
Title Tuning MEMS cantilever devices using photoresponsive polymers

Authors Jackson, Nathan;Kumar, Kamlesh;Olszewski, Oskar
Zbigniew;Schenning, Albertus P. H. J.;Debije, Michael G.

Publication date 2019-06-29

Original Citation Jackson, N., Kumar, K., Olszewski, O., Schenning, A. P. H. J.
and Debije, M. G. (2019) 'Tuning MEMS cantilever devices using
photoresponsive polymers', Smart Materials and Structures,
28(8), 085024, (9 pp). doi: 10.1088/1361-665x/aad013

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://iopscience.iop.org/article/10.1088/1361-665X/aad013 -
10.1088/1361-665x/aad013

Rights © 2019 IOP Publishing Ltd. This is an author-created, un-
copyedited version of an article accepted for publication in Smart
Materials and Structures. The publisher is not responsible for
any errors or omissions in this version of the manuscript or any
version derived from it. The Version of Record is available online
at https://doi.org/10.1088/1361-665X/aad013. As the Version of
Record of this article has been published on a subscription basis,
this Accepted Manuscript will be available for reuse under a CC
BY-NC-ND 3.0 licence after a 12 month embargo period. - https://
creativecommons.org/licences/by-nc-nd/3.0

Download date 2024-04-20 04:08:27

Item downloaded
from

https://hdl.handle.net/10468/9747

https://hdl.handle.net/10468/9747


Smart Materials and Structures

ACCEPTED MANUSCRIPT

Tuning MEMS cantilever devices using photoresponsive polymers
To cite this article before publication: Nathan Jackson et al 2018 Smart Mater. Struct. in press https://doi.org/10.1088/1361-665X/aad013

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2018 IOP Publishing Ltd.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 143.239.102.113 on 03/07/2018 at 16:23

https://doi.org/10.1088/1361-665X/aad013
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-665X/aad013


Tuning MEMS Cantilever devices using photoresponsive polymers 

 

 

 

Tuning MEMS Cantilever Devices Using Photoresponsive 

Polymers 

 

Nathan Jackson1, Kamlesh Kumar2,4, Oskar Olszewski3, Albertus P. H. J. 

Schenning2, Michael G. Debije2 
1- University of New Mexico, Mechanical Engineering Department, 

Albuquerque, New Mexico, USA 
2- Eindhoven University of Technology, Department of Chemical 

Engineering and Chemistry, Eindhoven, Netherlands 
3- Tyndall National Institute, University College Cork, Cork, Ireland 
4- Center for Applied Chemistry, Central University of Gujarat, 

Gandhinagar, Gujarat, India 

 

Corresponding Address: University of New Mexico, Mechanical Engineering 

Department, 200 University Blvd MSC01 1150, Albuquerque, New Mexico, 

USA 87131 

 

E-mail: njack@unm.edu 

 

 

Abstract. Microelectromechanical systems (MEMS) energy harvesting devices have 

had limited commercial success partly due to the frequency mismatch between the 

device and the vibration source. Tuning the cantilever device is one possible solution 

but developing a tuneable MEMS device is difficult. This paper demonstrates a novel 

method of tuning a MEMS cantilever device post-fabrication by using light responsive 

azobenzene liquid crystal polymers (LCP). Light exposure causes the photoresponsive 

polymers to change their elastic modulus, thus affecting the resonant frequency of the 

device. The photoresponsive polymer was integrated with three different MEMS 

cantilever substrates including: LCP, parylene, and silicon. The three cantilever beams 

all demonstrated changes in resonant frequency when exposed to UV light of 10.4%, 

8.13%, and 4.86%, respectively. The change in resonant frequency is dependent on the 

stiffness of the substrate, the thickness of the azo-LCP, the intensity and duration of the 

light exposure, and the wavelength of the light. The results in this paper validate that 

light responsive polymers can be used to reduce the frequency of MEMS cantilevers 

post-fabrication, which could lead to developing devices that can be precisely tuned for 

specific applications. 

