicon and provide an interface free of electronic states. Looking

at the clean Ge(001)-(2×1) surface, adsorption of a full monolayer of sulfur changes

the structure into a (1× 1) geometry [107], removing the dimers and restoring the

germanium bulk configuration [27]. The electronic structure is very different to the

Ge(001)-(2×1) surface because the adsorbed sulfur atoms have six valence electrons

instead of the four valence electrons characteristic of germanium. In Ref [27], the sul-

fur passivated germanium surfaces show dangling bond states, a back bond state and a

bridge bond state. We begin with this sulfur passivated germanium surface and inves-

tigate the geometric and electronic structure when this surface is bonded to a silicon

slab, creating the GeSSi interface.

When both hydrogen and sulfur are bonded to the clean Ge(001)-(2×1) surface, as

discussed in detail in Chapter 4, first-principles density functional theory calculations

confirm that the (2× 1) surface reconstruction remains and predicts the formation

of (S-H)-(S-H) inter-germanium dimer bridges. The computed energy band gap of

this atomic configuration is shown to be free of surface states with all the states being

pushed into the bulk region [22]. With this knowledge we investigate if the presence of

hydrogen and sulfur sandwiched between the germanium and silicon bulk will provide

an interface free of electronic states.
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6.2 Method of Calculation

In the calculations for the GeSi interfaces with sulfur and hydrogen, the interfaces

are represented using (2× 1) supercells as before and all the calculations are carried

out exactly as they were in Section 5.2 of Chapter 5, except for the number of k-

points used. We have used a 32 k-point mesh for all the supercells considered in this

chapter based on the Monkhorst-Pack [41] scheme. Starting with the Ge(001)-(2×1)

surface as shown in Chapter 3 we place a monolayer of sulfur over the surface and

allow the structure to relax, thus reproducing the GeS(001)-(1× 1) surface as shown

in [27]. Using this relaxed GeS surface structure, a silicon slab is moved over the GeS

surface. This represents the GeSSi interface as shown in Fig. 6.1(a) and Fig. 6.1(c)

for the aligned and misaligned interfaces, respectively. Both structures are allowed to

relax using the same procedure that is explained in Section 5.2, with the three atomic

layers on both side of the interface (containing sulfur) only allowed to relax. The total

number of atoms in these GeSSi interface supercells is 46 (18 germanium, 18 silicon,

2 sulfur and 8 hydrogen).

For the GeSHSi interface, we use the H2S-terminated Ge(001)-(2×1) from Chap-

ter 4 and place the silicon slab above the surface and allow the system to re-relax as

shown later in this Chapter in Fig. 6.11(a) and Fig. 6.11(d) for the aligned and mis-

aligned interfaces, respectively. Here as the H2S-terminated germanium surface does

not bond with the silicon surface, we artificially break the hydrogen bonds and re-relax

the interface. The total number of atoms in these GeSHSi interface supercells is 48

(18 germanium, 18 silicon, 2 sulfur and 10 hydrogen).

Again here we investigate the aligned and misaligned regions for the GeSSi and

GeSHSi interfaces using both the germanium and silicon lattice constants as in Chap-

ter 5.
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6.3 Ge-S-Si Interface using Ge Lattice Constant

6.3.1 Structural Relaxation

On relaxation using the germanium lattice constant, the GeSSi aligned interface results

in a GeSSi(001)-(2×1) structure, with a Ge-S bond lengths of 2.22 Å and a S-Si bond

lengths of 2.14 Å as shown in Fig. 6.1(b). We also see the existence of a Ge-Ge and

Si-Si symmetric dimers of bond length 2.47 Å and 2.41 Å respectively. The binding

energy of this interface defined as the energy difference between the initial structure

(Fig. 6.1(a)) and the final relaxed geometry (Fig. 6.1(b)) per supercell is ≈ 47 eV.

The relaxed GeSSi misaligned lattice results in a different GeSSi(001)-(2×1) re-

constructed interface as shown in Fig. 6.1(d), with a Si-Si symmetric dimer bond

length of 2.38 Å, four Ge-S bond lengths of 2.23 Å, 2.24 Å, 2.53 Å and 2.59 Å and

a S-Si bond length of 2.16 Å. No Ge-Ge dimer is present in the misaligned structure.

The binding energy of this misaligned interface is≈ 44 eV. It is also worth noting that

the aligned structure is the most favourable interface energetically by 3 eV (47− 44

eV).

The layer separation for the aligned and misaligned lattices are shown in Fig. 6.2(a)-

6.2(d). As we are using the germanium lattice constant, we see as we did in Chapter

5, the silicon strains in the perpendicular direction as expected.

6.3.2 Band Lineup

The averaged local potential V loc(z) as a function of the perpendicular coordinate

z is shown in Fig. 6.3(a) and Fig. 6.3(b) for the aligned and misaligned interfaces

respectively. In these plots, different potentials are seen at the interface region where

the sulfur atoms are positioned. This is due to the difference in bonding types at the

two different interfaces, where the sulfur bonds to both a germanium and silicon atom
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(a) (b)

(c) (d)

Figure 6.1: (a) The initial atomic configuration of the GeSSi aligned structure. (b) The
GeSSi aligned interface after structural relaxation. The interface shows a GeSSi(001)-
(2×1) reconstruction with the presence of Ge-Ge and Si-Si symmetric dimers. (c) The
initial atomic configuration of the GeSSi misaligned structure. (d) The final relaxed
geometry for the misaligned structure showing a GeSSi(001)-(2× 1) interface with
Si-Si dimer.
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Figure 6.2: Atomic layer separation d (blue line) in the relaxed GeSSi slab as a func-
tion of position z perpendicular to the plane of the interface. The region with z < 13 Å
[in (a) and (c)] is unstrained germanium and region the with z > 17 Å [in (b) and (d)]
is silicon with the in-plane lattice constant matched to unstrained germanium. Panels
(a) and (b) show results for the "aligned" interface geometry and panels (c) and (d)
show results for the "misaligned" geometry. The red lines indicate the corresponding
unstrained bulk layer separation and the green line indicates the z interlayer separa-
tion found in bulk silicon, when its x− y lattice constant is constrained to match that
of unstrained germanium.
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in the aligned interface in Fig. 6.1(b), while the sulfur bonds to two germanium and

one silicon atom in the misaligned interface in Fig. 6.1(d).
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Figure 6.3: The local potential V loc(z) averaged over the parallel components x and y
as a function of the perpendicular coordinate z, to the interface for (a) the aligned and
(b) misaligned GeSSi interface. The dashed line in both the germanium and silicon is
represented as V Ge and V Si, respectively, defined as the average local potential over
three periodic potential cycles in each section of the slab. Ge, S and Si represent the
regions in the slab where the germanium, sulfur and silicon atoms are located.

