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Abstract 15 

Lactobacillus brevis beer-spoiling strains harbor plasmids that contain genes such as horA, 16 

horC and hitA, which are known to confer hop tolerance. The Lb. brevis beer-spoiling strain 17 

UCCLBBS124, which possesses four plasmids, was treated with novobiocin resulting in the 18 

isolation of UCCLBBS124 derivatives exhibiting hop-sensitivity and an inability to grow in 19 

beer. One selected derivative was shown to have lost a single plasmid, designated here as 20 

UCCLLBS124_D, which harbors the UCCLBBS124_pD0015 gene, predicted to encode a 21 

glycosyltransferase. Hop tolerance and growth in beer was restored when 22 

UCCLBBS124_pD0015 was introduced in one of these hop-sensitive derivatives on a 23 

plasmid. We hypothesize that this gene modifies the surface composition of the 24 

polysaccharide cell wall conferring protection against hop compounds. Furthermore, 25 

introduction of this gene in trans in Lb. brevis UCCLB521, a strain that cannot grow in and 26 

spoil beer, was shown to furnish the resulting strain with the ability to grow in beer while its 27 

expression also conferred phage-resistance. This study underscores how the acquisition of 28 

certain mobile genetic elements plays a role in hop tolerance and beer spoilage for strains of 29 

this bacterial species.  30 

Importance 31 

Lactobacillus brevis is a member of the lactic acid bacteria and is often reported as the 32 

causative agent of food or beverage spoilage, in particular that of beer. Bacterial spoilage of 33 

beer may result in product withdrawal or recall with concomitant economic losses for the 34 

brewing industry. A very limited number of genes involved in beer spoilage have been 35 

identified and primarily include those involved in hop resistance such as horA, hitA, and 36 

horC. However, since none of these genes are universal, it is clear that there are likely (many) 37 

other molecular players involved in beer spoilage. Here, we report on the importance of a 38 

plasmid-encoded glycosyltransferase associated with beer spoilage by Lb. brevis that is 39 
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involved in hop tolerance. The study highlights the complexity of the genetic requirements to 40 

facilitate beer spoilage and the role of multiple key players in this process.  41 
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Introduction 42 

Lactobacillus brevis is a major threat for commercial and amateur brewers as strains 43 

of this species are the predominant bacterial contaminants associated with beer spoilage (1). 44 

Such Lb. brevis strains can grow in beer despite the presence of ethanol, low pH and the 45 

depletion of oxygen and nutrients (2). Moreover, hop compounds added to beer for bitter 46 

flavor development during the fermentation process also exert antibacterial activity through 47 

the presence of iso--acids (1, 2). Lb. brevis beer-spoiling (BS) strains appear to have 48 

acquired chromosomally- or plasmid-derived genetic content to survive and grow in beer (2). 49 

Lb. brevis resistance to ethanol (up to 10 %) and pH lower than the optimal growth 50 

conditions (pH 4-6) seems to be associated with chromosomal genes, possibly due to the 51 

general stressors they represent (3, 4). However, Lb. brevis BS strains are also known to 52 

harbor plasmids that are associated with their beer-spoilage phenotype and more specifically 53 

with hop tolerance (5-8). Plasmid-derived genes that underpin hop-resistance in Lb. brevis 54 

include horA, horC, hitA and orf5ABBC45 (1, 2). The genes horA and horC encode multidrug 55 

transporter proteins driven by ATP and proton motive force (PMF), respectively, and were 56 

identified as being involved in iso--acid extrusion from the bacterial cell (5, 7). The gene 57 

hitA encodes a transmembrane protein involved in the transport of divalent cations such as 58 

Mn
2+

 in exchange of protons released from hop bitter acids (8). The orf5ABBC45 gene was 59 

identified in Lb. brevis BS strain ABBC45 which was unable to grow in beer after it had lost 60 

a plasmid carrying this gene. The orf5ABBC45 gene encodes a predicted transmembrane protein 61 

resembling a PMF-dependent multidrug transporter, which is presumed to be responsible for 62 

iso--acid export (9). 63 

However, these genes are not always indicative of BS ability as the presence of such 64 

genes can be found among Lb. brevis strains that are unable to grow and consequently spoil 65 

beer (designated here as NBS strains) (10). Indeed, horA is present in the Lb. brevis NBS 66 
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strain UCCLB556 (10). Moreover, genes identified as conferring hop-resistance are not 67 