 

 

Keywords: Frequency Tuning, MEMS, Cantilever, Energy Harvester, Photoresponsive liquid crystal 

polymer 
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Tuning MEMS Cantilever devices using photoresponsive polymers 

 

1. Introduction: 

Microelectromechanical systems (MEMS) based vibrational energy harvesting devices have 

been extensively researched over the last decade. Significant advances have been made to enhance 

power density, in order to achieve levels capable of powering the Internet of Things (IoT). However, 

one of the biggest challenges ahead of MEMS energy harvesters is the mismatch between the resonant 

frequency of the MEMS device and the vibration source. Typically, MEMS devices are fabricated using 

silicon as the structure, which results in a high Q-factor (low bandwidth) device. A high Q-factor is 

desired to obtain a high-power density, but the low bandwidth creates a potential problem. If the resonant 

frequency of the device is not matched to the frequency of the vibration source the power harvested is 

significantly reduced. This problem occurs for both piezoelectric- and electromagnetic-based energy 

harvesting devices. This problem led researchers to investigate various methods of increasing the 

bandwidth by using nonlinear dynamics (1), bistable magnetics (2), mechanical stoppers (3, 4), sliding 

mass (5), creating arrays of devices (6), and numerous other methods (7). However, increasing the 

bandwidth typically results in lowering the Q-factor, which reduces the peak power density. Therefore, 

a preferred option would be to tune the resonant frequency of the device to match the vibration source, 

and thus maintaining the high Q-factor and power density. 

Tuning the resonant frequency of a MEMS cantilever could be desirable when: 1) the frequency 

of the vibration source changes or is different than what was anticipated and/or 2) the MEMS device 

has a different frequency than was anticipated. The latter case is quite common as the frequency of 

fabricated devices usually has a 5-10% deviation from the expected frequency due to manufacturing 

issues (i.e. variation in layer thicknesses due to sputtering or etching) (5, 8). Therefore, a small 5-10% 

tuning capability is desired for MEMS energy harvesters. Within the last decade there have been 

numerous attempts at developing a tuneable MEMS energy harvesting device. Most of the attempts 

involve using an active component that requires power, which defeats the purpose as these active 

components often require more power than they can harvest. Passive tuning is preferred as it does not 

consume power during operation. Researchers have attempted to use magnetic repulsive and attractive 

forces to tune the frequency (9). Other attempts include stiffness tuning by applying electrical bias 

circuits (10). Still other techniques using lasers to etch small sections of the cantilever post-processing 

Page 2 of 20AUTHOR SUBMITTED MANUSCRIPT - SMS-106688.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Tuning MEMS Cantilever devices using photoresponsive polymers 

 

have also been proposed (11, 12).  Various other techniques have been proposed with macroscale 

devices, but many of these are not compatible with MEMS fabrication techniques (7). Passive tuning 

can be accomplished by changing the dimensions, moving the center of gravity, straining the structure, 

or changing the spring stiffness of the cantilever. Most of these methods are not practical or difficult to 

accomplish for MEMS devices, with the exception of changing the spring stiffness. Recently it was 

reported that the stiffness of a liquid crystalline polymer film (13),(14) can be tuned by using light as a 

non-invasive, non-mechanical trigger (15, 16,17, 18). A liquid crystal polymer (LCP) hosts was doped 

with a photoresponsive azobenzene dye that responded to light. The light absorbed by the trans azo-

molecule results in the formation of the cis azo isomer resulting in a change in elastic modulus (16). 

This paper investigates a novel method of tuning the resonant frequency of a MEMS cantilever 

device using photoresponsive liquid crystalline polymers. Previous work has demonstrated the damping 

of cantilever vibration using UV-responsive photo-rheological fluids (19). Other work has measured the 

changes in stress in a cantilever coated by a monolayer of photoresponsive spiropyran dyes (20). The 

combination of a photoisomerizable azobenzene molecule with a LCP matrix placed on top of a 

cantilever in order to modulate the frequency of the cantilever via illumination appears to be untested. 

