
Title Regular pattern-free coloring

Authors Escamocher, Guillaume;O'Sullivan, Barry

Publication date 2022-11-15

Original Citation Escamocher, G. and O'Sullivan, B. (2022) 'Regular pattern-free
coloring', Discrete Applied Mathematics, 321, pp. 109-125. https://
doi.org/10.1016/j.dam.2022.06.034

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://www.sciencedirect.com/science/article/pii/
S0166218X2200227X - 10.1016/j.dam.2022.06.034

Rights © 2022 The Author(s). Published by Elsevier B.V. This
is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). - http://
creativecommons.org/licenses/by/4.0/

Download date 2024-04-19 00:47:51

Item downloaded
from

https://hdl.handle.net/10468/13338

https://hdl.handle.net/10468/13338

Discrete Applied Mathematics 321 (2022) 109–125

s
N
f

c
t
b
a

b
p
c

r
D
n
i

p

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Regular pattern-free coloring
Guillaume Escamocher ∗, Barry O’Sullivan
Insight Centre for Data Analytics, School of Computer Science & Information Technology, University College Cork, Ireland

a r t i c l e i n f o

Article history:
Received 18 June 2021
Received in revised form 16 June 2022
Accepted 21 June 2022
Available online xxxx

Keywords:
Graph coloring
Forbidden subgraphs
Regular graphs
Complexity results
Difficult instance generation

a b s t r a c t

We study the graph coloring problem under two kinds of simultaneous restrictions. First
we forbid some patterns to appear in the graph, where a pattern is a small subgraph.
Second we only consider regular graphs, meaning that all nodes have the same degree.
Having both types of constraints at once leads us to the discovery of new tractable
classes for graph coloring. However, we also show that some classes of pattern-free
graphs remain NP-Complete even after enforcing regularity. Based on the latter results,
we provide several complementary ways to generate difficult graph coloring instances,
relying on balancing the degree of the nodes and avoiding a particular subgraph. Our
constructions are parameterizable, so characteristics of the instances like size (number
of nodes) and density (number of edges) can be set to any value.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The k-Coloring problem consists in determining whether the vertices of a given graph can be labeled with k colors,
uch that vertices which share an edge are labeled with different colors. It was one of the first problems to be proved
P-Complete, figuring among Karp’s list of 21 NP-Complete problems [17]. It has many practical applications, including
requency assignment [9] and register allocation [1].

In order to find tractable classes for the problem, restrictions on the graph have been proposed. One such way to define
lasses of graphs is by forbidding the occurrence of a particular structure, that we call a pattern. Planar graphs fall under
his category, because they can be characterized by forbidding subdivisions of the clique of size 5 and of the complete
ipartite graph of size 6 (Kuratowski’s theorem). Patterns are often small graphs [13], and sometimes are only forbidden
s induced subgraphs [18].
A different way to define classes of graphs is through regularity. This property is orthogonal to forbidden patterns

ecause, with the trivial exception of edgeless graphs, regular graphs cannot be characterized by the absence of a forbidden
attern. The k-Coloring problem is still NP-hard when restricted to regular graphs [8], but can become tractable when
ombined with other structures.
The classes that we study in this paper are hybrid, in that they stand at the intersection of forbidden patterns and

egular graphs. We take NP-hard classes of forbidden patterns and examine their complexities when regularity is imposed.
epending on the initial pattern considered, we obtain both polynomial and NP-hardness results. The former provide
ew tractable classes for the k-Coloring problem, while the latter are used as a foundation to generate difficult coloring
nstances.

The outline of our paper is as follows. In the next Section, we define the concepts that are central to the k-Coloring
roblem, including the two core notions (forbidden patterns and regularity) that the classes that we study are based on. In

∗ Corresponding author.
E-mail addresses: guillaume.escamocher@insight-centre.org (G. Escamocher), b.osullivan@cs.ucc.ie (B. O’Sullivan).
https://doi.org/10.1016/j.dam.2022.06.034
0166-218X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.dam.2022.06.034
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2022.06.034&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:guillaume.escamocher@insight-centre.org
mailto:b.osullivan@cs.ucc.ie
https://doi.org/10.1016/j.dam.2022.06.034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

c
p
c

2

Section 3, we present our complexity results. First, we show that some NP-Complete patterns remain NP-hard when the
even stricter restriction of regularity is added. Afterwards we identify some patterns that are NP-Complete by themselves
but become tractable when coupled with regularity.

Section 4 is devoted to our generators of difficult coloring instances. We detail the two heuristics that they follow,
ompare them to other attempts [15,22,26] that have been made in the past to create such instances, and finally
resent empirical results showing that our generators are successful in building hard coloring instances for various
onstrainedness values.

. Definitions

We consider undirected finite graphs with no redundant edges. A graph is a couple ⟨V , E⟩ where V is a finite set of
vertices (also called nodes) and E is a finite set of edges. Each edge e ∈ E is a pair of vertices {v1, v2} ⊂ V , and we say that
v2 and e are incident to v1.

We now define the problem studied in this paper.

Definition 1. The k-Coloring problem takes as input a graph G = ⟨V , E⟩ and asks the following question: can each node
in V be labeled with one of k colors, such that for each edge {v1, v2} ∈ E, v1 and v2 are not labeled with the same color?

If for some integer k the answer to the k-Coloring problem is yes for some graph G, then we say that G is k-colorable.
A graph is 1-colorable if and only if it does not contain any edge, and 2-colorable if and only if it is bipartite. For higher
values, determining k-colorability is NP-Complete [17]. The graphs returned by our Section 4 generators are not restricted
to a specific number of colors and can be given as input to any k-coloring problem, regardless of the value of k. Our
experiments in particular cover three different values for k: 3, 4 and 5.

Definition 2. Let G be a graph. The chromatic number of G is the smallest k for which G is k-colorable.

Definition 3. The Coloring problem takes as input a graph G and asks what the chromatic number of G is.

The k-Coloring problem is a decision problem, because the answer is either yes or no. In contrast, the Coloring problem
is an optimization problem. Their complexity is the same however, because a k-Coloring instance can be solved instantly
when knowing its chromatic number, and the Coloring problem can be reduced to O(log n) (with binary search) iterations
of the k-Coloring problem.

The classes that we study in the paper contain graphs that are regular and pattern-free. We now define these two
notions, starting with the former.

Definition 4. With the degree of a node v being the number of nodes incident to v, we say that a graph G is regular if
all nodes in G have the same degree. We additionally say that G is d-regular if this degree is equal to d.

The Regular (k-)Coloring problem is the (k-)Coloring problem restricted to regular graphs.
If G and P are graphs, then we say that G is P-free if P is not a subgraph of G. The class of graphs associated with a

given subgraph, or pattern, P is the set of graphs that are P-free.

Definition 5. Let P be a pattern and k be an integer. We say that P is tractable for the (Regular) k-Coloring problem if there
is a polynomial-time algorithm that can determine for each (regular) P-free graph G whether G is k-colorable. On the
other hand, we say that P is NP-Complete for the (Regular) k-Coloring problem if determining the k-colorability of (regular)
P-free graphs is NP-Complete.

Definition 6. Let P be a pattern. We say that P is tractable (respectively NP-hard) for the (Regular) Coloring problem if
determining the chromatic number of (regular) P-free graphs is a polynomial-time problem (respectively is NP-hard).

Note that if P is a pattern and P ′ is another pattern containing P , then any P-free graph will also be P ′-free. Therefore,
a tractability result on P ′ implies the same tractability result on P , and a hardness result on P implies the same hardness
result on P ′.

