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 Abstract 

 This thesis explores a new method to fabricate SERS detection platforms formed by 

large area self-assembled Au nanorod arrays. For the fabrication of these new SERS 

platforms a new droplet deposition method for the self-assembly of Au nanorods was 

developed. The method, based in the controlled evaporation of organic suspensions of Au 

nanorods, was used for the fabrication of horizontal and vertical arrays of Au nanorods over 

large areas (100µm
2
). The fabricated nanorods arrays showed a high degree of order 

measured by SEM and optical microscopy over mm
2
 areas, but unfortunately they detached 

from the support when immersed in any analyte solutions. In order to improve adhesion of 

arrays to the support and clean off residual organic matter, we introduced an additional 

stamping process. The stamping process allows the immobilization of the arrays on different 

flexible and rigid substrates, whose feasibility as SERS platforms were tested satisfactory 

with the model molecule 4ABT. Following the feasibility study, the substrates were used for 

the detection of the food contaminant Crystal Violet and the drug analogue Benzocaine as 

examples of recognition of health menaces in real field applications. 
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Chapter 1 

Self-Assembly and Optical Applications of 

Au Nanostructures  

 

 In this initial chapter a brief introduction to the optoelectronic properties of Au 

nanostructures is given with special attention to nanorod shaped structures. Different 

methods for the synthesis of nanostructures and their assembly in ordered arrays are also 

discussed. Finally, current applications of Au nanorods ordered arrays are presented with 

special emphasis on sensing based on Surface Enhanced Raman Scattering.        
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1.1 Opto-electronic properties of nanostructures 
 The intriguing properties of metal nanostructures, reflected by their intense colour, are 

attributed to their unique interaction with incident light. Noble metal nanostructures are able 

to selectively absorb frequencies (in the visible and near IR region) of incident 

electromagnetic radiation and convert the energy into a coherent oscillation of their 

conduction electrons, which is called Localised Surface Plasmon Resonance (LSPR). As 

shown in Figure 1a, this oscillation induces a charge separation between the free electrons 

and the ionic metal core, which in turn exert a restoring Coulomb force to make the electrons 

oscillate back and forth on the particle surface, resulting in a dipole oscillation. The LSPR 

oscillation induces a strong absorption of light, as seen in the UV-vis spectrum of Figure 1b, 

which is the origin for the observed colour of noble metal colloidal suspensions.  

 

Figure 1 a) Schematic of the plasmonic electron oscillations and b) UV-vis absorbance spectra of 

gold nanoparticles.  

 In the case of Au nanorods electron oscillations can occur in two directions, 

depending on the polarisation of the incident light: the short and long axes of the rod. Figure 

2 shows that the excitation of the surface plasmon oscillation along the short axis induces an 

absorption band in the visible region at wavelengths close to 521 nm, referred to as transverse 

band. The excitation of the surface plasmon oscillation along the long axis induces a stronger 

absorption band in the near – infrared (NIR) region of the spectrum, referred to as the 

longitudinal band. While the transverse band is mainly insensitive to the size of the nanorods, 

the longitudinal band is red-shifted largely from the visible to the NIR with increasing aspect 

ratios of the Au nanorods. The position of this band is also extremely sensitive to changes in 

shape, size, composition, refractive index and local dielectric environment of the medium
[1, 2]

.   
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Figure 2 UV-vis absorbance spectrum of Au nanorod aqueous suspensions and schematic of the 

plasmonic electron oscillations.  

1.1.1 Electromagnetic origin of the plasmons  

 The interaction of light with a nanoparticle and its response can be calculated by 

solving Maxwell’s equations. In 1908 Gustav Mie found an analytical solution for spherical 

particles of arbitrary size
[3, 4]

 When enounced, the theory was meant to explain the different 

colours present in the Au colloidal suspensions. The results obtained by Mie were compiled 

into a theory explaining how visible light frequencies were selectively absorbed by colloidal 

particles as a function of the particle size, material and surrounding environment. 

 Assuming particles much smaller than the wavelength of light allows the application 

of the dipole approximation that excludes higher polar plasmon modes that appear in larger 

particles. This approximation leads to simplified expressions for the extinction and scattering 

cross section (eq 1-3)  

𝝈𝒆𝒙𝒕 =
𝟏𝟖𝝅𝜺𝒎

𝟑 𝟐⁄
𝑽

𝝀

𝜺𝟐(𝝀)

[𝜺𝟏(𝝀 )+𝟐𝜺𝒎]𝟐+𝜺𝟐(𝝀)𝟐
                                     (eq1) 

𝝈𝒔𝒄𝒂 =
𝟐𝟒𝝅𝟑𝜺𝒎

𝟐 𝑽𝟐

𝝀𝟒

(𝜺𝟏(𝝀)−𝜺𝒎)𝟐+𝜺𝟐(𝝀)𝟐

[𝜺𝟏(𝝀)+𝟐𝜺𝒎]𝟐+𝜺𝟐(𝝀)𝟐
                                 (eq 2) 

𝝈𝒂𝒃𝒔 = 𝝈𝒆𝒙𝒕 − 𝝈𝒔𝒄𝒂                                    (eq 3) 

where λ is the incident wavelength, εm is the dielectric constant of the medium where 

particles are embedded, 1 and 2  are the dielectric functions of the metal and V is the volume 

of the spherical particles. It has to be noted that σsca is proportional to V
2
, while σext is 

proportional to V. As a result small particles will mainly absorb light, while larger particles 

will mainly scatter light.  
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 The dielectric functions of a metal 1 and 2  are related to the refractive index n and to 

the absorption coefficient κ of the metal by the following equations (eq 4-6).  

ε(λ) = ε1(λ) + iε2(λ)                                                        (eq 4) 

ε1 = n
2
 – κ

2                                                       (eq 5)           

 ε2 = 2nκ                                                           (eq 6) 

 The values of 1 and 2 determine respectively the resonance wavelength of the 

nanostructure and the damping coefficient that determines the width of the plasmon band. For 

metallic materials working under large frequency ranges (wavelengths up to near IR) the 

imaginary term ε2 of the dielectric constant is negligible compared to its real counterpart ε1. 

Simplification that applied to eq3 and eq4, the value of 𝝈 when 

ε1(ω) = -2εm                                                              (eq 7) 

 The expression of eq 7 allows the calculus of the resonance frequency ω that 

maximize the cross section of a small noble metal sphere, and therefore match the maxima of 

its plasmon band. Expressions of eq 5 and eq 6 implies that changes in the refractive index of 

a metal will changes its dielectric constant and therefore the resonant frequency obtained in 

eq 7. This dependence is used to detect changes in the refractive index of a noble metal 

nanoparticle through the position of its plasmon band. 

 Following the Mie’s theory, in 1912 Gans
[5]

 predicted that the LSP of small ellipsoid 

particles (where the dipole approximation still holds) would split in two distinct modes. A 

transversal mode with a small scattering cross section associated to the dipole oscillations of 

the conduction electron following the transversal axe of the ellipsoid, and a longitudinal 

mode with a very high scattering cross section associated to the dipole oscillations following 

the longitudinal axis of the ellipsoid. Applying again the dipole approximation for particles 

much smaller than the wavelength of light the equivalent equations to eq 1 and to eq 2 for 

ellipsoids are: 

𝜎𝑒𝑥𝑡 =
2𝜋𝜀𝑚

3 2⁄
𝑉

3𝜆
∑

(
1

𝑃𝑗
2)𝜀2(𝜆)

[𝜀1(𝜆)+(
1

𝑃𝑗
−1)𝜀𝑚]

2

+𝜀2(𝜆)2

𝐶
𝑗=𝐴                (eq 8) 
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𝜎𝑠𝑐𝑎 =
8𝜋3𝜀𝑚

2 𝑉2

9𝜆4
∑

(
1

𝑃𝑗
2)(𝜀1(𝜆)−𝜀𝑚)2+𝜀2(𝜆)2

[𝜀1(𝜆)+(
1

𝑃𝑗
−1)𝜀𝑚]

2

+𝜀2(𝜆)2

𝐶
𝑗=𝐴        (eq 9) 

The depolarisation factors Pj along the main axes of the ellipsoid are defined by: 

𝑃𝐴 =
1−𝑒2

𝑒2 [
1

2𝑒
ln (

1+𝑒

1−𝑒
) − 1]          (eq 10) 

𝑃𝐵 = 𝑃𝐶 =
1−𝑃𝐴

2
      (eq 11) 

with the eccentricity calculated from the length and diameter of the ellipsoid 𝑒 = (
𝐿2−𝑑2

𝐿2 )

1

2
 . 

In case of a spherical particle the eccentricity is zero and the polarisation factors for all axes 

become 1/3, which leads back from eq 8 and eq 9  to eq 1 and eq 2.  

 

Figure 3 a) Comparison of the experimental and theoretical position of the longitudinal band of Au 

nanorods of different aspect ratio dispersed in water. b) Absorbance spectra of Au nanorods 

dispersed in solvents of different refractive index. Adapted from Mulvaney and co-workers
[6]

   

 Gans theory predicted also a quantified response that would allow the tunability of the 

absorption spectrum through changes in the aspect ratio of the ellipsoids. According to the 

theory, experimental data shows that the LSP absorption maximum (max) for Au nanorods is 

linearly proportional to their aspect ratio (Figure 3a).  According to the theory, the LSP band 

is also sensitive to the dielectric constant of the surrounding medium. This sensitivity, 

defined as the shift in LSP wavelength relative to the refractive index change of the 

surrounding medium, increases also linearly with the increasing aspect ratio. Figure 3b 

reports an experimental example of red shift occurring in Au nanorods (A.R = 3) when 

dispersed in increasing refractive index media.  
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1.2. Synthesis and post-synthesis modifications of Au 

nanorods 

1. The three main methods used to synthesize Au nanorods are template methods, 

electrochemical methods and seed-mediated methods, and they will be discussed in details 

below. 

 The template method is a dry chemistry route, where neither solvents nor surfactants 

are used for the synthesis and therefore Au nanorods surfaces present no other molecules, but 

gold. The method was developed by Martin and co-workers
[7]

, who used nanoporus 

polycarbonate and alumina membranes as templates for the electrochemical growth of Au 

rods (Figure 4a). The method requires that a small amount of Ag or Cu sputtered at the back 

on the porous template to provide a conductive film (Figure 4b). This is then used as a 

foundation onto which the Au nanorods can be grown by electro-deposition (Figure 4c). The 

third stage is the chemical removal of the alumina (Figure 4d) and dispersion of the Au 

nanorods in aqueous or organic solvents (Figure 4e). The diameter of the Au rods 

corresponds to the diameter of the used porous template and the length is controlled by the 

electro-deposition process time.  

 

Figure 4  Schematic of the synthesis of Au nanorods by template methods
[7]

. 

Unlike the dry route used by the template method, the electrochemical and seed 

mediated methods use an aqueous chemistry route, to produce rods formed by Au
0
 metal core 

and an ionic double layer shell formed by cationic surfactants and its counter anions. The 

methods synthesize Au nanorods by reduction of Au(III) halogeno-aurates (AuBr4
-
 and 

AuCl4
-
) compounds complexed with cationic surfactant. 
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The synthesis of Au nanorods by electrochemical methods is conducted within a 

simple two electrode type cell with a sacrificial Au metal plate as anode and a platinum plate 

as cathode (Figure 5), both immersed in an electrolytic solution.  

 

Figure 5 Schematic of the synthesis of Au nanorods by electrochemical methods. Adapted from ref 
[6]

. 

The method was firstly demonstrated by Wang and co-workers
[8]

, who used a mix of 

organic surfactant (hexadecyltrymethyl-ammonium bromide CTAB and tetradodecyl-

ammonium bromide, TOAB) as both supporting electrolyte and stabiliser for the 

nanoparticles). The synthesis proceeds as follows. Firstly, the Au anode is dissolved in an 

aqueous solution containing the cation surfactants CTAB and TOAB. Oxidation of the Au 

anode in this solution leads to the formation of the complex species AuBr4
-
 - CTA

+ 
and 

AuBr4
-
 - TOA

+
 inside micelles formed due to the CTAB and TOAB long organic chains. 

Previous to electrolysis these micelles are loosed by the addition of acetone and cyclohexane 

to enhance the rod formation. Once the reduction current is passed through the electrodes, the 

AuBr4
- 

species are reduced into Au
0
 rods being not clear if nucleation of the Au

0
 clusters 

occurs on the cathode surface or within the micelles.  Afterwards, sonication is used to break 

the rods off the cathode surface, as well as to shear the nanorods that formed away from the 

surface. The method provides a synthetic route for preparing high yields of Au nanorods, but 

has poor control of shape and size of obtained structures.      
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1.2.1. Seed mediated synthesis Au nanorods 

 Among the three methods, the seed mediated synthesis of Au nanorods is the most 

used due to the high yield, low cost and flexibility to tune the dimensions of the rods through 

changes of the concentration of chemicals used in the synthesis. The seed mediated synthesis 

of Au nanorods is based on a two stages process (Figure 6). In the first stage small Au 

colloids (seeds) are synthesized through a fast redox process, in the second stage the Au seeds 

are used as nucleation points to growth the Au nanorods through a slow redox process. 

 

Figure 6 Redox mechansim of the silver free seed mediated synthesis of Au nanorods. First step, 

reduction of Au
III

 to Au
I
 . Second step, reduction and desproportion of Au

I
 to Au metal initiated by 

injection of  Au seeds. Adapted from Perez-Juste and co-workers
 [9]

 

 The first seed mediated synthesis of Au nanorods was reported in 2001 by Jan and co-

workers
[10]

. They used citrated capped Au particles as seeds and successive growth steps to 

fabricate different aspect ratio nanorod. Good yield was obtained but several nanoparticle and 

other nanostructures were also obtained as by-products.  

 In 2003 El-Sayed and co-workers
[11]

 developed a variation of the method where 

formation of by-products was avoided by the use of CTAB capped seeds and AgNO3 as 

additive in the growth solution. The method produced very uniform-sized nanorods with high 

yield (99%) and very small percentage of by-products. Although some improvements have 

been reported in recent years
[12]

, the method developed by El-Sayed is to date the most 

widely used for the synthesis of Au nanorods. The method is schematically depicted in 

Figure 7a. 
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Figure 7  a) Schematic of the two steps seed mediated synthesis of Au nanorods. b) TEM images of Au 

nanorods. c) UV-vis spectra of Au nanorods synthetized with different Ag
+
 concentrations (1 lowest to 

5 highest) inside the growth solutions. d) Position of the longitudinal plasmon band of Au nanorods 

synthetized with different Ag
+
 and HAuCl4 concentrations. c) and d) Adapted from El-Sayed and co-

workers
 [11]

. 

 In the first stage, Au seeds (< 4 nm) are generated by a quick reduction of HAuCl4 by 

NaBH4. In the second stage, seeds are used as nucleation points to grow the Au nanorods by 

slow reduction of HAuCl4 with Ascorbic Acid in the presence of Ag
I
 ions. The method 

typically produces nanorods of ca. 11x40 nm dimension, as shown in the TEM of Figure 7b. 

The synthesis also allows for a fine tuning of the aspect ratio (1.5 to 5) of the nanorods 

through control of the concentration of HAuCl4 and AgNO3 in the growth solution and 

through the volume of seeds injected (Figure 7c,d).  

 The mechanism of formation of rod-shaped nanoparticles is still unclear. Based on the 

idea that CTAB forms a bilayer on the nanorod surface, Perez-Juste and co-workers
[9]

 

proposed that the silver free growth of Au nanorod is governed by preferential adsorption of 
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CTAB to different crystal faces during the growth. Therefore they proposed a “zipping” 

mechanism taking into account the van der Waals interactions between surfactant tails within 

the surfactant bilayer might promote the formation of longer nanorods from more stable 

bilayers.  

 The mechanism by which the addition of Ag
I
 allows control of the aspect ratio of 

formed nanorods is neither totally understood. There are two theories proposed
[13]

. The first 

theory hypothesizes that the AgBr (formed in solution immediately after AgNO3 addition) is 

adsorbed over the CTAB shell of the nanorods reducing even more the growth of the facets 

where CTAB is strongly complexed. The second and most accepted theory
[14]

 suggests that 

Ag
I
 ions undergo to an under-potential deposition on the {110} crystallographic facets of the 

seeds leading to an anisotropic growth of the {111} facets (see Figure 8). 

 

Figure 8 Hypotetic  underpotential deposition  of the Ag
I
 cations in the[110] facets of the seeds  

leading to the  synthesis of Au nanoords by anisotropic growing. 

  Regarding the influence of other parameters, if an excess of ascorbic acid is added to 

the growth solution a decrease in the length and the yield of the rods synthesized is obtained. 

Finally the role of the stabilising surfactant has been further explored by Murphy and co-

workers
[15]

 who found that the length of the surfactant tail is critical for controlling the length 

of the rods and its yield, and that the bromide ion works much better than other halides as rod 

inducing agent in the presence of CnTA
+
.  
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1.2.2. Post-Synthesis modifications of seed mediated nanorods 

 We have described in details the origin and characteristics of Au nanorod longitudinal 

surface plasmon, which is highly sensitive to structural and medium/surrounding changes. 

The tunability of the longitudinal surface plasmon wavelength is a very useful property for 

biochemical sensing, biological imaging and medical diagnostic applications
[6]

. Moreover, 

synthetic control on the nanorod resonance wavelength is also highly desirable for 

engineering of nanorod and nanorod ensemble properties for sensing and photonic 

applications.  

 Once synthesised by standard seed mediated methods, the optical characteristics of 

Au nanorod solutions can be tailored by shortening their size (anisotropic oxidation) or by 

increasing the Au nanorods dimensions by overgrowth.  

 Anisotropic oxidation was pioneered by Stucky and co-workers
[16]

 and consisted into 

mixing Au nanorods with aliquots of 1 M HCl at 70-90 ºC under O2. The oxidation rate was 

controlled by the acid concentration and the reaction temperature. Wang and co-workers
 [17]

 

developed another anisotropic oxidation method using a mix of H2O2 and HCl as oxidizing 

agent, whose results are showed in Figure 9.  

 

Figure 9 a)UV-vis spectra obtained at varying stages of the oxidation process. b-d) SEM images 

obtained at different stages of the oxidation process. Adapted from Wang and co-workers
 [17]

   

 Figure 9a shows extinction spectra acquired at varying stages of Au nanorod 

oxidation. As synthesised Au nanorods exhibited two extinction peaks, but as oxidation 

proceeded, the longitudinal band shifted to the blue while the transversal band decreased in 

intensity and eventually disappeared, suggesting the conversion of nanorods into 

nanoparticles. SEM images of Figure 9b-d show the progressive size decrease of nanorods.  
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 It is also possible to increase the size of synthesised Au nanorods by different 

methods. Wang and co-workers
[18]

 induced a transversal overgrowth of Au nanorods by the 

selective binding of glutathione and cysteine thiol molecules onto the Au nanorods ends 

(Figure 10).  

 

Figure 10 Schematic of the mechanism of the overgrowth of Au nanorods by cysteine-glutathione 

binding onto the ends. 

 On the other hand Liz –Marzan and co-workers
[19]

 were able to overgrow nanorods by 

stepped additions of reducing agent ascorbic acid to a solution of nanorods. The excess 

ascorbic acid reduced the Au (I) ions left unreacted in the nanorod solution, leading to an 

amplification of the nanorods dimensions from 10x45 nm to 25x75 nm (Figure 11). 

 

Figure 11a) SEM image of Au nanorods after overgrowth process. b) UV-vis spectrum of Au 

nanorods dispersed in water after overgrowth process
[19]
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1.2.3. Surface modification and phase transfer of Au nanorods 

 Once synthesized, it is possible to tune the stability of the nanorods in different 

media
[20]

 by  encapsulation of the nanorods, chemical modifications of the shell and or 

exchanges of the stabilizing surfactants.  

 

Figure 12 Wrapping of anionic polyelectrolyte over Au nanorods and immobilization on negative 

charge surfaces. Adapted from Murphy and co-workers
 [21]

 

 Several authors have reported methods to improve the biocompatibility of the Au 

nanorods and its stability in aqueous phases. For example, Murphy and co-workers
[21]

  

reversed the ζ-potential of the Au nanorods by deposition of an anionic polyelectrolyte over 

the positively charged CTAB molecules (Figure 12). Using similar layer by layer approaches 

Niidome and co-workers
[22]

 prepared non cytotoxic nanorods by encapsulation and 

substitution of the CTAB molecules for polyethylene glycol thiol terminated ( PEG-SH) and 

Wang and co-workers
[23]

 deposited an inorganic coating based on silica compounds. 

 Au nanorods have also been modified to enable their dispersion into organic media. 

Mitamura and co-workers
[24]

  have used a three step method: binding of mercaptopropylsilane 

(MPS) to the rods, followed by hydrolysis of the bound MPS and a silane-polymerization to 

develop hydrophobic Au nanorods stable in polar organic solvents as chloroform (Figure 

13).  
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Figure 13 Phase transfer of Au nanorods from water to chloroform by binding of organosilane and 

posterior polymerization process. Adapted from Mitamura and co-workers
[24]

 

 Using a different approach Yang and co-workers
[25]

 developed a method to transfer 

the Au nanorods to a wide variety of organic solvents by exchanging the CTAB aqueous 

soluble surfactant by the TOAB  surfactant in presence of mercaptosuccinic acid (MSA). 

 

Figure 14 Schematic of the link of TOA
+
 to the Au core. Adapted from Wang

[26]
.    

 The use of TOAB as a replacement surfactant to transfer Au nanostructures into 

organic phases was furthered investigated by Wang and co-workers
[26]

. The authors found 

that negative stabilized nanoparticles form spontaneous ion pairs with the TOAB molecules 

inducing the transfer of nanoparticles to the organic solvent (Figure 14). They also found that 

the TOAB induced phase transfer process is a size dependent process, where the small 

particles are favoured over the large ones, thanks to the higher surface/volume ratio. 
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1.3. Fabrication of ordered assemblies  
 The main approaches for the fabrication of ordered nanostructure arrays can be 

broadly classified into top-down, ie. lithographic fabrication, and bottom-up, ie. self-

assembly processes. In this chapter we will focus our attention to self-assembly process, as 

such approach was used for the fabrication of ordered structures presented in this thesis. 

 The anisotropic shape confers interesting assembly characteristics to Au nanorods 

leading to a number of possible ordered superstructure configurations such as horizontal side 

by side, horizontal end by end or vertical side by side. Crystallographic differences in the 

facets of Au nanorods induce a denser packing of the CTAB molecules at the sides than at the 

ends of the nanorods, but theoretical calculations of the potential curves
[27]

 have shown that 

the side by side alignment configuration is lower in energy. According to this, the 

spontaneous assembly of Au nanorods has usually resulted in horizontal side by side 

configurations, while end by end configurations have being forced through specific 

linkers
[28]

, external forces
[29]

 or template assisted substrates
[30]

.  

 Methods explored so far for the assembly (either side by side or end by end) of 

nanorods into ordered arrays can be classified into assembly on substrates, at interfaces and 

in solutions and are schematically described in Figure 15. 