always simultaneously present in BS strains, e.g. the BS strain UCCLBBS124 carries 68 

plasmids harboring horA and horC, however it does not possess hitA (10). Analysis of BS 69 

strain Lb. brevis BSO 464 has highlighted the importance of plasmids and genes on mobile 70 

genetic elements for bacterial growth in beer and beer spoilage ability (6). Recently, a gene 71 

predicted to encode a glycosyltransferase was identified among BS strains responsible for 72 

excess β-glucan formation (11). This gene is also present on the genome of Lb. brevis BS 73 

strain UCCLBBS124, while it is absent in that of BS strain UCCLBBS449 (10). This 74 

indicates that beer spoilage is not uniquely governed by the presence of a few genes, but 75 

rather a combination of genes acting in concert to confer beer resistance to the strain. It also 76 

suggests that other plasmid-encoded genes involved in beer spoilage are yet to be discovered.  77 

In the present study we generated plasmid-cured derivatives of Lb. brevis BS strain 78 

UCCLBBS124 using novobiocin. This approach has been successfully employed previously 79 

to cure plasmids from lactic acid bacteria (LAB) isolates (6, 12). Plasmid-cured derivatives 80 

were assessed for their ability to grow in the presence of hop and in beer. A derivative that 81 

showed inability to grow in beer was selected and analyzed to ascertain which plasmids were 82 

responsible for this phenotype. Bioinformatic analysis of the genetic content of such plasmids 83 

revealed candidate genes required for growth in beer. These genes were used in 84 

transformation experiments to revert the NBS phenotype. 85 

 86 

  87 
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 6 

Results and Discussion 88 

Derivatives with impaired growth in beer reveal loss of plasmid UCCLBBS124_D 89 

The beer-spoiling Lb. brevis strain UCCLBBS124 (abbreviated here as UCC124) possesses 90 

four plasmids carrying genes of interest for bacterial beer spoilage (Table 3). Following 91 

exposure to novobiocin, surviving Lb. brevis UCC124 cells were plated and fifty isolated 92 

colonies (10) were randomly selected for further analysis. Thirty four of these fifty colonies 93 

displayed impaired growth in beer. PCR-based identification of the hop-resistance gene horA 94 

revealed the loss of this gene, located on plasmid UCCLBBS124_D (abbreviated here as 95 

UCC124_D) in 33 out of the 34 isolates. One derivative, designated here as MB569, was 96 

selected for genome sequencing, after which its sequence was compared to that of the WT, 97 

confirming that plasmid UCC124_D had been lost from strain MB569.  98 

Tolerance of MB569 to iso-α-acids, ethanol and low pH 99 

The inability of strain MB569 to grow in beer highlights the apparent importance of plasmid 100 

UCC124_D in conferring a beer spoilage phenotype on strain UCC124 (Figure 1). Beer is a 101 

harsh environment incorporating a number of stresses such as low pH, lack of nutrients, and 102 

the presence of ethanol and hop compounds. In order to understand which of these stresses 103 

imposed a negative impact on growth of MB569, the WT strain and MB569 were grown in 104 

MRS broth and mimicking conditions encountered in beer, e.g. pH4, 5.4 % ethanol, and 30 105 

ppm iso-α-acids. Strain MB569 was shown to be capable of growth in MRS broth at neutral 106 

pH and at pH 4, while it can also grow in the presence of ethanol comparable to the WT 107 

strain (Figure 1). However, MB569 is incapable of growth in the presence of iso-α-acids 108 

unlike the WT strain UCC124 (Figure 1). This indicates that plasmid-cured derivative 109 

MB569 has lost the ability to spoil beer due to its sensitivity to the antimicrobial compounds 110 

present in hops. Therefore, based on this phenotype and the finding that MB569 lacks 111 
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plasmid UCC124_D (when compared to its parental strain), it indicates that this plasmid is 112 

linked to hop tolerance and thus contributing to the ability of strain UCC124 to cause beer 113 

spoilage. 114 

Identification and functional annotation of genes present on plasmid UCC124_D 115 

Plasmid UCC124_D is 21 kb in size and is predicted to encompass 16 genes. Interestingly, a 116 

7 kb region of this plasmid, contains six genes that are uniquely present among the plasmids 117 

of Lb. brevis BS strains (Table 4) (10). In order to assess the possible role of these genes in 118 

beer spoilage, the BS plasmid-specific genes UCCLBBS124_pD0014 (abbreviated here as 119 