3. Theoretical complexity

In this section, we look at how the complexity of different patterns is affected by regularity. Forbidden patterns have
been extensively studied in constraint satisfaction problems [2,4,6], including in graph coloring [12]. Moreover, it is known
that coloring regular graphs is NP-hard [8], even in the case of line graphs [14,19]. However, very few results exist on the
computational complexity of the classes found at the intersection of both types of problems.
110

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

i

T

P
t

a

Fig. 1. A triangle-free graph G with maximum degree d = 3.

3.1. NP-hardness results

Since tractable patterns for the coloring problem will trivially remain tractable by additionally imposing regularity, we
only look at patterns that are already NP-hard for the coloring problem. For all k ≥ 3, any pattern containing a triangle
s NP-Complete for the k-coloring problem [18]. We extend this result to regular graphs.

heorem 1. Let P be a pattern containing a triangle and let k ≥ 3. Then P is NP-Complete for the Regular k-Coloring problem.

roof. Let G be a triangle-free graph. Let d be the maximum degree of a node in G. We are going to create a d-regular
riangle-free graph G′ with the same chromatic number as G.

For each node v in G, we add d− dv nodes, with dv the degree of v, and we add an edge between each of these nodes
nd v. Now each node that was originally in G has degree d, and we also have new nodes, each of degree 1. Let p be the

number of these additional nodes, labeled l1 to lp, and let Hleft,1 be the graph at this point of the reduction. We know that
Hleft,1 is triangle-free, because G is triangle-free and the only edges that have been added have a degree 1 node at one of
their extremities, so no cycle has been introduced.

We then duplicate Hleft,1 until we have 2(d − 1) copies Hleft,1,Hleft,2, . . . , Hleft,d−1,Hright,1, . . . ,Hright,d−1. For each
1 ≤ i ≤ p and for each 1 ≤ j < d, the copy of the node li in Hleft,j is also labeled li, and the copy of li in Hright,j is
labeled ri. To complete the construction of G′, for each 1 ≤ i ≤ p we add (d − 1)2 edges, connecting the d − 1 nodes
labeled li to the d − 1 nodes labeled ri. To illustrate the reduction, we present in Fig. 1 a graph G which is triangle-free
but not regular, and in Fig. 2 the graph G′ obtained from G after the reduction.

Since triangles are NP-Complete for the k-Coloring problem [18], we only need to show that the reduction takes
polynomial time in the size of G, that G′ is both d-regular and triangle-free, and that for any k ≥ 3, G′ is k-colorable
if and only if G is k-colorable.

Let n be the number of nodes in G. For each node in G, we added at most d nodes in Hleft,1. Since d is the maximum
degree of a node in G, the total number of nodes added to G in Hleft,1 is at most n(n − 1). Combined with the original n
nodes in G, we know that Hleft,1 contains at most n2 nodes. G′ is composed of 2(d − 1) copies of Hleft,1, so the number of
nodes in G′ is less than n3. Therefore the reduction takes polynomial time in the size of G.

In each subgraph Hleft,i (and Hright,i), just enough nodes were added to G so that each node of G has degree d in G′.
Furthermore, each node labeled li (respectively ri) is connected in G′ to exactly 1 node in a copy of G, and to the d − 1
nodes labeled ri (respectively li). So each node labeled li or ri is also of degree d. So G′ is d-regular.

We have shown earlier that the subgraphs Hleft,i and Hright,i are triangle-free. The only other edges in G′ connect a node
labeled lj to a node labeled rj. The nodes labeled lj are only connected to nodes from the subgraphs Hleft,i and to nodes
labeled rj. Similarly, the nodes labeled rj are only connected to nodes from the subgraphs Hright,i and to nodes labeled lj.
Therefore, no node is connected to both a node labeled lj and a node labeled rj. Therefore the edges between the lj and
the rj cannot be part of a triangle. Therefore G′ is triangle-free.

Let k ≥ 3. G is a subgraph of G′, so if G′ is k-colorable, then G is k-colorable. Suppose now that G is k-colorable.
Let c1, c2, . . . , ck be the k colors used to color G. We are going to color G′ with these k colors. First, color the subgraph
corresponding to G in Hleft,1 in the same way that G was k-colored. Then pick for each li in Hleft,1 a color that was not used
to color a node connected to that li. This is always possible, because each li is only connected to one node in G, and there
are more than one color. At this point, Hleft,1 has been completely colored. Now for each 1 < i < d, color the subgraph
Hleft,i in the same way that Hleft,1 was colored. Also color the subgraphs Hright,i in the same manner, but substitute cj for
cj+1 for each 1 ≤ j < k, and ck for c1. This completes the coloring of G′. There cannot be an edge connecting two similarly
colored nodes in one of the subgraphs Hleft,i (respectively Hright,i), because the graph G was correctly colored, and the

′
nodes labeled li (respectively ri) were colored such that no constraint was falsified. The only other edges in G connect a

111

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125
Fig. 2. A 3-regular triangle-free graph G′ .

node labeled lj to a node labeled rj. Let j be such that 1 ≤ j ≤ p, and let cx be the color picked for the nodes labeled li.
The same color was chosen for all these nodes, because all the Hleft,i were colored similarly. Apart from the Hleft,i, which
as we have already established do not contain any incompatible coloring, the nodes labeled lj are only connected to the
nodes labeled rj. Because of the substitution, the nodes labeled rj have been colored with cx+1 (or c1 if x = k). Since k ≥ 3,
we have that any edge between a node labeled lj and a node labeled rj connects two differently colored nodes. Therefore
the k-coloring of G′ is valid. Therefore, if G is k-colorable, then G′ is k-colorable. □

Another example of an NP-Complete pattern for the 3-Coloring problem is Crab, shown in Fig. 3 [13]. This pattern is a
tree, but as with triangles the hardness result can be extended to regular graphs.

Theorem 2. Let P be a pattern containing Crab. Then P is NP-Complete for the Regular 3-Coloring problem.

Proof. We reduce from the Regular 3-Coloring problem, which is NP-hard even when restricted to 4-regular graphs [8].
Let G be a 4-regular graph. We replace each occurrence of Crab in G by the gadget shown in Fig. 4. The gadget does not
contain Crab, so we only have to show that the graph G′ obtained after the operation is 4-regular, and that it is 3-colorable
if and only if G is 3-colorable.

Each node in G′ belongs to one of three sets: nodes already present in G, new nodes added by the gadget, and nodes
modified by it. Since G is 4-regular, all nodes in the first set still have degree 4 in G′. For each occurrence of the gadget,
5 nodes are added to the second set: v2, a′, b′, c ′ and d′. All of these nodes have degree 4 by construction of the gadget.
Lastly, the only node from G that is altered by the gadget is v, which is replaced by the two nodes v1 and v3, both of
degree 4. Therefore all the nodes in G′ have degree 4, making G′ 4-regular.
112

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

b
G

p
3
b
3

3

e
T
p
p

t

L

P

Fig. 3. The pattern Crab.

Fig. 4. A Crab-free gadget.

