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Summary 

Infant formulae (IF), which are emulsion-based nutritional products available 

commercially in either liquid or powder format, are prone to destabilisation 

during processing and on storage due to their inherent thermodynamic 

instability. Ongoing efforts to further the humanisation of IF products drive 

modifications to the composition and structural organisation of oil globule 

interfaces in IF products, aimed at matching the biofunctionality of such IF 

products to that of the fat globule membranes in human milk. Similarly, 

changes to the protein component of IF (e.g., source, profile, peptide chain 

length) to cater for specific nutritional requirements, or the presence of non-

protein emulsifiers (e.g., low molecular weight, LMw, polar lipids) to improve 

stability of these products, significantly affect the composition and structure 

of oil globule interfaces in IF products. This thesis represents new and 

innovative research on the properties and performance of selected innate and 

added emulsifiers in IF products (i.e., whey protein isolate, WPI; whey protein 

hydrolysate, WPH; phospholipids and citric acid esters of glycerides) and 

more novel emulsifiers formed by Maillard-induced conjugation of WPH with 

maltodextrin (MD). This research focused predominantly on the surface 

activity of emulsifiers, their ability to form emulsions and to subsequently 

stabilise them against shear-, heat- and storage-induced changes. Conditions 

used to test the stabilisation properties included refrigerated storage (14 d at 

4°C), thermal processing (75-100°C × 15 min), accelerated shelf-life testing 

and spray drying. Studies on the stability of model IF emulsions (protein = 15.5 

g L-1, fat = 35.0 g L-1, carbohydrate = 70.0 g L-1; pH 6.8) to thermal processing 

(100°C × 15 min) and to accelerated shelf-life testing showed exceptionally 

high stability of emulsions prepared using the novel WPH-MD conjugate. The 

stability of the WPH-MD-stabilised emulsions conjugate was due to the strong 

steric hindrance effect provided by the conjugate, which prevented 

interactions between adjacent oil globules. Conversely, extensive aggregation 

of oil globules on heating (~72°C), observed for WPH-based emulsions was 

induced by the high levels of exposed reactive sites (e.g., free -SH) resulting 

from hydrolysis of the whey protein molecules in the parent WPI ingredient. 

Inclusion of LMw emulsifiers (0-9 g L-1) in the WPH-based emulsions improved 
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their heat stability during thermal processing (95°C × 15 min); however, it 

resulted in poor shelf life stability due to the competitive displacement of 

proteins/peptides from the oil-water interface by LMw emulsifiers. Study of the 

spray drying properties of emulsion-based IF liquid concentrates (32% TS) 

demonstrated superior functionality of the WPH-MD conjugate, as evidenced 

by the greatest emulsion quality on rehydration of the IF powders stabilised 

by the conjugate, compared to the powders stabilised by the other emulsifier 

systems (WPI, WPH and WPH+LMw). The findings presented in this thesis 

constitute a significant advancement in research on mechanisms of 

stabilisation of IF emulsions provided by a potent steric barrier to oil globules 

using glycated proteins/peptides; this work adds to the rapidly expanding 

research on interfacial composition and structural organisation of oil globules 

in IF products and opens up new possibilities for designing novel emulsion-

based nutritional products. 
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Abstract 

Human milk is recognised as complete and the best source of nutrients for 

infants; however, it is not always possible to supply new-borns with mother’s 

milk. In such cases, infant and follow-on formulae provide an alternative to 

human milk and are tailored to meet the nutritional requirements of a child at 

different stages of its development. To design an appropriate formula, the 

differences in composition between its main ingredient source (i.e., generally 

bovine milk) and human milk need to be considered. Typically, fractionation 

processes are applied to give a desired protein profile, combined with the 

inclusion of carbohydrates, oil blends, minerals and vitamins in the 

formulation of these nutritional products. This review provides a context and 

background to such nutritional products, with a focus on regulatory 

requirements, selection of ingredients and manufacturing processes typical of 

these products. Current trends in commercially relevant research into 

humanisation of infant and follow-on formulae are also reviewed, with an 

emphasis on the interfacial composition of oil globules and the influence of 

these interfaces on metabolism of lipids from infant nutritional products.  
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1.1. Introduction 

It is well established that breast milk is the best source of nutrition for newborn 

infants and breastfeeding is recommended for the first 2 years of a child’s life 

by the World Health Organisation. Breastfeeding during the first 6 months 

after birth has been shown to have significant beneficial effects on the 

development of an infant’s immunological, digestive and cognitive systems 

(Andreas, Kampmann, and Mehring Le-Doare, 2015; Eidelman et al., 2012; 

Neville et al., 1984). However, it is not always possible to provide an infant 

with its mother’s milk due to factors including poor nutritional status of the 

mother or health-related and socio-cultural reasons, resulting in a need for 

another form of early-stage nutrition.  

Infant formula (IF) and follow-on milk products are designed to provide for 

the nutritional needs of infants and young children during the early stages of 

their life (i.e., from birth to 3-4 years) by matching the composition of these 

products to that of human milk (particularly for the former) at different stages 

of lactation (Jardí Piñana, Aranda Pons, Bedmar Carretero, and Arija Val, 

2014; Maldonado, Gil, Narbona, and Molina, 1998; Pehrsson, Patterson, and 

Khan, 2014; Tudehope, Page, and Gilroy, 2012). Bovine milk is the primary 

ingredient base used for formulating IF products; however, its composition is 

significantly different to that of human milk. Differences in levels of key 

components (e.g., protein, lipid, carbohydrate, vitamins and minerals), as well 

as the protein and fatty acid profiles, have to be addressed when developing 

age-appropriate infant and follow-on formulae products. Similarly, the 

structural assembly (i.e., localisation of individual components within the food 

matrix) of the relevant components in the (emulsion-based) IF products needs 

to be carefully designed to best match the digestive behaviour of IF products 

to that of human milk (Lopez, Cauty, and Guyomarc’h, 2015). In particular, 

the interfacial composition and structural arrangement of oil globules in 

emulsion-based systems has been shown to have a significant effect on 

digestion of protein and lipids (Bourlieu et al., 2015; Oosting et al., 2014). 

The majority of IF products are manufactured by wet mixing (i.e., 

reconstituting and blending) of dehydrated ingredients and liquid 
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concentrates, followed by homogenisation and a range of heat treatments, 

depending on the product, manufacturing process, format and the desired 

shelf life. These emulsions are further converted into stable final products in 

either powder or liquid (i.e., ready to feed, RTF) formats by means of spray 

drying or sterilisation (ultra high temperature or in-container sterilisation), 

respectively. The various unit operations involved in the manufacture of these 

products involve high stress (e.g., temperature, shear forces), which can give 

rise to challenges with the stability of emulsion systems within such 

formulations. In addition, challenges can also be experienced during storage 

of IF products due to their composition (e.g., lipid oxidation of unsaturated 

fatty acids) (Zunin, Boggia, Turrini, and Leardi, 2015). Therefore, it is 

important to carefully consider and maintain a balance between interfacial 

composition and structure, stability to processing and stability to extended 

storage (i.e., shelf life), digestibility when designing IF-based emulsions in a 

range of physical formats of finished products.  

1.2. Categories of infant nutritional products 

The nutritional requirements of a child change as it grows and develops, which 

is reflected by the natural changes in the composition of human milk during 

the lactation cycle (Ballard and Morrow, 2013; Csapo and Salamon, 2009). 

These changes are also addressed by the manufacturers of IF and follow-on 

products by supplying a range of specifically formulated product categories 

with nutrient profiles to meet the needs of a growing child at different stages 

of its development (Fig. 1.1). Commercially available formulae are generally 

categorised based on the stage of child nutrition, as determined by age, into 

first (0-6 months), second (6-12 months), third (1-3 years) and fourth (3+ 

years) stages, while Codex Alimentarius (2007), groups these products into 

two age categories, namely infant formula (from birth to 12 months) and 

follow-on formula (from 12-36 months). The regulatory guidelines for 

composition of these two categories of children’s nutritional products are 

presented in Table 1.1. IF products can also be categorised based on the source 

and profile of their protein component; formulae based on cow’s milk can be 

either whey- or casein-dominant (typically whey:casein ratio of 60:40 to 

match that of human milk) (Dupont, 2003), while soy and rice are typical  
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Table 1.1. Regulatory limits for first stage and follow-on children nutrition 

formulae. 

 

1 FAO/WHO Codex Alimentarius Commission Standard for infant formulae (Stan 

72-1981) and for follow-on formulae (Stan 156-1987), including revisions and 

amendments. 

2 Commission of the European Communities Directive 2006/141/EC on infant 

formulae and follow-on formulae, Official Journal of the European Communities, 

2006, amending Directive 1999/21/EC. 

Source: O’Callaghan, O’Mahony, Ramanujam, and Burgher (2011). 

 

Infant formula Follow-on formula
Nutrient Units

per 100 kcal
CODEX1 EU2 CODEX EU

Min Max Min Max Min Max Min Max

Protein g 1.80 3.00 1.80 3.00 3.00 5.50 1.80 3.50

Lipid g 4.40 6.00 4.40 6.00 3.00 6.00 4.00 6.00

Linoleic acid mg 300 - 300 1200 300 300 1200 -

Linolenic acid mg 50.0 - 50.0 - - 50.0 - -

Carbohydrate g 9.00 14.0 9.00 14.0 - 9.00 14.0 -

Vitamin A IU 200 600 200 600 250 750 200 600

Vitamin D IU 40.0 100 40.0 100 40.0 120 40.0 120

Vitamin E IU 0.50 - 0.50 5.00 0.70 - 0.50 5.00

Vitamin K µg 4.00 - 4.00 25.0 4.00 - 4.00 25.0

Vitamin B1 µg 60.0 - 60.0 300 40.0 - 60.0 300

Vitamin B2 µg 80.0 - 80.0 400 60.0 - 80.0 400

Vitamin B6 µg 35.0 - 35.0 175 45.0 - 35.0 175

Vitamin B12 µg 0.10 - 0.10 0.50 0.15 - 0.10 0.50

Niacin µg 300 - 300 1500 250 - 300 1500

Folic Acid µg 10.0 - 10.0 50.0 4.00 - 10.0 50.0

Panthotenic acid µg 400 - 400 2000 300 - 400 2000

Biotin µg 1.50 - 1.50 7.50 1.50 - 1.50 7.50

Vitamin C mg 10.0 - 10.0 30.0 8.00 - 10.0 30.0

Choline mg 7.00 - 7.00 50.0 - - - -

Inositol mg 4.00 - 4.00 40.0 - - - -

Calcium mg 50.0 - 50.0 140 90.0 - 50.0 140

Phosphorus mg 25.0 - 25.0 90.0 60.0 - 25.0 90.0

Magnesium mg 5.00 - 5.00 15.0 6.00 - 5.00 15.0

Iron mg 0.45 - 0.30 1.30 1.00 2.00 0.60 2.00

Zinc mg 0.50 - 0.50 1.50 0.50 - 0.50 1.50

Manganese µg 1.00 - 1.00 100 - - 1.00 100

Copper µg 35.0 - 35.0 100 - - 35.0 100

Iodine µg 10.0 - 10.0 50.0 5.00 - 10.0 50.0

Sodium mg 20.0 60.0 20.0 60.0 20.0 85.0 20.0 60.0

Potassium mg 60.0 180 60.0 160 80.0 - 60.0 160

Chloride mg 50.0 160 50.0 160 55.0 - 50.0 160

Selenium µg 1.00 - 1.00 9.00 - - 1.00 9.00

L-Carnitine mg 1.20 - 1.20 - - - - -

Taurine mg - 12.0 - 12.0 - - - 12.0

Nucleotides mg - - - 5.00 - - - 5.00
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protein sources for the plant protein-based formulae category (O’Callaghan, 

O’Mahony, Ramanujam, and Burgher, 2011). Other categories of IF products 

include hydrolysed infant formulae, pre-term formulae, low-birthweight 

formulae, post-discharge formulae and foods for special medical purposes 

(e.g., lactose free formulae, antiregurgitation formulae, and low phenylalanine 

formulae; Fig. 1.1) (O’Callaghan et al., 2011). The hydrolysed infant formulae 

can be further classified into ‘easy-to-digest’ (partially hydrolysed formulae) 

and clinical nutrition products (extensively hydrolysed and amino acid-based 

formulae), depending on the degree of hydrolysis. 

 

Figure 1.1. Schematic representation of the different categories of 

commercially available nutritional products intended for infants and young 

children.  
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1.2.1. Whey protein hydrolysate-based infant formulae 

Hydrolysed protein ingredient-based IF products are very often based 

exclusively on whey protein hydrolysate (WPH) ingredients; these products 

can be further divided into partially hydrolysed, extensively hydrolysed and 

amino acid-based formulae (PHF, EHF and AAF, respectively), depending on 

the extent of protein hydrolysis (Fig. 1.1). In the AAF the proteins/peptides are 

hydrolysed to their constituent amino acids; EHF contain oligopeptides with 

molecular weight less than 3,000 Da, while PHF contain oligopeptides with 

molecular weight less than 5,000 Da (Exl, 2001; Greer, Sicherer, and Burks, 

2008; Lowe et al., 2011). While AAF and EHF products are mainly intended 

for therapeutic purposes in infants suffering from, or with a high risk of cow's 

milk allergy (CMA), infant nutrition products from the PHF group cannot be 

used for therapeutic purposes but are recommended for infants at risk of CMA 

as they have been shown to have a preventive effect thereon (Chandra, 1997; 

Exl, 2001; von Berg et al., 2008). PHF products, also referred to as ‘easy to 

digest’, have been shown to have benefits including increased digestibility, 

more rapid amino acid release and to increase the gastric emptying rate        

(Fig. 1.2) (Hernández-Ledesma, García-Nebot, Fernández-Tomé, Amigo, and 

Recio, 2014). 

Owing to the nature of hydrolysed whey protein (i.e., altered molecular weight 

distribution and functional properties), manufacture of hydrolysed protein-

based IF products can often be more challenging compared with the 

manufacture of intact protein-based counterparts. While reduction in the 

molecular weight typically improves surface activity and emulsion capacity of 

proteins/peptides, their emulsion stabilising properties can be impaired due 

to a thinner and less structured interfacial layer, thus promoting coalescence 

of oil globules post homogenisation (Agboola and Dalgleish, 1996; Agboola, 

Singh, Munro, Dalgleish, and Singh, 1998; Singh and Dalgleish, 1998). Protein 

hydrolysis has also been shown to negatively affect thermal stability of 

emulsions due to the increased number of reactive sites (i.e., free thiol groups) 

at the interface of oil globules and in the emulsion bulk phase, effectively 

increasing protein-mediated aggregation of oil globules (Drapala, Auty, 

Mulvihill, and O’Mahony, 2016; Ye and Singh, 2006). This is a particular 



Chapter 1                                                             Literature Review: Infant Formula 

|19 

challenge for infant formula manufacturers as formulations typically undergo 

several heating steps (i.e., pasteurisation, evaporation, spray drying) and 

impaired heat stability can result in product defects such as formation of 

visible aggregated material (i.e., white flecks) (Regost, 2016) or coalescence 

and breaking of oil globules and the presence of free fat in the RTF formula or 

in the reconstituted powder and in-process challenges with fouling and poor 

heat transfer. 

 

 

Figure 1.2. Gastric emptying rate in infants as affected by type of milk. 

Source: www.nestlenutrition-institute.org. 

Improving thermal stability of WPH-based emulsions has been the focus of a 

small number of studies; the strategies investigated typically involved the 

addition of low molecular weight surfactants (i.e., lecithin and/or citric acid 

esters of mono- and di-glycerides, CITREM) (McSweeney, 2008) and 
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hydrolysis of the starch component to reduce the influence of depletion 

flocculation (Tirok, Scherze, and Muschiolik, 2001). In parallel, other studies 

have reported on improvements in the thermal stability of intact whey protein-

based emulsions on conjugation of the protein with carbohydrates through the 

Maillard reaction (Kasran, Cui, and Goff, 2013; Neirynck, Van der Meeren, 

Bayarri Gorbe, Dierckx, and Dewettinck, 2004; Setiowati, Saeedi, Wijaya, and 

Van der Meeren, 2016); this approach may also be beneficial in improving the 

emulsion stability of hydrolysed whey protein-based IF systems.  

1.3. Ingredients used in infant formulae 

Bovine milk is the primary source of ingredients for IF products (e.g., protein 

and lactose); however, its composition is significantly different to that of 

human milk, thus fractionation and selective enrichment is required to make 

it suitable for use in infant nutrition. Some of the greatest differences between 

bovine and human milk are in their protein and fat components, hence, the 

majority of research and product development efforts have been traditionally 

focused on these macro-nutrients. 

Matching the detailed macro- (i.e., protein, lipid and carbohydrate) and micro-

components (e.g., vitamins, minerals) of human milk requires careful 

selection of bovine milk-based (and other) ingredients to achieve an IF 

product with a nutritional profile as close as possible to that of human milk. 

Fractionation of bovine milk into individual constituents (i.e., lactose, 

different protein-enriched fractions and milk fat) followed by blending of 

selected constituents with other components from sources other than cow’s 

milk (e.g., blends of vegetable and fish oils and maltodextrin) is central to 

development of IF products.  

1.3.1. Protein-based ingredients 

The protein content of human milk is lower than that of bovine milk; its 

protein profile is also considerably different, as evidenced by the whey:casein 

ratio, but also by the different profile of the whey protein component          

(Table 1.2). The whey protein:casein ratio in human milk is known to change 

throughout the lactation cycle, typically being 80:20 in early lactation, 60:40 
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in mid lactation and 50:50 in late lactation, while for bovine milk it is much 

less variable throughout lactation normally averaging 20:80 (Lönnerdal, 

2003). The major whey proteins in human milk are α-lactalbumin and 

lactoferrin, making up 29% and 24% of the total protein, respectively; these 

proteins only represent 3.7% and 0.6% of the total protein, respectively, in 

bovine milk (Lien, 2003). α-Lactalbumin is recognised as playing a significant 

role in regulating an infant’s physiological processes, antioxidant systems and 

in brain development, due to its high content of tryptophan, cysteine and 

lysine (Lien, 2003). Similarly, lactoferrin is important for its antimicrobial and 

immunotropic properties, and it promotes the growth of beneficial lactic acid 

bacteria, suppresses growth of pathogenic bacteria and facilitates iron 

adsorption (Artym and Zimecki, 2005). In addition, β-lactoglobulin, the 

dominant whey protein fraction in bovine milk constituting approximately 

50% of total whey protein, is absent from human milk (Marshall, 2004). In the 

casein protein fraction of human milk, β-casein is the major constituent, which 

owing to its extensive phosphorylation, is capable of complexing with calcium, 

zinc and other divalent ions, effectively facilitating their adsorption (Chen et 

al., 2016; Lönnerdal, 2003). Differences in the ratios of individual proteins 

between bovine and human milk effectively lead to different concentrations of 

essential amino acids, in different milks. As a result of these differences in the 

amino acid profile, the protein content of IF products is typically higher than 

that in human milk (i.e., 13-15 vs 9-11 g L-1, respectively) (Lien, Davis, and 

Euler, 2004); enrichment of IF products with selected whey protein and casein 

fractions such as α-lactalbumin, lactoferrin and β-casein is also sometimes 

practiced (Aly, Ros, and Frontela, 2013; Buggy, McManus, Brodkorb, 

McCarthy, and Fenelon, 2017; Crowley, Dowling, Caldeo, Kelly, and 

O’Mahony, 2016; Crowley et al., 2015; Lien, 2003; O’Mahony, Smith, and 

Lucey, 2007; Rueda et al., 2008; Sadler and Smith, 2013; Wernimont, 

Northington, Kullen, Yao, and Bettler, 2015). Traditionally, cheese or casein 

manufacturing processes are the main sources of whey for the recovery of whey 

protein; however, owing to the nature of these processes, resultant wheys 

typically contain unwanted residual components, including colouring agent 

(e.g., annatto, not approved as food additive for IF in Europe, US and China), 

starter cultures, glycomacropeptide and high mineral levels. To comply with 
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regulations, certain components may need to be (at least partially) removed 

(e.g., by filtration and ion exchange demineralisation processes) to make the 

resultant whey protein products suitable for use in IF products (EU 

Commission, 2016; McSweeney, 2008; Smithers, 2015). 

 

Table 1.2. Composition of human and bovine milk.  

Component Human milk Bovine milk 

    g 100 mL-1 

Protein 1.03 3.30 

   Whey protein 0.61 0.68 

      α-Lactalbumin 0.29 0.12 

      β-Lactoglobulin 0.00 0.33 

      Lactoferrin 0.25 0.02 

   Casein 0.42 2.62 

Lipid  4.40 3.70 

   Triglycerides 4.31 3.63 

      Saturated 2.07 2.40 

      Monounsaturated 1.72 1.10 

      Polyunsaturated 0.52 0.15 

   Mono-/di-glycerides and polar lipids 0.09 0.07 

Carbohydrate 7.20 4.70 

   Lactose 6.70 4.70 

   Oligosacharides 0.50-2.00 ~0.00 

Ash 0.20 0.70 

Water   87.5 87.8 

 

Sources: Packard (2012); www.nestlenutrition-institute.org.  
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1.3.2. Lipid-based ingredients 

The fatty acid composition of bovine milk is considerably different to that of 

human milk; these differences are mostly due to the lower levels of short chain 

fatty acids and higher proportion of polyunsaturated fatty acids in human milk 

compared to bovine milk (Packard, 2012). The ratio of saturated to 

unsaturated fatty acids is generally 50:50 in human milk, while it is 65:35 in 

bovine milk; palmitic acid is the major saturated fatty acid in both human and 

bovine milk (Packard, 2012); the breakdown of fatty acids into saturated, 

mono- and  poly-unsaturated classes for human and bovine milks is presented 

in Table 1.2. The lipid component of commercial IF products is typically 

comprised of a blend of various vegetable oils (e.g., soybean, sunflower, high-

oleic safflower, coconut oil, palm oil, and low-erucic rapeseed oils) to achieve 

the specific fatty acid levels required by the infant (EU Regulation, 2013; 

Codex Alimentarius, 2007). The regulations contain a general requirement for 

maximum caloric intake of the lipid component (i.e., 4.4-6.0 g 100 kcal-1), 

where the α-linoleic acid is to constitute 5-20% of the total lipid and the              

α-linoleic:linolenic ratio is to be between 5 and 15 to ensure adequate balance 

between the ω3 and ω6 metabolic pathways (Zunin et al., 2015). However, the 

triglyceride configuration of the vegetable oils is different to that observed in 

human milk due to the preferential location of the palmitic acid at the Sn-1 and 

Sn-3 positions of the triglyceride in vegetable oils, in contrast to the Sn-2 

preferential location for human milk fat (O’Callaghan et al., 2011). 

Transesterification is sometimes applied to vegetable oils used in the 

manufacture of IF products in order to enrich the finished product with 

palmitic acid at the Sn-2 position (Bourlieu et al., 2015; López-López, López-

Sabater, Campoy-Folgoso, Rivero-Urgell, and Castellote-Bargalló, 2002). 

Another important group of lipids present in human milk (and all mammalian 

milks) are polar lipids (i.e., phospholipids and lipoproteins), which are 

predominantly present at the surface of fat globules, where they assemble as 

components of the milk fat globule membrane (MFGM). These polar lipids 

form a tri-layer, interrupted by patches of protein and glycoprotein units     

(Fig. 1.3); this heterogeneous interface surrounds the triglyceride core, 

protecting and facilitating delivery of bioactive compounds and nutrients to 



Chapter 1                                                             Literature Review: Infant Formula 

|24 

 

Figure 1.3. Model of the organization of the biological membrane 

surrounding fat globules in milk, the milk fat globule membrane (MFGM). (a) 

3-Dimensional representation of the trilayered membrane, with the 

heterogeneous distribution of proteins and the phase coexistence of lipids: 

lateral segregation of high Tm polar lipids in domains. (b) Heterogeneities in 

the nano-mechanical properties of the outer bilayer of the MFGM. The width 

of the arrows is proportional to the mean values of the breakthrough forces 

determined by atomic force mapping. (c) Schematic representation showing 

that the MFGM is not flat. Hgel and Hlo are the average height difference 

between the two lipid phases. Source: Lopez, Cauty, and Guyomarc’h (2015). 
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the infant in an efficient manner (Lopez et al., 2015). The structure of the 

MFGM is considered unique compared to any other biological lipid transport 

system (Spertino et al., 2012) and it is believed to play an important role in 

lipid metabolism (Singh and Gallier, 2016). However, similar to other 

formulated dairy products, the oil globules in IF are mostly coated and 

stabilised by casein and/or whey proteins due to the preferential adsorption of 

these components during homogenisation. The efforts to characterise and 

understand the role of MFGM in the metabolism of human milk, as well as 

engineering formulae with human milk-like fat globule membranes (FGM) at 

the surface of oil globules have been particularly active areas of research over 

the last 4-5 years (Contarini and Povolo, 2013; Liao, Alvarado, Phinney, and 

Lonnerdal, 2011; Lopez et al., 2015; Lopez and Ménard, 2011). Gallier et al. 

(2015) studied a prototype IF product (Nuturis®, Danone), where large oil 

globules (~4 µm) partially coated by phospholipids were produced in an effort 

to mimic the oil globule structures of human milk. The focus of the study was 

to characterise the structure of the fat droplets of the concept IF and compare 

it to the structure of fat globules in human milk and in control IF with the aid 

of microscopic techniques (confocal laser scanning microscopy and 

transmission electron microscopy). An example of a commercially available 

product with MFGM-like structures is Enfamil Enspire® from Mead Johnson 

Nutrition. 

1.3.3. Carbohydrate-based ingredients 

Similar to bovine milk, lactose is the main carbohydrate component in human 

milk being present at ~6.7%, compared to ~4.7% in bovine milk; its structure 

is the same in all mammalian milks (Packard, 2012). Infant formula products 

based on bovine milk are typically produced from skim milk powder or skim 

milk concentrate, much of the former containing ~52% lactose and ~34% 

protein. To reach the required carbohydrate content in the formulation, 

further addition of lactose or products of starch hydrolysis (e.g., maltodextrin 

or corn syrup solids) is required. Typically, healthy full-term infants do not 

exhibit difficulties with digesting lactose, and for those suffering from 

problems with lactose metabolism, part of the lactose (typically ~30%) is 

replaced with simple sugars (e.g., glucose) (Packard, 2012). 
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In addition to lactose, human milk contains a significant proportion of 

oligosaccharides (5-20 g L-1 in mature milk), which are believed to play an 

important role in influencing and regulating the intestinal microbiota (i.e., as 

prebiotics) and providing potent antimicrobial protection, as well as being 

involved in brain and cognition development (Andreas et al., 2015; Bode, 

2012; Vandenplas, 2002). Supplementation of IF products with 

oligosaccharides has been shown to have beneficial effects on the gut 

microbiota, metabolic activity, stool consistency and development of the 

immunological system (Goehring et al., 2016; Seppo, Autran, Bode, and 

Järvinen, 2016; Vandenplas, Zakharova, and Dmitrieva, 2015). 

1.4. Processes used in infant formulae manufacture 

Infant formula products are typically available in two physical states, as a spray 

dried powder or as a ready to feed (RTF) liquid emulsion. Preparation of 

powdered formula can be achieved by wet mixing (i.e., reconstituting the 

ingredients followed by spray-drying), by dry blending (i.e., mixing of 

dehydrated components to constitute a uniform blended product) or by a 

combination of the two (i.e., production of a base powder by wet mixing and 

spray drying processes followed by dry blending with carbohydrate, minerals 

and/or vitamins) (McSweeney, 2008). The powder and RTF formats of IF 

generally undergo similar unit operations in the initial stages of processing 

(unless the powdered formula is dry blended; Fig. 1.4); these typically involve 

blending of liquid and powdered ingredients at a desired ratio, heat treatment 

and standardisation of the wet mix to the desired nutritional profile. In the 

blending process, proper hydration of protein can be facilitated by using high 

shear mixing devices (O’Sullivan, Schmidmeier, Drapala, O’Mahony, Kelly, 

2016) or increased mixing temperatures (i.e., ≤ 50°C; Bylund, 1995). Heat 

treatment (i.e., pasteurisation, ~72-75°C × 15-20 s) typically follows the wet 

mixing stage to ensure the subsequent microbial quality of the product. 

Subsequent homogenisation allows homogenous distribution of the oil phase 

in the liquid phase; although less common, the homogenisation can also be 

carried out prior to pasteurisation (Buggy et al., 2017). Heat labile ingredients 

(e.g., vitamins) can be added after pasteurisation; microbial quality of these 

ingredients is critical as their point of addition is after the main heat treatment  
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Figure 1.4. Flow diagram showing the different stages involved in the typical 

manufacture processes for infant formulae and follow-on formulae in both 

powder and liquid (RTF) formats. 

 

step. Generally, formation of small oil globules (< 1 µm) is desirable during 

homogenisation of IF to ensure stability of the emulsion against separation 

(McCarthy et al., 2012; McSweeney 2008). However, recent studies have 

shown that IF products with larger oil globules, compared to traditional IF 

products, may offer metabolic and digestive properties that are closer to those 

observed for human milk (Bourlieu et al., 2015; Gallier et al., 2015; van Aken, 

2010). Following pasteurisation and homogenisation, the product destined for 

powdered formula is evaporated to the target total solids concentration of ~50-
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55%, unless already formulated at final solids content (Fig. 1.4), and spray 

dried, while the product destined for RTF formula (at ~12% solids content) is 

either sterilised by a UHT process (135-140°C × 2-3 s) followed by aseptic 

packaging or by in-container sterilisation (120°C × 10-20 min; glass jars, 

plastic bottles, laminate pouches or tinplate cans) (Fig. 1.4). The heating stages 

of the IF process are critical control points that ensure the microbial quality of 

the final product; however, due to the conditions employed and the heat-

sensitive nature of the product, they present challenges in relation to heat 

stability of the product. Efforts have been made to understand the nature of, 

and to minimise the undesirable, heat-induced changes to the systems during 

processing; these changes include fouling of heat exchanger surfaces, 

denaturation and aggregation of protein and interactions between protein and 

oil globules (e.g., flocculation, coalescence, flecking) (McCarthy, Kelly, 

O’Mahony, and Fenelon, 2014; McSweeney, Healy, and Mulvihill, 2008; 

McSweeney, Mulvihill, and O’Callaghan, 2004; Regost, 2016). 

The continuous improvement efforts to increase the resemblance of early 

nutrition products to that of human milk in regards to composition, structure 

and bio-functionality are steadily moving such formulated products even 

closer to human milk. However, a significant gap still exists between 

commercial IF products and breast milk and a small number of research 

groups worldwide are working towards closing that gap. The more promising 

areas of this research include redesigning the interfacial structure of oil 

globules, addressing the function of (human) milk oligosaccharides and their 

enrichment in IF, and efficient and sustainable fractionation of bovine milk for 

enrichment of IF with α-lactalbumin, lactoferrin, β-casein and other bio-

functional proteins and peptides. 
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Abstract 

Emulsions contain water and oil, stabilised by surface active agents, and are 

amongst the most widely present, diverse and complex food components. 

These products are susceptible to changes induced by manufacturing 

processes and on storage, resulting in challenges with their stability, quality 

and shelf life. An understanding of the relationship between structure and 

stability of an emulsion is essential to designing and competently formulating 

food products with the desired nutritional functionality and sensory 

properties, while achieving the required shelf life. This article critically reviews 

a broad range of commonly-used analytical approaches focused on emulsion 

formation dynamics, emulsion structure, techno-functional properties and 

stability to intrinsic and environmental factors. A brief overview of the 

fundamentals of the stability of emulsions to separation based on their 

measurable physical parameters (i.e., oil globule size, phase density, viscosity) 

is presented, as well as a discussion on the rheological properties of an 

emulsion as affected by interactions between its components. The 

effectiveness of oil globule stabilisation by electrostatic and steric barriers 

under various environmental conditions is reviewed, with particular focus on 

the strategies used to influence and measure these stabilisation phenomena. 

Finally, the assembly of the interfacial layers in infant formula emulsions is 

discussed, with a focus on the current trends therein for this high value food 

sector.  
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2.1. Introduction 

Many food products are emulsion-based systems (e.g., protein-based 

beverages, ready to feed infant formulae, ice cream and mayonnaise); in some 

food products the emulsion is immobilised by subsequent processing (e.g., 

spray drying, gelation or freezing). Owing to the immiscible nature of the two 

major components of an emulsion (i.e., water and oil), these systems are 

inherently thermodynamically unstable, hence, efforts to improve their 

stability are an ongoing focus of food research. Stability of a food emulsion can 

be divided into stability against time-induced changes resulting from the 

differences in the density of the two immiscible components of the emulsion 

(i.e., floatation and phase separation; Fig. 2.1 B) as described by Stokes’ law 

and stability of the system against undesirable interactions between its 

individual components (i.e., flocculation, aggregation and coalescence of oil 

globules) (Fig. 2.1 C and D). 