 

Figure 15 Schematic of the diverse techniques used to Self-Assembly Au nanorods. Adapted from 

review article
[31]

. 
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 Self-assembly on substrates can be spontaneous, being the process driven by simple 

droplet evaporation (discussed in detail in section 1.3.2) or directed, being the process driven 

by external forces
[29]

 or template assisted methods
[32-34]

. Directed evaporation techniques are 

generally used for the formation of horizontal end by end alignments. For example, using 

electrophoresis techniques in combination with micro-electrodes Pesacaglini and co-workers
 

[29]
 were able to self-assemble chains of Au nanorods in end to end configuration within sub-

micrometer gaps (Figure 16). Similar geometries were obtained also  by Rusell and co-

workers
[30] 

using substrates with channels formed by block co-polymers. 

 

Figure 16 a) schematic of the experimental set-up. b) micro-photograph of the electrodes used to 

align the Au nanorods. c) Scanning microscope image of the Au nanorods aligned in the gap between 

electrodes. Adapted from Pescaglini and co-workers
[29]

 

 Nanorod assemblies have also been obtained at phase interfaces, either liquid-liquid 

or air-liquid by Langmuir-Blodgett or other techniques (Figure 17). The assembly of 

nanorods on the liquid-liquid interface between two immiscible fluids is driven by the 

decrease in the interfacial energy between the two phases when nanostructures are placed 

between them. The stability of the nanostructures on the interface depends on their sizes
[31]

, 

while other factors as shapes of the particles, or hydrophobicity/hidrophilicity of the particle 

shell plays also an important role in the stability of the nanostructure at the interface.  

 

Figure 17 Schematic of the self-assembly of rod shape nanostructure though a Langmuir-Blodgett 

technique. Adapted  from Zhang and co-workers [31]
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 The assembly of nanostructures at air-liquid interfaces can be driven by the decrease 

in the interfacial energy between the liquid and the gas, by the insolubility of the 

nanostructures in the solvent or by a contribution of both factors.  

 The self-assembly on interfaces either liquid-liquid or air-liquid has been proven as a 

method able to produce compact monolayers over large macroscopic areas with exceptional 

long-range order. The method has been widely used for the self-assembly of  semiconductor 

nanostructures dispersed in organic solvents
[35]

, but only one papers have reported its use 

with noble metal nanostructures
[36]

.   

 Finally, Au nanorods have been assembled in solution by chemical binding and linker 

assisted methods. The chemical assisted methods are usually based on the substitution of the 

surfactant molecules of the shell of the nanostructures by bi- functionalized species as di-

amines or di-thiols, which promote the self-assembly in solution by linking one nanostructure 

to each other. Using this technique Thomas and co-workers
[28]

 fabricated in solution chains of 

AuNRs assembled end by end through chemical substitution of the CTAB α-ω dithiol 

compounds (Figure 18). Following the same line Pradeep and co-workers
[37]

 used 

dimercaptosuccinic acid to fabricate one, two and three dimensional superstructures of Au 

nanorods depending of the concentration of the acid.    

 

Figure 18 a) Transmission electron micrographs of nano-chains. b) Mechanism of nanochains 

formation through dithiol binding. 
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1.3.1. Evaporation mediated techniques: droplet deposition 

 Recently, droplet deposition has emerged as a promising technique to organise metal 

nanostructures into 2D and 3D superstructures. This simple process consists of depositing a 

droplet of a suspension on a substrate (usually silicon) and letting the solvent evaporate under 

controlled conditions (Figure 19).  

 

Figure 19 Schematic of self-assembly of Au nanorods by droplet evaporation. a) Au NRs dispersed in 

suspension. b) Self-Assembly of Au nanorods inside the droplet. c) Deposition of the Au nanorods on 

the substrate after full evaporation of the solvent. 

 The droplet deposition process involves inter-particle and external forces. The inter-

particle forces are the Van der Waals attractions between the particles metal cores and the 

repulsive forces between the surfactant molecules on the shell of the nanostructure. The 

external forces  are the depletion and capillary forces
[27, 38-40] 

induced by the evaporation of 

the solvent. 

 The Van der Waals forces are electrostatic interactions between temporal multi-poles 

generated by the random movements of charges inside the solids. They are weak attractive 

forces usually depreciable between solids at the macro scale, but very relevant for 

nanoparticles at close range) due to their high surface in volume ratio. Without any 

counterpart van der Waals forces would make colloidal suspensions instable, and on absence 

of surfactants to provide any repulsion they produce along the time the irreversible clustering 

and coalescence of the particles dispersed in a suspension.  

 The repulsion forces need to stabilize particles in colloid suspensions are provided by 

the surfactant molecules of the shell of the nanostructures (Figure 20). The nature of these 

repulsion forces depend of the type of surfactants. Ionic surfactants generate long range 

electrostatic forces, while polymer-type surfactants generate close range steric forces. Some 

of the surfactants as the CTAB or TOAB combine polar heads together with long alkane 

chains to provide both electrostatic and steric repulsions of variable strength depending of the 

distance.  
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Figure 20 a) Schematic of Au nanoparticle stabilised with negative (blue) and positive (red) 

surfactants. b) Electrostatic interaction potentials between the Au nanoparticles of a). 

 The stability and phase state of a colloid solution depends on the balance between the 

van der Waals and the repulsion forces. This balance is a very complex equilibrium 

depending of the volume fraction of the suspension, the intensity and range of the forces, and 

the internal energy of the system (mainly temperature)
 [41, 42]

  

 One of the first works reporting the formation of Au nanorods arrays by droplet 

deposition was done by Murphy and co-workers
[43]

 in 2005 (Figure 21). By controlling the 

CTAB concentration they were able to produce different self-assembly patterns of Au 

nanorods and other Au nanostructures coated also by CTAB.  

 

Figure 21 Au nanorods assembly patterns obtained by droplet evaporation of different Au nanorods 

suspensions. Adapted from Murphy and co-workers
 [43]

. 

 Wang and co-workers
[39]

 reported also the  self-assembly of several Au 

nanostructures through control of the temperature evaporation range plus control over the 

particle and surfactant concentration. Evaporation of aqueous suspensions with Au nanorod 

concentration 20mM and CTAB concentration over 1mM results in the formation of nematic 

and smectic superstructures of ordered Au nanorods (Figure 22) within 50µm of the 

periphery of the droplet. They found also that shorter Au nanorods often align vertical and 

that two kinds of nanorods evaporated together formed separated domains one from each 

other.  
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Figure 22 Smectic assemblies formed by droplet evaporation of aqueous suspension with different 

type of Au nanorods dispersed. Adapted from Wang and co-workers
 [39]

.  

 But both works present arrays of very limited size localized only at the periphery of 

the droplets, a problem that is common for several works reporting the self-assembly of Au 

nanorods by droplet deposition.   

 Droplet deposition and coffee ring effect 

 The self-assembly of Au nanorods by droplet deposition is a flexible and low cost 

method, but the ordered assemblies are usually localized exclusively at the periphery of the 

droplets and limited in size to only a few micrometers, being this the main issue for the 

fabrication of highly ordered assemblies over large areas by droplet deposition  

 

Figure 23 a) multiple exposures photography illustrating the motion of colloidal particles in a water 

droplet. b) Schematic illustrating the different evaporation rates per unit area (J) along a droplet 

profile and the outward flow (v) that causes the coffee ring effect. Adapted from Degaan
[44]

. 

 This is a well known problem of the colloidal suspensions, whose causes where 

discovered in 1997 by Degaan and co-workers
[44]

. When a droplet of a colloidal dispersion 

dries, the colloidal particles, initially dispersed over the entire droplet, accumulate in 

multilayer deposits along the perimeter leaving a ring-like deposit (Figure 23a). This pattern 

obtained from slow droplet evaporation is known as “coffee ring” and it is due to a capillary 

flow in which no volatile solutes (like nanostructures) are carried from the inside to the edge 

of a droplet by the outward flowing of the solvent
[44-46]

.  
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 The causes that trigger this flow are explained through the evaporation mechanisms of 

colloidal suspensions as follows. The periphery of the droplets is the first area to be fully 

evaporated due to the thin layer of solvent present there. In standard solutions, this effect 

leads to a gradual shrinking of the droplet along the evaporation process, but in colloidal 

suspensions it causes the settling down of the fraction of colloidal particles dispersed at the 

periphery of the droplet within the first instants of the evaporation process. Once deposited 

on the substrate, the particles pin the contact line of the droplet avoiding, therefore, its usual 

shrinking. The pinning of the contact line of the droplet triggers an outward flowing of the 

solvent in order to replenish the liquid that is being evaporated at the pinned edge (Figure 

23b), and as an indirect effect carry the dispersed material from the inside to the periphery of 

the droplet.  

 Assembly of nanorods by modified droplet evaporation methods  

 Since the assembly of nanorod structures over large areas is crucial for numerous 

photonic and sensing applications, many efforts have been recently devoted to overcome the 

formation of coffee ring during droplet evaporation and to produce different assemblies 

geometries, overall standing nanorods
[27, 38, 39, 46,47]

.  

 

Figure 24 Schematic of the assembly process and SEM images of the formed vertical assemblies a) 

using gemmini surfactant (adapted from Liz-Marzan and co-workers
 [48]

) and b) using OH-terminated 

alkanethiol (adapted from Xie and co-workers
 [27]

)  .  

 One of the most effective methods to produce large area vertical arrays consists into 

increasing inter-nanorod attraction forces by decreasing the repulsion exerted by CTAB 

molecules. For example, Liz-Marzan and co-workers
[48]

 (Figure 24a) were able to fabricate 
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standing Au nanorods superlattices using gemini surfactants instead of CTAB. Similar 

standings arrays were also fabricated by Xie and co-workers
[27]

 (Figure 24b). They 

fabricated three dimensional structures scattered over the droplet surface, with vertical arrays 

of Au nanorods stacking one over the other by partial exchange of the CTAB molecules with 

an OH-terminated alkanethiol to reduce the repulsion forces between nanorods. 

 The group of Xie reported also a second work
[38]

 (Figure 25) where they fabricated 

more homogenous vertical arrays through a two staged droplet evaporation method, where 

the droplet was first pinned to the substrate by a fast evaporation stage followed by a slow 

evaporation step (lasting around 8h) where the nanorods self-assembled in vertical arrays. 

However, in spite of the high degree of ordered obtained the ordered area was still limited to 

the external rim of the droplet 

 

Figure 25 (a) Formation of pinned edge in the first stage and (b) formation of the near-equilibrium 

environment in the second stage. c) SEM image at low magnification shows the self-assembly area 

restricted to the droplet periphery. Inset of high magnification SEM image shows the vertical arrays. 

Adapted from Xie and co-workers
 [38]

.  
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1.4. Au nanorod ordered arrays and SERS detection  

 As a consequence of the Localised Surface Plasmons, surface of noble metal 

nanostructures presents strong electric fields
[49]

. The intensity of this electric fields greatly 

depends of the curvature radius of the nanostructure, having enormous values in singular 

points as the peaks of the nano-pyramids, corners of the nano-cubes, or ends of the nanorods, 

whose simulated electric field is shown in Figure 26a.  

 

Figure 26 Simulation of the electric field enhancement obtained for a) single Au nanorod, b)two Au 

nanorods close a few nanometers one to each other when enlighted by a 650 nm and 620 nm light 

source  respectively.  

 When two or more nanorods are brought into close proximity or assembled into 

ordered arrays with controlled inter-nanorod spacing of less than 10 nm the plasmons of 

neighbouring particles couple. This coupling localizes and reinforces the LSP in the gaps 

between nanorods leading to the formation of so-called “Hot Spots” (Figure 26b)
[50]

. The 

characteristics and enhancement ratio of the electric fields within the hot spots depend 

crucially on the geometry and inter-nanorod spacing of the nanostructure arrays, and 

therefore the key to unlocking the potential of plasmonic structures is the control of these 

features at the nanometer and sub-nanometer scale
[51]

. 

 The high density of “hot spots” generated in ordered Au nanorod arrays make such 

superstructures particularly suitable for SERS applications. For instance, Finite-Difference 

Time Domains (FDTD) calculations have shown
[47]

 that hexagonally packed nanorods 

possess strong and uniform electromagnetic fields highly enhanced along the length of 

adjacent nanorods (Figure 27), strongly decreasing with the increase of the inter-nanorod 

gap.  
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Figure 27 Simulations of electric fields enhancements produced at the gaps of vertical   nanorods. 

Adapted from Peng at al
[47]

. 

 The formation of high density hotspot has been vastly exploited for sensing 

applications based on Surface Enhanced Raman Spectroscopy (SERS).  SERS is the 

amplification of Raman signals experienced by molecular species adsorbed on a rough metal 

surface. Although SERS has been reported for single metal nanostructures, the highest 

enhancement have been observed for ordered assembled metal nanostructures (Ag, Au, Cu) 

that, depending on the particle size and gap between particles, lead to signal enhancements so 

high that even single molecules maybe detected
[52]

  

 Substrates with reproducibly and coherent high SERS enhancement factors (EF) thus 

appear to be highly desirable and are a prerequisite for a wider application of SERS beyond 

fundamental studies, but before going into details of molecular SERS detection on ordered 

Au nanostructures we will briefly introduce the basics of Raman and SERS spectroscopy in 

the next paragraph.  

1.4.1. Surface Enhancement Raman Spectroscopy  

 Raman is a spectroscopy technique based on inelastic scattering of monochromatic 

light, usually from a laser source. Photons of the laser light are absorbed by the sample and 

then reemitted. Frequency of the reemitted photons is shifted up or down in comparison with 

the original frequency, which is called the Raman effect. The resulting Raman spectrum 

consist of bands corresponding to vibrational and rotational transitions specific to the 

molecular structure, and therefore provides chemical fingerprints to identify the analyte.  
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Figure 28  Energy diagram of the a) Stokes, b) Raylegth and c) anti-Stokes scattering. 

 Specifically, Raman scattering
[53, 54]

 is an inelastic process where an incoming photon 

from a laser excites a vibration mode of a molecule while emitting a scattered photon. The 

process can be read as the promotion of an electron from a vibrational base state to a higher 

“virtual energy state” absorbing the photon emitted by the laser on the process, followed by a 

demotion of the electron from the virtual state to a vibrational state that can be the same of 

the original (Rayleight scattering) or a different one at a higher energy level (Stokes 

scattering) or at a lower level (anti-Stokes scattering) (Figure 28). 

 Unfortunately, about 99.999% of all incident photons undergo elastic Rayleigh 

scattering, which is useless for practical purposes of molecular characterization. For this 

reason up to the 1960s Raman measurements has been limited to the analysis of solvents and 

some bulk materials.  

 This changed in the 1970s when Jean Marie and Van Duyne
[55]

 reported that 

molecular absorption into or near a roughened noble metal surface led to drastically increased 

Raman signal intensity due to electromagnetic enhancement mechanisms. A series of 

subsequent experiments confirmed that noble metal films with roughened surfaces or 

nanoscale features can dramatically increase Raman scattering signals of analytes and 

produce enhancement factors of 10
4
–10

8
 over normal Raman scattering

[56]
. This phenomenon 

was associated with the plasmonic field enhancement generated by rough metal surfaces and 

nanostructures and it was called Surface-Enhanced Raman Scattering (SERS). 
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1.4.2. Enhancement mechanisms of SERS 

 The enhancement factors of SERS as compared to normal Raman scattering are 

attributed to two mechanisms: an electromagnetic mechanism and a chemical mechanism
[49, 

57-59]
.  

 The electromagnetic mechanism (EM) is a wavelength-dependent effect arising from 

the excitation of the localised surface plasmon resonance. When a molecule is adsorbed onto 

a noble metal nanostructure the intensities of the Raman incident photon and of the scattered 

photons are susceptible to be enhanced if their wavelengths are in resonance with the 

plasmon mode of the nanostructure
[49]

. Ignoring any further interaction between the incoming 

and scattered field, the total electromagnetic enhancement produced for the nanostructure can 

be calculated as the product of the enhancement of both photons. Taking in account that the 

local field intensity at a specific point is proportional to the square of the electric field 

amplitude at that point, the Enhancement Factor expression results 

EFtotal =   [Einc(r) / Eo(r)]
2
 * [Esct(r) / Eo(r)]

2
                        (eq 12) 

Where [Einc(r) / Eo(r)]
 
is the enhancement of the amplitude of the incoming field and 

[Esct(r) / Eo(r)]
 
is the enhancement of the amplitude of the scattered field. Differences 

between the excitation and emission fields can be usually ignored, so eq 13 can be further 

simplified into  

 EFtotal =    [E(r) / Eo(r)]
4  

                                                (eq 13)
 
 

 Expression that justify the common assumption that enhancement of the Raman 

signals in the SERS technique depends to the fourth power of the amplitude of the electric 

field used to irradiate the sample. Furthermore, since the radiation amplitude scales down 

with the third power of the distance [E(r) ~ r
-3

], the SERS enhancement will scale down with 

the twelve power of the distance [EF(r) ~ r
-12

], making of SERS a truly surface dependent 

process (Figure 29a).  
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Figure 29 a) Schematic illustrating the sensitive of the enhancement factors to the size of the gap 

between nanostructures. b) Schematic of the charge transfer mechanism between the HOMO and 

LUMO orbitals of the molecule and the electrons at the Fermi level of the metal surface.  

 The chemical mechanism (CM)
[59-64] 

contributes to the enhancement through the 

chemisorption of the molecule to the noble metal surface, allowing the molecular orbitals of 

the molecule to interact with the conduction electron band of the metal. These interactions 

becomes of special importance in systems where the Fermi level of the metal is localised 

between the HOMO and LUMO orbitals of the molecule (Figure 29b). In these systems, the 

vibrational Raman transitions of the molecule are enhanced by energy transferred from the 

electronic transitions of the molecule using the Fermi level of the metal as an intermediary.  

 Furthermore, in some molecules (as the 4-ABT) some vibrational modes forbidden as 

Raman transitions because of its symmetry (as the b2 modes) become active thanks to the 

energy transfer process and as a result, new peaks (associated with the vibration mode of the 

forbidden transitions) appear in the SERS spectra of those molecules  

 It is important to remark that while the electromagnetic enhancement is independent 

of the molecule and has a range of action of around 10nm (some weak effects can extend up 

to 100 nm), the chemical enhancement depends of the match between the molecular orbitals 

of the molecule and the Fermi band of the metal and is relevant only when the molecule is 

physisorbed or chemisorbed  to the metal. 
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1.4.3. Use of arrays as SERS platforms 

 Compared to Au nanoparticles, Au nanorods arrays exhibit a stronger plasmon band, 

an a reduced plasmon damping, which produces a stronger enhancement of the 

electromagnetic fields, overall at their tips
[57, 65, 66]

. These characteristics make arrays of 

closely packed nanorods one of the best systems for SERS platforms designing. Confirming 

its potential, several authors have reported its use for SERS detection of several analytes as 

biological species
[67]

 and hazardous chemicals
[6, 68, 69]

 to mention these ones only.   

 Biological Sensing 

 The coupling of plasmonic nanostructures with biomolecules has recently attracted 

increasing attention. One of the most active areas is the development of new immune-sensing 

assays using Au nanostructures conjugated with biomolecules as DNA-plasmids
[70]

 or 

prions
[19]

. For example Liz-Marzan and co-workers
[19]

 used vertical arrays of Au nanorods to 

detect structural changes in mutated prions In particular, protein structural changes from α-

helix to β-sheet were detected in the SERS spectra as transition from a triplet signal to a 

singlet signal (Figure 30). 

 

Figure 30 Schematic showing the a) biological active (α-helix protein) and the b) mutated (β-sheet) 

prion. c) SERS spectra of active protein (blue curve) and scrambled prion (yellow curve). Adapted 

from Liz-Marzan and co-workers
 [19]

. 

 While most of the studies have been done in-vitro, the combination of high sensitive 

and no interference from biological fluids have allowed also the use of in-vivo SERS 

techniques. As a milestone, in 2006 Van Duyne and co-workers
[71]

 demonstrated the first in 

vivo application of the SERS technique by monitoring the glucose levels in rats with a 

subcutaneous nanostructured membrane.    
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 On field detection of hazardous chemical traces 

 Detection of hazardous substances is in high demanded due to the current harmful 

environments and terrorist attacks. The detection of these substances in the field requires a 

robust method able to operate in a wide variety of surfaces and chemical environments as the 

plasmonic Au nanostructures, which have already been satisfactory used for the fast detection 

of several health menaces such as explosives
[72, 73]

, pesticides
[74]

, drugs
[75]

, or food 

contaminants
[47]

.  

 The detection of explosives has been overall focus in the TNT detection thanks to the 

formation of complex species between either cysteine or 4ABT functionalized Au 

nanostructures and the TNT molecule. For example, Chandra Ray and co-workers
[73]

 reported 

the selective detection of TNT at pM level with a portable Raman system using cysteine-Au 

nanoparticle.  

 The detection of individual pesticides from complex samples is favoured by the 

ability of the SERS technique for the multi-analyte detection. For example Saute and co-

workers
[74]

 used Au nanorods treated with HCl to detect nM concentrations of Ferbam, 

Ziram, and Thiram mixed together in aqueous solution. Despite the similarity of the SERS 

spectra of the three species, the authors were able to distinguish individual concentration of 

every pesticide in the mixed mixtures by two dimensional Principle Component Analysis 

(PCA), also known as “barcode” analysis (Figure 31). 

 

Figure 31 SERS spectra of a) Ferbam and b) Ziram at different concentrations. c) two dimensional 

PCA to discriminate Ferbam, Thiram and Ziram from multicomponent mixtures.   
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 Au nanostructures were also used to detect traces of drugs by filtering, swabbing and 

other techniques suitable for real life applications. For example White and co-workers
[68]

 

shown the detection of Cocaine by filtration of solution through Ag nanoparticles previously 

adhered to filter papers.   

 In the food contaminant field Peng and co-workers
[47]

 reported femtomlar detection of 

melamine and plasticides  in orange juices using vertical arrays of Au nanorods cleaned by 

UV Ozone (Figure 32). Furthermore, the ozone cleaning treatment proved also the 

reusability of their substrates.  

 

Figure 32 SERS spectra of BBP on vertical arrays of nanorods at different concentrations and after 

the UV Ozone cleaning (red curve). b) SERS spectra of several contaminants detected on vertical 

arrays of nanorods at fM concentration.  

 Monitoring nanoscale chemical and biochemical Phenomena 

 The high sensitivity of SERS technique, together with its ability to provide structural 

information of the analytes bound to the plasmonic nanostructures has been used to follow 

different chemical process as the formation of self-assembled monolayers (SAM) of 

alkanethiols on Au and Ag substrates
[76]

. Its high spatial resolution plus the possibility to 

work in aqueous fluids without interferences from the water molecules have also allowed the 

monitoring of important biochemical process. For example, Meule and co-workers
[77]

 

monitored the release of  a neurotransmitter at the single cell level, thanks to the ability of 

SERS to provide specific structural information of compounds released in specific sites.   
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 Use of low-cost flexible SERS for in-situ sample analysis 

 On the last years low cost flexible SERS platform for on field practical detection has 

become an important alternative
[78]

 to the usual substrates. Flexible plasmonic SERS 

substrates have been fabricated using plastic
[79-81]

, paper
[82-84]

, polymer materials
8,9[85, 86]

, and 

TLCs
[87]

 as supported substrates,  in combination with metal nanostructures constituting 

SERS active layers. These hybrid systems have the potential to combine low cost and 

flexibility while still maintaining sensitivity and robustness of rigid substrates, as well as cost 

and ease of fabrication. 