Suppose that there is a 3-coloring of G. Assume without loss of generality that in this coloring v is labeled red. Then
y labeling v1, v2 and v3 red, a′ and d′ green, b′ and c ′ blue, and all other vertices of G′ by the color assigned to them in
, we have a 3-coloring of G′.
Suppose now that there is a 3-coloring of G′. Notice that if v1 and v2 are labeled with different colors, then it is not

ossible to label the four vertices v1, v2, a′ and c ′ with only 3 colors. Therefore v1 and v2 have the same label in the
-coloring of G′. Similarly, v2 and v3 also are labeled the same. Assume without loss of generality that the label shared
y v1, v2 and v3 is red. Then by labeling v red and all other vertices of G by the color assigned to them in G′, we have a
-coloring of G. □

.2. Tractable classes

Several tractable classes based on a forbidden pattern have already been identified for the Coloring problem. For
xample, any forest with at most 7 nodes and no node of degree 5 or more is tractable for the Coloring problem [13].
his proves in particular that the pattern X2 from Fig. 5 is tractable for the 3-Coloring problem. The authors of the above
aper could not determine the tractability of X3, but they managed to prove the NP-Completeness of X4 for the 3-Coloring
roblem.
In this section, we will prove that X4 is tractable for the Regular 3-Coloring problem. In order to do so, we will need

o prove the tractability of X3 for the Regular 3-Coloring problem.

emma 1. X3 is tractable for the Regular 3-Coloring problem.

roof. Let G = ⟨V , E⟩ be a regular graph. Suppose that the pattern X0 appears in G. Let Vout = V \ {v, a, b, c, d}. Let Eout
be the set of edges connecting a node in {a, b, c, d} to a node in Vout , and let Ein be the set of edges connecting two nodes
from {a, b, c, d}. Since G is regular, all nodes in V have the same degree ∆.

If |Eout | ≥ 9, then at least one of a, b, c and d has three incident edges in Eout , at least two of them have at least two
incident edges in E , and at least three of them have at least one incident edge in E . Assume without loss of generality
out out

113

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

a

f
n

t
c
(

L
t
I
d
f

f
t
|

n
n
n
G
i

e
t
t
c
c
(

g
f
t

3
s

Fig. 5. Some trees.

that a has three incident edges in Eout , b has two incident edges in Eout and c has an incident edge ec in Eout . At least one
of the two edges in Eout that are incident to b does not share a node with ec . Let us call this edge eb. At least one of the
three edges in Eout that are incident to a does not share a node with either ec or eb. Let us call this edge ea. Together with
X0, ea, eb and ec form X3. So we can assume from now on that |Eout | ≤ 8.

Suppose that there is a triangle in Ein. Since all nodes in {a, b, c, d} are connected to v, we have a clique of size 4 and
G is not 3-colorable. So we can assume from now on that there is no triangle in Ein, meaning in particular that |Ein| ≤ 4.

Since all nodes in {a, b, c, d} have degree ∆ and are connected to v, we have 4∆ = 4 + |Eout | + 2|Ein|. Since |Eout | ≤ 8
nd |Ein| ≤ 4, we have ∆ ≤ 5. Since the degree of v is at least 4, either ∆ = 4 or ∆ = 5.
If ∆ = 5, then we have |Eout | = 8 and |Ein| = 4. The only way to have four edges but no triangle in Ein is if these edges

orm a cycle of size 4. Since ∆ = 5 and each node in {a, b, c, d} is incident to v and to exactly two edges in Ein, then each
ode in {a, b, c, d} is incident to exactly two edges in Eout .
Suppose that all nodes in {a, b, c, d} are connected to the same two nodes v1 and v2 in Vout . Since ∆ = 5, v is connected

o a node v′ not in {a, b, c, d}. If v′
= v1 (respectively v′

= v2), then v1 (respectively v2), v, a and any node in {b, c, d}
onnected to a form a clique of size 4, so G is not 3-colorable. If v′

̸= v1 and v′
̸= v2, then the edges (v, a), (a, v1), (v, b),

b, v2), (v, c), (c, d) and (v, v′) form X3 (switch the roles of b and d if c is not connected to d).
Suppose on the other hand that at least three of the nodes in Vout that are incident to a node in {a, b, c, d} are distinct.

et us call f1, f2 and f3 these three nodes. Without loss of generality, assume that f1 is connected to a. a is incident to only
wo edges in Eout , so either f2 or f3 is connected to b, c or d. Assume without loss of generality that f2 is connected to b.
f either c or d is connected to a node in vout that is neither f1 nor f2, then we have the pattern X3. Otherwise, both c and
are connected to both f1 and f2, and adding the edges (a, f3) (or (b, f3) if f3 is not connected to a), (c, f1) and (d, f2) to X0

orms X3.
We have shown that if ∆ = 5, then either the pattern X3 appears in G, or G is not 3-colorable. We can therefore assume

rom now on that ∆ = 4. Since 4∆ = 4 + |Eout | + 2|Ein|, we have |Eout | + 2|Ein| = 12. Since |Eout | ≤ 8 and |Ein| ≤ 4,
hen the only three possibilities for the values of |Ein| and |Eout | are |Ein| = 2 and |Eout | = 8, |Ein| = 3 and |Eout | = 6, and
Ein| = 4 and |Eout | = 4.

Let us first look at the case where |Ein| = 4 and |Eout | = 4. As mentioned before, the only way to have four edges but
o triangle in Ein is if these edges form a cycle of size 4. Since ∆ = 4, each node in {a, b, c, d} is connected to exactly one
ode in Vout . If at least three of these external nodes are distinct, then we have the pattern X3. If all four of these external
odes are the same node v′, then the six nodes v, a, b, c , d and v′ form a 4-regular subgraph disconnected from the rest of
. This subgraph is 3-colorable, for example by labeling v and v′ red, a and d green, and b and c blue, so we can remove
t from G without changing the 3-colorability of G.

If exactly two (let us call them v1 and v2) of the four external nodes are distinct, then either they are both connected to
xactly two nodes in {a, b, c, d}, or one of them is connected to three nodes in {a, b, c, d} and the other one is connected
o the remaining node in {a, b, c, d}. If the former, assume without loss of generality that v1 is connected to a and d and
hat v2 is connected to b and c , if the latter, assume without loss of generality that v1 is connected to a and that v2 is
onnected to b, c and d. Either way, v1 is connected to a node v′ that is not b nor c (because all edges incident to b and
are already accounted for) and that is not v2, a nor d either (because ∆ = 4). Therefore the edges (a, v1), (v1, v

′), (a, c),
c, v2), (a, b), (b, d) and (a, v) form the pattern X3, which completes the study of the case where |Ein| = 4 and |Eout | = 4.

Let us now look at the case where |Ein| = 2 and |Eout | = 8. If the two edges in Ein share a node, assume without loss of
enerality that they connect a to b and c. Since ∆ = 4, a is connected with a node a′

∈ Vout , b is connected to two nodes
rom Vout , at least one of them (let us call it b′) not being a′, and d is connected to three nodes from Vout , at least one of
hem (let us call it d′) being neither a′ nor b′. Adding the edges (a, a′), (b, b′) and (d, d′) to X0 forms the pattern X3.

If the two edges in Ein do not share a node, then a, b, c and d are all connected to exactly two nodes in Vout . If all four
are connected to the same two nodes v1 and v2, then the seven nodes v, a, b, c , d, v1 and v2 form a 4-regular subgraph
disconnected from the rest of G. This subgraph is 3-colorable, for example by labeling v, v1 and v2 red, a and any node
in {b, c, d} not connected to a green, and the last two nodes blue, so we can remove it from G without changing the
-colorability of G. If at least three of the nodes in Vout that are incident to a node in {a, b, c, d} are distinct, then by the
ame argument as for ∆ = 5, we have the pattern X . This concludes the study of the case where |E | = 2 and |E | = 8.
3 in out

114

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

E

The last case to consider is when |Ein| = 3 and |Eout | = 6. The only two ways to have three edges and no triangle in

in are a path of length 3 and a star. If the latter, assume without loss of generality that a is connected to b, c and d. Since
∆ = 4, b, c and d are all connected to exactly two nodes in Vout . If at least three of the nodes (let us call them v1, v2 and
v3) in Vout connected to b, c or d are distinct, then we can assume without loss of generality that v1 is connected to b and
that v2 is connected to c. If one of the two Vout nodes connected to d is neither v1 nor v2, then we have the pattern X3.
Otherwise, adding the edges (d, v1), (c, v3) and (b, v2) (or (d, v2), (c, v1) and (b, v3) if v3 is not connected to c) to X0 forms
the pattern X3.