Based on Stokes’ law, a relationship between the parameters of an emulsion 

(i.e., particle size, phase density and viscosity) and the velocity of separation 

(i.e., creaming) can be established (Equation 2.1). This relationship helps to 

explain how changes to the emulsion parameters affect its stability to gravity-

governed changes under laminar flow:  

                  (2.1) 

 

Where vcreaming describes the velocity of upward movement (i.e., 

creaming) of an oil globule, r is the radius of the oil globule, ρ is the 

density of the corresponding dispersed phase (i.e., the oil globule) and the 

dispersant (i.e., serum phase), g is the acceleration due to gravity, and η 

refers to the viscosity of the continuous phase. Conversely, when the 

dispersed phase has a higher density compared to the continuous phase, 

a downwards movement is observed for the dispersed particles (i.e., 

sedimentation). 

It should be noted that Stokes equation assumes that the separating particles 

are spherical, which is not always true for oil globules with structured 

𝑣𝑐𝑟𝑒𝑎𝑚𝑖𝑛𝑔 =
2𝑟2(𝜌𝑜𝑖𝑙 𝑔𝑙𝑜𝑏𝑢𝑙𝑒 − 𝜌𝑠𝑒𝑟𝑢𝑚)𝑔

9𝜂
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interfacial layers. In addition, the equation does not take into account charge-

based interactions between particles (i.e., the electroviscous effects) nor the 

hydrodynamic interactions between the particles and the solvent 

(McClements, 1999).  

Processing stability and shelf life stability are other terms commonly used 

when discussing emulsion stability; this terminology is especially relevant 

from an industrial perspective as it covers the stability of a formulation (i.e., 

mixture of ingredients prepared according to a formula) during different 

stages of product manufacture and stability of the final product during its 

intended storage time. Processing stability refers to the ability of emulsions to 

resist changes incurred in response to adverse processing conditions during a 

relatively short time (i.e., heat treatment, high shear forces, turbulent flow and 

short time storage); these generally include changes due to the interactions 

between the components of the system as detailed in Fig. 2.1 C. These 

undesirable changes include flocculation and coalescence of oil globules, 

aggregation of protein and formation of complexes between different 

component classes (i.e., bridging flocculation, surfactant/protein/ 

polysaccharide complexes) (Antipova, Semenova, Belyakova, and Il’in, 2001; 

Drapala, Auty, Mulvihill, and O’Mahony, 2015; Drapala, Auty, Mulvihill, and 

O`Mahony, 2016a,b; Regost, 2016; Ye and Singh, 2006). On the other hand, 

shelf life stability represents a holistic view on the stability of these systems 

and it addresses changes that happen gradually over a relatively long time (i.e., 

weeks-months); these incorporate both changes in the system based on Stokes’ 

law (i.e., creaming, sedimentation; Fig. 2.1 B), changes due to undesirable 

interactions between components (Fig. 2.1 D) as well as chemical reactions 

that can take place in a food emulsion (e.g., lipid oxidation). 

Numerous approaches have been developed and employed to test emulsion 

stability, studying the prevalence of the undesirable changes during processing 

(Guzey and McClements, 2006; Liu, Sun, Xue, and Gao, 2016; McCarthy et al., 

2012; McSweeney, Healy, and Mulvihill, 2008; Mustapha, 

Ruttarattanamongkol, and Rizvi, 2012) and during shelf life (Pan, Tikekar, and 

Nitin, 2013; Sarkar, Arfsten, Golay, Acquistapace, and Heinrich, 2016;  

Tcholakova, Denkov, Ivanov, and Campbell, 2006; Xu, Wang, Jiang, Yuan, 
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Figure 2.1. Schematic representation of changes that can affect (A) a typical IF emulsion as a result of (B) density difference 

(creaming of oil globules), (C) thermal processing (protein mediated aggregation of oil globules) and (D) long term storage 

(coalescence of oil globules) as evidenced by various analytical techniques typically used to characterise emulsions: (i) particle size 

analysis measured using laser diffraction; (ii) confocal laser scanning microscopy (CLSM) images showing the distribution of protein 

(red) and neutral lipids (green) in emulsions; (iii) accelerated creaming stability analysis with an analytical centrifuge; and (iv) 

simulated heat treatment with dynamic sample viscosity information obtained using a rheometer, equipped with a starch pasting cell. 
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and Gao, 2012). Due to the impact the emulsion parameters, as described by 

Stokes law, have on its physical stability, many of the analytical approaches 

have been directed at measuring and controlling fat globule size distribution, 

viscosity, flow behaviour and phase separation. Selected methods will be 

discussed in detail in this review. Likewise, approaches used to study the 

prevalence of undesirable interactions between components of emulsions 

during processing and shelf life will also be discussed to provide a detailed 

overview of the current methodology used in understanding, controlling and 

predicting emulsion stability. In this review, selected analytical approaches, 

used for studying the formation, assembly and properties of emulsions and the 

role of interfaces of oil globules on mechanisms of emulsion stabilisation and 

destabilisation will be discussed. 

2.2. Formation of emulsion interfaces 

Surface active compounds (e.g., emulsifiers) are essential to provide a 

reasonable stability and homogeneity to a system composed of two (or more) 

immiscible phases (i.e., oil and water in food emulsions) due to their affinity 

for both hydrophobic and hydrophilic phases (McClements, 1999). These 

compounds are added to an oil and water mixture prior to a mechanical 

process, such as homogenisation or high shear mixing, which are designed to 

disperse one phase in another by breaking the dispersed phase into a large 

number of small subunits (i.e., oil globules for oil-in-water emulsions). The 

increase in the contact area between the two phases is accompanied by an 

increase in the surface free energy, resulting in increased thermodynamic 

instability with a strong drive to minimise the contact area between the two 

phases (i.e., coalescence of oil globules and phase separation). However, with 

the presence of emulsifiers, their rapid migration to, and adsorption at, the 

oil/water (O/W) interface reduces the surface free energy (i.e., interfacial 

tension) and effectively impedes the drive towards coalescence of oil globules. 

In addition, a physical barrier is formed by the adsorbed compounds at these 

interfaces, giving further protection against coalescence. 

The term surface active ingredient covers a broad range of components, the 

effectiveness of which for formation and stabilisation of an emulsion system 
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depends on their amphiphilic balance, molecular size and structure. Proteins 

are common, naturally occurring emulsifiers, widely used in a broad range of 

food applications; however, other compounds such as lipid-based low 

molecular weight surfactants (e.g., phospholipids, mono- and di-glycerides, 

esterified glycerides) are also commonly used (McSweeney, 2008). In general, 

smaller emulsifiers display higher mobility, compared to larger emulsifiers; 

smaller emulsifiers tend to dominate the interface in a shorter time. In 

addition, these small emulsifiers can display higher packing density at the 

interface (i.e., have a more densely populated interface), compared to large, 

more structured, surfactants (e.g., protein), resulting in lower interfacial 

tension (Pugnaloni, Ettelaie, and Dickinson, 2005). 

To assess the ability of an emulsifier to stabilise an interface, analysis of 

interfacial tension is typically performed; such analysis provides information 

on the emulsifier adsorption rates as well as on the extent of reduction in 

interfacial tension. A comprehensive review of different approaches used to 

study surface and interfacial tension has been published by Drelich, Fang, and 

White (2002) and the main principles of these approaches, with some 

examples of their applications, are summarised briefly in the current review. 

The most commonly used methods for the analysis of interfacial tension can 

be divided into 2 categories, based on the measurement principle employed: 

(1) direct measurement of the repulsive force between two immiscible phases 

and (2) analysis of the shape of a droplet as affected by interfacial tension. Both 

of these approaches are based on quantification of the force resisting an 

increase in the surface area (i.e., surface tension) promoted by forces acting in 

the opposing direction (e.g., pull, gravitational or centrifugal forces; Fig. 2.2). 

The repulsive forces acting at the interface between two immiscible phases can 

be quantified using a microbalance or capillary pressure approaches. For the 

former approach, a probe (typically Wilhelmy plate or Du Noüy ring), 

connected to the microbalance, is placed directly above the surface/interface 

and is brought into contact with it. Resultant wetting of the probe by the liquid, 

due to the capillary forces (Fig. 2.2 a), causes an increase in the surface area; 

at the same time the inherent drive of the system to reduce the surface area is 

acting in the opposite direction. The net effect is that a pull force acts on the 
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Figure 2.2. Schematic representations of principles of typical analytical techniques used for determination of interfacial tension (γ): 

(a) microbalance technique with the Wilhelmy plate geometry; (b) pendant (left) and sessile (right) drop techniques using image 

analysis software; (c) spinning drop method using image analysis software.  

Adapted from: Drelich, Fang and White (2002); Leick, Henning, Degen, Suter and Rehage (2010); Thiessen and Man (2000). 
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probe, which is quantified by the microbalance and used to calculate the 

surface/interfacial tension (Equation 2.2). The presence of a surface active 

compound results in a decrease of that pull force, owing to the reduced surface 

free energy upon its adsorption at the interface.  

                                                          𝛾 =
𝐹

𝐿 𝑐𝑜𝑠𝜃
                                                       (2.2) 

Where γ is the surface/interfacial tension (mN m-1), F is the pull force 

(mN) acting on the plate, L is the wetted length (i.e., 2 × plate width; mm) 

and θ is the contact angle between liquid meniscus and the plate.  

Using the Du Noüy ring attachment allows only a single point measurement, 

where the force required to detach the ring from the lamella is related to the γ. 

On the other hand, the Wilhelmy plate attachment allows study of a dynamic 

γ by its continuous measurement without the detachment step, making it a 

geometry of choice for measuring surface properties of emulsifiers. 

Kim, Cornec, and Narsimhan (2005) used the Wilhelmy plate approach to 

study the effect of heat-induced changes in the secondary structure of β-

lactoglobulin on its interfacial properties at the planar soybean oil-water 

interface. Those authors correlated the conformational changes to the protein 

with the interfacial area populated by the native or denatured/aggregated 

protein and with the flexibility of the protein at the interface (i.e., increase in 

flexibility due to protein denaturation), linking the improved flexibility to 

better emulsifying functionality of the ingredient. Using a similar approach, 

Jara, Carrera Sánchez, Rodríguez Patino, and Pilosof (2014) studied surface 

pressure isotherms for individual whey proteins (i.e., β-lactoglobulin, β-lg; α-

lactalbumin, α-la; bovine serum albumin, BSA) as affected by protein 

conformation at different pH values. The authors reported different interfacial 

behaviour for these proteins, where after initial adsorption at the interface, 

native α-la displayed limited unfolding (i.e., rigid structure) at pH 6 and a 

flexible structure at pH 3. Similarly, BSA displayed increased surface activity 

at pH 3 compared to pH 6; conversely, the native β-lg, was shown to display 

higher surface activity at pH 6 compared to that at pH 3. Modification of 

surface properties of protein by hydrolysis was studied using the Wilhelmy 
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plate method by Turgeon, Gauthier, Molle, and Leonii (1992). In that study the 

authors identified peptide fractions, from the hydrolysis of β-lg, with improved 

interfacial properties; the molecular structure of these peptides was further 

assessed using reversed phase high-performance liquid chromatography and 

analysis of surface hydrophobicity. Their research concluded that the best 

surface activity for hydrolysed β-lg was observed at low Mw (i.e., ~2000 kDa) 

combined with clustering in distinct polypeptide regions of hydrophilic and 

hydrophobic residues. Effectively, those authors showed that surface tension 

analysis, combined with the other methods, allowed a holistic evaluation of 

hydrolysed protein fractions for improving surface activity. Yang et al. (2013) 

used the Wilhelmy plate method to measure the surface activity of low 

molecular weight (LMw) surfactants (i.e., phospholipids and non-ionic 

polymeric surfactants) and correlated it with their emulsion capacity, as 

determined by measurement of fat globule size distribution post 

homogenisation.  

Surface tension analysis is often used for studying the compatibility between 

different surface active components in a system, where it can help with 

assessing the shelf life stability of emulsions. Cai and Ikeda (2016) studied the 

competitive displacement of native or conjugated whey protein, by LMw 

surfactant, Tween 20, at an air-water (A/W) surface. Those authors reported 

that surface tension analysis allowed tracking of protein displacement from 

the surface upon introduction of the LMw surfactant. In that study, the authors 

showed that conjugation of protein with the network-forming polysaccharide, 

gellan, provided a resistance to protein displacement from the interface. 

Competitive displacement behaviour and its effect on the shelf life of an 

emulsion-based product can also be characterised using a surface rheology 

approach (Dickinson, 2001); this approach typically uses modified surface 

tension methods and will be discussed later in this section.  

With the capillary pressure approach, a pressure difference across a curved 

interface is measured. Based on the Young-Laplace equation, the pressure is 

higher on the concave side and lower on the convex side of a curved interface. 

By measuring the pressure required to force a gas bubble through the capillary 

into the liquid, the tension associated with that interface can be calculated. 
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Tamm, Sauer, Scampicchio, and Drusch (2012) used the capillary approach to 

measure the changes in the pressure difference across the interface to monitor 

dynamic protein adsorption at the air/water interface and correlated that 

information with foam capacity and foam stability. Similarly, Marinova et al. 

(2009) studied the adsorption kinetics for caseins and whey proteins using a 

Langmuir trough, where the differences in surface properties were correlated 

with the differences in foamability of the proteins.  

The second category of methods employed to measure surface/interfacial 

tension is based on the shape of a liquid droplet. In this approach, the 

interfacial tension is calculated from the drop dimension and the volume of 

the liquid used to form the droplet. The shape of a liquid droplet is resultant 

from the two opposing forces acting on it; surface tension, which pulls the 

liquid upwards towards a spherical drop, and the force of gravity, which pulls 

the liquid downwards causing an elongation of a pendant drop or widening of 

a sessile drop (Equations 2.3 and 2.4, respectively; Fig. 2.2 b) (Drelich, Fang, 

and White, 2002). 

𝛾 =
∆𝜌𝑔𝐷2

𝐻
            (2.3)

    

     𝛾 =
∆𝜌𝑔𝑧𝑒

2

2
            (2.4) 

Where γ is the surface tension; Δρ is the difference in density of the two 

phases; g is the force of gravity acting on the droplet; D is the equatorial 

diameter; H is the shape dependent parameter, which can be obtained 

from shape factor tables available in the literature (Rusanov and 

Prokhorov, 1996; Staufer, 1965), and ze is the height from the top of the 

drop to its equator for the sessile drop (Drelich et al., 2002).  

It is worth noting that the main limitation for using pendant and sessile drop 

methods is their low sensitivity for low surface tension systems (Sagis and 

Scholten, 2014). It is often possible to combine the surface tension 

measurement, using the pendant drop approach, with surface rheology 

analysis, whereby the sample dosing system allows inducing deformations to 
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the interfacial area by fluctuating the volume of the drop at controlled 

amplitude and frequency – the resultant response to the sinusoidal 

compression and expansion of the interface is related to the elasticity and 

flexibility of the interface. Kaltsa, Paximada, Mandala, and Scholten (2014) 

used the pendant drop method to study the evolution of interfacial pressure at 

O/W interfaces in systems containing WPI, Tween 20 and a 1:1 mixture of the 

surfactants. Using this method, those authors were able to record faster rate 

of adsorption and lower final interfacial tension for the LMw surfactant, 

compared to the protein; the authors were also able to observe reorganisation 

of molecules at the interface, where protein were displaced by the LMw 

surfactant. Dombrowski, Johler, Warncke, and Kulozik (2016) used the 

pendant drop method to study the surface tension and the dynamics of surface 

adsorption for soluble aggregates of β-lg, prepared under different ionic 

strength and pH conditions, at the A/W interface. Those authors measured the 

interfacial dilatational properties of films formed by β-lg aggregates by drop 

oscillation. Effectively, the information on surface behaviour of these 

aggregates generated using the pendant drop approach was correlated to their 

foam forming and stabilising properties.  

Drop detachment is a more traditional variant of the pendant drop method, 

where the force of gravity is utilised to measure the surface/interfacial tension; 

in this approach the weight or volume of the liquid required to detach the drop 

from the needle is measured. This information is then calculated to give 

surface tension; the force required to detach the droplet is directly 

proportional to its surface tension (i.e., higher γ will require the drop to be 

bigger/heavier) (Dunkhin, Kretzschmar, and Miller, 1995). This method was 

traditionally used to study the surface and interfacial tension before more 

advanced, camera-based devices became available. The spinning drop method 

is a more advanced variant of the liquid drop shape analysis, used for a low 

interfacial tension (γI) range; in this method drop deformations are measured 

as a result of radial pressure gradients acting on the drop in a rapidly spinning 

tube (Fig. 2.2 c). The spinning drop method is used for studying the interfacial 

tension between two liquids, where the continuous heavy phase is placed in 

the measurement cell (i.e., transparent horizontal tube) and a drop of the 
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lower density phase is injected into the tube as it is spinning (Thiessen and 

Man, 2000). The extent of drop deformation (i.e., elongation) is inversely 

proportional to the γI; the higher the γI the more spherical the shape of the 

spinning drop. Jeirani et al. (2013) used the spinning drop method to measure 

the γI of model triglyceride microemulsion systems consisting of palm oil and 

de-ionised water. That approach was used to screen co-surfactants (Tween 20, 

Tween 80, glycerol, sorbitan monooleate, glyceryl monooleate and saponin) 

for their ability to achieve ultra-low γI values (i.e., <0.01 mN m-1). Those 

authors were able to measure very low γI values, where the lowest γI, 0.0002 

mN m-1, was reported for the microemulsion system stabilised by glyceryl 

monooleate.  

Analysis of interfacial rheology typically involves a modification of one of the 

approaches discussed above; it allows the generation of dynamic information 

on the adsorbed layer, its flexibility and strength (i.e., viscoelastic properties) 

by measuring the deformation of the interface as a function of force and time 

(Bos and van Vliet, 2001; Karbaschi et al., 2014). The equipment and 

methodology used to study interfacial rheology is, generally, based on the drop 

volume/shape approaches used for studying surface/interfacial tension, with 

modifications to allow the exertion of a deformation force on the interface and 

measuring the responses of the interface to such a force. Studying interfacial 

rheology can provide valuable information on different surfactants and mixed 

surfactant systems, especially for applications in emulsion processing stability 

(i.e., rigidity of the interfacial layer and stability against coalescence on high 

impact collisions) or in foam stability, where the voluminous and relatively 

heavy food structure is supported by a network of interfacial films. The 

influence of food emulsifiers on the rheological properties of interfaces in food 

systems have been reviewed by Murray (2002) and Karbaschi et al. (2014). 

Tamm and Drusch (2017) measured the rheological properties of O/W 

interfaces in systems containing β-lg with different extents of hydrolysis (3 and 

6%) and pectins with different extents of methoxylation (32, 35 and 64%). In 

that study, the authors reported differences in the rheological properties of the 

samples as affected by interfacial layer composition; native β-lg/pectin 

complexes displayed higher dilatational elastic moduli compared to 
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hydrolysed β-lg/pectin; however, the hydrolysed β-lg/pectin complexes 

exhibited greater strength of the interfacial layer on application of shear (i.e., 

time and amplitude sweeps), compared to the native β-lg/pectin systems. The 

authors also reported interactions between pectins and proteins/peptides as 

evidenced by measured differences in their adsorption rate. Hong and Fischer 

(2016) used the interfacial rheology approach to study the differences in the 

properties of interfacial layers stabilised by hydrophobic and hydrophilic 

colloidal particles (clays) and related these properties to stability of canola 

O/W emulsions. Those authors found that stabilisation of emulsions by a 

mixture of both hydrophilic and hydrophobic colloids resulted in strong 

association between the two and, effectively, significantly increased interfacial 

modulus improving stability to coalescence of the emulsions.  

Analysis of the interfacial properties of emulsions can provide valuable 

information like emulsifier adsorption rates, compatibility between 

emulsifiers in a multi-emulsifier system or the strength of the interfacial layer, 

for producing a homogenous and stable emulsion system. However, it must be 

noted that these analyses have different limitations (e.g., unsuitability for low 

γ values, only model interfaces analysed) and they also measure changes at the 

interface (e.g., adsorption and displacement) over a relatively short period of 

time and do not necessarily relate to changes that can take place in these 

systems over storage and shelf life. Hence, it is advised that this approach is 

combined with other analyses that measure changes in the system during 

processing or storage. 

2.3. Emulsion quality – homogeneity and size distribution 

The size of oil globules in an emulsion is a major factor governing the quality 

of the system and its stability to gravity-induced separation as described by 

Stokes law. Emulsion quality and shelf life stability is strongly related to its 

homogeneity, specifically the size and distribution of oil globules in the 

emulsion system. Thus, formation of an emulsion with sufficiently small oil 

droplets is a key initial requirement for stability of such systems; typically, 

emulsions with mean oil globule diameter < 1 µm, that display a monomodal 

distribution, are considered to be stable to phase separation (McClements, 
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1999). The size distribution of oil globules in food emulsions is also important 

for their sensory properties; parameters such as mouthfeel, flavour release and 

colour are related to the fat globule size distribution (FGSD) of the system 

(Benjamins, Vingerhoeds, Zoet, de Hoog, and van Aken, 2009; van Aken, 

2010). 

It is essential to be able to measure and/or predict the quality of an emulsion 

after homogenisation, it is also important to monitor changes that can take 

place in the system during processing (e.g., heating, pumping and short-term 

storage) and during the desired product shelf life. The main approach to track 

these changes is by monitoring changes in the FGSD using static light 

scattering (i.e., laser diffraction), where particles dispersed in a liquid medium 

(typically water) scatter laser light at different angles, depending on their size. 

Generally, large particles scatter light at narrow angles, and small particles 

scatter light at wide angles; the intensity of detected scattered light is then 

calculated to provide information on the particle size distribution. Laser 

diffraction instruments (i.e., Mastersizer, Malvern Instruments Ltd., Malvern, 

UK), used for measuring the FGSD, operate within the size range between 10 

nm to 3500 µm, which encompasses the typical oil globule size range for food 

emulsions. The presentation of FGSD results obtained with laser diffraction 

instruments typically includes a size distribution profile (Fig. 2.1 i), values for 

particle size at the 10, 50 and 90% quantiles of the distribution (Dv,0.1, Dv,0.5 

and Dv,0.9, respectively), particle mean diameters (volume-based, D4,3 and 

surface area-based, D3,2), specific surface area and distribution span. The size 

distribution profile gives a visual representation of the distribution of oil 

globule sizes in the emulsion samples based on the volume rather than the 

number of particles, meaning that the presence of a small number of large oil 

globules is not obscured by the presence of a large number of small oil 

globules. The use of distribution profiles for presentation of the FGSD results 

is useful for assessing the homogeneity of the system and tracking changes in 

the system caused by interactions between its components (i.e., monomodal 

vs bi- or multi-modal distribution). Van der Ven, Gruppen, de Bont, and 

Voragen (2001) used size distribution profiles to compare the emulsifying 

properties of different casein and whey protein hydrolysates, where depending 
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on the degree of hydrolysis and the hydrolysis conditions, different profile 

modes (i.e., mono- and bi-modal) and the width of distributions of oil globules 

in resultant emulsions were observed. It may sometimes be useful to construct 

a cumulative distribution plot, to show the population size at a given percentile 

value; such representation of the FGSD data allows comparison of the range 

(i.e., span) of size distribution between samples, which is especially useful in 

systems displaying a monomodal size distribution. The cumulative 

distribution profiles can also be used to track changes in the FGSD in response 

to adverse environmental conditions or prolonged storage. Kasran, Cui, and 

Goff (2013) used this approach of data presentation to discuss stability of 

emulsions made using non conjugated and conjugated (with fenugreek gum) 

soy whey protein during 28 d of storage; similarly, in the work of Shimoni, 

Shani Levi, Levi Tal, and Lesmes (2013), cumulative distribution profiles were 

used to study stability of emulsions containing lactoferrin nano-particles to 

gastric digestion. Calculating the span of the distribution is another way to 

show the range of the size distribution of particles in a sample; it is given by 

the following relationship between the three quantile parameters (Equation 

2.5). 

                                                      

  

The information on the particle size at the extremities of the distribution can 

be extracted by studying the Dv, 0.1 and Dv, 0.9 parameters; these parameters are 

important when monitoring changes in sample FGSD (e.g., after certain 

treatments or during shelf life stability testing). Since the Dv, 0.1 parameter is 

sensitive to the fraction of small particles, its increase can indicate an assembly 

and formation of particles from small components of the sample, that were not 

detectable or included in the initial profile (i.e., before the treatment or at the 

initial time point of storage). Alba, Ritzoulis, Georgiadis, and Kontogiorgos 

(2013) showed that an increase in Dv,0.1 for model Okra-based acidic (pH 3) 

emulsions during storage can be used as an indicator of Ostwald ripening, 

where a certain population of oil globules grows in size at the expense of other, 

𝑆𝑝𝑎𝑛 =
𝐷𝑣,0.9 − 𝐷𝑣,0.1

𝐷𝑣,0.5
 

(2.5) 
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smaller globules in the system. Conversely, an increase in the Dv,0.9, with little 

changes to the other quantile parameters would typically indicate formation of 

a small number of large particles in the sample. In an emulsion system, this 

normally indicates flocculation or coalescence of oil globules (Drapala, Auty, 

Mulvihill, and O’Mahony, 2015; Łuczak and Fryźlewicz-Kozak, 2013; 

McClements, 2015). When the Dv,0.9, increases, the choice of the dispersing 

media when using the FGSD analysis allows one to identify which of the two 

undesirable processes (i.e., coalescence or flocculation) is taking place in an 

emulsion system; dissociating media like sodium dodecyl sulphate (SDS) has 

been used to discriminate between reversible and irreversible interactions 

between oil globules (Bazmi, Duquenoy, and Relkin, 2007; Liang et al., 2014). 

If the increase in FGSD is reversible upon the use of dissociating agent, the 

interactions are due to flocculation of oil globules; conversely, an irreversible 

increase in the FGSD would typically indicate coalescence. 

The two different approaches for calculating the mean particle (i.e., oil 

globule) diameter are based on the particle volume (D4,3, de Brouckere mean 

diameter) or on the particle surface area (D3,2, Sauter mean diameter). D4,3, is 

the most commonly used parameter when discussing FGSD results as it shows 

where the mass/volume fraction of the system lies; the D4,3 is sensitive to 

changes at the extremes of the distribution (i.e., especially the large particles 

with large volume) as well as the span and the homogeneity of the distribution. 

The D4,3 parameter is suitable for screening of emulsifiers for their ability to 

form small oil globules during homogenisation and to prevent interactions 

between oil globules on processing and storage; small changes in the size 

distribution can be easily detected with this volume-based mean parameter 

(Martinet et al., 2005; Mwangi, Ho, Tey, and Chan, 2016; Ye, Hemar, and 

Singh, 2004). Conversely, D3,2 is more sensitive to the small particles in the 

distribution (i.e., those with greatest surface area to volume ratio) and it is less 

often used in describing FGSD of emulsions. One of the examples where the 

use of the D3,2 parameter is useful is in work from Van der Meeren, El-Bakry, 

Neirynck, and Noppe (2005), where the authors measured particle size 

distribution of coffee cream soybean oil-based emulsions containing protein 

and lecithin before and after heat treatment; two separate techniques were 
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used by those authors, photon correlation spectroscopy and static laser light 

diffraction, to obtain harmonic intensity-weighted average hydrodynamic 

diameter and D3,2, respectively. In that work, the authors reported increases 

in the intensity-weighted diameter and no change in the D3,2, from which they 

concluded deposition of protein on the surface of oil globules in these 

emulsions as an effect of heat treatment (i.e., in-container sterilisation; >12 

min at 119°C, 45 min total heating time). Similarly, McCarthy et al. (2012) used 

the D3,2 parameter for correlation with the protein load at oil globule interfaces 

in model infant formula emulsions. Those authors reported an increase in the 

D3,2 with decreasing protein:fat ratio and parallel decrease in the specific 

surface area of oil globules; however, no differences in the protein load were 

reported for those systems. Specific surface area measured by laser diffraction 

can provide indirect information on changes in the particle size within the 

population, i.e., large surface area would indicate large number of small 

particles and the opposite for small surface area. However, measurement of 

surface area using laser diffraction does not take into account the porosity and 

topography of the surface and other methods (e.g., Brunauer–Emmett–Teller 

relationship or mercury porositometry methods used for solid particles) might 

be more appropriate if the surface area is the principal focus (Alghunaim, 

Kirdponpattara, and Newby, 2016; Arvaniti et al., 2014; Williams, 2007). 

A significant volume of information can be generated using the laser 

diffraction technique for an emulsion system; it is often possible to 

discriminate between emulsion-related destabilisation pathways such as 

coalescence, flocculation and Ostwald ripening as well as provide information 

on the performance of protein-based emulsifiers in these systems (e.g., heat-

induced aggregation, protein-mediated bridging flocculation and changes in 

the interfacial protein load). Euston, Finnigan, and Hirst (2001) measured the 

rate of apparent aggregation of emulsion globules by monitoring the change in 

the ratio between initial number of emulsion droplets and the number of 

emulsion droplets after heating; they established that the aggregation of oil 

globules in emulsions stabilised by whey protein follows the same order of 

kinetics (i.e., 1.5) as observed for heat-induced aggregation of β-lg. Liang et al. 

(2014) studied the influence of different sugars (i.e., glucose, maltose, 
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trehalose and maltodextrin) on emulsification and heat stability of milk 

protein concentrate (MPC)-based O/W emulsions. Those authors used FGSD 

analysis to track the evolution in particle size distribution in those emulsions 

as a function of heating time (0-20 min at 140°C); the authors reported 

changes to the casein micelle and oil globule populations as a result of the heat 

treatments, as evidenced by a shift from bimodal to multimodal size 

distribution and a progressive shift of the peaks towards the large particle 

region of the size distribution profile as the holding time increased. Chevallier 

et al. (2016) studied the influence of whey protein microgel (WPM) particles 

on the heat stability of emulsions containing whey proteins; the authors found 

that the presence of whey proteins (WPM or native) at the surface of oil 

globules resulted in decreased heat stability compared to emulsions where oil 

globules were stabilised by caseins, as evidenced by heat-induced increases in 

particle size and changes in the microstructure of emulsions. However, the 

presence of WPM in the serum phase of casein-stabilised emulsions allowed 

formation of heat-stable whey protein rich emulsions. Laser diffraction is often 

used in combination with other analytical techniques, (e.g., microscopy, 

creaming velocity, protein load analysis or zeta potential analysis) to provide 

more holistic information about the system and changes that take place within. 

Some of these other approaches will also be discussed in this review. 

2.4. Phase separation and emulsion shelf life 

Emulsions display an inherent tendency to destabilise by phase separation 

owing to the differences in the density between their main components (lipid 

and water). According to Stokes law (see Equation 2.1 in Section 2.1), the rate 

of separation is influenced by four parameters (density, viscosity, particle size 

and acceleration due to gravity). From these four parameters, three are directly 

related to the emulsion system itself and can be, to some extent, controlled by 

the formulation and the processes used (phase densities, oil globule size and 

viscosity of the dispersed phase). Since most emulsions are produced using 

either innate or added emulsifiers in the formulation and high pressure 

homogenisation (typically), the initial emulsion quality is generally good and 

it is difficult to determine its creaming rate, and effectively shelf life, under 

ambient storage conditions. Hence, approaches utilising exaggeration of 
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external conditions (i.e., centrifugation, increased temperature) are used to 

facilitate generation of information on emulsion stability in a reasonable time 

frame.  

In this review, the approach for measuring emulsion stability to creaming 

under accelerated conditions will be discussed. A range of commercially 

available analytical centrifuges (L.U.M. GmbH, Berlin, Germany) allow for 

acceleration of the phase separation process by controlling the centrifugal 

speed and the temperature while live monitoring movement of the particles 

(e.g., oil globules and protein particles) through the measurement cell. The 

principle of this method has been comprehensively detailed by Lerche and 

Sobisch (2007; 2011); in summary, a liquid sample is introduced to a 

transparent measurement cell and placed in the centrifuge. Transmission of 

light through the cell is measured as a function of time and movement of the 

particles towards the top (creaming) or bottom (sedimentation) of the cell can 

be observed. Collected data is typically presented as STEP profiles (space- and 

time-resolved extinction profiles), detailing the changes in the light 

transmission through the cell during the analysis, integral transmission 

(cumulative changes in the transmission through the cell) and front tracking 

(movement of the phase boundary) profiles, as shown in Fig. 2.1 iii. Creaming 

velocity of the sample can be calculated from the front tracking profile and 

recalculated to a corresponding creaming velocity under ambient gravity 

forces (Drapala et al., 2016b); similarly the evolution of the thickness of the 

cream layer can be calculated from the front tracking profiles. It should be 

noted that the accelerated separation approach speeds up the separation of 

components in the system due only to size of particles in the dispersed phase, 

viscosity of the continuous phase and the difference in density between the 

dispersed and continuous phases. In addition, progressive creaming and 

sedimentation can result in changes in viscosity during the course of the 

analysis. 

