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In this work, we are reporting a very simple and efficient method to form lamellar structures of 

symmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) copolymer thin films with 

vertically (to the surface plane) orientated lamellae using a solvent annealing approach. The 

methodology does not require any brush chemistry to engineer a neutral surface and it is the 

block neutral nature of the film-solvent vapour interface that defines the orientation of the 

lamellae. The microphase separated structure of two different molecular weight lamellar forming 

PS-block-P4VP copolymer formed under solvent vapour annealing was monitored using atomic 

force microscopy (AFM) so as to understand morphological changes of the films under different 

solvent exposure. In particular, the morphology changes from micellar structures to well-defined 

microphase separated arrangements.  The choice of solvent/s (single and dual solvent exposure) 

and the solvent annealing conditions (temperature, time etc.) had important effects on structural 

transitions of the films and it was found that a block neutral solvent was required to realize 

vertically aligned P4VP lamellae.  The results of structural variation of the phase separated 

nanostructured films through the exposure to ethanol are also described. 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

    Block copolymers (BCPs) of two or more chemically immiscible polymer chains can phase 

separate to form well-ordered morphologies with feature sizes of around 5 to 50 nm in thin films 

under certain conditions.1 BCPs may be one of the most useful classes of nanomaterials because 

of their ability to self-assemble into different morphologies and subsequently template organic, 

inorganic, semiconducting, metallic or biologically relevant material nanopatterns.2-11 BCP self-

assembled structures can form are lamellar, cylindrical, spherical as well as more complex 

gyroid and other 3D arrangements depending on their composition. The feature sizes and lateral 

spacing of the patterns varies with molecular weight. The Flory-Huggins interaction parameter 

(χ), a measure of block chemical dissimilarity, combined with the degree of polymerization (N) 

dictates 12-13 the spontaneous formation of microphase separated structure.14-15  Spin-coating 

from dilute polymeric solution onto flat substrates is the most convenient method of thin film 

formation but the as-spun films are usually in a non-equilibrium state due to the competition 

between microphase separation and vitrification as solvent evaporation proceeds.16  Self-

assembly of BCPs can be achieved through annealing the BCP thin film under a suitable 

environment, either at elevated temperature using thermal annealing17-18 or by annealing under 

solvent vapour/s19-25. Of particular interest here is solvent vapour annealing (SVA) since well-

defined film patterns can be achieved at much lower process temperatures/times than thermal 

annealing. In solvent annealing, the solvent vapour permeates, swells and separates the polymer 

chains providing mobility by lowering the effective glass transition temperature.   

    Because of their potential as an “on-chip” etch mask in integrated circuit manufacture, 

orientational control (i.e. direction vertical or parallel to the substrate plane) is a critical issue.26-

27 This can be challenging particularly for lamellar systems where preferential interface 



interactions and surface energies can result in horizontal orientations and/or preferential wetting 

layers.28 Examples include polystyrene-block-polymethylmethacrylate (PS-block-PMMA) which 

is well studied for device applications but requires a well-defined random polymer brush layer on 

top of the silicon substrate to provide ideally oriented patterns.29 Polystyrene-block-

polydimethlysiloxane (PS-block-PDMS) is another potential material for circuit fabrication but 

also requires a carefully controlled brush layer or substrate molecular functionalization.30 Other 

potential solutions include “capping layers” but a simple method was first demonstrated by 

Libera and co-workers31, who proposed that solvent evaporation upon casting  could orient 

cylinder during solvent evaporation. However, this mechanism is not clear and other authors 

suggest that the chemistry of the solvent vapour at the polymer surface drives orientational 

control.25 

    An ideal line-forming BCP pattern for circuit fabrication would be lamellar-forming (since 

pattern transfer from cylindrical arrangements is challenging27) and have high χ (since they can 

phase separate into small domain size/spacings, have smaller inter-domain diffusion regions and 

produce patterns with less defects). The use of high-χ BCPs is, however, challenging since it is 

difficult to ensure perpendicular orientation of the blocks to the substrate plane and, further, 

obtaining well-ordered, defect free patterns can be kinetically slow.32 At room temperature, the χ 

parameter of PS-block-P4VP (χ~0.34)33 is considerably higher than those of PS- block-PDMS 

(χ~0.26),34 PS-block-PMMA (χ~0.06),35 PS-block-P2VP (χ~0.18),36 PS-block-PEO (χ~0.08).37 

Further, the surface energies of PS and P4VP are similar limiting phase separation at interfaces38 

whilst the functionality of the block is ideal for inclusion of inorganics for enhancement of etch 

contrast. Thus, the PS-block-P4VP system has significant potential in device fabrication.  

