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ABSTRACT: While it is well-known that electronic conductivity of electrodes has a critical 

impact on rate-performance in batteries, this relationship has been quantified only by computer 

simulations. Here we investigate the relationship between electrode electronic conductivity and 

rate-performance in a model system of Lithium-Nickel-Manganese-Cobalt-Oxide (NMC) 

cathodes filled with various quantities of carbon black, single-walled carbon nanotubes and 

graphene. We find extreme conductivity anisotropy and significant differences in the 

dependence of conductivity on mass fraction among the different fillers. Fitting capacity versus 

rate curves yielded the characteristic time associated with charge/discharge. This parameter 

increased linearly with the inverse of the out-of-plane electronic conductivity, with all data 

points falling on the same master curve. Using a simple mechanistic model for the characteristic 

time, we develop an equation which matches the experimental data almost perfectly with no 

adjustable parameters. This implies that increasing the electrode conductivity improves the 

rate-performance by decreasing the RC charging time of the electrode and shows rate 

performance to be optimised for any electrode once OOP>1 S/m, a condition achieved by 

including <1wt% single-walled carbon nanotubes in the electrode. 

Keywords: anode; cathode; rate-limitations; analytic model; electrical limitations
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1. INTRODUCTION

Rechargeable batteries based on the storage of Lithium ions are becoming more and more 

important for many applications including electric vehicles, mobile electronics and even large-

scale energy storage.1-2 While much of the focus within the research community has been on 

maximising capacity and energy density, often through the use of novel materials,3-5 somewhat 

less attention has been given to optimising rate-performance.6 Nevertheless, achieving high 

rate-performance is critical to achieving rapid charging or high power delivery in a range of 

applications.7

It is well known that many factors affect the rate-performance of an electrode/electrolyte 

system, including the solid-state diffusion time, the time taken for ions to diffuse within the 

electrolyte and the ability of the electrode material to rapidly distribute charge.8-12 This latter 

factor generally requires intervention as many battery materials have relatively low electronic 

conductivity. To address this, conductive additives are almost always incorporated into the 

electrode to reduce electrode resistance.13 In most cases, tried and tested formulations are used, 

with the addition of ~10wt% carbon black being particularly common. 

However, there does not seem to be a clear rule defining the aims associated with incorporating 

the conductive additives. For instance, it would be useful to know exactly what minimum 

electronic conductivity is being targeted. This would allow one to minimise the conductive 

additive content, thus maximising the active material content, while still reaching the target 

conductivity for optimizing rate performance. In addition, the literature does not generally 

contain much discussion as to what aspect of electronic conductivity is important. For example, 

films containing networks of conducting nano-carbons, especially those cast from liquids, can 

be very anisotropic, leading to significant differences between in-plane and out-of-plane 

electronic conductivity.14-15 Although the in-plane conductivity is easy to measure and is often 

reported,16-17 the out-of-plane conductivity is probably more relevant in battery electrodes as it 

governs transport of charge from current collector to active sites.12 Indeed, it has been shown 

that the out-of-plane conductivity corresponds very well to the electrode resistance measured 

by impedance spectroscopy.18 However, we are aware of no quantitative examination of the 

relationship between either in-plane or out-of-plane electronic conductivity and rate-

performance. Such a relationship would be extremely useful as it would allow the identification 

of the minimum electronic conductivity required to optimise rate-performance.
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In this work we study both the in-plane and out-of-plane conductivities of battery electrodes 

based on NMC filled with three different nano-fillers, carbon black (CB), single-walled carbon 

nanotubes (CNT) and graphene (Gra), at various loadings. While we find both in-plane and 

out-of-plane electronic conductivities to scale with filler volume fraction as per percolation 

theory, the out-of-plane conductivity was roughly three orders of magnitude lower that that 

measured in-plane. Rate measurements showed the characteristic time associated with 

charge/discharge to scale inversely with out of plane conductivity. Using a simple mechanistic 

model, we can match the data almost perfectly with no adjustable constants. Then, using the 

model, we show rate-performance optimisation to occur in almost all circumstances once the 

out-of-plane electronic conductivity exceeds 1 S/m.