Application of the analytical centrifuge approach for emulsion systems can be 

useful when screening effectiveness of emulsifiers or when reformulating 

existing products, where it can provide information on the effects of the new 

ingredients on the creaming rates of the system, compared to the original 
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formulation. Liu et al. (2016) studied the stability of walnut oil emulsions to 

various unit operations, changes in composition and storage conditions such 

as freeze-thaw cycles and pH fluctuation; these authors used the integral 

transmission data to investigate the effects these conditions had on the 

creaming behaviour of emulsions as a function of the emulsifier used. Shimoni 

et al. (2013) reported on Pickering stabilisation of olive oil-based emulsions by 

lactoferrin nanoparticles; those authors used the STEP profiles and calculated 

creaming velocities to describe differences in the stability of those emulsions 

after homogenisation and after in vitro acid digestion. In that study, the 

authors used the separation velocity data to calculate the harmonic mean 

droplet size, as detailed previously by Detloff, Sobisch, and Lerche, (2006) and 

Lerche and Sobisch (2011), and correlated the size of oil globules with their 

creaming rates and zeta potential. Those authors reported that the 

nanoparticles were more successful in stabilising coarse (mean oil globule size 

~ 65-85 µm) emulsions than fine (mean oil globule size ~ 4-6 µm) emulsions; 

it was also reported that addition of carrageenan significantly increased the 

zeta potential (ζ) of oil globules and reduced the creaming rates in fine 

emulsions stabilised by the nanoparticles, however, no viscosity data was 

provided for those systems. Similarly, Lei, Liu, Yuan, and Gao, (2014) used the 

analytical centrifuge approach to study the effect of emulsifier type on the 

physicochemical properties of β-carotene emulsions; the authors correlated 

changes in the system viscosity and oil globule size with the differences in their 

creaming rates. In another study, Meshulam, Slavuter, and Lesmes (2014) 

investigated destabilisation of inulin-stabilised emulsions by saliva additon 

and they showed that the creaming velocity of emulsions were not affected by 

differences in the ζ of oil globules achieved by changing the system pH (i.e., 

pH 2-10). This finding is not surprising as accelerated conditions used in the 

analytical centrifuge approach cause movement of the system components in 

accordance with Stokes law (unless the movement takes place in an electric 

field). Hence, the changes typically observed under quiescent conditions, such 

as interactions of oil globules due to low electrostatic repulsion, are excluded 

from the analysis due to its time-scale being too short for their role to be 

important in separation. On the other hand, modification of the steric 

stabilisation system for oil globules can potentially yield different stability to 
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separation under accelerated conditions owing to increased thickness of the 

interfacial layer (i.e., increased surface load of high density components), 

effectively slowing down the separation due to lowered density difference 

between the dispersed and continuous phases (van Lent, Le, Vanlerberghe, 

and Van der Meeren, 2008; Klein et al., 2010). Extensive protrusion of the 

steric layer on the surface of oil globules into the aqueous phase can potentially 

affect the separation rate by retarding the upward motion of oil globules in the 

emulsion. Stability of an emulsion to creaming can be modified by controlling 

the density of its constituent oil droplets, which can be achieved by selection 

and/or modification of the oil component to allow effective interactions of its 

carbonyl groups with polar functional groups of emulsifiers (e.g., amine, 

amide, carboxyl and hydroxyl groups) (Klein, Aserin, Svitov, and Garti, 2010). 

Another strategy for controlling the oil globule density was shown by Ruiz-

Rodriguez, Meshulam, and Lesmes (2014), who studied the effect of 

incorporation of silica nanoparticles into oil globules on emulsion creaming 

rates. These authors showed that by increasing the density of the dispersed 

phase they were able to decelerate creaming and even achieve sedimentation 

of oil globules in an aqueous phase at high levels of inclusion (≥ 1%, w/w) of 

silica nanoparticles. In an analogous manner, an increase of the protein load 

at the emulsion interface will give rise to increased density of emulsified oil 

globules and, effectively lower difference in the densities between the two 

phases, resulting in slower creaming rates (van Lent et al., 2008).  

Based on the same principle, analytical centrifugation can provide information 

on the rate and extent of sedimentation in an emulsion system, where 

deposition of material at the bottom of the product container is, generally, 

undesirable. This can often be the case in nutritional beverage formulations 

(e.g., infant, sports nutrition or elderly nutritional products), often produced 

from dried protein base ingredients, where the protein ingredient can display 

poor solubility and undergo changes in hydration during beverage storage 

(Crowley et al., 2015; De Wit, 1990; Pelegrine and Gaspareto, 2005). Crowley, 

Kelly, and O’Mahony (2014) discussed sedimentation rates for casein micelles 

in reconstituted skim milk powder, which were found to increase with calcium 

fortification, as measured with the analytical centrifugation approach. 
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Sedimentation is often a considerable challenge for plant protein-based 

formulations and since such products have been gaining significant 

commercial interest, it is of relevance to measure and predict both creaming 

and sedimentation behaviour in such emulsion-based products. In a study by 

Makinen, Uniacke-Lowe, O’Mahony, and Arendt, (2015) separation rates for 

bovine milk and plant-based milk substitutes were compared using integral 

transmission profiles. The authors reported that creaming was the main 

mechanism of separation for the bovine milk, while creaming and 

sedimentation were observed for the plant-based systems. The accelerated 

stability approach has also been used to study the reconstitution properties of 

model infant formula powders, where the measured sedimentation and 

creaming rates provided information on the quality of the product (Murphy et 

al., 2015). 

Another interesting approach was shown by Iritani, Katagiri, Aoki, 

Shimamoto, and Yoo (2007), who studied the kinetics of floatation of oil 

globules in an emulsion using a correlation between creaming rates and 

surface area and porosity of interfaces of oil globules. It should be pointed out 

that, despite the fact that the accelerated separation technique is often used to 

investigate shelf life stability of emulsions, it can only reflect separation based 

on the current-state properties of the system, without considering changes 

that take place in complex multi-component systems (e.g., coalescence, 

flocculation, aggregation, competitive displacement) over time and which are 

influenced by storage conditions (e.g., temperature and time). Thus, when the 

creaming behaviour of the product during its shelf life is the focus, single point 

testing is not enough to provide sufficient information and sample incubation 

needs to be built into the experimental design. Storage of emulsion samples at 

one or more elevated temperatures (compared to normal storage conditions 

for the product) can be coupled with testing samples at different storage times 

for creaming velocity in order to construct a stability map as a function of time 

(and storage temperature) (Lerche and Sobisch, 2011). This approach allows 

data collection for the evolution of creaming rates in the product stored and 

tested under accelerated conditions, to give a predictive shelf life stability 

model for a given system. Effectively, a correlation can be developed to 
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estimate product shelf life under its typical storage conditions (Lerche and 

Sobisch, 2011). 

2.5. Interactions between emulsion components – 

rheological characterisation 

Rheological properties of liquid food systems describe their flow behaviour 

and viscosity characteristics and these strongly dictate the processing 

behaviour and shelf life stability of liquid foods, as well as appearance, texture, 

mouthfeel and flavour release (Fischer and Windhab, 2011). Studying the 

rheological properties of an emulsion can provide indirect information on the 

size and shape of its components as well as on the interactions between these 

components (e.g., oil globules, protein aggregates, hydrocolloids). A typical 

approach for measuring the rheological properties of a liquid is to measure the 

resistance of the system to applied stress (e.g., rotational or oscillatory stress), 

where the stress causes deformation of the system; extensive literature is 

available on the fundamental principles of the approach (Chung and 

McClements, 2014; Erni, Fischer, and Windhab, 2007; McClements, 

Monahan, and Kinsella, 1993; Norton, Spyropoulos, and Cox, 2010) and only 

selected relevant concepts will be considered in this review. The greater the 

force resisting deformation, the higher the viscosity of the system and the 

linearity of the system deformation depends on the interactions of its 

components. Lack of such interactions results in a linear response (i.e., typical 

for water; Newtonian flow, where the response of apparent viscosity to shear 

rate is linear), while a nonlinear response indicates disruption (shear thinning) 

or formation (shear thickening) of inter-component interactions on 

application of the stress. Shear thinning behaviour is typical for food protein 

systems, owing to associative interactions between proteins, forming weak 

structures that are interrupted/broken when the sample is sheared (Williams, 

2007). In general, the magnitude of shear thinning behaviour increases with 

increasing protein concentration. While dilute emulsions (Sünder, Scherze, 

and Muschiolik, 2001), typically display near-Newtonian flow behaviour; a 

deviation from Newtonian behaviour to shear-thinning is usual for 

concentrated emulsions (Liang, Patel, Matia-Merino, Ye, and Golding, 2013). 

Effectively, increasing the concentration of dispersed phase particles (e.g., oil 
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globules, protein and other constituents), changes the rheological properties 

of the system due to increasing potential for interactions between the 

dispersed particles (Fischer, Pollard, Erni, Marti, and Padar, 2009). The 

viscosity of emulsions increases with increasing concentration of the dispersed 

phase (i.e., volume fraction, ϕ), where increasing ϕ can result in a change in 

the flow regime from turbulent to laminar flow (Tadros, 2013), until a critical 

ϕ is reached (~0.63). At ϕ greater than the critical ϕ the emulsion cannot flow 

easily due to the high packing density of globules (Piorkowski and 

McClements, 2014). Different geometries can be used on viscometers and 

rheometers, depending on the sample (e.g., parallel plate, concentric cylinder, 

cup and bob with single and double gap design), where the sample is sheared 

between the stationary and moving components. The rotational approach is 

generally used for studying the viscosity and flow behaviour, while the 

oscillatory approach is sometimes used to provide information on the 

viscoelastic properties of the system without applying rotational shear; the 

latter is often used for concentrated, high volume fraction systems (Tadros, 

2013). 

The rheological properties of emulsions are dictated by the concentration, 

shape, and size of constituents of the dispersed phase as well as their ability to 

participate in various interactions (e.g., hydrophobic interactions, covalent 

bonds, electrostatic and steric interactions) with other components. Such 

interactions are inherent to food-based emulsions in liquid format, which are 

generally comprised of a heterogeneous mixture of biopolymers. In particular, 

food emulsions contain a variety of particles with a broad range of sizes and 

structures; oil globules, proteins (e.g., casein micelles, globular protein, 

denatured and aggregated protein), carbohydrates, LMw emulsifiers and other 

smaller components (ions, vitamins) that can influence the flow behaviour and 

viscosity of emulsions. In O/W emulsions, oil globules are, typically, the 

largest physical components; theoretically, a spherical shaped particle has 

minimal effect on flow behaviour as it does not cause high disturbance in flow, 

compared to irregularly shaped particles that tend to rotate before assuming 

an optimal orientation in regards to direction of the flow (Mueller, Llewellin, 

and Mader, 2010; Sandler and Wilson, 2010) (Fig. 2.3). In addition, the 
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spherical conformation would, in theory, indicate a minimal extent of steady 

state interactions, as opposed to components with a linear or branched 

conformation (i.e., polypeptide chain of protein or polysaccharide chain of 

carbohydrates) (Neelima, Sharma, Rajput, and Mann, 2013; Nobel, 

Weidendorfer, and Hinrichs, 2012). However, the interfaces of oil globules are 

seldom smooth and inert since they are populated by surface-active species 

(e.g., proteins, peptides, LMw surfactants), often making their contribution to 

the rheological properties of the system quite significant. Oil globules can often 

participate in interactions with other globules (e.g., flocculation, aggregation, 

complexation) or with components of the serum phase (e.g., aggregation, 

segregative separation and complexation), or a combination of both 

(Chevallier et al., 2016; Drapala et al., 2016a, 2016b; Liang et al., 2013). These 

interactions are particularly important during unit operations applied in the 

preparation of food emulsions (e.g., heating, pumping, short-time storage and 

spray drying). Thermal processing typical for these systems (thermisation, 

pasteurisation, UHT) causes an increase in protein-mediated interactions due 

to protein denaturation and aggregation (Chevallier et al., 2016; Liang et al., 

2013); the increase in the temperature also provides higher mobility of solutes 

in the liquid, thus accelerating the rate of physicochemical changes in the 

system (interactions at the surface, surfactant exchange) (Ryu and Free, 

2003). Buggy, McManus, Brodkorb, McCarthy and Fenelon (2017) studied 

physical stability of model infant formulae emulsions enriched with α-

lactalbumin by measuring viscosity of emulsions as affected by the process 

configuration, where heat treatment (65°C × 30 s) was carried out either 

before or after homogenisation (2-stage, 21 MPa total pressure). Those authors 

reported that a process where heat treatment was carried out post-

homogenisation, resulted in significantly higher viscosity of emulsions, 

compared to that where heating was carried out prior to homogenisation; 

these differences were also reflected by the presence of significantly bigger 

protein/lipid particles (as measured by laser diffraction and electrophoresis) 

in the former systems. Liang et al. (2013) used steady-state flow 

measurements (shear rate ramp from 0.001-500 s-1 using cup and bob 

geometry) to assess the ability to limit interactions between emulsion 

components on heating by heat-induced pre-aggregation of whey proteins in 
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Figure 2.3. Schematic representation of re-arrangement of 

macrocomponents in food emulsions (e.g., oil globules, proteins/peptides, 

carbohydrates) as affected by application of shear (i.e., horizontal flow). Flow 

behaviour of food emulsions is affected by the changes in the 

orientation/structures of its macrocomponents: deformation (i.e., elongation) 

of oil globules, disruption of aggregates, extension of structured colloids (e.g., 

proteins/peptides) and orientation of linear/branched carbohydrates. 
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solution for MPC-stabilised emulsions. Those authors used viscosity to 

monitor protein-protein interactions in both the protein solutions and in the 

final emulsions, reporting lower apparent viscosity in emulsions stabilised by 

pre-aggregated protein. They were also able to identify reversible changes in 

these emulsions on heating, as exhibited by a shear thinning behaviour, which 

they associated with disruption of heat-induced oil globule clusters on 

shearing; confocal laser scanning microscopy was also used to support these 

observations. In another study, Liang et al. (2014) compared the effects of 

addition of different sugars (glucose, maltose, trehalose, sucrose) on the heat 

stability of MPC-stabilised emulsions. A range of rheological measurements 

was used by the authors (shear rate ramp from 0.001-500 s-1; flow behaviour 

analysis, shear rate ramp 1-1000 s-1; and viscosity index, constant shear rate 

of 1 s-1, using cone and plate geometry) to study the steady-state flow 

properties, the effect of viscosity ratio between the dispersed and continuous 

phases on the droplet break-up in emulsions and the attractiveness between 

the system components for unheated and heated samples. Integration of these 

rheological approaches with particle size distribution and microstructural 

analyses allowed the authors to identify aggregation of casein micelles, oil 

globules and mixtures of both and determine if these interactions were 

reversible or not by using a dissociating agent (1 mM Tween 20 and 12.8 mM 

EDTA at pH 10). In a study by Lei et al. (2014), the authors used rheological 

flow behaviour analysis for β-carotene-containing emulsions stabilised by 

chitosan, physical complexes of chitosan and epigallocatechin-3-gallate 

(EGCG) and chitosan-EGCG conjugates to provide information on the shear 

and yield stress, consistency index and flow behaviour index of these systems. 

The authors related the observed differences in the creaming stability of these 

emulsions to their different rheological behaviour in accordance with Stokes 

law, reporting slower emulsion separation rates for systems stabilised by the 

chitosan-EGCG complexes, which displayed non-Newtonian flow behaviour 

and had higher viscosity. The authors also used the viscoelastic response of the 

emulsions to predict the extent of flocculation of oil globules in the emulsions.  

Shear-thinning behaviour of dilute emulsions has been associated with 

disruption of weak interactions between the components of the continuous 
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and dispersed phases in an emulsion system (Ruiz-Rodriguez et al., 2014); it 

can be used to discriminate between reversible and irreversible (i.e., bridging 

flocculation) associations between oil globules in an emulsion (Dickinson, 

2001). A different approach to study the rheological properties of emulsions 

was reported by Degrand, Michon and Bosc (2016), where they used multi-

speckle diffusing-wave spectroscopy (MS-DWS) technology to characterise 

evolution of stability in rapeseed oil O/W emulsions stabilised by Tween 20 or 

proteins from whey protein concentrate (WPC). These authors used the 

elasticity index as a parameter for describing the rheological behaviour of 

emulsions, which facilitated tracking local organisation of oil globules in the 

emulsion. Effectively, that study used MS-DWS to successfully monitor 

flocculation of oil globules (bridging flocculation or depletion-flocculation) 

and protein network rearrangement. The conclusion of that study was that the 

MS-DWS approach was useful for studying depletion-flocculation, 

destabilisation kinetics and network packing in emulsion systems. 

2.6. Modes of oil globule stabilisation 

Electrostatic repulsion is one of the primary mechanisms of stabilisation of 

milk protein-based emulsions owing to the charge on the protein adsorbed at 

the interfaces of oil globules. In an environment where the pH is away from 

the isoelectric point (pI) of proteins, they possess a charge (i.e., a net negative 

charge at pH > the typical pI range of 4.6-5.2 for dairy proteins). Such charged 

interfaces provide repulsion between oil globules and effectively prevent their 

coalescence and globule-globule interactions post-homogenisation 

(Damodaran, 2005). The electrostatic charge (zeta potential, ζ) is highest at a 

pH far from the pI of the emulsifiers and is also influenced by the type and 

concentration of salts (i.e., ionic strength of the system); hence, it is important 

to characterise the potential of an emulsifier to exert an electrostatic barrier 

under desired environmental conditions. Zeta potential is typically 

determined by measuring the velocity of particles in an electric field, hence the 

devices available for ζ analysis normally combine light scattering and 

electrostatic field approaches. During a ζ measurement, a dilute liquid sample 

is placed in a sealed cell containing two electrodes, and as current is passed 

through the sample the movement (i.e., electrophoretic mobility) of particles 
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is measured and expressed as ζ. A strong relationship between ζ of oil globules 

and system pH in nanoemulsions stabilised by LMw surfactants (lecithin and 

saponin) has been shown by Ozturk, Argin, Ozilgen, and McClements (2014); 

those authors showed a significant decrease in the ζ, from -60 to -5 mV on 

reducing pH from pH 8 to pH 2, with a concomitant decrease in stability of the 

emulsions. Aggregation of oil globules at high salt concentrations (i.e., >100 

mM NaCl) in those nanoemulsions, as a result of electrostatic screening, was 

also reported. The electrostatic screening effect describes accumulation of 

monovalent ions of an opposite charge at the surface of the oil globules, 

neutralising the charge on the globules and effectively disabling the barrier 

protecting the emulsion from globule-globule interactions. On the other hand, 

the presence of divalent ions in an emulsion can facilitate flocculation of oil 

globules by formation of crosslinks, mediated by such ions (Dickinson, 2001). 

The electrostatic barrier is sensitive to the composition and properties of the 

emulsion interfacial layer, which is prone to changes during processing (e.g., 

heat-induced protein deposition) or storage (e.g., surfactant displacement). 

Modification of the emulsifier or the interfacial layer to control the ζ of oil 

globules is a commonly-used strategy; in work by Lei et al. (2014), cationic LMw 

chitosan was modified by physical complexation and covalent conjugation 

with a polyphenol, and it was shown that emulsions formed with those 

complexes and conjugates did not vary in ζ from emulsions stabilised by native 

chitosan; they displayed greater storage stability compared to the native 

chitosan-stabilised emulsions, owing to steric stabilisation.  

Nowadays, consumers seek new sensory experiences, which often extend 

beyond the traditional, neutral pH dairy-based beverages; these applications 

pose challenges for emulsion stability due to lower electrostatic repulsion 

between protein-stabilised oil globules, which possess little charge close to 

their pI. In an effort to meet that demand, food manufacturers need to look for 

science-based approaches in order to address the challenges encountered with 

stability of such products. Designing the emulsion interfaces to control its 

charge, in order to confer electrostatic stabilisation during processing, 

typically involves the measurement of ζ of the oil globules. Similarly, emulsion 

stability to acidic environment is often needed when using the oil globules as 
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delivery vessels for sensitive bio-components, where they have to be stable 

under the acidic environment of the stomach. Neirynck, Van der Meeren, 

Bayarri Gorbe, Dierckx, and Dewettinck (2004) studied the electrophoretic 

mobility (i.e., ζ) of conjugated WPI and anionic pectin near the pI of β-lg (pH 

5.5) to determine their ability to form and stabilise O/W emulsions at these 

adverse conditions. Improvement in stability of emulsions formed with the 

conjugated WPI at the acidic pH, was reported, owing to the greater negative 

charge of oil globules in that environment compared to emulsions stabilised 

by WPI alone. Manipulation of the electrostatic charge of oil globules in an 

emulsion can also be achieved using multilayer deposition of charged species 

at the emulsion interface, as shown by Zhao, Wei, Wei, Yuan, and Gao (2015), 

where stabilised O/W emulsions with the cationic protein lactoferrin and 

formed a secondary interfacial layer by electrostatic adsorption of anionic 

polysaccharides (from pectin or soybean). They reported changes in the ζ of oil 

globules as a function of lactoferrin and polysaccharide concentrations, which 

ranged from +40 to -40 mV. A similar approach was investigated by Liu, 

Wang, Sun, McClements and Gao (2016), where layer-by-layer electrostatic 

deposition of lactoferrin (cationic) and polyphenolics (anionic) was performed 

for β-carotene emulsions. A number of variants of the interface with different 

deposition sequences were tested by the authors and these interfacial 

configurations were discussed in the context of electrostatic and steric 

repulsion and resultant stability to heating and storage of the emulsions. 

Shimoni et al. (2013) showed that increasing the ζ of oil globules by 

complexation of lactoferrin nanoparticles with carrageenan yielded good 

stability of those systems to gastric conditions; the study specifically identified 

the benefits of synergies between electrostatic and steric stabilisation for 

emulsion stability in an acidic environment. Phoon, San Martin-Gonzalez, and 

Narsimhan (2014) investigated differences in the oxidative stability of 

Menhaden fish oil-in-water emulsions stabilised by hydrolysates of soy β-

conglycinin under a wide pH range (pH 3.0 – 12.5) as affected by the ζ of 

proteins/peptides and conformation of the proteins/peptides at oil-

mimicking, functionalized silver surfaces. These authors reported that the 

modification of the surface charge of the oil globules from non-polar to anionic 

led to changes in protein/peptide conformation at the interface (i.e., increased 
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formation β-sheet); however, they reported no improvement in the oxidative 

stability of emulsions with increasing the ζ of oil globules. Adjonu, Doran, 

Torley, and Agboola (2014) compared ζ of oil globules in emulsions stabilised 

by intact and hydrolysed (degree of hydrolysis 10-11%) WPI and reported 

higher electrostatic stabilisation of the intact WPI-based emulsions, which 

gave the emulsions enhanced stability during storage compared to emulsions 

formed with the hydrolysed WPI. 

2.7. Emulsion microstructure 

Visualisation of emulsion microstructure provides valuable information on the 

structural assembly of components of the system and allows a better 

understanding of the nature of changes taking place in the system. Several 

microscopic approaches based on different technologies are available (e.g., 

optical microscopy, confocal laser scanning microscopy, CLSM; confocal 

raman microscopy, CRM; scanning electron microscopy, SEM; atomic force 

microscopy, AFM; or transmission electron microscopy, TEM techniques) and 

choosing the right technique for a given sample depends on the physical 

format of the sample, the information required on the sample and the desired 

level of detail. Confocal laser scanning microscopy (CLSM) is the technique of 

choice for studying food emulsion systems as it allows gathering ample system 

information by individually labelling and localising its individual components 

(e.g., protein and lipid); hence this technique is the main focus of this review. 

The first publications using CLSM for studying a food system were focused on 

O/W emulsions, where the displacement of sodium caseinate by 

monoacylglycerols from an O/W interface was the focus (Heertje, Nedelof, 

Kendrickx, and Lucassen-Reynders, 1990; Heertje, Van Aalst, Blonk, 

Nederlof, and Lucassesn-Reynders, 1996). Analysis of a sample using CLSM 

requires application of a fluorescent dye, which possesses affinity for a specific 

component of the sample – the dye has particular excitation and emission 

spectra and emits fluorescent light upon laser-induced excitation and the 

resultant emission at a specific wavelength indicates the localisation of the 

stained component within the sample matrix. Several components of the 

sample can be visualised at the same time, given that the emission wavelengths 

spectra do not overlap. Comprehensive information on the principles of CLSM 
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analysis as well as important considerations for its use in various food matrices 

are available elsewhere (Auty, Morris, and Groves, 2013; Auty, Twomey, 

Guinee, and Mulvihill, 2001; Everett and Auty, 2008).  

Labelling the protein and lipid components of an emulsion can provide 

important information on the microstructure of emulsion-based systems and 

more elaborate approaches can be used to label other components, such as 

polar lipids and glycoproteins (Bourlieu et al., 2015; Lopez, Madec, and 

Jimenez-Flores, 2010; Lopez and Ménard, 2011) or a specific protein class 

(Sørensen et al., 2007). Visualisation of the locations of components within 

the system matrix can aid understanding of the structure of native food 

matrices (e.g., human or bovine milk fat globule membranes) to allow effective 

engineering of food systems to replicate naturally-occuring structures. Lopez, 

Cauty, and Guyomarc’h (2015) used CLSM to investigate differences in the 

microstructure of oil globules in native human and bovine milks and in 

commercial IF products. They identified that, apart from differences in size of 

oil globules, the differences between human/bovine and IF milks were due to 

differences in the composition and structural organisation of the emulsion 

interfacial layers. Localisation of a specific component in a food matrix can 

also be helpful to study the pathways for rearrangement of the system during 

its processing. Munoz-Ibanez et al. (2016) used a combination of microscopic 

techniques (i.e., optical microscopy, SEM and CRM) to study the 

microstructure and localisation of components (i.e., gum arabic, sunflower oil 

and maltodextrin) in spray-dried emulsions and reported the over-

representation of the surface-active gum arabic at the surface of powder 

particles, indicating its rapid adsorption at the surface of atomised droplets 

during the spray drying process.  

The CLSM technique is often used to study changes taking place in food 

systems as influenced by processing conditions, storage time (i.e., shelf life 

stability), or conditions during ingestion and digestion; application of CLSM 

can significantly aid interpretation of data obtained using other analytical 

techniques. Processing conditions can affect the structure and properties of a 

food system, for example, powder-based emulsion-containing systems 

undergo several processing steps (e.g., homogenisation, heat treatments, 
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concentration and spray drying) before they are packaged as a final product. 

The effect of homogenisation on the composition and organisation of the O/W 

interfacial layer in bovine milk was reported by Lopez et al. (2015); selective 

staining of polar lipids and protein allowed to observe a homogenisation-

driven shift from polar lipid- to protein-dominant emulsion interfaces. 

Differences in the thickness of interfacial layers in emulsions stabilised by β-

casein and WPI were reported by Li, Auty, O’Mahony, Kelly and Brodkorb 

(2016); with the aid of image analysis of CLSM micrographs, they observed 

thicker interfaces for β-casein-stabilised emulsions compared to those 

stabilised with whey protein. Sørensen et al. (2007) used CLSM to study 

surface behaviour of caseins and whey proteins in milk under different 

homogenisation conditions. They reported that modification of 

homogenisation temperatures (50 and 72 °C) and pressures (5.0, 15.0 and 22.5 

MPa) resulted in different interfacial composition of oil globules in fish oil-

enriched milk emulsions, as evidenced by regions of co-localisation of lipid 

and protein (casein or lactoferrin) and protein aggregation. Differences in the 

interfacial composition of emulsions observed by the authors were linked with 

different oxidative stability of these systems during storage.  

The changes in microstructure of emulsions during in vitro digestion of infant 

formula were studied by Bourlieu et al. (2015) with the aid of CLSM, where 

fluorescent labelling of protein, neutral and polar lipids allowed to track 

changes in the system during simulated digestion stages. Reorganisation of the 

system components and aggregation of protein and oil globules in model IF 

emulsions during their digestion, demonstrated by the micrographs, were 

used to study the kinetics of digestion of these systems as affected by their 

processing (i.e., homogenisation and pasteurisation conditions). Differences 

in emulsion interface composition were linked to their potential effect on the 

infant digestive physiology and lipid metabolism of infant formula (IF) 

products. Displacement of emulsifiers from the interface and changes in the 

microstructure of the system during processing, and under model digestion 

conditions, were also reported by Yang et al. (2013). Qiu, Zhao, Decker and 

McClements (2015) presented CLSM micrographs of fish oil-based O/W 

emulsions stabilised with different proteins at different stages of an in vitro 
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digestive track (i.e., before digestion, in mouth, in stomach and in the 

intestine). Visualisation of disruption of the emulsions at these 4 stages of 

digestion allowed the authors to determine the role of interfacial composition 

on emulsion stability and fat release during digestion. In recent work, Gallier 

et al. (2015) used CLSM and TEM techniques to evaluate the interfacial 

composition of oil globules in a concept IF product and compared it with those 

of traditional IF products and human milk. The concept IF emulsion was 

designed to mimic the polar lipid-dominant interfacial layer known to exist in 

human milk; using these microscopic techniques, provided guidance for the 

microstructural design of interfaces of oil globules in the concept IF product. 

Gallier et al. (2015) reported a thin and heterogeneous interface for the 

concept product composed of a mixture of phospholipids, proteins, 

lipoproteins and fragments of milk fat globule membranes. Microstructural 

approaches can be powerful in engineering food structures for specific 

biological functions through the control of digestive and metabolic properties 

of food-based emulsions. Understanding the relationship between food 

structure and its sensory properties can be aided by the application of CLSM 

approaches, which can effectively enable design of new formulation/structure 

strategies for reducing the fat content of food products. Abhyankar, Mulvihill 

and Auty (2014) used this combined analytical approach to study the 

deformation and effective break-up of oil globules in emulsion-filled gels.  

CLSM can be used to identify the mechanisms of emulsion destabilisation such 

as coalescence, flocculation or protein aggregation (Fig. 2.1 ii); this technique 

can also be used for studying the arrangement and properties of the emulsion 

interfacial layer, its thickness, density and continuity, which can be observed 

from the cross-sectional analysis of oil globules. Thermal stability of model IF 

emulsions was studied with the aid of CLSM by Drapala et al. (2016a), whereby 

the microscopic technique facilitated tracking of heat-induced protein 

deposition on the oil globule surfaces and protein-mediated bridging 

flocculation of oil globules during heating. Formation of buoyant white flecks 

in whey protein-based formulae was reported, which upon visualisation with 

CLSM, were shown to be oil globules entrapped within a protein network. 

Similarly, visualisation, using CLSM, of associative interactions between 
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components in IF products induced by processing steps in their manufacture 

(i.e., heat treatments performed for the microbial safety of these products) 

have been discussed by Lopez et al. (2015), where aggregation of protein and 

interactions between protein and oil globules to form lipoprotein complexes 

were reported. Drapala, Auty, Mulvihill, and O’Mahony (2017) used CLSM to 

show differences in the physical stability to spray drying of model IF emulsions 

stabilised by different emulsifier systems. In their work, the authors 

fluorescently-labelled the protein and neutral lipids in the dried powder 

particles to visualise the distribution of oil globules within the powder 

matrices. They were able to link the inhomogeneous distribution of oil globules 

in samples to poor thermal stability of emulsions and competitive adsorption 

mechanisms between surfactants used in the formulations.  

Time-related changes of an emulsion system govern its shelf life stability; 

generally, the displacement of emulsifiers at the interfaces of oil globules can 

lead to coalescence and, effectively, phase separation. Labelling of protein 

components in an emulsion system containing other, non-protein emulsifiers, 

and monitoring the changes in the continuity of the protein layer at the oil 

globule surfaces has been shown to give information related to protein 

displacement from the interface by LMw polar lipid surfactants (e.g., lecithin) 

(Drapala et al., 2015). Those authors showed regions of discontinuity in the 

protein interfacial layer, linked to its competitive displacement by lecithin and 

such discontinuity resulted in poor stability of these emulsions caused by 

coalescence. Ye et al. (2004) used CLSM to study storage stability of highly-

hydrolysed (27% DH) WPH-based O/W emulsions containing different levels 

of xanthan and reported different extents of coalescence of these systems 

depending on the addition level of the polysaccharide.  

The shelf life of food emulsions is often increased by water removal through 

spray drying, effectively immobilising the oil globules and other components 

of the continuous phase (Vega and Roos, 2006); stability of such ‘immobilised’ 

emulsions to storage can be assessed with the aid of microscopic techniques 

(Lim, Burdikova, Sheehan, and Roos, 2016; Lim, Griffin, and Roos, 2014; Lim 

and Roos, 2016). McCarthy et al. (2013) studied the changes in oil distribution 

within the matrix of emulsion-based powders during storage. They reported 
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changes in the size of oil globules and the amount of surface free oil during 

storage and correlated these changes to lactose crystallisation in the powders 

during storage. 