UCC124_D14), encoding a predicted cytosine deaminase, UCCLBBS124_pD0015 (renamed 120 

gtfD15), encoding a predicted glycosyltransferase, UCCLBBS124_pD0016 (designated here as 121 

UCC124_horA), which encodes HorA (Table 4), were individually cloned into plasmid 122 

pNZ44 prior their transformation into NZ9000. The resulting plasmids were then introduced 123 

into strain MB569 to determine the ability of the obtained recombinant strains to grow in beer 124 

(where MB569 itself is unable to do so). Genes with locus tags UCCLBBS124_pD0017 125 

(abbreviated as UCC124_D17), UCCLBBS124_pD0018 (abbreviated as UCC124_D18) and 126 

UCCLBBS124_pD0019 (abbreviated as UCC124_D19) and encoding acyl-sn-glycerol-3-127 

phosphate acyltransferases and a glycosyltransferase (Table 4) were cloned together as a 128 

cluster (as present in plasmid UCC124_D) in pNZ44 prior their introduction into NZ9000 129 

and, subsequently, MB569.  130 

Introduction of the genes UCC124_D14, UCC124_horA, UCC124_D17, UCC124_D18 and 131 

UCC124_D19 in MB569 did not enable any obvious improvement of growth in the presence 132 

of iso-α-acid (30 ppm) or beer (when compared to strain MB569) (data not shown).  133 

Interestingly, expression of gtfD15 in MB569 was shown to confer a positive effect on its 134 

ability to grow in MRS broth containing 30 ppm iso-α-acids, with a significant (P value < 135 
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0.05) growth increase after 72 h compared to the non-complemented strain or MB569 136 

carrying the control plasmid pNZ44 (Figure 2A). When Lb. brevis MB569 pNZ44:gtfD15 was 137 

cultivated in beer, it also exhibited an ability to grow in beer that was significantly better than 138 

that of MB569 itself (P value < 0.05) (Figure 2B). Provision of gtfD15 in trans in MB569 did 139 

not restore its growth in beer to the same level as the WT strain (i.e. the strain from which 140 

MB569 was derived), but nonetheless allowed survival and growth in beer for this 141 

recombinant strain across 96 h. MB569 and MB569 pNZ44 are still able to survive in the 142 

presence of iso-α-acids or beer after culture for 72 h (Figure 2A and 2B) which might be due 143 

to the presence of plasmid UCCLBBS124_C carrying the gene horC (Table 3). The gtfD15 144 

gene is predicted to encode a glycosyltransferase based on BLAST analysis and a HHPred 145 

analysis (13) predicted the protein to belong to the glycosyl transferase family 8 associated 146 

with cell wall glycosylation (99.9 % probability and E-value < 10
-28

). Further sequence 147 

scrutiny suggests that the GtfD15 protein is a membrane-associated protein (TMHMM Server 148 

2.0 (14)) with a predicted signal peptide in its N-terminus that may act as a membrane anchor 149 

for the protein (http://phobius.sbc.su.se/ (15)). These predictions suggest that GtfD15 is a cell 150 

envelope-associated protein that confers protection against certain environmental stressors 151 

such as hop compounds. 152 

Introduction of gtfD15 in NBS Lb. brevis strains allows growth in beer 153 

The introduction of gtfD15 in MB569 was shown to significantly improve growth of the strain 154 

in MRS broth containing hop compounds (30 ppm iso-α-acids) and in beer indicating the 155 

importance of this gene for beer spoilage by Lb. brevis strain UCC124. In order to assess the 156 

potential growth-promoting effect of this gene for an NBS strain when inoculated in beer, 157 

gtfD15 when cloned into pNZ44 (pNZ44:gtfD15) was introduced into the NBS Lb. brevis strain 158 

UCCLB521 (renamed here as UCC521) (Table 1). Remarkably, the presence of pNZ44:gtfD15 159 

in the NBS strain Lb. brevis UCC521 permitted the strain to grow significantly better (P 160 
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value < 0.05) in MRS broth containing 30 ppm iso-α-acids and in beer compared to the strain 161 

carrying an empty plasmid which is incapable of survival or growth in these environments 162 