However, the self-assembly of lamellar forming systems of this BCP is challenging due to a 



strong tendency to micellization in common polymer solvents such as toluene.39 Indeed, this 

strong micellization has been used for the incorporation of metals and semi-conducting materials 

into the P4VP core in solvents favouring PS.40-41 Sohn and co-workers42 have shown long range 

lateral ordering of PS-b-P4VP micelles is possible. Generally, the micelles formed by lamellar 

PS-block-P4VP are robust and resistant to both thermal and solvent annealing and in order to 

form microphase separated domain structures, although careful attention to the selection of both 

casting and annealing solvents are required.16  

    SVA methodologies are well developed. This paper extends the understanding of SVA by 

extension to a high-χ lamellar phase BCP which shows very strong tendency to form micelles in 

both solution and thin films and provides details of a robust solvent annealing method to form 

periodic, orientationally controlled, lamellar structures and provide understanding of the nature 

of the SVA solvent needed to affect these arrangements.    

Experimental Section 

    Two different PS-block-P4VP copolymers were purchased from Polymer Source Inc. 

(Montreal, Canada). Table 1 shows the molecular characteristics of the polymers used in this 

work. BCPs were used without any further purification. Reagent grade toluene and 

tetrahydrofuran (THF) were purchased from Sigma-Aldrich.  

Table 1: Molecular characteristics of the PS-block-P4VP copolymers 

Polymer Total Mn 

(x103 

g/mol) 

Mw/Mn 

(PDI) 

P4VP 

Fraction 

BCP morphology(*) 

PS20k-block-P4VP17k 37.0 1.08 0.46 L 

PS9k-block-P4VP9.2k 18.2 1.09 0.51 L 

* L= Lamellae forming 

Polymers used were generally dissolved in toluene-THF mixtures to yield 0.5 weight % solutions 

and were stirred overnight at room temperature to ensure complete solution. A toluene-THF 



(80%-20%) mixture was found to be the optimum composition providing periodic arrangements 

in short times (see below). Substrates were silicon (100) wafers with an interfacial oxide of 2 nm 

and were cleaned by sonicating for 15 min in toluene, followed by 10 min in THF and then dried 

under a stream of nitrogen. A final cleaning using a UV/ozone treatment for 15 min was 

performed. The cleaning procedure lowered the water contact angle significantly (36o for bare 

silicon and 0o for UV/ozone cleaned) making the surface more hydrophilic. This resulted in a 

more uniform, high coverage thin film presumably due to increased affinity to the P4VP block. 

Thin films of required thickness were prepared by spin-coating the polymer solutions onto the 

substrates at 3000 rpm for 30 s using a Speciality Coating Systems G3P-8 spin-coater. Solvent 

annealing was used to generate well-defined periodic structures. The samples were placed in a 

glass bottle (100 ml size) containing a smaller vial holding 10 ml of solvent. As cast samples 

were then solvent annealed at 50 oC for a range of different times (30 min to 6 h). The annealed 

samples were immediately removed from the vials and kept at room temperature for few minutes 

to ensure the rapid and complete evaporation of the solvent.  The rapid removal time was used so 

that swollen features were kinetically “frozen-in” for analysis. All samples were analysed using 

atomic force microscopy (AFM, Park Systems XE-100) and topographic images were collected 

in non-contact tapping mode.  Scanning electron microscopy (SEM, FEI Inspect F) was also used 

as an imaging method. 

Results 

    A 0.5 wt% solution used here for spin casting is well above the known critical micelle solution 

for PS20k-block-P4VP17k (0.065 mg ml-1) copolymer and strong spherical micellization is 

expected when dissolved in toluene.43  Because of the preferential interaction of toluene with the 

PS block the micelles have a PS corona and the P4VP block in the core.44 When the casting 



solution is spin-coated on the substrate surface, these micelles survive spin coating/solvent 

evaporation and in the conditions used here, form a monolayer of densely packed, robust hemi-

micelles on the substrate surface and form a poorly ordered hexagonal arrangement (Fig. 1(A)). 