2.8. Other considerations 

A number of other analytical techniques may also be applied when studying 

emulsion systems; these are aimed at assessing the performance of emulsifiers 

and the physicochemical properties and stability of the emulsions. These 

techniques can include, but are not restricted to, measurement of surface 

hydrophobicity and reactive groups of an emulsifier, measurement of the 

interfacial protein load and interfacial composition, heat coagulation time of 

an emulsion or the oxidative stability of an emulsion. 

Measurement and modification of the hydrophilic-hydrophobic balance of an 

emulsifier can provide control over its surface activity and influence its 

emulsion capacity and activity properties (Hamada and Swanson 1994; Lei, 

Zhao, Selomulya, and Xiong, 2015; Morand, Dekkari, Guyomarc'h, and 

Famelart, 2012). This approach typically involve spectrofluorometric analysis 

of surface hydrophobicity, where the hydrophobic groups of an emulsifier are 

quantified based on their interactions with the fluorescent probe anilino 

naphthalene sulfonic acid (ANS) (Bonomi, Iametti, Pagliarini, and Peri, 1988).  

Food emulsions stabilised by whey protein often display poor stability to 

thermal processing due to high reactivity of the free thiol groups of β-lg 

(Simmons, Jayaraman, and Fryer, 2007; Wijayanti, Bansal, and Deeth, 2014) 

as evidenced by formation of buoyant lipoprotein complexes (i.e., white flecks) 

(Drapala et al., 2016a). The level of free thiol groups in a protein sample can 

be measured by the spectrophotometric method of Hoffmann and van Mil 

(1997) and Alting, Hamer, De Kruif, Paques and Visschers (2003). This 

approach can be useful when focusing on improvement of heat stability of 

emulsions by controlling the reactivity of its protein component. The protein 

load (i.e., mg protein per m2 fat surface area) and composition of the emulsion 

interfacial layer can also be determined; this approach typically involves 

separation of the oil globules from the serum phase of the emulsion by means 

of centrifugation, followed by analysis of protein content by standard 
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analytical methods (e.g., Lowry method, Kjeldahl method, protein assay kits) 

(Alba et al., 2013; Sünder et al., 2001). However, this approach for 

determination of the surface composition of oil globules in emulsions has its 

limitations due to its invasive nature, leading to changes to the emulsion 

interfacial layer (e.g., coalescence of oil globules during centrifugation, 

displacement and rearrangement protein at the interface during the washing 

steps) and it may not provide representative information on the system 

studied (Holzmüller, Müller, Himbert, and Kulozik, 2016). It is also possible 

to measure the thickness of the interfacial layer and formation of multilayer 

structures at the O/W interface using a range of techniques, including 

spectroscopy, light scattering, microscopy, gravimetric and reflectivity 

techniques, as detailed by Guzey and McClements (2006). 

Heat stability of emulsions is often assessed using various modifications of a 

method by Miller and Sommer (1940), where a liquid sample is placed in an 

oil bath at high temperatures (120-140°C) until onset of coagulation is 

observed (O’Connell and Fox, 2000). The incubation time of the sample until 

coagulation is noted and it represents the heat coagulation time (HCT) and 

HCT typically decreases as the pH of the sample approaches the pI of the 

protein stabilising the emulsion. This method is commonly used to assess the 

stability of emulsions to heat treatment during processing, especially for 

formulations destined for UHT treatment (Sievanen, Huppertz, Kelly, and 

Fox, 2008).  

Oxidative stability is an essential consideration when designing emulsion-

based food systems; its role is especially significant in high added value 

nutritional formulations that typically contain unsaturated fatty acids which 

are prone to oxidation. A range of assays and techniques are generally used to 

monitor the progression of lipid oxidation in emulsions under accelerated 

storage conditions, these are typically targeted at monitoring the levels of 

oxidation products. Spectrophotometric assays (peroxide value; para-

anisidine value; and thiobarbituric acid reactive substances, TBARS assays) 

are typically used to quantify the levels of primary or secondary oxidation 

products (i.e., hydroperoxides or aldehydes and ketones, respectively) 

(Djordjevic, McClements, and Decker, 2004; Mei, McClements, Wu, and 
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Decker, 1998; Qiu et al., 2015). Gas chromatography and mass spectrometry 

methods are also commonly used to monitor oxygen consumption (Lethuaut, 

Métro, and Genot, 2002) or production of volatile oxidation products (e.g., 

headspace propanal or hexanal) (Cho, McClements, and Decker, 2002; Lee 

and Decker, 2011). 

Food emulsions are complex and dynamic systems and numerous techniques 

directed at the assessment of their physicochemical properties, the prediction 

of their stability and digestive fate have been detailed in the scientific 

literature. Generally, studies focused on emulsion systems involve a 

combination of different analytical approaches to provide comprehensive 

meaningful information. These approaches cover a broad spectrum of 

emulsion evaluations, from characterisation of emulsion building blocks, the 

dynamics of emulsion formation and system microstructure, to the 

identification and control of the interactions between components of 

emulsions. Designing a study focused on emulsion stability should incorporate 

techniques capable of measuring thermodynamic-driven changes (based on 

Stokes law) affecting the system, as well as those that can take place under 

environmental conditions (e.g., physical stress, temperature extremes, high 

ion concentrations and low pH) representative of processing and storage. 

Good initial quality of an emulsion may not necessarily confer good emulsion 

stability due to interactions between its components promoted by the 

processing conditions or by changes that affect the emulsion during its shelf 

life. The use of food emulsions for nutrient delivery, where the oil globules play 

the role of delivery vessels, requires a detailed understanding of the system 

formation and stability to ensure effective protection and targeted, predictable 

release of the transported bioactive component. Microstructural approaches 

have shown to be particularly useful for such studies as they enable detailed 

profiling of the interfacial layers and allow study of the evolution of 

microstructure at different stages during the digestion process. Analytical 

approaches used for assessment of emulsion properties and stability range 

from simple assays to sophisticated techniques that require access to 

expensive analytical equipment. Choosing the most suitable approach will 

ultimately depend on the specific focus of the study and the facilities available. 
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A combination of several complementary techniques is typically required to 

provide comprehensive information on the emulsion system and to facilitate 

engineering of a bio-functional and stable food product. 
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Abstract 

Glycation of milk proteins and peptides can be achieved by Maillard-induced 

conjugation of reducing carbohydrates with the available amino groups of 

proteins/peptides during the early stages of the Maillard reaction. This 

conjugation can be achieved under wet or dry heating conditions, with the 

choice of heating mode influencing the rate and extent of conjugation, in 

addition to the functionality of the conjugated protein/peptides. Conjugation 

has been shown to modify the technological and nutritional properties of a 

range of milk protein/peptide-based ingredients. This review focuses mainly 

on modifications to physicochemical properties and technological 

functionality (i.e., solubility, heat stability, emulsification, foaming and 

gelation properties) of milk proteins and peptides by conjugation. Particular 

emphasis is placed on understanding of the relationships between changes in 

protein/peptide molecular structure/conformation, physicochemical 

properties and technological functionality, as influenced by glycation.  
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3.1. Introduction 

A conjugated protein is defined as a protein to which another chemical group 

(e.g., carbohydrate) is attached by either covalent bonding or other 

interactions (Wong, 1991). Milk proteins and peptides, in the presence of 

reducing carbohydrates, can undergo a series of complex chemical changes 

during heating, known as the Maillard reaction. Conjugation occurs naturally 

during the early stages of the Maillard reaction when a covalent bond forms 

between the protein and carbohydrate components, resulting in the release of 

water (i.e., condensation reaction). The resulting covalently-linked Schiff base 

product can undergo irreversible Amadori rearrangement, leading to the 

formation of Amadori products (Ames, 1992; Liu, Ru, and Ding, 2012; Zhu, 

Damodaran and Lucey, 2008). Conjugation of food proteins with 

carbohydrates via the Maillard reaction (i.e., glycation) is a growing area of 

interest, with many studies completed, particularly over the last 10-15 years, 

on the use of conjugation to modify physicochemical and functional properties 

of proteins and peptides. Section 3.2 provides an overview of the Maillard 

reaction and the various factors affecting the reaction, respectively. 

Milk protein ingredients are utilised in the formulation of a wide range of food, 

clinical and pharmaceutical products, due to their unique functional and 

nutritional attributes (Smithers, 2015). In the food industry, the principal 

technological hurdles limiting the use of milk (especially whey) protein 

ingredients in the formulation of value-added beverages and powders are, (1) 

poor solubility of intact proteins in high acid ready-to-drink beverages, 

resulting in the development of turbidity and phase separation (Akhtar and 

Dickinson, 2007), (2) poor emulsification properties of hydrolysed proteins 

(Singh and Dalgleish, 1998; Agboola, Singh, Munro, Dalgleish, and Singh, 

1998a, b), causing challenges with emulsion formation, stabilisation and spray 

drying (e.g., powder stickiness and high free fat) during the manufacture of 

powdered nutritional products, and (3) physical instability such as 

aggregation, sedimentation and creaming during processing and shelf life in 

high ionic strength environments and during thermal processing (Yadav, 

Parris, Johnston, Onwulata, and Hicks, 2010). Conjugation has been shown to 

be successful in modifying the functional properties of a range of milk 
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protein/peptide-based ingredients. Section 3.3 provides an overview of how 

the key compositional, structural and physicochemical properties of 

protein/peptide and carbohydrate substrates influence the progression of 

conjugation and the functionality of the resulting conjugated 

proteins/peptides. A detailed comparison of the differences between the two 

main modes of achieving conjugation (i.e., dry and wet heating) is provided in 

Section 3.4, while Sections 3.5-3.9 of this review provide detailed information 

on the effects of conjugation on solubility, heat stability, emulsification, 

foaming and gelation properties of the principal milk proteins/peptide 

ingredients used in the food industry. Section 3.10 provides an overview of 

approaches developed for enriching and purifying conjugates.  

3.2. Principles and factors affecting the Maillard reaction  

The Maillard reaction (Maillard, 1912) describes a complex series of reaction 

pathways, many of which proceed concurrently during heating and/or storage 

of protein/carbohydrate mixtures. The chemistry of the Maillard reaction can 

be divided into three stages - the early, intermediate and advanced stages (Fig. 

3.1) (Hodge, 1953).The early stage of the Maillard reaction involves a series of 

individual reactions that are initiated when the ε-amino groups of lysine, or to 

a lesser extent, the imidazole and indole groups from histidine and tryptophan, 

respectively, and the α-amino groups of terminal amino acids in 

proteins/peptides condense with the carbonyl groups of reducing 

carbohydrates, to form a Schiff base, with the release of a molecule of water 

(Ames, 1992). The Schiff base is thermodynamically unstable and undergoes 

spontaneous rearrangement to form either an Amadori (in the case of aldoses) 

or Heyn’s (in the case of ketoses) product (Wrodnigg and Eder, 2001). The 

intermediate stage of the Maillard reaction involves the degradation of the 

Amadori and/or Heyn’s rearrangement products by a number of different 

reactions, including cyclisation, dehydration, retro-aldolisation, isomerisation 

and further condensation, which causes degradation of amino acids and 

carbohydrates (Ames, 1998). The advanced stages are complex and variable, 

depend on the reaction conditions, and involve dehydration and 

decomposition of the early reaction products, resulting in the production of 

many advanced Maillard reaction products (AMP) and coloured nitrogenous 
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Figure 3.1. Simplified overview of the Maillard reaction in milk and milk 

products (based on Hodge, 1953; Ames 1998). 
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polymers and co-polymers, known collectively as melanoidins (Ames, 1998; 

Hodge, 1953). While, from a functionality perspective, it is desirable to achieve 

conjugation in the early stages of the Maillard reaction, it is normally desirable 

to limit the progression of the Maillard reaction to advanced stages, as AMP’s 

are largely responsible for some of the less desirable consequences of the 

Maillard reaction, e.g., generation of off-flavours, loss of nutritional value, 

protein crosslinking and generation of potentially toxic compounds (Uribarri 

et al., 2005).  

The progression of the Maillard reaction and, effectively production of 

protein/peptide-carbohydrate conjugates is affected by a number of intrinsic 

and extrinsic factors, and these typically include the nature of the reactants, 

properties of the systems or the environmental conditions (Ames, 1990; de 

Oliveira, Coimbra, de Oliveira, Zuñiga, and Rojas, 2016; Liu et al., 2012; 

Oliver, Melton and Stanley, 2006a; Van Boekel, 2001). The physicochemical 

properties (i.e., molecular weight, Mw; structure/conformation and surface 

charge) of the amino and carbonyl compounds, and their molar ratios, all 

govern the rate and extent of the Maillard reaction, and consequently, the 

physicochemical properties of the conjugated proteins/peptides. Reactivity of 

compounds tend to decrease with increasing Mw, due to the greater 

contribution of steric hindrance with increasing Mw; as an example, mono-

saccharides are more reactive with proteins than di- or oligo-saccharides 

under conditions which favour conjugation. For protein hydrolysates, the 

degree of hydrolysis, Mw profile and charge of the peptides are important in 

determining their reactivity during Maillard-induced conjugation (Drapala, 

Auty, Mulvihill, and O'Mahony, 2016a, b; Mulcahy, Park, Drake, Mulvihill, and 

O'Mahony, 2016b; Van Lancker, Adams, and De Kimpe, 2011).  

Temperature has a significant impact on the rate of the Maillard reaction, 

which increases with increasing temperature and duration of heating 

(Maillard, 1912). Higher temperatures cause opening up of the protein 

structure, providing greater accessibility to reactive protein/peptide 

functional groups; increasing temperature also affects the reactivity of sugars 

as the proportion of reducing sugar molecules present in the open-chain form 

(i.e., the more reactive form) increases (Van Boekel, 2001), due in part to the 
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faster rate of mutarotation of the sugar molecules. It should be noted that heat-

induced structural/conformational changes (e.g., denaturation and 

aggregation) of milk proteins/peptides may result in amino groups becoming 

less available for participation in the Maillard reaction (Chevalier, Chobert, 

Popineau, Nicolas, and Haertlé, 2001; Jiang and Brodkorb, 2012; Mehta and 

Deeth, 2016).  

The reactivity of proteins and carbohydrates in the Maillard reaction is greatly 

influenced by the pH of the system; a basic environment can catalyse the initial 

stages of the Maillard reaction by deprotonating the amino groups, which in 

turn increases reactivity with carbonyl groups of reducing carbohydrates. The 

open chain form of the carbohydrate and the un-protonated form of the amino 

group, which are considered to be the most reactive forms, are usually 

favoured at higher pH, up to a maximum of pH ~9-10 (Martins, Jongen, and 

Van Boekel, 2000). The pH of protein/peptide-carbohydrate mixtures can 

decrease (depending on the buffering capacity) as the Maillard reaction 

progresses due to the formation of acids (e.g., formic and acetic acids), the 

consumption of basic amino groups (e.g., lysine) or the loss of carboxyl groups 

during Strecker degradation, resulting in the production of carbon dioxide 

(Nursten, 2005). Furthermore, products derived from the intermediate and 

advanced stages of the Maillard reaction are degraded by different reaction 

pathways depending on the pH of the system. Increasing water activity (aw) of 

protein/peptide-carbohydrate mixtures generally increases the rate and extent 

of conjugation, due to the increased diffusion and mobility of reactants; 

however, high water concentrations/aw can negatively influence progression 

of the Maillard reaction (Morgan, Léonil, Mollé, and Bouhallab, 1999b).  

Factors, other than those outlined above, can impact the Maillard reaction, 

including the presence of sulphur dioxide in food systems which has been 

shown to delay the development of brown colour (Ames, 1990) and the 

presence of metal ions, which can accelerate or inhibit the Maillard reaction, 

depending on their concentration (Ramonaitytė, Keršienė, Adams, Tehrani 

and De Kimpe, 2009). In model systems, the presence of tertiary amine salts, 

acetic acid and free radicals have been shown to promote the Maillard 

reaction; however, these factors may often, in practice, be of minor 
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significance relative to the nature of the reactants, temperature, time and 

moisture content (O’Brien, 1997). Non-thermal energy sources (e.g., ionizing 

radiation, UV irradiation and ultrasound treatment) have also been shown to 

produce Maillard reaction products, including brown pigments and volatile 

flavour compounds (O’Brien, 1997).  

3.3. Substrates for Maillard reaction 

The conjugation of milk proteins/peptides has been studied using many 

categories of milk protein-based ingredients as substrates, including, but not 

limited to, whey protein concentrates (WPC) and isolates (WPI), individual 

whey protein fractions (in particular β-lactoglobulin, β-lg; α-lactalbumin, α-

lac; and bovine serum albumin, BSA), sodium caseinate, casein fractions (β-

casein) and hydrolysates of whey proteins (WPH) and caseins (e.g., hydrolysed 

sodium caseinate). For the reasons outlined in Section 3.2, it is desirable that 

the proteins/peptides used are soluble under the conditions of conjugation; 

hence only soluble forms of casein (e.g., sodium caseinate) have been studied. 

It is also desirable that the proteins used for conjugation are present in a 

conformation which ensures a high degree of accessibility of carbonyl groups 

to amino groups, which is one of the main reasons why, in the study of casein-

based conjugates, sodium caseinate, with an open/flexible structure, and 

extremely low levels of non-protein components, has been extensively used as 

the casein protein substrate; the authors are not aware of any studies 

performed using micellar casein for production of casein-based conjugates.  

In addition, whey proteins are more susceptible than caseins to heat-induced 

aggregation under the conditions used for conjugation (particularly under wet 

heating conditions), which would be expected to restrict accessibility of 

carbonyl groups to amino groups on the protein/peptide molecules. β-Lg 

typically represents ~50-60% of total protein in WPC, WPI and WPH 

ingredients and has two disulphide bonds and one free thiol group, which are 

deemed responsible for the irreversible thermal aggregation and gelling 

properties of this protein (Brodkorb, Croguennec, Bouhallab, and Kehoe, 

2016). In contrast, α-lac has a single polypeptide chain, containing four 

disulphide bonds, and no free sulphydryl group (Permyakov and Berliner, 
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2000), making it less susceptible to heat-induced denaturation/aggregation 

under the conditions used in conjugation of whey protein (Enomoto et al., 

2009). Furthermore, Nieuwenhuizen et al. (2003) reported that the 

availability of the lysine groups in α-lac is modified by the binding of calcium; 

five lysine residues were available for reaction in apo-α-lac compared to four 

available lysine residues in holo-α-lac. 

It is desirable to have low levels of non-protein components (e.g., lactose, 

minerals and lipid) in the protein-containing ingredients used as substrates 

for conjugation, as lactose contributes strongly to brown colour and flavour 

compound formation (Lillard, Clare, and Daubert, 2009), minerals promote 

aggregation of whey proteins (Brodkorb et al., 2016), lipid material can 

contribute to off-flavour formation (Liu and Zhong, 2014; Lloyd, Hess, and 

Drake, 2009) and lactose can also compete with other carbohydrates for 

conjugation to the protein substrate during heating under conditions required 

to achieve conjugation. Therefore, high protein content WPC and WPI, or pure 

protein fraction ingredients are most commonly used for conjugation 

purposes.    

The whey proteins generally have slightly higher normalised levels of lysine 

residues than the caseins. Hydrolysis of casein and whey protein molecules 

increases the number of free amino groups available to react with carbonyl 

groups during conjugation and can also lead to increased exposure and 

accessibility to previously-buried lysine residues. Protein hydrolysates are 

generally characterized by their degree of hydrolysis (DH), which expresses 

the number of peptide bonds cleaved as a percentage of the total number of 

peptide bonds available (Foegeding, Davis, Doucet, and McGuffey, 2002). 

Hydrolysis of whey proteins, due to reduction of average Mw and levels of 

secondary structure, enhances their stability to heat-induced aggregation, 

which can facilitate enhanced retention of amino groups in a form accessible 

for conjugation during heating. For example, Ju, Otte, Madsen and Qvist 

(1995) reported that limited hydrolysis of WPI (DH 2-7%), using trypsin, 

prevented heat-induced gelation of a WPI solution (12%, w/v, protein) on 

heating at 80°C for 30 min at pH 3 and 7. Mulcahy et al. (2016b) reported that 

WPH with a low degree of hydrolysis (DH 9.3%) had 55.4% higher levels of 
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available amino groups compared with an intact WPI counterpart, which 

contributed to more rapid and extensive conjugation of maltodextrin (MD) 

with the WPH than with the WPI. 

The conjugation of milk proteins/peptides has been studied using many 

different types of carbohydrate ingredients, including, but not limited to, 

lactose, MD, corn syrup solids (CSS), dextrans, glucose, maltose, ribose, guar 

gum, pectin, fenugreek gum, oligosaccharides and glucosamine. From the 

point of view of their ability to participate in Maillard-induced conjugation of 

milk proteins/peptides, and the functionality of the resultant conjugates, the 

key differences between these carbohydrates are chain length, structure (i.e., 

linear vs branched and ketoses vs aldoses) and charge (neutral vs charged). In 

general, the shorter the chain length of the carbohydrate component, the faster 

the rate, and the greater the extent of conjugation. On conjugation of whey 

protein with MD or CSS, having dextrose equivalent (DE) values in the range 

6-38, at an initial pH 8.2, at 90°C for up to 24 h, the extent of conjugation 

increased with increasing DE value of the MD and CSS ingredients (Mulcahy 

et al., 2016a). Delahaije, Gruppen, van Nieuwenhuijzen, Giuseppin and 

Wierenga (2013) studied the stability of emulsions of patatin conjugated to the 

same extent with different mono- and oligosaccharides (xylose, glucose, 

maltotriose and maltopentaose) and reported that attachment of 

monosaccharides did not affect the flocculation behaviour of the emulsion; 

however, the attachment of maltotriose and maltopentaose (Mw > 0.5 kDa) 

provided stability against flocculation of the emulsions at pH 5, due to 

increased steric stabilization contributed by the higher Mw carbohydrates. 

Brands and van Boekel (2001) reported that ketoses degraded during heating, 

whereas aldoses were involved in formation of the covalent bond between 

proteins and carbohydrates during the Amadori stage of the Maillard reaction. 

3.4. Mode of conjugation  

The main variables that can be controlled during conjugation of milk 

proteins/peptides are temperature, time, pH, moisture content, relative 

humidity (RH) and/or aw. These variables can be grouped to give 2 distinct 

approaches for achieving conjugation – (1) wet heating and (2) dry heating. 
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The wet heating approach normally involves incubation of an aqueous solution 

of protein/peptide and carbohydrate reactants, commonly pre-adjusted to a 

target pH (normally pH 6.0-11.0), for a pre-determined time (min-d) at a set 

temperature (typically in the range 60-95oC). The conjugation reaction is 

normally stopped (or slowed considerably) by cooling and further processing 

(e.g., freeze or spray drying) of the conjugated protein/peptide solution. The 

dry heating approach normally involves incubation of a co-dried mixture 

(commonly pre-adjusted to a target pH) of the protein/peptide and 

carbohydrate ingredients for a pre-determined time (min-d) at a set 

temperature (typically in the range 60-130oC) at a set RH (typically 60-80%).  

Both approaches have been used extensively for conjugation of milk 

proteins/peptides and both have their advantages and limitations. The 

mobility of reactants is higher with the wet heating than the dry heating 

approach and higher temperatures (for shorter times) are generally used with 

the former than with the latter; however, some recent studies have used 

considerably higher temperature (130oC) and shorter times (<30 min) than 

previous studies to achieve conjugation of WPI with lactose or MD under dry 

heating conditions at 79% RH (Liu and Zhong, 2014). Similarly, Guo and 

Xiong (2013) reported that WPI was successfully conjugated with lactose or 

MD (DE18) at 130°C for 20 min and 79% RH, with both systems having less 

colour development that WPI-lactose/MD conjugated at 80°C for 2 h.  

To achieve maximum reactivity between the protein/peptide and 

carbohydrate components using dry heating, it is necessary to prepare a 

solution of the two components, which is dried before being conjugated by dry 

heating, and the conjugated powder typically requires down-stream drying 

due to release of water during the early stages of the Maillard reaction. This 

latter issue can also lead to localised browning of the powdered reaction 

mixture during conjugation due to sugar crystallisation (Lievonen, Laaksonen, 

and Roos, 1998) using the dry heating approach, which is not an issue with the 

wet heating approach. While most of the research published to date using the 

wet heating approach has been conducted at temperature ranging from 60-

95°C for time periods of minutes-days (Chevalier et al., 2001; Darewicz, and 

Dziuba, 2001; Drapala et al., 2016a, b; Morgan et al., 1998; Mulcahy et al., 
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2016a,b; Zhang et al., 2012; Zhu et al., 2008), some studies have reported the 

use of higher temperatures (i.e., 100-130°C) for shorter times (≤6 h) to induce 

conjugation using wet heating; for example, Chen et al. (2013b) reported that 

phosvitin and dextran were conjugated by heating in an aqueous solution at 

100°C for 6 h.  

In addition to the differences in energy costs and efficiency between wet and 

dry heating approaches, the use of dry heating at lower temperatures (<70°C) 

has been shown to result in greater preservation of the native 3-dimensional 

structure of whey proteins, compared with wet heating approaches, which has 

important implications for selected functional properties, such as solubility 

and interfacial properties (Gauthier, Bouhallab, and Renault, 2001; Morgan et 

al., 1998; Morgan et al., 1999a,b). The use of macromolecular crowding to 

effectively restrict denaturation and, in particular, aggregation of whey 

proteins has also shown promise on conjugation of WPI with dextran (Ellis, 

2001; Perusko, Al-Hanish, Velickovic, and Stanic-Vucinic, 2015; Zhu, et al., 

2008). 

3.5. Solubility 

Milk proteins used in food products are generally required to have high levels 

of solubility in order to facilitate expression of the desired functional 

properties such as gelation, aeration, water-binding, foaming and 

emulsification (de Wit, 1989; O’Regan, Ennis and Mulvihill, 2009). Solubility 

of milk proteins is influenced by many physicochemical properties of the 

protein molecules themselves, i.e., Mw, conformation (e.g., as affected by 

denaturation/aggregation), amino acid composition, physical state, exposure 

of selected functional groups, surface hydrophobicity, and environmental 

factors, i.e., pH, temperature, ionic strength and nature of the solvent (De Wit 

and Klarenbeek, 1984; Hayakawa and Nakai, 1985; Vojdani, 1996). 

Protein-carbohydrate conjugation via the Maillard reaction has been shown to 

be an effective means of increasing the solubility of milk proteins. Native whey 

protein molecules are globular in structure and are susceptible to heat-induced 

changes (>70°C) such as denaturation and aggregation (Wijayanti, Bansal, 

and Deeth, 2014a), while caseins are non-globular proteins, with more open, 
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flexible structures and can be heated at 140°C, at pH 6.7, for at least 40 min 

before coagulation occurs (Fox and Hoynes, 1975). Sodium caseinate has very 

different functionality to whey proteins (i.e., high viscosity at low 

concentrations and poor solubility at pH ~4.6) and is used as an emulsifier, 

texturizer and stabilizer in food products such as cured meats, processed 

cheese, coffee whiteners, high fat powders, bakery and confectionary products 

(Carr and Golding, 2016; O’Regan and Mulvihill, 2011; Swaisgood, 1993). 

Improvements in the solubility of sodium caseinate at its isoelectric point 

would be expected to help broaden its application in food products; O’Regan 

and Mulvihill (2009) reported that sodium caseinate conjugated with MD, 

with DE values of 4 or 10, had improved protein solubility (~5-90%) in the pH 

range 4.0-5.5, compared to sodium caseinate, particularly around the 

isoelectric point (~pH 4.6) of the protein. This increase in protein solubility on 

conjugation was attributed to an increase in the hydration of the protein due 

to the covalent attachment to the protein molecules of hydrophilic MD glucose 

polymer side chains, and modification of the net charge of the protein, 

contributing to greater repulsion between the protein molecules. The increase 

in the net negative charge of the protein on conjugation with carbohydrate may 

be attributed to the consumption of charged amino acids, such as the basic 

amino acid lysine during the Maillard reaction (Ames, 1998; Brands and van 

Boekel, 2002; Lertittikul, Benjakul, and Tanaka, 2007; Wang and Zhong, 

2014). Interestingly, it was noted that, at similar extents of conjugation, the 

conjugated sodium caseinate-MD10 had higher protein solubility (~50-80% 

increase) across the pH range 4.0-4.5 than the conjugated sodium caseinate-

MD4. Similar results were reported by Shepherd, Robertson and Ofman 

(2000) and Oliver, Melton and Stanley (2006b), with conjugation of sodium 

caseinate with MD under dry heating conditions, leading to increases in  

protein solubility, particularly at pH 4.0-4.6, which was again attributed to 

increased steric repulsion between conjugated protein molecules. Grigorovich 

et al. (2012) reported that sodium caseinate conjugated with MD with DE 

values of 2 or 10, under dry heating conditions at an initial pH of 7, at 60°C 

and 79% RH for 72 h, had improved solubility (~10-80% increase) across the 

pH range 3.5–5.0, compared with sodium caseinate alone. The authors 
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reported that the improvement in protein solubility of the sodium caseinate-

MD conjugate solutions was determined mainly by the molar ratio of the 

protein:carbohydrate and the DE value of the MD used for conjugation. 

Similar to the study of O’Regan and Mulvihill (2009), the most pronounced 

increase in solubility was achieved using MD with the higher DE value (i.e., DE 

10).  

However, it should be noted that conjugation of milk proteins with 

carbohydrates does not always result in increased protein solubility as the type 

and extent of modification of the functional properties are very dependent on 

the nature of the reactants, reaction conditions and the pathways followed by 

the Maillard reaction (Hiller and Lorenzen, 2010). Corzo-Martínez, Carrera-

Sanchez, Villamiel, Rodriguez-Patino, and Moreno (2012b) reported that dry 

heating of sodium caseinate and galactose, at an initial pH of 7.0, at 50-60°C, 

67% RH, for 4 and 72 h, resulted in a 20% reduction in the solubility of the 

protein at pH 7.0, compared to the unheated sodium caseinate control. The 

authors attributed the decreased protein solubility on conjugation to an 

increase in the surface hydrophobicity of the protein on heating. However, at 

pH 5.0, Corzo-Martínez et al. (2012b) reported that conjugated sodium 

caseinate-galactose displayed an increase of ~10% in solubility, compared to 

the unheated and dry heated sodium caseinate controls due to the shift in the 

isoelectric point of the conjugated protein to a lower pH as a result of a 

moderate increase in its net negative charge following conjugation.  

The dry heating approach has also been used extensively to conjugate whey 

proteins with carbohydrates as it is claimed to result in less heat-induced 

conformational changes to the whey protein molecules (Oliver et al., 2006b; 

Zhu et al., 2008) as lower temperatures are typically used (Li, Enomoto, Ohki, 

Ohtomo, and Aoki, 2005) than with wet heating. Wang and Ismail (2012) 

demonstrated that WPI conjugated with dextran by dry heating at 60°C and 

49% RH, for 96 h, had enhanced protein solubility (85.7 and 89.0% increase) 

at pH 4.5 and 5.5, respectively, when they were subsequently heated to 80°C 

for 30 min, compared to the respective WPI control. The authors reported that 

the enhanced solubility of WPI on conjugation with dextran was attributed to 

suppressed intermolecular protein-protein interactions, along with 
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structural/physicochemical changes to the protein, including a shift in the 

isoelectric point of the protein to a more acidic pH, reduction in the surface 

hydrophobicity of the whey protein molecules and increased resistance to 

thermal denaturation, resulting in a reduced exposure of free sulfhydryl 

groups after conjugation of the protein with dextran. Similarly, other studies 

have shown that conjugation of casein or whey proteins with carbohydrates 

resulted in a shift in the isoelectric point of proteins towards more acidic pH 

due to the consumption of positively charged lysine residues during 

conjugation (Jiménez-Castaño, Villamiel, and López-Fandiño, 2007; 

Martinez-Alvarenga et al., 2014). 

In a study by Wang, He, Labuza and Ismail (2013), the authors characterised 

the structural changes in whey protein molecules conjugated with dextran (at 

60°C and 49% RH for 96 h) using surface-enhanced Raman spectroscopy. 

Those authors reported that the Raman spectra of the conjugated WPI-dextran 

samples had an additional peak at 983 cm-1, which they attributed to the 

formation of a Schiff base, which was accompanied by deprotonation of 

carboxyl groups, contributing to higher net negative charge along with re-

organisation of the sulphide linkages. These conformational changes in the 

whey protein molecules imparted structural rigidity to the conjugated WPI-

dextran system, which in turn increased protein solubility on thermal 

treatment (75°C for 30 min) over a wide pH range (3.4-7.0), compared to 

previously unheated WPI. Wang et al. (2013) also reported that the β-sheet 

configuration of the whey protein molecules in the conjugated WPI-dextran 

had increased band intensity in the Raman spectra, compared to that of the 

unheated WPI control. Wang et al. (2013) and Damodaran (2008) reported 

that the β-sheet configuration is more thermally stable than the α-helix and 

other disordered structure configurations in whey protein molecules, thus an 

increase in the β-sheet configuration may explain the improvements in the 

thermal stability at pH 4.5 and 5.5 of the conjugated WPI-dextran.   