Still in the subcase where the three edges in Ein form a star centered in a, suppose now that b, c and d are connected
to the same two nodes in Vout : v1 and v2. If v1 and v2 are connected, then the seven nodes v, a, b, c , d, v1 and v2 form a
4-regular subgraph disconnected from the rest of G. This subgraph is 3-colorable, for example by labeling v and v1 red, a
and v2 green, and b, c and d blue. If v1 and v2 are not connected, then there is a node v′ in Vout \ {v2} that is connected
to v1, and the edges (b, v1), (v1, v

′), (b, v2), (v2, c), (b, a), (a, d) and (b, v) form the pattern X3.
The last subcase to look at is when the edges in Ein form a path of length 3. Assume without loss of generality that

c is connected to a, which is connected to b, which is connected to d. Since ∆ = 4, a and b are each connected to one
node in Vout , while c and d are both connected to two nodes in Vout . If at least three distinct nodes of Vout are connected
to either c or d, then one of them (let us call it v1) is connected to c and another (let us call it v2) is connected to d. If
a′, the node in Vout connected to a, is neither v1 nor v2, then adding the edges (c, v1), (d, v2) and (a, a′) to X0 forms the
pattern X3. Otherwise, then without loss of generality we can assume that a′ is v1, in which case adding the edges (c, v3),
(d, v2) and (a, v1) (or (c, v2), (d, v3) and (a, v1) if v3 is not connected to c) to X0 forms the pattern X3.

Suppose now that c and d are connected to the same two nodes v1 and v2 from Vout . If either a or b is connected to
neither v1 nor v2, then we have X3. If both a and b are connected to v1, then all of the edges incident to v, a, b, c , d and
v1 are accounted for, so v2 is connected to some node v′

∈ Vout \ {v1}, and the edges (d, v2), (v2, v
′), (d, v1), (v1, c), (d, b),

(b, a) and (d, v) form the pattern X3. The same argument, with the roles of v1 and v2 switched, applies if both a and b are
connected to v2.

The only remaining possibility is when one of a and b is connected to v1 and the other is connected to v2. Assume
without loss of generality that a is connected to v1 and that b is connected to v2. The edges between v, a, c and v1 impose
that v and v1 must be labeled with the same color. Similarly, the edges between v, b, d and v2 impose that v and v2 must
be labeled with the same color. So if v1 and v2 are connected to each other, then G is not 3-colorable. Otherwise, v1 is
connected to some node v′

∈ Vout \ {v2}, and the edges (v1, a), (a, b), (v1, c), (c, v), (v1, d), (d, v2) and (v1, v
′) form the

pattern X3.
We have studied all possibilities for the distribution of the edges from Eout and Ein. In each case, we have shown

that the presence of the pattern X0 leads to one of three possible outcomes: X3 appears in G, a disconnected subgraph
can be deleted without changing the 3-colorability of G, or G is not 3-colorable. Since X0 is tractable for the 3-Coloring
problem [13], this proves the result. □

Now that we know that X3 is tractable for the Regular 3-Coloring problem, we can assume that it always appears in
the graph, making the proof for X4 easier.

Theorem 3. X4 is tractable for the Regular 3-Coloring problem.

Proof. Let G = ⟨V , E⟩ be a regular graph. Suppose that the pattern X3 appears in G. Since G is regular, all nodes in V have
the same degree ∆. Since v is connected to a, b, c and d, we know that ∆ ≥ 4.

If ∆ > 7, then d is connected to at least one node not in X3 and we have X4. If ∆ = 7, then either d is connected to
at least one node not in X3 and we have X4, or d is connected to all other nodes in X3. If the latter and a is connected to
a node a′′ not in X3, then by renaming a′ to d′ and a′′ to a′ we have X4. So a is also connected to all nodes in X3, and we
have a clique of size 4 on the nodes v, a, b and d. Therefore, if ∆ = 7 then either X4 appears in G or G is not 3-colorable.
So we can assume from now on that 4 ≤ ∆ ≤ 6.

Suppose that ∆ = 4 and that the gadget Link represented in Fig. 6 appears in G. Notice that all nodes in Link apart
from w and w′ already have four incident edges, so any new node we will introduce cannot be w1, w2, w3, w4 nor w5.
We know that w′ has degree 4, so it is connected to three new nodes w′

1, w
′

2 and w′

3.
If w′

1, w′

2 and w′

3 are all connected to each other, then together with w′ they form a clique of size 4 and G is not 3-
colorable. If there is at most one edge between w′

1, w
′

2 and w′

3, then assume without loss of generality that it is between
w′

1 and w′

2. In this case, w′

1 is connected to two new nodes, let us call one of them w′′

1 , w
′

2 is connected to two new nodes,
so at least one of them (let us call it w′′

2) is not w′′

1 , and w′

3 is connected to three new nodes, so at least one of them (let
us call it w′′

3) is neither w′′

1 nor w′′

2 . This would form the pattern X4 over edges (w′, w4), (w4, w5), (w′, w′

1), (w
′

1, w
′′

1), (w
′,

w′

2), (w
′

2, w
′′

2), (w
′, w′

3) and (w′

3, w
′′

3). So there are exactly two edges between the nodes w′

1, w
′

2 and w′

3. Assume without
loss of generality that they connect w′

1 to w′

2, and w′

2 to w′

3.
Since w′

1 is of degree 4, it is connected to four nodes. Two of them are w′ and w′

2, the other two, w′

4 and w′

5 are new.
We now have the situation depicted in Fig. 7. Suppose that the last incident edge of w′

2 connects it to a new node w′′

2
that is neither w′

4 nor w′

5. We know that w′

3 is connected to two more nodes, so at least one of them (let us call it w′′

3) is
not w′′

2 , and edges (w′, w4), (w4, w5), (w′, w′

1), (w
′

1, w
′

4) (or (w
′

1, w
′

5) if w′′

3 is w′

4), (w
′, w′

2), (w
′

2, w
′′

2), (w
′, w′

3) and (w′

3, w
′′

3)
form X . So w′ is connected to either w′ or w′ . Assume without loss of generality that w′ is connected to w′ .
4 2 4 5 2 5

115

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125
Fig. 6. The gadget Link.

Fig. 7. Extending Link.

If w′

3 is connected to a new node w′′

3 that is neither w′

4 nor w′

5, then edges (w′, w4), (w4, w5), (w′, w′

1), (w
′

1, w
′

4), (w
′,

w′

2), (w
′

2, w
′

5), (w
′, w′

3) and (w′

3, w
′′

3) form X4. Since w′

3 is connected to two more nodes, it is therefore connected to both
w′

4 and w′

5.
We already know that w′

5 is connected to w′

1, w′

2 and w′

3. Let w′′

5 be the fourth node incident to w′

5. There are two
more nodes incident to w′

4, so at least one of them (let us call it w′′) is not w′′

5 . If w′′

5 is not w′

4, then edges (w′

1, w
′), (w′,

w4), (w′

1, w
′

2), (w
′

2, w
′

3), (w
′

1, w
′

4), (w
′

4, w
′′), (w′

1, w
′

5) and (w′

5, w
′′

5) form X4. So w′

5 is connected to w′

4 and we have a copy
of the gadget Link.