In the AFM image, lighter colours correspond to the P4VP block and the darker colour to PS. 

The formation of strong spherical micellization in these mixtures is observed by the bluish 

translucent colour of the polymer solution.45 Below, 0.5 wt% casting solution concentrations, the 

micelles become progressively less densely packed and it is possible to resolve the micelle 

structure using SEM (0.3 wt%).  In Fig. 1(B), the micelles do not cover the whole surface and 

open areas of the substrate can be seen. At higher resolution, Fig. 1(C), a densely packed P4VP 

core can be clearly observed as a bright sphere with the less densely packed PS corona seen as 

tendrils extending across the substrate. It can be seen that the PS component has collapsed to the 

substrate either the result of surface interactions and/or the removal of the solvent.  

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 1 AFM images of a PS20k-block-P4VP17k copolymer thin films, 0.5 wt% casting solution 

(A). (B) and (C) are SEM images of similar films formed at 0.3 wt%. The micelle nature of the 

film can be very clearly seen in (C).  

    In order to rearrange these films into microphase separated structures, extensive annealing was 

needed. Thermal annealing was not very effective and instead solvent annealing was found to be 

much more effective. As discussed by us previously,16 the choice of solvent is dictated by the 

materials solvent parameter. For these strongly micelle forming systems, it is suggested that a 

solvent that is effectively neutral (favours both blocks) is required as this negates micelle 

formation. The Hildebrand solubility parameter can be used to indicate the similarity of the 

solvent to a polymer and, hence, solubility.46 However, for the PS-block-P4VP system, this 

approach is somewhat over simple since P4VP has considerable polarity. In this case, the Hansen 

solubility parameters are more useful providing estimates of individual contributions for 

dispersive (van der Waals), polar and hydrogen bonding.47 Table 2 lists known Hansen solubility 

parameters for the materials used here. Toluene is poor solvent for the P4VP block because of its 

low polarity but a reasonable solvent for PS, THF is a good solvent for the P4VP block because 

of the good match with both its polarity and hydrogen bonding. Overall, it could be argued, that 

THF appears to be a better solvent for the BCP than toluene alone (since it has a reasonably 

similar dispersion component to PS as well as a polar component for THF) and hence it was used 

as the primary component in the casting solutions described above.  

Table 2. Hansen Solubility Parameters (MPa1/2 for Relevant Materials) 

Material Dispersion Polarity Hydrogen 

Toluene 18.0 1.4 2.0 

THF 16.8 5.7 8.0 

Ethanol 15.8 8.8 19.4 



PS 18.6 0.2 0.0 

P4VP 18.1 6.8 7.2 

PS-b-P4VP 19.3 5.9 0.9 

Note to table: Hansen Solubility Parameters were taken from various sources.48-50  

Fig. 2 Topographic AFM images (1x1µm) of PS9k-block-P4VP9.2k copolymer cast from 

toluene/THF (80/20) and solvent annealed at 50 oC for 4h in different saturated solvent vapour 

environments of: (A) pure toluene, (B) toluene/THF =90/10, (C) toluene/THF =80/20, (D) 

toluene/THF =70/30, (E) toluene/THF =60/40, (F) toluene/THF =50/50, (G) toluene/THF 

=40/60, (H) toluene/THF =30/70, (I) toluene/THF =20/80, (J) toluene/THF =10/90 and (K) pure 

THF. All solvent compositions are given as (v/v). FFT patterns inset show the difference in the 

degree of order. 

    The more neutral nature of THF can be verified by the AFM data presented in Fig. 2 where the 

results of solvent annealing a PS9k-block-P4VP9.2k copolymer in various toluene/THF mixtures 

(50 oC, 4 h).  In Figs. 2 (A-K), there is a distinct change of morphology from micelle structures 

to well-defined microphase separated arrangements. For convenience, the solvent vapour 



annealing (SVA) conditions can be divided into three distinct regions: (I) SVA in pure toluene, 

(II) SVA in toluene rich mixture of toluene/THF and (III) SVA in a THF rich mixture.  