A limited number of studies have reported modification of functional 

properties of whey proteins conjugated with carbohydrates using wet heating 

conditions. The likely reason for this is that heating of whey protein in an 

aqueous environment at ≥70°C can result in denaturation and aggregation, 
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which have been reported to reduce whey protein solubility (Liu et al., 2012; 

Pelegrine and Gasparetto, 2005; Zhu, Damodaran, and Lucey, 2010). 

However, Jiang and Brodkorb (2012), Lillard et al. (2009) and Liu and Zhong 

(2015) have investigated the use of high temperatures (95-130°C) to induce 

conjugation of whey proteins or isolated whey protein fractions with 

carbohydrates, and have reported improvements in the antioxidant activity, 

emulsification properties and heat stability, respectively, of whey protein-

carbohydrate conjugates. 

3.6. Heat Stability 

Glansdorff, Prigogine and Hill (1973) defined thermal or heat stability as the 

ability of a substance to resist irreversible change in its chemical or physical 

structure, often by resisting polymerisation, under defined conditions (i.e., 

temperature, pH and ionic strength). Globular whey proteins are very 

susceptible to heat-induced (>70°C) changes such as denaturation and 

aggregation (Wijayanti et al., 2014a), therefore, this section will focus mainly 

on the heat stability of whey proteins and improvement thereof by 

conjugation. The thermal stability of whey proteins has been the subject of 

extensive research and there are many reports in the literature on the 

denaturation and aggregation of whey proteins under different solution and 

processing conditions (Brodkorb et al., 2016; Donovan and Mulvihill, 1987; 

Marangoni, Barbut, McGauley, Marcone, and Narine, 2000; Oldfield, Singh, 

and Taylor, 2005; Ryan, Zhong, and Foegeding, 2013; Sağlam, Venema, de 

Vries, and van der Linden, 2014).   

Several approaches have been investigated to control aggregation of whey 

proteins, including the addition of hydrophobic/amphiphilic compounds prior 

to heating, such as  molecular chaperones, alcohols, hydrolysed/hydroxylated 

lecithin, and saturated/unsaturated fatty acids, or removal of intermediate 

aggregates and modification of the ionic environment of the protein solution 

(Yong and Foegeding, 2008; Wijayanti, Bansal, Sharma and Deeth, 2014b). 

Protein-carbohydrate conjugation via the Maillard reaction has been shown to 

be an effective method to improve the thermal stability of milk proteins. 
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Zhu et al. (2010) conjugated WPI with dextran (Mw 440 kDa) by heating a 

solution of 10% WPI and 30% dextran, at an initial pH of 6.5 at 60°C for 48 h. 

The authors measured the thermal stability of the conjugated WPI-dextran 

solution (0.1%, w/v, protein) by heating at 80°C for 30 min and subsequently 

measuring the development of turbidity in the solutions (i.e., with increasing 

development of turbidity there was a higher absorbance at 500 nm; A500), 

across the pH range 3.0-7.5. The absorbance of the conjugated WPI-dextran 

solution did not change on heating; however, there was a ~10 fold increase in 

A500 of the WPI solution that was heated at 80°C for 30 min in the pH range 

4.5-5.5, which was attributed to the formation of large protein aggregates that 

scattered light. The authors reported that the unheated WPI had a typical 

differential scanning calorimetry (DSC) denaturation profile, with an 

endothermic peak at ∼74°C attributed to the denaturation of β-lg, and a 

shoulder at ∼66°C, attributed to the denaturation of α-lac; however, the 

conjugated WPI-dextran solution had a flat line profile suggesting that whey 

protein in the WPI had less secondary structure, due to the covalent 

attachment of the dextran which contributed to a higher denaturation 

temperature and improvements in thermal stability. Similar DSC profiles were 

reported by Hattori, Nagasawa, Ametani, Kaminogawa and Takahashi (1994), 

Liu and Zhong (2013) and Wang and Ismail (2012) who showed that the 

denaturation temperature of whey protein-carbohydrate conjugates was 

higher than that of the corresponding unconjugated whey proteins.  

Chevalier et al. (2001) reported that β-lg conjugated with either ribose, 

arabinose, glucose, galactose, lactose or rhamnose, at pH 6.5 and 60°C for 72 

h in an aqueous environment (0.4% protein, 0.4% carbohydrate), exhibited 

greater thermal stability at pH 5.0, when heated at 70–90°C for up to 1 h, than 

unheated and heated β-lg controls (i.e., without added carbohydrate). The 

improvement in thermal stability of the solution (0.2%, w/v, protein), as 

measured by the concentration of protein in the supernatant of the heated 

solutions after centrifugation (15 min at 15,000 g), was dependent on the 

carbohydrate as follows; ribose>arabinose>rhamnose>glucose=galactose 

>lactose. However, the choice of carbohydrate used in conjugation is known 

to alter the extent of protein-carbohydrate conjugation, making it difficult to 
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distinguish if the changes in the functional properties were due, directly, to 

compositional/structural differences between the carbohydrates or, indirectly, 

to their differing effects on the extent of conjugation (Chen, Liu, Labuza, and 

Zhou, 2013a; Li et al., 2009; Mulcahy et al., 2016a; ter Haar, Schols, and 

Gruppen, 2011).  

Liu and Zhong (2013) conjugated WPI with either glucose, lactose or MD (Mw 

1 kDa) by dry heating at an initial pH of 7.0 at 80°C and 80% RH for 2 h, in a 

mass ratio of 1:1, and evaluated heat stability by reconstituting samples to 7%, 

w/v, protein, adding 0-150 mM NaCl or CaCl2, adjusting the solutions to pH 

between 3.0-7.0, and heating for 2 min at 88°C, simulating a hot-fill beverage 

process (Etzel, 2004). The authors assessed the thermal stability by visual 

observation of turbidity development after heating; the solutions prepared 

from the conjugated WPI-MD and WPI-lactose remained transparent under 

all conditions tested, while the unheated and dry heated WPI controls with 

added salt became turbid on heating at pH 6.0. Liu and Zhong (2013) reported 

that the conjugated WPI-MD had a higher denaturation temperature and a 

more negative net charge across the pH range 2.0-7.0 than the unheated WPI 

control, which may have contributed to the increased thermal stability of the 

former.  

Several authors reported that improvements in heat stability of whey protein-

carbohydrate conjugates can be related to the number and chain length of the 

carbohydrates attached to the whey protein molecules, along with the location 

at which they are attached on the protein molecules; the attachment of higher 

Mw carbohydrates has been shown to have a greater impact on improving the 

thermostability of whey proteins, due to increased steric repulsion, compared 

to conjugation with monosaccharides (Aoki et al., 1999; Corzo-Martinez et al., 

2012b, c; Morris, Sims, Robertson, and Furneaux, 2004;  Mulcahy et al., 

2016a, Tuinier, Rolin, and De Kruif, 2002; Wong, Day, and Augustin, 2011; 

Wooster and Augustin, 2006). 

WPHs have been reported to have impaired functional properties compared to 

their intact counterparts and have been shown to be more susceptible to 

destabilisation when heated, due to the exposure of buried hydrophobic 
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residues and/or release of specific peptides that promote peptide-peptide and 

peptide-protein aggregation (Adjonu, Doran, Torley, and Agboola, 2013; 

Creusot and Gruppen, 2007). Mulcahy et al. (2016b) reported that WPH (DH 

9.3%) conjugated with MD (DE 17) under wet heating conditions at an initial 

pH of 8.2 and 90°C for 8 h, had superior thermal stability to further heating at 

85°C for 10 min with 40 mM NaCl added, compared to those of the unheated 

or heated WPH control solutions. The unheated or heated WPH control 

solutions precipitated and phase separated on heating at 85°C for 10 min due 

to the formation of large protein aggregates (~10-50 μm), whereas, the 

conjugated WPH-MD solution (i.e., previously heated for 8 h at 90°C at an 

initial of pH 8.2) that was further heated with 40 mM added NaCl remained 

stable and the protein aggregates present remained small (<~1 μm). 

The conditions used during the Maillard reaction impact the thermal stability 

of the resulting conjugates; Wang and Zhong (2014) dry heated WPI-MD in 

the mass ratio 1:1, at 80°C and 65% RH for 4 h, at different pHs (i.e., pH 4.0, 

5.0, 6.0 and 7.0). The solutions prepared from the conjugated WPI-MD at pH 

6.0 (5% protein, and 0-150 mM added NaCl) that was subsequently heated at 

138°C for 1 min (to simulate UHT treatment), had improved thermal stability 

(i.e., remained transparent as evaluated by the visual assessment of turbidity) 

compared to the solution prepared from the WPI-MD conjugated at pH 4.0. 

The improvement in thermal stability was attributed to the greater extent of 

covalent attachment of MD molecules to the whey protein molecules at pH 6.0, 

resulting in reduced protein-protein interactions, lower surface 

hydrophobicity of the protein, a shift in the isoelectric point (from 4.63 to 4.07) 

of the protein to lower pH and a higher protein denaturation temperature 

compared to the WPI-MD conjugate prepared at pH 4.0.  

3.7. Emulsification 

Emulsifiers act by reducing the surface free energy at the interface between oil 

and aqueous phases, and thereby provide an effective interfacial barrier to help 

resist the thermodynamic tendency of emulsions to destabilise (McClements, 

2015). Proteins are the most commonly used class of food emulsifiers, due to 

their excellent surface activity, diverse and desirable nutritional profile, wide 
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availability and positive consumer perception (Bos and van Vliet, 2001; 

Hernández-Ledesma, García-Nebot, Fernández-Tomé, Amigo, and Recio, 

2014; Lam and Nickerson, 2013). In addition, surface and interfacial 

properties of proteins can be modified through controlled hydrolysis (i.e., 

increasing molecular mobility) (Panyam and Kilara 1996; Tamm, Sauer, 

Scampicchio, and Drusch, 2012; Turgeon, Gauthier, Molle, and Leonii, 1992), 

controlled denaturation (i.e., opening up of the protein structure) (Raikos 

2010; Rullier, Novales, and Axelos, 2008), change in the charge (Hamada and 

Swanson, 1994) or by complexation with another component (i.e., 

polyphenols, carbohydrates) (Dickinson, 2010) to enable best matching of 

their functionality to specific product and process applications.  

There has been considerable growth in interest in the area of modification of 

emulsification properties of proteins by their conjugation with various 

carbohydrates through the Maillard reaction (Drapala et al., 2016a, b; de 

Oliveira et al., 2016; Foegeding and Davis 2011; Lam and Nickerson 2013; Liu 

et al., 2012; Oliver et al., 2006a). Protein-carbohydrate conjugates consist of 

two composite moieties, where, in an emulsion system, the more surface-

active component (i.e., protein) adsorbs at the oil/water (O/W) interface, 

while the more hydrophilic component (i.e., carbohydrate) extends into the 

bulk aqueous phase of the emulsion; the two components display two distinct, 

complimentary and synergistic roles in bringing about the action of conjugate-

based emulsifiers. 

Conjugation of proteins with carbohydrates can improve their emulsion 

formation properties indirectly by enhancing protein solubility (see Section 

3.5), increasing their effective concentration and mobility in aqueous solution. 

Changes in conformation of proteins arising from conjugation (i.e., unfolding 

of the protein structure and exposure of hydrophobic and hydrophilic groups) 

result in a more flexible protein structure, enabling it to move faster towards, 

and adsorb at, the O/W interface, compared to unconjugated protein (Báez, 

Busti, Verdini, and Delorenzi, 2013; Corzo-Martínez et al., 2011; Gauthier et 

al., 2001). Improvements in emulsification properties of WPI on conjugation 

with dextran (Zhu et al., 2010) or of sodium caseinate conjugated with 

glucosamine (Jiang and Zhao, 2011), both under wet heating conditions, have 
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been reported. Protein type influences the effect of conjugation on the 

emulsion formation ability of proteins, where the emulsification properties of 

native globular proteins (e.g., whey proteins) can benefit more from 

conjugation than those of less-structured proteins, due to the unfolding of the 

compact globular structure, increasing molecular flexibility and surface 

hydrophobicity (Einhorn-Stoll, Ulbrich, Sever, and Kunzek, 2005; Evans, 

Ratcliffe, and Williams, 2013). In an analogous manner, it is reasonable to 

assume that the effect of conjugation on emulsification properties of 

hydrolysed proteins/peptides would largely depend on the degree of protein 

hydrolysis/conformation change and the Mw of the protein/peptide and 

carbohydrate components of the conjugates, while there appears to be no 

information available on this subject in the scientific literature. 

Carbohydrate moieties covalently attached to protein on conjugation act like a 

tail, and are effectively towed by the protein as it migrates through the bulk 

aqueous phase towards the O/W interface, as the carbohydrate generally does 

not provide a driving force for this migration of the conjugated protein 

molecules. Despite its passive role in the formation of emulsions, the 

carbohydrate component of protein-carbohydrate conjugates generally does 

not impede the movement of the conjugated protein through the bulk phase, 

except when the size ratio between the protein and carbohydrate is 

disproportional. Matemu, Kayahara, Murasawa and Nakamura (2009) and 

Akhtar and Dickinson (2007) reported that increasing the Mw of the 

carbohydrate component reduced emulsifying activity index (EAI) of food 

protein-carbohydrate conjugates made therefrom, using tofu whey and bovine 

milk-derived WPI, respectively. The larger hydrodynamic radius of protein-

carbohydrate conjugates, compared to the protein alone, can potentially result 

in a decreased rate of diffusion in the bulk phase and reduce the rate of 

adsorption of conjugates at the interface (Ganzevles, van Vliet, Stuart, and de 

Jongh, 2007). As an example, lower emulsion formation ability was reported 

for WPI conjugated with high Mw MD (DE 2; Mw 280 kDa), an effect which 

was not observed for low Mw MD (DE 19; Mw 8.7 kDa), compared to non-

conjugated WPI (Akhtar and Dickinson, 2007).  



Chapter 3                         Literature Review: Protein-Carbohydrate Conjugation 

 

|109 

The improved emulsion formation properties of milk protein-carbohydrate 

conjugates, compared to unconjugated protein, can also be attributed to their 

strong steric stabilisation properties; as the emulsifier adsorbs at the surface 

of newly-formed oil globules on homogenisation, it prevents their coalescence 

by means of steric repulsion (Liu, Ma, McClements, and Gao, 2016). The 

carbohydrate moiety anchored at the surface of an oil globule by the protein, 

protrudes into the aqueous phase of the emulsion and prevents coalescence on 

high impact collisions between individual oil globules during the dynamic 

homogenisation process (Corzo-Martínez et al., 2011). The emulsion 

formation properties of protein are highly dependent on the environmental 

conditions under which emulsification takes place; high salt concentration and 

acidic environment usually reduce protein solubility, due to their influence on 

electrostatic repulsion. A high salt content screens charges of protein 

molecules, while low pH reduces their charge due to proximity to the 

isoelectric point of the proteins (i.e., pH 4.6-5.3 for bovine milk protein) - 

effectively protein-protein interactions are promoted, resulting in decreased 

solubility and protein precipitation, and negatively impacting their 

surface/interfacial activity (Damodaran 2005; Bos and van Vliet 2001; Zhai, 

Day, Aguilar, and Wooster, 2013).  

Conjugation of milk proteins with carbohydrates generally enhances their 

emulsion formation and stabilisation properties at high salt concentrations 

and under acidic conditions, due to improved protein solubility under such 

environmental conditions. Covalent attachment of MD or corn fibre gum to 

globular whey proteins (i.e., β-lg and proteins in WPI) by conjugation has been 

shown to enhance the emulsifying properties of the proteins across a broad pH 

range (3.2-5.5), by significantly increasing protein solubility (Akhtar and 

Dickinson 2007; Yadav et al., 2010). Similarly, enhanced emulsion formation 

properties, attributed to increased protein solubility, over a broad pH range 

(pH 2-11) have been reported for a range of milk protein ingredients (β-lg, α-

lac, BSA and sodium caseinate) conjugated under dry and/or wet heating 

conditions with a number of different carbohydrates (glucosamine, galactose 

and dextran) (Corzo-Martínez et al., 2011; Jiang and Zhao 2011; Jimenez-

Castano, Villamiel, and Lopez-Fandino, 2007). Conjugation of protein can 
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greatly improve its solubility at acidic pH and high ionic strength conditions 

due to the additional steric barrier provided by the conjugated carbohydrate 

component preventing protein aggregation and precipitation (see Section 3.5). 

Additionally, conjugation can shift the isoelectric point of protein to lower pH 

as reported for individual whey proteins (β-lg, α-lac and BSA) conjugated with 

MD (Jimenez-Castano et al., 2007). Such enhanced protein functionality 

under challenging environmental conditions offers significant potential for the 

development of novel emulsion-based food formulations. 

Stability of an emulsion refers to its ability to withstand deteriorative changes 

(i.e., physical or chemical) during processing and/or storage. The main 

mechanism responsible for physical stability of protein-based emulsions is 

long-range electrostatic repulsion; proteins adsorbed at the O/W interface 

confer an electrostatic charge (i.e., a negative charge in the case of most milk 

protein-based emulsions at near neutral pH) to the oil globules, effectively 

preventing their flocculation and coalescence. In addition to electrostatic 

repulsion, emulsions formulated with conjugated proteins are also stabilised 

by the additional steric hindrance provided to the adsorbed conjugated protein 

molecules by the carbohydrate component. The carbohydrate component of 

the conjugate is anchored at the O/W interface by surface active protein and, 

due to its hydrophilicity, it extends into the aqueous phase and acts to 

physically hinder interactions between oil globules. Sterically-stabilised 

emulsions are, generally, more robust and resilient to changes to the system 

(i.e., temperature, concentration, pH and ionic strength), compared to 

emulsions stabilised solely by electrostatic repulsion, making them attractive 

for providing emulsion stability to formulation and manufacturing processes 

as well as during product storage (Fig. 3.2) (Evans et al., 2013; Liu et al., 2012). 

Stability of an emulsion to processing can be described as the stability to high 

stress processes to which these systems can be subjected during manufacture, 

including thermal treatments, changes in ionic strength, high shear forces and 

freeze-thaw cycles (Guzey and McClements 2006; McClements, 2015). Heat 

treatment of protein-stabilised emulsions can often result in interactions (i.e., 

mediated by free sulphydryl groups and hydrophobic interactions) between 

proteins located at the interfacial layers of different globules, as well as with 
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un-adsorbed protein in the serum phase, leading to protein-mediated bridging 

flocculation of oil globules (Fig. 3.2) (Dickinson 2001; Piorkowski and 

McClements 2014; Tcholakova, Denkov, Ivanov, and Campbell, 2006). Such 

bridging flocculation can result in fouling of heat exchange surfaces, the 

generation of buoyant protein-lipid flecks, impaired emulsion shelf life or, in 

extreme cases, complete emulsion destabilisation (Prakash, Kravchuk, and 

Deeth, 2015; Petit, Six, Moreau, Ronse, and Delaplace, 2013; Drapala et al., 

2016a, b). Drapala et al. (2016a, b) showed that model infant formula 

emulsions stabilised by WPH-MD conjugates, produced by the wet heating 

approach, were resistant to heat-induced bridging flocculation, compared to 

those stabilised by non-conjugated WPH. The authors reported that the 

conjugate-stabilised systems showed no changes in viscosity or particle size 

distribution after a high temperature-short time (HTST) treatment of between 

75-100°C for 15 min, in contrast to emulsions stabilised by intact, hydrolysed 

or pre-heated hydrolysed whey protein. In addition, significant improvements 

in heat stability of O/W emulsions stabilised by WPI conjugated with low 

methoxyl-pectin under dry heating conditions (60oC at 74% RH for 16 d) have 

been reported by Setiowati, LienVermeir, Martins, De Meulenaer, and Van der 

Meeren (2016).  

The good thermal stability of emulsions stabilised by conjugated protein is 

predominantly due to the physical restriction of access (by serum phase 

constituents such as un-adsorbed proteins) to the potentially reactive inner 

interfacial layer (i.e., protein) by the unreactive outer interfacial layer (i.e., 

carbohydrate). Strong steric hindrance and increased thickness of the 

interfacial layer in conjugate-stabilised, compared to protein-stabilised, O/W 

emulsions, can efficiently prevent flocculation of oil globules when 

electrostatic stabilisation is disabled (i.e., by charge screening or by proximity 

to the protein isoelectric point) (Fig. 3.2). The greater thickness of the 

interfacial layer in conjugate-stabilised emulsions can provide additional 

stability of oil globules to mechanical stress and high shear forces, commonly 

experienced during unit operations such as mixing, pumping, flow or 

atomisation (Sagis and Scholten, 2014). Wooster and Augustin (2006) 

reported that the thickness of the interfacial layer in O/W emulsions
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Figure 3.2. A schematic diagram illustrating differences between emulsions 

stabilised by either electrostatic repulsion (A; 2nd row) or a combination of 

electrostatic and steric repulsion mechanisms (B; 3rd row); oil droplets (yellow) 

coated by protein (blue) or conjugate (blue + green) and surrounded by a cloud 

of ions (anions – blue and cations - orange). Confocal laser scanning microscope 

(CLSM) images (1st row) show examples of corresponding detrimental changes 

taking place in such systems, as presented on a model nutritional emulsion 

formulation system, adapted from Drapala et al. (2015; 2016a). Fresh 

emulsions were globally the same for the two different models – homogenous, 

where small globules (D4,3 <1 µm) followed a monomodal distribution; no 

differences in viscosity and particle size were observed between the conjugated 

and unconjugated systems. Bridging flocculation occurs when globules show 

attractive/cohesive interactions upon collisions/contact and attach; these can 

also be mediated by serum phase proteins displaying similar cohesive behaviour. 

Extensive aggregation occurs when protein-stabilised globules are exposed 

to prolonged adverse conditions (i.e., high temperature, pH near isoelectric 

point), oil pools entrapped within the protein matrix giving the aggregates 

buoyant nature (resemblance in behaviour to flecks as reported by Drapala et al., 

(2016a). Coalescence occurs when, upon contact, repulsion forces and strength 

of the interfacial layer are not sufficient to prevent lipid-lipid contact and 

resultant mass transfer Drapala et al. (2016b).  Scale bar = 10 µm. Scales for the 

confocal images vary to best show the relevant features. CLSM legend: 

green=oil; red=protein. 
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stabilised by β-lg-dextran conjugates can be modified by using carbohydrates 

with different Mw. Fundamentally, increasing the Mw of the carbohydrate 

moiety yields increased thickness of the interfacial layer and confers greater 

steric stabilisation as a result (Akhtar and Dickinson, 2007). However, factors 

such as the kinetics of conjugation (see Section 3.2) and the rate of 

diffusion/adsorption of the conjugate (i.e., as discussed earlier in this section) 

can both be negatively impacted by increasing Mw of the carbohydrate and 

need to be considered when using higher Mw carbohydrates. Emulsion stability 

can be enhanced by conjugation of protein with charged carbohydrates; 

Neirynck, Van der Meeren, Bayarri Gorbe, Dierckx, and Dewettinck (2004) 

reported an improved stability of O/W emulsions due to strong electro-steric 

stabilisation functionality of WPI-pectin conjugates. 

Stability of emulsions during storage can present challenges, in regards to 

deteriorative changes of either a physical nature, due to thermodynamic 

instability (i.e., coalescence, flocculation, gelation, creaming and oiling off) or 

a chemical nature (i.e., lipid oxidation) (Tcholakova et al., 2006; Piorkowski 

and McClements 2014; McClements, 2015; Dalgleish 1997; Chaiyasit, 

Silvestre, McClements, and Decker, 2000). Physical instability of emulsions 

can be separated into that governed directly by Stokes law (i.e., gravitational 

separation of components of different density) and that resulting from 

interactions between oil globules (i.e., coalescence, flocculation). Steric 

stabilisation of emulsions containing protein-carbohydrate conjugates can 

effectively prevent interactions between oil globules over prolonged storage, 

owing to the strong physical barrier provided by the interfacial layer (Fig. 3.2). 

O/W emulsions stabilised by conjugated milk proteins have shown no changes 

in the size of fat globules during storage (24 h-21 d at 22-40oC under quiescent 

conditions), compared to the corresponding systems stabilised by non-

conjugated proteins (Drapala et al., 2016b; Lesmes and McClements 2012; Liu 

et al., 2016; Medrano, Abirached, Moyna, Panizzolo, and Añón, 2012; O'Regan 

and Mulvihill, 2013).  

Emulsions stabilised by conjugated milk proteins display greater oxidative 

stability than those stabilised by protein alone, possibly due to the increased 

thickness of the interfacial layer and the physical barrier that restricts the 
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access of pro-oxidant species to oxidation-sensitive components such as lipids 

and lipid-soluble compounds. A significant improvement in the oxidative 

stability of emulsions containing β-carotene, stabilised by lactoferrin 

conjugated with dextran, compared to emulsions stabilised by the protein 

alone, was reported recently by Liu et al. (2016), where the anti-oxidant effect 

was attributed to restriction of physical contact between pro-oxidants and 

lipids by the thick interfacial layer of the conjugate-stabilised emulsion. 

Furthermore, it has been shown that certain (especially late-stage) Maillard 

reaction products have anti-oxidant properties when incorporated into O/W 

emulsions (Markman and Livney 2012; O’Regan and Mulvihill, 2010); for 

example, conjugation of WPI, sodium caseinate and lactose-hydrolysed skim 

milk powder (SMP) with glucose, lactose, pectin or dextran under dry heating 

conditions at 70oC and 65% RH for up to 240 h was reported to increase the 

anti-oxidant capacity of the systems due to production of late-stage Maillard 

reaction products with antioxidant activity (Hiller and Lorenzen, 2010). 

Low ζ potential of oil globules near the isoelectric point of milk proteins, and 

screening of the electrostatic charge by excess ions, can promote flocculation 

of protein-coated oil globules, leading to breakage of the emulsion and phase 

separation (McClements, 2015; Piorkowski and McClements, 2014; Sarkar 

and Singh, 2016), whereas the presence of a strong steric barrier by protein-

carbohydrate conjugates can oppose emulsion destabilisation under these 

environmental conditions. Lesmes and McClements (2012) demonstrated that 

conjugation of β-lg with dextran, under dry heating conditions (60oC and 76% 

RH for 24 h), enhanced the formation and stability of O/W emulsions 

prepared at pH 7 using the conjugated protein on subsequent acidification to 

pH 5. The authors reported that the thick O/W interfacial layer formed with 

the high Mw dextran (i.e., Mw ≥40 kDa) was responsible for the greater stability 

of the conjugate-based emulsions, compared to emulsions made using 

unconjugated protein.  

Good stability to storage at high salt concentration (0.2 M citrate buffer) and 

under acidic conditions (pH 3.2) were reported for emulsions stabilised by 

conjugates of β-lg or WPI with corn fiber gum prepared using dry heating 

conditions at 75oC and 79% RH for time periods ranging from 2 h to 7 d (Yadav 
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et al., 2010); in these systems, the branched nature of the corn fiber gum 

resulted in good emulsion stability, even at low levels of conjugation. 

Considerably improved resistance to flocculation for emulsions stabilised by 

conjugates of β-lg and dextran (Mw 27-200 kDa) at high salt (i.e., 0-20 mM 

CaCl2) addition levels was also reported by Wooster and Augustin (2006). In 

that study, the authors reported that a significant increase (~12-fold) in 

particle size for emulsions stabilised by unconjugated protein was observed at 

≥10 mM calcium (Ca) content, while no changes were observed at all added Ca 

levels for the conjugate-based systems. The superior stability of conjugate-

stabilised emulsions was attributed to the thickness and steric stabilisation 

effects of the outer interfacial layer (i.e., dextran), which effectively offset the 

electrostatic screening effect of Ca addition. Similar findings were reported for 

lactoferrin-dextran conjugates, where strong steric stabilisation of oil globules 

resulted in emulsion stability at high ionic strength (Liu et al., 2016). Likewise, 

Akhtar and Dickinson (2007) reported that emulsions stabilised by WPI-MD 

conjugates (DE 19) and containing high levels of sodium lactate (5% w/w) did 

not show any changes in particle size distribution after 21 d of storage at 22°C, 

in contrast to a ~2-fold increase in mean volume diameter for emulsions 

stabilised by unconjugated protein or by gum arabic (a naturally-occurring 

protein-carbohydrate conjugate).  

The unique functionality of milk protein-carbohydrate conjugate-based 

emulsifiers is particularly interesting for emulsion-based food products 

exposed to challenging environmental and processing conditions such as low 

pH, high ionic strength and severe thermal processes (e.g., fruit beverages, 

infant formula, clinical nutrition products and acidified milk drinks). Such 

products can pose challenges with processing and shelf life stability and, in 

some cases, hydrocolloids are added to retard phase separation. Milk 

protein/peptide-carbohydrate conjugate-based emulsifiers also offer a 

significant potential for applications in emulsion-based delivery systems, 

where their interfacial functionality can facilitate controlled release of 

sensitive bio-actives (e.g., vitamins) in the small intestine, avoiding acid-

mediated emulsion destabilisation and loss of the encapsulated material in the 

stomach. Gumus, Davidov-Pardo, and McClements (2016) reported that, as 
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well as stability to acidic conditions, emulsions stabilised by casein-dextran 

conjugates, prepared under dry heating conditions (60oC and 76% RH for 48 

h), were additionally resistant to enzymatic digestion by pepsin, which 

prevented issues with premature release of encapsulated lutein in the stomach. 

Proteolysis of the interfacial layer was retarded by the thick outer carbohydrate 

layer, which restricted the pepsin from accessing the inner protein interfacial 

layer. In addition, the authors showed that the use of conjugate-based 

emulsifiers did not interfere with release of encapsulated material in the 

intestine, where bile salts displaced the emulsifier from the surface of oil 

globules. Similarly, in the study of Lesmes and McClements (2012), β-lg-

dextran conjugate-stabilised emulsions displayed good stability to stomach-

like environmental conditions, due to strong steric stabilisation and 

subsequent release of encapsulated fatty acids occurred in the intestinal stage, 

due to emulsifier displacement by bile salts. 

3.8. Foaming 

Somewhat like emulsions, foams are systems comprising of two phases (i.e., 

air and water), both with different densities; their formation requires an 

aeration process (i.e., whipping or sparging) and it is aided by the presence of 

surface active compounds (i.e., proteins, peptides, low Mw surfactants) which 

can adsorb at the air/water (A/W) interface and reduce its surface free energy, 

allowing retention of air within the foam matrix. The foaming properties of 

proteins/peptides are often assessed by their rate of adsorption at the A/W 

interface, as measured by the volume of air incorporated in the foam (i.e., foam 

capacity) and their ability to subsequently retain that volume of incorporated 

air (i.e., foam stability) (Foegeding, Luck, and Davis, 2006). Stability of foams 

is inherently lower than that of emulsions, due to the greater tendency to 

separation of the two phases, owing to the larger diameter and lower density 

of the dispersed phase particles (i.e., air bubbles and oil globules, respectively) 

in foams than in emulsion systems. In addition, solubility of the dispersed 

phase in the continuous phase and macroscopic processes such as liquid 

drainage, Ostwald ripening (i.e., disproportionation) and bubble coalescence 

also contribute to foam instability. Surface activity of a protein/peptide is the 

main factor affecting foam capacity, therefore, solubility and mobility of 
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proteins/peptides in the bulk phase strongly determine the initial foam 

volume. Conversely, foam stability is largely governed by the rheological 

properties of the interfacial layer. Despite slower interfacial adsorption rates, 

compared with lower Mw non-protein surfactants, proteins confer important 

functionality to foams, owing to their interfacial flexibility and viscoelastic 

properties (Damodaran, 2005). Modification of the structure/conformation of 

food proteins or, more specifically, milk proteins can offer important 

functional benefits in applications involving foam formation and stabilisation; 

alteration of the hydrophilic-hydrophobic balance (Hamada and Swanson 

1994; Lei, Zhao, Selomulya, and Xiong, 2015; Morand, Dekkari, Guyomarc'h, 

and Famelart, 2012), controlled denaturation and aggregation (Dombrowski, 

Johler, Warncke, and Kulozik, 2016; Kim, Cornec, and Narsimhan, 2005) or 

formation of nanoparticles by electrostatic complexation of sodium caseinate 

and gum arabic (Ye, Flanagan, and Singh, 2006) or complexation and 

conjugation of different milk proteins with carbohydrates (Báez et al., 2013; 

Jian, He, Sun, and Pang, 2016; Jiang and Zhao, 2011; Turgeon, Schmitt, and 

Sanchez, 2007) have all been shown to improve surface activity and foaming 

properties of proteins.  