2. RESULTS AND DISCUSSION

Electronic conductivity of electrodes

We produced a range of electrodes of NMC, loaded with varying mass fractions (Mf) of CNTs 

(0.01%<Mf<4%), graphene (0.1%<Mf<30%) and carbon black (0.1%<Mf<20%). In each case, 

we were careful to measure areal mass (M/A) and thickness (LE) of the electrodes, allowing us 

to calculate their density (E) and porosity (PE) as well as filler volume fraction (). In general, 

the electrodes were ~100 m thick with mass loadings of ~15 mg/cm2. The electrode density 

tended to vary from 2.2-1.5 g/cm3, depending on the filler and loading (see SI). SEM images 

(figure 1) show the electrodes to consist of loosely packed disordered arrays of NMC particles 

(diameter ~5-15 m) surrounded by a lose network of filler particles. Such a system where the 

matrix (i.e. active) particles are larger than the filler (i.e. CB, CNT or graphene) particles is 

called a segregated network and has been shown to result in high conductivities at relative low 

filler mass fractions.18-19

For each electrode, we measured both the in-plane (IP) and out-of-plane (OOP) apparent 

electronic conductivity using the two-probe technique as described in methods. We use the 

term apparent conductivity as two probe techniques include the effects of contact resistance 

which can have a significant impact when the material resistance is small. While contact 

resistance effects can be removed by using 4-probe measurements, this is not straightforward 

for OOP measurements. In composites, conductivities are usually analysed in terms of filler 

volume fraction, , rather than Mf. The volume fraction can be calculated from 

, which is found by defining .15/f E fillerM   /filler electrodeV V 
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Shown in figure 2A-C are both in-plane (IP) and out-of-plane (OOP) electronic conductivities 

for composites with CB (A), graphene (B) and CNT fillers (C), all as a function of . In each 

case, the conductivity increases rapidly with , once a minimum filler volume fraction had been 

surpassed. For all materials, the maximum IP conductivity was ~1000 S/m while the highest 

OOP conductivity observed was ~0.1 S/m. Over all filler loadings, the in-plane conductivity 

was between ×4 and ×3000 larger than OOP. Such large conductivity anisotropies have been 

observed before for nanostructured networks14-15, 20-21 and occur when the networks are 

partially aligned in the plane of the film, and also common for predominantly layered or vdW 

materials in composite and non-composite, thin film formats. Such electronic conductivity 

anisotropy will have significant implications for performance in battery electrodes because 

measurement of in-plane conductivity will significantly over-estimate the effect of the 

conductivity on rate-performance. Unusually for such composites, both in-plane and out-of-

plane conductivities saturated for the nanotube filled composites as the volume fraction 

surpassed ~0.2%.

For composites filled with conductive additives, the electronic conductivity is described by 

percolation theory. Within this model, the conductivity increases only above a critical volume 

fraction where the first complete conductive path is formed, a value known as the percolation 

threshold, c. Above this threshold, the composite conductivity, , scales as:

(1)0 ( )t
c    

where 0 is a constant related to the conductivity of the filler network and t is the percolation 

exponent.15, 22 

With this in mind, it is clear that the percolation threshold for CB and graphene composites is 

~1-2vol% but much lower for the nanotube-filled composites. Equation (1) fits the data 

extremely well for the CB and graphene composites in both IP and OOP directions with all fit 

parameters given in table 1. The percolation thresholds are very similar between IP and OOP 

directions indicating that network connectivity is similar in the in-plane and out-of-plane 

directions. The in-plane percolation exponents were close to the universal, 3-dimensional value 

of 2.0 which indicates that the distribution of inter-particle junction resistances is fairly 

narrow.15 However, OOP exponents were slightly lower, perhaps due to network alignment 

effects.23 However, the major difference between IP and OOP parameters for the CB and 

graphene samples were the 0 values which were approximately ×1000 higher in the IP 
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direction. Such a large anisotropy confirms that the conducting networks are significantly 

aligned in the plane of the electrode.

However, the - curves for the nanotube-filled samples behaved differently, saturating at 

higher loadings. We can explain this by noting that, for two-probe measurements, the measured 

resistance is the sum of composite and contact resistance (RC). Converting these resistances to 

conductivity via the electrode area, A, and separation, L, yields the effective (ie measured) 

conductivity

 1
( / ) 1/E

CR A L







(2a)

where  is the intrinsic composite conductivity. We can use equation (1) to replace , yielding:

(2b)1

0

1

( / ) ( )
E t

C cR A L


  


   

We note that when the contact resistance is very small, equation (2b) reverts to equation (1). 

We find equation (2b) fits the data extremely well. As shown in table 1, the exponents are very 

similar to the other materials. However, the percolation thresholds are considerably lower while 

the 0 values are much higher than the CB and graphene-based composites. Taken together, 

this means carbon nanotubes yield much higher conductivities at lower loading levels 

compared to other fillers. 