SVA in pure toluene (Fig. (2A)) 

    As postulated earlier, solvent annealing in toluene is ineffective in altering the morphology of 

the as-cast films from their micelle type structure because it is a poor solvent for the P4VP block. 

The mean spacing for both as-cast and solvent annealed micelles remains unchanged as 

measured by AFM (~28 nm). Clearly, the BCP forms a P4VP rich core and a PS corona because 

of the favourable interactions of the polymer for the PS block. Even extended annealing periods 

of 24 h had no measurable effect on film morphology. It should be noted that whilst the 

morphology is largely unaltered, changes in the order of the micelle arrangement can be seen 

with significantly greater order after solvent annealing. Larger areas of a well-defined hexagonal 

arrangement can be seen compared to the image in Figure 1(A). This is evidenced by the changes 

in the FFT (Fast Fourier Transform) data.  

SVA in a toluene rich mixture of toluene/THF (Fig. 2(B-F)) 

    The addition of even small amounts of THF to toluene, for the solvent annealing procedure 

had a noticeable effect on the morphology. A 90:10 v/v mixture did not alter the morphology but 

changes in spacing and apparent feature size can be seen with increase in micellar size to around 

29 nm consistent with some swelling of the P4VP core by the addition of THF.  Note that 

although the swelling is not directly observed its effect is seen by inclusion of free volume 

caused by rapid solvent loss during removal from the chamber. Further addition of THF (80/20 

v/v, Figure 2(C) begins to transform the micelle structure into a structure suggestive of a 

microphase separated arrangement with a change in height variation across the substrate 

decreasing from 5-6 nm for micelle structures to 2-3 nm for the phase separated like patterns. 



The image seen in Figure 2(C) is more complex than might be imagined since both lines and 

cylinder or sphere arrangements can be seen.  It seems unlikely that enough solvent swelling is 

seen to result in a gross composition change to form either cylinder of spherical microphase 

separated structures.  In AFM, the lighter regions of the image are due to the P4VP block and it 

would appear that this initial structure represents a transition between a micelle arrangement and 

a microphase separated structure and might be a type of perforated lamellar structure with PS 

lamellae changing orientation so as to emerge from the surface.51-53  At compositions of 70/30 

and 60/40 v/v (Figure 2(D) and 2(E), the structure becomes more regular with regions of a 

lamellar-like pattern emerging together with remnants of the hexagonal spherical/cylinder 

arrangement. At a 50/50 v/v ratio of toluene/THF (Figure 2(F)), the lamellar phase extends 

across the entire substrate and any ‘dot’ like structures can be described as defects within the 

gross morphology. It is also worth stressing that in these studies we saw no evidence of a 

microphase separated lamellar structure oriented parallel to the surface plane. This suggests that 

the use of the THF as a co-solvent in the anneal process provides a ‘neutral’ interface that 

promotes vertical orientation of the lamellae.  

SVA in THF rich mixture (Fig. 2(G-K)) 

    Between 50% and 100% v/v THF the lamellar arrangement is maintained. The only noticeable 

visual change is an increase of the persistence length of the aligned domains and an increase in 

‘grain size’. At 90% and 100% THF, the persistence length exceeds 100 nm. The reason for 

well-ordered nature of the system clearly relates to the neutrality of the THF solvent which 

lowers the interactions between the PS and P4VP by effectively separating blocks and increasing 

chain mobility, allowing defect annihilation.25  This would contrast a more block selective 

system since this would primarily result in selective block swelling whilst maintaining block-to-



block interfaces.  The domain-to-domain spacing was estimated at 25 nm. In the AFM images, 

almost equal diameters the lighter P4VP block and the darker PS block confirms the lamellar 

structure of the BCP. Noticeable change in the FFT patterns also supports the hypothesis. This is 

significantly lower than for spacings observed with toluene rich SVA and this is consistent with 

reduced THF swelling of the PS component compared to toluene as suggested by the data in 

Table 2. It, thus, appears that THF is an ‘ideal’ annealing solvent for this PS-block-P4VP 

copolymer.  