So if ∆ = 4, then Link can only be connected to a copy of itself. Since G is finite, then an occurrence of Link in G implies
the existence of a closed chain of copies of Link. The gadget is 3-colorable, in fact we can even have a coloring that labels
w and w′ with the same color: w, w′ and w5 red, w2 and w4 green, and w1 and w3 blue. So every time X4 appears in G,
we have a 3-colorable chain of gadgets disconnected from the rest of G that we can remove.

To prove the theorem, we show using a computer proof (available in the supplementary material) that if X3 appears
in G then one of the following is true:

• G contains a disconnected component with at most 60 nodes that can be solved separately and then removed from
G.

• G contains a clique of size 4, and therefore is not 3-colorable.
• G contains X4.
• ∆ = 4 and Link appears in G.

Since we have already shown that X3 is tractable for the Regular 3-Coloring problem, this concludes the proof. □

We summarize how our results advance the state of the art in Tables 1 and 2. Our two new NP-hard classes are
both strict subsets of two distinct NP-hard classes from the literature, while our main tractability result, in addition of
116

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

g
o

4

c
r
t

s
g
a
t
k
i
o
i
i

f
s
t

4

g

Table 1
Previously known complexity results for graph coloring.

Class Complexity Reference

KR1 Regular graphs NP-hard [8,14,19]
KR2 Triangle-free graphs NP-hard [18]
KR3 Crab-free graphs (Fig. 3) NP-hard [13]
KR4 X4-free graphs (Fig. 5) NP-hard [13]
KR5 Regular X2-free graphs (Fig. 5) Tractable [13]

Table 2
Our new complexity results for graph coloring.
Class Complexity Type of result

Regular NP-hard Smaller NP-hard class
Triangle-free graphs (Theorem 1) than both KR1 and KR2.

Regular NP-hard Smaller NP-hard class
Crab-free graphs (Theorem 2) than both KR1 and KR2.

Larger tractable class than KR5.
Regular Tractable in the complexity frontier between
X4-free graphs (Theorem 3) the smaller tractable KR5

and the larger NP-hard KR4.

generalizing a known tractable class, illustrates an example of an NP-Complete pattern that becomes tractable when
requiring all nodes to have the same degree.

4. Generating difficult coloring instances

In this section, we use the insight obtained from our first NP-Completeness result to provide four related ways to create
raph coloring instances that are hard to solve. All our generators are fully parameterizable with regard to the numbers
f nodes, edges, and colors.

.1. Previous generators

Other attempts have been made in the past to create difficult Coloring instances. The problem was used to help in
omputing derivative matrices [15]. The authors comment that some of the graphs obtained during the process form
elatively hard coloring instances. However, because their structure is so closely linked to the matrices, it is not possible
o finely tune parameters like number of nodes and number of edges, unlike with our own generators.

Hard Coloring instances have also been built by combining minimal unsolvable graphs [22]. When using the same
olvers that we use in our experiments, their instances are actually more difficult to solve than ours, but because their
enerator relies heavily on a small number of gadgets, it suffers from three major drawbacks compared to ours. First,
ll of the unsolvable graphs are composed of a fixed number of edges, with each one containing between 1.70 and 1.85
imes as many edges as nodes, so the number of edges in the instances that they obtain cannot be parameterized. Second,
nowledge of their algorithm, and in particular of the list of seven unsolvable patterns, can be exploited to make their
nstances easy to solve, for example by looking for occurrences of these gadgets in the instance. In comparison, because
f Theorem 1, knowing that our algorithms rely on regular and/or triangle-free graphs cannot help much in solving the
nstances that they create. Third, their focus is entirely on the 3-Coloring problem, while our instances can be given as
nput of a k-Coloring problem for any number of colors.

Avoiding three-edge patterns to find difficult Coloring instances has been tried before [26], although once again only
or the k = 3 case. Instead of triangles, the author aims to eliminate paths of length 3. Note that 3-Coloring is in P when
uch paths are forbidden [13], so there exists an algorithm that can solve these instances in polynomial time. This is not
he case for our instances (unless P=NP), because our generators are based on an NP-Completeness class.

.2. Our generators

One of our goals when designing our generators was to make them parameterizable, meaning that they could create
raphs of any size (number of nodes n) and density (number of edges m), and not just graphs that follow some specific

structure. To this end, we followed principles adopted by Satisfiability (SAT) generators that have achieved this goal. For
example, Balanced SAT [25] can output Conjunctive Normal Form (CNF) instances for any desired combination of values
for the number of variables, number of clauses, and arity.

Balanced SAT manages to generate difficult CNF instances, but not all Balanced SAT instances are hard to solve. For a
fixed number of variables, increasing the number of clauses leads eventually to a sharp transition from a phase where

most instances are satisfiable and solving them is easy to a phase where most instances are so over-constrained that

117

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

t
B
o
i

o
a
n
(
b

s
h
i
o
S

d
e
d

t
t
d

d
r
t
a

b
h
a
h

n
I
i
h
a

L
T

P
s
c

e
o
s
e

l
a
o
i
b
a

proving unsatisfiability is easy. Additionally, instances around the threshold are often found very hard to solve. This phase
transition behavior is common to all decision problems [3], including SAT [21] and the k-Coloring problem [7].

The Balanced SAT algorithm has been subsequently modified, resulting in No-Triangle CNF, a CNF instance generator
hat can provide difficult CNF instances for parameter values corresponding to trivially under- or over-constrained
alanced SAT instances [11]. Note that neither of these two generators can be considered intrinsically better than the
ther, because the hardest instances built by each are comparable in terms of difficulty, they are instead complementary
n terms of the constrainedness regions that they cover.

When deciding on which variable to add to a clause, Balanced SAT follows one main heuristic: balancing the number
f occurrences of each variable. The most intuitive graph equivalent would be to balance the degree of the nodes when
dding an edge. No-Triangle CNF follows the same heuristic as Balanced SAT, as well as a second one: minimizing the
umber of constraint triangles introduced in the CNF instance. This corresponds to minimizing the number of triangles
cliques of size 3) introduced in the graph being generated. Depending on which heuristic is used and, in the case where
oth are, on the order that they are applied, we obtain four different graph generators.
For a given number of nodes n and a given number of edges m, all four generators build a k-Coloring instance by

tarting from a graph with n nodes and no edges, then adding m edges one by one following one or both of the two
euristics. These heuristics aim to get as close as possible to their respective associated property, but the resulting graph
s not guaranteed to always be regular and/or triangle-free. For example, depending on the divisibility of the number
f edges by the number of nodes, it might not be actually possible to attain regularity. However, as we will show in
ection 4.3, in practice the most difficult instances either do reach these ideals or end up close.
We call RegGraph the generator that picks the edge connecting the two nodes with the lowest combined sum of

egrees, with random tie-breaking. This method aims solely for regular graphs, and can be considered as the graph
quivalent of Balanced SAT. As we will show in Section 4.4, RegGraph can build difficult k-Coloring instances when the
esired number of edges is low.
We call TFGraph the generator that picks the edge that introduces the fewest triangles to the graph, with random

ie-breaking. This method aims solely for triangle-free graphs. While TFGraph instances do not appear to be as difficult
o solve on average as RegGraph ones, their phase transition occurs at a different place, and therefore TFGraph is not
ominated by RegGraph.
We call RegTFGraph the generator that picks the edge connecting the two nodes with the lowest combined sum of

egrees, with ties broken by minimizing the number of triangles introduced to the graph. This method aims first for
egular graphs, and second for triangle-free graphs. It can be considered as the graph equivalent of No-Triangle CNF. As
he experiments will show, the locations of hard RegGraph and RegTFGraph instances coincide for k = 3, but drift further
nd further apart as the number of colors increases, making the two generators complementary.
We call TFRegGraph the generator that picks the edge that introduces the fewest triangles to the graph, with ties

roken by prioritizing pairs of nodes with lowest combined sum of degrees. This method switches the order of RegTFGraph
euristics, aiming first for triangle-free graphs, and second for regular graphs. This generator behaves in a similar way
s RegTFGraph, except when using one particular solver, in which case TFRegGraph instances appear to be consistently
arder to solve than RegTFGraph ones.
We designed our generators around our triangle-free result, but not around our Crab-free one, because counting the

umber of triangles in a graph can be done in an efficient manner, unlike counting the number of occurrences of Crab.
ndeed, the former can be naively done in n3, and in Lemma 2 we show that when exploiting the natural symmetry found
n triangles, counting them only affects the total runtime of the algorithm by a multiplicative factor of n. On the other
and, the pattern Crab contains 13 vertices, so keeping track of how many times it appears is not feasible in practice in
generator of even moderately sized instances.