The superiority of nanotubes, both in terms of percolation threshold and 0 is striking and 

probably due to their high aspect ratio. Although individual single walled nanotubes of the type 

used here are similar in length (~5 m) to the upper end of the graphene nanosheet length 

distribution (1-5 m), they have a significant advantage in that they tend to self-assemble into 

extremely long (up to ~100 m) bundles.15 Such bundles are very conductive and, when used 

in nano-nano composites such as these, yield high conductivities at low loading.18 Perhaps the 

biggest surprise here is that the graphene-filled composites are so much closer to those filled 

with CB than CNT. However, this may simply be a geometric issue and a signal that nanosheets 

are not as well suited to segregated network formation as CNT, perhaps due to aggregation 

effects.24 Indeed previous work on MXene nanosheet/silicon nanoparticle composites have 

shown relatively high loadings of ~30wt% MXenes are required to achieve in-plane 

conductivities >1000 S/m.19
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6

In addition, we use the fits to estimate the contact resistances, RCA, for the CNT-filled 

composites. These work out to be 9×10-6 m2 and 3.3×10-4 m2 for the IP and OOP directions. 

This difference is to be expected based on the nature of the contacts (see methods), with the 

top contact in the OOP measurement being relatively poorly connected to the electrode.

Once we know 0, c and n for the CNT-filled electrodes, it is possible to estimate the 

composite conductivity (i.e. neglecting contact effects) as a function of volume fraction, , 

using equation (1). We have plotted equation (1) on figure 2C (solid lines) using the fit 

parameters given in table 1. These curves confirm that the true composite conductivities for 

nanotube-filled electrodes can be significantly higher than for the other systems.

Measuring rate performance

This work shows clearly that the out-of-plane electronic conductivity of these electrodes is 

significantly lower than the in-plane electronic conductivity and varies greatly depending on 

filler. Because it controls transport of charge from current collector to Li storing sites, we would 

expect the OOP conductivity to directly impact the electrodes rate-performance. As a result, it 

is worth measuring capacity-rate data for each composite type at a number of filler loadings 

with the aim of correlating rate-performance with OOP. We make the assumption here that 

each electrode is electrolyte-saturated and there is no preference for Li+ accessibility to the 

surface of active materials in all cases, aside from cation diffusion within the electrolyte. We 

further assume that changing the filler does not significantly affect rate performance via factors 

such as porosity and charge transfer resistance. This will be discussed in more detail below.

We fabricated electrodes based on NMC with various mass fractions of CB, graphene and CNT 

in the same way as described above. First, we performed galvanostatic charge discharge (GCD) 

measurements to check the electrodes were performing correctly. As shown in the SI, in all 

cases, the GCD curves are consistent with previous reports,25 with the capacity increasing 

somewhat with filler loading as expected.16 Normally, rate-performance measurements are 

carried out by performing GCD measurements at a range of specific currents. However, such 

measurements are slow, limiting the ability to rapidly and accurately characterise a large 

number of electrodes, especially when quantitative analysis requires many rate measurements 

per sample. To get around this problem, we used a recently reported, relatively rapid method 

of making rate measurements: chronoamperometry (CA).

Heubner et al.26 have shown that CA is a very effective technique for performing rate-

performance measurements. This method has the advantages that it is quicker than GCD and 

yields many more data points down to lower rates. In practice, a potential step is applied to the 
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7

electrode and the current transient measured. Heubner et al. published equations to transform 

the I(t) data into capacity as a function of C-rate. 

However, we have previously argued that quantitative analysis of rate-performance 

measurements is better performed on plots of capacity versus charge/discharge rate, R where 

R is defined as12 

(3)/
( / )E

I MR
Q M



Where I/M is the specific current (current per unit mass) and   is the measured ( / )EQ M

experimental specific capacity, rather than the theoretical value. In this way, R is related to the 

actual charge/discharge time. We have shown that the CA current transient can be converted 

to specific capacity, Q/M, and R using:27

(4a)

0

( ) /

( ( ) / )
t

I t MR
I t M dt





and

(4b)
0

/ ( ( ) / )
t

Q M I t M dt 

where we note that, in this paper, all specific capacities are normalised to the active mass. We 

have shown that these equations give capacity-rate curves which match extremely well to those 

obtained by GCD.27 However, they can be measured in approximately one third of the time. 