 

Figure 33 Detection of pollutants in water by dropping of the samples on TLC plates, followed by 

chromatographic separation of the analytes and posterior in situ SERS analysis with a portable 

Raman system. Adapted from Long and co-worker
 [87]

 

 Due to flexibility and permeability, these substrates allow sample collection by 

swabbing of surfaces or filtering of solutions, maintaining the ability to detect analytes mixed 

in complex matrix. Both characteristics make them particularly suited for real world sample 

analysis. Results have been further improved by physical separation of the diverse analytes 

through chromatography and similar separation techniques performed straight on the 

plasmonic substrates (Figure 33). For example White and co-workers
[88]

 have detected 

individual dyes from a complex dyes mixture using a two steps chromatographic separation 

process on silver nanoparticles printed on standard chromatographic paper (Figure 34). The 

same group reported
[68]

 also the detection of malathion and cocaine by swabbing traces from 

surfaces with  SERS dipsticks and posterior pre-concentration of the analyte by capillarity 

techniques. 
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Figure 34 Comparison of the SERS spectrum of each separated dye to the respective reference 

spectrum after chromatographic separation. Adapted from White and co-workers
 [88]

. 
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1.5. Objectives of this thesis 
 For future integration in photonic and sensing devices, ordered arrays of Au nanorods 

will have to show a good homogeneity over mm
2
 areas, together a good chemical and 

physical stability in a wide range of substrates against harsh environments. The goal of this 

thesis was to develop a low-cost process to fabricate ordered Au nanorods arrays over large 

areas for sensing applications. The milestones of the project carried out in this thesis are 

shown below: 

1) Fabrication of Horizontal Au Nanorods Arrays. 

2) Fabrication of Vertical Au Nanorods Arrays. 

3) Immobilization of Horizontal and Vertical Au Nanorods Arrays on rigid substrates 

and testing of their feasibility as SERS platforms. 

4) Immobilization of Au Nanorods Arrays on flexible substrates and use as SERS 

platforms in on field applications. 

 Droplet evaporation was chosen as the self-assembly method to fabricate the ordered 

gold nanorods arrays due to its inherent simplicity, versatility and low cost. In order to 

overcome coffee ring limitations (see Section 1.3.1) and obtain a homogeneous distribution 

of the nanorods we developed a new method, based on controlled evaporation of Au 

nanorods organic suspensions, for the self-assembly of Au nanorods at the air-liquid interface 

of the droplets. 

 Different orientational order was achieved by using nanorods obtained from different 

synthetic routes, in particular, controlled evaporation of seed mediated Au nanorods 

suspensions led to the development of horizontal arrays, while evaporation of overgrowth Au 

nanorods suspensions led to the development of vertical arrays. The conditions and key 

parameters necessary for the fabrication of these horizontal and vertical arrays are presented 

in the Chapter 3 and Chapter 4.  

 Upon solvent evaporation, Au nanorods arrays with a high degree of order were 

fabricated, but it was impossible to use them as SERS platforms due to their poor adhesion to 

the support. To overcome this, a stamp method was developed. Once immobilized on cover 

slips, feasibility of horizontal and vertical arrays as SERS platforms was assessed using 4-

aminobenzenethiol (4ABT) as test molecule. The description of the stamping process and the 
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study of the SERS performance of the horizontal and vertical arrays are presented in the 

Chapter 5. 

 Taking further advantages of the stamping method, in the Chapter 6 we used flexible 

sheets made of different materials as receiving substrates of the Au nanorods arrays to 

fabricate flexible plasmonic SERS substrates. The SERS performance of these flexible 

plasmonic substrates was assessed again with model molecule 4-ABT. Finally, detection of 

food contaminant Crystal Violet in solution and traces of the drug marker benzocaine on 

cover slips were achieved with pPET active substrates as a proof of field based applications. 
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CHAPTER 2 

Synthetic methods and post-synthesis 

modifications of Au nanorods 

 This chapter presents the synthetic methods used in this thesis to synthesize three 

different types of Au nanorods: the seed mediated Au nanorods, the overgrowth Au nanorods, 

and the Au nanorods synthesized using seed mediated Au nanorods as seeds. Each type of 

nanorod was characterized by a high magnification SEM, a UV-vis spectrum obtained from 

an aqueous suspension, and histograms of their geometrical dimensions. In this chapter is 

also presented the methods used in this thesis to oxidize anisotropically the Au nanorods and 

to transfer them from aqueous suspensions  to organic solvents. 
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2.1. Seed mediated synthesis of Au nanorods 

 Au nanorods used in this thesis have been synthesized by the  El-Sayed seed mediated 

method[1] (Figure 35). The process comprise two steps, in a first step Au seeds (< 4 nm) were 

generated by a fast reduction of HAuCl4 by NaBH4 (Figure 35 top row). In the second step, 

seeds were used as nucleation points to grow the Au nanorods by slow reduction with 

ascorbic acid (Figure 35 bottom row). The synthesis allows for a fine tuning of the aspect 

ratio of the nanorods through control of the following parameters: concentration of HAuCl4 

and AgNO3 in the growth solution and through variations of the seeds added.  

 

Figure 35 Schematic of the two steps seed mediated synthesis of Au nanorods discovered by El-Sayed 

and co-workers [1]
 

 Increments of the AgNO3 concentration inside the growth solution produced Au 

nanorods of slightly bigger aspect ratio. Specifically, additions of 1 ml, 0.5 ml and 0.3 ml of 

AgNO3 4 mM to 25ml of growth solution produced Au nanorods of aspect ratio 4.1, 3.7 and 

3.4, respectively. Changes in the seeds injected to the growth solution produced a greater 

effect over the size and aspect ratio of the nanorods synthesized. Reduction of the NaBH4 

concentration used to generate the seeds produced thicker Au nanorods of smaller aspect 

ratio. Specifically, the addition of 300 µl of NaBH4 6.6 mM into 5 ml of seed solution 

generates seeds, which once injected into the growth solution produced Au nanorods of size 

23 x 55 nm, aspect ratio 2.1. In comparison, the seeds generated by addition of 300 µl of 

NaBH4 10 mM into 5 ml of seed solution produced Au nanorods of size 11 x 41 nm, aspect 

ratio 3.7. Figure 36b shows a table illustrating the concentrations of Au(III), AgNO3 and 

NaBH4 used to synthesize four different kinds of nanorods, and Figure 36a shows the UV-

vis spectra of the four kinds of Au nanorods dispersed in water. 
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Figure 36 Table with the volumes ( Y ) of AgNO3 added to the growth solutions and the concentration 

( X ) of NaBH4 added to the seed solutions for the fabrication of the Au nanorods A1, A2, A3, and B1. 

a)schematic of the synthesis of seed mediated Au nanorods. b) UV-vis spectra of the Au nanorods 

A1(green line), A2(magenta line). A3(red line), and B1(blue line) dispersed in water.   

2.1.1. Materials employed 

 The synthesis and phase transfer of Au nanorods used Hexadecyltrimethyl amonium 

bromide (CTAB) BioXtra with a purity equal or greater than 99.9 %, Tetraoctylammonium 

bromide (TOAB) with a purity equal or greater than 99.9%, tetracloro Auric acid  tri-hydrate 

(HAuCl4 3H2O), Silver Nitrate (AgNO3) trace metal basis with a purity equal or greater than 

99.9999%, Mercaptosuccinic acid (C4H6O4S) with a purity bigger or greater to 99% HPLC 

grade, Ascorbic acid (C6H8O6) 20-200 mesh and Sodium borohidride (NaBH4) trace metal 

basis with a purity equal or greater than 99.99%. All of them commercial product bought 

from Sigma-Aldrich. 

2.1.2. Synthesis of the seed solution and growth solution  

 For the synthesis of Au nanorods two seed solution were used. Both solutions shared 

the same recipe, except for the concentration of the NaBH4 employed to reduce the Au(III) 

precursor. Specifically, a CTAB solution (3.75 mL, 0.15 M) was mixed with 1.25 mL of 1 

mM HAuCl4 at 30°. To the stirred solution 0.3 mL of ice-cold NaBH4 of concentration X 
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was added under vigorous stirring (able to produces a vortex), which resulted in the 

formation of a pale brown solution. Stirring of the seed solution was continued vigorous for 1 

min and gentle (approximately, one revolution of the stirring bar per second) after further use. 

 The synthesis of the different Au nanorods shared the same recipe, except for 

changes in the quantities of AgNO3 added, and the type of seeds used as nucleation points. 

Specifically 0.91 g of CTAB were dissolved in 12.5 ml of deionized water at 30 °C. Once all 

the CTAB just solved Y mL of AgNO3 (4 mM) and 12.5 mL of HAuCl4 (1mM) dissolved in 

deionized water were added. After gentle mixing of the solution 0.175 mL of ascorbic acid 

(0.0788 M) were injected in once. Upon addition of ascorbic acid the solution color changed 

from intense orange to colorless as a result of the reduction of the Au
III

 ions (yellow-orange 

color) to Au
I
 ions (colorless). Finally, 35 µL of seed solution generated by addition of 0.3 

mL of ice-cold NaBH4 of concentration X were injected also in once at 30 °C. After the seed 

injection color of the solution gradually changed from colorless to intense brown-red (10-20 

min) as a result of the reduction of the Au
I
 ions (colorless) into Au

0
 nanorods (color 

depending of the aspect ratio). The solution was kept under mild stirring at 30 °C until 

growth process was complete (90-120 min), which was indicated by further absence of 

spectral changes in the solution UV-Vis spectrum.  
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Characterization of Au nanorods A1 

 

Figure 37 a,b) Histograms of the Au nanorods a) diameter, b)length obtained by statistical measures 

over 100 rods. c) High magnification SEM image of the Au nanorods deposited onto a SiO2 substrate. 

d) UV-vis spectrum of the Au nanorods dispersed in water.    

Characterization of Au nanorods A2 

 

Figure 38 a,b) Histograms of the Au nanorods a) diameter, b) length obtained by statistical measures 

over 100 rods. c) High magnification SEM image of the Au nanorods deposited onto a SiO2 substrate. 

d) UV-vis spectrum of the Au nanorods dispersed in water.    
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Characterization of Au nanorods A3 

 

Figure 39 a,b) Histograms of the Au nanorods a) diameter, b) length obtained by statistical measures 

over 100 rods. c) High magnification SEM image of the Au nanorods deposited onto a SiO2 substrate. 

d) UV-vis spectrum of the Au nanorods dispersed in water.    

Characterization of Au nanorods B1 

 

Figure 40 a,b) Histograms of the Au nanorods a) diameter, b) length obtained by statistical measures 

over 100 rods. c) High magnification SEM image of the Au nanorods deposited onto a SiO2 substrate. 

d) UV-vis spectrum of the Au nanorods dispersed in water.    
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2.2. Overgrowth synthesis of Au nanorods 

 Au nanorods were overgrown by reduction of the Au (I) remaining in solution after a 

typical seed mediated synthesis, according to a method described by Marzán and co-workers
 

[2]
. The process consisted in stepped additions of reducing agent ascorbic acid to a solution of 

Au nanorods obtained by seed mediated method. The excess ascorbic acid reduced the Au (I) 

ions left unreacted in the nanorod solution leading to a growth of the nanorod. The 

overgrowing process was monitored by the gradual increase in intensity of the longitudinal 

plasmon band in combination with a slight blue shift (Figure 41a). The suspension was stirred 

until no unreacted Au (I) ions were left in the solution, as estimated by the absence of further 

changes in the UV-vis spectrum upon addition of ascorbic acid.  

 

Figure 41 Table with the volumes of AgNO3 added to the growth solutions and the concentration of 

NaBH4 added to the seed solutions for the fabrication of the Au nanorods A4, A5, and B2. a) 

Evolution of the UV VIS absorbance spectrum of the gold nanorods water suspensions along the 

overgrowth process. b) Schematic of overgrowth process of Au nanorods.  

 In order to assure enough Au
I
 ions were left in solution for the posterior overgrowth 

step, growth solution used to synthesize the Au nanorods 2.2A 3.2A and 4.2A (Figure 41b) 

contained double quantity of Au
III

 salt and AgNO3 than the growth solutions used to 

synthesized the Au nanorods 1.1, 2.1 3.1 and 4.1 (Figure 36). Consequently were also reduced 

with double quantity of ascorbic acid. Seed solutions and the volume of seeds injected into 

the growth solution were left unmodified.  
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  The synthesis of the different overgrowth Au nanorods shared the same recipe, 

except for changes in the quantities of AgNO3 added, and the type of seeds used as nucleation 

points. Specifically 0.91 g of CTAB were dissolved in 12.5 ml of deionized water at 30 °C. 

Once all the CTAB just solved Y mL of AgNO3 (4 mM) and 25 mL of HAuCl4 (1mM) 

dissolved in deionized water were added. After gentle mixing of the solution 0.350 mL of 

ascorbic acid (0.0788 M) were injected in once. Upon addition of ascorbic acid the solution 

color changed from intense orange to colorless as a result of the reduction of the Au
III

 ions 

(yellow-orange color) to Au
I
 ions (colorless). Finally, 35 µL of seed solution generated by 

addition of 0.3 mL of ice-cold NaBH4 of concentration X were injected also in once at 30 

°C. After the seed injection color of the solution gradually changed from colorless to intense 

brown-red (10-20 min) as a result of the reduction of the Au
I
 ions (colorless) into Au

0
 

nanorods (color depending of the aspect ratio). The solution was kept under mild stirring at 

30 °C until growth process was complete (90-120 min), which was indicated by further 

absence of spectral changes in the solution UV-Vis spectrum.  

 Once normal growing of Au nanorods was completed, ascorbic acid solution (0.0788 

M) was added at a rate of 5 µl every 5 minutes until no further changes in the UV-vis 

spectrum (Figure 41b) were detected upon addition of ascorbic acid.  
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Characterization of Au nanorods A 4.2 

 

Figure 42 a,b) Histograms of the Au nanorods a) diameter, b) length obtained by statistical measures 

of 100 rods. c) High magnification SEM image of the Au nanorods deposited onto a SiO2 substrate. d) 

UV-vis spectrum of the Au nanorods dispersed in water.    

Characterization of Au nanorods A 5.2 

 

Figure 43 a,b) Histograms of the Au nanorods a) diameter, b) length  obtained by statistical 

measures over 100 rods. c) High magnification SEM image of the Au nanorods deposited onto a SiO2 

substrate. d) UV-vis spectrum of the Au nanorods dispersed in water.    
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Characterization of Au nanorods B 2.2 

 

Figure 44 a,b) Histograms of the Au nanorods a) diameter, b) length obtained by statistical measures 

over 100 rods. c) High magnification SEM image of the Au nanorods deposited onto a SiO2 substrate. 

d) UV-vis spectrum of the Au nanorods dispersed in water.     
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2.3. Synthesis using Au nanorods as seeds 

 Large Au nanorods were also synthesized by injection of Au nanorods previously 

synthesized into a new growth solution as seeds (Figure 45). The use of Au nanorods as seeds 

has already been reported by Murphy and co-workers
[3]

 to fabricate high aspect ratio rods 

(some of them of aspect ratio 10 or bigger). However, on our case the process led to the 

formation of bigger rods with the same rounded ends but of smaller aspect ratio than the ones 

used to seed the second growth process.  

 Droplet evaporation of aqueous suspensions of Au nanorods C1 and C2 results in the 

aggregation of the rods at the periphery of the droplet   of Unfortunately, it was no possible to 

study their self-assembly behaviour when dispersed in Chlorobenzene. Due to their size, it 

was not possible to transfer the Au nanorods C1 and C2 from the aqueous media to 

Chlorobenzene following the method used with all the other nanorods (see section 1.5).  

 

Figure 45 Schematic of the fabrication of the Au nanorods C1 and C2 using Au nanorods A2 and B1 

as seeds, respectively. 

 The synthesis of the different overgrowth Au nanorods shared the same recipe, 

except for changes in the quantities of AgNO3 added, and the type of seeds used as nucleation 

points. Specifically 0.91 g of CTAB were dissolved in 12.5 ml of deionized water at 30 °C. 

Once all the CTAB just solved 1 mL of AgNO3 (4 mM) and 12.5 mL of HAuCl4 (1mM) 

dissolved in deionized water were added. After gentle mixing of the solution 0.175 mL of 

ascorbic acid (0.0788 M) were injected in once. Upon addition of ascorbic acid the solution 

color changed from intense orange to colorless as a result of the reduction of the Au
III

 ions 

(yellow-orange color) to Au
I
 ions (colorless).  
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 Finally, 2 mL of previously synthesized Au nanorods A2 or B1 were injected also in 

once at 30 °C. After the seed injection color of the solution gradually changed from colorless 

to intense brown-red (10-20 min) as a result of the reduction of the Au
I
 ions (colorless) into 

Au
0
 nanorods (color depending of the aspect ratio). The solution was kept under mild stirring 

at 30 °C until growth process was complete (90-120 min), which was indicated by further 

absence of spectral changes in the solution UV-Vis spectrum. 

 After the nanorod injection color of the solution gradually changed from colorless to 

pale reddish during the first 20-30 min. After the first 30 minutes, color intensity increased 

together with the turbidity. The solution was kept under mild stirring at 30 °C until growth 

process was complete (90-120 min), which was indicated by further absence of spectral 

changes in the solution UV-Vis spectrum 
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2.3.1. Characterization of Au nanorods C1 

 

Figure 46 Histograms of the Au nanorods a) diameter, b) length obtained by statistical measures over 

100 rods. c) High magnification SEM image of the Au nanorods deposited onto a SiO2 substrate. d) 

UV-vis spectrum of the Au nanorods dispersed in water. 

2.3.1. Characterization of Au nanorods C2 

 

Figure 47 Histograms of the Au nanorods a) diameter, b) length obtained by statistical measures over 

100 rods. c) High magnification SEM image of the Au nanorods deposited onto a SiO2 substrate. d) 

UV-vis spectrum of the Au nanorods dispersed in water.  
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2.4. Anisotropic oxidation of Au nanorods 

 Au nanorods were anisotropically oxidized by addition of external redox agents
[4]

. 

Specifically, a mixture compose of 200 µl of HCl 1M and 50 µl of H2O2 30% were added to 

10 ml of Au nanorod solution and left under mild stirring during several hours. The mix 

shortened the nanorods (Figure 48a) by a selective oxidizing of the tips. Figure 48b shows a 

gradual decrease in the intensity of the longitudinal band of the nanorods in combination with 

a slight blue shift. These changes allowed the monitoring of the oxidizing process which 

could be stopped at any time by centrifugation of the solution and re-dispersion in fresh 

deionized water. After the oxidizing, Au nanorods were reduced to dimensions 11(1) nm x 

25(2) nm.  

 

Figure 48 a) Schematic of the anisotropic oxidizing process. b) Evolution of the UV VIS absorbance 

spectrum of the gold nanorods water suspensions along the oxidizing process. c) SEM image of Au 

nanorods deposited onto SiO2 substrate after being oxidizing during 2 hours.   
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2.5. Phase transfer of Au nanorods.  

 Once synthesized, nanorods were transferred from its original water phase where 

synthesis was developed to a variety of organic solvents, following a method reported by 

Chen and co-workers
[5]

. The method transfer the nanorods form water to organic solvents by 

exchanging the organo-phobic CTAB molecules of the shell by the organo-philic TOAB 

molecules.  

 The reaction mechanism of this specific process has not been reported yet. However, 

Wang and co-workers
[6]

 studying similar transfer processes hypothesized two different 

mechanisms depending if the TOAB molecule bind a positive or a negative stabilized Au 

particle. Their results showed that Au particles stabilized by negative anions (ie. Citrate) were 

able to bind straightforward the TOAB molecule through ion pairs, while Au particles 

stabilized by positive cations (ie.CTA
+
) need a second specie (usually a thiol-carboxylate)  to 

act as a bridge between the TOAB molecules and the Au particle. Based in this study we 

hypothesize the possible mechanism of the method used along this thesis to transfer Au 

nanorods from water to Chlorobenzene (Figure 49).  

 

Figure 49 Possible mechanism of the phase transfer of the Au nanorods. a) Binding of the Succinic 

acid to the nanorods surface in the water phase. a) Ionic interaction between the acid groups of the 
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succinic molecule and the polar nitrogen head of the TOAB molecules transport the nanorods to the 

organic phase.   

 First, Au nanorods in water solution were centrifuged and re-dispersed in water so 

that the final CTAB concentration was adjusted between 0.1 mM and 0.35 mM. When CTAB 

concentrations were smaller than 0.1 mM Au nanorods aggregated during phase transfer and 

when CTAB concentrations were larger than 0.35-0.40 mM Au nanorods did not transfer into 

the organic phase. After the CTAB concentration was adjusted into the correct range, 3 ml of 

the  Au nanorods aqueous suspension were added under vigorous stirring to an emulsion 

formed by Mercaptosuccinic acid (3 mL, 10 mM, pH 9) in aqueous solution and TOAB (1.5 

mL, 50 mM) in chlorobenzene solution. The resulting mixture was left under vigorous 

stirring for an average time of 90 min until the water phase discolored and the organic phase 

became intense red. Au nanorods in chlorobenzene were separated from the water phase only 

immediately before use to prevent nanorod aggregation induced by chlorobenzene 

evaporation. 

 

Figure 50 a) Photo of solutions containing Au nanorods dispersed in different solvents after phase 

transfer from water.  b) UV-vis spectra of Au nanorods dispersed in water (black curve), chloroform 

(green curve), toluene (cyan curve), and chlorobenzene (red curve). c) Plot comparing the refractive 

index of the solvent and the position of the longitudinal plasmon band of the Au nanorods. 
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 The position of the plasmon band of the Au nanorods was shifted in function of the 

the refractive index of the solvent were they were dispersed.  Figure 50b,c show the red shift 

of the longitudinal plasmon band of Au nanorods from 789 nm when dispersed in water 

(black curve) to 815 nm when dispersed in chloroform (green curve), 839 nm when dispersed 

in toluene (cyan curve) and 838 nm when dispersed in chlorobenzene. 

 According with the results reported by Wang
[6]

 , the transferring of Au nanorods from 

aqueous to organic media was strongly dependent of the nanorod size.  

 The small Au nanorods types A1, A2 and A3 were transferred with no problems for a 

wide range of nanorods and surfactant concentration. Colour transfer from water to organic 

phase occurs within minutes of the solvent mixing 

 The transfer of the larger Au nanorods types B1, A4 and A5 was a less straight 

forward process. In this case, the colour of the water-organic emulsion disappeared few 

minutes after the mixture was prepared, pointing to a possible Au nanorods aggregation. The 

emulsion stays totally white-uncoloured during 15-30 minutes until the characteristic red-

brown colour begins to appear in the organic phase again. Despite the vanishing of the 

colour, once the stirring was stopped 90 minutes later, water and organic phase separated 

neatly, being the water phase transparent and the organic phase strongly red-brown coloured.   