Table 3: The film thicknesses of PS20k-block-P4VP17k and PS9k-block-P4VP9.2k copolymer thin 

films casted from toluene/THF (80/20) solvent annealed at 50 oC for different time and different 

solvent vapour environment 

BCP Annealing solvent/s Annealing time Thickness (nm) 

PS9k-block-P4VP9.2k toluene/THF =80/20 0 26 

PS9k-block-P4VP9.2k Toluene 4 h 27 ± 1 

PS9k-block-P4VP9.2k toluene/THF =90/10 4 h 27 ± 1 

PS9k-block-P4VP9.2k toluene/THF =80/20 4 h 27 ± 2 

PS9k-block-P4VP9.2k toluene/THF =70/30 4 h 28 ± 2 

PS9k-block-P4VP9.2k toluene/THF =60/40 4 h 29 ± 3 

PS9k-block-P4VP9.2k toluene/THF =50/50 4 h 28 ± 2 

PS9k-block-P4VP9.2k toluene/THF =40/60 4 h 28 ± 2 

PS9k-block-P4VP9.2k toluene/THF =30/70 4 h 29 ± 1 

PS9k-block-P4VP9.2k toluene/THF =20/80 4 h 29 ± 1 

PS9k-block-P4VP9.2k toluene/THF =10/90 4 h 30 

PS9k-block-P4VP9.2k THF 4 h 30 

PS20k-block-P4VP17k toluene/THF =80/20, As-spun 28 

PS20k-block-P4VP17k THF 30 min 29 ± 1 

PS20k-block-P4VP17k THF 1 h 30 ± 1 

PS20k-block-P4VP17k THF 2 h 30 ± 1 

PS20k-block-P4VP17k THF 3 h 31 

PS20k-block-P4VP17k THF 6 h 31 

 

    It should also be noted that both the kinetics of phase separation and the equilibrium structure 

are modified by solvents because of the effective vapour pressures during solvent annealing. It is 

important to note that at 50 oC these two solvents have quite different saturated vapour pressures 



with measured values of 12.5 kPa and 58 kPa for toluene and THF respectively. Since this is an 

ideal solution, Raoult’s law54 is obeyed and can be used to sketch the expected vapour pressure 

through the composition range (Fig. 3(A)) and the amount of THF in the vapour phase (Fig. 

3(B)). As can be seen, increased THF content results in increased vapour pressure of THF 

compared to toluene.  One manifestation of this is seen in increasing thickness of the films as 

measured by ellipsometery. As cast films and toluene annealed films have a measured thickness 

of 26 nm but as the THF content increases, the film thickness increases to 30 nm. Table 3 

summarizes the film thicknesses of PS9k-block-P4VP9.2k copolymer thin films casted from 

toluene/THF (80/20) solvent annealed at 50 oC for 4h in different saturated solvent vapour 

environment as measured by ellipsometry and the variation of film thicknesses throughout the 

substrate was estimated by the AFM images. It is suggested this is because of increased swelling 

during solvent annealing followed by rapid de-swelling of the films on exposure to atmosphere.  

These results in increased (trapped) free volume as the film becomes kinetically ‘frozen’ and a 

higher film thickness compared to less swollen films.   

     



Fig. 3 (A) The vapour pressures of a solution of the two liquids, toluene and THF at 50 oC, is the 

sum of the two individual vapour pressures, calculated by Raoult’s law. (B) Vapour-Liquid 

equilibrium diagram of toluene and THF mixture.  

        The data in Fig. 3 also helps to explain the variation in morphology observed across the 

whole concentration range because even at low THF liquid content, the vapour is highly enriched 

in THF. This explains the dramatic change in morphology at low THF content and the 

consistency (little change with toluene content) of the morphological data at higher THF content 

(Fig. 2). Similar dependence on composition was seen for the larger molecular weight PS20k-b-

P4VP17k system but is not reported here for brevity.   