Presented in figure 3 are Q/M vs. R curves for each of the three composite types for three 

different mass fractions of carbon-base conductive additives. The first thing to note is that the 

CA-derived curves have the same shape as standard GCD-derived rate curves. The main 

difference is the much higher data density. Secondly, these curves clearly show both the rate-

performance and the low-rate capacity to increase with filler loading as expected.

Fitting rate data

In order to quantitatively analyse the relationship between rate-performance and electrode 

electronic conductivity, it is necessary to extract a number from each capacity-rate graph which 

quantifies the rate-performance. Recently,12 we proposed a semi-empirical equation for fitting 

capacity-rate data which outputs three fit parameters to assess rate-performance:

(5) ( )1 ( ) 1
nn R

M
Q Q R e
M


   

 
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Here QM is the specific capacity at very low rate,  is a time constant associated with 

charge/discharge and is a measure of the rate at which Q/M starts to fall off.12, 28 This parameter 

is particularly important as low time constants mean fast charge/discharge and indicate good 

rate-performance. Finally, n is an exponent describing how rapidly Q/M decays at high rate 

with diffusion-limited electrodes showing n~0.5 while capacitive-limited (i.e electrically 

limited)  electrodes yield n~1.12 Knowledge of n and especially  allows a proper, quantitative 

assessment of the rate-performance of a given electrode.

We have used equation (5) to fit all of our Q/M vs. R curves with examples of fits shown in 

figure 3. In all cases the fits were very good giving us confidence in the accuracy of the fit 

values. These fit values are plotted versus filler mass fraction in equation (5) for each composite 

type. While QM is not an indicator of rate-performance, we plot it in figure 4A to confirm the 

results to be as expected. In line with previous results, we find the low-rate capacity to increase 

with mass fraction of conductive filler.16 Interestingly, the capacity increases occur at much 

lower mass fractions for the nanotube-filled samples compared to the CB- and graphene-filled 

electrodes, simply due to their lower percolation threshold (figure 2). The exponent, n, is 

plotted versus Mf in figure 4B. For low mass fractions, n is closer to 1 than 0.5 in all cases, 

consistent with these electrodes being predominately electrically limited (i.e. limited by the RC 

charging time of the electrode).12, 27 However, in each case, n appears to fall slightly with filler 

loading. This is consistent with increasing conductivity reducing the resistance of the system, 

thus slightly shifting the rate-limiting effect from electrically- to diffusion-limited.12 For low 

mass fractions of conductive additive, high internal resistance limits the rate of electrochemical 

reduction of the available Li+. However, as the conductive additive loading is increased, the 

internal resistance falls and the rate of arrival of Li+ becomes limiting.  We would expect that, 

for thick electrodes such as these (~100 m), one the electronic conductivity is high enough, 

the main ion transport limitation is diffusion within the electrolyte within the porous interior 

of the electrode.12

However, most important for rate-performance is the characteristic time, . This parameter is 

a measure of the rate, above which capacity begins to fall off. As such it can be thought of as 

approximately the minimum charge/discharge time where the full low-rate capacity can be 

achieved. As such, this parameter nicely quantifies rate-performance with better performance 

associated with low . As shown in figure 4C, in all cases  falls with filler Mf, behaviour which 

has been observed previously.12 Interestingly, the nanotube-filled composites reach lower 
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values of  at much lower loadings compared to the other two materials. This would suggest 

carbon nanotubes to be the best fillers when rate-performance is concerned, in terms of their 

ability to minimise  at low mass fraction. 

Mechanistic analysis

We can understand these results by considering a model which we recently reported that 

describes  in terms of the various timescales associated with ion motion in the system.12 There 

are three main contributions to : the RC time constant of the system, the timescale associated 

with diffusion and the time associated with the electrochemical reaction. Each of these 

contributions can be broken into one or more terms within the equation. The RC terms include 

contributions from the electrical resistance of the electrode (term 1) as well as the ionic 

resistances of the electrolyte within the pores of the electrolyte (term 2) and within the separator 

(term 4). The diffusive terms include contributions from the times required for ions to diffuse 

through the electrolyte-filled porous interior of the electrode (term 3), the time required to 

diffuse through the separator (term 5) and the solid-state diffusion time (term 6). The final term 

(7) describes the timescale associated with the electrochemical reaction, tc.