 Finally the transfer of the Au nanorods types B2, C1 and C2 was not possible. In this 

case the colour of the water-organic emulsion also disappeared but did not return at any time. 

Once the stirring was stopped (after several hours) the organic and water phases were 

transparent and Au nanorods were found aggregated as black particles at the bottom of the 

recipients. 
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2.6. Calculation of CTAB concentration 

 CTAB concentration in nanorods water dispersions was calculated through the UV 

VIS absorbance spectrum. CTAB molecule presents a characteristic UV VIS absorbance peak 

with a maximum at 195 nm, whose height and shape are affected by the CTAB concentration. 

The highest is the CTAB concentration the longest is the tail of the peak, and the further to 

the blue is shifted its inflexion point. This inflexion point is hard to appreciate in the 

absorbance spectrum (Figure 51a), but is clearly represented as a minimum in the first 

derivative of the curve (Figure 51b), whose position and value is used to estimate the CTAB 

concentration in the gold nanorods water dispersions. 

 

Figure 51 a) UV-vis spectrum of a Au nanorod water solution showing the region where is localised 

the peak associated to the CTAB. b) Calibration plot with the derivatives curves obtained from UV-vis 

spectra of different solutions with known CTAB concentrations.  

 In order to estimate the CTAB concentration of our solutions we prepared a 

calibration plot with the derivatives curves obtained from the UV-VIS spectra of different 

dispersions with known CTAB concentrations (Figure 51b). Red and green curves of Figure 

51b are the derivatives curves obtained from dispersions with CTAB concentrations 0.1mM 

and 0.4mM, respectively. Only between these two values was possible to transfer the 

nanorods from water to the different organic solvents. AuNRs dispersed in water with CTAB 

concentrations lower than 0.1mM collapsed before being transferred to chlorobenzene, and 

GNRs dispersions with CTAB concentration higher than 0.4mM did not transfer to the 

chlorobenzene phase. 
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CHAPTER 3 

Self-Assembly of Au Nanorods into 

Horizontal Superstructures  

 A new droplet evaporation method is presented for the fabrication of Au nanorods 

superstructures. Specifically, large domains of nanorods arranged horizontal to the substrate 

in a close-packed side-to-side fashion were obtained by controlled evaporation of Au 

nanorod chlorobenzene dispersions. Experimental parameters controlling the self-assembly 

process were carefully investigated and will be discussed in detail. Optical microscopy 

analysis during the evaporating process revealed that nanorods assembled at the interface 

between solvent and air forming domains that grew in size with the evaporation of the 

droplet. The high degree of internal order generated within individual domains was 

visualized by electron and optical microscopy and resulted in markedly anisotropic 

characteristics highlighted by polarized optical microscopy imaging.
 1

 

                                                 

(1) 1
 * This work has been partially published as: “Au Nanorod Plasmonic 

Superstructures Obtained by a Combined Droplet Evaporation and Stamping 

Method“, C.Schopf, A.Martín, M.Burke, A.J.Quinn, D.Iacopino, J. Mater. Chem. C 

2014, 2, 3536-3541. 

 

(2) This work has been partialy published as: “ Synthesis, optical properties and self-

assembly of gold nanorods“, A. Martin, C. Schopf, A. Pescaglini, A. O'Riordan, D. 

Iacopino. Journal of Experimental Nanoscience, 2012, 7, 688-702. 

 

(3) Au nanorods horizontal arrays have been used  for photoconductivity measures in the 

article: “Polarization dependent, surface plasmon induced photoconductance in 

gold nanorod arrays“, S. Diefenbach, N. Erhard, J. Schopka, A. Martin, C. 

Karnetzky, D. Iacopino, A. W. Holleitner Physica Status Solidi (RRL) ), 2014, 8, 

Issue 3, pp 264-268.  
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3.1. Introduction 

 Au nanorods possess unusual optical properties desirable for a number of applications 

ranging from photonic to sensing
[1, 2]

. The dimensional anisotropy of Au nanorods results in  

the strong polarization of its surface-plasmon optical properties. Therefore, Au nanorod 

assemblies constitute ideal candidates for the preparation of optically anisotropic 

superstructures for the manipulation of light on the nanoscale
[3]

. Moreover, the enhanced 

optical phenomena arising from inter-nanorod coupling in close ordered arrays have potential 

applications in fields such as sensing, negative refractive index meta-materials or information 

technologies
[4, 5]

.  

 In order to exploit this potential, great efforts have been devoted to the development 

of suitable techniques to organize Au nanorods into designed assemblies
[6]

, such as template 

methods
[7, 8]

, drying at an interface
[9]

, association in solution
[10]

, capillary assembly
[11]

, 

chemical modification of nanorod surfaces
[12, 13]

,electrophoresis
[14]

 and droplet evaporation
[15-

18]
.  

 Droplet evaporation has been widely recognised as a suitable route to self-assembly 

different nanostructures. The technique consists simply of depositing a droplet of a nanorod 

suspension (usually water) on a substrate (usually silicon) and let the solvent evaporate under 

controlled conditions. The assembly of nanostructures is driven by a balance of attractive 

forces (van de Waals, dipole-dipole interactions), repulsive electrostatic forces and capillary 

forces that become more apparent as the volume of the droplet decreases
[6, 19]

. However, 

assembly area is limited to a thin ring at the periphery of the droplets (the coffee ring 

effect)
[20]

. This ring form when non-volatile solutes are carried to the pinned droplet edge by 

outward flowing of solvents from the interior to the edge. 

 In recent years several authors 
[8, 16, 23, 24]

 have reported fabrication of ordered nanorod 

arrays by variations of the droplet deposition technique. Pioneering work was performed by 

Murphy and El-Sayed who investigated the formation of self-assembly patterns resulting 

from evaporation of aqueous droplets onto TEM grids
[15, 25]

. More focused work toward 

higher degrees of organization was performed by Wang and co-workers
[16]

, who were able to 

induce organization of Au nanorods into nematic and smectic multilayer superstructures by 

evaporation of aqueous droplets of precisely controlled nanorod and CTAB concentrations. 

Chemical modification of nanorod surfaces was also used to promote selective one and two-
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dimensional assembly
[17]

. Also interface-induced assembly and template assisted assembly 

were used in combination with controlled evaporation for the assembly of Au nanorods into 

surfaces
[23, 26]

.However, most of the above methods only provided ordered structures with 

limited area and inhomogeneous thicknesses. Fabrication of large size assemblies, with 

homogeneous thickness and highly controlled geometrical order still remains a key challenge 

in this field. 

 In contrast to the vast literature dedicated to theoretical and experimental 

investigation of the mechanisms regulating the droplet evaporation-induced self-assembly of 

Au nanorods from aqueous suspensions, limited attention has been dedicated to self-assembly 

processes occurring in Au nanorod organic suspensions. Mitamura and co-workers
[27]

 have 

developed protocols for phase transfer of Au nanorods into organic phase and have 

investigated their self-assembly by droplet evaporation onto TEM grids. Nanorods assembled 

on horizontal or vertical structures with average distance 3-4 nm, depending on the 

concentration. However, further investigation of the self-assembly process would be highly 

desirable as  the ability to produce large area ordered superstructures from organic 

suspensions would extend applications of Au nanorods, potentially leading to development of 

hybrid devices with enhanced optoelectronic properties
[28]

. 

 This chapter describes the formation of Au nanorod parallel superstructures by droplet 

evaporation of Au nanorod chlorobenzene solutions. Under controlled evaporation such 

suspensions led to formation of domains where nanorods assembled horizontal to the 

substrate in a close-packed side-by-side fashion. Domains measured over 100 µm
2 

and 

extended as a monolayer over the entire droplet surface. Optical polarized imaging of 

individual domains revealed markedly anisotropic characteristics, confirming the high degree 

of internal order generated by the aligned nanorods. 
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3.2. Experimental Section 

3.2.1. Synthesis and phase transfer of Au nanorods 

 In this chapter nanorods type A1, A3 and B1 of dimensions 13x44 nm, 10x41nm and 

23x49 nm respectively, were used. All of them were synthesized by seed mediated 

methods
[29]

  described in the second chapter of this thesis, section 2.1.3, 2.1.5 and 2.1.6. 

 After synthesis, Au nanoords were transferred from the original aqueous media to 

chlorobenzene following a phase trasnfer method
[30]

 described in the second chapter of this 

thesis, section 2.5.   

3.2.2. Droplet evaporation of Au nanorod solutions 

A small aliquot (10 µL) of Au nanorod cholobenzene solution ([Au] = 1 to 12 nM) 

was deposited on SiO2 substrate, covered with a petri dish and then left to evaporate at room 

temperature over a time of 3 h.  Controlled solvent evaporation resulted in formation of 

horizontal assemblies.   

3.2.3. Characterization of horizontal superstructures 

 Scanning electron microscopy (SEM) images of nanorod 2D lattices were acquired 

using a field emission SEM (JSM-6700F, JEOL UK Ltd.) operating at beam voltages of 5 

kV. Polarized optical images were acquired with an optical microscope (Zeiss axioscop II) 

equipped with a CCD camera (Optronics DEI-750) using a 100 W halogen lamp as 

illumination source.   
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3.3. Results and Discussion 

3.3.1. Synthesis of Au nanorods  

 Au nanorods were synthesized by a standard seed-mediated method described by El 

Sayed and co-workers
[23]

. The as-prepared Au nanorod suspension (1 mL) was centrifuged 

twice to remove excess CTAB and re-dispersed in 1 mL of Millipore water (18MΩ).  The 

final CTAB concentration was kept between 0.1 and 0.35 mM. Figure 52a shows UV-vis 

spectra of synthesized nanorods dispersed in water (black curve) and chlorobenzene (red 

curve). The spectra were characterised by a transversal plasmon mode at 521 nm and an 

intense longitudinal plasmon mode localised at 737 nm when nanorods were dispersed in 

water and at 785 nm when nanorods were dispersed in chlorobenzene. Figure 52b shows a 

SEM image of nanorods deposited on a SiO2 substrate. The nanorods mean diameter and 

length were 13 ± 2 nm and 44  ± 3 nm respectively, aspect ratio (AR) = 3.4  

 

Figure 52 a) UV-vis spectrum of Au nanorod aqueous suspension; b) SEM image of Au nanorods 

deposited onto a SiO2 substrate. 

 Prior to deposition on solid substrates, nanorods were transferred into chlorobenzene 

following the method reported by Chen and co-workers
[24]

 and described in the chapter two 

of this thesis, section 2.5.   
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3.3.2. Formation of horizontal superstructures by droplet evaporation of 

Au nanorods dispersed in chlorobenzene suspensions 

 Assembly of nanorods into horizontal superstructures was achieved by droplet 

deposition of chlorobenzene suspensions into SiO2 substrates, which were covered by a petri 

dish to assure a slow evaporation process (3h) (process illustrated in the schematic of Figure 

53a).  

 

Figure 53 a) Schematic of the self-assembly of Au nanorods into horizontal superstructures. b-e) SEM 

images of horizontal superstructures formed by evaporation of Au nanorod chlorobenzene 

suspensions. b) Low magnification image of the assembly area; c) Domain formation in dried droplet; 

d) High magnification image of an individual domain. Insets: top) Fast Fourier transform; bottom) 

detail of formed superstructure; e) 45° tilted image of a nanorod domains. 

 Figure 53b shows a low magnification SEM image of the dried droplet obtained by 

deposition of (10 µl, 6 nM) Au nanorods chlorobenzene suspensions onto a SiO2 substrate 

showing deposition of compact and homogeneous material over the whole explored surface. 
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Closer observation (Figure 53c) showed that Au nanorods assembled into domains c.a. 100 

µm
2
, which covered the entire area of a 20 mm

2
 droplet. Domains were packed close to each 

other as a result of strong capillary forces becoming dominant in the last phases of droplet 

evaporation. SEM images of an individual domain (Figure 53d) revealed the formation of a 

solid Au nanorod monolayer phase, ordered both orientationally and positionally. Fast 

Fourier transform analysis, shown in the inset of Figure 53d, displays diffuse streaks 

corresponding to side-by-side alignment of nanorods. The regular spacing in vertical and 

horizontal directions between the streaks of the FFT confirmed the disposition of the Au 

nanorods under smetcic order inside the horizontal arrays
[16]

. Evidence of monolayer 

formation is shown in Figure 53d depicting a 45º tilted SEM image of the superstructure 

 In order to clarify the role played by the organic solvent during the assembly 

mechanism, we prepared analogous Au nanorods aqueous suspensions and performed 

droplet evaporation maintaining the same experimental conditions (10µl, slow 

evaporation). The evaporation process followed a coffee stain mechanism in the explored 

nanorod concentration range (1.5 nM to 12 nM)
[20]

 with nanorods mainly depositing in the 

external ring of the droplet. Figure 54 shows low and high magnification SEM images of 

structures formed by evaporation of aqueous Au nanorod suspensions (10 µL, 6 nM). 

Nanorods accumulated at the periphery of the droplet in a ring between 10 to 100 µm width, 

depending on the concentration of deposited solution (Figure 54a). Within the ring degree of 

order was low with mixed parallel and perpendicular multilayer structures formed, as 

highlighted in Figure 54b.  Very low nanorod density was found in the center of the drop, 

with formation of small and sparse nanorod domains (see Figure 54c).  

 

Figure 54 a) Low magnification SEM image of Au nanorod superstructures formed by aqueous 

droplet deposition on SiO2 substrates.  The arrow indicates the width of the area where nanorods are 

assembled; b) High magnification SEM image of assembled nanorods close to the edge; c) SEM 

image of small size assemblies formed in the center of the droplet. 
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 These results suggest that the use of chlorobenzene as solvent was essential for the 

generation of long-range ordering observed in our superstructures. The compactness and high 

degree of order obtained were attributed to the physico-chemical differences between 

chlorobenzene and water
[19, 31]

. The lower viscosity and surface tension of the chlorobenzene 

compared to water (0.75 vs 0.9 mPa×s and 33 vs 72 dyn/cm, respectively) promoted a 

higher degree of ordering by offering less resistance to domain movement. The lower 

dielectric constant of chlorobenzene compared to water (5.7 vs 88 εo) promoted the long range 

order on the assembly by extending the range of action of the electrostatic repulsion forces 

between nanorod and nanorod
[32]

. 

3.3.3. Effect of experimental parameters 

In order to gain a deeper understanding of the mechanism regulating the formation of 

Au nanorod superstructures, investigation of the effects played by the following parameters 

was undertaken: nanorod aspect ratio and substrate, nanorod concentration, surfactant 

concentration, and evaporation rate.  Electron microscopy and polarized optical microscopy 

were used to investigate the influence of these parameters on the assembly process and to 

gain insights on the degree of assembly-induced internal order. 

 Influence of the substrate and nanorod size on the assembly process  

 Horizontal Au nanorods superstructures of comparable high order were obtained by 

droplet evaporation on SiO2, glass and glass/ITO substrates (contact angles 52°, 40º and 72° 

respectively).  

 Droplet evaporation of Au nanorods dispersed in chlorobenzene generated also 

ordered assemblies with nanorods of different sizes. Large areas of ordered monolayer 

superstructures with nanorods assembled side-by-side to form 2D monolayers were 

successfully obtained using Au nanorods of aspect ratios 2.1, 3.4 and 4.1.  
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Figure 55 a-c) statistical analysis of diameter and length of Au nanorods. : a) mean diameter 23 ± 2 

nm, mean length 49 ± 3 nm, AR = 2.1, SPR= 656 nm ,b) mean diameter 13± 2 nm, mean length 44 ± 2 

nm, AR = 3.4, SPR= 737 nm; c) mean diameter 10 ± 2 nm, mean length 41 ± 2 nm, AR = 4.1, SPR= 

781 nm. d) UV-vis spectra. e-g)  SEM images of vertical arrays formed under controlled evaporation 

of chlorobenzene droplets (10µl, 6nM) of nanorods with aspect ratio e) 2.1; f) 3.4, g) 4.1.   

 Figure 55a-c shows statistical analysis of the nanorod used, which had the following 

characteristics: mean diameter 23 ± 2 nm, mean length 49 ± 3 nm, AR = 2.1; mean diameter 

13 ± 2 nm, mean length 44 ± 2 nm, AR = 3.4; mean diameter 10 ± 2 nm, mean length 41 ± 2 

nm, AR = 4.1. UV-vis spectra of nanorods dispersed in aqueous solutions are shown in 

Figure 55d. The position of the longitudinal peak was 656, 737 and 781 nm for aspect ratios 

of 2.1, 3.4 and 4.1, respectively. SEM images of horizontal arrays obtained by controlled 

evaporation of droplets (10 µl, 6 nM) of the three different Au nanorods chlorobenzene 

suspensions (Figure 55e-g) show that the domain size, compactness and order of the nanorods 

inside the domains were comparable. 
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 Influence of nanorod concentration on the assembly process  

 Ordered assemblies formed across a relatively large range of Au nanorod 

concentrations, between 1.5 nM and 12 nM. Nanorod concentration affected the size of the 

deposited dried droplets. Photographs of Figure 56 show an increase from 2 mm diameter to 5 

mm diameter for droplets obtained by deposition of 10 L solution of concentration 1.5 nM – 

12 nM at room temperature. 

 

Figure 56 Photographs of dried droplets obtained from Au nanorods chlorobenzene solutions of 

increasing concentration (1.5 nM to 12 nM). 

Initial concentration of Au nanorods also affected the size of the domains formed. 

SEM images of horizontal arrays formed by slow evaporation (3h) of nanorod chlorobenzene 

suspensions showed gradual increase of domain size as Au nanorod concentration increased 

from 1.5 nM to 12 nM Figure 57a-d). In particular, at concentrations 1.5 nM isolated 

domains were obtained with sizes ranging from 0.2 to 1 m
2 

(Figure 57a), at 

concentrations 3 nM domain size ranged from 2 to 10 m
2 

(Figure 57b), and finally at 

concentrations 6 nM and higher, domain size reached up to 100 µm
2
 and space 

between domains decreased until horizontal arrays covered the entire surface of the 

droplet (20 mm
2
) as a quasi-continuous monolayer (Figure 57 c,d). In spite of the 

different size of domains formed at different nanorod concentrations, the extent of 

organization within each domain was similar with nanorods found closely arranged into side-

by-side rows and rows aligned parallel to each other in the whole range of explored 

concentrations (Figure 57 bottom row).  
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Figure 57 Low and high magnification SEM images of horizontal superstructures obtained from Au 

nanorod suspensions of concentrations a) 1.5 nM ; b) 3 nM ; c) 6nM; d) 12nM.   

In order to analyse the coverage of the droplet surface by horizontal arrays and the 

grade of order of these arrays over larger areas we used optical microscopy.  Due to the high 

degree of internal order, domains appeared strongly green and red coloured under polarised 

light illumination, which allowed easy individuation of domain boundaries and dimension 

measurements. 

 Figure 58a-c shows polarised microphotographs of three samples prepared by 

controlled evaporation of Au nanorods chlorobenzene suspensions of concentrations 3 nM, 6 

nM and 12 nM. Nanorod domains appeared red and green, depending on the relative 

alignment of domain main axes with the excitation polarisation direction. Empty areas 

appeared bright yellow. Black areas mainly formed at high concentrations and were due to 

deposition of organic residues. The initial concentration of Au nanorods affected the surface 

coverage, which increased with the increase of nanorod concentration.  Surface coverage was 

defined as the ratio between the area occupied by horizontal arrays and the total area of the 
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droplet. Statistical analysis were performed by image J program on optical images equivalent 

to Figure 58a-c (area of 5000 µm
2
) and gave a surface coverage of 55%, 95% and 95% for 

Au nanorod concentration of 3 nM, 6 nM and 12 nM, respectively. 

 

Figure 58 Polarised microscopy images of domains obtained by deposition of 10 µl droplets of Au 

nanorod chlorobenzene suspensions of concentrations a) 3 nM; b) 6 nM; c) 12 nM. 

 Close observation of data collected from electron and optical microscopy led to the 

conclusion that 6 nM was the optimum concentration to produce highly ordered assemblies. 

In fact, in samples prepared with lower concentrations, horizontal arrays did not cover the 

whole droplet surface and samples prepared with higher concentrations presented a greater 

number of defects. In particular, at the periphery of the droplet samples prepared with Au 

nanorod concentration 12nM presented a ring of c.a. 20 – 100 µm (Figure 59) where almost 

all the nanorods assembled vertical to the substrate.   

 

Figure 59 SEM images of the Au nanorod superstructures on SiO2 substrate formed at the periphery 

of a dried droplet (10µl, 12nM) a) Low magnification; b) High magnification. 

 In agreement with reports from other authors using water suspensions
[32]

, we ascribe 

this behaviour to a singular and quick increase of the density of Au nanorods in the 

peripherical areas of the droplet caused by the small volume of solvent in these areas (due to 



Chapter 3 

 

75 

 

the much lower height of the droplet at the periphery) and by a faster evaporation rate 

compared with the center of the droplet. These two effect should occur for every droplet, but 

apparently only when the Au nanorods concentration was 12nM or bigger the density of the 

nanorods reach the critical value that triggered its assembly in vertical arrays. Again, it 

should be remarked that all the samples prepared by evaporation of suspensions of 

concentration 6nM or smaller did not present any area where the Au nanorods aligned 

vertical to the substrate.     

 Influence of surfactant concentration on the assembly process 

 All experiments discussed in the previous section were carried out with a 

concentration of CTAB equivalent to 0.1 mM. In order to assess the influence of the 

surfactants droplet evaporation experiments were repeated using suspensions of higher CTAB 

concentration (0.35 mM). The CTAB concentration was adjusted and calculated using the 

optical method described in the second chapter of this thesis, section 2.6. Coverage and 

domain size remained unchanged, but the order inside the domains resulted slightly worse 

(Figure 60). In particular, nanorods still aligned side by side but they appeared loosely packed 

with a number of cracks forming within the domains. This is consistent with a higher 

surfactant concentration which likely prevented nanorods from coming in close contact due to 

enhanced steric and repulsive forces.  

 

Figure 60 SEM images of horizontal arrays on SiO2 substrate formed by controlled evaporation 

under a petri dish (3h) of chlorobenzene droplets (10µl, 6 nM) with CTAB concentration 0.35mM. 

 A wider range of CTAB concentration could not be explored. At CTAB 

concentrations smaller than 0.1 mM Au nanorods aggregated during phase transfer and at 

CTAB concentrations larger than 0.35-0.40 mM Au nanorods did not transfer into organic 

phase. Variation of tetraoctylammonium bromide (TOAB) concentration from the 50 mM 
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value used for phase transfer did not affect the final degree of order obtained. However, the 

concentration of TOAB affected the stability of nanorod chlorobenzene suspension, which 

was stable for over two weeks with [TOAB] = 50 mM and for less than a week at lower 

TOAB concentrations. 