(Figure 2C and D). These observations reinforce our results above and highlight the 163 

significance of the gtfD15 gene in hop tolerance and beer spoilage. An alternative, though in 164 

our opinion less likely explanation is that strains for which we obtained no or reduced CFUs 165 

had entered a viable, but non-culturable (so-called VBNC) state as has been previously 166 

observed for beer-passaged Lb. brevis strains (16). 167 

Introduction of pNZ44:gtfD15 into ATCC 367, another NBS strain, did not allow improved 168 

survival or growth in the presence of hop compounds or in beer (data not shown). This 169 

suggests that a strain-specific mechanism and involvement of other genes that are absent in 170 

ATCC 367 are responsible for increased hop tolerance. Among beer spoilage-related genes, 171 

UCC521 possesses the orf5ABBC45 gene previously identified as involved in hop tolerance (9), 172 

unlike ATCC 367 which does not harbor known genes involved in beer spoilage. Moreover, 173 

UCC521, although a non-beer spoiler strain, was isolated from the brewery environment, 174 

unlike ATCC 367 which was isolated from silage (10). UCC521 may have acquired genes 175 

(such as orf5ABBC45) or plasmids (UCC521 harbors five plasmids) throughout its presence in 176 

the brewery environment, which confer hop tolerance when combined with gtfD15. This 177 

scenario has previously been observed, indicating that Lb. brevis strains can only survive and 178 

grow in beer when multiple beer spoilage-related genes are present in a particular 179 

combination (17). Selection pressures of the beer environment determine the genetic content 180 

of beer-spoiling strains. The identification of diagnostic marker genes (DMGs) are important 181 

in distinguishing BS from NBS strains, as well as predicting the ability of a given strain to 182 

grow in beer (17, 18). In the study from Bergsveinson and Ziola, proposed DMGs were not 183 

related to hop tolerance and no genes encoding glycosyltransferases were identified as 184 

DMGs. However, a glycosyltransferase-encoding gene located on the plasmid of the BS Lb. 185 
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 10 

brevis strain BSO 464 which showed more than 99 % nt similarity to gtfD15 was described as 186 

unique when compared to a NBS Lb. brevis strain KB290 and a BS Pediococcus damnosus 187 

strain Pc344
T 

(17). From these observations and knowing that gtfD15 is highly prevalent in BS 188 

Lb. brevis strains (Table 4), we propose to include this gene as a DMG to assess the beer 189 

spoiling potential of Lb. brevis strains. 190 

Effect on phage sensitivity 191 

As demonstrated above gtfD15 was observed to play a role in hop and beer tolerance and is 192 

predicted to encode a glycosyltransferase. Since the protein is predicted to be involved in 193 

biosynthesis or modification of a cell surface-associated saccharidic polymer, the possible 194 

role of this protein in bacteriophage infection was investigated. Lb. brevis strain UCC521 is 195 

sensitive to Lb. brevis phages 3-521 and 521B (19). Plaque assays employing these phages 196 

and Lb. brevis UCC521 harboring the empty vector pNZ44, or strain UCC521 containing 197 

pNZ44:gtfD15 displayed similar EOP (Efficiency Of Plaquing) values with no significant 198 

difference to the WT (Table 5). However, notable differences in plaque morphology were 199 

observed, where plaques were faint and hard to distinguish on the bacterial lawn of UCC521 200 

pNZ44:gtfD15. Moreover, overnight incubation of the different strains with the two phages led 201 

to complete lysis-in-broth of UCC521 and UCC521 containing pNZ44 with an approximately 202 

1000-fold increase of phage titre after overnight propagation (Table 5). In contrast, UCC521 203 

pNZ44:gtfD15 did not show visible lysis and was able to grow after overnight incubation with 204 

just a ten-fold increase in phage numbers after overnight propagation (Table 5). These results 205 

reinforce the role of the protein GtfD15 in bacterial protection against diverse environmental 206 

hazards such as hop compounds or bacteriophages.    207 

 208 

  209 
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Conclusions 210 

In this study, we identified a novel genetic component required for beer spoilage and more 211 

specifically for hop tolerance. This gene is located on plasmid UCC124_D of Lb. brevis BS 212 

strain UCC124, validating the importance of plasmids to confer a beer spoilage phenotype. 213 

Moreover, this gene had been highlighted previously as common among BS strains (10). 214 