    It is also important to explore the kinetics of the SVA process. Similar results were seen for 

both the BCPs and data shown in Fig. 4 of the PS20k-block-P4VP17k copolymer are indicative of 

the microphase separation of both systems. Fig. 4 describes the effects of SVA time of thin films 

spin-coated from 0.5 wt% toluene/THF (80/20) solutions of PS20k-block-P4VP17k copolymer and 

solvent annealed in THF. As-cast film thickness was 28 nm measured by ellipsometery and had 

the expected dried micellar structure (Fig. 4(A)). After a SVA period of 30 minutes (Fig. 4(B)), it 

is clear that the swelling of the films leads to merging of the P4VP cores and the formation of 

elongated micelle structures. Note that the size of the spherical micelles in Fig. 4(A) is 35 nm by 

AFM and where visible in Fig. 4(B) are generally about half the diameter of similar structures 

seen after extended solvent annealing and the elongated micelles seen in Fig. 4(B). Note, 

however that a few more swollen spherical structures can also be seen. The data suggest that at 

the lower SVA times that the film is not completely swollen by the THF and that Fig. 4B 

represents a rearrangement sponsored by the swelling.   Note that it is assumed the swollen 

morphology is maintained due to freezing-in of the structure during rapid solvent evaporation. 



        After a solvent annealing time of 1 h (Fig. 4(C)), the micelle type structure has transitioned 

to a distinct lamellar microphase separated pattern across most of the substrate with only isolated 

regions of dot like structures.  This phase transition is likely related to the degree of swelling.  At 

low swelling, short SVA times; micelles survive (from spin-coating) because chain mobility is 

low. As the initial time increases, solvent swelling increases causing chain mobility and attaining 

the equilibrium phase-separated structure.  With further increase in solvent annealing time (Figs. 

4(D-F)), the film becomes flat with increasing order and lower defectivity. The thickness of the 

solvent annealed film after 6 h is measured at 31 nm (Table 3) consistent with an increased free 

volume as seen above. The domain spacing is 35 nm as measured by AFM. Note that these films 

are significantly less well ordered than those formed by similar treatment of the lower molecular 

weight PS-block-P4VP copolymer (compare Fig. 4(F)) and Fig. 2(K). This is thought to be 

because of diffusion limitations of the longer chains. 



 

Fig. 4 AFM images of PS20k-block-P4VP17k copolymer thin film casted from toluene/THF 

(80/20) (A) as-spun and solvent annealed at 50 oC for different time in THF vapour for (B) 30 

min, (C) 1 h, (D) 2 h, (E) 3 h and (F) 6 h. FFT patterns inset show the difference in the degree of 

order. 

BCP reconstruction with ethanol 

    PS-block-P4VP copolymer films are often subject to ethanol treatment to cause 

‘reconstruction’.  This process is used to enhance the etching contrast between both PS and 

P4VP blocks as well providing a template for insertion of metal ions into the P4VP block 55.  

Ethanol is a non-acidic polar solvent which selectively swells the P4VP block (Table 2). The 

pyridine groups present in P4VP are non-ionized and can interact with ethanol via hydrogen 

bonding. Due to the weak hydrogen bonding it is not expected that the P4VP block is chemically 

decomposed or removed from the BCP (since the covalent bond strength is high) but is more 

likely to swell and provide larger feature sizes than the lamella formed after solvent annealing. 

As shown in Fig. 5, a number of 3 h solvent annealed microphase separated PS9k-block-P4VP9.2k 

copolymer thin film are reconstructed by immersing them in anhydrous ethanol for different 

times (between 2 and 20 min) to study the swelling (and/or solubility) behaviour of the P4VP 

block.  When the PS9k-block-P4VP9.2k copolymer film is immersed in ethanol for 2 min (Fig. 5A) 

followed by drying under nitrogen gas, the P4VP domains become partially swollen and the 

centre-to-centre distance between lamella is increased from 25 to 26 nm, by AFM, compared to a 

PS9k-block-P4VP9.2k copolymer thin film which did not receive an ethanol exposure.  During 

further reconstruction (in ethanol) for times between 5 and 20 min (Figs. 5(B-E)) the P4VP 

chains further swell to 30 nm (lamellae spacing).  Ethanol exposure also results in the increase in 

the thickness of the films (~30 nm for the phase separated film) as measured by ellipsometry.55 



The height profile can also be measured by AFM. Table 4 summarizes the film thickness and 

height profile of the swollen films for different time. The swollen of the P4VP domain further 

confirmed by the cross-sectional TEM image for the BCP film reconstructed for 7 min (inset of 

Fig. 5C). The measured lamellar spacing is ~ 30 nm whereas the film thickness associated to the 

P4VP domain changes from 30 nm to 32 nm. The PS blocks remained unchanged upon exposure 

to ethanol. The periodicity (~ 15 nm half pitch) of the wavy nature of the film surface confirms 

the lamellar phase of the PS9k-block-P4VP9.2k copolymer film. It is also clear that at these 

extended exposures ethanol sufficiently swells P4VP domain and can lead to local areas of the 

pattern where the structure is damaged (black areas in the AFM images).  The damage appears to 

relate to some dissolution of chains and probably results from the swollen chains weakening the 

polymer-substrate attachment (delamination)  As exposure increases and particularly at a longer 

swelling time (~20 min or more), due to high degree of swelling, the surface of the BCP layer 

became increasingly rough as significant material is delaminated.   