This yields the following equation12

 (6a)

2 2
, , ,2

3/2 3/2 3/2 3/2

1
2 2

Term       1              2                 3                      4                  5   

V eff V eff S V eff S AM
E E c

OOP BL E BL E BL S BL S AM

C C L C L LL L t
P D P P D P D


  

     
           

     
        6       7

Here CV,eff is the effective volumetric capacitance of the electrode, OOP is the out-of-plane 

electronic conductivity of the electrode material, PE and PS are the porosities of the electrode 

and separator respectively while LS is the separator thickness. Here BL is the overall (anion 

and cation) ionic conductivity of the bulk electrolyte (S/m) while DBL is the ion diffusion 

coefficient in the bulk electrolyte. In addition, LAM is the solid-state diffusion length associated 

with the active particles (related to particle size); DAM is the solid-state Li ion diffusion 

coefficient within the particle. We note that the volumetric capacitance of a battery electrode 

may not be known. However, we have shown empirically that CV,eff is directly proportional to 

the low-rate total (i.e. normalised to total electrode volume) volumetric capacitance of the 

electrode, QV, which applies over a range of electrode materials, such that: 

 is a general relation.12
, / 28 F/mAhV eff VC Q 
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10

We note that equation 6a differs from most simple capacity-rate models which generally only 

consider only diffusion limitations, usually in the electrolyte but also in the solid, Li-storing 

material.29 To our knowledge, equation 6a is the only quantitative model which incorporates 

the effects of electrode electronic conductivity on capacity-rate behaviour.

Here, we are interested in the dependence of  on OOP. In figure 5A we plot  versus OOP for 

all three materials. We note that for the high CNT loading levels, we used figure 1, combined 

with the percolation fit parameters, to estimate the composite electronic conductivity, removing 

the contribution of contact resistance. We find  to fall significantly with increasing OOP.

We can understand this behaviour by combining equation (6a) with the empirical relationship 

between CV,eff and QV yielding:

                  (6b)
214 V E

OOP

Q L 


 

where  is just shorthand for terms 2-7 and QV should be expressed in mAh/m3. This equation 

implies that  should scale linearly with 1/OOP. As shown in figure 5A inset, we find this 

relationship to describe the data reasonably well, albeit with some scatter.

We should not be surprised that the data in figure 5A is slightly scattered because, as shown in 

figure 4A, QM shows a non-trivial variation over the samples. This means QV, which appears 

in equation (6b) will also vary (because ). In addition, there are small unavoidable V MQ Q

variations in the electrode thickness, LE, over the samples (variation from 68-140 m, mean 97 

m, std dev 18 m). To combat these problems, we rearrange equation (6b) slightly to read.

(7)2 214 V

E OOP E

Q
L L
 


 

This implies that a graph of  vs.  should be a straight line with a slope which is 2/ EL /V OOPQ 

material independent at 14 F/mAh. To plot this graph, we use our electrode density 

measurements to calculate QV for each electrode using , where fActive is the V Active E MQ f Q

mass fraction of active material within the electrode (this factor is required because QM is 

normalised to active mass while QV is normalised to total electrode mass). This graph is 

presented in figure 5B and shows a very well-defined straight line with reduced scatter 

compared to the data in figure 5A. 
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To test for quantitative agreement, we do not fit the data using equation (7). Instead, we directly 

plot equation (7) on figure 5B. The model predicts that the slope of this plot be 14 F/mAh while 

the intercept, , can be found by using reasonable values of the electrode parameters in 2/ EL

terms 2-7 of equation (6a). The parameters used are given in the caption of figure 5B (and are 

justified in the SI) and yield a value of the intercept to be =3.5×1010 S/m2. Plotting 2/ EL

equation (7) using this slope and intercept gives the solid line in figure 5B. 

We find the agreement between the plot of equation (7) and the data in figure 5B remarkable. 

Such agreement between experiment and theory has a number of implications. First it strongly 

supports the validity of the model represented by equation (6a). Using the CA method also 

implies that a suitable voltage range is used such that the correlation in values between the CA 

approach using the lower voltage limit, and the capacity obtained from GCD, are comparably 

precise for these electrodes. This is important as it gives us confidence that the model can be 

used to analyse data or to predict behaviour. Secondly, the slope of equation (7) is determined 

by the empirical relationship between electrode volumetric capacity and volumetric 

capacitance reported in ref12. The almost perfect match between the slopes of model and data 

in figure 5B strongly supports this empirical relationship. It furthermore identifies the sensitive 

dependence on OOP even when all primary diffusion limitations for the intercalation reactions 

(electrode and electrolyte) are considered. This data also confirms that it is the out-of-plane 

electrode electronic conductivity that determines rate behaviour (rather than IP), even for 

randomly mixed composites.