Genes required for hop tolerance have all been identified on plasmids (5, 7, 8), reinforcing 215 

the importance of such mobile genetic elements in adaptation to the specific hurdles imposed 216 

by the beer environment. A derivative of UCC124, MB569 showed impaired growth in beer 217 

after the loss of plasmid UCC124_D and despite the presence of plasmids UCC124_B and 218 

UCC124_C which carry several genes of interest in beer spoilage. Introduction of gtfD15 in 219 

strain MB569 restored the hop tolerance phenotype of the strain which ultimately allowed it 220 

to grow in beer. Similar results were observed when the gene was introduced into a NBS 221 

strain confirming the notion that gtfD15 is required for the development of hop tolerance and 222 

beer spoilage. Furthermore, this gene impacts on phage sensitivity of its host. This gene 223 

seems a unique trait shared among BS strains of Lb. brevis and we propose gtfD15 as a DMG 224 

for the detection of potential bacterial contamination of beer. The gene is predicted to encode 225 

a glycosyltransferase and analysis of its topology suggests that it is a membrane-anchored 226 

protein involved in the biosynthesis or modification of a cell surface-associated saccharidic 227 

polymer. BS strains of Lb. brevis have been shown to increase higher molecular weight 228 

lipoteichoic acids (LTA) in their cell wall, in the presence of hop bitter acids, thus believed to 229 

confer resistance to the bacteria by enhancing the barrier functions of the cell wall and 230 

preventing intrusion of hop compounds (20, 21). Moreover, lipoteichoic acids have been 231 

described as phage receptors among lactobacilli phages as seen for Lactobacillus delbrueckii 232 

phages LL-H and JCL1032 (22) but also for Lactobacillus plantarum ATCC8014-B2 (23). 233 

Therefore, we speculate that this glycosyltransferase is involved in replacing alanine residues 234 
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with sugar residues on teichoic acids thereby changing their charge and preventing iso-α-235 

acids to penetrate the membrane as well as affecting phage adsorption and/or DNA injection. 236 

This predicted glycosyltransferase shows only limited similarity (36 % amino acid similarity 237 

in 20 % query cover) with the glycosyltransferase identified in a previous study as 238 

responsible for β-glucan formation (11), and is thus believed to play a different role in beer 239 

spoilage. Future studies will focus on defining the mechanism that underpins hop tolerance 240 

and on determining how the genes identified to date (5, 7, 8) are linked to each other. 241 

Moreover, located on the same plasmid as gtfD15 are genes predicted to encode a 242 

glycosyltransferase and acyltransferases (Table 2) suggesting a common action on teichoic 243 

acids with the acyltransferases involved in the acylation of alanine residues or the lipid 244 

moiety of the lipoteichoic acids (24). Follow-up work may therefore focus on determining the 245 

precise function of the glycosyltransferase (and other associated genes) in the modification of 246 

the cell wall and/or cell surface. Another question to be addressed is if and how hop tolerance 247 

is enhanced when these genes are present in a certain combination, and how such tolerance is 248 

influenced by their expression level.   249 

 250 

251 
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Materials and Methods 252 

Bacterial strains and cultivation media 253 

Bacterial strains used in this study are listed in Table 1. Lb. brevis strains were grown in 254 

MRS broth (Oxoid Ltd., UK) at 30 ˚C while Lactococcus lactis NZ9000 was grown in M17 255 

broth (Oxoid Ltd., UK) supplemented with 0.5 % glucose. 5 µg/mL chloramphenicol (Cm5) 256 

was added to the medium when indicated.  257 

Plasmid curing and plasmid content analysis 258 

The overall experimental approach is presented in Figure S1. Plasmid curing of the BS strain 259 

UCC124 was achieved using novobiocin treatment (25). A 1 % inoculum of a WT strain 260 

overnight culture was used to inoculate 10 mL MRS broth containing 0.25 µg/mL 261 

novobiocin. Cultures were incubated at 26 °C for 72 h. After incubation, cells were diluted 262 

and plated on MRS agar. After 3 days of incubation at 26 °C, isolated colonies were 263 

randomly selected and derivatives with impaired growth in beer (no growth observed after 72 264 

h) were checked for the presence or loss of hop-resistance genes horA, horC and orf5ABBC45 265 

(Table 2). A derivative showing loss of hop-resistance gene was selected and sequenced 266 

using Illumina sequencing technology. Paired-end sequence reads were generated using an 267 