Using the averaged local potential V loc(z) as a function of the perpendicular coor-

dinate z, the potential shift ∆V = V Ge−V Si for the aligned and misaligned structures

are 2.11 eV and 2.62 eV, respectively. The energy separations ∆Ei as stated in Section

5.3.2 in Chapter 5, is defined as the difference in energy between the bulk potential

and the corresponding part of the slab potential. These energy separations ∆Ei for the

aligned and misaligned GeSSi interfaces are shown in Table 6.1. The aligning of the

various potentials are shown in Fig. 6.4(a)- 6.4(d).

Table 6.1: Calculated energy shift (in eV) of the average local potential from bulk
germanium to that in the germanuim side of the GeSSi slab (aligned and misaligned).
We also show the corresponding quantities for the strained silicon side of the slab.

GeSSi Aligned GeSSi Misaligned
∆EGe 3.26±0.14 2.81±0.10
∆ESi 4.69±0.16 4.76±0.07
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Figure 6.4: Comparison of the averaged local potential in bulk (blue) and correspond-
ing region of GeSSi slab (red) as a function of the perpendicular coordinate z for (a)
germanium side of slab in "aligned" geometry, (b) silicon side of slab in "aligned"
geometry, (c) germanium side in "misaligned" geometry and (d) silicon side of slab in
"misaligned" geometry.
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6.3.3 Projected Band Structure

Using the values of the energy difference defined in Eq.5.3 and shown in Table 6.1,

we show the projected band structures of the aligned and misaligned GeSSi interfaces

in Fig. 6.5(a) and Fig. 6.5(b), respectively. In the aligned interface slab we see a large

number of states in the band gap with six near the valence band and one near the

conduction band. The charge density contour plots for each of these states are shown

in Fig. 6.6(a) - 6.6(g), where Fig. 6.6(a) represents the state nearest the valence band

edge, ascending in order to Fig. 6.6(g) representing the state nearest the conduction

band edge. All the charge density plots are calculated at the K-point.

In Fig. 6.6(a), the charge density of this occupied state is localized in two areas of

the structure, the first area is below the interface layers and the second area is located

deep in the silicon bulk. The distribution of contour lines around the bond between

two atoms in both bulk germanium and silicon in this case is referred to as a back-

bond state. We have seen such back bond states in the GeSi misaligned interface

in Fig. 5.13(b) of Chapter 5 and also on the Ge(001)-(2× 1) surface as shown in

Fig. 3.2(a) of Chapter 3. This state even though has no contour lines directly around

the interface atoms, is an interface state as it has been induced by the interface. The

second state shown in Fig. 6.6(b) which is occupied is also a back-bond state and

shows the charge density contour lines located around the germanium and silicon

interface layers. This state in the band gap is an interface state. It must be noted

here that the states shown in Fig. 6.6(a) and Fig. 6.6(b) are displayed in a drawing

plane perpendicular to that of the other panels in Fig. 6.6(c) - 6.6(g). The occupied

state in Fig. 6.6(c) is also an interface state as the contour lines are around the Ge-S-

Si interface, as well as deep in both the germanium and silicon bulk. The occupied

states in Fig. 6.6(d) and Fig. 6.6(f), are hybridised states involving the sulfur lone-pair

[27] and the silicon and germanium bonding state. The state shown in Fig. 6.6(e)
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is a pure sulfur lone-pair state. These states shown in Fig. 6.6(d), Fig. 6.6(e) and

Fig. 6.6(f) clearly cut through the band gap in Fig. 6.5(a) are interface states but will

not effect the electronic transmission across the interface. The only unoccupied state

is the state near the conduction band edge as shown in Fig. 6.6(g) and only appears

in the band gap around the K-point and shows contour lines around the Ge-Ge dimer

atoms. As such charge density appears around the interface, it is safe to say this state

is an interface state. This state is identical to what we see in the GeSi misaligned

interface in Fig. 5.13(e).

In the misaligned interface slab in Fig. 6.5(b) we see two states near the valence

band edge, one state across the middle of the gap and one state slightly appearing at

1
3JK. The charge density contour plots for each of these states are shown in Fig. 6.7(a)

- 6.7(d), where Fig. 6.7(a) represents the state nearest the valence band edge, ascend-

ing in order to Fig. 6.7(d) representing the state nearest the conduction band edge. The

charge density for all these states are calculated at K-point except for the state near

the conduction band edge which is calculated at the point 1
3JK.

In Fig. 6.7(a), the charge density contour lines shows a back-bond state deep in the

silicon bulk, thus this occupied state in the gap is not an interface state. An occupied

interface state is shown in Fig. 6.7(b), where we see what is like a bridge-bond state

on the interface germanium atom bridging to the two interface sulfur atoms. The

occupied state that crosses through the middle of the band gap is shown in Fig. 6.7(c).

This state is an interface state, with a dangling bond on the interface germanium atom.