Integrating the photoresponsive LCP material with a MEMS will allow the combined device to change 

its effective bulk modulus, thus tuning the resonant frequency. Using light to tune the resonant frequency 

is preferred over other stiffening methods, such as electrical bias, as it does not require direct contact 

with the cantilever or constant stimulation. Therefore, the device can be tuned post-fabrication to match 

the frequency of the vibration source for a particular application. The paper investigates various methods 

of integrating the azobenzene LCP material with MEMS cantilevers to experimentally determine if the 

material can be used to tune the resonant frequency of the cantilever structure. First, the concept of using 

the azobenzene LCP material directly as a cantilever was tested using different UV light intensities. 

Then the material was integrated with two different types of cantilever beam substrates (polymer and 

silicon), in order to validate that the change in elastic modulus of the azo-LCP would affect the bulk 

modulus of the device. 

 

2. Materials and Methods: 
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2.1  Concept 

 A general device concept for tuning the resonant frequency of a MEMS energy harvesting 

cantilever using photoresponsive LCP is described schematically in Figure 1. The first resonant 

frequency mode of a rectangular cantilever can be numerically represented by the following equation:  

3

3

*
3

*
2

1

L

wt

m

E
f


=   (1) 

where E is the elastic modulus of the beam, m is the mass, w is the width, t is the thickness, and L is the 

length. The physical dimensions of the cantilever beam have the most significant influence on the 

frequency, (12) but altering the dimensions of the cantilever after fabrication is not practical for 

commercial devices. The other two parameters that influence the frequency are the mass and elastic 

modulus. The mass may be altered by adding weights to the fabricated device, but this is also undesired 

as it includes an additional additive manufacturing process, which is not desired for large scale 

production. Thus, the simplest solution for adjustable cantilever frequencies would be the capability of 

adjusting the modulus on demand.  The device concept shown in Figure 1 of a typical MEMS energy 

harvesting device is comprised of a beam substrate, a mass, and a photoresponsive LCP that changes its 

elastic modules via light exposure.  Selection of the photosensitive azobenzene moiety of the LCP can 

allow response to different wavelengths of light: modulus changes to UV, blue, green or normal sunlight 

has previously been demonstrated (15, 16).  

 

------------------------------------------ Figure 1---------------------------------------------- 

 

 The beam substrate is likely to dominate if it has a high elastic modulus like silicon. However, 

by creating a hybrid beam material that consists of the substrate material and the LCP, a change in the 

elastic modulus of one material will affect the overall modulus of the device. The goal is not to create 

large changes in resonant frequency, but to allow small, tuneable changes that can compensate for the  

5- 10% error in resonant frequency stemming from variations during the manufacturing process (5, 8). 

Figure 1(b) demonstrates the concept: the fabricated device has a different resonant frequency compared 

to the vibration source, and since the Q-factor is typically high for MEMS cantilever beams, the power 
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harvested would be significantly affected. If the vibration source frequency is known, one could expose 

the device to light with known wavelength and intensity, changing the bulk modulus of the cantilever 

and tuning the resonant frequency. 

The photoresponsive material used in this paper is reversible, meaning that the modulus will 

change when the cantilever is exposed to specific light wavelengths. Removing the light will allow the 

modulus to eventually return to its original value. In real-life energy harvesting application, a non-

reversible material would be desired so that continuous light exposure would not be required; however, 

the reversible material allows us to validate the concept.  