 Influence of evaporation rate on the assembly process  

 In order to assess the influence of the evaporation rate chlorobenzene suspensions of 

various concentrations were left to evaporate at room temperature under free air without petri 

dish, which decreased the evaporation time from 3 h to ca. 20 minutes. 

 

Figure 61 Low magnification SEM images of horizontal arrays on SiO2 substrate formed by a) fast 

evaporation (20 minutes)  and b) controlled evaporation (3h) of 10 µl droplets with concentrations 

a1,b1) 3 nM ; a2,b2) 6 nM ; a3,b3) 12 nM. 

 Low magnification SEM images of Figure 61 show that domains formed by fast 

evaporation were smaller than domains formed by slow evaporation for the whole explored 

concentrations range. Specifically, in samples prepared by fast evaporation of 6 nM and 12 

nM Au nanorod suspensions produced domains of c.a. 1-5 µm
2
 (Figure 61a2,a3) whereas 

domains larger than 100µm
2
 (Figure 61b2,b3) were obtained by slow evaporation of the same 

suspensions.  
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Figure 62 High magnification SEM images of horizontal arrays on SiO2 substrate formed by a) fast 

evaporation and b) slow evaporation (3h) of 10 µl droplets with concentrations a1,b1) 3 nM ; a2,b2) 

6 nM ; a3,b3) 12 nM 

 The degree of internal order was also significantly lower for the samples prepared by 

fast evaporation. Disorder increased with the increase of Au nanorod concentration. High 

magnification SEM images of Figure 62a2,a3 show assemblies obtained by fast evaporation 

of 6 nM and 12 nM suspensions where several areas present gaps, misalignments and multi-

layered structures. The presence of all these defects is minimized in the horizontal arrays 

obtained at 3 nM at fast evaporation. Comparison with equivalent superstructures formed 

under slow evaporation for the same range of concentrations is shown in Figure 62, row b  

 Polarised optical microscopy was used again to compare the size of the domains 

obtained by slow and fast evaporation over large areas. Figure 63 shows that the size of 

domains (red and green areas) obtained by fast evaporation was smaller than the size obtained 

by slow evaporation for the whole range of explored concentrations. As shown in SEM 

images the size difference became significant when high Au nanorods concentrations were 

used.  
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Figure 63 Polarised microscope images of horizontal arrays on a glass cover slip formed by a) fast 

evaporation and b) controlled evaporation under a petri dish (3h) of 10 µl droplets of Au nanorod 

chlorobenzene suspensions of concentrations a1,b1) 3 nM ; a2,b2) 6 nM ; a3,b3) 12 nM. 

 Domain size comparison for fast and slow evaporation is summarized in the plot of 

Figure 64. At Au nanorod concentration 3 nM domain size measured less than 10 µm
2
 and 

c.a. 30µm
2
 when droplets were dried by fast and slow evaporation respectively.  At Au 

nanorod concentration 6 nM and 12 nM domain size measured c.a. 15 µm
2
 and 5 

µm
2
,respectively when droplets were dried by fast evaporation (blue curve). In contrast, at 

Au nanorods concentration 6 nM and 12 nM the suspensions produced coloured areas that 

were measured more than 100 µm
2
 when droplets were dried by slow evaporation (red curve)  

 

Figure 64 Size comparison of the Red and Green areas generated by slow (red curve) and fast (blue 

curve) evaporation of a 10 µl droplet of Au nanorod chlorobenzene suspensions of concentrations 3, 6 

and 12 nM.   
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 Finally, samples prepared by fast evaporation were also less uniform than samples 

prepared under controlled evaporation. Occasional formation of small assemblies of 5-10 

nanorods with no order between them were founded (Figure 65a) together with areas where 

Au nanorods assembled perpendicular to the substrate (Figure 65b). Both kinds of defects 

appeared overall in samples prepared from suspensions with AuNRs concentration 6nM and 

higher. This general loss of order and reduction of domain size at high Au nanorod 

concentration and shorter evaporation times was ascribed to the reduction of the time 

available for the nanorods to order themselves in conditions far to the equilibrium.  

 

Figure 65 SEM images of superstructures obtained by fast evaporation of 10µl droplets of 12 nM Au 

nanorod concentration. 

 In conclusion, fast evaporation of chlorobenzene suspensions led to formation of 

smaller size domains which were also characterised by lower degree of order, especially 

evident for nanorod concentrations higher than 6 nM.  
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3.3.4. Mechanism of Au nanorod self-assembly of into horizontal 

superstructures  

In order to clarify the mechanism of superstructure formation, the evaporation 

process was recorded on video films and photographs were obtained by optical 

microscopy.  

 

Figure 66  Snapshots from the video recorded along the evaporation process.  

Snapshots from the evaporation process video (Figure 66) showed progressive 

formation of a gold ring at the periphery of the droplet. The ring increased in thickness as the 

solvent evaporated, eventually covering the entire area of the droplet. Towards the end of the 

process shrinkage of the droplet from its original 7 mm to ca. 5 mm at the end was observed, 

with the assembled material covering the full surface of the dried droplet.  

 

Figure 67 Images of the different stages during the evaporation of a droplet deposited on glass cover 

slip. The edge of the drop is indicated by the white arrow in a,b). Sample was illuminated with cross-

polarised light from above.  

The process was also followed by optical microscopy. In order to reproduce a slow 

evaporation rate, the 10 µL nanorod droplet was enclosed into an evaporation chamber and 

the microscope illumination source was directed away from the sample when measurements 
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were not taken. Figure 67a shows that a highly birefringent deposit started forming as the 

solvent evaporated ca. 30 min after droplet deposition. Width of this deposit increased 

inwards as a function of time (see Figure 67a-c and snapshots of Figure 66a-c). Deposit was 

formed by domains that appear to form and accumulate at the edge of the droplet. Changes in 

the birefringence of the deposit indicate the formation of a liquid crystal phase driven by 

phase separation induced by drying and densification processes. According to the coffee stain 

effect
[20] 

the bright birefringent ring width should increase with time until complete 

evaporation of the droplet.  However, from t0 + 80 min a suppression of the coffee stain 

mechanism resulting in movement of domain material towards the center of the drop was 

observed (Figure 67e). We speculate that this was due to the adhesion of formed domains to 

the air-solvent interface before they reached the contact line. As domains grew in size, they 

produced a surface viscosity much larger than the bulk viscosity, facilitating nanorod 

resistance to radial outward flow.  As a result, the drop edge depinned and started moving 

inward.  At the end of the process, when the droplet completed dried, a thin ring of aligned 

nanorods was found at the edge of the drop whereas the majority of nanorod domains settled 

in the core of the droplet (Figure 67f).  

 

Figure 68 Schematic of the self-assembly process of Au nanorods into horizontal arrays. a) Nanorods 

initially dispersed inside the droplet. b) Au nanorods trasnported by solvent streams to the periphery 

of the droplet. c)Au nanorods assembled into horizontal arrays on the air-solvent interface at the 

periphery of the droplet. d) Shrinking of the droplet and compacting of the domains 
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 The droplet evaporation mechanism can be thought as comprising of two main stages 

(Figure 68).  

 During the first stage (Figure 68a,b ) a pseudo coffee ring effect occurred. Nanorods, 

initially uniformly dispersed in the chlorobenzene suspension (Figure 68a), were transported 

towards the periphery (Figure 68b) by solvent streams produced inside the droplet to balance 

out the faster evaporation rate of the periphery. Due to this faster evaporation rate, plus the 

decreasing height of the meniscus toward the edge nanorods reach at some point the air-

solvent interface during its movement towards the periphery. The consequent increase of 

local nanorod concentration triggered its assembly into horizontal arrays in the periphery area 

of the droplet. This early formed arrays can be seen as the birefringent ring in the optical 

images of Figure 67 a,b and are also illustrated in the schematic of Figure 68b. The 

localization of the nanorods on the 2D air-solvent interface when the assembly is triggered 

promoted its order as smetic monolayers inside the horizontal arrays. Once formed on the 

interface, horizontal arrays tended to be stabilized by micelle effects induced by the 

CTAB/TOAB surfactants at the nanorod surfaces.   

 During the second stage (Figure 68c,d) shrinkage of the droplet (Figure 67 e,f)  

brought the formed domains close to each other (Figure 68c) resulting in formation of 

compact assemblies upon droplet evaporation (Figure 68d). 
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3.3.5. Optical properties of horizontal Au nanorods arrays 

In order to explore optical properties, superstructures deposited on glass 

coverslips were examined by optical transmission imaging and spectroscopy. Optical 

images of nanorods aligned within domains of an average size of 100 m
2
 were 

acquired under polarized excitation (Figure 69).  Domains appeared green and red 

depending on the orientation of the domain main axis respect to the light polarization 

direction. In particular green/red domains were formed by nanorods with long axes 

oriented parallel/perpendicular to the polarization excitation. The clear colour 

transition from one domain to the other was associated to the high degree of internal 

order within each domain, as previously shown in high magnification SEM images. 

The origin of this colour shift can be explained by the selective excitation of the 

longitudinal and transversal surface plasmon resonance (SPR) modes of the nanorods 

within the domain, respectively. Individual domains changed colour from green to red 

as the polarization direction was rotated from parallel to perpendicular to the nanorod 

long axes, respectively.  

 

Figure 69 Polarized transmission images of Au nanorod domains showing red to dark green colour 

transition associated to the relative orientation of polarized light with the long axes of nanorods that 

constitute the domains. 
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3.4. Summary and Conclusions 
 In conclusion, horizontal superstructures were obtained by droplet evaporation of Au 

nanorod dispersed in organic solvents. Controlled evaporation led to formation of large area 

ordered arrays where nanorods assembled side-to-side into monolayer domains with an 

average size of 100 µm
2
. Experimental parameters regulating the formation of ordered 

assemblies were carefully investigated. The process resulted mainly regulated by the 

concentration of deposited nanorods and the evaporation time. Specifically, slow 

evaporation, low CTAB (0.1 mM) and 6 nM nanorods concentration emerged as 

optimum conditions to form large and highly ordered horizontal arrays. Following of 

the droplet evaporation by polarized microscopy revealed a two stage mechanism. Horizontal 

arrays firstly formed at the periphery of the droplet and were transported back to the center of 

the droplet at the last stages of the evaporation process. Optical characterization of formed 

superstructures revealed marked optical anisotropic behaviour, confirming that nanorods 

were aligned within individual domains with a high degree of internal order. 
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CHAPTER 4 

Self-Assembly of Au Nanorods into Vertical 

Superstructures 
 A droplet evaporation method will be discussed for the fabrication of vertical arrays 

by fast evaporation of Au nanorods dispersed in chlorobenzene suspensions. Droplet 

evaporation is known to produce ordered nanorod arrays of desired geometry only under 

narrow experimental conditions and controlled evaporation. The assembly of nanorods into 

ordered arrays usually requires slow evaporation times, in order to allow nanorod 

organization.  The proposed evaporation method is based on evaporation of organic 

suspensions with minimum control on evaporation conditions. Droplet evaporation occurs in 

20 min and produces ordered vertical arrays over large areas (mm
2
). The mechanism leading 

to formation of vertical arrays will be discussed in details, together with the role played by 

key experimental parameters.
 2

  

 

                                                 

2 This work have been published as : “Facile Formation of Ordered Vertical Arrays by 

Droplet Evaporation of Au Nanorod Organic Solutions”, A. Martín, C. Schopf, A. 

Pescaglini, J. J. Wang, and D. Iacopino, Langmuir, 2014, 30 (34), pp 10206–10212 
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4.1. Introduction 

 The elongated shape of Au nanorods and their consequent intriguing optical 

properties are highly attractive for catalytic, plasmonic and biomedical applications
[1-3]

. The 

controllable assembly of Au nanorods into large scale ordered superstructures is also 

attractive, as it can generate intriguing properties arising from the collective inter-particle 

coupling of the assembled components
[4]

. Among possible assembly geometries, the 2-

dimensional (2D) hexagonal sheet (honeycomb) structure that is formed from vertical 

superstructures is regarded as the ideal assembly configuration for many technological 

devices, such as solar cells and magnetic memory devices
[5]

. Potential applications such as 

Surface-Enhanced Raman Scattering (SERS), cavity resonators
2[4]

, nanoscale light 

polarizers
[6]

 and ultrafast non-linear optics
[7]

 have been envisaged for vertically aligned 

nanorod superstructures. 

 
Common approaches used for fabrication of Au nanorod vertical arrays on substrates 

include template mediated methodologies, oblique angle deposition
[8]

 and self-assembly on 

patterned substrates
[9, 10]

. Recently, droplet evaporation has been proposed as a simple and 

relative fast method for formation of large area nanorod superstructures
[11]

. The process has 

been discussed in detail in chapter 1 of this thesis. Briefly, it consists in depositing a droplet 

of nanorod suspension (usually water) onto a substrate (usually silicon) and let the solvent 

evaporate under controlled conditions. The assembly is driven by relatively weak attractive 

forces (van de Waals, dipole-dipole interactions), becoming relevant as the solvent 

evaporates. Also electrostatic repulsive forces, hydrophobic interactions, capillary forces and 

entropic depletion interactions play a role that mediate nanostructure’s self-assembly.  

 The evaporation mediated process is affected by several parameters (such as nanorod 

concentration, surfactant, evaporation rate, nanorod aspect ratio and substrate, among others) 

which have to be controlled in order to obtain the desired assembly geometry. For example, 

nanorod surfactant exchange has been used by Marzán and co-workers
[12]

 who used cationic 

Gemini surfactants instead of CTAB for the growth of Au nanorods. Droplet evaporation of 

such suspensions produced self-assembly of nanorods into highly ordered, multilayer vertical 

arrays on substrates. In a similar manner, Liu and co-workers
[13]

 produced nanorod vertical 

assembly by substituting CTAB with a less electrostatically repulsive glycol/thiol. Using a 

two steps controlled evaporation rate, Xie and co-workers
[14]

 achieved reproducible vertical 
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nanorod arrays over large areas. Finally, Xiong and co-workers
[15]

 fabricated closely spaced 

vertical nanorod arrays (ca. 7 nm) by altering the ionic strength of the deposited nanorod 

solution. Thus, the simplicity and flexibility of the method makes droplet evaporation 

processes highly suitable for fabrication of nanorod ordered arrays. However, the ability to 

induce high degree of order in the self-assembly process is still limited by the necessary use 

of appropriate, often long, drying conditions and warrants careful control of several 

parameters. Moreover, the use of droplet evaporation techniques for fabrication of structures 

with a high degree of order that extends over large areas has, to date, proven challenging.   

 In this chapter, we present a facile and fast approach for fabrication of large area 

vertical nanorod superstructures. We used droplet evaporation of overgrown nanorod 

chlorobenzene suspensions as method for the assembly process. The simple evaporation of a 

droplet under uncontrolled conditions (free air, 20 min) led to the formation of vertical 

nanorod monolayer superstructures covering the entire area of the deposited droplet (20 

mm
2
). The assembly process was found to be prevalently dependent on nanorod 

concentration, whereas the influence of other parameters was found negligible.  At low 

concentrations nanorods assembled vertically into domains, with the area between domains 

occupied by nanorods deposited horizontally to the substrate. At high concentrations density 

and size of domains increased until the entire area of the droplet was covered by vertical 

superstructures. Observation of droplet evaporation process under microscope light revealed 

that nanorods assembled at the interface between solvent and air, forming domains that grew 

in size and density as the solvent evaporated. 
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4.2.  Experimental Section 

4.2.1. Synthesis and phase transfer of Au nanorods 

 In this chapter Au nanorods type A4.2 and A5.3 of respectively dimensions 20x60 nm 

23x55 nm were used. All of them were generated by a post-synthesis modification of 

nanorods obtained from seed mediated reported by Liz-Marzan and co-workers
[16]

 and 

described in the second chapter of this thesis, section 2.2. For comparison reason Au 

nanoords type A4.1,  synthesized by the usual seed mediated method were also used. 

 After synthesis, Au nanoords were transferred from the original aqueous media to 

chlorobenzene following a phase trasnfer method
[17]

 described in the second chapter of this 

thesis, section 2.5  

4.2.2. Droplet deposition of Au nanorods solution 

 A small aliquot (10 µL) of Au nanorod chlorobenzene solution ([Au] = 1-5 nM) was 

deposited onto SiO2  substrate, and left to evaporate in free air over 20 min. Solvent 

evaporation resulted in formation of vertical assemblies 

4.2.3. Characterization of vertical array 

 Scanning electron microscopy (SEM) images of nanorods vertical arrays were 

acquired using a field emission SEM (JSM-6700F, JEOL UK Ltd.) operating at beam 

voltages of 5 kV. Optical image were acquired with an optical microscope (Zeiss axioscop II) 

equipped with a CCD camera (Optronics DEI-750) using a 100 W halogen lamp as 

illumination source.  
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4.3. Results and Discussion 

4.3.1. Synthesis of overgrown nanorods 

 Au overgrown nanorods (ONRs) were synthesized by a combined seed-

mediated/overgrowth method described by Marzán and co-workers
[16]

.  The process consisted 

in step additions of reducing agent ascorbic acid to a solution of nanorods obtained by seed 

mediated method. The excess ascorbic acid reduced the Au (I) ions left unreacted in the 

nanorod solution, leading to isotropic growth of the nanorods.  

 

Figure 70 a) Evolution of the UV VIS absorbance spectrum of the gold nanorods water suspensions 

along the overgrowth process. b, SEM image of Au nanorods after overgrowth process, c,d) 

histograms of the Au nanorods c) diameter anddc) length before (red bars) and after overgrowth 

(blue bars). 

 Figure 70a shows UV-vis spectra of nanorods solutions after subsequent additions of 

ascorbic acid. A gradual increase in the intensity of the longitudinal band was observed in 

combination with a slight blue shift from 720 nm (black curve) to 690 nm (pink curve). These 

changes allowed the monitoring of the growth process, which was considered complete when 

no further changes in the UV-vis spectrum were detected upon addition of ascorbic acid.  

 

 Figure 70 b,c show statistical analysis of nanorod dimensions obtained from SEM 

images of suspensions of Au nanorods before (red bars) and after (blue bars) overgrowth 

process. Nanorods grew from average size 15 ± 2 nm × 40 ± 3 nm (AR) = 2.7 to a final mean 

size of 23 ± 3 nm × 55 ± 3 nm, aspect ratio (AR) = 2.3. Together with the changes in 
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dimension, original Au nanorods rounded ends were transformed into flat ends along the 

process, as can be appreciated in the SEM images of Figure 70d,e.  

 Prior to deposition on solid substrates, nanorods were transferred into chlorobenzene 

following the method reported by Chen and co-workers
[24]

 and described in the chapter two 

of this thesis, section 2.5. 

4.3.2. Formation of vertical superstructures  

 Ordered arrays were obtained by deposition of overgrown nanorods 

chlorobenzene solutions onto an arbitrary substrate (usually SiO2), followed by 

evaporation of the droplet under free air over 20 min (process illustrated in the 

schematic of Figure 71a). 

 Figure 71b shows a low magnification SEM image of the dried droplet obtained by 

deposition of (10µl, 14 nM) Au nanorod chlorobenzene solutions onto a SiO2 substrate 

showing uniform distribution of material within the droplet. A closer observation of formed 

structures (Figure 71c) revealed that nanorods assembled into domains of average size 20 

µm
2
, uniformly covering ca. 95% of the droplet surface. High SEM magnification images of 

an individual domain (Figure 71d) showed formation of a 2D solid and highly ordered phase 

where nanorods aligned with their long axes perpendicular to the substrate. The nanorods 

were organized into closely packed hexagonal monolayer arrays, as revealed by the fast 

Fourier transform analysis showed as inset in Figure 71d. Evidence of monolayer formation 

is shown in Figure 71e, depicting the edge of an isolated nanorod domain. 
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Figure 71 a) Schematic of the self-assembly of Au nanorods into vertical arrays. b-e) SEM images of 

vertical arrays formed on SiO2 substrate by evaporation of Au nanorod chlorobenzene suspensions; 

b) Low magnification image of the dried droplet; c) Domain formation within the dried droplet; d) 

High magnification image of an individual domain showing ordered hexagonal assemblies. Inset: 

Fast Fourier transform of the image.  e) Image of the border of a domain showing evidence of 

monolayer formation.  

 In order to clarify the role played by the organic solvent in the assembly mechanism 

we performed droplet evaporation of aqueous suspensions (10 µl, 14 nM) under the same 

experimental conditions (ie. free air). Droplet evaporation of aqueous suspensions resulted in 

formation of disordered multilayer vertical and horizontal aggregates which accumulated at 

the periphery of the droplet, in agreement with coffee-stain mechanisms
[18]

 (see Figure 72), 

and low density mixed parallel and vertical assemblies formed in the central area of the 

droplet (not shown).  
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Figure 72 SEM images of nanorods deposited on a SiO2 substrate after evaporation of a (10 µl, 

14nM) aqueous suspension. a) Low magnification. b) High magnification. 

 The compactness and high degree of order obtained using chlorobenzene were 

attributed to their physico – chemical differences with the water
[19, 20]

. We attributed 

the results obtained with chlorobenzene to the lower surface tension, viscosity and 

dielectric constant of this solvent. These factors promoted a higher degree of ordering 

by offering less resistance to the domain movement thus allowing more nanorods to be 

at an equilibrium position and assemble together in the solution before droplet 

evaporation. 

4.3.3. Effect of experimental parameters  

 With the aim to understand the mechanism of vertical superstructure formation, 

investigation of the effects played by the following parameters was undertaken: 

nanorod aspect ratio and substrate, nanorod concentration, surfactant concentration, 

and evaporation rate.   

 Influence of the substrate and nanorod size on the assembly process 

 Regarding the effect of substrates, vertical superstructures of comparable high order 

were obtained from droplet evaporation on SiO2, glass and glass/ITO substrates with 

calculated contact angles 52°, 40º and 72° respectively (data no shown). 
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Figure 73 a,b) statistical analysis of the diameter and length  of Au nanorods a) mean diameter 23 ± 

2 nm, mean length 53 ± 3 nm, AR = 2.3, SPR= 670 nm; b) mean diameter 19 ± 2 nm, mean length 59 

± 2 nm, AR = 3, SPR= 711 nm; c,d) SEM images of vertical arrays formed in free air evaporation of 

chlorobenzene droplets (10µl, 14nM) of nanorods with aspect ratio c) 2.3; d) 3.  

 The droplet evaporation of Au nanorods dispersed in chlorobenzene generated also 

ordered assemblies from nanorods of different sizes. Vertical arrays were successfully 

obtained using Au nanorods of aspect ratios 2.3 and 3. Nanorods were synthesized by small 

variation of the basic seed-mediated syntheses and were subsequently overgrown by addition 

of ascorbic acid. Figure 73a,b shows statistical analysis of nanorod dimensions obtained 

from SEM images of diluted suspensions. Nanorods displayed the following sizes: 23 ± 2 nm 

× 53 ± 3 nm, AR = 2.3, 19 ± 2 nm,× 60 ± 2 nm, AR = 3.. The position of the maximum of the 

longitudinal mode was 670 and 711 for aspect ratios of 2.3 and 3, respectively. SEM images 

of vertical arrays obtained from the three nanorods are shown in Figure 73c-d. Overall the 

nanorod dimension and aspect ratio did not affect the assembly process. Equally ordered 

vertical arrays were produced in all cases proving the robustness of the assembly method in 

the range of size and aspect ratio experimented. 