This state is almost identical to the surface state that appears in the projected band

structure on the clean Ge(001)-(2× 1) surface as presented in Fig. 3.1(b) in Chapter

3 of this thesis. The last state which appears around the point 1
3JK in Fig. 6.7(d), is

an unoccupied interface state with the contour lines appearing over three layers in the

silicon bulk as well as the sulfur interface atoms.
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Figure 6.5: Projected electronic bands along the surface path ΓJKJ′Γ in the Brillouin
zone using the germanium lattice constant. The slab electronic bands are represented
in green and the bulk bands is the shaded area in (a) for the GeSSi aligned interface
and (b) for the GeSSi misaligned interface.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.6: The charge density contour plots for the aligned GeSSi interface for the
states shown in Fig. 6.5(a). All plots are calculated at the K-point. (a) represents the
state nearest the valence band edge, ascending in order to (g) which representing the
state nearest the conduction band edge. Panels (a) and (b) are displayed in a drawing
plane perpendicular to that of the other panels.
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(a) (b)

(c) (d)

Figure 6.7: The charge density contour plots for the misaligned GeSSi interface for
the states shown in Fig. 6.5(b). The plots are calculated at the K-point for (a)-(c) and
at 1

3JK for (d). (a) represents the state nearest the valence band edge, ascending in
order to (d) which representing the state nearest the conduction band edge. Panel (a)
is displayed in a drawing plane perpendicular to that of the other panels.
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6.4 Ge-S-Si Interface using the Si Lattice Constant

The GeSSi aligned and misaligned structures were relaxed using the lattice constant

of silicon, at the calculated value of 5.41 Å. The aligned structure shown in Fig. 6.1(a)

upon relaxation results in a Ge-S bond lengths of 2.22 Å, a S-Si bond lengths of 2.14 Å

and Ge-Ge and Si-Si symmetric dimers of bond length 2.45 Å and 2.39 Å respectively.

The misaligned structure is shown in Fig. 6.1(b), with a Si-Si symmetric dimer bond

length of 2.36 Å, three Ge-S bond lengths of 2.23 Å, 2.25 Å and 2.44 Å and two S-Si

bond length of 2.14 Å and 2.17 Å.

The potential shift calculated using the averaged local potential V loc(z) of the

aligned and misaligned GeSSi slab as described already in Chapter 5 are ∆V = 2.33

eV and ∆V = 2.49 eV, respectively. Using the averaged local potential and aligning it

with the corresponding bulk averaged potential as described in detail in Section 5.3.2,

the values for the energy difference ∆E are given in Table 6.2.

Table 6.2: Calculated energy shift (in eV) of the average local potential from bulk
germanium to that in the germanium side of the GeSSi slab (aligned and misaligned).
We also show the corresponding quantities for the strained silicon side of the slab.

GeSSi Aligned GeSSi Misaligned
∆EGe 2.93±0.06 2.83±0.09
∆ESi 4.54±0.11 4.56±0.12

Using the values for the energy difference in Table 6.2, the projected band struc-

tures for the aligned and misaligned interfaces are shown in Fig. 6.8(a) and Fig. 6.8(b),

respectively. In the aligned GeSSi interface, the projected band structure shows five

states in the band gap near the valence band edge around the K-point, compared to six

in Fig. 6.5(a) where the germanium lattice constant was used. The state near the con-

duction band edge in Fig. 6.8(a) only appears at the point 1
3JK and does not appear at
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the K-point as it did in Fig. 6.5(a). Using the silicon lattice constant causes the states

nearer the edges to be pushed into the bulk.
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Figure 6.8: Projected electronic bands along the surface path ΓJKJ′Γ in the Brillouin
zone using the silicon lattice constant. The slab electronic bands are represented in
green and the bulk bands is the shaded area in (a) for the GeSSi aligned interface and
(b) for the GeSSi misaligned interface.

The charge density contour plots for these states in the band gap in Fig. 6.8(a)
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are shown in Fig. 6.9(a)- 6.9(f), where Fig. 6.9(a) represents the state nearest the

valence band edge, ascending in order to Fig. 6.9(f) representing the state nearest the

conduction band edge. The first occupied state shown in Fig. 6.9(a) is an interface

state where by the charge density contour lines are seen to be located around the Ge-

S-Si atoms in a back bond like state. This state is displayed is in a drawing plane

perpendicular to that of the interface in Fig. 6.9(b) . In Fig. 6.9(b) the contour lines

are deep in both the germanium and silicon bulk as well as the Ge-S-Si interface which

shows that this occupied state is an interface state. The occupied states in Fig. 6.9(c)

and Fig. 6.9(e), are hybridised states involving the sulfur lone-pair [27] and the silicon

and germanium bonding state. The occupied state shown in Fig. 6.9(d) is a pure sulfur

lone-pair state. These states involving the sulfur lone-pair are interface states but are

fully occupied and will not effect the electronic transmission across the interface. The

final state near the conduction band edge at 1
3JK which is an unoccupied state, shows

contour lines in Fig. 6.9(f) around the Ge-Ge dimer and around the Si-S bond, thus

implying this in an interface state.

In the misaligned interface, the projected band structure in Fig. 6.8(b) shows

two states near the valence band edge at the K-point, one state across the middle

of the band gap and a state appearing near the conduction band edge between J and

1
3JK-point. The charge density contour plots for each of these states are shown in

Fig. 6.10(a) - 6.10(d), where Fig. 6.10(a) represents the state nearest the valence band

edge, ascending in order to Fig. 6.10(d) representing the state nearest the conduction

band edge.

At the K-point, the charge density plot in Fig. 6.10(a) for the lowest state near the

valence band edge is not an interface state, as the contour lines shows a back-bond

state deep in the silicon bulk. A bridge-bond state on the interface germanium atom

bridging to the interface sulfur atoms is shown in Fig. 6.10(b). This occupied state is

an interface state. In Fig. 6.10(c), the occupied state that crosses through the middle of
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: The charge density contour plots for the aligned GeSSi interface for the
states shown in Fig. 6.8(a). The plots are calculated at the K-point for (a)-(e) and at
1
3JK for (f). (a) represents the state nearest the valence band edge, ascending in order
to (f) which representing the state nearest the conduction band edge. Panels (a) and
(d) are displayed in a drawing plane perpendicular to that of the other panels.
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(a) (b)

(c) (d)

Figure 6.10: The charge density contour plots for the misaligned GeSSi interface for
the states shown in Fig. 6.8(b). The plots are calculated at the K-point for (a)-(c) and
at 1

3JK for (d). (a) represents the state nearest the valence band edge, ascending in
order to (d) which representing the state nearest the conduction band edge. Panel (a)
is displayed in a drawing plane perpendicular to that of the other panels.
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the band gap is an interface state as it can be seen that a dangling bond on the interface

germanium atom exists here. Again as with the case of using the germanium lattice

constant in Fig. 6.7(c), this state is identical to what we see on clean Ge(001)-(2×1)

surface in Chapter 3. The unoccupied state in Fig. 6.10(d) calculated at the point 1
3JK

is an interface state due to the contour lines cycling over three atomic layers in the

silicon bulk and contour lines around the interface sulfur and germanium atom. It’s

important to note here that the states calculated using both the germanium and silicon

lattice constants in the misaligned GeSSi interface are identical.