In addition, it is worth noting that changing the conductive additive could lead to some 

variations in the morphology and the microstructure of the composite. Such changes might 

effect rate performance via factors such as charge transfer resistance30 or the effect of 

porosity/tortuosity on ionic mobility.12, 31 Such changes would certainly alter , for example 

via term 7 which would be effected by changes in charge transfer resistance and terms 2 and 3 

which depend on ionic mobility. However, any significant changes in these terms would alter 

 to the point where the data in figure 5B for the different composite types would no longer sit 

on the same master curve. That the data does indeed sit on the same curve, consistent with a 

common intercept, indicates that (here at least) changing the filler doesn’t significantly affect 

rate-limiting factors other than electronic conductivity.

In the literature, trial and error has led to a number of much-used electrode formulations (e.g. 

using 10wt% CB) which give high electrode OOP conductivities, such that term 1 in equation 
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6a is probably negligible in most cases. It is worth noting that we can clearly see the effect of 

term 1 in figure 5B (i.e. the linear increase in ) because we have effectively reduced the 2/ EL

electrode electronic conductivity by using artificially low levels of conductive additive content.

Predicting minimum required electrode conductivities.

The data in figure 5A suggests that, at least for the electrodes under study here, the time 

constant is minimised once OOP exceeds about 1 S/m. This occurs because once OOP gets 

large enough, term 1 in equation (6a) becomes negligible compared to the rest of the terms. We 

can use this idea to identify the minimum electrode electronic conductivity required to render 

term 1 negligible for any electrode. We can do this by imposing the (somewhat arbitrary) 

condition that term 1 becomes unimportant when it falls below 10% of the sum of the other 6 

terms. Expressing this condition and then rearranging gives an expression for the minimum 

out-of-plane electronic conductivity required to optimise rate-performance (with respect to 

filler content) by eliminating term 1:

(8), 2 2

3/2 3/2 3/2 3/2 2

14
14 28 / /10.1

V
OOP Min

V V S E S E SSD c

BL E BL E BL S BL S E

Q
Q Q L L L L t
P D P P D P L




 


 

    
 

We note that, for reasons which will become clear, in equation (8) we have combined LAM and 

DAM in terms of the solid-state diffusion time, . Of the parameters within 2 /SSD AM AML D 

equation (8) the only ones that can vary significantly (i.e. by orders of magnitude) between 

electrodes are QV, LE and SSD and tc. Typical values of QV vary between tens and thousands 

of mAh/cm3 depending on the material, while the majority of electrodes would have 

thicknesses between 1 m and a maximum of ~1 mm.18 By analysing a large number of 

published papers, we recently showed that SSD tends to fall in the range 1-104 s.32 Finally, 

while tc can be hard to pin down, Jiang et al.9 have discussed values from 0.1-200 s. Of the 

other parameters, in real electrodes, the porosity tends to occupy a relative narrow range  

between ~0.4 and 0.6,33 while the other parameters have reasonably standard values: BL~0.5 

S/m, DBL~3×10-10 m2/s, PS~0.4, LS~25 m (although here, LS=16 m).12 

To estimate the minimum electronic conductivity required to optimise rate-performance, we 

use equation (8) to plot OOP,Min in figure 5C as a contour plot versus QV and LE using QV- and 

LE-ranges as described above. We use the values of BL, DBL, PS and LS given above and take 

PE=0.5. Considering the numbers above, we take a minimal values of  = 1 s, as this SSD ct 
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leads to higher values of OOP,Min than using the maximal value (see SI). This graph clearly 

shows that under almost any circumstances, an out-of-plane electronic conductivity of 1 S/m 

will be enough to render term 1 in equation (6a) negligible, and thus optimise rate-performance 

from a filler perspective. With reference to figure 2, attaining OOP=1 S/m would require 

>10vol% (i.e. >12wt%) CB or graphene but <1vol% (<1.3wt%) carbon nanotubes. 

This work shows that carbon nanotubes have significant advantages as conductive additives in 

battery electrodes. In the context of rate performance optimization, such fillers seem to allow 

efficient electron transfer through the electrolyte-soaked composite so that reactions with Li+ 

occur more efficiently. Even at modest rates, electrolyte diffusion limitations can occur, but 

ensuring sufficient electron density at active material surface is still critical to ensure maximum 

lithiation for all proximal cations to active surfaces.  

We believe this ability to remove electrical limitations is of great practical importance. It’s 

potential can be seen in recent work by Gogotsi et al which demonstrated super-fast rate 

performance in supercapacitors using high conductivity MXene-based electrodes.34 Similarly, 

Hersam et al achieved extraordinarily high rate-performance in battery electrodes by removing 

resistance limitations via conformal wrapping of active particles by graphene sheets.35 The 

value of our work is that we provide an electronic conductivity target which allows the most 

efficient removal of electrical limitations.