 Influence of nanorod concentration on the assembly process 

 Ordered assemblies formed across a relatively large range of Au nanorod 

concentrations, between 1.4 nM and 14 nM. The increase in concentration affected the size of 

the deposited dried droplet, which varied from 1.5 mm in diameter to 5 mm in diameter, 

respectively (see photographs of the droplet in Figure 74). 



Chapter 4 

 

98 

 

 

Figure 74 Photographs of dried droplets obtained from Au nanorods chlorobenzene solutions of 

decreasing concentrations (14 nM to 1.5 nM) 

Domain size, density and compactness were also found to be dependent on the initial 

nanorod solution concentration. Figure 75 reports increasing magnification (top to bottom) 

SEM images of droplets obtained from Au nanorod solution concentrations 1.5 nM, 3 nM, 6 

nM and 14 nM (left to right). At low concentrations, nanorods arranged vertically into 

domains of 2 µm
2
 average size (Figure 75a). The density of formed domain was low and high 

density of empty areas was found upon droplet evaporation. At concentrations 3 nM and 6 

nM domains grew to an average size of 20 µm
2
. Also domain concentration grew and was 

accompanied by a reduction of empty areas between domains (Figure 75b,c). Finally, for 

concentrations of 14 nM individual domains merged uniformly covering the entire area of the 

droplet (Figure 75d). Overall, the increase in nanorod concentration caused the formation of a 

higher number of domains with larger size. 

In contrast with the changes occurring in domain size and compactness, the ordering 

of nanorods inside the domains was not affected by changes in nanorod concentration, 

resulting in formation of highly ordered vertical arrays in the whole range of explored 

concentrations (1.5 nM – 14 nM) (Figure 75 bottom row). This suggests that the assembly of 

nanorods into vertical configurations was highly favourable and occured on a fast time scale 

even at low nanorod concentrations. Therefore high nanorod concentration is no necessary to 

trigger the assembly but to promote the formation of more compact and larger domains. Our 

findings are in contrast with what is reported in literature where application of long and 

controlled evaporation times are reported to be essential to the formation of ordered arrays
[14]
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Figure 75 Low and high magnification SEM images of vertical arrays on a SiO2 substrate formed by 

evaporation in free air (20 min) of 10 µl droplets of Au nanorod chlorobenzene suspensions of 

concentrations a) 1.5 nM ; b) 3 nM ; c)6nM; d) 14nM.   

 In order to calculate the increase in surface coverage correlated to the progressive 

increase of Au nanorod solutions, reflection optical microscopy images of dried droplets were 

acquired. Figure 76 shows optical images of dried droplets obtained from Au nanorod 

solutions between 1.5 nM and 14 nM. Three areas were identified with different color 

intensities. Bright gold areas corresponded to areas where the nanorods aligned vertical to the 

substrate. Dark gold areas corresponded to nanorods lying flat on the substrate. Black areas 

where empty spaces, corresponding to background reflection. Surface coverage was defined 

as the ratio between the area occupied by the vertical arrays (bright gold areas) and the total 

area of the image and was calculated from the optical images by Image J program. Domain 

surface coverages of 34 %, 65%, 70% and 94% were calculated for Au nanorod 

concentrations of 1.5 nM, 3 nM, 6 nM and 14 nM, respectively.  
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Figure 76 Optical microscope images of vertical arrays on a glass cover slips formed by evaporation 

in free air (20 min) of 10 µl droplets of Au nanorod chlorobenzene suspensions of concentrations a) 

1.5 nM ; b) 3 nM ; c)6nM; d) 14nM 

 Influence of surfactant concentration  

 The concentration of CTAB is known to play an important role on the self-assembly 

process of Au nanorods with reports in literature that higher CTAB concentrations are 

favorable to formation of better assemblies
[14]

. In contrast, our data showed that the best 

quality of assemblies (in terms of surface coverage and ratio between vertical nanorod 

domains and deposited horizontal nanorods) formed when the CTAB concentration was kept 

closer to the low value of 0.1 mM. Figure 77b-e show optical reflection images of dried 

droplets obtained from Au nanorod solutions between 1.5 nM and 14 nM. The images were 

used to estimate the surface coverage occupied by formed domains for nanorod solutions of 

increasing concentrations at CTAB concentration 0.35 mM. Domain surface coverage of 

32%, 51%, 57% and 66% were calculated for Au nanorod concentrations of 1.5 nM, 3 nM, 6 

nM and 14 nM, respectively. Surface coverage obtained for nanorod of increasing 

concentrations at CTAB 0.1 mM and 0.35 mM is summarized in plot of Figure 78. 
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Figure 77 Optical microscope images of vertical arrays on a glass cover slips formed by evaporation 

in free air (20 min) of 10 µl droplets with CTAB concentration 0.35mM and  Au nanorod 

concentrations a) 1.5 nM ; b) 3 nM ; c) 6nM; d) 14nM. Insets: High magnification SEM images of the 

vertical arrays.  

 The plot of the figure reports that at 0.1 mM CTAB concentration the surface covered 

by vertical arrays increased from 34% to 94% as nanorod concentration increased from 1.4 

nM to 14 nM, when CTAB concentration was increased at 0.35 mM surface coverage values 

increased only from 34 to 66% as nanorod concentration increased from 1.4 nM to 14 nM. 

The fact that nanorods could not be successfully transferred into organic phase at CTAB 

concentrations lower than 0.1 nM or higher than 0.35 nM, prevented the exploration of larger 

CTAB concentration ranges. 

 

Figure 78 Surface Coverage of vertical arrays obtained by free air evaporation of 10 µl droplet with 

variable Au nanorods concentration and CTAB concentrations 0.1mM (blue curve) and 0.35 mM (red 

curve).   
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  Variation of TOAB concentration from the 50 mM value used for phase transfer did 

not affect the final degree of order obtained. However, the concentration of TOAB affected 

the stability of nanorod chlorobenzene suspension, which was stable for over two weeks with 

[TOAB] = 50 mM and for less than a week at lower TOAB concentrations 

 Influence of evaporation rate  

 In order to investigate the effect of the evaporation rate, deposited droplets 

were covered with a petri dish in order to slow down the evaporation to ca. 3 h. Under 

these conditions nanorods self-assembled into compact and well ordered vertical 

arrays only on the periphery of the droplet, in an area corresponding to ca. 25% of the 

entire droplet area. 

 

Figure 79 a) SEM image of assembly obtained by slow evaporation of nanorod chlorobenzene 

solutions ([Au nanorods] = 6 nM). b) SEM images of assemblies obtained at the periphery 

(top right). c) SEM image of assemblies obtained at the central area. 

 Figure 79 displays a low magnification SEM image of a dried droplet obtained 

by slow evaporation of a 6 nM Au nanorods chlorobenzene suspension. As can be 

seen, nanorods assembled vertically at the periphery of the ring, within the marked 

area (see Figure 79b). Outside the marked area, nanorods mainly aligned side-to-side 

horizontal to the substrate were found, as shown in Figure 79c.  

 Nanorod ordered vertical arrays formed at the periphery of the droplet in the whole 

range of concentrations (1.5 nM – 14 nM). Domain size and compactness were affected by 

the initial concentration of nanorods as already reported for the fast evaporation process. 
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Figure 80 Low and high magnification SEM images of vertical arrays on a SiO2 substrate formed by 

controlled evaporation under a petri dish  (3h) of 10 µl droplets of Au nanorod chlorobenzene 

suspensions of concentrations a) 1.5 nM ; b) 3 nM ; c)6nM; d) 14nM. 

 SEM images obtained from the periphery of slow evaporated dried droplets (Figure 

80) show that at concentration 1.5 nM nanorods arranged vertically into domains of 2 µm
2
 

average size with gaps between domains of ca. 200 nm (Figure 80a). At concentrations 3 nM 

domains grew to an average size of 10 µm
2
 and gaps were reduced to a size of ca. 10 nm 

(Figure 80b). Finally, for concentration 6 nM and higher domains merged covering the 

periphery of the droplet with almost no gaps (Figure 80c,d). As occurred with the fast 

evaporation process, nanorods inside the domains were highly ordered in the whole range of 

concentrations explored (Figure 80, bottom row).  

 Analogously to statistical analysis performed on fast evaporation droplets, optical 

miscroscopy in combination with image J program was used to calculate the surface coverage 

obtained from the slow evaporation process at different nanorod concentrations. Calculations 

were performed with optical images taken at the periphery and center of the droplet, 

respectively. Optical images used for statistical analysis are reported in Figure 81a 

(periphery) and Figure 81b (center). At the periphery of the droplet coverage increased 

slightly from 78% to 83% when nanorod concentration increased from 1.4 nM to 14 nM, at 

the center of the droplet the area occupied by vertical arrays grew from 16% to 81% in the 

same range of concentrations.  
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Figure 81 optical microscope images of a) Periphery; b) central area of dried droplets obtained by 

slow evaporation of Au nanorod chlorobenzene suspensions of concentrations a1,b1) 1.5 nM ; a2,b2) 

3 nM ; a3,b3) 6nM; a4,b4) 14nM.  

 Surface coverage values achieved with slow evaporation method for different 

nanorods concentration ([CTAB] = 0.1 mM) are summarized in Figure 82 (black curves). 

From these data it was evident that at high nanorod concentrations the surface coverage of 

vertical arrays in the center of the droplet (black dashed curve) was equivalent to the 

coverage obtained at the periphery (continuous black curve), resulting in coverage of entire 

droplet by vertical arrays. For comparison the coverage calculated for free air assembly is 

also reported in Figure 82 as a green line. Again at high nanorod concentration the two 

evaporation methods produced equivalent surface area coverage. 

 

Figure 82 Percentage of the droplet covered by vertical arrays obtained by slow evaporation, at the 

periphery (black continuous curve) and the center (black dashed curve) of the droplet. Green curve 

shows the coverage obtained by fast (free air) evaporation. 
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4.3.4. Mechanism of Au nanorod self-assembly 

 Our experiments showed than vertical superstructures with a high degree of 

order can be obtained from chlorobenzene suspensions of nanorods. Observation of 

the evaporation process revealed that nanorods organized into vertically aligned 

domains at the interface between solvent and air.  

 

Figure 83 a) Snapshots of drying stages of a ONRs droplet (10µl, 14nM) deposited on glass 

coverslip; b optical reflection images of drying droplet showing progressive formation and 

growth of nanorod domains.  .   

 Snapshots of evaporation stages for a droplet (10µl, 14nM) deposited on a glass 

surface (Figure 83a) displayed a colour transition from red to gold associated to the 

progressive organization of nanorods into vertical arrays. A modest shrinking of the 

droplet diameter from 7 mm to ca. 5 mm was also observed upon solvent evaporation. 

Figure 83b shows optical reflection images of an evaporating droplet, highlighting the 

formation and growth of nanorod domains. 

 The assembly of the nanorods side to side into vertical superstructures was ascribe to 

a balance between repulsive electrostatic and steric forces and van der Waals attractive 

hydrophobic interactions between the CTAB/TOAB alkyl chains deposited on the surface of 

Au nanorods. Supporting our observations  Xie and co-workers
[14]

 and Liu and co-

workers
[13]

 have reported studies where the nanorods side to side assembly 

configuration resulted energetically favourable over the end to end configuration  
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 From images of Figure 83 and all information gathered from optical and 

electron microscopy analysis of dried droplets we hypothesise the following 

mechanism of nanorod assembly and domain growth.  

 

Figure 84 Schematic of the self-assembly process of Au nanorods into vertical arrays. a) Nanorods 

initially dispersed inside the droplet. b) Formation of the first vertical arrays and phase segregation 

at the interface from the bulk solvent. c) Growth of former domains and addition of new ones to the 

interface. d) Shrinking of the droplet and compacting of the domains.  

 Initially nanorods were uniformly dispersed in the chlorobenzene suspension 

(Figure 84a). Due to fast evaporation rate, the meniscus of the droplet decreased 

quickly and produced a local increase of nanorod concentration at the liquid-air 

interface. This local increase in concentration triggered the assembly of nanorods. As 

result within 5-10 minutes of droplet deposition a phase segregation process
[21]

 

occurred where vertical arrays can be seen at the air-solvent interface as continuous 

gold layer (Figure 83 b1,b2) and is illustrated in Figure 84b. This same kind of self-

assembly on interfaces by phase segregation have already been reported using other 

nanostructures by other authors
[20, 21]

  

 Once on the interface, vertical arrays of nanorods are kept perpendicular thank 

to the torque force of surfactant molecules occupying the external surface of nanorods 

(Figure 84b). Finally, as the solvent evaporation continuous, formed assemblies grew in size 

and density and new domains reached the air-solvent interface forming a continuous gold 

layer as can be seen in Figure 83b3 and illustrated in Figure 84c. The high electrostatic 

repulsion between the end of the nanorods is thought as the most probable cause of 
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monolayer formation
[14]

. Towards the end, shrinkage of the droplet brought formed domains 

close to each other, resulting in formation of compact assemblies upon droplet evaporation 

(Figure 84d). 

4.4. Summary and Conclusions 

 In conclusion, we have used droplet evaporation methods for the facile and fast 

fabrication of vertical superstructures. Droplet evaporation of nanorods dispersed into 

chlorobenzene solutions led to formation of large area ordered arrays where nanorods 

assembled vertical into monolayer domains. The assembly process proceeded on a fast 

time scale (20 min) and did not necessitate strict control of experimental parameters. 

Extensive investigation of experimental parameters was carried out showing that vertical 

arrays formed over wide nanorod concentration ranges and with nanorods of slightly different 

aspect ratios. Fast evaporation, low CTAB and high nanorods concentration emerged as 

the optimum condition to form the vertical arrays. The mechanism of droplet evaporation 

was followed by optical microscopy and was explained on the basis of fast organization of 

nanorods into domains at the interface between solvent and air. 
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Chapter 5 

SERS performances of Au nanorod 

superstructures immobilized on rigid 

substrates 

 A stamping process has been developed to immobilize horizontal and vertical Au 

nanorod arrays fabricated on arbitrary rigid substrates. The method, based on a simple 

stamping process, was developed to improve the otherwise poor adhesion of nanorod arrays 

on rigid supports. The potential of Au nanorod immobilized substrates as SERS probes was 

investigated using model molecule 4-aminobenzenethiol (4-ABT), for which enhanced signals 

where obtained compared to the Raman signals of the bulk molecule. Enhancement factors of 

the order of 10
4
 and 10

5
 were calculated for horizontal and vertical arrays, respectively. 

Quantitative Raman detection of 4-ABT was obtained with detection limits in the nM 

concentration range. Fabricated arrays displayed good stability and uniformity, showing 

their potential as sensing platforms for plasmon-induced optical molecular detection 
3
. 

 

                                                 

3
 This work has been published as: “Surface-Enhanced Raman Scattering of 4-

Aminobenzenethiol on Au Nanorod Ordered Arrays”, Martín.A, Pescaglini.A, Schopf.C, 

Scardaci.V, Coull.R, Byrne.L, Iacopino.D, J. Phys. Chem. C, 2014, 118(24), pp 13260-

13267. 
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5.1. Introduction 

 Surface-Enhanced Raman Scattering (SERS)
[1-3]

 of analytes adsorbed on metal 

nanostructures is a powerful tool for collecting molecular chemical information. It is widely 

accepted that SERS enhancement comes from two contributions: chemical effects (CM) and 

electromagnetic effects (EM)
[4-11]

. CM effects result from charge transfer mechanisms
[4, 5, 8, 12]

 

between analyte molecules chemisorbed at the metal substrate. EM enhancements are due to 

the collective excitation of the surface plasmons of the metal nano-structures by incident 

light
[13-15]

. Although it has been shown that SERS can be observed for molecules adsorbed on 

isolated metal nanostructures, the largest enhancement factors are obtained in  the gaps of 

closely spaced nanostructures (named “hot spots”), due to the coupling of localized surface 

plasmons
[16]

. Of all possible nanostructure shapes, Au nanorods are especially suitable for 

SERS applications as they offer strong plasmonic fields while exhibiting excellent optical 

tunability and biocompatibility
[17, 18]

. Theoretical work by Schatz and co-workers
[19]

 has 

calculated the greatest E-field enhancement at the end of isolated nanorods compared to other 

nanoparticle shapes. Moreover, its dimensional anisotropy gives nanorods the ability to 

assemble into different alignment configurations. Thus, horizontal or vertical arrays with end-

to-end or side-to-side assembly, where large E-fields between neighboring nanorods can be 

coupled, constitute attractive geometries for SERS.  

 One of the key challenges for the use of Au nanorods as SERS platforms is the limited 

availability of methodologies for the rational organization of nanorods into well-defined 

arrays, which would allow fabrication of SERS substrates with the high level of uniformity 

and robustness required for analytical detection. To date, a number of self-assembly 

techniques have been used for the fabrication of ordered Au nanorod arrays such as capillary 

and convective assembly
[20]

, electrostatic interactions
[21]

, template methods
[22]

, covalent 

bonding
[23]

 and oblique angle deposition
[24, 25]

. Recently droplet deposition has emerged as a 

promising technique for fabrication of SERS substrates
[26-29]

. For example, detection of 

cocaine derivatives and food contaminants has been achieved using vertical arrays formed by 

slow evaporation of highly concentrated Au nanorod aqueous solutions
[27, 29]

. However, 

further progress on the order, assembly area and reproducibility are necessary to enable metal 

nanorod-based SERS substrates to provide low limits of detection, chemical stability and 

reproducibility of results required for analytical detection. 
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 This chapter describes a stamping process to immobilize and clean horizontal arrays 

(HA) and vertical arrays (VA) of Au nanoords and overgrown Au nanorods prepared by 

droplet deposition of chlorobenzene suspensions (see Chapter 3 and 4). The potential of such 

arrays as SERS substrates was investigated using model molecule 4-aminobenzenethiol (4-

ABT). Both substrates gave enhanced signals compared to the signals of the bulk molecule. 

Finite-difference time-domain (FDTD) methods were used to simulate the electromagnetic 

fields in horizontal and vertical array and enhancement factors (EF) were obtained. Finally 

Quantitative detection of 4-ABT was performed on vertical arrays which showed 

intensity/concentration logarithmic dependence between 0.1 mM and 100 pM. Arrays also 

displayed good uniformity and good temporal stability under continuous laser irradiation. 
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5.2. Experimental section 

 Two kinds of nanorods were used along this chapter, nanorods A3 of dimensions 

13x44 nm (A.R: 3.1) synthesized by seed mediated methods (detailed synthesis in section 

2.1.5), and nanorods A5.2 of dimensions 23x55 nm (A.R:2.4) generated by overgrowth of 

previously seed mediated synthesized Au nanorods of dimensions 15x40 nm (see Chapter 4). 

5.2.1. Stamping Process 

 Horizontal gold nanorods arrays were fabricated by controlled evaporation (see 

Chapter 3) of 13x44nm AuNRs chlorobenzene dispersions (10µl, 6nM). Fabricated arrays 

were transferred intact onto transparent supports by placing a glass cover slip onto the 

original cover slip support and pressing the two surfaces together during c.a. 5 s. Excess of 

organic matter was removed by immersing glass-nanorod arrays in isopropanol for 2 h, 

followed by multiple rinses with fresh isopropanol.  

 Vertical Au nanorods arrays were fabricated by droplet deposition (see Chapter 4) of 

23x55 nm Overgrown AuNRs chlorobenzene dispersions (10µl, 14nM) nanorods. Fabricated 

arrays were also transferred onto cover slips by stamping method and cleaned following the 

same procedure used with the horizontal arrays. 

5.2.2. Characterization of arrays 

 Electron Microscopy 

 Scanning electron microscopy (SEM) images of vertical and horizontal nanorods 

arrays immobilized on cover slips were acquired using a field emission SEM (JSM-6700F, 

JEOL UK Ltd.) operating at beam voltages of 5 kV.  

 Optical characterization 

 Transmission spectra of gold nanorod arrays were acquired with an inverted IX-71 

Olympus microscope with a 100X objective. The sample was illuminated with a 100 W 

halogen lamp. The light collected by the objective was directed into the entrance of slit of a 

monochromator (SP-300i, Acton Research) equipped with a thermoelectrically cooled, back 

illuminated CCD (Spec10:100B, Princeton Instruments) for spectra acquisition. The sample 

polarization rate was determined by a polarizer placed between the lamp and the sample. 

Spectra were typically recorded using an integration time of 1-10 s. The extinction was 
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calculated according to Lambert-Beer’s law: A= -log10(I/I0) with I being the sample 

spectrum and I0 being the blank spectrum taken from a nearby clean area on the substrate. 

  

5.2.3. SERS acquisition 

 Raman spectra were obtained from a Renishaw Raman system with excitation 

wavelength at 514 nm and from a Horiba Jobin-Yvon system with excitation wavelength at 

633 nm. Laser power values were 1.5 mW and 15 mW, respectively. In both systems the laser 

beam was focused onto a spot of 5 µm in diameter with an objective microscope at a 

magnification 50X. Acquisition time was usually 30 s. To obtain SERS spectra, Au nanorod 

arrays deposited on glass cover slips were immersed in 4-ABT solutions (MeOH, 0.1 mM – 

100 pM, 20 h). Substrates were rinsed with MeOH in order to remove unbound 4-ABT and 

gently dried under N2 stream.  
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5.3. Results and Discussion 

5.3.1. Stamping of gold nanorods arrays on glass substrates 

 Horizontal and vertical Au nanorods arrays (HA) and (VA) were fabricated following 

a method illustrated in Figure 85a,b. For simplicity only the formation of VA is 

schematically represented. The formation of HA followed an analogous mechanism. The 

fabrication process comprised two steps: a) formation of the nanorods arrays by controlled 

evaporation of a droplet (10µl) of Au nanorods chlorobenzene suspension (Figure 85a), and 

b) stamping of the resulting nanorod array on a receiving support (Figure 85b). 

 

Figure 85 Formation of vertical arrays by combined droplet evaporation/stamping technique; a1-3) 

droplet evaporation process; b1-3) stamping and cleaning of Au nanorod arrays on a receiving 

substrate. c) Images of the VA on a cover slip c1) before stamping, c2) after stamping. 

  Nanorod arrays were obtained by droplet evaporation of Au nanorod chlorobenzene 

solutions, as described in details in chapters 3 and 4 (Figure 85a). Solvent evaporation of the  

chlorobenzene solutions resulted in formation of highly ordered superstructures. However, 

during solvent evaporation a phase separation process occurred resulting in deposition of 

excess organic surfactant and organic residues between the nanorod array and the support 

(Figure 85a3). This residual deposit made fabricated arrays labile, easy to damage and easy 

to detach from the support.  In order to improve adhesion of arrays to the support and clean 

off residual organic matter an additional stamping process was introduced, as shown in 

Figure 85b. Specifically, a receiving support (glass coverslip) was pressed on the original 

cover slip containing the arrays for 5 s (Figure 85b1). Nanorod arrays were transferred intact 

onto the glass support along with part of the residual organic matter (Figure 85b.2), which 
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was eliminated by immersion in isopropanol, followed by multiple rinses with clean 

isopropanol (Figure 85b.3). 