6.5 Ge-S-H-Si Interface using the Ge Lattice Constant

6.5.1 Structural Relaxation

Initially we began our investigation of the GeSHSi interface with using the H2S-

terminated Ge(001)-(2× 1) surface from Chapter 4 with a silicon slab placed over

this surface to form the GeSHSi interface, as shown in Fig. 6.11(a) and Fig. 6.11(d)

for the aligned and misaligned interfaces, respectively. Using sulfur at the inter-

face does result in a nice chemically bonded region as shown in Fig. 6.1(b) and

Fig. 6.1(d), interface states do however exist. As the presence of hydrogen on the

H2S-terminated Ge(001)-(2×1) surface removed the surface states that were present

on the S-passivated Ge(001)-(1×1) surface [22], it was important to investigate if the

presence of hydrogen on the GeSSi interface would remove the interface states that

we have seen and discussed earlier in this Chapter. The structures are relaxed using

the same procedure as in Section 5.2, with the three atomic layers on both side of the

interface (containing sulfur and hydrogen) only allowed to relax.

Relaxing the interfaces shown in Fig. 6.11(a) and Fig. 6.11(d) for the aligned and

misaligned structures respectively, resulted in no bonding of the interface. From here
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we artificially broke the H-S bonds on the germanium as shown in Fig. 6.11(b) for the

aligned and Fig. 6.11(e) for the misaligned, and allowed these GeSHSi interfaces to

relax. The relaxed aligned and misaligned GeSHSi interfaces using the germanium

lattice constant are shown in Fig. 6.11(c) and Fig. 6.11(f), respectively. The aligned

GeSHSi interface is identical to the aligned GeSSi interface in Fig. 6.1(b) except for

the hydrogen molecule being present in the channel between the dimer rows. The

misaligned GeSHSi interface is almost identical to the GeSSi interface in Fig. 6.1(d),

except for the hydrogen molecule being present in the channel but with one Ge-S bond

less than in the GeSSi interface.

To further investigate if both these aligned and misaligned GeSHSi interfaces were

the minimum energy structures, we artificially moved the hydrogen molecule to dif-

ferent locations in the channels between the adjacent Ge-S-Si rings and re-relaxed the

structures. This was done to see if the hydrogen molecule would split and bond to any

dangling bonds that may be present on the germanium, sulfur or silicon atoms at the

interface. All our test calculations showed that the structures shown in Fig. 6.11(c)

and Fig. 6.11(f) are the true minimum energy relaxed interface geometries.

In the aligned interface the relaxed structure gives a Ge-S bond lengths of 2.21

Å, a S-Si bond lengths of 2.15 Å and a Ge-Ge and Si-Si symmetric dimers of bond

length 2.45 Å and 2.41 Å respectively. The relaxed misaligned interface results in a

Si-Si symmetric dimer bond length of 2.38 Å, three Ge-S bond lengths of 2.22 Å, 2.25

Å and 2.48 Å and two S-Si bond length of 2.15 Å and 2.18 Å respectively.

The layer separation for the aligned and misaligned lattices are shown in Fig. 6.12(a)-

6.12(d). As we are using the germanium lattice constant, we see as we did in Chapter

5 and earlier in this chapter, the silicon strains in the perpendicular direction as ex-

pected.
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(a) (b) (c)

(d) (e) (f)

Figure 6.11: (a) The initial atomic configuration of the GeSHSi aligned structure.
(b) The S-H bonds are broken to help initiate the bonding at the interface. (c) After
structural relaxation the final atomic configuration of the GeSHSi aligned structure
showing a GeSHSi(001)-(2×1) reconstruction with the presence of Ge-Ge and Si-Si
symmetric dimers and a hydrogen molecule in the channel. (d) The initial atomic
configuration of the GeSHSi misaligned structure. (e) The S-H bonds are broken
to help initiate the bonding at the interface. (f) The final relaxed geometry for the
misaligned structure showing a GeSHSi(001)-(2×1) interface with Si-Si dimer only.
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Figure 6.12: Atomic layer separation d (blue line) in the relaxed GeSHSi slab as a
function of position z perpendicular to the plane of the interface. The region with
z < 13 Å [in (a) and (c)] is unstrained germanium and region the with z > 17 Å [in (b)
and (d)] is silicon with the in-plane lattice constant matched to unstrained germanium.
Panels (a) and (b) show results for the "aligned" interface geometry and panels (c)
and (d) show results for the "misaligned" geometry. The red lines indicate the corre-
sponding unstrained bulk layer separation and the green line indicates the z interlayer
separation found in bulk silicon, when its x−y lattice constant is constrained to match
that of unstrained germanium.
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6.5.2 Band Lineup and Projected Band Structure

The averaged local potential is shown in Fig. 6.13(a) and Fig. 6.13(b) for the aligned

and misaligned interfaces respectively. Due to the presence of hydrogen molecule in

the interface region, these potentials are only slightly different to the local potentials

of the GeSSi interfaces in Fig. 6.3(a) and Fig. 6.3(b).
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Figure 6.13: The local potential V loc(z) averaged over the parallel components x and y
as a function of the perpendicular coordinate z, to the interface for (a) the aligned and
(b) misaligned GeSHSi interface. The dashed line in both the germanium and silicon
is represented as V Ge and V Si, respectively, defined as the average local potential over
three periodic potential cycles in each section of the slab. Ge, S, H and Si represent
the regions in the slab where the germanium, sulfur, hydrogen and silicon atoms are
located.

The potential shift ∆V defined in Eq. 5.2 as ∆V = V Ge−V Si for the aligned and

misaligned structures are 2.07 eV and 2.32 eV, respectively. The energy difference ∆E

defined as the difference in energy between the bulk potential and the corresponding

part of the slab potential for the aligned and misaligned GeSHSi interface are shown

in Table 6.3.