3. CONCLUSIONS

In this work we have shown that composite battery electrodes of NMC filled with three 

different conductive additives, carbon black, graphene or carbon nanotubes, show significant 

electronic conductivity anisotropy, with out-of-plane conductivities (OOP) roughly ×1000 

lower than those measured in-plane. While carbon black or graphene loadings of >10wt% are 

required to reach OOP conductivities of 1 S/m, this level can be achieved with ~1wt% of carbon 

nanotubes. We found the rate-performance of such composite electrodes to depend strongly on 

filler loading. By fitting capacity-rate curves to an empirical equation, we extracted the 

characteristic charge/discharge time, , for each electrode. Informed by a simple mechanistic 

model, we found  to scale approximately linearly with 1/OOP for all materials. By plotting 

 , where LE is the electrode thickness, versus  , where QV is the electrode 2/ EL /V OOPQ 

volumetric capacity, we found all data to collapse onto a linear master curve. This curve agreed 

almost perfectly with the predictions of the model with no adjustable fitting parameters. This 
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allows us to use this model to estimate a minimum out-of-plane conductivity of 1 S/m required 

to optimise rate-performance. 

This work highlights the importance of the out-of-plane conductivity to rate-performance in 

batteries and shows that conductivity measured in-plane is not a good metric for battery 

performance. It also shows that the loading level required to achieve sufficient electronic 

conductivity varies very strongly with filler type, with carbon nanotubes showing the greatest 

efficiency in this regard. In addition, we emphasise that simple mechanistic models can 

accurately predict experimental data without the need to perform complex simulations.  

Finally, we highlight the fact that, although this work has been performed on lithium ion 

cathodes of a specific type, the associated physics (e.g. equation 6a) is general. This means the 

results obtained can be applied to both cathodes and anodes, not only of lithium ion batteries, 

but also batteries incorporating sodium and beyond.

4. METHODS

NMC811 powder was purchased from MTI Corporation and had a mean particle size of ~10 

m. Single walled nanotubes were purchased from OCSiAl (Tuball, 0.2 wt% CNT in NMP, 

2wt% PVDF as a surfactant stabilizer). These nanotubes have mean lengths of ~5 m and 

diameters in the range 1-2 nm and are very well graphitised. Graphene Powder was purchased 

from Tianyuan Empire and consisted of largely defect free flakes with thickness <5 layers and 

lengths in the range 1-5 m. Carbon black (Timical Super C65) was purchased from MTI Corp 

and had an estimated particle radius of ~20 nm.

Samples for in-plane and out-of-plane conductivity measurements were prepared via the 

conventional slurry-casting method. LiNi0.8Co0.1Mn0.1O2 (NMC811) powder (MTI 

Corporation) was mixed with the respective conductive additive: CNTs, CB, Graphene, 

Polyvinylidene Fluoride (PVDF, EQ-Lib-PVDF, MTI Corp) and with sufficient amounts of N-

Methyl-2-pyrrolidone (NMP) to form the slurry. There was 10wt% PVDF in most of the 

samples. However, the PDVF loading was increased to improve the Critic Crack Thickness 

(CCT)18 of samples with extremely high loading of CB (18wt% and 22wt% PVDF in 

15wt%CB and 20wt%CB samples). Samples for in-plane measurements were adhered to glass 

slides, whereas out-of-plane samples were cast onto an Al current collector using a doctor 

blade. All samples were dried overnight at 40 oC while the mass loading of active material 
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(NMC811) was kept roughly constant at ~15 mg cm-2 (mean 14 mg/cm2, std dev 4 mg/cm2). 

The electrodes thickness were roughly 100 m (mean 96 m, std dev 18m).

Each in-plane sample was cut into a rectangular shape and silver wires were attached to the 

ends of the samples by painting them on with silver paint. This configuration allowed for 

intimate contact between sample and probe and in-plane conductivities were measured using 

the 2-point probe method. As for out-of-plane conductivity, circular disc electrodes with 

diameter = 12 mm were prepared by using a coin-cell disc puncher. Each electrode was then 

assembled into 2032-type coin cells in an Ar-filled glovebox (UNIlab Pro, Mbraun) in the 

following geometry: top, spring, two spacers, electrode, current collector, bottom. Out-of-plane 

conductivities were then measured using the two-point probe method. We expect the contact 

resistance between the top conductive spacer and the electrode to be non-trivial. 