 

2.2 LCP Development 

The chemical structures of the materials used in this study are shown in Figure 2. Nematic 

liquid crystal films were obtained from mixtures of the reactive monomers (RM82/ RM105/ 

RM23, Merck) in a 2:3:1 weight ratio, 10 wt% azobenzene derivative (A3MA, Syncom) or 10% 

of the fluorinated azobenzene (f-Azo) (15), and 2 wt% photoinitiator (Irgacure 819, Ciba). The 

compounds were dissolved in dichloromethane, mixed, and subsequently dried at 50 °C. The 

dried mixture was used to fill 20 µm or 50 µm planar rubbed polyimide cells (Optmer AL 1051, 

JSR Corporation) at 75 °C. The photopolymerization of films were carried out using a mercury 

lamp (Exfo Omnicure S2000) with a > 400 nm cutoff filter (Newport FSQ-GG400) at 35 °C 

for 30 min, to ensure well-aligned nematic phases. A post heating exposure at 120 °C for 5 min 

followed to improve conversion of the acrylate groups into polymer chains. After opening the 

cells, yellow colored polymer films were obtained.  

 

------------------------------------------ Figure 2---------------------------------------------- 

 

2.3 Cantilever fabrication 
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Multiple types of MEMS cantilevers were developed in order to investigate the potential 

frequency modulation effects from altering the modulus of the LCP on the cantilever devices. Four types 

of beam substrates were developed as demonstrated in Table 1. All of the cantilever devices were bonded 

to a custom fabricated PCB, which was used as a frame for handling the devices and for experimental 

testing. After the photoresponsive material was fabricated they were bonded to a glass substrate, and 

then diced using a standard wafer dicer with 25 μm wide blade. This allowed the LCP to be cut into 

precise rectangular dimensions of 8 x 5 mm2.  

Two of the cantilever devices did not contain a separate substrate, but instead used the LCP as 

the cantilever beam material. The LCP films of thickness (20 and 50 μm) were bonded to a rigid PCB 

to create the cantilever structure and a silicon mass was attached to the LCP. A 500 μm thick silicon 

piece was diced into dimensions of 5 mm by 2 mm and bonded to the LCP cantilever. The silicon piece 

served two purposes 1) it acted as a mass for the cantilever and 2) it was required to perform 

experimental measurements using a Laser Doppler Vibrometer (LDV). The silicon created a reflective 

surface that allowed the LDV system to be used to measure tip displacement and frequency. The LCP 

cantilevers were then bonded to the PCB, which allowed the cantilever to move freely. 

 

------------------------------------------ Table 1---------------------------------------------- 

  

2.3.1  Parylene Cantilevers. In order to validate the tuning concept, the azo-LCP was bonded to two 

other cantilever devices which consisted of 1) a Parylene-C based cantilever substrate and 2) a silicon-

based cantilever substrate. Polymer based MEMS cantilever structures are becoming more common due 

to their biocompatibility and potential low resonant frequency (21, 22), and it is important to determine 

how the change in modulus of the LCP will affect a lower modulus substrate compared to silicon. The 

Parylene-C MEMS cantilever devices were fabricated similar to methods previously described (23), 

where a silicon wafer was used as the substrate. An oxide layer was deposited on the wafer using thermal 

oxidation methods. Parylene-C was then deposited (20μm) using the Gorham process (SCS Labcoater) 

as previously described (24). Then the Parylene-C was patterned using RIE (O2 Plasma) to define the 
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dimensions of the cantilever beam (8 x 5 mm2). Then DRIE was used to etch the silicon wafer in order 

to release the cantilever. A silicon mass remained on the parylene cantilever with same dimensions as 

for the LCP cantilever in order to have a reflective surface for the LDV measurements. A thin 

azobenzene LCP layer was cut (8 x 5 mm2) and bonded onto the parylene cantilever using a thin film 

adhesive layer and a bonding machine for alignment. 