Table 4: Film thicknesses of PS9k-block-P4VP9.2k copolymer films after ethanol reconstruction 

for different times. 

Ethanol exposure time (min) Film thickness (nm) 

2 30 

5 31 ± 1 

7 32 ± 1 

10 32 ± 2 

20 33 ± 3 

 



Fig. 5 Topographic AFM images (1 um x 1 um) of reconstructed PS9k-block-P4VP9.2k copolymer 

thin films for different time (A) 2min, (B) 5min, (C) 7min, (D) 10min and (E) 20min 

respectively. FFT patterns (inset) show the difference in the degree of order. Inset of (C) shows 

corresponding cross-sectional TEM image. 

Formation of molybdenum oxide and sulphide nanowire arrays: 

The microphase separated PS20k-block-P4VP17k copolymer thin films were used to fabricate 

molybdenum oxide and then sulphide nanowire arrays.  This confirmed the morphology of the 

systems as simple lamellar structures. For this, molybdenum (V) chloride solution of 0.5 wt% 

was prepared in ethanol and spin coated onto the phase separated film at 3000 rpm for 30s 

followed by UV/Ozone treatment to oxidize the precursor and remove the polymer.59 Fig. 6a 

shows the MoO3 nanowire formed with a pitch size of 37 nm. These nanowires were subjected to 

sulphurization at a temperature of 300oC for 30 min to form MoS2 nanowires on substrate 



surface. Fig. 6b shows identical ordered continuous MoS2 nanowire arrays of diameter of ~25 

nm. This confirms the successful application of the formation of inorganic nanostructures using 

the microphase separated lamellar forming PS20k-block-P4VP17k copolymer thin films. 

 

 

 

 

 

Fig. 6 Topographic AFM and SEM images of MoO3 and MoS2 nanowire arrays using PS20k-

block-P4VP17k copolymer thin films respectively. 

Discussion and Conclusions 

In this work it was found that extended SVA of micellar PS-block-P4VP copolymer films in 

THF vapour results in well-defined microphase separated structures.  This work contrasts 

dramatically with previous work by Kim et al.56 who have reported that when toluene cast PS-

block-P4VP copolymer thin films containing micelles are solvent annealed in THF there are 

morphological changes but micelle structures persist. Our observations are consistent with the 

THF being a good solvent for the BCP and somewhat neutral in its interactions with both blocks. 

The agreement of the phase behaviour and the THF Hansen solubility parameters with those of 

PS-block-P4VP copolymer is consistent with this mechanism. It must be stressed that PS-block-

P4VP copolymer Hansen parameters are not well-established and over analysis is possible. There 

is generally a paucity of high quality data on both solvent parameters and interaction parameters 

for these PS-block-P4VP copolymer systems (as well as other BCPs) despite the considerable 

research work in this area.  



    One of the main differences in the work of Kim et al56 and here is the solvent annealing 

temperature (25 oC and 50 oC respectively) and differences may be explained by variation of 

these terms with temperature.  However we can conclude that THF solvent annealing can be used 

to generate well-defined arrangements of PS-block-P4VP copolymer lamellar structures and 

ordain long range order and vertical orientation of the lamellae to the surface plane. For these 

high-χ systems, it does appear that solvent annealing in neutral solvents is important in 

generating well-defined arrangements. The method is robust and reliable and offers a simple 

means to generate these structures with possibly important applications of device fabrication. 

Cylinder forming PS-block-P4VP copolymer has been shown to be applicable in this area55, 57-58 

but lamellar systems have advantages compared to cylindrical structures.28 Recently, we have 

shown the use of this block copolymer system in fabrication of two-dimension molybdenum 

disulfide (2D MoS2) by simple process.[59]   
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