The electrochemical properties of the electrodes were measured in half cell (PAT-cell, EC Lab, 

BioLogic). All coin cells were assembled in an Ar-filled glovebox (UNIlab Pro, Mbraun). The 

dried electrodes were cut into 12 mm diameter discs and paired with Li metal discs (diameter= 

16 mm). Celgard 2032 (thickness = 16 µm) was used as a separator. The electrolyte was 1.2 M 

LiPF6 dissolved in EC/EMC (1:1 in v/v, BASF) with 10wt% Fluoroethylene carbonate (FEC). 

The tests were performed at a potentiostat (VMP3, Biologic). The GCD measurements (at 

I/A=17 mA/g) were performed for 2-3 cycles to form stable solid-electrolyte- interface (SEI) 

film in the half cells, and the voltage range was 3−4.3 V. After the capacities were stable, the 

cells were charged at I/A=17 mA/g  29to 4.3 V, and CA measurements were performed for 

discharge at 3 V.27 In this paper, all specific capacities are normalised to active electrode mass 

while the volumetric capacity is normalised to total electrode volume.
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FIGURES and TABLES

In plane Out of plane

Carbon black

0 (S/m) 1.35×104 4.50

c (vol%) 0.9 0.7

t 1.99 1.5

Graphene

0 (S/m) 3.66×104 7.79

c (vol%) 2.3 2.1

t 2.11 1.71

CNTS

0 (S/m) 1.35×108 6.2×104

c (vol%) 0.01 0.01

t 2.0 1.87

Table 1: Percolation fit parameters found by fitting the data in figure 2 using equation (1).
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Figure 1: SEM images of fracture surfaces for A) 6wt% CB, B) 1wt% CNT, and C) 10wt% 

Graphene of each composite type.
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Figure 2: Conductivity of composite electrodes based on NMC811 filled with various 

conductive fillers. A-C) Measured conductivity as a function of volume fraction of conductive 

additives for composites filed with carbon black (A), graphene (B) and carbon nanotubes (C). 

The open symbols represent out-of-plane conductivity while the solid symbols represent in-

plane conductivity. In A-C the dashed lines represent percolation fits (equation (1)). In C, the 

fits include the effect of contact resistance (equation (2b)). The solid lines represent the 

conductivity, estimated from the fits with the effect of contact resistance removed (i.e. using 

equation (1)). D) Ratio of in-plane to out of plane conductivity plotted versus volume fraction.
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Figure 3: Rate-performance data for NMC811 electrodes incorporating carbon based 

conductive additives. A-C) Specific capacity (normalised to active mass) plotted versus rate 

NMC811-based electrodes filled with various loadings of carbon black (A), single-walled 

carbon nanotubes (B) and graphene (C). We note that these rates are equivalent to specific 

currents roughly in the range 5-500 mA/g.
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Figure 4: Rate-data fit parameters as a function of mass fraction of conductive additive. A) 

Low-rate specific capacity, QM, (B) characteristic time, , (C) and rate exponent, n, each 

plotted against mass fraction for all three types of conductive additive (single-walled carbon 

nanotubes, carbon black and graphene).
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Figure 5: The effect of conductivity on rate-performance. A) Characteristic time, , plotted 

versus out-of-plane electrode conductivity, OOP, for electrodes incorporating all three 

conductive additives (single-walled carbon nanotubes, carbon black and graphene). The dashed 
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line illustrates linearity between  and 1/OOP. B) Characteristic time divided by electrode 

thickness squared (  ) plotted versus low-rate volumetric capacity divided by out-of-plane 2/ EL

electrode conductivity (  ). The solid line is a plot of equation (7) using the following /V OOPQ 

parameters: =2.1×108 mAh/m3, BL=0.5 S/m, DBL=3×10-10 m2/s, PE=0.6, PS=0.4, LS=16 VQ

m, =97 m, LAM=r/3=2m, DAM=5×10-14 m2/s, tc=25s (see SI for justification). C) EL

Critical (out-of-plane) electrode conductivity, OOP,min, plotted as a function of electrode 

thickness (LE) and low rate volumetric capacity (QV). The critical conductivity is that required 

to reduce the contribution to  associated with the electrode resistance (first term in equation 

(6a)) below 10% of the sum of the other contributions to  (i.e. the other six terms in equation 

(6a)). Here we calculate OOP,min using the parameters given above and taking a short 

(SSD+tc=1s) combination of solid-state diffusion and reaction times.
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