 

Figure 86 a,b) SEM images of arrays obtained by droplet evaporation of Au nanorods chlorobenzene 

suspensions and stamping of the dried droplet on glass coverslip support; a) horizontal  arrays 

formed by Au nanorods (24× 44 nm); b) vertical arrays formed by overgrown nanords (23× 55 nm). 

c) SEM images of nanorods arrays before stamping. c1) Horizontal, c2) Vertical  

 Figure 86b1 shows a low magnification image of vertical arrays stamped on a glass 

coverslip showing how the entire area of the deposited droplet was transferred onto the host 

support. A closer inspection (Figure 86b2) confirmed that nanorod arrays were successfully 

transferred on the host support with minimum alteration of their geometrical order. In 

comparison with droplet evaporated superstructures (Figure 86c2) only occasional 

irregularities and formation of crack patterns occurred on the lattice as result of the stamping 

process. Figure 86a shows equivalent SEM images for horizontal arrays, whereas Figure 

86c1 shows SEM image of droplet deposited horizontal arrays. In general, both vertical and 

horizontal stamped nanorod arrays were chemically stable, did not suffer from handling 

damages and showed resistant to harsh environments and chemical conditions (ie. contact 

with concentrated acid and strong oxidizing solutions)   
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5.3.2. SERS of 4-ABT deposited on horizontal and vertical arrays  

 Potential use of horizontal and vertical arrays as SERS platforms was investigated 

using 4-Aminobenzenethiol (4ABT) as test molecule. 4-ABT is a molecule frequently used to 

investigate the potential use of noble metal nanostructures as SERS platforms 
[9, 11, 30, 31]

 

because its Raman spectrum is qualitatively different than its SERS spectrum. When linked to 

appropriate nanostructures the 4-ABT SERS spectrum presents two kinds of peaks. The 

peaks associated to vibrational modes of symmetry a1 (Raman active) and some peaks 

associated to vibrational modes of symmetry b2 (theoretically not Raman active).  

 These newly appeared b2 peaks are present in the SERS spectra thanks to charge 

transfer phenomenon between the 4ABT molecule and the noble metal nanostructure, which 

is also the mechanism behind the chemical enhancement (CM) of the SERS technique
[4, 8, 10]

. 

Almost all the analytes are sensitive to the CM effect, but the rising of new peaks in SERS 

spectra is a quiet rare property that makes 4-ABT an ideal molecule to study the EM and CM 

produced by noble metal nanostructures.  

 

Figure 87 a) SERS spectra obtained from parallel and vertical arrays immersed in 4ABT methanol 

solution (0.1mM) for 20h. b) 4-ABT molecule. c) Table with Raman band frequencies of bulk 4-ATP 

and SERS band frequencies of 4-ABT adsorbed on parallel and perpendicular substrates; [*]  = 
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stretching,  = bending,  = wagging. Letters in parenthesis indicate the vibrational symmetry. b2 

modes are label with a green star.    

 Figure 87a (black spectrum) shows the Raman spectrum of solid 4-ABT deposited on 

glass coverslips obtained using 633 nm radiation excitation source. The spectrum was 

dominated by a prominent peak at 1086 cm
-1 

assigned to the C-S stretching mode. A medium 

peak at 1591 cm
-1 

assigned to C-C stretching modes was also observed. The spectrum also 

shown three very weak peaks at 1007, 1178 and 1495 cm
-1

 assigned to C-C and C-C-C 

bending, pure C-H bending and a combination of C-C stretching and C-H bending, 

respectively. All detected peaks were associated with the characteristic a1 vibrational modes 

in plane, in phase modes of the 4-ATP molecule, as summarized in the first column of the 

table of Figure 87c. 

 In order to obtain SERS spectra, fabricated nanorod arrays were immersed in 4-ABT 

solutions (MeOH, 0.1 mM) for 20 h. SERS spectra obtained from horizontal and vertical 

arrays using a 633 nm laser as excitation source are shown in Figure 87a (blue and red 

spectra). SERS spectra obtained from horizontal and vertical arrays showed markedly 

different characteristics compared to the Raman spectrum of the bulk material. The two a1 

modes appearing at 1086 cm
-1

 and 1591 cm
-1

 in the powder spectrum were also found in the 

SERS spectra but shifted at 1074 cm
-1

 and 1578 cm
-1

 in both arrays, respectively. The weak 

mode originally observed at 1178 cm
-1

 was found at 1180 cm
-1

 and 1178 cm
-1

 in horizontal 

and vertical arrays, respectively. The mode observed at 1495 cm
-1

 in the powder spectrum 

was not seen in the SERS spectra, indicating that this mode might have been buried under the 

background originated from the Au substrates.  

 In addition, three new peaks were found in the SERS spectra at 1139, 1388 and 1435 

cm
-
1. These peaks were assigned to b2 in plane, out of phase vibrational modes and were 

attributed to metal-molecule charge transfer related to a chemical enhancement process.
[4, 7-

11]
. A closer examination of the SERS spectra obtained from vertical and from horizontal 

arrays revealed that the relative intensities of various Raman bands changed between the 

spectra. We hypothesized that the observed changes in relative intensities were due to CM 

mechanisms (explained in more detail in section 4.3.4 of this thesis). The enhancement of b2 

modes is also indicative of an orientation of 4-ABT molecules perpendicular to the Au 

arrays
[11]
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5.3.3. Extinction spectra of Au nanorods Arrays 

 The examination of SERS spectra reported in Figure 87 showed a higher absolute 

intensity of the SERS spectra obtained with vertical arrays compared to the SERS spectra 

obtained with horizontal arrays. This difference could be ascribed to the different position 

and intensity of the plasmon resonance peak of the two arrays. In order to prove this point, 

we measured extinction spectra of horizontal and vertical arrays (Figure 88). 

 The extinction spectrum of horizontal arrays (Figure 88a, black curve) 

measured with un-polarized light was characterized by a broad peak with a maximum 

centered at 580 nm. Spectra recorded with light polarized perpendicular and parallel to 

the direction of the nanorod longitudinal axes were characterized by narrower peaks 

centered at 580 nm (Figure 88a, green curve) and 750 nm (Figure 88a, blue curve) 

respectively. The extinction spectrum of vertical arrays (Figure 88b) was characterized 

by a broad SPR peak centered at 640 nm, which due to the vertical orientation stayed 

unmodified when recorded under polarized light.  

 

Figure 88 a) Extinction spectra of nanorods arranged in horizontal arrays measured under no 

polarized excitation conditions (black curve), polarized excitation perpendicular to the nanorod long 

axes (green curve) and polarized excitation parallel to the nanorod long axes (blue curve). b) 

Extinction spectrum of nanorods arranged in vertical arrays measured under un-polarized excitation 

conditions. Red lines indicate the wavelength of the excitation light fixed at 633 nm. Insets: 

corresponding SEM micrographs of horizontal and vertical arrays.   

 The higher extinction value (0.75 versus 0.3) and closer position of the SPR 

peak to the laser excitation wavelength (red lines in Figure 88a,b) explain the higher 

absolute intensity of SERS signals obtained with the vertical arrays.  
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5.3.4. Improvement of SERS enhancement by chemical cleaning of stamped 

arrays 

 In an attempt to further improve the SERS responses, fabricated arrays were subjected 

to a chemical cleaning in order to remove CTAB and TOAB surfactants stabilizing nanorod 

surfaces. Surfactants, present as a double layer on the shell of the nanorods, generate 

electrostatic and steric repulsion forces than difficult the binding of target molecules to the 

nanorods. Their removal resulted in generation of increased SERS signals due to i) generation 

of higher electromagnetic field between nanorods of decreased inter-nanorod distance and ii) 

better infiltration of analyte due to stronger capillary action
[29, 31]

. 

 

Figure 89 SEM images of vertical and horizontal Au nanorods arrays obtained after acid treatment 

with HCl concentrated for 2 minutes. a1-3) Vertical arrays; b1-3) Horizontal arrays 

 Figure 89a depicts different magnification SEM images of vertical arrays after 

cleaning with concentrated HCl for 2 min, showing how the overall orientation of the 

nanorods was not significantly affected by the acid treatment (Figure 89a3). Acid treatment 

was also used on horizontal arrays where loss of order caused by partial detachment of the 

AuNRs from the substrate occurred (Figure 89b). As result the corresponding SERS spectra 

did not show a significant improvement compared to the signals obtained with un-treated 

arrays.  
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Figure 90 SERS spectra obtained from 4-ABT solutions absorbed on a) IPA (1h) cleaned vertical 

arrays b) IPA (1h) and HClconc (2min) cleaned vertical arrays.  

 Figure 90b shows SERS spectra of acid cleaned overgrown AuNRs vertical arrays 

immersed for 20 h into 4-ABT solutions of decreasing concentrations. SERS signals were 

detected from solution concentrations as low as 100 pM, two orders of magnitude lower than 

the lowest concentration that could be detected with untreated vertical arrays (Figure 90a).  

 A comparison between the 4-ABT SERS spectra obtained with the three substrates: 

horizontal, vertical and acid clean vertical showed than the relative intensities of various 

Raman bands changed between the spectra (Figure 91). We hypothesized that the observed 

changes in relative intensities were due to the chemical mechanism. 

 

Figure 91 a) SERS spectra of different arrays immersed in 4ATP MeOH solutions (0.1mM, 20hours). 

Acid cleaned vertical arrays (red); IPA cleaned vertical arrays (green); IPA cleaned horizontal 

arrays (blue); Klarite commercial substrate (magenta); and 4ATP powder on a cover slip (black) as 

reference. b) Table with the intensity of the b2 peaks modes normalised against the intensity of the ν7a 

(1074 cm
-1

) peak.  
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 In order to quantify the degree of CM we divided the intensities of the b2 bands by the 

intensity of the C-S stretching band, ν7a (1074 cm
-1

). Since ν7a is enhanced mainly by 

electromagnetic effects
[7, 9, 10]

 this operation should normalized the spectra and factor out any 

EM effects to quantitatively evaluate the extent of chemical contribution. Table 2 of Figure 

91 shows the intensities of the b2 modes normalised to the ν 7a band for horizontal, vertical, 

and acid clean vertical arrays. These values (0.7, 1.1, 1.5) represent a comparative measure of 

the strength of the CM versus the EM for the different substrates. A comparison of the value 

obtained with vertical arrays (1.1) and with acid cleaned vertical arrays (1.5) shows that after 

the acid cleaning, relative intensity of the b2 peaks against the a1 peak at 1074cm
-1

 was 

increased by a 30% (table of Figure 91).  

 We argue that this difference in the relative intensity between b2 and a1 peaks is 

related to the relative intensity between the chemical and the electromagnetic enhancement, 

respectively. To fully understand this comparison, it should be remarked that the EM affect 

the intensity of every peak and the CM affect mainly the intensity of the b2 peaks.  

 Experiments reported by Kawata and co-workers
[7]

 have reported than the intensity of 

the b2 peaks in the 4ABT, is very sensitive to the chemical environment of the areas where 

the 4-ABT molecule bind to the nanostructure. In a similar fashion, we argue than the acid 

clean treatment of our substrates reinforced the chemisorption of the 4ABT molecules to the 

nanorods surfaces, increasing the efficacy of the charge transfer mechanism and therefore the 

CM effect, which increased overall the signals of the b2 peaks.  

 On the other side, the removal of CTAB molecules also generated a greater number of 

active sites available to bound 4ABT molecules, increasing therefore the average number of 

molecules that contributed to the signal of every peak. 

5.3.5. Enhancement of the electromagnetic field on the Au nanorods arrays 

 As complementary data, distribution of the electromagnetic field around the 

nanorods in the arrays was estimated from FDTD simulations. Figure 92 displays the local 

electromagnetic field enhancement surface plots for parallel and perpendicular arrays with 

inter-nanorod distance fixed at 2 nm calculated with an incident plane wave along the z 

direction (perpendicular to the substrate). The local electric field enhancement factor is 

defined as │E/E0│
2
, where │E│ and │E0│ are magnitudes of the local electric field and the 

incident field, respectively.   
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 For horizontal arrays (Figure 92a,b) cross sectional areas of a horizontal plane (x-y) 

were considered with an incident wave plane polarized along the x and y direction, 

respectively. According to the plots, the local electromagnetic field was localized in the area 

between adjacent nanorods, with the highest enhancement calculated between nanorod tips 

and a more moderated enhancement between the nanorods sides (Figure 92b). 

 

Figure 92 Electromagnetic field enhancement surface plots of nanorod arrays for wave plane 

incident along the z direction. a,b) parallel arrays on x-y plane with incident wave plane polarized 

along the x and y direction; perpendicular arrays on c) x-z plane and d) x-y plane with incident wave 

plane polarized along the x direction. 

 For vertical arrays (Figure 92c,d) the cross sectional areas of vertical (x-z plane) and 

horizontal plane (x-y) were considered, with a plane wave polarized along the x direction. 

These plots showed that in VA the local fields were highly enhanced between the tips of 

adjacent nanorods. 
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5.3.6. Calculation of the enhancement factor of vertical and horizontal 

arrays 

 A further evaluation of the SERS performances of our fabricated arrays was achieved 

by calculating the Enhancement Factor (EF), defined as the ratios of the intensities of the 

scattered radiation for SERS and normal Raman scattering per molecule 

EF = (ISERS/NSERS)/(IRaman/NRaman) 

 Where ISERS and INR are the integrated intensities of the SERS and normal Raman 

scattering spectra for 4-ABT, respectively; NSERS and NNR are the number of molecules found 

in the laser excitation area adsorbed on nanorod arrays and in bulk powder form, respectively.  

 It should be stressed that a precise evaluation of the EF is extremely difficult for large 

area substrates of slightly irregular morphology. A precise evaluation should involve a 

reliable determination of the number of molecules adsorbed on the surface within the area 

probed by the exciting radiation. In our calculations we estimated that only molecules 

adsorbed in the areas of highly enhanced field (hot spots) contributed to the EF. FDTD 

simulations of the electric field around the nanorods (Figure 92) were used to estimate the 

size of the hot spots area drawn in Figure 93 

 

Figure 93 Schematic of the hot spot areas in nanorods arranged in parallel and perpendicular 

arrays. 
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 For horizontal arrays four rectangle and four semi-spheres shared by every two 

nanorods were considered, so the hot spot area is equal to two rectangles and two semi-

spheres for each nanorod: 

  Ahorizontal = 380 nm
2
  

 For vertical arrays six rectangles along the nanorod shared by six nanorods were 

considered, so the hot spot area is equal to three rectangles for each nanorod:  

  Avertical = 225 nm
2
   

 The sampling volume used to obtain the Raman spectrum of neat 4-ABT powder was 

calculated assuming that the laser spot formed a cylinder of 10 m in diameter and 40 m in 

length (penetration depth). Therefore the illuminated volume was:  

  Volume illuminated = 3.14×10
-9

 cm
3
. 

 Since the density of 4-ABT is 1.18 g/cm
3
 and its molecular weight (MW) is 125.19 

g/mol, the number of 4-ABT molecules illuminated by the laser light is calculated to be:  

   NRaman = 1.78×10
13

. 

 Assuming that the surface illuminated by the laser is r
2
 = 3.14×(5)

2
 = 78.5 m

2
. The 

calculated number of nanorods/m
2
 is 1500 and 2200 for horizontal and vertical arrays, 

respectively. So the number of nanorods in the illuminated area is :
 

  NRs horizontal arrays illuminated =  1.1×10
5
  

  NRs vertical arrays illuminated      = 1.7×10
5
 

 The calculated surface area of each nanorod hot spots was 380 nm
2
 and 225 nm

2
 for 

horizontal and vertical arrays, respectively. So the total nanorod hot spot surface area under 

the laser spot is: 

  Area hot spot horizontal = 4.1×10
7
 nm

2
  

  Area hot spot vertical     = 3.9×10
7 

nm
2
 

 Considering that each 4-ABT molecule occupies an area of ca. 0.2 nm
2
 the effective 

number of molecules illuminated by the laser light is (4.1×10
7
/0.2):  

  NSERS hor = 2.1×10
8 
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  NSERS ver = 2.0×10
8
 

 The intensity ratio of the 7a bands at 1080 cm
-1

 in Figure 87 was measured to be: 

  ISERS / IRaman horizontal                  = 1.09 

  ISERS / IRaman vertical                       = 1.5 

  ISERS / IRaman acid clean vertical  = 5 

 Therefore the enhancement factor (EF) should be: 

  (ISERS / IRaman)x(NRaman / ISERS) horizontal              = 6.9x10
4
  

  (ISERS / IRaman)x(NRaman / ISERS) vertical                   = 8.9x10
4
  

  (ISERS / IRaman)x(NRaman / ISERS) acid clean vertical  = 4.45x10
5
  

 Values that are in agreement with the enhancement factors reported in literature for 

aggregates metal nanoparticle and nanorods systems
[32]

.  

5.3.7. Quantitative SERS detection of 4ABT 

 SERS detection achieved with horizontal and acid-treated vertical arrays was also 

used to obtain quantitative information regarding the concentration of 4-ABT in solution. 

Before each spectrum acquisition, instrumentation was calibrated using an internal Si 

reference at 521 cm
-1

 to ensure measurement comparability. 

 Plots of Figure 94 show the intensity of the 1074 cm
-1

 band against 4-ABT 

concentration. Signal became saturated at higher concentrations, which arose from the 

saturation of the active sites of the nanorod arrays. Figure 94b, reports log plots of I1074 

against a series of 4-ABT concentrations. Good logaritmic relationship was found with R
2
 = 

0.99 in the concentration range 10
-4

 - 10
-8

 M. 
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Figure 94 Variation of the relative intensity of C-S stretching band, ν7a, with 4-ABT concentration 

measured for a,b) horizontal arrays, b,c) vertical arrays. a,c) Plots with red line as a log fit to the 

data; b,d) log plots with red line as a linear fit to the data. 

 Uniformity of the fabricated arrays necessary to provide reproducible results was 

evaluated by measuring 4-ABT SERS spectra in 12 random points over an area of 5 mm 

diameter of vertical (acid-treated) array. The obtained spectra is shown in Figure 95c and 

Figure 95a, respectively.  

 

Figure 95 a) 4-ABT SERS spectra measured in 12 random points across a 5 mm diameter of vertical 

array (SD = 5.9%. ) b) Evolution of the 4ABT SERS spectra along 2.2 min laser continuous 

illumination in vertical arrays (SD = 6.1%). 

 The intensity change of the Raman band at 1074 cm
-1

 was used to calculate the 

relative standard deviation of the intensity from 12 points. A value of 5.9% was obtained, 

which showed the remarkable good uniformity of the array. This values was lower than 

reproducibility values reported in literature for nanoparticle aggregates and printed 



Chapter 5 

 

129 

 

nanoparticle arrays and comparable to values reported for ordered nanowire arrays obtained 

by nanosphere lithography
[30, 32, 33]

. 

 To investigate temporal stability of fabricated substrates SERS spectra of 4-ABT 

absorbed on vertical acid treated arrays were recorded under continuous laser irradiation for 

2.2 min, laser power of 3 mW. Spectra were recorded every 12 s and the integration time was 

10 s. Figure 95b shows the intensity change of SERS spectra over 12 measurements. A 

relative standard deviation (SD) of 6.1% was calculated by considering the variation in 

intensity of the Raman band at 1074 cm
-1

. This result indicated that the array had good 

temporal stability under standard illumination conditions, which could meet requirements of 

routine SERS measurements. 
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5.4. Summary and Conclusions 

 In conclusion, a combined droplet evaporation/stamping method was used for the 

fabrication of SERS substrates based on Au nanorods horizontal and vertical arrays. SERS 

response of both arrays was investigated using model molecule 4-ABT. Improvement of 

SERS response was obtained by cleaning the vertical arrays with HCl. EFs between 6.9×10
4
 

and 2.2×10
5
 were obtained for all fabricated arrays. Quantitative Raman detection was 

obtained for vertical arrays with detection limits in the nM concentration range. Finally 

fabricated arrays displayed good stability and uniformity, showing their potential to be 

widely used as sensing platforms for plasmon-induced optical molecular detection. 
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Chapter 6 

Feasibility of Au Nanorods plasmonic - 

flexible substrates as SERS platforms  

 SERS active flexible substrates were fabricated by droplet evaporation of Au nanorod 

solutions on rigid surfaces and subsequent stamping of assembled Au nanorods arrays on 

photographic paper (pPET) and different plastic surfaces, The SERS feasibility of flexible 

active substrates was investigated using model molecule 4-aminobenzenethiol (4-ABT), for 

which detection in the µM concentration range and Enhancement Factors (EF) of 10.
5
 As 

real-world applications detection of food contaminant Cristal Violet (CV) to sub-nM 

detection limits and trace detection of benzocaine powder by swabbing were achieved 

on pPET active substrates
4
. 

 

                                                 

4
 This work has been published as: “Flexible SERS active substrates from ordered vertical Au 

nanorod arrays”,A. Martín, J.J. Wang, D. Iacopino, RSC Advances, 2014, 4, 20038-20043. 
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6.1. Introduction 
 Large efforts have been aimed at translating the capabilities of SERS to a practical 

detection system that could be utilised for routine analysis in the field. Generally two main 

approaches are used to produce SERS active substrates: top-down approaches such as 

lithography and bottom-up approaches such as self-assembly. In both cases, despite the 

tremendous signal enhancements achieved, the high cost fabrication procedures or limited 

reproducibility and shell life have limited the use of these SERS active substrates in common 

analysis.  

  

 Flexible substrates can become an alternative 
[1]

 as they have the potential to combine 

low cost and flexibility while still maintaining sensitivity and robustness of rigid substrates. 

Flexible plasmonic SERS substrates have been fabricated using plastic,
[2-4]

 paper
[5-7] 

and 

polymer materials
[8, 9]

 as surfaces in combination with metal nanostructures constituting 

SERS active layer. Numerous methods of deposition of nanostructures have been tried, such 

as physical deposition
[10]

 and laser induced- photothermal methods
[6]

. Although highly 

sensitive SERS substrates are fabricated with these techniques, the requirement for high laser 

power or expensive equipment has limited their production in large-scale. In contrast, 

solution fabrication processes such as in situ synthesis on porous paper
[10]

, printing
[11]

 and 

dip-coating
[5]

 are preferred, since plasmonic SERS substrates are obtained with small amount 

of materials and inexpensive deposition techniques.  

 

 As well as cost and ease of fabrication, flexible substrates have been shown efficiency 

of sample collection particularly suited for real world sample analysis. For example, White 

and co-workers have achieved detection of analytes from complex samples using 

chromatographic separation on SERS inkjet-printed cellulose paper
[12]

, and SERS active filter 

paper substrates have been used for trace detection of explosives
[13]

. Swabbing the surface 

under investigation with a flexible substrate has also been proposed as a highly practical and 

efficient method to maximise sample collection. Using this technique SERS dipsticks and 

swabs fabricated by SERS inkjet-printed paper have been proposed by White and co-workers 

for efficient detection of trace chemical detection of malathion and cocaine
[14]

.  