 

2.3.2  Silicon Cantilevers. Silicon based MEMS cantilever devices were fabricated to determine the 

frequency modulation effects of the LCP on a high modulus substrate, and silicon based MEMS 

cantilevers are the most common substrate for vibration energy harvesters (6, 25-27). The silicon-based 

cantilever was developed from an SOI wafer with a 20 μm device layer and a 500 μm handle wafer. A 

thick 3μm thermal oxide was grown and patterned on both sides of the wafer. DRIE was used on the 

device layer to define the dimensions of the cantilever (8 x 5 mm2). Then DRIE was performed on the 

handle wafer and BOX layer to create a free-standing cantilever. The silicon mass was developed from 

patterning the handle wafer.  The mass dimensions were larger than in the parylene or LCP cantilever 

devices in order to reduce the resonant frequency. The resonant frequency of each device was kept below 

250 Hz, as this is common frequency range for IoT energy harvesters. The thin film (20 μm) azo-LCP 

film was then bonded to the silicon cantilever as previously described for the parylene cantilever.  

 

2.4 Characterization 

The characterization consisted of experimentally testing both the material effects due to various 

light exposures as well as the effects on the MEMS cantilever device containing the substrate material 

and the photoresponsive material. The methods for characterizing the materials and the devices is 

described in detail below.  

2.4.1  Liquid Crystalline Polymer.   

The LC phases of the mixture were characterized using a Leica polarized optical 

microscope equipped with a Linkam hot-stage. A Shimadzu UV-3102 spectrophotometer was 

used to obtain UV-vis spectra of the LCP samples to ensure good alignment.  
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2.4.2 Resonant Frequency. The first resonance frequency of the various cantilever beam devices were 

measured using a LDV (Polytech MSA-400). The LDV used a dual laser system with reference laser 

positioned on the frame of the device and the measurement laser was positioned at the tip of the 

cantilever beams. The devices were excited into vibration by applying a mechanical shock pulse to the 

holding apparatus. The LDV measured tip displacement as a function of frequency, which allowed us 

to determine the resonant frequency of the cantilevers. During testing all room conditions were kept the 

same, and temperature at the beam surface was monitored to make sure there was no rise in temperature 

due to the light exposure. The overhead lights were turned off to try and reduce errors caused from 

normal light. Blinds were used to try and reduce effects of sunlight as well. 

 Three light sources were used to stimulate the azobenzene LCP substrates. Two of the light 

sources consisted of UV light (365 nm) with two different intensities (high- 90 mW cm-2 and low- 0.7 

mW cm-2). The f-Azo doped LCP film was exposed to green light (530 nm) (Thorlabs M530L3) with 

intensity of 150 mW cm-2. The lights were positioned at the same distance and angle to ensure that the 

entire LCP film was exposed for each type of cantilever. The light was applied for a specific amount of 

time and then removed, while the modulus returned back to its initial value, allowing the cantilever 

resonant frequency to return to its original value. 

 

3. Results and Discussion 

  Previous work showed exposure of LCP films containing the A3MA azobenzene to 365 

nm resulted in significant moduli drops (approximately 1.8 GPa to 1.1 GPa with 200 mW cm-2 

UV intense light) (16). The first experiment on the cantilever devices was to validate the concept that 

altering the modulus of the LCP would result in a frequency modulation. The thin film UV responsive 

A3MA LCP cantilever device was used in this experiment. The tip displacement as a function of 

frequency was measured using the LDV, and the results are demonstrated in Figure 3. The peak to the 

right in the figure was for the initial value, which had a peak amplitude of 105 μm at a resonant frequency 

of 130.5 Hz due to the applied shock impulse. The same shock was then applied after the device had 
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been exposed to UV light (90 mW cm-2) for 2 minutes, and the results demonstrate a significant 

frequency shift. The resonant frequency after UV exposure was 113.5 Hz, which represents a 13.03% 

change in resonant frequency. The amplitude and bandwidth did not show any significant changes.  This 

validated the concept of using photoresponsive materials to alter the resonant frequency of a MEMS 

cantilever beam.  