Foam capacity is governed by the properties of the proteins/peptides present 

in a system; high surface activity, high mobility in the bulk phase and the 

presence of hydrophobic regions are the main factors affecting foam overrun 

(i.e., volume of air incorporated). Adsorption of hydrophobic regions of the 

protein molecule at the A/W interface is thermodynamically favourable, due 

to the hydrophobic nature of the interface (i.e., due to constant evaporation), 

and it is regarded as one of the main driving forces for protein adsorption and 

anchoring at the interface (Dickinson, 2010). The adsorption process in 

protein-based food systems can often be self-limiting, due to gradual 

development of a barrier acting to impede adsorption; physical restriction of 

space or electrostatic repulsion between protein molecules can promote 

formation of such a barrier (Wierenga, Meinders, Egmond, Voragen, and De 

Jongh, 2005). Dombrowski et al. (2016) reported that increasing 

hydrophobicity of β-lg, by controlled aggregation, increased the probability of 

its adsorption at the interface (as measured by changes in the surface 
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pressure), regardless of the barrier counteracting adsorption. The authors also 

reported that the surface adsorption of heat-induced aggregates of β-lg was 

not different to that observed for the native protein, demonstrating that 

diffusion kinetics of β-lg to the interface were unaltered by 

denaturation/aggregation, signifying that the effect of increased protein 

hydrophobicity was dominant over the changes in size brought about by 

aggregation of the protein molecules. In addition, foaming properties of 

protein tend to be optimal at pH near their isoelectric point, due to lowered 

electrostatic repulsion forces between proteins adsorbing at the interface, 

allowing for higher density interfacial packing (Marinova et al., 2009). A 

similar net effect can be achieved with the addition of salts/ions due to 

screening of the electrostatic charges and reducing the intensity of charge-

based repulsion forces (Foegeding et al., 2006). Moreover, decreasing the 

electrostatic repulsion forces, by pH adjustment or salt addition, can promote 

interactions between individual proteins/peptides, resulting in 

conformational rearrangement and increased hydrophobicity, thus 

intensifying the driving force for adsorption.  

Changes to structure/conformation of proteins, resulting from their 

conjugation with carbohydrates, generally contribute to increased protein 

solubility, higher protein mobility and, effectively, faster adsorption at A/W 

interfaces (see Section 3.7). Improvement in foam capacity for BSA conjugated 

with glucose in a wet heating process (45°C for 2 h with continuous stirring), 

compared to BSA conjugated with mannose or unconjugated BSA, was 

reported by Jian et al. (2016). In this study, conjugation resulted in changes in 

protein conformation, yielding a more flexible and loosened structure which, 

effectively, increased the rate of protein adsorption at the A/W interface; 

however, a decrease in surface hydrophobicity and decreased foam stability 

was reported for conjugated BSA. Similar findings were reported for foams 

stabilised by β-lg-glucose conjugates (dry heating; 50°C at 65% RH for 96 h) 

(Báez et al., 2013), where improved foam capacity, compared to using 

unconjugated β-lg, was explained by heat-induced conformational changes in 

the structure of the whey protein molecules, conferring more open and flexible 

structures, thus allowing more rapid formation of the interfacial layer. A 
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combination of increased hydrophobicity and changes in the conformation of 

protein can offer increased foam overrun as reported for supramolecular α-

lac-glycomacropeptide  complexes (i.e., stabilised by non-covalent 

interactions) by Diniz et al. (2014). 

Foams are thermodynamically unstable systems that can undergo rapid 

destabilisation (i.e., bubble coarsening, coalescence, film drainage, film 

rupture and foam collapse) (Considine, 2012; Foegeding et al., 2006). The key 

component conferring stability to foams is the interfacial layer, occupied by 

surface active compounds (i.e., proteins and peptides), providing a viscoelastic 

structure to the system, serving to stabilise it against the forces of gravity 

acting on it and limiting mass transfer between air bubbles (Drenckhan and 

Saint-Jalmes, 2015; Murray, 2002; Stuart, Norde, Kleijn, and van Aken, 

2005). The rheological properties of the interfacial layer govern the stability of 

the foam; in theory, a thermodynamically-stable foam can be achieved when 

its interfacial layer has purely elastic behaviour (Wijnen and Prins, 1995). 

However, this is rarely the case in food systems; hence, one of the objectives in 

engineering stable foams is to develop a greater level of elastic behaviour in 

the rheological properties of the interfacial layer (Báez et al., 2013; Drenckhan 

and Saint-Jalmes, 2015; Jiang and Zhao, 2011). The most common strategies 

applied to ensure desirable viscoelastic properties of interfacial films of foams 

involve decreasing of the long-range electrostatic repulsion between protein 

molecules to increase their packing density at the A/W interface (Dickinson, 

2010). This is generally done by either decreasing the pH towards the 

isoelectric point of the protein, by increasing the ionic strength to screen the 

electrostatic repulsion forces, or by a combination of both (Wierenga and 

Gruppen, 2010). However, such environmental conditions also coincide with 

a strong tendency for protein to aggregate and precipitate, due to diminished 

electrostatic repulsion, dramatically reducing their functionality (Lucey, 

2016). Conjugation of protein with carbohydrates allows the avoidance of 

extensive protein aggregation when the electrostatic repulsion forces are 

disabled (i.e., at acidic pH or high ionic strength). In effect, denser protein 

packing without extensive aggregation can be achieved using conjugated 

protein (Rade-Kukic, Schmitt, and Rawel, 2011). 



Chapter 3                         Literature Review: Protein-Carbohydrate Conjugation 

 

|120 

Jimenez-Castano et al. (2007) reported that conjugation of milk proteins (β-

lg, α-lac and BSA) with dextran in a dry-heating process (55°C at 0.44 aw for 

up to 96 h) resulted in a reduction in isoelectric point of each protein and 

improved their solubility and heat stability around the isoelectric point of the 

protein. Such modified functionality (i.e., good heat stability at low pH) can 

offer potential in protein-based foam applications, allowing considerable 

protein unfolding when heated at low pH, without extensive protein 

aggregation or precipitation. Controlled aggregation under these conditions, 

combined with flexible unfolded protein structures, and low electrostatic 

repulsion, offer significant potential for stabilisation of foam systems. Other 

approaches directed at improving foam stability involve increasing the 

thickness and elasticity of the interfacial film by increasing the size of its 

building blocks (i.e., controlled protein aggregation) (Báez et al., 2013; 

Dombrowski et al., 2016; Foegeding et al., 2002; Rullier et al., 2008; Tamm et 

al., 2012) or by conformational changes to the protein structure (i.e., partial 

unfolding of globular protein) (Dissanayake and Vasiljevic, 2009; 

Dombrowski et al., 2016; Morales, Martínez, Pizones Ruiz-Henestrosa, and 

Pilosof, 2015). These approaches closely match the changes to protein 

structure/conformation and functionality offered by protein conjugation; 

increased size of interfacial building blocks, controlled protein aggregation on 

conjugation and opening up of the protein structure have been shown to 

improve stability of foams formed with conjugated milk proteins (Corzo-

Martínez et al., 2012b; Hiller and Lorenzen, 2010). 

Conjugation of protein with carbohydrates allows the avoidance of extensive 

protein aggregation when the electrostatic repulsion forces are disabled (i.e., 

at acidic pH or high ionic strength). In effect, denser protein packing without 

extensive aggregation can be achieved using conjugated protein (Rade-Kukic, 

Schmitt, and Rawel, 2011). Jimenez-Castano et al. (2007) reported that 

conjugation of milk proteins (β-lg, α-lac and BSA) with dextran in a dry-

heating process (55°C at 0.44 aw for up to 96 h) resulted in a reduction in 

isoelectric point of each protein and improved their solubility and heat 

stability around the isoelectric point of the protein. Such modified 

functionality (i.e., good heat stability at low pH) can offer potential in protein-
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based foam applications, allowing considerable protein unfolding when heated 

at low pH, without extensive aggregation or precipitation of protein. 

Controlled aggregation under these conditions, combined with flexible 

unfolded protein structures, and low electrostatic repulsion, offer significant 

potential for stabilisation of foam systems. Other approaches directed at 

improving foam stability involve increasing the thickness and elasticity of the 

interfacial film by increasing the size of its building blocks (i.e., controlled 

protein aggregation) (Báez et al., 2013; Dombrowski, Johler, Warncke, and 

Kulozik, 2016; Foegeding et al., 2002; Rullier et al., 2008; Tamm et al., 2012) 

or by conformational changes to the protein structure (i.e., partial unfolding 

of globular protein) (Dissanayake and Vasiljevic, 2009; Dombrowski et al., 

2016; Morales, Martínez, Pizones Ruiz-Henestrosa, and Pilosof, 2015). These 

approaches closely match the changes to protein structure/conformation and 

functionality offered by protein conjugation; increased size of interfacial 

building blocks, controlled protein aggregation on conjugation and opening up 

of the protein structure have been shown to improve stability of foams formed 

with conjugated milk proteins (Corzo-Martínez et al., 2012b; Hiller and 

Lorenzen, 2010). 

In using protein/peptide-carbohydrate conjugates to stabilise foams, the 

thickness of the interfacial layer and therefore, effectiveness of steric 

stabilisation, can be controlled using carbohydrates with different Mw 

(Wooster and Augustin, 2006). Hiller and Lorenzen (2010) reported increased 

stability of foams prepared with a range of protein (WPI, sodium caseinate and 

lactose-hydrolysed skim milk) and carbohydrate (glucose, lactose, pectin and 

dextran) conjugates (produced by dry heating at 70°C and 65% RH for up to 

240 h) due to formation of thick and viscoelastic interfacial films that 

prevented disproportionation of gas bubbles. Increasing the thickness of the  

interfacial film can effectively improve its rheological properties in addition to 

providing an effective steric barrier with good dilatational properties 

(Dombrowski et al., 2016). Similarly, Kim, Cornec, and Narsimhan (2005) 

reported that denaturation and unfolding of β-lg resulted in increased shear 

elasticity and viscosity of the interfacial layer due to increased flexibility of the 

partially-denatured globular protein.  



Chapter 3                         Literature Review: Protein-Carbohydrate Conjugation 

 

|122 

The viscoelastic properties of protein-stabilised foams are strongly dependent 

on the structure/conformation of the protein; globular proteins (e.g., whey 

proteins) tend to give interfacial films with greater viscoelasticity, due to 

higher packing density, compared to less ordered proteins (e.g., caseins) (Bos 

and van Vliet, 2001). Conjugation of less-ordered proteins offers good 

potential for improvement of their foam stabilising properties due to increases 

in the thickness of the interfacial layer and, effectively, better dilatational 

properties of the A/W interface (Dombrowski et al., 2016). Jiang and Zhao 

(2011) reported that modification of casein (sodium caseinate) by its cross-

linking using transglutaminase and/or conjugation with glucosamine (using a 

wet heating approach at 37°C for up to 5 h with continuous agitation) 

significantly increased apparent viscosity of the caseinate solutions. The 

authors showed that a combination of cross-linking and conjugation increased 

both storage and loss moduli of casein suspensions and that the elastic 

properties of the cross-linked and conjugated casein solutions were more 

dominant, indicating solid-like response to dynamic deformation, in contrast 

to unmodified and cross-linked casein suspensions. Modification of the 

viscoelastic properties of the interfacial layer of foams by conjugation of casein 

with glucosamine conferred enhanced stability against bubble coalescence 

(increased by 20.8% compared to unconjugated casein) (Jiang and Zhao, 

2011). Facilitating dense packing and interactions between protein-based 

building blocks are effective means of improving viscoelastic properties of the 

interfacial layer of a foam (Mackie and Wilde, 2005). In a similar way, 

facilitating interactions between carbohydrate components of protein-

carbohydrate conjugates adsorbed at A/W interfaces of foams can provide not 

only a strong steric barrier but also improved viscoelastic properties of the 

interface. Cai and Ikeda (2016) reported increased resistance against 

surfactant-induced displacement of protein from the A/W interface in foams 

stabilised with WPI-gellan conjugates prepared by dry heating at 80°C and 

79% RH for 2 h, compared to systems containing unconjugated WPI and the 

surfactant Tween 20. The authors attributed the greater resistance to 

displacement of protein in the conjugate-based foam system to the ability of 

the gellan moiety, covalently attached to the whey protein molecules, to form 
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a carbohydrate network at the interface, effectively immobilising the 

conjugate-covered interface.  

Conjugation of protein with carbohydrates alters the hydrophobic-hydrophilic 

balance of protein and conformational changes to the protein structure caused 

by conjugation increase its surface hydrophobicity, generally resulting in 

improved emulsion formation properties of conjugated proteins (see Section 

3.7). On the other hand, hydrophilicity of the resulting ingredient is increased 

by the attachment of the hydrophilic carbohydrate moieties (see Section 3.7). 

Conversely, greater hydrophilicity can yield better foam stability due to 

improved water holding capacity by the conjugate located at the interfacial 

layer, and effectively restrict liquid drainage in the foam (Báez et al., 2013). 

The hydrophilic nature of the carbohydrate anchored at the A/W interface by 

the protein, viscoelastic properties of the interface, and higher viscosity for 

conjugated protein-carbohydrate systems (WPI, SMP, sodium caseinate, 

glucose, lactose, pectin, dextran), compared to native protein, have been 

shown by Hiller and Lorenzen (2010) to be the main factors responsible for 

increased foam stability. In contrast, another study by Jian, He, Sun, and Pang 

(2016) have claimed that the increased hydrophilicity of BSA resulting from 

its conjugation with glucose or mannose decreased foam stability. Jiang and 

Zhao (2011) elucidated that a shift in the amphiphilic nature of casein towards 

more hydrophilic behaviour, following conjugation with glucosamine, reduced 

ability of foam to retain the incorporated air. It is important to consider that 

both of these, apparently contradictory, findings can hold true, with the 

precise impact of conjugation being very much dependent on differences in 

protein structure (globular, ordered, unordered etc), nature of the 

carbohydrate (chain length, charge etc) and conditions employed for 

conjugation and foam formation. 

3.9. Gelation and textural properties 

Whey protein gels are three-dimensional, self-supporting, networks, within 

which the aqueous solution and any dispersed elements (e.g., fat) are 

entrapped. Gelation of whey proteins involves a controlled increase in protein-

protein interactions, while carefully maintaining a balance with protein-
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solvent interactions (Brodkorb et al., 2016). During gelation, the number and 

combined strength of protein-protein interactions (e.g., disulphide, 

hydrophobic and electrostatic interactions) determine the mechanical and 

rheological properties of the resultant gel network. High whey protein content 

ingredients (i.e., WPC and WPI) are commonly used in food applications 

which require gelation of the protein for the expression of functionality (e.g., 

recombined meat products, desserts, yoghurts, puddings, mousses). Many 

compositional and environmental factors affect the formation and rheological 

properties of whey protein gels, including protein concentration, pre-

denaturation and aggregation of protein, salts, temperature and pH 

(Foegeding, Bowland, and Hardin, 1995; Langton and Hermansson, 1992; 

Mulvihill and Kinsella, 1987). 

It is known for over 20 years that heating solutions of globular milk proteins 

(e.g., lysozyme and BSA) and reducing sugars (e.g., lactose, ribose and xylose), 

at temperatures of 90-121oC, results in the formation of gels with higher 

firmness and elasticity than gels made using the proteins alone in solution 

(Armstrong, Hill, Schrooyen, and Mitchell, 1994; Easa, Hill, Mitchell, and 

Taylor 1996). The increased strength of these protein-carbohydrate gels is due 

to Maillard reaction-mediated reduction in pH and by cross-linking of the 

protein molecules (e.g., via lysinoalanine). The gel strength (but also colour 

development) increases with decreasing Mw of the sugars (Hill, Mitchell, and 

Armstrong, 1992), while the pH required to achieve gelation decreases with 

increasing sugar concentration and reactivity. In combination, these effects of 

sugar incorporation on gelation properties of globular protein on heating, 

means that it is possible to reduce the amount of protein required for gel 

formation (Azhar, 1996; Oliver et al., 2006b). 

More recent work has focused on studying the gelation properties of milk 

proteins (especially whey proteins) conjugated with higher Mw carbohydrates 

under dry heating conditions, due to the challenges associated with 

denaturation and aggregation of whey proteins under wet heating conditions 

(Gauthier et al., 2001; Morgan et al., 1999a). Conjugation of whey proteins in 

WPI with dextran has been shown to influence the rheological properties of 

heat-induced gels made therefrom (Spotti et al., 2013a, b; 2014a, b; Sun et al., 
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2011). Conjugation of WPI with dextran of Mw 6, 40 and 70 kDa, under dry 

heating conditions at 60oC for 2-9 d at 63% RH was shown to result in whey 

protein-conjugate gels with lower fracture stress and Young’s Modulus as 

measured by uniaxial compression testing (Spotti et al., 2013a; 2013b) and 

lower gel firmness (i.e., storage modulus) as measured by dynamic low 

amplitude oscillatory shear rheology (Spotti et al., 2014a; 2014b), compared 

with WPI alone or unconjugated WPI-dextran mixtures. Similar results were 

reported by Sun et al. (2011) for WPI conjugated with dextran (average Mw 150 

kDa) at 60oC for 7 d at 79% RH. 

The lower strength of heat-set WPI-based gels made from whey protein 

conjugated with dextran, compared with unconjugated whey protein or 

mixtures of whey protein and carbohydrates is attributed to several factors, 

with the relative contribution of the individual factors dependent on the 

system composition and conditions of conjugation. Under the heating 

conditions typically required to achieve conjugation (see Section 3.4), 

denaturation and aggregation of whey proteins can occur, serving to alter 

exposure and reactivity of functional groups (e.g., free sulphydryl and 

hydrophobic groups) and the surface charge of protein molecules, all of which 

influence protein-protein and protein-water interactions (Brodkorb et al., 

2016). Covalent attachment of the carbohydrate molecules also increases the 

hydrophilicity and steric barrier properties of the conjugated proteins, both of 

which result in decreased protein-protein interactions and increased protein-

water interactions. 

3.10. Enrichment and purification of conjugates 

It is desirable to enrich the protein-carbohydrate conjugates from the reaction 

mixtures in which they are produced in order to remove unreacted 

carbohydrate, unreacted protein and possibly soluble Maillard reaction 

products, while increasing conjugated protein concentration. Such processes 

need to be food-grade, efficient, economical and have acceptable yield – 

enrichment, as opposed to purification, of the protein-carbohydrate conjugate 

is normally sufficient.  



Chapter 3                         Literature Review: Protein-Carbohydrate Conjugation 

 

|126 

There has been limited work published to date on the enrichment/purification 

of milk protein-carbohydrate conjugates, and the studies that have been 

reported (Bund, Allelein, Arunkumar, Lucey, and Etzel, 2012; Etzel and Bund, 

2011) are very much informed by approaches used in the pharmaceutical 

industry for purification of various therapeutic proteins conjugated with 

polyethylene glycol (i.e., PEGylated proteins), with separation being achieved 

largely based on differences in hydrophobicity (i.e., using hydrophobic 

interaction chromatography; Mayolo-Deloisa, González‐Valdez, and Rito‐

Palomares, 2016) and charge density (Abe, Akbarzaderaleh, Hamachi, 

Yoshimoto, and Yamamoto, 2010) between conjugated and unconjugated 

proteins. 

An initial study by Etzel and Bund (2011) involved laboratory-scale, analytical 

separation and enrichment of whey protein-dextran conjugates from mixtures 

of unreacted dextran and whey protein using cation exchange column 

chromatography with traditional chromatographic beads or porous 

polymethacrylate monolithic media and sodium lactate/sodium chloride-

containing elution buffers. Using such an approach, unreacted dextran eluted 

first, followed by the conjugated protein and finally the unreacted protein; a 

portion of the unreacted whey protein was isoelectrically precipitated from the 

feed stream at pH 5.0, before chromatographic separation. The monolith 

media resulted in a similar dynamic binding capacity as the traditional beaded 

support (4-6 g L-1) but with 42-fold higher mass productivity and 48-fold 

higher flow rate, while yielding a conjugate-enriched stream with lower purity. 

The use of cation exchange chromatography, as originally proposed by Etzel 

and Bund (2011) has been successfully scaled up to a preparative scale (i.e., 

160 fold up-scaling from 5 mL to 800 mL columns) by Bund et al. (2012). On 

scale up, the upfront partial removal of unreacted whey protein by isoelectric 

precipitation was shown to be effective in reducing the buffer volumes 

required, purification time and the number of chromatography cycles required 

for purification of the conjugates. The yield of conjugated protein was ~18% 

on a protein basis, with the losses mainly associated with incomplete 

conversion of unconjugated to conjugated whey protein during the conjugate 

production process. Opportunities for increasing this conversion rate should 
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be evaluated in future studies, with integration of conjugation and 

fractionation steps to reintroduce unreacted dextran and protein or the use of 

on-column conjugation having being suggested by Fee and Van Alstine (2006) 

and Bund et al. (2012). In addition, progressively increasing the salt 

concentration during elution for the enrichment/purification of milk protein-

carbohydrate conjugates would be expected to facilitate separation of 

conjugates based on differences in their degree of glycosylation, as is the case 

with PEGylated lysozyme and BSA (Abe et al., 2010). 

The vast majority of the studies to date on functional properties of conjugated 

milk proteins/peptides have been completed on mixtures of conjugated and 

unconjugated proteins/peptides (i.e., without removal of unconjugated 

protein/peptide and carbohydrate material). Further development of 

approaches for enrichment and purification of conjugated proteins/peptides 

from unconjugated proteins/peptides and carbohydrates will allow more 

systematic and deeper understanding of the role of residual unconjugated 

protein/peptide and carbohydrate material in determining the overall 

functionality of conjugated mixtures.  

Modification of the techno-functional properties of proteins by their 

conjugation with carbohydrates has been shown to facilitate formation of 

complex food matrices (e.g., emulsions, foams and gels) with improved 

stability and/or textural characteristics. Research reviewed in this chapter 

indicates the significant potential of conjugated proteins as ingredients for 

applications in a broad range of food systems.  
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Objectives 

The principal objective of the research reported on in this thesis was to develop 

new fundamental knowledge on the effects of selected emulsifiers on the 

formation and stability of model infant formulae (IF) products. A particular 

focus was placed on determining, for the first time, the functionality of 

Maillard-induced whey protein hydrolysate-maltodextrin (WPH-MD) 

conjugates as emulsifiers in IF products. Another aim of the research was to 

demonstrate how the mode of stabilisation of oil globules (i.e., electrostatic vs 

steric) in model IF emulsions affects stability of these systems to a range of 

industrial manufacturing processes (i.e., short time storage, heat treatment, 

spray drying and powder rehydration) and to prolonged storage (accelerated 

shelf life testing, accelerated creaming analysis and lipid oxidation analysis). 

 

The specific aims of the research were as follows: 

 To investigate the surface activity of proteins/peptides and low 

molecular weight (LMw) emulsifiers (i.e., phospholipids from soybean 

lecithin) at air-water and oil-water interfaces, and to correlate these 

functional properties of ingredients with their ability to form an 

emulsion. 

 To characterise destabilisation processes typically experienced for 

different types of IF emulsions based on intact and hydrolysed whey 

protein and to elucidate the mechanisms responsible for these 

processes. 

 To investigate competitive displacement and destabilisation 

mechanisms in mixed emulsifier-based IF emulsions 

(proteins/peptides + LMw emulsifiers) and to relate these properties to 

the stability of IF emulsions to processing and to prolonged storage. 

 To evaluate the effectiveness of steric stabilisation of oil globules in 

model IF emulsions, formed with WPH-MD conjugate ingredient, in 

conferring stability of emulsions to heat treatment, spray drying and 

prolonged storage. 
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Abstract 

Whey protein hydrolysate (WPH)-based oil-in-water (O/W) emulsions 

containing lecithin (0–5%, w/w, oil) were produced and stored at 4 °C for 14 

days. Surface tension and interfacial tension of these systems were measured 

for formulation development. Fat globule size distribution (FGSD) analysis 

and confocal laser scanning microscopy (CLSM) were used to assess the 

physical stability of emulsions during storage and identify mechanisms of 

instability. Lecithin decreased interfacial tension between oil and aqueous 

phases of model emulsions and allowed formation of smaller oil droplets on 

homogenisation. However, low-intermediate levels (1–3%) of lecithin caused 

coalescence and shift to bimodal FGSD during storage of emulsions.  
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4.1. Introduction 

Bovine milk is widely used as a base material for the manufacture of infant 

nutritional products; however, its composition differs considerably from that 

of human milk. Differences in the protein content (i.e., 33 and 9-11 g L-1 in 

bovine and human milk, respectively), ratio of casein:whey protein (i.e., 80:20 

and 40:60 in bovine and human milk, respectively), and amino acid 

composition need to be considered during ingredient selection and 

formulation development in the manufacture of infant formula (IF) products. 

Other ingredients used in the formulation of IF products are lactose, 

maltodextrins and corn syrup solids as sources of carbohydrates, blends of 

vegetable and fish oils (to mimic the fatty acid composition of human milk), 

minerals, vitamins and emulsifiers such as lecithins or mono- and di-

glycerides (Alles et al., 2004; MacLean et al., 2010). 

Cow’s milk allergy (CMA) is a condition observed in early childhood and on 

average 2.2% of children below the age of two years are affected (Natale et al., 

2004; Tammineedi et al., 2013). Partial or limited enzymatic hydrolysis of 

protein can help in reducing CMA-related issues by offering ‘pre-digested’ 

formula for infants. Manufacturers of infant nutritional ingredients/products 

employ enzymatic hydrolysis to produce formulas which are easier to digest; 

these products are generally modified cow’s milk-based formulae, often based 

exclusively on whey protein, and are suggested as being suitable for infants 

experiencing feeding discomfort and digestion-related issues (O’Mahony et al., 

2011).  

Considerable challenges encountered in the manufacture of partially 

hydrolysed whey protein-based IF emulsions are related to poor heat stability 

during processing, coalescence and creaming and lipid oxidation on storage. 

Several studies have focused on improving the stability of these types of IF 

systems (Tirok et al., 2001; Christiansen et al., 2004; Ye et al., 2004; Ye and 

Singh, 2006). Emulsion stability and fat globule size distribution (FGSD) of 

model IF are known to be influenced by protein content (McCarthy et al., 

2012). Improvement of heat stability (McSweeney et al., 2004, 2008) and 

oxidative stability (Zou and Akoh, 2013) of IF systems with increasing lecithin 
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content has also been reported. However, intact dairy protein was used as the 

protein source in the aforementioned studies, and there is currently a lack of 

detailed information on the processing stability of hydrolysed whey protein-

based IF type emulsions. Studies involving hydrolysed whey protein and their 

properties have shown that the degree of hydrolysis (DH) is generally a good 

indicator of protein functionality (Foegeding et al., 2002) and low levels of 

hydrolysis (i.e., DH ≤10-20%) are beneficial (Singh and Dalgleish, 1998; 

Caessens et al., 1999; Van der Ven et al., 2001; Luck et al., 2002; Ruiter and 

Voragen, 2002) while more extensively hydrolysed (i.e., DH >20%) proteins 

increasingly lose their structure and display decreased techno-functionality 

(Agboola and Dalgleish, 1996a, 1996b; Scherze and Muschiolik, 2001). 

The incorporation of low molecular weight emulsifiers, such as phospholipids 

(commonly from lecithin) or mono- and di-glycerides, generally increases the 

physical stability of hydrolysed protein-based emulsions due to their ability to 

adsorb at the oil/water interface and effectively decrease the interfacial 

tension (Tirok et al., 2001; Ruiter and Voragen, 2002). Arising from decreased 

interfacial tension, smaller fat globules can be formed during homogenisation 

(Van Aken et al., 2003; Diftis and Kiosseoglou, 2004; O’Brien, 2009) and the 

rapid action of low molecular weight surfactants adsorbing at the interface 

prevents rapid coalescence (Dickinson et al., 1989). Production of emulsions 

with narrow FGSD, where volume-surface average diameter is <1.0 µm (i.e., 

typically ~0.5 µm) (Buchheim and Dejmek, 1997) is desirable in the 

manufacture of infant formula emulsions and, when achieved, usually 

indicates good emulsifying properties of the ingredients (McCarthy et al., 

2012). 

Lecithin is used in the manufacture of IF products to enhance emulsifying 

properties or storage stability by forming a physical barrier in the form of a 

cohesive film around oil globules (McClements, 2004; Ghosh and Rousseau, 

2010). Lecithin is also known to enhance stability to heating of emulsions 

(Agboola et al., 1998a; Van der Meeren et al., 2005; Tran Le et al., 2007; 

McSweeney et al., 2008) which is especially important in the manufacturing 

processes of IF emulsions based on hydrolysed protein. Additionally, the 

amphipathic nature of lecithin gives it good functionality as a wetting agent, 
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therefore it can also be used to aid instant properties of milk/infant formula 

powders (O’Mahony et al., 2011; Sharma et al., 2012; Hammes et al., 2015). 

The use of hydrolysed whey proteins in the formulation of IF products is of 

growing interest; however, limited formulation research has been carried out 

in this area. In this study, the effects of lecithin on the processing and physical 

stability of model IF emulsions prepared with hydrolysed whey protein were 

studied. The effect of different levels of addition of lecithin on the interfacial 

tension in O/W systems and the consequences thereof for the manufacture 

and stability of model hydrolysed whey protein-based IF emulsions during 

storage were investigated. 

4.2. Materials and Methods 

4.2.1. Materials 

Whey protein hydrolysate (WPH), Hyprol®, was obtained from Kerry Group 

(Listowel, Co. Kerry, Ireland). Maltodextrin (Maldex 170 with dextrose 

equivalent value of 17) and de-oiled powdered soybean lecithin (Ultralec® P) 

were obtained from Syral Belgium N.V. (Aalst, Belgium) and ADM (Decatur, 

IL, USA), respectively. Soybean oil (Organic Soya Oil, Clearspring Ltd., 

London, UK) was purchased from a local commercial outlet. All other 

chemicals, reagents and minerals used in the study were purchased from 

Sigma Aldrich (St. Louis, MO, USA). 

4.2.2. Characterisation of whey protein hydrolysate 

Protein, ash, moisture and fat contents of WPH were determined by Kjeldahl 

(IDF Standard 20-1, 2014), ashing at 500°C for 5 h (IDF Standard 90, 1979), 

oven drying at 103°C for 5 h (IDF Standard 26, 2004) and Rose Gottlieb 

method (AOAC, 1995), respectively; lactose content was determined by 

difference. Degree of hydrolysis of the WPH ingredient was determined by the 

trinitrobenzenesulfonic acid method as described by Adler-Nissen (1979).  

Size distribution of peptides in the WPH was determined by size exclusion 

chromatography (SEC) using a TSK G2000SW, 600 × 7.5 mm column (10 µm, 

Sigma-Aldrich, Dublin); elution was with an isocratic gradient of 30% 
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acetonitrile containing 0.1% TFA (v/v) at 1.0 mL/min. The samples were 

diluted in water or running buffer and 20 μL of 1 g/L protein/peptide solutions 

were injected onto the column and the eluate was monitored with UV 

absorbance at 214 nm. Commercial β-lactoglobulin A, bovine serum albumin 

and caseinomacropeptide (CMP) (Sigma-Aldrich, Dublin, Ireland) were used 

as standards with Ribonuclease A, Cytochrome C, Aprotinin, Bacitracin, His-

Pro-Arg-Tyr, Leu-Tyr-Met-Arg, Bradykinin, Leu-Phe, Tyr-Glu (Bachem AG, 

Bubendorf, Switzerland) used as molecular weight standards. Standards were 

pre-filtered through 0.22 μm low protein binding membrane filters (Sartorius 

Stedim, Surrey, UK) and centrifuged at 10,000 × g for 20 min prior to 

application to the column. All solvents were filtered under vacuum through a 

0.45 μm high velocity filter (Millipore Ltd., Durham, UK). 

4.2.3. Preparation of emulsions 

Model infant formula emulsions containing 1.55, 3.50 and 7.00 g/100 mL of 

protein, oil and carbohydrate, respectively, were prepared as follows: WPH 

and maltodextrin (MD) were solubilised in ultrapure water preheated to 75°C 

with continuous mixing using an overhead stirrer at 500 rpm for 1 h. Solutions 

(1 mL) containing individually iron sulphate heptahydrate, zinc sulphate 

heptahydrate, manganese sulphate monohydrate or copper sulphate (to give 

final added iron, zinc, manganese and copper concentrations of 800, 600, 33 

and 5 µg/100 mL, respectively) were then added to the protein/carbohydrate 

solution.  

Stock lecithin-containing soybean oil was prepared by adding lecithin to 

preheated (55°C) oil during continuous mixing with magnetic stirring on a 

hotplate (55°C) for 60 min. The stock solution was then added to soybean oil 

(55°C) to give five different lecithin concentrations (1-5%, w/w, oil). Aqueous 

and oil phases were subsequently mixed and maintained at 55°C until 

homogenization. A control was prepared with soybean oil alone (i.e., no added 

lecithin). Emulsions were formed by pre-homogenisation with an Ultra-

Turrax at 10,000 rpm for 2 min followed by two stage homogenisation (double 

pass) at 10 and 2 MPa, using a valve homogeniser (APV GEA Niro-Soavi S.p.A., 

Italy) at 50°C. Following homogenisation, the pH of each emulsion was 
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adjusted to 6.8 with 0.1 N HCl and/or 0.1 N NaOH and sodium azide (0.05%, 

w/v) was added to prevent microbial growth during storage.  