emma 2. RegGraph can build a coloring instance with n nodes and m edges in O(m × n2) time. TFGraph, RegTFGraph and
FRegGraph can all build a coloring instance with n nodes and m edges in O(m × n3) time.

roof. For each generator, the data structure used to store the graph is a two-dimensional boolean array g with n2 cells,
uch that g[i, j] ⇔ edge (vi, vj) is in the graph. This allows us to add an edge, or to check that two given nodes are
onnected, in O(1) time, and to list all neighbors of a given node in O(n).
Depending on the generator, we also have up to two additional integer arrays ScReg and ScTF that store the score of

ach graph element for the desired metric. For regularity, the score ScReg[i] of node vi is its degree. The regularity score
f an edge (vi, vj) can then be computed in O(1) time by simply summing ScReg[i] and ScReg[j]. For triangle-freeness, the
core ScTF [i, j] of edge (vi, vj) is the number of triangles that would be completed if (vi, vj) was added to the graph, or
quivalently the number of nodes in the graph that are already connected to both vi and vj.
The time complexity of building an instance is the number of edges m times the time complexity of adding an edge. The

atter is in turn the time complexity of looking for the empty edge (vi, vj) with the best score (O(n2) by iterating through
ll n2 edges) times the time complexity of updating the scores. For RegGraph, this is done by incrementing the degrees
f vi and vj in ScReg by 1, giving a total runtime of O(m × n2) for this generator. For the other three algorithms, we can
ncrement ScTF [i, k] (respectively ScTF [k, j]) by 1 for all k such that vk is connected to vj (respectively vi). As mentioned
efore, listing all nodes incident to an edge can be done in O(n), so the total time complexity of the three generators that

3
re concerned with triangle-freeness is O(m × n). □

118

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

4

g
f
t

o
b
t
a
g
b

Table 3
Difference between the highest and lowest degrees at the peak of difficulty (m edges) for instances with n nodes when
solved by Color6.
Colors Instances Difference

n Generator m Minimum Median Maximum

RegGraph 580 1 1 1

225 TFGraph 530 9 11 14
RegTFGraph 590 1 1 1
TFRegGraph 590 1 1 1

RegGraph 650 1 1 1

3 250 TFGraph 600 9 11 14
RegTFGraph 650 1 1 1
TFRegGraph 650 1 1 1

RegGraph 710 1 1 1

275 TFGraph 660 9 12 14
RegTFGraph 720 1 1 1
TFRegGraph 720 1 1 1

RegGraph 580 1 1 1

130 TFGraph 610 10 12 15
RegTFGraph 620 1 1 1
TFRegGraph 620 1 1 1

RegGraph 670 1 1 1

4 150 TFGraph 700 11 13 17
RegTFGraph 710 1 1 1
TFRegGraph 710 1 1 1

RegGraph 770 1 1 1

170 TFGraph 790 10 13 17
RegTFGraph 800 1 1 1
TFRegGraph 810 1 1 1

RegGraph 580 1 1 1

90 TFGraph 780 6 8 10
RegTFGraph 710 1 1 1
TFRegGraph 750 3 4 6

RegGraph 650 0 0 2

5 100 TFGraph 810 6 8 11
RegTFGraph 770 1 1 1
TFRegGraph 790 1 1 2

RegGraph 720 1 1 1

110 TFGraph 850 7 10 14
RegTFGraph 830 1 1 1
TFRegGraph 850 1 1 1

The last three generators aim to create difficult instances by, as much as possible, forbidding triangles. It has been
shown that in the related Constraint Satisfaction Problem, doing the opposite, that is forbidding incomplete incompatibility
triangles instead of complete ones, leads to a tractable set of instances [5]. Both their results and ours intuitively
complement each other.

Additionally, we call RandGraph the control generator that follows no heuristic and simply adds edges randomly. The
graphs obtained by this method are generally much easier to solve than the ones from more elaborate constructions,
because their imbalance can be exploited to greatly simplify the instance, in some cases even contain small patterns that
are trivially unsolvable, like for example cliques of size k + 1.

.3. Efficiency of the heuristics

While our generators seek to balance the degree of the nodes and/or minimize the number of triangles, they are not
uaranteed to return graphs that are exactly regular and triangle-free. To gauge how close they are of this ideal, we present
or instances at each peak of difficulty the difference between the highest and lowest degrees of their nodes (Table 3) and
heir number of triangles (Table 4).

A regular graph has a difference of 0 between the highest and lowest degree. If the number of edges is not a multiple
f half the number of variables, then the smallest possible difference becomes 1. As shown in Table 3, this is achieved
y hard instances created by RegGraph and RegTFGraph, the two generators that prioritize regularity. For the most part,
his minimal difference is also reached by difficult instances created by TFRegGraph, even though this generator favors
voiding triangles over balancing the degree of the nodes. For comparison purposes, we included data for TFGraph, the
enerator without a regularity heuristic. It shows that when not trying to balance degrees at all, there is a wide difference
etween the degrees of the most and least connected nodes.
119

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

a
e

w

Table 4
Number of triangles at the peak of difficulty (m edges) for instances with n nodes when solved by Color6.
Colors Instances #triangles

n Generator m Minimum Median Maximum

RegGraph 580 5 11 20

225 TFGraph 530 0 0 0
RegTFGraph 590 0 0 1
TFRegGraph 590 0 0 0

RegGraph 650 4 13 20

3 250 TFGraph 600 0 0 0
RegTFGraph 650 0 0 1
TFRegGraph 650 0 0 0

RegGraph 710 2 12 19

275 TFGraph 660 0 0 0
RegTFGraph 720 0 0 1
TFRegGraph 720 0 0 0

RegGraph 580 65 82 104

130 TFGraph 610 0 0 0
RegTFGraph 620 0 2 5
TFRegGraph 620 0 0 0

RegGraph 670 72 82 107

4 150 TFGraph 700 0 0 0
RegTFGraph 710 0 2 4
TFRegGraph 710 0 0 0

RegGraph 770 69 88 105

170 TFGraph 790 0 0 0
RegTFGraph 800 0 1 4
TFRegGraph 810 0 0 0

RegGraph 580 251 284 320

90 TFGraph 780 0 0 16
RegTFGraph 710 17 29 38
TFRegGraph 750 0 0 5

RegGraph 650 262 295 325

5 100 TFGraph 810 0 0 0
RegTFGraph 770 11 23 33
TFRegGraph 790 0 0 0

RegGraph 720 264 304 330

110 TFGraph 850 0 0 0
RegTFGraph 830 10 18 27
TFRegGraph 850 0 0 0

Table 4 shows that the second heuristic used by our generators, minimizing the number of triangles, is just as
successful. Hard instances created by our two generators that specifically seek to avoid triangles, TFGraph and TFRegGraph,
have a median number of triangles of 0 for all configurations. In fact, for eight out of nine configurations (the exception
being small 5-Coloring instances), not a single TFGraph or TFRegGraph instance at the peak of difficulty has even one
triangle.