 

------------------------------------------ Figure 3---------------------------------------------- 

 

 Following the initial proof of concept, the thin film (20μm) LCP beam was exposed with two 

different UV light intensities at separate times (0.7 mW cm-2 and 90 mW cm-2) in order to determine the 

effects of varying UV intensity. Due to the reversible nature of the azobenzene LCP, the material 

returned to its initial state between exposures, which allowed the researchers to use the same cantilever 

beam for both experiments to eliminate possible material effects between different samples. The 

cantilever beam was exposed to the UV light for 1 minute in both cases and the results are demonstrated 

in Figure 4, which shows the resonant frequency as measured by the LDV as a function of time. The 

LDV measurements were limited to one data point every 4 s. The results show a frequency reduction 

from 158.25 Hz to 154 Hz (2.69%) for the 0.7 mW cm-2 UV intensity light exposure. The higher intensity 

UV light (90 mW cm-2) demonstrated a frequency reduction from 158.25 Hz to 141.8 Hz (10.4%). After 

the UV light was turned off, the cantilever frequency began to increase, and eventually returned to their 

original frequency in about 5 minutes, as demonstrated in Figure 4. Reversible photoresponsive 

materials were used to better demonstrate the responsive behaviour of the material. However, the 

concept of using a photoresponsive film to tune a cantilever’s frequency would require a non-reversible 

photoresponsive material. This preliminary result demonstrates that tuning the resonant frequency can 

be accomplished by i) controlling the intensity of the light and ii) controlling the duration of the light 

stimulation. By controlling these two parameters the cantilever beams frequency could be tuned by at 

least 10.4%. Higher intensity of light is likely to result in a greater modulus reduction as previously 

demonstrated (16), which would lead to a larger frequency reduction. Numerical estimations on the 

frequency change were calculated based on Eqn. (1) and previously reported data on the change of 
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modulus of the A3MA azobenzene material (16). The previously reported data used a higher intensity 

UV light, but based on interpolating the data, an estimated frequency reduction of 9.9% was calculated. 

This value is slightly lower than the experimental value of 10.4% but within 0.5% of the value. The 

reduced prediction is likely caused from the difference in UV intensity effects of the elastic modulus.  

A higher UV intensity light (200 mW cm-2) similar to what was used in (16) should result in a frequency 

reduction of 24.6%. Therefore, higher frequency reduction should be possible if a higher UV intensity 

light was used. 

 

------------------------------------------ Figure 4---------------------------------------------- 

 

 The next experiment investigated the use of using a thicker azobenzene LCP cantilever (50 μm) 

along with altering the duration of the light exposure. The high intensity UV light (90 mW cm-2) was 

used in this case as it demonstrated a higher change in the resonant frequency of the thin beam. Light 

exposure was set at 10s, 20s, and 40 s. After light exposure, the LCP modulus was allowed to recover, 

thus returning the cantilever to its original resonant frequency. The recovery of the LCP modulus directly 

followed removal of the UV light, as the LCP material used in this study was reversible. However, for 

practical applications a non-reversible photoresponsive material would be ideal. Figure 5 shows the 

results from the experiment. It was demonstrated that the frequency decreased as the exposure duration 

increased, resulting in reduction of 0.89%, 2.24%, and 5.52% for the 10s, 20s, and 40s exposure times 

respectively. Likewise, the recovery time increased as the frequency decreased. The thickness of the 

material also affected the resonant frequency change. Figure 4 demonstrated a reduction of 10.4% with 

a 20 μm cantilever, and the results in Figure 5 demonstrated a frequency reduction of 5.52% for a 50 

μm thick material with the same intensity and similar exposure duration. This demonstrates that a higher 

intensity UV light or increasing the duration of exposure is necessary for thicker films to produce similar 

reductions in resonant frequency.  