The projected band structures for the GeSHSi aligned and misaligned interfaces

are aligned with the corresponding projected bulk band structures using the energy

difference values in Table 6.3. The projected band structure of both are shown in

Fig. 6.14(a) and Fig. 6.14(b).
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Figure 6.14: Projected electronic bands along the surface path ΓJKJ′Γ in the Brillouin
zone using the germanium lattice constant. The slab electronic bands are represented
in green and the bulk bands is the shaded area in (a) for the GeSHSi aligned interface
and (b) for the GeSHSi misaligned interface.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.15: Charge density contour plots for the aligned GeSHSi interface for the
states shown in Fig. 6.14(a). All plots are calculated at the K-point. (a) represents
the state nearest the valence band edge, ascending in order to (g) which representing
the state nearest the conduction band edge. Panels (a), (b) and (d) are displayed in a
drawing plane perpendicular to that of the other panels.
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Table 6.3: Calculated energy shift (in eV) of the average local potential from bulk
germanium to that in the germanuim side of the GeSHSi slab (aligned and misaligned).
We also show the corresponding quantities for the strained silicon side of the slab. The
energy difference ∆E is defined in Eq. 5.2.

GeSHSi Aligned GeSHSi Misaligned
∆EGe 3.23±0.05 2.94±0.09
∆ESi 4.66±0.10 4.54±0.15

In Fig. 6.15(a)- 6.15(g) all these charge density plots are calculated at the K-point

and Fig. 6.15(a) represents the state in the band gap in Fig. 6.14(a) nearest the valence

band edge ascending in order to the state nearest the conduction band edge where the

charge density is shown in Fig. 6.15(g). The contour lines in Fig. 6.15(a) represent a

back-bond state near the interface silicon atoms. The charge density in Fig. 6.15(b)

shows a back-bond state in the germanium layer near the interface and a bridge-bond

state deep in the silicon bulk. In Fig. 6.15(c), contour lines are located on the Ge-S-

Si interface. These three states which are all occupied all represent interface states.

The occupied states in Fig. 6.15(d) and Fig. 6.15(f), are hybridised states involving

the sulfur lone-pair [27] and the silicon and germanium bonding state. The occupied

state shown in Fig. 6.15(e) is a pure sulfur lone-pair state. These lone-pair states

clearly cut through the band gap in Fig. 6.14(a) are interface states but will not affect

the electronic transmission across the interface. The final state shown in Fig. 6.15(g)

which is also the only unoccupied state shows contour lines around the Ge-Ge dimer

atoms, thus implying an interface state. It must be noted here that all the interface

states are indistinguishable from the interface states in the GeSSi aligned interface and

the presence of the hydrogen molecule does not influence the electronic characteristics

of the interface.

The misaligned interface in Fig. 6.14(b) we see three states near the valence band

edge, one state across the middle of the gap and another one appearing around 1
3JK.

The charge density of the lowest state in the gap is represented in Fig. 6.16(a) and
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(a) (b) (c)

(d) (e)

Figure 6.16: The charge density contour plots for the misaligned GeSHSi interface
for the states shown in Fig. 6.14(b). The plots are calculated at the K-point for (a)-(d)
and at 1

3JK for (e). (a) represents the state nearest the valence band edge, ascending in
order to (e) which representing the state nearest the conduction band edge. Panel (a)
and (b) are displayed in a drawing plane perpendicular to that of the other panels.
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ascending in order to the state nearest the conduction band edge where the charge

density is shown in Fig. 6.16(e). The charge density for all these states are calculated

at the K-point except for the state near the conduction band edge, which is calculated

at the point 1
3JK.

In Fig. 6.16(a) is a back-bond state where the charge density is located on a Ge-Ge

bond below the interface. This occupied interface state is not seen in the projected

band structure of the GeSSi misaligned interface in Fig. 6.5(b). The occupied state

shown in Fig. 6.16(b) is again another back-bond state and is located deep in the

silicon bulk and contour lines are around the interface germanium atoms implying

that this is an interface state. The next interface state which is occupied is shown in

Fig. 6.16(c) where we see a bridge-bond state on the interface germanium atom bridg-

ing also to the interface sulfur atoms. Another interface state is seen in Fig. 6.16(d)

where the charge density contour lines are located on the interface germanium atom,

forming a dangling bond. This occupied state is represented in the projected band

structure in Fig. 6.14(b) is the one that crosses the middle of the gap and as mentioned

in Section 6.3.3 this state is similar to the dangling bond state on the Ge(001)-(2×1)

surface. The final state that appears around 1
3JK is shown in Fig. 6.16(e) has the largest

proportion of charge density located over three atomic layers in the silicon bulk and

has contour lines around the sulfur and germanium interface atoms again implying

that this is an interface state. This is the only unoccupied state in the band gap. In this

GeSHSi misaligned interface, the only difference with the GeSSi misaligned interface

is the presence of an extra state with the presence of hydrogen. This state is the one

shown in Fig. 6.16(a). The presence of the hydrogen molecule does not influence the

electronic characteristics of the misaligned interface. The hydrogen molecule in both

the aligned and misaligned GeSHSi interfaces does not remove any of the interface

states that were present in the GeSSi interfaces.
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6.6 Ge-S-H-Si Interface using the Si Lattice Constant

Using the lattice constant of silicon, the GeSHSi aligned and misaligned interfaces

are re-relaxed as shown in Fig. 6.11(c) and Fig. 6.11(f). In the aligned interface the

relaxed structure gives Ge-S bond lengths of 2.20 Å and 2.21 Å, a S-Si bond lengths

of 2.15 Å and a Ge-Ge and Si-Si symmetric dimers of bond length 2.42 Å and 2.39

Å, respectively. The relaxed misaligned interface results in a Si-Si symmetric dimer

bond length of 2.35 Å, three Ge-S bond lengths of 2.23 Å, 2.26 Å and 2.42 Å and two

S-Si bond length of 2.14 Å and 2.18 Å, respectively.

The potential shift ∆V defined in Eq. 5.2 for the aligned and misaligned structures

are 2.36 eV and 2.48 eV, respectively. The energy difference ∆E defined as the dif-

ference in energy between the bulk potential and the corresponding part of the slab

potential for the aligned and misaligned GeSHSi interface are shown in Table 6.4.