4.2.4. Compositional analysis of emulsions 

Kjeldahl (IDF Standard 20-1, 2014) and Gerber (IDF Standard 105, 2008) 

methods were used for determination of protein and fat levels of emulsions, 

respectively. Moisture content was measured by oven drying at 103°C for 5 h 

(IDF Standard 21, 2010). Ash was measured using muffle furnace heating at 

500°C for 5 h (AOAC, 2002). Carbohydrate content was calculated by 

difference.  

4.2.5. Surface and interfacial tension analysis 

4.2.5.1. Dynamic surface tension 

Surface tension (γS) measurements were performed at 55°C (to best replicate 

emulsion preparation conditions) under atmospheric pressure with a Krüss 

K12 Tensiometer (Krüss GmbH, Hamburg, Germany) equipped with a 

Wilhelmy plate. γS was measured over 60 min after formation of the surface 

in ultrapure water, WPH solution (1.55%, w/v) and soybean oil containing 

different levels of soybean lecithin (0-5%, w/w). Samples containing lecithin 

were prepared by adding the lecithin to preheated (55°C) oil and allowing it 

to mix fully at 55°C with continuous intermediate-speed stirring for 60 min. 

The protein solution was prepared as described earlier with only protein 

added; ultrapure water was used as a control. Aliquots (25 mL) were placed 

in the sample vessel and air bubbles (if present) were removed with a Pasteur 

pipette. Before each measurement, the plate attachment and the sample 

vessel were washed with acetone and ultrapure water followed by annealing 

over a flame to ensure removal of all organic matter. Glassware used in the 

analysis were subjected to an acid wash, i.e., after thorough washing with 

detergent and water, glassware were filled to overflow with 1 N nitric acid, left 

overnight and rinsed 3 times with ultrapure water before drying.  
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4.2.5.2. Dynamic interfacial tension 

Measurements of interfacial tension (γI) at the soybean oil/lecithin (0-5%, 

w/w) interface with ultrapure water or protein solution (1.55%, w/v; protein 

from WPH) were also carried out with a Krüss K12 Tensiometer using the 

Wilhelmy plate method. Samples were prepared as detailed earlier for 

dynamic surface tension and measured at 55°C over 60 min; 25 mL of heavy 

phase (water or protein solution) and 25 mL of light phase (oil or oil 

containing lecithin) were used. γI was recorded continuously from 0 to 5 min 

and at 10, 15, 30 and 60 min after forming the interface. The measurement 

program was set to record a maximum of 80 readings per given time point at 

1 s intervals, unless the standard deviation was ≤0.01 over ten consecutive 

readings, in which case the measurement would stop for the given time point. 

The sample vessel and the Wilhelmy plate were cleaned and annealed before 

each measurement and all glassware was acid washed as described earlier.  

4.2.6. Measurement of fat globule size distribution 

Fat globule size distribution of the emulsions was measured using a laser light-

diffraction unit (Mastersizer S, Malvern Instruments Ltd., Worcestershire, 

UK) equipped with a 300 RF (reverse fourier) lens and He-Ne laser (λ of 633 

nm). A polydisperse model with 3NAD presentation and a particle and 

dispersant refractive index of 1.46 and 1.33 were selected for data analysis as 

described by McCarthy et al. (2012). Sample was introduced to the mixing 

chamber and dispersed in ultrapure water until a laser obscuration of 14% (± 

0.5%) was reached. Measurements were made on emulsions immediately after 

homogenisation (day 0) and after 4, 7, 11 and 14 d of storage at 4°C. 

4.2.7. Confocal laser scanning microscopy analysis 

The microstructural analysis of emulsions was performed using a Leica TCS 

SP5 confocal laser scanning microscope (Leica Microsystems, Heidelberg 

GmbH, Mannheim, Germany). Protein and lipid were fluorescently labelled 

with Nile blue dye (Sigma-Aldrich, Wicklow, Ireland); 50 µL of the dye 

solution was added to 1 mL of emulsion followed by vortex mixing for 5 s. 

Visualisation of oil and protein in emulsions (10 µL) was carried out using an 
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Ar laser operating at an excitation wavelength of 488 nm with emission 

detected between 500 and 530 nm and a He-Ne laser operating at an excitation 

wavelength of 633 nm with emission detected between 650 and 700 nm for oil 

and protein, respectively (Auty et al., 2001). The observations were performed 

using 20× and 63× oil immersion objectives. At least three specimens of each 

sample were observed to obtain representative micrographs of samples. 

4.2.8. Statistical data analysis 

Analysis of variance (ANOVA) was carried out using Minitab® 16 (Minitab Ltd, 

Coventry, UK, 2010) statistical analysis package. The Tukey method was used 

to obtain grouping information on the treatment means. The level of 

significance was determined at P < 0.05. 

4.3. Results and Discussion 

4.3.1. Characterisation of whey protein hydrolysate 

The composition, degree of hydrolysis and peptide size distribution data of the 

WPH used in the preparation of emulsions are shown in Table 4.1. Lactose 

levels (i.e., innate carbohydrate component of formulation) were taken into 

consideration when preparing the emulsions. 

4.3.2. Composition of emulsions 

Compositional analysis of emulsions showed that measured levels (Table 4.2) 

were satisfactorily near target levels. Ash levels were found to be statistically 

different (P < 0.05) and an increase in the level of ash was found to follow the 

level of lecithin addition to the emulsions, suggesting that the contribution of 

ash present in the lecithin (9.6%) led to the differences in ash levels between 

formed emulsions. 

4.3.3. Surface and interfacial tension data 

4.3.3.1. Dynamic surface tension 

Upon formation of a new surface in the soybean oil sample with no lecithin 

added the initial surface tension (γS) was 30.8 mN m-1 (Table 4.3, Fig. 4.1); this 
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Table 4.1. Composition, degree of hydrolysis (DH) and peptide size 

distribution of the whey protein hydrolysate (WPH) used in the preparation of 

emulsions. 

Compositional parameter % 

Protein 77.7 

Lactose 11.6 

Ash 4.92 

Moisture 4.83 

Fat 0.99 

Degree of hydrolysis 10.7 

Peptide distribution 

(based on molecular weight) 

% of total protein 

 

>20 kDa 4.68 

10-20 kDa 3.85 

5-10 kDa 5.65 

2-5 kDa 21.2 

1-2 kDa 24.5 

0.5-1 kDa 22.5 

<0.5 kDa 17.6 

  

decreased to 30.3 once equilibrium surface tension (γSEq) was reached after       

1 h (Table 4.3, Fig. 4.1). This initial γS value (30.8 mN m-1) of the control oil 

(i.e., no lecithin added) was assumed to be representative of a clean surface 

(i.e., at point of surface formation), and was used as the initial value in all 

measured  systems (Fig. 4.1). A rapid decrease in the γS was observed in all oil 

samples containing lecithin as the surface aged (i.e., time after formation of a 

new surface). The majority of the decrease was observed to take place within 

the first 5 min of surface ageing and the rate and extent of decrease in γS 

increased with increasing lecithin content (Fig. 4.1). Values presented in Table 

4.3 show that addition of 1% lecithin resulted in γSEq of 29.4 mN m-1, a 

reduction of 1.4 mN m-1 compared to the control. When the lecithin content 
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Table 4.2. Composition of model infant formula emulsions containing different levels of lecithin (0-5%, w/w, oil).  

 

(a-c) Values within a column not sharing a common superscript differed significantly (P < 0.05)  

Emulsion                    

(g lecithin 100 g-1 oil)

Fat

(g 100 mL-1)

Protein Carbohydrate Moisture Ash

(g 100 g-1)

0.00 3.48 ± 0.09a 1.67 ± 0.02a 7.78 ± 0.48a 87.0 ± 0.55a 0.10 ± 0.00a

1.00 3.44 ± 0.04a 1.68 ± 0.03a 8.02 ± 0.80a 86.7 ± 0.77a 0.10 ± 0.01a

2.00 3.43 ± 0.02a 1.69 ± 0.01a 8.10 ± 0.56a 86.7 ± 0.54a 0.11 ± 0.00b

3.00 3.44 ± 0.01a 1.69 ± 0.06a 8.23 ± 1.03a 86.5 ± 1.03a 0.11 ± 0.01b

4.00 3.47 ± 0.01a 1.70 ± 0.02a 8.12 ± 0.63a 86.6 ± 0.63a 0.12 ± 0.00c

5.00 3.51 ± 0.01a 1.70 ± 0.03a 8.29 ± 0.67a 86.4 ± 0.69a 0.12 ± 0.01c
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was increased to 2% the γSEq was further reduced by 1.0 mN m-1 (i.e., γSEq of 

28.4 mN m-1). Higher levels of addition of lecithin (i.e., 3-5 g 100 g-1 oil) did 

not contribute to any further decrease in γS (no significant differences in γSEq 

between these samples) and γSEq values for samples containing 2-5% lecithin 

were found to be within a narrow range (i.e., 28.2 – 28.7 mN m-1). A similar 

trend was reported by McSweeney et al. (2008) where addition of lecithin up 

to a level of 2 g L-1 facilitated formation of small oil globules in model IF 

emulsions where average globule diameter decreased with increasing lecithin 

level; however, lecithin levels greater than 2 g L-1 did not contribute to further 

reduction in oil globule sizes. 

 

  

Figure 4.1. Dynamic surface tension of soybean oil samples containing 

different levels of lecithin (%, w/w); no lecithin (■), 1% (□), 2% (●), 3% (○), 4% 

(▲) and 5% (Δ) lecithin (w/w). 

 

 

4.3.3.2. Dynamic interfacial tension 

Interfacial tension (γI) between oil and aqueous phases displayed a similar 

pattern as observed for surface tension, where initial γI decreased rapidly 

following formation of the interface. Initial γI recorded at the interface 

between soybean oil (SBO) and ultrapure water (i.e., control system) of  
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Table 4.3. Surface and interfacial tension of soybean oil-protein systems 

containing different levels of lecithin (w/w, oil) measured at 55°C.  

 

¹ SBO represents soybean oil 

² Interface: O/W represents an interface between the oil and filtered 

deionized water; O/P represents an interface between oil and the protein 

solution (1.55%, w/v) 

3 Initial surface or interfacial tension recorded immediately upon formation 

of the surface/interface 

4 Equilibrium surface and interfacial tension (γSEq and γIEq, respectively) 

recorded at 1 h of surface/interface age  

5 The total decrease in γ from the formation of clean surface/interface until 

reaching the equilibrium is presented as Δγ 

6 The sensitivity limit of the instrument was 1 mN m-1, thus samples showing 

γ values lower that this limit are presented as <1.0 

 (a-b) Values within a column not sharing a common superscript differed 

significantly (P < 0.05) 

Sample Surface tension Interfacial tension       

  γS ΔγS5 Interface2 γI ΔγI5 

  Initial γS /γI 3                     (mN m-1) 

SBO1 30.8 ± 0.1 - O/W 9.4 ± 0.3 - 

   O/P 4.3 ± 0.1 - 

  Equilibrium γSEq /γIEq 4   (mN m-1) 

SBO 30.3 ± 0.2a 0.5 O/W 3.2±0.1a 6.2 

   O/P 1.1 ± 0.2b 8.3 

SBO and 1% lecithin  29.4 ± 0.3ab 1.4 O/P <1.06 >8.4 

SBO and 2% lecithin  28.4 ± 0.1b 2.4 O/P <1.0 >8.4 

SBO and 3% lecithin  28.7 ± 0.4b 2.1 O/P <1.0 >8.4 

SBO and 4% lecithin  28.4 ± 0.4b 2.4 O/P <1.0 >8.4 

SBO and 5% lecithin  28.2 ± 0.2b 2.5 O/P <1.0 >8.4 
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9.4 mN m-1 was used as an initial γI for all measured systems (Fig. 4.2) as it 

represented a clean interface (i.e., an interface with no surfactants present). 

Equilibrium interfacial tension (γIEq) of the control system, recorded after 1 h 

was 3.2 mN m-1 (Table 4.3). The majority of the decrease in γI was achieved 

within 15 min of the interface formation.  

Measured γIEq between soybean oil and protein solution was 1.1 mN m-1. The 

further reduction in γIEq of 2.1 mN m-1 (i.e., from 3.2 to 1.1 mN m-1) observed 

in the soybean oil and aqueous phase system when hydrolysed protein was 

introduced indicated the effectiveness of hydrolysed whey protein (DH 10.7%) 

in decreasing the γI.  The rate at which γI decreased upon interface formation 

was markedly higher in the protein containing system (i.e., majority of the 

decrease was observed within 5 min of formation of the interface; Fig. 4.2). 

This shows the high mobility and effectiveness of peptides in rapidly reducing 

γI (Chobert et al., 1988; Turgeon et al., 1992; Singh and Dalgleish, 1998; Kong 

et al., 2007). The effectiveness of partially hydrolysed protein in reducing the 

interfacial tension is due to the presence of low-intermediate molecular weight 

peptides (Table 4.1) and their flexible structure with both hydrophobic and 

hydrophilic sites localized along the peptide chain, unfolding (i.e., bigger 

peptides) and aligning upon adsorption at the interface, thereby forming a 

viscoelastic film (Lam and Nickerson, 2013) and lowering the interfacial 

tension between the two phases. 

Samples where lecithin was added (1-5%, w/w) to the oil phase displayed rapid 

reduction in the γI reaching values lower than 1.0 mN m-1 (sensitivity limit) 

immediately after formation of the interface (Fig. 4.2). This can be explained 

by the behaviour of small surface active agents such as those present in lecithin 

(i.e., phospholipids) which migrate rapidly through the dispersant and adsorb 

at the interface allowing the γIEq to be reached in a very short time (Mezdour 

et al., 2008). Such a rapid decrease in γI by phospholipids was also reported 

by Kabalnov (1995) where the γIEq was reached in <1 s. Low molecular weight 

phospholipids display higher mobility and maneuverability compared to 

proteins (and large peptides); thus, they can displace larger surfactants (i.e., 

such as protein and peptides) from the surface/interface (Van Aken et al.,  
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Figure 4.2. Dynamic interfacial tension in samples composed of soybean 

oil/water (■) and soybean oil/protein (1.55%, w/v, protein) (●). Vertical line(s) 

(▲ ) represent the γI of lecithin-containing systems. Horizontal dashed line 

represents the sensitivity limit (1 mN m-1) of the K12 Processor Tensiometer. 

Any readings below this limit are not shown on the diagram. 

 

2003; Diftis and Kiosseoglou, 2004; Lam and Nickerson, 2013) resulting in 

rapid reduction of γI. 

4.3.4. Fat globule size distribution in emulsions 

Fat globule size distribution (FGSD) of oil globules in emulsions after 

homogenization (0 d) showed that all samples, irrespective of level of addition 

of lecithin, were able to form good quality emulsions with narrow size 

distribution (Table 4.4). The mean volume diameter (D4,3) of a control 

emulsion (i.e., emulsion prepared without lecithin) was 0.97 µm and 

increasing lecithin level generally resulted in lower values of D4,3 with the 

smallest D4,3 value of 0.86 µm found in the 5% (w/w, oil) lecithin-containing 

emulsion. Size distributions of oil globules of all formed emulsions were very 

similar with a general trend of smaller globules formed in emulsions with 

higher level of addition of lecithin which was also reported by McSweeney et 

al. (2008) for intact milk protein-based model IF emulsions. 
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Changes in FGSD of lecithin-containing emulsions were observed during 

storage at 4°C, while no changes were observed in the control emulsion         

(Fig. 4.3). D4,3 increased in all emulsions formed with lecithin on storage at 

4°C and this effect was most pronounced for samples containing 1-3% (w/w, 

oil) lecithin (Fig. 4.4). Emulsions prepared with 3% (w/w, oil) lecithin showed 

greatest increase in particle size (Table 4.4); D4,3 increased from 0.91 µm (0 d) 

to 2.33 µm (14 d). Development of large oil globules on storage decreased at 

higher (4-5%, w/w, oil) lecithin addition levels giving D4,3 of 1.63 and 1.30 µm 

for 4 and 5% (w/w, oil) lecithin-containing emulsions at 14 d, respectively. In 

the emulsions that displayed increases in particle size during storage, this was 

represented by a shift of FGSD distribution from monomodal to bimodal     

(Fig. 4.3) with a second peak evident at ~10 µm within 4 d of storage at 4°C. 

FGSD profiles showed a decrease in the number of larger oil globules (i.e., 

flattening of the second peak) as the lecithin level in emulsions was increased, 

particularly to 4 and 5% lecithin. The total percentage of large oil globules (i.e., 

the area under second peak) was approximately 2- and 3-fold lower in 

emulsions with lecithin content of 4 and 5%, respectively, as compared to that 

of the 3% lecithin-containing emulsion. FGSD results (Table 4.4) also showed 

that changes in particle size were only detected in the 90% quantile of the size 

distribution (i.e., Dv, 0.9).  After 14 d of storage at 4°C, emulsions with 1, 2 and 

3% (w/w, oil) lecithin showed an increase in Dv, 0.9 of 5.51 (i.e., from 1.69 to 

7.20 µm), 6.00 (i.e., from 1.68 to 7.68 µm) and 6.06 (i.e., from 1.67 to 7.73 µm) 

µm, respectively, while it increased by 0.46 (i.e., from 1.60 to 2.06 µm) and 

0.11 (i.e., from 1.59 to 1.70 µm) µm in 4 and 5% lecithin-containing emulsions, 

respectively. No increase in Dv, 0.9 was observed in the control emulsion during 

storage. The destabilising effect of lecithin on oil globules in emulsions was 

also observed by Zou and Akoh (2013) who showed that the presence of 

lecithin (0.4 g L-1) resulted in larger particle sizes after storage (28 d at room 

temperature) in intact milk protein model IF emulsions. 

Results from the current study indicated that the presence of soybean lecithin 

in WPH-based emulsion systems can promote interactions between oil 

globules and result in their coalescence. Studies by Cruijisen (1996) and 

Agboola et al. (1998a) showed similar trends where the presence of  
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Table 4.4. Fat globule size distribution of model infant formula emulsions prepared with different levels (0-5%, w/w, oil) of lecithin 

during storage at 4°C at 0, 4 and 14 d post homogenisation. 

1 Fat globule size distribution parameters for emulsions: D4,3 represents volume mean diameter; D3,2 represents Sauter mean 

diameter; Dv,0.1, Dv,0.5 and Dv,0.9 represent fat globule size in the 10, 50 and 90% quantiles of the distribution, respectively. 

 (a-c) Values within a column not sharing a common superscript differed significantly (P<0.05)

Lecithin addition               

(%, w/w, oil) 

Storage time 

(days) 

Fat Globule Size Parameter1 

D4, 3 D3, 2 Dv, 0.1 Dv, 0.5 Dv, 0.9 

0.00 (Control) 0 0.97 ± 0.03a 0.63 ± 0.02a 0.32 ± 0.01a 0.82 ± 0.02a 1.80 ± 0.08a 
4 0.96 ± 0.02a 0.61 ± 0.02a 0.32 ± 0.02a 0.81 ± 0.03a 1.81 ± 0.09a 
14 0.97 ± 0.03c 0.63 ± 0.02ab 0.32 ± 0.01a 0.82 ± 0.02a 1.79 ± 0.05a 

1.00 0 0.93 ± 0.01ab 0.62 ± 0.02a 0.32 ± 0.01a 0.79 ± 0.01ab 1.69 ± 0.01a 
4 1.49 ± 0.24a 0.61 ± 0.03a 0.32 ± 0.02a 0.77 ± 0.03ab 1.90 ± 0.20ab 
14 2.26 ± 0.26ab 0.66 ± 0.01a 0.33 ± 0.01a 0.77 ± 0.01b 7.20 ± 1.04b 

2.00 0 0.89 ± 0.00bc 0.60 ± 0.01a 0.31 ± 0.00a 0.77 ± 0.01bc 1.68 ± 0.04ab 
4 1.31 ± 0.31a 0.60 ± 0.04a 0.31 ± 0.01a 0.75 ± 0.03ab 1.78 ± 0.09a 
14 2.29 ± 0.37ab 0.64 ± 0.03ab 0.31 ± 0.01a 0.74 ± 0.02b 7.68 ± 1.81b 

3.00 0 0.91 ± 0.02bc 0.60 ± 0.02a 0.31 ± 0.01a 0.76 ± 0.02bc 1.67 ± 0.03b 
4 1.60 ± 0.27a 0.60 ± 0.03a 0.31 ± 0.02a 0.75 ± 0.03ab 1.99 ± 0.43a 
14 2.33 ± 0.33a 0.63 ± 0.01ab 0.31 ± 0.01a 0.74 ± 0.01b 7.73 ± 1.44b 

4.00 0 0.87 ± 0.01bc 0.59 ± 0.02a 0.31 ± 0.01a 0.75 ± 0.02bc 1.60 ± 0.03b 
4 1.17 ± 0.22a 0.59 ± 0.03a 0.31 ± 0.01a 0.73 ± 0.03ab 1.69 ± 0.11a 
14 1.63 ± 0.01bc 0.61 ± 0.01ab 0.31 ± 0.01a 0.73 ± 0.02b 2.06 ± 0.16a 

5.00 0 0.86 ± 0.03c 0.58 ± 0.03a 0.31 ± 0.02a 0.74 ± 0.02c 1.59 ± 0.01b 
4 1.13 ± 0.27a 0.58 ± 0.02a 0.31 ± 0.01a 0.72 ± 0.02b 1.66 ± 0.13a 
14 1.30 ± 0.21c 0.60 ± 0.02b 0.31 ± 0.01a 0.72 ± 0.02b 1.70 ± 0.18a 
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unmodified soybean lecithin (1.5 and 1.0 – 2.5 g L-1, respectively) promoted 

coalescence of oil globules in caseinate- and WPH-based (DH 27%) O/W 

emulsions, respectively. A study by Van der Meeren et al. (1995) showed that 

low values of interfacial tension due to the presence of lecithin at the O/W 

interface had a negative effect on stability of emulsions against flocculation. 

Decreased physical stability of emulsions containing WPH and lecithin was 

also observed by Tirok et al. (2001) using more extensively hydrolysed protein 

(DH 23-29%) and lecithin (4.8 g L-1). In the current study, a shift in FGSD from 

monomodal to bimodal was observed in lecithin-containing emulsions on 

storage at 4°C. However, only a small proportion of the total population of oil 

globules was affected by the size increase and distribution shift as changes in 

oil globule size in all lecithin-containing emulsions were only found for the 

90% size distribution quantile (i.e., Dv, 0.9) while Dv, 0.1 or Dv, 0.5 did not display 

any concurrent increase in size. Interestingly, the stability to coalescence in 

emulsions containing lecithin improved with its higher levels of addition; 

formation of large oil globules was found to be significantly lower in 4% and 

lower still in 5% lecithin-containing emulsions. It is worthwhile to note that, 

even with the development of a second peak, FGSD remained narrow in the 

majority of the population (i.e., first peak) of all lecithin-containing emulsions. 

A preliminary experiment (Fig. 4.3 g – h) was carried out, where stored (10 d 

at 4°C) emulsions were treated with a dissociating agent, sodium dodecyl 

sulphate (SDS) and their FGSD was subsequently measured using an approach 

similar to that used by Tomas et al. (1994), Agboola et al. (1998b) and Tirok et 

al. (2001). A bimodal distribution and large particle size (as represented by the 

90% quantile) continued to be detected following addition of dissociating 

agent which suggested that coalescence (as opposed to flocculation) of oil 

globules was the main mechanism of emulsion instability in the samples. This 

is in agreement with work carried out by Agboola et al. (1998b) and Ye and 

Singh (2006) who reported a similar destabilisation mechanisms in WPH-

based emulsions. 
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Figure 4.3.  Fat globule size distribution profiles of emulsions prepared with 

lecithin at levels of 0% (a), 1% (b), 2% (c), 3% (d), 4% (e) or 5% (f) (w/w, oil) 

post homogenisation (■) and after 14 d storage at 4°C (○). Size distribution of 

oil globules in emulsions containing 0% (g) and 1% (h) lecithin (w/w, oil) after 

dispersant. 
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Figure 4.4. Fat globule size distribution parameters: (A) mean volume 

diameter (D4,3) and (B) 90% quantile size distribution (Dv,0.9) for oil globules 

in emulsions prepared with lecithin at levels of 0% (■), 1% (□), 2% (●), 3% (○), 

4% (▲) and 5% (Δ) (w/w, oil) stored at 4 °C over 14 days. 

 

4.3.5. Confocal laser scanning imaging of emulsions 

Confocal laser scanning microscopy (CLSM) showed that freshly-prepared 

(i.e., 1 d after homogenisation) emulsions, had fine and uniformly distributed 

oil globules (Fig. 4.5). There were no visible differences between the control 
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(i.e., 0% lecithin), 1 and 5% lecithin (w/w, oil) emulsions, supporting the FGSD 

results. Development of a small number of larger oil globules (10-15 µm) was 

observed in emulsions containing 1% lecithin (w/w, oil) after 7 d of storage at 

4°C. No changes in the size of oil globules were observed for control and 5% 

lecithin (w/w, oil) emulsions at that time point. CLSM micrographs showed 

increased numbers of large (10-30 µm) oil globules in emulsions containing 

lower lecithin levels (i.e., 1-3%) after 14 d of storage at 4°C. In emulsions 

containing 4-5% lecithin some bigger oil globules (5-10 µm) were formed after 

14 d of storage at 4°C. These globules, however, were smaller, considerably less 

numerous and formed at a slower rate (i.e., changes were not observed until 

14 d of storage) as compared to emulsions with lower lecithin levels (1-3%). No 

visual differences in size distribution of oil globules after 14 d of storage at 4°C 

were observed in the control sample. Large oil globules were also evident in 

emulsions containing >1% lecithin (w/w, oil) (data not shown). WPH-based 

emulsions formed with these lecithin levels formed large oil globules during 

short term refrigerated storage with significant changes observed after 7 d. 

CLSM micrographs confirmed that lecithin (when added at levels of 1-3%, 

w/w, oil) in model WPH-based IF emulsions promoted coalescence of oil 

globules during storage (14 d) at 4°C. Micrographs showed large and uniform 

oil globules in the emulsion containing 1% lecithin (w/w, oil) after 14 d storage. 

This supported earlier findings suggesting that coalescence was the main 

mechanism responsible for emulsion instability in lecithin-containing WPH-

based emulsions. 

Differences in the interface of larger (> 3 µm) fat globules were seen at higher 

magnification and an example of this is given in Fig. 4.6, which shows an 

uneven thickness of protein at the oil globule interface (Fig. 4.6 b, arrows). 

This uneven protein thickness was observed for many of the larger oil globules 

in all samples containing lecithin, but was not observed in globules of the WPH 

control (0 % lecithin) sample (Fig. 4.6 a).  This suggests a possible partial 

displacement and aggregation of interfacial whey protein by the lecithin over 

time, which may also help explain the coalescence of oil globules containing 

lecithin. More study is needed to characterise the precise nature of the 

interfacial material, for example using fluorescently-labelled phospholipids. 
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Figure 4.5. Confocal laser scanning microscopy images of model infant 

formula emulsions containing 0, 1 or 5% lecithin (w/w, oil) after 1 (a), 7 (b) 

and 14 (c) days of  storage at 4°C. Micrographs present overall size 

distribution of oil globules (green) in different emulsions over time. Scale bar 

(bottom right) = 50 µm. 
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Figure 4.6. High magnification confocal micrographs of emulsions after 

storage at 4°C for 14 days showing the protein-labelled channel. a) 0 % 

lecithin; b) 1 % lecithin (w/w, oil). Arrows indicate variable thickness of 

protein at the oil globule interface. Scale bar = 5 µm. 

 

4.4. Conclusions 

This study shows that an effective decrease in the interfacial tension between 

the oil and aqueous phase in the manufacture of model infant formula 

emulsions produced with hydrolysed whey protein can be achieved by 

incorporation of low levels of lecithin (i.e., 1%, w/w, oil). Emulsions formed 

with hydrolysed whey protein displayed narrow size distribution of oil globules 

which was further reduced by incorporation of lecithin. It was, however, shown 

that low-to-intermediate levels (1-3%) of lecithin decreased stability of 

emulsions during storage at 4°C by promoting coalescence of oil globules. 

Confocal microscopy proved to be a helpful tool for studying coalescence in 

emulsions and it complemented light scattering work in the current study. 
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Abstract 

Model infant formula emulsions containing 1.55, 3.50 and 7.00 g per 100 mL 

protein (whey protein hydrolysate, WPH; degree of hydrolysis 10.7), soybean 

oil and maltodextrin (MD; dextrose equivalent 17), respectively, were 

prepared. Emulsions contained 0-5 g soybean lecithin per 100 g oil. Emulsions 

were stored for 14 d at 40°C with constant agitation to promote lipid oxidation.  

All emulsions had mono-modal oil globule size distributions immediately 

post-homogenisation and after the 14 d storage; a limited increase in the mean 

size of oil globules was observed for the stored emulsions (i.e., <1 µm post-

homogenisation and <2 µm after the 14 d storage). Differences in the level of 

peroxides (primary lipid oxidation products) and thiobarbituric acid reactive 

substances (TBARS; secondary lipid oxidation products) were observed for the 

emulsions during storage. Lecithin addition of 1 g per 100 g oil, reduced the 

rate of primary and secondary lipid oxidation; no additional antioxidative 

effect was observed for higher lecithin addition levels (2-5 g 100 g-1). The 

oxidative stability of bulk soybean oil containing different levels of lecithin (0-

5 g 100 g-1) was measured at 120°C using Rancimat. Lecithin addition had a 

strong antioxidative effect on the oil stability, evidenced by decreasing the 

oxidation induction time (TI-ox). The rate of lipid oxidation in the soybean oil 

was largely dependent on the lecithin addition level, where TI-ox increased with 

increasing lecithin content. The antioxidative effect of the lecithin, in both 

emulsion and in bulk oil systems, was linked to its surface activity and its 

ability to bind free radicals and pro-oxidants.  
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5.1.  Introduction 

Infant nutrition is one of the most important aspects of life-stage nutrition as 

all the nutrients required for proper growth and development of an infant, for 

at least the first few weeks, come from a single food source – milk. It is 

indisputable that breastfeeding is the best option for infant nutrition 

(Anatolitou, 2012); however, it is not always possible to provide every infant 

with its mother’s milk, for reasons such as breastfeeding difficulties, cultural 

and social incompatibilities, or poor health and nutritional status of the 

mother. Thus, infant formula (IF) products are designed to closely match the 

nutritional requirements of an infant and offer it the best possible alternative 

to breast milk (i.e., specific composition and bio-functionality). 

Numerous studies have focused on characterisation of the individual 

components of human milk (i.e., relative levels, structures and bio-

functionality) (Andreas, Kampmann, and Mehring Le-Doare, 2015; Dupont, 

2003; Guerra et al., 2016; Kreissl et al., 2015; Sundekilde et al., 2016; Wada 

and Lönnerdal, 2014), and consequently, on the development of formulations 

for infant nutrition (Alles, Scholtens, and Bindels, 2004; Bourlieu et al., 2015; 

Crowley, Dowling, Caldeo, Kelly, and O’Mahony, 2016; Gallier et al., 2015; 

Joyce, Brodkorb, Kelly, and O’Mahony, 2017; McSweeney, 2008; Nguyen, 

Bhandari, Cichero, and Prakash, 2015). Formulae based primarily on whey 

protein (60:40 whey protein:casein ratio, WP:CN, respectively) are the main 

category of infant nutrition products. Mild or extensive hydrolysis of proteins 

in the ingredients can also be used to improve digestibility and nutrient 

absorption (O’Callaghan, O’Mahony, Ramanujan, and Burgher, 2011) as well 

as reduce allergenicity (Hernández-Ledesma, García-Nebot, Fernández-

Tomé, Amigo, and Recio, 2014), respectively. IF products also contain 

carbohydrates (e.g., lactose and maltodextrin), vegetable oils, minerals, 

vitamins and other constituents (e.g., choline) required for proper 

development of an infant (Koletzko et al., 2005; Koletzko, Shamir, and 

Ashwell, 2012). 

In addition to changes in protein  bio-availability, hydrolysis of protein also 

affects protein techno-functionality; moderate hydrolysis (<20% degree of 
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hydrolysis, DH) generally improves protein solubility, surface activity and 

emulsification properties (Agboola and Dalgleish, 1996a, 1996b; Banach, Lin, 

and Lamsal, 2013; Foegeding and Davis, 2011; Panyam and Kilara, 1996). 