Even when avoiding triangles is second to aiming for regularity, as in our RegTFGraph algorithm, the number of
triangles in difficult instances is still close to none for 3- and 4-Coloring. A few triangles do appear in 5-Coloring
RegTFGraph instances, but they become rarer as the size increases, even though more edges are added.

We again included the generator that does not follow the relevant heuristic, this time RegGraph, for reference.
Unsurprisingly, hard RegGraph instances contain many more triangles than hard instances from our other generators. It
is interesting to note that the number of triangles in 3-Coloring RegGraph instances is relatively low, and increases with
the number of colors. This would seem to indicate that 3-Coloring RegGraph instances are still similar in some aspects to
3-Coloring instances built by the other algorithms, but become more distinct when the number of colors is increased.

4.4. Comparison of the generators

To study the relative difficulty of instances produced by the generators presented in Section 4.2, we used each of them
to create k-Coloring instances for three different numbers of colors: 3, 4 and 5. To generate RandGraph instances, which
re equivalent to random graphs, we used the Erdős–Rényi model [10], which assigns to each graph with n nodes and m
dges the same probability of being selected.
For k = 3, we generated instances with 225, 250 and 275 nodes. For each number of nodes n, we generated instances

ith m edges, with m varying from 2n to 4n with an increment of 10. For k = 4, we generated instances with 130, 150
120

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

a
t

i

Fig. 8. Comparison of the median runtimes for 3-Coloring instances with 225 nodes, 4-Coloring instances with 170 nodes and 5-Coloring instances
with 90 nodes.

and 170 nodes, with the number of edges varying from 3n to 8n, with the same increment of 10. For k = 5, the numbers
of nodes are 90, 100 and 110, and the number of edges varies from 5n to 12n, again with an increment of 10. In the
graph coloring problem, the number of edges of an instance with a fixed number of nodes represents its constrainedness.
Adding edges decreases the number of solutions (or at least cannot increase it), and removing edges increases it (or at
least cannot decrease it). For each combination of the number of colors and the number of nodes, the range of values for
the number of edges was chosen so that it captures the phase transitions for all five generators.

For each combination of k, n and m appearing in our experiments, we generated 250 instances, 50 for each method.
To solve the instances, we used the Color6 [27] and Smallk [7] coloring solvers, the GNU Linear Programming Kit (GLPK)
5.0 [20] and CPLEX 22.1 [16] linear programming solvers, as well as the Gecode [24] constraint solver. For this last one,
we converted the coloring instances to the standard Minizinc [23] constraint model. Because of the high difficulty of our
instances, and the prohibitively long runtimes this leads to, not all five solvers were able to be run on all instance sizes.
GLPK, CPLEX and Gecode, probably because they are general-purpose solvers and not specialized coloring ones, could only
solve the smallest sizes for each number of colors. CPLEX performed the best of these three, followed by Gecode. Smallk
managed to solve higher sizes, but was still unable to solve the largest size (n = 110, 170 and 275) for each color. Color6
turned out to be the best performing of the five and was run on all instances. Apart from performance, the results were
similar for all solvers (with one minor exception concerning Smallk and two of the generators, that we precise below),
both in terms of relative difficulty of the generator outputs, and in terms of the locations of the different peaks of difficulty.
For this reason, we only show the results for the best performing solver, Color6.

Experiments were done on a Dell PowerEdge R410 with an Intel Xeon E5620 processor. We present the median
runtimes for small instances in Fig. 8, for medium instance in Fig. 9, and for large instances in Fig. 10. All plots in Figs. 8,
9 and 10 have the ratio m

n range from 2 to 12. This allows us to examine how the locations of the peaks of difficulty move
s the number of colors increases. We can see that for all generation methods, hard instances are more constrained when
here are more colors.

The results show that by combining the two generators RegGraph and TFRegGraph we can obtain difficult coloring
nstances for a large and diverse (in terms of constrainedness) set of graphs:

• RegGraph generates difficult instances when the number of edges is relatively low.
• TFRegGraph generates difficult instances with more edges than the difficult RegGraph instances. For k=3, difficult

instances built by these two algorithms have about the same constrainedness, although TFRegGraph ones are slightly
harder to solve, especially in the over-constrained region.

• The behavior of RegTFGraph is close to TFRegGraph, and one could almost substitute the former for the latter.
However, one particular solver (Smallk) struggles more with TFRegGraph instances than with RegTFGraph ones. Also,
TFRegGraph is slightly better at finding difficult instances for highly constrained regions of the 5-Coloring problem.

• For most constrainedness values, there is always at least one generator that creates instances that are more difficult
to solve than TFGraph ones. There are some exceptions (see 5-Coloring instances with high constrainedness) but
even they are fairly easy to solve anyway.
121

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

a
s
c

R
g
t

Fig. 9. Comparison of the median runtimes for 3-Coloring instances with 250 nodes, 4-Coloring instances with 150 nodes and 5-Coloring instances
with 100 nodes.

Fig. 10. Comparison of the median runtimes for 3-Coloring instances with 275 nodes, 4-Coloring instances with 130 nodes and 5-Coloring instances
with 110 nodes.

4.5. Coverage of the constrainedness map

For the combination of RegGraph and TFRegGrap to generate difficult instances for as many constrainedness values
s possible, the phase transitions of the two generators need to occur at clearly distinct places. Indeed, the hardest to
olve instances can be found around the phase transition [3,7], so phase transitions in different locations allow for the
onstruction of difficult instances in different regions of the constrainedness map.
We present in Fig. 11 the relative positions of the phase transitions of RegGraph and TFRegGraph, as well as of

andGraph for perspective, for all graph sizes and number of colors. The X axis represents the average degree of the
raphs, which is directly correlated to the constrainedness, because it is equal to twice the number of edges divided by
he number of nodes. The Y axis represents the number of satisfiable instances, out of 50 generated for each configuration.
122

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

F
n

Fig. 11. Locations of the phase transitions for k colors.

igs. 11(b) and 11(c) uses the same legend as Fig. 11(a), where ‘‘small’’ means the smallest of the three sizes for each

umber of colors, ‘‘large’’ means the largest of the three sizes, and ‘‘medium’’ means the size in-between.

123

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125

d
t
c

p
i

5

r
f

Note that the location of a phase transition is solver independent, because it is defined by satisfiability and not by
ifficulty. While the phase transitions occur at a higher average degree when increasing the number of allowed colors,
he results show empirically that for a fixed generator and number of colors the phase transitions are found at the same
onstrainedness value, even when the sizes of the graphs change.
For k = 3, the phase transitions of RegGraph and TFRegGraph coincide, but when more colors are allowed they

rogressively drift apart. This means that no matter which solver is used, for k > 3 TFRegGraph can generate difficult
nstances for numbers of edges where RegGraph cannot (and vice versa).

. Conclusion

We have determined the complexity of several hybrid graph coloring classes based on forbidden patterns and
egularity. These results help to narrow down the possible location of the border between tractability and NP-hardness
or regular pattern-free coloring. This separation can be found somewhere between X4, which is tractable, and Crab, which
is NP-Complete. Future work could thus focus on studying the complexity of the remaining patterns in the gap, the three
graphs that strictly contain X4 and are strict subgraphs of Crab.

We also have introduced a reliable method to produce difficult Coloring instances, based on preserving regularity and
triangle-freeness in graphs. Our algorithms can build k-Coloring instances with n nodes and m edges for any combination
of k, n and m. Our claim that they are able to create difficult instances has been backed with extensive empirical
experiments.