 

  



Chapter 6 

 

137 

 

 Taking advantage of the stamping method described in the previous chapter, we used 

flexible surfaces as receiving substrates during droplet deposition/stamping method to 

fabricate flexible plasmonic SERS substrates. Large arrays of vertically aligned Au nanorods 

were formed by droplet evaporation on glass and were subsequently stamped on photographic 

paper (paper covered with a layer of polyethylene terephthalate (pPET) and polyvinyl 

chloride (PVC) surfaces. The SERS activity of the fabricated plasmonic substrates was 

investigated with model molecule 4-ABT. PPET and PVC active substrates were robust and 

could be immersed in analyte solutions for up to 20 h without degradation. Enhancement 

factors on the order of 10
5
 were achieved for these active substrates. Finally, to demonstrate 

field-based applications, sub-nM detection of food contaminant crystal violet and traces 

detection of drug-marker benzocaine traces by swabbing technique was achieved.  
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6.2. Experimental section 
 Nanorods 3.2B of dimensions 22x55 nm (A.R:2.4) were utilised along this chapter 

(detailed synthesis in section 2.2.2 of this thesis) 

6.2.1. Stamping process 

 Vertical gold nanorods arrays were fabricated by droplet deposition (see Chapter 4) of 

22x55 nm overgrowth nanorods in chlorobenzene dispersions (10µl, 14nM). Fabricated 

arrays were transferred intact onto flexible supports by placing a plastic sheet (PET, PVC or 

PDMS) on the original coverslip support and pressing the two surfaces together for c.a. 10 s. 

Excess organic matter was removed by immersing plastic-nanorod arrays in isopropanol for 2 

h, followed by multiple rinses with fresh isopropanol. 

6.2.2. Plasmonic substrates with Thin Layer Chromatography (TLC) plates 

 Another type of plasmonic substrates was developed by simple deposition of a droplet 

(5µl, 14nM) of overgrown Au nanorods in aqueous suspensions into Thin Layer 

Chromatography (TLC) plates. After a few seconds the droplet was dried leaving the Au 

nanorods dispersed in the silica matrix of the TLC plate 

6.2.3. Characterization of arrays 

 Electron Microscopy 

 Scanning electron microscopy (SEM) images of vertical and horizontal nanorods 

arrays immobilized on cover slips were acquired using a field emission SEM (JSM-6700F, 

JEOL UK Ltd.) operating at beam voltages of 5 kV. To avoid charge phenomenon from the 

substrate, a tiny quantity of gold was sputtered by an Edwards sputter coater over some of the 

sample before SEM analysis. 

6.2.4. SERS experiments 

 SERS spectra were obtained from a Renishaw in Via Raman system. A 632.8nm 

helium-neon laser was employed as an excitation source. The laser beam was focused onto 

the sample through a Mitutoyo M Plan Apo 100X objective with 0.7 N.A. Measured power at 

the sampling level was controlled at about 5mW. Acquisition time was usually 30 s  
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6.3. Results and Discussion 

6.3.1. Immobilization and cleaning of gold nanorods arrays on flexible 

substrates 

 Taking advantage of the stamping method described in the previous chapter, we used 

flexible surfaces as receiving substrates during droplet deposition/stamping method to 

fabricate flexible plasmonic SERS substrates. Vertical Au nanorod arrays were fabricated 

following a method illustrated in Figure 96.  The fabrication process comprised two 

steps: a) deposition of a nanorod droplet solution on a rigid surface followed by 

evaporation under controlled conditions (Figure 96a) and b) stamping of the obtained 

nanorod array on a receiving flexible surface Figure 96b. 

 

Figure 96 Formation of vertical arrays by combined droplet evaporation/stamping technique; a1-3) 

droplet evaporation process; b1-3) stamping and cleaning of Au nanorod arrays on a receiving 

flexible substrate .  

 Specifically, a droplet of Au nanorod chlorobenzene solution was deposited on 

a glass coverslip and left evaporate under free air conditions (T = 20 ºC, Humidity = 

70%, evaporation time = 20 minutes). As solvent evaporated, nanorods assembled 

forming a gold film at the interphase between solvent and air. Following solvent 

evaporation, assembled nanorods deposited on the glass surface covering the entire 

area of droplet (process detailed in chapter 4 of this thesis). Formed nanorod arrays 

were transferred onto flexible surfaces by stamping, following the method described in 

Figure 96b. Specifically, a flexible surface was pressed on the original glass surface 

containing nanorod arrays for 5 s (Figure 96b.1).  Nanorod arrays transferred intact on 

the flexible surface together with some residual organic matter, which deposited on 
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top of the arrays (Figure 96b2).  Nanorod arrays were cleaned by immersion in 

isopropanol (2 hours), followed by multiple rinses with clean isopropanol (Figure 

96b3).  It should be noticed that formation of vertical arrays by direct droplet 

deposition on flexible supports was achieved but the concomitant deposition of excess 

organic surfactants arising from synthesis and phase transfer processes prevented 

further practical use of such substrates. In fact, the arrays lifted from the support when 

immersed in analyte solutions, making impossible their use as SERS active substrates. 

In contrast, after stamping nanorods arrays strongly attached to flexible surfaces, thus 

allowing removal of excess organic matter 

 Figure 97 shows SEM images of nanorods vertical arrays stamped on different plastic 

substrates. Stamped arrays kept the same degree of pattern regularity than their no stamped 

counterparts, although occasional irregularities in the lattice and formation of crack patterns 

occurred as result of the stamping process. 

 

Figure 97 SEM images of arrays obtained by droplet evaporation of ONRs chlorobenzene 

suspensions and stamping of the dried droplet on flexible substrates. a) on pPET; b) on PVC; c) on 

PDMS and photography of the substrates as insets. 
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6.3.2. Feasibility of plastic-nanorods-arrays as SERS substrates  

 Performance of the plastic-NRs-arrays as SERS platforms was investigated 

using 4-aminobenzenethiol (4ABT) as test molecule. Fabricated nanorod arrays were 

immersed in 4-ABT solutions (MeOH, 0.1 mM) for 20 h. and SERS spectra were 

obtained with a 633 nm laser as excitation source. 

 Figure 98 shows a comparison between 4-ABT spectra measured on flexible 

substrates (green and blue curve) with spectra measured on stamped glass substrates 

(red curve) and commercially available Klarite substrates (black curve). 

 

Figure 98 Raman spectrum (black curve) of powder 4-ABT and SERS spectra obtained from vertical 

arrays on different substrates immersed in 4ABT methanol solution (0.1mM) for 20h 

 Absolute scattering intensity of glass substrates was higher than flexible substrates by 

a factor of ca. 3 in agreement with lower detection limits demonstrated with such substrates 

(see Chapter 5). However, SERS spectra recorded with flexible substrates showed an increase 

of the absolute scattering intensity of the a1 1074 cm
-1

 peaks of a factor of ca. 2 compared to 

klarite, confirming that the electromagnetic field generated by rough Au surfaces is lower in 

intensity than the field generated by strongly coupled Au nanorods. An even higher 

enhancement factor was observed for the 1139 cm
-1

 b2 peak (factor 8 and 16 for PVC and 

pPET respectively). This enhancement is likely associated with the strong chemical bound of 

the 4-ABT molecules linked to high surface area Au vertical arrays compared to rough Au 

surfaces (see Chapter 5).  
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 A further evaluation of SERS performances of plasmonic flexible substrates was 

achieved by calculating the Enhancement Factor (EF), defined as the ratios of the intensities 

of the scattered radiation for SERS and normal Raman scattering per molecule 

EF = (ISERS/NSERS)/(IRaman/NRaman) 

 Where ISERS and IRaman are the integrated intensities of the SERS and normal Raman 

scattering spectra for 4-ABT, respectively; NSERS and NRaman are the number of molecules 

found in the laser excitation area adsorbed on nanorod arrays and in bulk powder form, 

respectively.  For calculations the intensity of the band at 1074 cm
-1

 from spectra of Figure 98 

was used. PPET and PVC active substrates gave EF values of 1.4×10
5
 and 9.2×10

4
, 

respectively. Values that are in agreement with enhanced factors reported in literature for 

SERS active flexible substrates
[15, 16]

. For example, Bruno and co-workers obtained 

Enhancement Factors of 4×10
4 

 by direct sputtering of Au nanoparticles on PET. 

6.3.3. Use of highly ordered flexible plasmonic SERS substrates in field 

applications   

 To demonstrate the use of these active substrates for field applications, we performed 

detection of crystal violet (CV), a toxic cationic dye largely used as food colouring agent and 

food additive, and benzocaine, a readily available marker for drug with physico-chemical 

similarities to cocaine.  

 Detection of Crystal Violet at nM range 

 CV has been classified as recalcitrant molecule since it is poorly metabolized by 

microbes, is not bio-degradable and can persist in a number of environments
[16]

. For these 

reasons the minimum required performance limit (MPRL) was set for 2 mg L
-1

 (ca. 4.9 nM) 

in European Commission and US
[17]

. 

 Detection of CV is shown in Figure 99 for concentrations between 0.1 µM and 1 nM. 

SERS spectra were recorded by immersing pPET active substrates in CV solutions (water) 

for 4 h. As comparison the Raman spectrum of bulk CV in powder form is also shown in 

Figure 99. All spectra were recorded with a 633 nm excitation source. 
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 crystal violet Raman spectrum (Figure 99c, black curve) is dominated by three peaks 

in the region from 1000 cm
-1

 to 1750, a narrow and strong peak at 1617 at cm
-1

 assigned to 

the benzene rings C-C stretching and two medium and broader peaks, one at 1387 cm
-1

 

assigned to the C-N stretching and another at 1178 cm
-1

 assigned to the C-H in plane bending 

 

Figure 99 a) schematic of CV molecule. b)  photo of a 10
-6

M CV water solution containing a pPET- 

plasmonic active substrate stamped with  nanorods vertical arrays. c) SERS spectra of CV adsorbed 

on pPET active substrate. CV concentration was 100 nM (red curve), 10 nM (green curve), 1 nM 

(blue curve). Black curve is the bulk Raman spectrum of powder CV. Inset: sinusoidal change in 

intensity of the 1171 cm-1 peak with CV concentration. 

 SERS spectra obtained from CV deposited on pPET plasmonic substrates shown 

clearly those three peaks in the range of concentration from 10
-5 

M to 10
-9

 M. The detection 

limit of CV with pPET was lower than 1nM, because even the spectrum of the 1 nM sample 

had a good signal-to-noise ratio and one of the peaks at 1617 cm
-1

 was still clearly 

observable. A sigmoidal relationship between the SERS intensity and concentration of CV 

was observed (inset Figure 99) showing concentration detection from 10 µM to 1 nM. For 

the calculations the change in intensity of the 1171 cm
-1

 peak with CV concentration was 

used. The SERS intensities were mostly linear at low CV concentration. At higher 

concentration(0.1µM) a non linear response emerged, and at concentrations higher than 

0.1mM  saturation of the SERS signal occurred indicating that the adsorption of CV onto the 

arrays become saturated beyond this level
[5]

. The demonstrated ability to detect CV below the 

currently accepted levels would make possible such field-based application of our plasmonic 

flexible substrates.  
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 Detection of traces of Benzocaine by surface swabbing 

 We also performed detection of benzocaine by swabbing a surface containing traces 

of the analyte. Specifically, small amounts of benzocaine were deposited and crushed on a 

glass slide. A nitrogen gun was used to remove as much benzocaine as possible, leaving only 

traces amounts. A drop of MeOH was added to a pPET substrate which was swabbed against 

the glass slide containing benzocaine traces. The pPET was subsequently dried with N2 gun, 

rinsed again with MeOH and dried  

 

Figure 100 a)Photo illustrating the swabbing of a glass slide with benzocaine traces using a pPET-

plasmonic active substrate  b) SERS spectrum of benzocaine swabbed on a pPET active substrate (red 

curve); Raman spectrum of benzocaine powder (blue curve); Raman spectrum of pPET active 

substrate (black curve). 

 Figure 100 (red curve) shows how small amounts of benzocaine swabbed from the 

glass slide could be detected with pPET susbtrates. For comparison the Raman spectrum of 

bulk powder benzocaine (blue curve) is shown together with the blank featureless spectrum 

of pPET active substrate recorded before swabbing. 

 Benzocaine Raman spectrum (Figure 100, blue curve) presented three main peaks in 

the 800 cm
-1

 to 1400 cm
-1

 region. Two of the peaks, one at 861 cm
-1

 and one at 1171 cm
-1

 

were assigned respectively to a stretching mode and a bending in plane mode of the C-H of 

the benzene ring. The third peak, at 1277 cm
-1

,
 
was assigned to the C-N stretching mode.  

 The three peaks were present (slightly shifted to shorter Wavenumbers) in the 

benzocaine SERS spectrum obtained by swabbing the surface with our pPET plasmonic 

substrates.  The peak at 861 cm
-1

 became very broad and was barely visible from the noisy 

baseline. The peak at 1171 cm
-1

, although quiet broad, was perfectly visible over the 
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background. Finally the peak at 1277 cm
-1

 was greatly enhanced and is dominant over the full 

spectrum. The great enhancement in the intensity of the peak at 1277 cm
-1 

assigned to the C-

N bound suggest than the Benzocaine molecule bound our plasmonic-pPET substrate by the  

amine group as it was expected. 

6.3.4. Plasmonic-TLC substrates for fast SERS measures. 

 A new kind of plasmonic flexible substrate was developed by simple deposition of a 

droplet (5µl, 14nM) of overgrown Au nanorods in aqueous suspensions into Thin Layer 

Chromatography (TLC) plates.  Thanks to the porous texture of the silica of the TLC, 

droplets were dried within a few seconds and nanorods were uniform dispersed over a 5mm 

area. The method produced dense clusters of nanorods, instead of ordered arrays, on the TLC 

surface (Figure 101b).  

 

Figure 101 a) photo of the portable Raman system used. b) SEM images of overgrown nanorods 

aggregates on the TLC substrate. c) SERS spectra of overgrown nanorods (10 µl, 14 nM) deposited 

on top of c1) 4-ABT 10
34

 M on TLC; c2) CV 10
-5

M  on TLC.   
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 To prepare the samples, fresh TLC plates were firstly stung with a capillary tube to 

deposit the analytes on the TLC surfaces. Quantities deposited were ca. 1µl 10
-3

M of 4-ABT 

aqueous solution for one of the samples and 1µl 10
-5 

M of CV aqueous solution for the other. 

Once dried, a droplet (5µl, 14 nM) of overgrown Au nanorods aqueous solution was 

deposited over each spot of the TLCs previously stung. Once dried, samples were analysed 

with a portable Raman system (Figure 101a) without further treatment. 

 Due to the lack of order in the disposition of the nanorods on the TLCs (Figure 101b) 

neither reproducible measures nor greatly enhanced spectra were intended or expected. 

Nevertheless, SERS spectra of 4-ABT and CV (Figure 101c1,c2) obtained with this protocol 

shown perfectly clear the characteristic Raman peaks of the molecules, allowing therefore  

the identification of both analytes. This ability to detect molecules on TLCs plates by simple 

dropping of Au nanorods suspensions is an application that could streamline the workflow in 

synthetic laboratories and industries.   
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6.4. Summary and Conclusions 

 Plasmonic SERS substrates were fabricated by stamping on flexible surfaces vertical 

nanorod arrays obtained by droplet evaporation of Au nanorod solutions on glass surfaces. 

The SERS performances of fabricated substrates were assessed with model molecule 4-ABT. 

Detection down to 1 µM and EF of the order of 10
5
 were obtained for pPET and PVC active 

substrates. In order to show real field-based applications, detection of food contaminant CV 

was achieved below the recommended limit of 5 nM on pPET active substrates. Also 

detection of benzocaine traces was achieved by swabbing contaminated glass slides with 

pPET active substrates. These examples show that our fabricated substrates can be suitable 

for real-world applications, where flexibility on sample collection, fast responses and low 

limits of detection are highly desired.  
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7.1  Conclusions 

 The scope of this thesis was to develop novel methodologies for the fabrication of 

large area Au nanorods arrays to test their feasibility for sensing applications. 

 Chapter 1 outlined the main areas of research involved in this thesis: the optical 

properties of the noble metal nanostructures, the assembly of nanostructures by droplet 

evaporation and the application of these assemblies to enhance coupled lights phenomena like 

the Surface Enhancement Raman Spectroscopy.  

 Droplet evaporation is a well known technique to fabricate ordered nanostructure. It is 

simple and can be applied to a wide variety of substrates, but it usually produces small area 

assemblies with poor reproducibility due to the coffee ring effect. In order to overcome these 

limitations we developed a new self-assembly process using chlorobenzene as a solvent 

instead of water. Controlled droplet evaporation of chlorobenzene dispersions led to 

controlled formation of horizontal and vertical arrays. 

 Chapter 2 of this thesis describes the different methods used to synthesize different 

types of Au nanrods used in this thesis and the method used to transfer the Au nanorods from 

water to organic phases. 

 Chapter 3 of this thesis addressed a detailed study of the key parameters for the 

fabrication of Au nanorods horizontal arrays. Nanorods assemblies were obtained from 

evaporation of chlorobenzene suspensions of nanorods seed mediated under slow evaporation 

conditions. The assembly process was clearly favoured by slow evaporations (3h) and 

average Au nanoro concentration (6nM). 

 Chapter 4 of this thesis addressed the study of the key parameters for the fabrication 

of Au nanorods vertical arrays. In this case, formation of vertical arrays occurred selectively 

with overgrown nanorods. The assembly process was found to be favoured by a fast 

evaporation and occurs over a large range of nanorods concentration. 

 Nanorods arrays fabricated with this new droplet deposition method showed a high 

degree of order over mm
2
 areas, but unfortunately they detached from the cover slip support 

when immersed in any analyte solutions. In order to improve adhesion of arrays to the 

support and clean off residual organic matter, we introduced an additional stamping process. 
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This stamping process allowed the immobilization of nanorods on rigid substrates as glass, 

ITO or SiO2 and on flexible substrates as pPET, PVC and PDMS. Once stamped, arrays were 

attached strong enough to be cleaned by usual solvents as MeOH, Acetone or ITO. On glass 

substrates, vertical arrays kept ordered even after acid cleaning with HCl. Feasibility of the 

stamped arrays to work as SERS platforms was checked in Chapter 5 and Chapter 6 of this 

thesis. 

 Chapter 5 of this thesis showed a comparative study of the SERS response of 

horizontal, vertical and acid clean vertical arrays using 4ABT as model molecule. 

Enhancements factors of 6.9×10
4
 (horizontal arrays), 7.8×10

4
 (vertical arrays) and 2.2×10

5 

(vertical
 
acid-treated arrays) were obtained. Relative intensities between the b2 and a1 peaks 

of the 4ABT spectra obtained for horizontal (0.7), vertical (1.1) and vertical acid cleaned 

(1.5) showed evidences than the vertical and overall acid cleaned vertical substrates produced 

a stronger chemical enhancement of the SERS modes of the 4-ABT . Finally, quantitative 

detection of the 4ABT was achieved with the vertical arrays, with detection limits within the 

nM range and a SD value of 6%. 

 Chapter 6 of this thesis showed real field applications of the vertical arrays 

immobilized on flexible substrates. Detection of food contaminant Cristal Violet (CV) 

was achieved up to sub-nM detection limits by immersion of substrate in solution.  

Flexible pPET plasmonic active substrates habilitate the detection of benzocaine by 

direct swabbing of traces left on surfaces.
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7.2  Future work and potential applications 

 The main novelty of the assembly method developed in this thesis is the possibility to 

fabricate ordered Au nanorods arrays over mm
2
 areas and to immobilize them on arbitrary 

substrates to resist harsh environments. Future work should be directed to the exploitation of 

these two properties: the possibility to support extensive plasmonic arrays on a wide variety 

of substrates and the possibility to subject these arrays to a wide variety of chemical 

environments without a  loss of order in the assemblies. 

 Plasmonic nano-structures similar to the ones developed in this thesis have been proof 

useful mainly in three different fields: nano-catalysis
[1],

 Surface Enhancement Raman 

Scattering (SERS) and Surface Enhancement Fluorescence (SEF) 
[2]

. SERS capacity has 

already been investigated in this thesis (see Chapter 5 and 6), meanwhile the other two 

application field are still unexplored. 

 In the SERS field, we have showed in this thesis the use of flexible active substrates 

to detect chemicals without pre-treatment by simple sample swabbing, this capacity open a 

very promising field for in situ detection of a variety of drugs, pollutants and other health 

menaces. Furthermore, the strength of the developed substrates against harsh chemical 

environments enable the use of pre and post chemical treatments to improve molecule 

binding of the analytes to the nanostructures, thus widening the possible target analytes.    

 SEF is produced by the strong electromagnetic fields generated at the surface of the 

nanostructures, but in contrast with the SERS technique, if chromophores are within 5nm to 

the nanostructure fluorescence becomes strongly quenched. Being the optimum distance 7-10 

nm, devices designed for SEF have to present very homogeneous assembly geometry to 

assure than chromophores stay at the correct range. This requirement, make Au nanorods 

arrays a very promising candidate for SEF. By spin coating, an ad-hoc layer of transparent 

polymer could be applied over our AuNRs arrays to provide the required 7-10 nm spacing.  

The tuning of the polymer thickness combined with the possibility to select the nanorods 

orientation would make of these devices ideal candidates for testing this new technique. 

 Several authors have also reported the use of Au nanostructures as efficient catalyst 

for diverse reactions, as the oxidation of CO into CO2
[1]

. Crystal facets, shapes and sizes of 

the nanostructures have been reported as key parameters for an efficient reaction yield. 

Therefore, the mutually exclusive vertical or horizontal nanorods assembly make our 
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substrates very suitable for studying the effect of different crystallographic facets on the 

result of the reactions. Another important parameter to the yield of the catalysis is the 

surfactant molecules on the shell of the nanostructures, which have been reported
[3]

 as 

detrimental agents for a correct catalyst performance. Thus, the ability of our substrates to be 

cleaned from the excess CTAB and TOAB could be of great relevance on the nano-catalysis 

field.  
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Appendix A.  

Glossary 

4-ABT   4-Aminobenzenethiol 

CM   Chemical mechanism 

CTAB   Hexadecyltrimethyl ammonium bromide 

EM   Electromagnetic Mechanism 

FDTD   Finite Difference Time Domain 

HOMO  Highest Occupied Molecular Orbital 

ITO   Indium Tin Oxide 

LUMO   Lowest Unoccupied Molecular orbital  

MPS   Mercaptopropyl Silane 

MSA   Mercaptosuccinic Acid 

PCA   Principle Component Analysis 

PEG   Polyethylene Glycol 

SEM   Scanning Electron Microscopy 

SERS   Surface Enhancement Raman Spectroscopy 

TEM   Transmission Electron Microscopy  

TNT   trinitrotoluene 

TOAB   Tetraoctylammonium bromide 

TLC   Thin Layer Chromatography 
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