Table 6.4: Calculated energy shift (in eV) of the average local potential from strained
germanium to that in the germanium side of the GeSi slab (aligned and misaligned).
We also show the corresponding quantities for the silicon side of the slab. The energy
difference ∆E is defined in Eq. 5.2.

GeSHSi Aligned GeSHSi Misaligned
∆EGe 2.90±0.07 2.81±0.05
∆ESi 4.48±0.19 4.53±0.12

The projected band structures for the aligned and misaligned interfaces are aligned

with the corresponding projected bulk band structures using the energy difference

values in Table 6.4. The projected band structure of both are shown in Fig. 6.17(a)

and Fig. 6.17(b).

For the aligned GeSHSi interface, six states appear in the band gap of the projected

band structure. The corresponding charge density contour plots for these six states are

shown in Fig. 6.18(a)- 6.18(f) where the charge density for each of these bands is

calculated at the K-point. The lowest state in the band gap near the valence band edge
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Figure 6.17: (a) Projected electronic bands for the GeSHSi aligned interface along
the surface path ΓJKJ′Γ in the Brillouin zone using the silicon lattice constant. The
slab electronic bands are represented in green and the bulk bands are the shaded area.
Six states exist in the band gap. (b) The projected band structure for the misaligned
interface with the of presence five states in the band gap.
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(a) (b) (c)

(d) (e) (f)

Figure 6.18: Charge density contour plots of the individual states for the GeSHSi
aligned interface at the K-point for (a)-(f). All plots are calculated using the silicon
lattice constant. (a) shows back-bond states in both the germanium and silicon bulk
and is represented in a drawing plane perpendicular to the other panels. (b) and (c) are
bridge-bond states in the bulk. (d)-(f) represent interface states on the sulfur atoms.
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as shown in Fig. 6.18(a) is a back-bond state with the contour lines around both a

Si-Si and Ge-Ge bonds at the interface. This occupied state is an interface state. A

mixture of a back-bond and bridge-bond state is shown in Fig. 6.18(b). The contour

lines are mainly situated in the bulk however contour lines are seen around the Ge-

Ge dimer and S-Si bond thus this occupied state is referred to as an interface state.

In the silicon layer at the interface in Fig. 6.18(c) another back-bond and interface

state is seen which is also occupied. The occupied state shown in Fig. 6.18(d) is a

pure sulfur lone-pair state. The occupied states in Fig. 6.18(e) and Fig. 6.18(f), are

hybridised states involving the sulfur lone-pair [27] and the silicon and germanium

bonding state. These lone-pair states are all interface states but will not effect the

electronic transmission across the interface. In comparison to the charge density plots

of the aligned GeSHSi interface using the germanium lattice constant Fig. 6.15(a)-

6.15(f), we see bridge and back bond states in both that are interface states. We see

three interface states related to the sulfur lone-pairs, however we see an interface state

due to the Ge-Ge dimer in the germanium lattice constant case. This was only visible

in the projected band structure around the K-point as shown in Fig. 6.14(a). This is not

seen in the projected band structure in Fig. 6.17(a) where we used the silicon lattice

constant.

The misaligned GeSHSi interface projected band structure in Fig. 6.17(b) shows

three states near the valence band edge, one state directly across the band gap and the

final state near the conduction band edge. All charge density plots for these states

shown in Fig. 6.19(a)- 6.19(e) are calculated at the K-point. The charge density plots

in Fig. 6.19(a) and Fig. 6.19(b) which are interface states are shown in a perpendicular

drawing plane to the charge density plots in Fig. 6.19(c)- 6.19(e). In Fig. 6.19(a) we

see a back-bond interface state on the germanium atom at the interface and also in

Fig. 6.19(b). An interface state is shown in Fig. 6.19(c), where we see a bridge-bond

on the interface germanium atom bridging to the interface sulfur atoms. Another
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(a) (b) (c)

(d) (e)

Figure 6.19: Charge density contour plots of the individual states for the GeSHSi mis-
aligned interface at the K-point for (a)-(c) and at 1

3JK for (d). All plots are calculated
using the silicon lattice constant. (a) and (b) are bridge-bond states in the germanium
bulk and are drawn in a plane perpendicular to the other panels. (c) is an interface
state with bridge-bond state on the interface germanium atom bridging to the interface
sulfur atoms. (d) is a dangling bond interface state on the interface germanium atom.
(e) shows the interfaces state with contour lines on the interface silicon and sulfur
atoms.
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interface state is shown in Fig. 6.19(d), which is the state that runs directly across

the middle of the band gap, is like a dangling bond state on the interface germanium

atom. This state as already mentioned in the case of the misaligned interface using

the germanium lattice constant in this Chapter is equivalent to the dangling bond state

on the Ge(001)-(2× 1) surface. All these states are occupied. The final state near

the conduction band edge is shown in Fig. 6.19(e) is an interface state and is the only

unoccupied state. The contour lines are located around one of the sulfur interface

atoms and also on one of the silicon atoms on the Si-Si dimer.

6.7 Conclusion

In conclusion, calculations for both structural geometries and electronic band struc-

tures using both the germanium and silicon lattice constants were performed. The

GeSSi aligned interface forms a (2× 1) structure with a ring of Ge-S-Si-Si-S-Ge

atoms. Ge-Ge and Si-Si symmetric dimers exist on this six atom ring. The pro-

jected band structure for this interface using the germanium lattice constant shows

seven interface states in the band gap with six of these states being nearer the valence

band side. The state nearest the valence band edge does not appear in the projected

band structure using the silicon lattice constant. In both cases of using different lattice

constants, only one unoccupied state exists in each. This is the state that is near the

conduction band edge.

In the GeSSi misaligned interface a (2× 1) structure is formed with the presence

of Si-Si dimers only. No Ge-Ge dimers are present as the sulfur bonds to germanium

like the GeS(1× 1) structure. The projected band structure for this interface state

shows four states in the band gap. In both the aligned and misaligned cases of the

GeSSi interface, interface states exist due to the presence of the sulfur atoms. The

states in the aligned structures are fully occupied and are due to the presence of the
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sulfur lone-pairs. The states in the misaligned structures which are also fully occupied

are due to bridge-bonds between the Ge-S bonds, Sulfur here forms 3 bonds with its

neighbouring germanium and silicon atoms and thus the six valence electrons of sulfur

are used in these bonds. Without the presence of sulfur we saw in Chapter 5 that the

GeSi misaligned structure had one unoccupied interface state and we proposed that

the use of sulfur with its flexible chemical bonds would remove this interface state.