Acknowledgments

This material is based upon works supported by the Science Foundation Ireland under Grant No. 12/RC/2289-P2 which
is co-funded under the European Regional Development Fund. For the purpose of Open Access, the authors have applied
a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.dam.2022.06.034.

References

[1] Preston Briggs, Keith D. Cooper, Linda Torczon, Improvements to graph coloring register allocation, ACM Trans. Program. Lang. Syst. 16 (3)
(1994) 428–455.

[2] Clément Carbonnel, David A. Cohen, Martin C. Cooper, Stanislav Zivný, On singleton arc consistency for CSPs defined by monotone patterns,
Algorithmica 81 (4) (2019) 1699–1727.

[3] Peter C. Cheeseman, Bob Kanefsky, William M. Taylor, Where the really hard problems are, in: John Mylopoulos, Raymond Reiter (Eds.),
Proceedings of the 12th International Joint Conference on Artificial Intelligence. Sydney, Australia, August 24-30, 1991, Morgan Kaufmann,
1991, pp. 331–340.

[4] Martin C. Cooper, Guillaume Escamocher, Characterising the complexity of constraint satisfaction problems defined by 2-constraint forbidden
patterns, Discrete Appl. Math. 184 (2015) 89–113.

[5] Martin C. Cooper, Stanislav Zivny, Tractable triangles, in: Jimmy Ho-Man Lee (Ed.), Principles and Practice of Constraint Programming - CP
2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, in: Lecture Notes in Computer Science, vol.
6876, Springer, 2011, pp. 195–209.

[6] Martin C. Cooper, Stanislav Zivný, The power of arc consistency for CSPs defined by partially-ordered forbidden patterns, Log. Methods Comput.
Sci. 13 (4) (2017).

[7] Joseph C. Culberson, Ian P. Gent, Frozen development in graph coloring, Theoret. Comput. Sci. 265 (1–2) (2001) 227–264.
[8] David P. Dailey, Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete, Discret. Math. 30 (3) (1980) 289–293.
[9] Andreas Eisenblätter, Martin Grötschel, Arie M.C.A. Koster, Frequency planning and ramifications of coloring, Discuss. Math. Graph Theory 22

(1) (2002) 51–88.
[10] Paul Erdős, Alfréd Rényi, On random graphs I. Math, Debrecen 6 (1959) 290–297.
[11] Guillaume Escamocher, Barry O’Sullivan, Steven David Prestwich, Generating difficult CNF instances in Unexplored Constrainedness Regions,

ACM J. Exp. Algorithmics 25 (1) (2020).
[12] Petr A. Golovach, Matthew Johnson, Daniël Paulusma, Jian Song, A survey on the computational complexity of coloring graphs with forbidden

subgraphs, J. Graph Theory 84 (4) (2017) 331–363.
[13] Petr A. Golovach, Daniël Paulusma, Bernard Ries, Coloring graphs characterized by a forbidden subgraph, Discrete Appl. Math. 180 (2015)

101–110.
[14] Ian Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (4) (1981) 718–720.
[15] Shahadat Hossain, Trond Steihaug, Graph coloring in the estimation of sparse derivative matrices: Instances and applications, Discrete Appl.

Math. 156 (2) (2008) 280–288.
[16] IBM, CPLEX optimizer, 2022, https://www.ibm.com/analytics/cplex-optimizer.
[17] Richard M. Karp, Reducibility among combinatorial problems, in: Raymond E. Miller, James W. Thatcher (Eds.), Proceedings of a Symposium on

the Complexity of Computer Computations, Held March 20-22, 1972, At the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, USA, in: The IBM Research Symposia Series, Plenum Press, New York, 1972, pp. 85–103.

[18] Daniel Král, Jan Kratochvíl, Zsolt Tuza, Gerhard J. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, in: Andreas
Brandstädt, Van Bang Le (Eds.), Graph-Theoretic Concepts in Computer Science, 27th International Workshop, WG 2001, Boltenhagen, Germany,
June 14-16, 2001, Proceedings, in: Lecture Notes in Computer Science, vol. 2204, Springer, 2001, pp. 254–262.
[19] Daniel Leven, Zvi Galil, NP completeness of finding the chromatic index of regular graphs, J. Algorithms 4 (1) (1983) 35–44.

124

https://doi.org/10.1016/j.dam.2022.06.034
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb1
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb1
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb1
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb2
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb2
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb2
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb3
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb3
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb3
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb3
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb3
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb4
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb4
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb4
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb5
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb5
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb5
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb5
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb5
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb6
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb6
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb6
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb7
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb8
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb9
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb9
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb9
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb10
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb11
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb11
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb11
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb12
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb12
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb12
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb13
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb13
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb13
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb14
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb15
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb15
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb15
https://www.ibm.com/analytics/cplex-optimizer
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb17
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb17
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb17
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb17
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb17
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb18
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb18
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb18
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb18
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb18
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb19

G. Escamocher and B. O’Sullivan Discrete Applied Mathematics 321 (2022) 109–125
[20] Andrew Makhorin, GNU linear programming kit, 2022, https://www.gnu.org/software/glpk/.
[21] David G. Mitchell, Bart Selman, Hector J. Levesque, Hard and easy distributions of SAT problems, in: William R. Swartout (Ed.), Proceedings of

the 10th National Conference on Artificial Intelligence, San Jose, CA, USA, July 12-16, 1992, AAAI Press / The MIT Press, 1992, pp. 459–465.
[22] Kazunori Mizuno, Seiichi Nishihara, Constructive generation of very hard 3-colorability instances, Discrete Appl. Math. 156 (2) (2008) 218–229.
[23] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, Guido Tack, Minizinc: Towards a standard CP modelling

language, in: Christian Bessiere (Ed.), Principles and Practice of Constraint Programming - CP 2007, 13th International Conference, CP 2007,
Providence, RI, USA, September 23-27, 2007, Proceedings, in: Lecture Notes in Computer Science, vol. 4741, Springer, 2007, pp. 529–543.

[24] Christian Schulte, Guido Tack, View-based propagator derivation, Constraints Int. J. 18 (1) (2013) 75–107.
[25] Ivor Spence, Balanced random SAT benchmarks, in: Tomáš Balyo, Marijn Heule, Matti Järvisalo (Eds.), Proc. of SAT Competition 2017 –

Solver and Benchmark Descriptions, in: Department of Computer Science Series of Publications B, vol. B-2017-1, University of Helsinki, 2017,
pp. 53–54.

[26] Romulus Dan Vlasie, Systematic generation of very hard cases for graph 3-colorability, in: Seventh International Conference on Tools with
Artificial Intelligence, ICTAI ’95, Herndon, VA, USA, November 5-8, 1995, IEEE Computer Society, 1995, pp. 114–119.

[27] Zhaoyang Zhou, Chu Min Li, Chong Huang, Ruchu Xu, An exact algorithm with learning for the graph coloring problem, Comput. Oper. Res. 51
(2014) 282–301.
125

https://www.gnu.org/software/glpk/
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb21
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb21
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb21
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb22
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb23
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb23
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb23
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb23
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb23
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb24
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb25
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb25
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb25
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb25
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb25
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb26
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb26
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb26
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb27
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb27
http://refhub.elsevier.com/S0166-218X(22)00227-X/sb27

	Regular pattern-free coloring
	Introduction
	Definitions
	Theoretical complexity
	NP-hardness results
	Tractable classes

	Generating difficult coloring instances
	Previous generators
	Our generators
	Efficiency of the heuristics
	Comparison of the generators
	Coverage of the constrainedness map

	Conclusion
	Acknowledgments
	Appendix A. Supplementary data
	References