Illumina HiSeq2500 system (read length 2 x 250 bp). FASTQ sequence files were generated 268 

using the Illumina Casava pipeline version 1.8.3. After Illumina sequencing the obtained 269 

sequences were mapped back against the WT reference sequence to detect mutations by 270 

single nucleotide polymorphism (SNP) or plasmid content loss. SNP analysis was performed 271 

by aligning Illumina raw reads against a reference sequence using Bowtie2 V 2.3.5 (26). The 272 

reads were then sorted using Samtools (27) and VarScan v2.3.9 was applied for the detection 273 

of variants (28). A minimum allelic variation frequency cut-off of 0.25 was applied. 274 

Construction of plasmid vectors 275 
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Genes of interest were amplified by PCR (Table 2) and cloned into the expression vector 276 

pNZ44 (29). PCR products and pNZ44 plasmid DNA were digested with the appropriate 277 

enzymes (Roche, USA) at 37 ˚C for at least 4 h, following the manufacturer’s instructions 278 

(Table 2). A ratio of (3:1) was applied for the ligation of the PCR product with pNZ44 using 279 

T4 DNA ligase (Promega, USA). The mixture was incubated at room temperature for at least 280 

4 hours prior to electrotransformation into L. lactis NZ9000 competent cells.  281 

Preparation of competent cells and electrotransformation  282 

Competent cells of L. lactis NZ9000 were prepared as previously described (30). Competent 283 

cells of Lb. brevis UCC124 were prepared using an adapted version of a previously described 284 

protocol (31): An overnight culture was transferred (1 % inoculum) to 10 mL MRS broth 285 

containing 1 % glycine and incubated overnight at 30 ˚C. 5 mL of the overnight culture was 286 

transferred to fresh MRS broth containing 1 % glycine (50 mL final volume) and cells were 287 

grown to an OD600nm of 0.6. Cells were harvested by centrifugation at 4,000 × g for 15 min at 288 

4 ˚C and washed in ice-cold wash buffer (0.5 M sucrose, 10 % glycerol). The wash step was 289 

repeated twice and the cells were finally resuspended in 200 µL wash buffer prior to storage 290 

at -80 ˚C and/or electroporation (see below). All constructs were generated using L. lactis 291 

NZ9000 as the cloning host, verified by sequencing after PCR amplification using the 292 

primers pnz44F and pnz44R (Table 2) prior to their transfer into Lb. brevis strains. 293 

Electrotransformation was performed using freshly prepared competent cells as described 294 

above, where 45 µL of cells and 5 µL of plasmid construct were mixed into a pre-chilled 2 295 

mm electroporation cuvette (Cell Projects, Kent, England) and subjected to electroporation at 296 

1.5 kV (Lb. brevis) or 2.0 kV (L. lactis), 200 Ω, 25 µF. Following electroporation, 950 µL 297 

recovery broth was added (MRS broth supplemented with 0.5 M sucrose and 0.1 M MgCl2 298 

(Lb. brevis) or GM17 broth supplemented with 20 mM MgCl2 and 2 mM CaCl2 (L. lactis)). 299 

Cells were recovered at 30 ˚C for 3 h (Lb. brevis) or 2 h (L. lactis) prior to spread plating on 300 
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MRS (Lb. brevis) or GM17 (L. lactis) agar supplemented with Cm5. Presumed transformants 301 

were purified on MRS agar + Cm5 and colonies were checked by sequencing after PCR 302 

amplification using the primers pnz44F and pnz44R (Table 2) and applied to growth assays 303 

as described below.  304 

Growth assays 305 

Growth profiles of the wild-type strain and its derivative were obtained by transferring an 306 

overnight culture (1 % inoculum) to MRS broth, MRS broth supplemented with 30 ppm iso-307 

α-acids or beer (fresh Heineken lager 5 % ethanol, pH 4, 23 ppm iso-α-acids). Cultures were 308 

incubated at 30 ˚C for 72 hours. One mL of culture was retrieved after 24, 48, 72 and 96 309 

hours, diluted in Ringer’s solution and plated on MRS agar plates. Plates were incubated at 310 