However this was not the case as the unoccupied state near the conduction band edge

remained when sulfur was used at the interface. From this sulfur does not improve the

interface and the electronic trap still remains which may be an issue in the production

of the GeSi APD.

Introducing the hydrogen molecule into the GeSSi interfaces, the aligned GeSHSi

interface is identical to the aligned GeSSi interface except for the hydrogen molecule

being present in the channel between the dimer rows. Similarly the misaligned GeSHSi

interface is almost identical to the GeSSi interface except for the hydrogen molecule

being present but with one Ge-S bond less than in the GeSSi interface. The aligned

GeSHSi shows seven interface states in the projected band structure using the germa-

nium lattice constant and shows six states using the silicon lattice constant whereby

the state near the conduction band edge does not appear in the projected band struc-

ture.

The misaligned GeSHSi interface shows five interface states in using both the

germanium and silicon lattice constants respectively.

As originally suggested from our knowledge of the GeSH surface whereby the

presence of hydrogen removed the surface states, the presence of hydrogen on the

GeSSi interfaces did not influence the electronic characteristics of the interfaces. The

unoccupied interface state around the conduction band edge still remained in both the

aligned and misaligned structures. The introduction of the hydrogen molecule with

the hope of atomic hydrogen bonding with the unoccupied state did not occur in both



6.7. Conclusion 120

the aligned and misaligned GeSHSi interfaces.

To conclude the original unoccupied interface state that existed in the GeSi mis-

aligned interface remained throughout. The presence of sulfur and hydrogen did not

remove this state. Using S and HS on the GeSi interface provided some interesting

bonding configurations, however the single interface state has the potential to be a

problem in the development of the GeSi avalanche photodiode.



CHAPTER 7

Conclusion

This theoretical study was to investigate various aspects of the bonding, vibra-

tional modes and electronic structure of GeSi surfaces and interfaces. It was originally

stimulated by the possibilities for development of GeSi avalanche photodiodes using

wafer-bonding techniques to create the GeSi interface.

As a benchmarking exercise we first looked at the bare germanium surface and us-

ing density functional theory (DFT) we reproduced the theoretical results as published

in the literature of a Ge(001)-(2× 1) surface. The asymmetric dimer is produced at

the Ge(001)-(2×1) surface. The projected band structure shows distinct states in the

band gap. These were two dangling-bond states on the surface germanium atoms and

a back-bond surface state on a germanium atom below the surface. This then provided

us with the correct foundations using DFT, to investigate theoretically the vibrational

mode frequencies of adsorbed species on a germanium surfaces and the GeSi inter-

faces.

The equilibrium geometry and vibrational modes of H2S and H2O-terminated

Ge(001)-(2×1) surfaces were calculated in a supercell approach using first-principles

density functional theory in the local density (LDA), generalized gradient (GGA) ap-

proximations and van der Waals (vdW) interactions. We saw both similarities and

differences in the bonding of H2S and H2O to the Ge(001)-(2× 1) surface. The dif-

ferences between the exchange-correlation functionals including vdW terms and the
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LDA or GGA are less than the differences between LDA and GGA, thus vdW does

not greatly alter the vibrational mode frequencies. The calculated localized mode fre-

quencies, particularly the Ge-S and Ge-O stretch modes, provide useful vibrational

signatures of bonding of both sulfur and oxygen on Ge(001)-(2x1) surface, which

may be compared with vibrational spectroscopy measurements. The Ge-H stretch and

bending modes are characteristic in identifying the difference between two different

H2O to the Ge(001)-(2×1) surfaces.

The structural and electronic characteristics of a GeSi(001) interface were calcu-

lated for regions where the germanium and silicon atoms align and misalign. The

GeSi aligned interface structure follows the diamond cubic crystal structure across the

interface and no interface states are present in the band gap as expected due to no dan-

gling bonds being present at the interface. The GeSi misaligned interface reconstructs

to a (2×1) structure with the presence of Ge-Ge and Si-Si dimers and alternating 5-

fold and 7-fold rings in the mismatched regions to adjust the bonding at the interface.

Interfaces states were present in the band gap, however only one of the states was un-

occupied. This unoccupied state existed near the conduction band edge and this is the

only state that is of concern in the development of a GeSi APD as it has the potential

to create an electronic trap for the carriers.

Sulfur is an atom with flexible chemical bonds and we investigated if this flexibility

would adjust the bonding in the interface regions where the germanium and silicon

lattices align and misalign to provide an interface free of electronic states. Two very

different structural geometries resulted with the use of sulfur at the interface. In both

the aligned and misaligned interfaces, the electronic structure showed the existence

of interface states. One of these states was unoccupied and this unoccupied state also

existed in the GeSi misaligned interface without the presence of sulfur, thus sulfur

does not improve the interface and the electronic trap still remains which may be an

issue in the production of the GeSi APD.
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From here we investigated the presence of using both sulfur and hydrogen at the

interface as the presence of both species on the germanium surface removes sur-

face states. The aligned and misaligned GeSHSi interfaces are almost identical to

the aligned and misaligned GeSSi interfaces except for the hydrogen molecule being

present in the channel between the dimer rows. Interfaces states existed in both inter-

faces with one of these states being unoccupied. Again this unoccupied state exists

as before and thus the introduction of the hydrogen molecule with the hope of atomic

hydrogen bonding with the unoccupied state did not occur in both the aligned and

misaligned GeSHSi interfaces.

To conclude the original unoccupied interface state that existed in the GeSi mis-

aligned interface remained throughout our calculations. Sulfur and hydrogen did not

remove this potential electronic trap and this has the potential to be a problem in the

development of the GeSi avalanche photodiode.
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Appendix

A.1 Total Energies of Surfaces

Table A.1: Calculated supercell energies (eV) for H2S and H2O-terminated Ge(001)-
(2× 1) surfaces. The calculated supercell energy for each surface with the desorbed
molecule removed and the structure re-relaxed are also presented, along with the su-
percell energy for the relevant isolated molecule.