 

------------------------------------------ Figure 5---------------------------------------------- 
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 After validating that the azobenzene LCP cantilevers showed reduce frequency upon UV light 

exposure, the next step was to determine if a reduction in resonant frequency was possible with the 

azobenzene LCP directly bonded to a cantilever substrate. The first experimentation was to use a 

polymer-based cantilever beam, because the polymer cantilever would have a similar elastic modulus 

as the LCP material. The polymer cantilever used for this experiment was based on Parylene-C. The 

thickness of the parylene beam and the LCP were 20 μm each.  The UV stimulation was applied for 3 

minutes to ensure maximum reduction in resonant frequency. The results are shown in Figure 6, which 

demonstrates a reduction of 1.19% and 8.13% in resonant frequency for low intensity and high intensity 

UV light, respectively.   The results demonstrate that elastic modulus changes in the LCP due to the UV 

light was capable of altering the bulk elastic modulus of the hybrid device, thus reducing the resonant 

frequency of the cantilever. This validates the concept that using a photoresponsive material can be used 

to tune an all-polymer-based cantilever device by creating a hybrid material.  The degree of reduction 

was less than the change from the LCP cantilever shown in Figure 4, which was expected since the bulk 

modulus in hybrid materials will not be affected as significantly due to the combination of the two 

materials. Numerical estimations using the rule of mixtures to predict the modulus of the hybrid and 

Eqn. (1) were used to predict a frequency reduction of 7.5% for the LCP/Parylene cantilever, which is 

lower than the experimental value of 8.13%. This is likely due to a lower than expected estimation of 

the modulus change due to lower UV intensity, or the thickness measurements of the two films.  

 

------------------------------------------ Figure 6---------------------------------------------- 

 

 After validating that a hybrid bilayer polymer cantilever MEMS device demonstrated reduced 

frequency, the next stage involved investigating the effects of and LCP on a silicon-based cantilever. 

Silicon-based MEMS cantilevers are the most common substrate material used in MEMS. Silicon is a 

stiff material with an elastic modulus of around 120-200 GPa, depending on the type of silicon used. 

The MEMS device fabricated in this paper used (100) silicon, as it is the most commonly used silicon 

in MEMS fabrication. The 10% A3MA azobenzene LCP film was bonded to the silicon MEMS 
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cantilever as described above. The results shown in Figure 7 demonstrate that the silicon cantilever beam 

with azobenzene LCP had a significant reduction of frequency when a higher intensity UV light was 

used. The cantilever resulted in a frequency reduction of 0.4% and 4.86% for the low and high intensity 

UV light exposure, respectively. The reduction of frequency required a longer duration of UV light 

stimulation due to the stiffness of the silicon. The numerically predicted frequency reduction, based on 

the rule of mixture and estimation of the modulus change due to UV intensity for the material on a 

silicon cantilever was 1.17%, which is lower than the experimental value. In all three devices the 

predicted frequency reduction was lower than the experimental reduction, which means that the 

estimation of the modulus due to lower UV intense light was lower than expected. The change in 

frequency of the silicon beam was lower (4.86%) than that of the parylene (8.13%) and LCP (10.4%) 

cantilevers at similar doses, which was expected due to the higher stiffness of silicon.  The results 

validate that a photoresponsive material can be used to alter the resonant frequency of a variety of beam 

substrates with high or low elastic modulus. 

 

------------------------------------------ Figure 7---------------------------------------------- 

 

 Recently, green light (530 nm) was used to expose LCPs doped with f-Azo, which also 

demonstrated a change in elastic modulus (15). An identical silicon-based cantilever beam as was used 

in the study of the A3MA films was employed, but this time using the f-Azo LCP (10 wt%). A green 

LED light of 150 mW cm-2 intensity was used to expose the cantilever to the appropriate wavelength of 

light. The material was exposed for 2, 4, and 8 s. The results are shown in Figure 8. This cantilever 

demonstrates a reduction of resonant frequency of 3.5%, 5.9%, and 8.33% for the different exposure 

durations, and a recovery time constant of 40, 78, and 150 s. This demonstrates that using different 

photoresponsive materials can be used to create unique tuning affects at different wavelengths of light, 

and that optimization of the photoresponsive material is necessary for future applications. 