30 ˚C anaerobically for 48 hours prior to colony counting. The number of viable bacteria of 311 

each strain was assessed after CFU/mL calculation. Non-inoculated controls were used in all 312 

the experiments as blank measurements. These measurements were then subtracted from each 313 

experimental condition to produce the values represented on growth curves. Statistical 314 

differences were calculated using unpaired t test method (32).  315 

Phage activity against Lb. brevis strains and transformants 316 

To assess phage sensitivity of Lb. brevis strains, transformants carrying genes of interest were 317 

compared to the wild-type (WT) strain using plaque assays, as previously described (33). A 318 

10 µL volume of the appropriate phage dilution and 200 µL of Lb. brevis culture were added 319 

to 4 mL of soft agar supplemented with 10 mM CaCl2, mixed and poured onto an MRS agar 320 

plate supplemented with 10 mM CaCl2 and 0.5% glycine. Plates were incubated at 30 °C 321 

overnight and the resulting plaques were enumerated. Phage titre was determined as plaque-322 

forming units per mL (PFU/mL). The ability of phages to propagate and multiply within the 323 

host cell was also tested. Lb. brevis strains were grown to early exponential phase (OD600nm ~ 324 
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0.25), at which point phages were added to the culture (T0) at a MOI (multiplicity of 325 

infection) of 1, along with 10 mM CaCl2. The mix was further incubated at 30 °C overnight 326 

(T1). The number of phages present in the medium (i.e. following removal of bacterial cells 327 

by centrifugation) at T1 was then determined by plaque assay. Phage propagation efficiency 328 

on a given host was then determined by dividing the phage titre (PFU/mL) at T1 by the phage 329 

titre (PFU/mL) at T0.  330 

GenBank accession numbers 331 

Lb. brevis UCCLBBS124: CP031169, Lb. brevis UCCLBBS124_A: CP031170, Lb. brevis 332 

UCCLBBS124_B: CP031171, Lb. brevis UCCLBBS124_C: CP031172 and Lb. brevis 333 

UCCLBBS124_D: CP031173. 334 
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Table 1. Bacterial strains and plasmids used in this study. 451 

Strain / Plasmid Description References 

Lb. brevis strains 

  UCCLBBS124 (UCC124) Beer-spoiling strain isolated from spoiled beer keg (Singapore) (10) 

UCCLBBS449 Beer-spoiling strain isolated from unpasteurized spoiled beer (The Netherlands) (10) 

MB569 Non-beer spoiling strain derivative of UCCLBBS124 This study 

UCCLB521 (UCC521) Non-beer spoiling strain isolated from brewery environment (The Netherlands) (10) 

MB569 pNZ44 MB569 carrying pNZ44  This study 

MB569 pNZ44:gtfD15 MB569 carrying pNZ44 with gtfD15 This study 

UCCLB521 pNZ44:gtfD15 UCCLB521 carrying pNZ44 with gtfD15 This study 

   L. lactis strains 
  NZ9000 Transformation host (34) 

   Plasmids 
  pNZ44 Transformation vector, chloramphenicol resistance gene 

 pNZ44:gtfD15 pNZ44 harboring gtfD15  This study 

 452 

Table 2. PCR primers used in this study. Incorporated restriction sites are indicated in capital 453 

letters. 454 

Primer 

name Sequence (5' - 3') Target 

GenBank 

accession no. 

horAF cgcaactgaggctaacttct horA gene in UCCLBBS124 CP031173 

horAR ggcttgctatgctaggata horA gene in UCCLBBS124 CP031173 

horCF gtatgcctaagtgacgt horC gene in UCCLBBS124 CP031172 

horCR cattctctgcctctatac horC gene in UCCLBBS124 CP031172 

orf5F ctggattgaggtgaggg orf5 gene in UCCLBBS124 CP031172 

orf5R gctgtaaagggtagtgattg orf5 gene in UCCLBBS124 CP031172 

pNZ44F aacaattgtaacccatac pNZ44 promoter  

pNZ44R gaacgtttcaagccttgg pNZ44 MCS  

pD14F aaaaaaCTGCAGgtccgaacagcgttcggatt Gene UCCLBBS124_pD0014 in UCCLBBS124_D  CP031173 

pD14R aaaaaaTCTAGAttaatcttcgaaatagtt Gene UCCLBBS124_ pD0014 in UCCLBBS124_D CP031173 

pD15F aaaaaaCCATGGgcggtttggatattttatact Gene UCCLBBS124_ pD0015 in UCCLBBS124_D CP031173 

pD15R aaaaaaTCTAGAtcactcagttttcaattccc Gene UCCLBBS124_ pD0015 in UCCLBBS124_D CP031173 