LDA LDA vdW GGA GGA vdW
Fig 4.1(c) H2S removed -2323.78 -2354.81 -2292.63 -2316.95
H2S molecule -309.31 -314.32 -309.52 -312.91
Fig 4.1(c) H2S removed + H2S molecule -2633.09 -2669.13 -2602.15 -2629.86
Fig 4.1(c) -2633.13 -2669.17 -2602.03 -2629.89
Fig 4.1(d) H2 removed -2602.76 -2636.76 -2571.02 -2597.53
H2 molecule -30.64 -32.76 -31.39 -32.75
Fig 4.1(d) H2 removed +H2 molecule -2633.40 -2669.52 -2602.41 -2630.28
Fig 4.1(d) -2633.38 -2669.47 -2602.28 -2630.20
Fig 4.2(b) H2O removed -2479.40 -2513.75 -2449.14 -2475.73
H2O molecule -462.78 -470.30 -464.10 -468.97
Fig 4.2(b) H2O removed + H2O molecule -2942.18 -2984.05 -2913.24 -2944.70
Fig 4.2(b) -2942.36 -2984.14 -2913.31 -2944.92
Fig 4.2(c) H2 removed -2911.24 -2951.12 -2881.39 -2911.71
H2 molecule -30.94 -33.13 -31.72 -33.13
Fig 4.2(c) H2 removed + H2 molecule -2942.18 -2984.25 -2913.11 -2944.84
Fig 4.2(c) -2942.21 -2984.24 -2912.99 -2944.85

A.2 Vibrational Mode Frequencies

The vibrational mode frequencies of H2S on a Ge(001) surface for the relaxed struc-

tures Fig. 4.1(c) and Fig. 4.1(d) shown in Chapter 4 for LDA and GGA, with and

without vdW are given in Table A.2.
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Table A.2: Calculated vibrational mode frequencies (in cm−1) for H2S on a Ge(001)
surface for the relaxed structures shown in Fig. 4.1(c) and Fig. 4.1(d) and the isolated
molecule using both LDA and GGA. Experimental frequencies for H2S molecule from
Ref. [3] are also shown.

H-S Stretch H-S Bend Ge-H Stretch Ge-H Bend Ge-S Stretch H-S Wag
Fig. 4.1(c) LDA 2441 708 1945 533 350 393

503
Fig. 4.1(c) LDA 2501 703 1989 513 329 381
(H2S removed) 504
Fig. 4.1(c) LDA vdW 2473 743 2032 544 331 374

529
Fig. 4.1(c) LDA vdW 2524 732 2010 550 308 351
(H2S removed) 547
Fig. 4.1(c) GGA 2494 703 1946 503 342 392

487
Fig. 4.1(c) GGA 2540 693 1953 505 320 358
(H2S removed) 491
Fig. 4.1(c) GGA vdW 2459 714 1952 517 317 376

477
Fig. 4.1(c) GGA vdW 2513 709 1935 519 325 338
(H2S removed) 502
Fig. 4.1(d) LDA 2438 718 396 328

2419 706 374
361

Fig. 4.1(d) LDA 2488 709 394 336
(H2 removed) 2414 693 373
Fig. 4.1(d) LDA vdW 2492 748 364 333

2473 736 346
Fig. 4.1(d) LDA vdW 2515 735 365 287
(H2 removed) 2498 729 349
Fig. 4.1(d) GGA 2495 708 373 337

2484 704 353
Fig. 4.1(d) GGA 2528 695 374 287
(H2 removed) 2518 694 356
Fig. 4.1(d) GGA vdW 2481 729 352 315

2469 719 332
Fig. 4.1(d) GGA vdW 2499 721 352 273
(H2 removed) 2487 711 342
Molecule LDA 2562 1117

2545
Molecule LDA vdW 2541 1187

2524
Molecule GGA 2565 1140

2547
Molecule GGA vdW 2525 1179

2508
Molecule Expt 2733.4 1214.5

2721.9
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Table A.3: Calculated LDA and GGA vibrational mode frequencies (in cm−1) for H2O
on a Ge(001) surface for the relaxed structures shown in Fig. 4.4(b) and Fig. 4.4(c)
and for the isolated molecule. Experimental frequencies for H2O molecule from Ref.
[3] are also shown.

H-O Stretch H-O Bend Ge-H Stretch Ge-H Bend Ge-O Stretch H-O Wag
Fig. 4.2(b) LDA 3590 921 1995 538 609 342

455
Fig. 4.2(b) LDA 3589 939 2004 511 653 304
(H2O removed) 505
Fig. 4.2(b) LDA vdW 3583 947 2067 543 621

531
Fig. 4.2(b) LDA vdW 3572 970 2024 554 648 330
(H2O removed) 552
Fig. 4.2(b) GGA 3600 940 1991 486 559 336

469
Fig. 4.2(b) GGA 3592 956 1965 500 587 313
(H2O removed) 492
Fig. 4.2(b) GGA vdW 3552 951 2000 504 579 401

483 538
Fig. 4.2(b) GGA vdW 3550 961 1951 516 573 328
(H2O removed) 503
Fig. 4.2(c) LDA 3593 984 677 381

3498 909 654
Fig. 4.2(c) LDA 3583 949 676 349
(H2 removed) 3580 932 645
Fig. 4.2(c) LDA vdW 3557 972 652 347

3555 937 612
Fig. 4.2(c) LDA vdW 3575 969 646 351
(H2 removed) 3566 925 613
Fig. 4.2(c) GGA 3577 969 621 340

3575 942 586
Fig. 4.2(c) GGA 3611 955 614 337
(H2 removed) 3595 922 574
Fig. 4.2(c) GGA vdW 3548 970 587 362

3524 942 537
Fig. 4.2(c) GGA vdW 3550 961 606 360
(H2 removed) 3540 929 568
Molecule LDA 3713 1581

3602
Molecule LDA vdW 3677 1635

3573
Molecule GGA 3709 1624

3602
Molecule GGA vdW 3624 1591

3584
Molecule Expt 3942.5 1648.5

3833.2
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