 

------------------------------------------ Figure 8---------------------------------------------- 
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 Conclusion 

 In this study we have demonstrated that using light responsive materials which change their 

mechanical properties when exposed to specific wavelengths of light can be used to tune the frequency 

of various MEMS cantilever substrates. This affect was experimentally demonstrated by using three 

different types of cantilever substrate materials (LCP, parylene, and silicon) and two different LCP 

topping materials, one using a standard azobenzene A3MA that responded to UV illumination and one 

using a fluorinated azobenzene that responded to green light. In this study we used reversible 

photoresponsive materials to validate the concept, but in eventual, real applications a non-reversible 

material will be developed. This study demonstrated that the photoresponsive material can decrease its 

elastic modulus upon light exposure, thereby tuning the resonant frequency of the MEMS device. This 

study also demonstrated that different photoresponsive materials could be used that require different 

wavelengths of light or combination of wavelengths. The intensity, duration, and wavelength of light all 

have a significant role in determining the change in the elastic modulus. The photoresponsive materials 

used in this study demonstrated up to a 10.4% change in resonant frequency; however, optimization of 

the parameters of the material can be investigated further in order to increase the changes in the elastic 

modulus. Numerical simulations demonstrated a similar reduction in resonant frequency, but in all cases 

the numerical prediction was lower than the experimental, which means the estimation of the materials 

modulus due to lower intense UV light was lower than predicted. Applying higher intense UV light 

should decrease the modulus even more, which will result in further reduction of resonant frequency. 

The use of these materials can be applied to various MEMS devices that require frequency tuning.    
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Figure Captions: 

Figure 1- Schematic diagram representing the MEMS tuning concept: (a) demonstrates the 

experimental setup and concept that the photoresponsive LCP is bonded to a MEMS cantilever 

structure, with UV light used to alter the modulus of the LCP, thus altering the frequency of the 

cantilever; (b and c) are schematics that demonstrates the concept of tuning as the initial 

frequency of the cantilever differs from the vibration source, so changing the modulus of the 

cantilever will allow frequency tuning to match the frequency of the vibration source to 

maximize power. 

 

Figure 2- Chemical structures of components used to prepare the nematic liquid crystalline 

network. 

 

Figure 3- Experimental results demonstrating the frequency shift of a azobenzene LCP 

cantilever before and after UV light exposure for 120 s with 90 mW cm-2 intensity. 

 

Figure 4- Resonant Frequency of the thin film LCP cantilever as a function of time for low 

intensity (0.7 mW cm-2) and high intensity (90 mW cm-2) UV light exposure for 1 min. The 

purple box indicates the “On” and “off” states of the UV light exposure. 

 

Figure 5- Resonant frequency of a thick film LCP cantilever as a function of time for high 

intensity UV exposure for different durations (10, 20 and 40 s). 

 

Figure 6- Resonant frequency of a Parylene-C based cantilever with an azobenzene LCP thin 

film as a function of time for high and low intensity UV light exposure. 

 

Figure 7- Resonant frequency of a silicon beam cantilever with an azobenzene LCP thin film 

as a function of time for high and low intensity UV light exposure. 

 

Figure 8- Resonant frequency of a thin f-Azo LCP cantilever as a function of time for Green 

light (530 nm, 150 mW cm-2) exposure. The duration of the green light exposure is shown in 

the figure to be 2, 4, and 8s. 
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Figure 1 

 

 

 

Table 1 

 

Light

(a)

Si
mass

Beam Substrate (Si or Parylene)

LCP

frequency

P
o

w
er

Initial 
resonant 
frequency

Vibration 
source

(b)

frequency

P
o

w
er

Initial 
resonant 
frequency

Vibration 
source & 
tuned 
resonant 
frequency

(c)

Cantilever Beam 

Substrate

LCP Thickness 

(μm)

Substrate beam 

thickness (μm)

Beam L & W 

(mm)

LCP 20 NA 8 x5 

LCP 50 NA 8 x5 

Parylene/LCP 20 20 8 x5 

Silicon/LCP 20 20 8x 5
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Figure 8 
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