pD16F aaaaaaCTGCAGaggcttgctatgctagg Gene UCCLBBS124_ pD0016 in UCCLBBS124_D CP031173 

pD16R aaaaaaTCTAGAtcacccgttgctcgt Gene UCCLBBS124_ pD0016 in UCCLBBS124_D CP031173 

pD17-19F aaaaaaCCATGGggggtagaatggttctgtt Gene UCCLBBS124_ pD0017-19 in UCCLBBS124_D CP031173 

pD17-19R aaaaaaTCTAGAttattgataatgaccagcaa Gene UCCLBBS124_ pD0017-19 in UCCLBBS124_D CP031173 

 455 

 456 

 457 

 458 

 459 

 460 
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Table 3. Lb. brevis UCC124 plasmids and genes of interest for beer spoilage. 462 

 463 

UCC124 plasmids Size (bp) ORFs no. Accession no.  Gene(s) of interest References 

UCCLBBS124_A (UCC124_A) 49,560 42 CP031170 

  UCCLBBS124_B (UCC124_B) 23,078 20 CP031171 gtf family 2 (11) 

UCCLBBS124_C (UCC124_C) 22,370 27 CP031172 horB, horC, orf5 (7, 9) 

UCCLBBS124_D (UCC124_D) 20,971 16 CP031173 horA (5) 

 464 

 465 

 466 

 467 

Table 4. Presence and absence of genes of UCCLBBS124_D among Lb. brevis BS strains. 468 

Gene Predicted function Lb. brevis BS strains 
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UCCLBBS124_pD0014 = UCC124_D14 Cytosine deaminase + + - + + - + 

UCCLBBS124_pD0015 = gtfD15 Glycosyltransferase family 8 + + - + + + + 

UCCLBBS124_pD0016 = UCC124_horA HorA + + - + + - + 

UCCLBBS124_pD0017 = UCC124_D17 Acyl-sn-glycerol-3-phosphate acyltransferase + + - + + + + 

UCCLBBS124_pD0018 = UCC124_D18 Glycosyltransferase family 8 + + - + + + + 

UCCLBBS124_pD0019 = UCC124_D19 Acyl-sn-glycerol-3-phosphate acyltransferase + + - + + + + 

 469 

 470 

 471 

 472 

 473 

 474 
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Table 5. Effect of phages 3-521 and 521B on Lb. brevis strain UCC521 and derivatives.  476 

    Lb. brevis strains 

    UCC521 UCC521 pNZ44 UCC521 pNZ44:gtfD15 

Phage 521B 

EOP (Efficiency Of Plaquing) 1.00 0.58 ± 0.29 0.64 ± 0.21 

Plaque morphology Small clear plaques Small clear plaques Faint plaques 

Phage titre after O/N propagation* 

(PFU/mL) 
2.90E+09 2.30E+09 3.00E+07 

Phage 3-521 

EOP 1.00 1.52 ± 0.20 1.19 ± 0.19 

Plaque morphology Small clear plaques Small clear plaques Faint plaques 

Phage titre after O/N propagation* 

(PFU/mL) 
4.30E+09 1.80E+09 4.80E+07 

*Overnight propagation (O/N) was realized with a starting phage titre of 10
6
 PFU/mL (results 477 

are average of triplicate assays). 478 

 479 
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Figure 1. Growth of the WT beer-spoiling strain Lb. brevis UCC124 (A) and its plasmid-480 

cured derivative MB569 (B) in beer, MRS broth, MRS broth at pH4 and MRS broth 481 

supplemented with 5.4 % ethanol or 30 ppm iso-α-acids. 482 
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Figure 2. Number of viable bacteria (CFU/mL) of the WT BS strain Lb. brevis UCC124, the 483 

derivative MB569 +/- the empty plasmid pNZ44 and MB569 carrying the gene gtfD15 after 484 

growth in (A) MRS broth containing 30 ppm iso-α-acids for 72 h and (B) beer for 96 h 485 

(P<0.05). CFU/mL of the WT BS strain Lb. brevis UCC124, the NBS UCC521 +/- the empty 486 

plasmid pNZ44 and the NBS UCC521 carrying the gene gtfD15 after growth in (C) MRS 487 

broth containing 30 ppm iso-α-acids and (B) beer for 96 h (P<0.05). 488 
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