However, thermal stability of emulsions containing whey protein hydrolysate 

(WPH) is often impaired, compared to intact protein-based emulsions, due to 

the lower steric stabilisation properties and higher number of reactive sites 

with the former (Drapala, Auty, Mulvihill, and O’Mahony 2016a; Ye and Singh, 

2006). Low molecular weight (LMw) surfactants, including lecithin, mono- and 

di-glycerides of fatty acids and their esters (CITREM) are permitted for use in 

hydrolysed IF (Codex Alimentarius, 2011) to aid with emulsification. Lecithin 

is a collective term used to describe a mixture of phospholipids (i.e., 

phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, 

phosphatidylserine and phosphatidic acid) originating from a variety of food 

sources (e.g., soybean, sunflower, rapeseed, egg); it is most commonly 

extracted from crude vegetable oils by degumming followed by thin layer 

evaporation (Ceci, Constenla, and Crapiste, 2008; Scholfield, 1981). In 

addition to its physicochemical functionality, lecithin is sometimes added to 

IF products to help meet required choline levels (MacLean et al., 2010). 

Ready to feed (RTF) formats of IF are emulsions, sterilised (i.e., ultra-high 

temperature followed by aseptic filling or in-container sterilisation) to ensure 

microbial safety, packaged in single use containers (i.e., plastic, laminate or 

glass) and stored at room temperature for several weeks to months. To meet a 

desired shelf life stability of such products, detrimental changes that can take 

place during storage due to the physical (e.g., phase separation, component 

interactions) or chemical (e.g., lipid oxidation, formation of complexes) 

reactions must be limited. Lipid oxidation is a group of deteriorative reactions 

causing formation and decomposition of lipid hydroperoxides (ROOH) into 

peroxyl (ROO) and alkoxyl (RO) radicals (i.e., primary and secondary 

oxidation, respectively) (Frankel, 1998). Lipid oxidation causes changes to the 

food’s organoleptic properties (i.e., rancid smell and taste), nutritional profile 

(loss of essential fatty acids) and involves production of potentially toxic 

components (McClements and Decker, 2000). The rate of lipid oxidation in 

oil-in-water (O/W) emulsions can be limited by modifying the emulsion 
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interfacial layer through changing the surfactant system. Generally, 

surfactants present at the interfaces of oil globules decrease the surface free 

energy, reducing thermodynamic instability of the system; these compounds 

can also provide a physical barrier that limits undesirable globule-globule 

interactions, such as coalescence and flocculation. It has been shown that a 

number of surface active compounds additionally carry an antioxidative 

potential; reports on reduced lipid oxidation rate in emulsions stabilised by 

sodium caseinate (Nielsen, Horn, and Jacobsen, 2013; O’Dwyer, O’Beirne, 

Eidhin, and O’Kennedy, 2013; Qiu, Zhao, Decker, and McClements, 2015), 

whey protein (Tong, Sasaki, McClements, 2000) or by LMw surfactants 

(including lecithin) (Mancuso, McClements, and Decker, 1999; Pan, Tikekar, 

and Nitin, 2013; Zou and Akoh, 2013) indicate that in conjunction with 

physical stabilisation, these compounds can additionally provide a 

chemical/physical antioxidative barrier.  

Reports on antioxidant properties of lecithin in liquid (Kargar, Spyropoulos, 

and Norton, 2011) and spray dried (Klinkesorn, Sophanodora, Chinachoti, 

McClements, and Decker, 2005) emulsions have shown its benefits for use in 

these systems. Conversely, the presence of lecithin in emulsions has been 

associated with adverse effects on their physical stability (Drapala, Auty, 

Mulvihill, and O'Mahony, 2015, 2016b; Ozturk, Argin, Ozilgen, and 

McClements, 2014; Tirok, Scherze, and Muschiolik, 2001), depending on the 

lecithin state (i.e., native or hydrolysed) and its addition level. Currently, the 

knowledge regarding the oxidative stability of WPH-based infant nutrition 

products is limited and this study aims to develop much-needed 

understanding of this area. The objective of the current study was to 

investigate the effects of changing the composition and, effectively, the 

properties of the emulsion interfacial layer (i.e., by using different lecithin 

inclusion levels) on the oxidative stability of model WPH-based RTF IF 

systems. 



Chapter 5                                                                                     Lecithin & Oxidation 

|182 

5.2. Materials and methods 

5.2.1. Materials 

Whey protein hydrolysate (WPH; degree of hydrolysis, DH, 10.7%) was 

obtained from Kerry Group (Listowel, Co. Kerry, Ireland). The composition 

and molecular weight profile of the WPH are as detailed by Drapala et al. 

(2015). Maltodextrin (MD, dextrose equivalent, DE, 17), and de-oiled 

powdered soybean lecithin (hydrophilic-lipophilic balance, HLB, 7) were 

obtained from Syral Belgium N.V. (Aalst, Belgium) and ADM (Decatur, IL, 

USA), respectively. Soybean oil (Organic Soya Oil, Clearspring Ltd., London, 

UK) was purchased from a local commercial outlet. All other chemicals, 

reagents and minerals used in the study were purchased from Sigma Aldrich 

(Dublin, Ireland). 

5.2.2. Analysis of fatty acid composition of soybean oil 

The fatty acid composition of the soybean oil was analysed by gas liquid 

chromatography (GLC); sample preparation, GLC instrument, column details 

and parameters of the analysis were as detailed by O’Dwyer et al. (2013). 

5.2.3. Emulsion formulation and compositional analysis 

Model infant formula emulsions containing 1.55, 3.50 and 7.00 g/100 mL of 

protein, oil and carbohydrate, respectively, and 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 

g lecithin per 100 g oil were prepared as detailed by Drapala et al. (2015) 

(Chapter 4, pp. 153-154). Solutions of iron, zinc, manganese and copper salts 

were added to the aqueous phases prior to homogenisation to meet the typical 

IF levels of 800, 600, 33 and 5 µg 100 mL-1, respectively, as detailed by Drapala 

et al. (2015). Aqueous and oil phases were blended at 55°C, pre-homogenised 

and homogenised (double pass) using a 2-stage valve homogeniser with 10 and 

2 MPa valve pressures as detailed by Drapala et al. (2015) (Chapter 4, pp. 153-

154). The resulting emulsions were adjusted to pH 6.8 (with 0.1 N HCl and/or 

0.1 N NaOH) and sodium azide was added (0.05 g 100 mL-1) as a preservative. 

Aliquots (60 mL) of each emulsion were placed in loosely-capped baffled flasks 

(Thomas Scientific, Swedesboro, NJ, USA) to promote emulsion aeration and 
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placed in a shaking incubator (Orbital Incubator SI 50, Bibby Scientific 

Limited, Staffordshire, UK) at 40°C for 14 d with a low agitation speed of 30 

rpm. The composition of the emulsions was measured according to IDF 

standard methods as detailed by Drapala et al. (2015). 

5.2.4. Measurement of fat globule size distribution 

Fat globule size distribution (FGSD) of the emulsions was measured using a 

static laser light-diffraction instrument (Mastersizer S, Malvern Instruments 

Ltd., Worcestershire, UK) equipped with a 300 RF (reverse fourier) lens and 

He-Ne laser (λ of 633 nm). A polydisperse model with 3NAD presentation and 

particle and dispersant refractive indices of 1.46 and 1.33, respectively, were 

selected for data analysis as described by McCarthy et al. (2012). Sample was 

introduced to the small-volume mixing chamber and dispersed in d.H2O until 

a laser obscuration of 14.0% (± 0.5%) was reached. Measurements were made 

on emulsions immediately after homogenisation and after 14 d of accelerated 

storage at 40°C. 

5.2.5. Oxidative stability of bulk oil 

The oxidative stability of soybean oil containing 0.0-5.0 g 100 g-1 lecithin was 

measured using a rapid oxidation stability analyser (Rancimat 743, Metrohm 

Ireland Ltd., Dublin, Ireland). The instrument operates on the principle of the 

Active Oxygen Method of Gray (1985), where oil samples are heated and the 

progress of oxidation is monitored by measuring the increase in production of 

volatile products of oxidation through changes in conductivity (Läubli and 

Bruttel, 1986). Soybean oil with different levels of added lecithin (0.0-5.0 g 

100 g-1 oil) were prepared as described in Section 5.2.3. Samples (3 g) were 

placed in reaction tubes, heated to and maintained at 120°C during analysis 

(i.e., up to 30 h, depending on the sample); air was passed through the samples 

at a steady flow rate (20 L h-1) and subsequently fed into the corresponding 

measurement vessels filled with ultrapure water and equipped with a 

conductivity probe (2 steel electrodes, 1 kHz, 1.7 V). Production of volatile 

organic compounds (secondary products of lipid oxidation) was measured 

based on changes in the conductivity recorded in the contents of the 

measurement vessel; the increase in conductivity and the oxidation induction 
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times (TI-ox) (i.e., time taken to achieve onset of an exponential increase in 

conductivity) were recorded and used as an index of oxidative stability of 

samples. All samples were tested in triplicate. 

5.2.6. Oxidative stability of model IF emulsions 

5.2.6.1. Primary lipid oxidation of emulsions 

Primary lipid oxidation in the emulsions was determined by measuring 

peroxide levels at 5 time points, immediately after homogenisation and after 

3, 7, 11 and 14 d of storage at 40°C as follows: aliquots (0.5 ml) of each 

emulsion were placed in rubber-sealed plastic tubes to which 5 mL of iso-

octane/2-propanol (3:1) was added; the tubes were vortexed 3 times for 10 s 

each, centrifuged at 1780 g for 4 min and the resulting supernatants were used 

for analysis. Supernatant (0.05 mL), 2.95 mL of methanol/1-butanol (2:1), 15 

µL ammonium thiocyanate (3.94 M) and 15 µL ferrous iron solution (prepared 

with BaCl2 and FeSO4 to give final concentrations of 0.132 and 0.144 M, 

respectively) were placed into tubes, vortexed, transferred to capped cuvettes 

and stored in the dark for 20 min. Sample blank and solvent blank containing 

0.05 mL of d.H2O and 0.05 mL of iso-octane/2-propanol, respectively, instead 

of the supernatant, were prepared following the same procedure as detailed 

for the samples. The absorbance at 510 nm of all samples was measured using 

a Cary 300 Bio UV-visible spectrophotometer (Varian Inc., CA, USA). The 

concentration of peroxides in samples was calculated from a standard curve 

(0-30 mM hydrogen peroxide, H2O2) prepared with a 30% H2O2 solution. 

5.2.6.2. Secondary lipid oxidation in emulsions 

The progress of secondary lipid oxidation during accelerated storage at 40°C 

for 14 d of the emulsions was measured at the same time points as detailed for 

measurement of primary oxidation (see Section 5.2.6.1) by measuring levels of 

thiobarbituric acid reactive substances (TBARS) using a modified method of 

Siu and Draper (1978) as follows: emulsions (5.00 ± 0.05 g) were placed in 

plastic tubes to which 5 mL of d.H2O and 5 mL of trichloroacetic acid (TCA; 10 

g 100 mL-1) were added; the tubes were shaken vigorously for 30 s and the 

contents were filtered through Whatman No 1 filter paper. Resulting filtrates 
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(4 mL) were placed in glass tubes (10 mL), had 1 mL of thiobarbituric acid 

(TBA) reagent (i.e., 2-thiobarbituric acid in d.H2O; 6 mM) added, and were 

sealed, vortexed and placed in a water bath at 70°C for 1 h. Samples were 

prepared in duplicate from each of the emulsions. The blank was prepared in 

the same way as detailed for the samples, except that d.H2O (2 mL) and TCA 

(2 mL; 10 g 100 mL-1) were used in place of the sample filtrate. After incubation 

at 70°C for 1 h, samples were left to cool under ambient conditions and their 

absorbance was measured at 532 nm using a Cary 300 Bio UV-visible 

spectrophotometer (Varian Inc., CA, USA). Each sample was measured in 

duplicate, giving in total 4 readings per emulsion. Malondialdehyde (MDA) 

levels (i.e., mg MDA per kg of sample) were calculated using molar extinction 

coefficient (1.56 × 105 M-1 cm-1) and expressed as TBARS number. 

5.2.7. Statistical analysis 

All emulsions were prepared in three independent trials and all measurements 

were carried out in at least duplicate. Analysis of variance (ANOVA) was 

carried out using the Minitab® 16 (Minitab Ltd., Coventry, UK, 2010) 

statistical analysis package. The Tukey method was used to obtain grouping 

information. The level of significance was determined at P < 0.05. 

5.3. Results 

5.3.1. Composition of soybean oil and emulsions 

The fatty acid composition of the soybean oil is shown in Table 5.1; this shows 

the largely unsaturated nature of fatty acids in the oil, as evidenced by the high 

content of linoleic (51%; C18:2), oleic (25%; C18:1) and linolenic (7%; C18:3) 

fatty acids. The composition of the emulsions used in the current study are as 

reported by Drapala et al. (2015). The composition of the emulsions was 

satisfactorily near the target levels; the ranges of protein, fat, carbohydrate, 

total solids and ash in all emulsions were 1.67-1.70 g 100 g-1, 3.43-3.51 g 100 

mL-1, 7.78-8.29 g 100 g-1, 13.0-13.6 g 100 g-1 and 0.10-0.12 g 100 g-1, 

respectively. No significant differences were observed in the protein, fat, 

carbohydrate and total solids content of the emulsions; however, significant 

differences were observed in the ash content, which increased with increasing 
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Table 5.1. Fatty acid composition of soybean oil used as the bulk oil in the 

Rancimat method and as the oil component in model infant formula 

emulsions.  

n.d. – not detected 

 

lecithin addition level. The differences in the ash content are likely due to the 

contribution of ash present in the lecithin component of the formulations (i.e., 

9.60 g 100 g-1). 

5.3.2. Fat globule size distribution in emulsions 

Fat globule size distribution (FGSD) data for the model IF emulsions showed 

that all emulsions had very similar size distributions of oil globules 

immediately post homogenisation, and the size distribution did not change 

significantly during accelerated storage for 14 d at 40°C (Fig. 5.1, Table 5.2). 

Although not statistically significant, an increase in the mean volume diameter 

(D4,3) was observed for all emulsions after 14 d of accelerated storage 

compared to the corresponding values post homogenisation (Table 5.2). The 

increase in D4,3, with no obvious changes in the other FGSD parameters, or in 

the size distribution profiles, most likely indicated formation of a small 

number of large particles, to which the volume-based D4,3 parameter is 

Fatty acid Fatty acid number % of Total fatty acids  

Palmitic C16:0 9.08 ± 0.06 

Stearic C18:0 4.25 ± 0.29 

Oleic C18:1 25.3 ± 0.26 

Vaccenic C18:1 1.25 ± 0.02 

Linoleic C18:2 51.2 ± 0.37 

α-Linoleic C18:3 n.d. 

Linolenic C18:3 6.88 ± 0.04 

Arachidic C20:0 0.43 ± 0.01 

Gadoleic C20:1 n.d. 

Behenic C22:0 0.43 ± 0.01 
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Figure 5.1. Fat globule size distribution profiles for whey protein hydrolysate-

based model infant formula emulsions containing lecithin at different addition 

levels, 0.0 (A), 1.0 (B), 2.0 (C), 3.0 (D), 4.0 (E) and 5.0 (F), g 100 g-1 oil, (■) 

post-homogenisation and (○) after 14 d storage at 40°C. 

 

particularly sensitive (McClements, 2015). Such formation of large oil globules 

is common in emulsions containing proteins/peptides and LMw 

emulsifiers(e.g., lecithin) (Drapala et al. 2016a, b; Kaltsa, Paximada, Mandala, 

and Scholten, 2014; Wilde, Mackie, Husband, Gunning, and Morris, 2004). 

Despite the limited changes in the size distributions of oil globules in the 

emulsion samples, all samples displayed good physical stability during 

accelerated storage and there were no visual or otherwise noteworthy 

differences in FGSD between the emulsions after 14 d of storage at 40°C   

(Table 5.2). 
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Table 5.2. Fat globule size distribution of model infant formula emulsions containing different lecithin addition levels (0.0−5.0 g 
100 g-1 oil) immediately post-homogenisation and after 14 d of storage at 40°C. 

 

1 Fat globule size distribution parameters are: D4,3, volume mean diameter; D3,2, Sauter mean diameter; Dv,0.1, fat globule size in 

the 10% quantile of the distribution; Dv,0.5, fat globule size in the 50% quantile of the distribution; Dv,0.9, fat globule size in the 90% 

quantile of the distribution.  

(a-b) Values for a given emulsion and given FGSD parameter at the two different measurement stages (i.e., post-homogenisation 

and after 14 d of accelerated storage) not sharing a common superscript differed significantly (P < 0.05). 

(A-C) Values for a given measurement stage for all lecithin addition levels not sharing a common superscript differed significantly 

(P < 0.05).

Emulsions 
(g lecithin 100 g-1 oil)

Measurement stage Fat globule size distribution parameter1

D4,3 D3,2 Dv, 0.1 Dv, 0.5 Dv, 0.9

0.0 Post-homogenisation 0.97 ± 0.042aA 0.63 ± 0.025aA 0.32 ± 0.010aA 0.82 ± 0.023aA 1.80 ± 0.095aA

14 d storage 1.32 ± 0.620aA 0.60 ± 0.024aA 0.30 ± 0.017aA 0.81 ± 0.018aA 1.95 ± 0.226aA

1.0 Post-homogenisation 0.93 ± 0.005aAB 0.62 ± 0.017aA 0.32 ± 0.010aA 0.79 ± 0.009aAB 1.69 ± 0.008aAB

14 d storage 1.64 ± 1.272aA 0.62 ± 0.000aA 0.32 ± 0.003aA 0.78 ± 0.003aAB 1.69 ± 0.038aAB

2.0 Post-homogenisation 0.89 ± 0.000aBC 0.60 ± 0.000aA 0.31 ± 0.000aA 0.77 ± 0.009aBC 1.68 ± 0.043aAB

14 d storage 1.78 ± 1.484aA 0.60 ± 0.020aA 0.31 ± 0.010aA 0.74 ± 0.030aB 1.78 ± 0.173aAB

3.0 Post-homogenisation 0.91 ± 0.020aBC 0.60 ± 0.024aA 0.31 ± 0.013aA 0.76 ± 0.023aBC 1.67 ± 0.028aAB

14 d storage 0.87 ± 0.018aBC 0.59 ± 0.028aA 0.31 ± 0.013aA 0.75 ± 0.024aAB 1.71 ± 0.013aAB

4.0 Post-homogenisation 1.08 ± 0.277aA 0.59 ± 0.022aA 0.31 ± 0.013aA 0.75 ± 0.018aBC 1.60 ± 0.025aB

14 d storage 0.89 ± 0.004aA 0.59 ± 0.021aA 0.31 ± 0.011aA 0.74 ± 0.018aAB 1.61 ± 0.011aAB

5.0 Post-homogenisation 0.87 ± 0.018aC 0.58 ± 0.033aA 0.31 ± 0.018aA 0.74 ± 0.020aC 1.59 ± 0.013aB

14 d storage 1.37 ± 0.900aA 0.59 ± 0.026aA 0.31 ± 0.013aA 0.73 ± 0.030aB 1.56 ± 0.060aB
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5.3.3. Oxidative stability of bulk soybean oil 

Differences in the oxidative stability of bulk soybean oil containing different 

levels of lecithin were evidenced by an increase in the oxidation induction time 

with increasing lecithin content of the oil (Fig. 5.2). The TI-ox for oils with 

added lecithin were significantly higher compared to the control (i.e., oil with 

no added lecithin) and there was a direct relationship between the lecithin 

content and the onset of secondary oxidation in the bulk oil samples. The oil 

with the highest lecithin content (i.e., 5.0 g 100 g-1) had the longest TI-ox, which 

was >10 fold higher than that of the control sample. Similar findings were 

reported by Judde, Villeneuveb, Rossignol-Castera, and Le Guillou (2003) 

where lecithin was found to lower the rate of lipid oxidation for a range of bulk 

oils (i.e., palm, rapeseed, soybean, sunflower, walnut, fish oils and lard). Those 

authors attributed the reported results to a synergistic effect between 

phospholipids and tocopherols present in most of these oils as well as to the 

radical and pro-oxidant chelating properties of phospholipids. 

5.3.4. Oxidative stability of model IF emulsions 

5.3.4.1. Primary lipid oxidation in emulsions 

The progress of primary lipid oxidation in model IF emulsions during 

accelerated storage for 14 d at 40°C indicated a strong antioxidative effect of 

lecithin (Fig. 5.3A); all lecithin addition levels resulted in a reduced oxidation 

rate, as evidenced by the production of peroxides, compared to the control 

(i.e., emulsion with no lecithin added). No statistically significant differences 

were observed in the levels of peroxides between emulsions at different time 

points of storage; however, a trend was observed, where after 10 d of storage, 

the control sample had higher levels of primary oxidation products (i.e., 6.91 

mM H2O2) compared to the emulsions containing lecithin (i.e., 2.76, 3.08, 

3.00, 3.05 and 3.04 mM H2O2 for 1.0, 2.0, 3.0, 4.0 and 5.0 g lecithin 100 g-1 

oil, respectively). These differences were more pronounced after 14 d of 

storage (Fig. 5.3A, Table 5.3). Although the differences in the progress of 

primary lipid oxidation between the emulsions were not significant due to the 

large standard errors observed for these systems (Table 5.3), a clear trend was  
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Figure 5.2. Oxidative stability of soybean oil containing different levels (0.0-

5.0 g 100 g-1) of soybean lecithin measured with the Rancimat. Induction time 

describes the time needed to detect an exponential increase in the formation 

of volatile compounds (i.e., secondary oxidation products). Lower case letters 

(a-c) show sample grouping information according to statistical differences (P 

< 0.05). 

 

observed, where lecithin addition considerably reduced the progress of 

primary oxidation. Large variability between trials is often a challenge in lipid 

oxidation studies (Mancuso et al., 1999; Osborn and Akoh, 2004) due to 

numerous factors affecting these reactions (i.e., complexity of the food matrix 

or the method of oil recovery) and due to the instability of peroxides (Clark, 

2001). All 3 trials performed in the current study displayed the same general 

trends. The progress of primary lipid oxidation was greatly reduced by 

addition of lecithin; however, increasing the lecithin addition level from 1.0 to 

5.0, g 100 g-1 oil, did not show any additional antioxidative effect. 

5.3.4.2. Secondary lipid oxidation in emulsions 

The progress of formation of secondary lipid oxidation products in model IF 

emulsions during accelerated storage for 14 d at 40°C also showed that lecithin 
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Figure 5.3. Progress of (A) primary and (B) secondary lipid oxidation, 

measured by the production of peroxides and malondialdehyde, respectively, 

in whey protein hydrolysate-based model infant formula emulsions with (■) 

no lecithin addition and (●) 1.0, (▲) 2.0, (□) 3.0, (○) 4.0 and (Δ) 5.0, g 100 g-1 

oil, lecithin addition during accelerated storage for 14 d at 40°C. For the 

information regarding variability in the progress of primary and secondary 

lipid oxidation in the emulsions please refer to Table 5.3. 
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Table 5.3. The progress of primary and secondary lipid oxidation, measured by the production of peroxides and malondialdehyde, 

respectively, in whey protein hydrolysate-based model infant formula emulsions with different levels of lecithin addition (0.0−5.0 g 

100 g-1 oil) during accelerated storage for 14 d at 40°C. 

 

(a-d) Oxidation values for a given emulsion within a column not sharing a common superscript differed significantly (P < 0.05) 

(A-D) Oxidation values for a given time point during accelerated storage within a row not sharing a common superscript differed 

significantly (P < 0.05)

Incubation
time (d) 

Emulsions (g lecithin 100 g-1 oil)

0.0 1.0 2.0 3.0 4.0 5.0

Primary lipid oxidation (mM H2O2)

0 0.13 ± 0.16aA 0.23 ± 0.32aA 0.19 ± 0.24aA 0.27 ± 0.27aA 0.22 ± 0.20aA 0.23 ± 0.22aA

3 0.40 ± 0.19aA 0.46 ± 0.01aAB 0.63 ± 0.14aAB 0.55 ± 0.05aAB 0.65 ± 0.02aAB 0.71 ± 0.07abB

7 2.78 ± 1.11abA 1.79 ± 0.46aA 1.74 ± 0.47aA 1.62 ± 0.40abA 1.64 ± 0.40bA 1.57 ± 0.19bA

10 6.91 ± 6.96abA 2.76 ± 0.23aA 3.08 ± 0.02aA 3.00 ± 0.12bA 3.05 ± 0.10cA 3.04 ± 0.29cA

14 24.6 ± 17.4bA 8.37 ± 2.42bA 9.93 ± 3.65bA 6.93 ± 1.06cA 6.74 ± 0.53dA 6.48 ± 0.85dA

Secondary lipid oxidation (TBARS number)

0 0.09 ± 0.00aA 0.11 ± 0.01aA 0.11 ± 0.02aA 0.09 ± 0.00aA 0.10 ± 0.01aA 0.12 ± 0.04aA

3 0.21 ± 0.03aAB 0.18 ± 0.02aA 0.24 ± 0.04aABC 0.28 ± 0.03abBCD 0.35 ± 0.02aD 0.31 ± 0.04abCD

7 0.58 ± 0.37aA 0.35 ± 0.11aA 0.31 ± 0.03aA 0.44 ± 0.06bA 0.47 ± 0.23abA 0.43 ± 0.16abA

10 1.24 ± 1.48aA 0.37 ± 0.04aA 0.52 ± 0.21aA 0.44 ± 0.04bA 0.47 ± 0.11abA 0.54 ± 0.04abA

14 2.53 ± 2.39aA 0.77 ± 0.23bA 1.12 ± 0.85aA 0.75 ± 0.20cA 0.85 ± 0.25bA 0.97 ± 0.55bA
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addition greatly slowed the oxidation rate (Fig. 5.3B). Similar to the primary 

lipid oxidation results, large standard errors (Table 5.3) found for the levels of 

secondary lipid oxidation products resulted in no statistically significant 

differences in the TBARS numbers between the samples during accelerated 

storage. The trends observed for secondary oxidation were consistent between 

all 3 trials and showed that after the 14 d of storage the control emulsion 

sample (i.e., no lecithin addition) displayed the greatest extent of oxidation 

(TBARS=2.53), compared to the lecithin-containing emulsions (i.e., 

TBARS=0.75-1.12; Table 5.3, Fig. 5.3B). The first obvious divergence in the 

extent of secondary oxidation between emulsions were observed at 10 d of 

accelerated storage, where the TBARS number for the control emulsion was at 

least double the TBARS numbers measured for the lecithin-containing 

emulsions (Fig. 5.3B, Table 5.3). 

5.4. Discussion 

Results presented in the current study demonstrated that incorporation of 

soybean lecithin in a simple food matrix (i.e., bulk soybean oil), as well as in a 

more complex multicomponent model food formulation (i.e., model IF), 

improved oxidative stability of both systems. Effectively, when lecithin was 

added to the bulk oil or included in the formulation of model IF emulsions, 

lipid oxidation, as evidenced by the levels of primary (hydroperoxides) and 

secondary (alcohols, carbonyl compounds and carboxylic acids) oxidation 

products was retarded.  

In the model IF emulsions, adding lecithin at 1.0 g per 100 g oil, greatly 

reduced lipid oxidation, whereas any further increases in the lecithin content 

to 5.0 g per 100 g oil, had no measured additional effect on lipid oxidation. The 

antioxidative properties of lecithin in both bulk oil and emulsion systems are 

related to its surface activity, as well as its ability to interact with reactive 

oxygen species, thus limiting their availability for interactions with lipids in 

the system. In the Rancimat method for oxidative stability analysis of bulk oils, 

air bubbles are constantly being created and the oxygen reacts with lipids as it 

passes through the sample. Surface-active lecithin (i.e., a mixture of 

phospholipids) very quickly migrates towards and adsorbs at the newly-
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formed air-water interface (Drapala et al., 2015) and effectively limits the 

extent of interactions between oxygen and the lipids (1) by forming a physical 

barrier and (2) by interacting chemically with the pro-oxidant species (i.e., 

binding metal ions) (Pan et al., 2013). Lecithin can arrange into micelles when 

present at a concentration sufficient to do so (critical micelle concentration for 

lecithin ~1.5 g 100 mL-1) and these structures have been reported to provide 

an antioxidative effect in oil-in-water emulsions by interacting with ions (e.g., 

iron) and with hydroperoxides, solubilising them and effectively limiting their 

contact with lipids (Cho, McClements, and Decker, 2002; Huang et al., 2001; 

Nuchi, Hernandez, McClements, and Decker, 2002; Waraho, McClements, 

and Decker, 2011; Zou and Akoh, 2013). Similarly, in an emulsion system, the 

antioxidative effect of lecithin can be separated into its effects in both the 

serum and oil phases of the emulsion (i.e., present in both phases due to its 

amphipathic nature) as well as physical antioxidative effect at the interface of 

the emulsion. Thus lecithin, adsorbed at the interface of oil globules, provides 

both physical (i.e., through a physical restriction) and chemical (i.e., through 

radical-scavenging properties) barrier properties. 

The effect of the properties of the interfacial layer of an emulsion on its 

oxidative stability have been studied by Kargar et al. (2011), who found that 

the oil phase fraction, emulsifier type and concentration and size distribution 

of oil globules in the emulsion had strong influences on the oxidative stability 

of emulsions. Pan et al. (2013) reported that unmodified lecithin reduced the 

permeation of free radicals into the oil phase of an emulsion and significantly 

reduced the rate of lipid oxidation. Thickness of the interfacial layer also plays 

a role in influencing lipid oxidation, where it limits the access of the radicals 

and pro-oxidants to the lipid globules. Generally, oil globules stabilised by 

intact or moderately-hydrolysed (i.e., <20% DH) proteins confer a thicker 

interfacial layer compared to LMw surfactants (e.g., lecithin) due to the greater 

sizes and more complex structures of the former (Drapala et al., 2016b; 

Scherze and Muschiolik, 2001). A thinner and non-continuous interfacial layer 

have been reported for WPH-based model IF emulsions containing lecithin 

(1.0-5.0, g 100 g-1 oil) (Drapala et al., 2015). Despite the presence of thinner 

and non-continuous interfacial layer in the emulsions stabilised by both WPH 
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and the lecithin, compared to the emulsions stabilised by the WPH alone, the 

oxidation was greatly reduced in the former. Based on these observations, it is 

concluded that it is mainly the chemical antioxidative effect of the LMw 

emulsifier (i.e., lecithin) that governed the rate of lipid oxidation in these 

model WPH-based emulsion systems, and that the thicker O/W interfaces 

formed with the WPH provide only a limited antioxidative barrier. 

5.5. Conclusions 

The results presented in this study show a strong antioxidative effect of 

soybean lecithin, when present in bulk soybean oil and in a model WPH-based 

IF emulsions. In the bulk oil, lecithin addition at 1 g 100 g-1 dramatically 

reduced lipid oxidation and increasing its addition level increased the 

antioxidative effect, as evidenced by a concomitant increase in the oxidation 

induction time. Similarly, in model IF-based emulsion systems lecithin 

addition reduced the progress of primary and secondary lipid oxidation; 

however, the effect of increasing the addition level of lecithin >1 g 100 g-1 was 

not observed. The antioxidative effect of the soybean lecithin is mainly 

attributed to a combination of its surface active properties (i.e., presence of the 

surfactant at the oil/air and oil/water interfaces in the bulk oil and in emulsion 

systems, respectively) and its ability to bind free radicals and pro-oxidants 

(i.e., making them unavailable for propagation of lipid oxidation). 
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Abstract 

Whey protein hydrolysate (WPH) ingredients are commonly used in the 

manufacture of partially-hydrolysed infant formulae. The heat stability of 

these emulsion-based formulae is often poor, compared with those made using 

intact whey protein. The objective of this study was to improve the heat 

stability of WPH-based emulsions by conjugation of WPH with maltodextrin 

(MD) through wet heating. Emulsions stabilised by different protein 

ingredients, whey protein isolate (WPIE), whey protein hydrolysate (WPHE), 

heated WPH (WPH-HE), and WPH conjugated with MD (WPH-CE) were 

prepared and heat treated at 75°C, 95°C or 100°C for 15 min. Changes in 

viscosity, fat globule size distribution (FGSD) and microstructure, evaluated 

using confocal laser scanning microscopy (CLSM), were used to monitor the 

effects of hydrolysis, pre-heating and conjugation on the heat stability of the 

emulsions. Heat stability increased in the order WPHE < WPIE << WPH-HE 

<<< WPH-CE; emulsions WPHE, WPIE and WPH-HE destabilised on heating 

at 75°C, 95°C or 100°C, respectively. Flocculation and coalescence of oil 

droplets were mediated by protein aggregation (as evidenced by CLSM) on 

heat treatment of WPH-HE emulsion at 100 °C, while no changes in FGSD or 

microstructure were observed in WPH-CE emulsion on heat treatment at 

100°C, demonstrating the excellent thermal stability of emulsions prepared 

with the conjugated WPH ingredient, due principally to increased steric 

stabilisation as a result of conjugation.  
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6.1. Introduction 

Human milk is widely accepted as the best source of nutrients required for 

proper short- and long-term development of infants. The composition of 

mother’s milk is compatible with the infant’s digestive system and is known to 

minimise the risk of gastrointestinal and respiratory infections (Alles, 

Scholtens and Bindels, 2004; Exl, 2001; O'Mahony, Ramanujam, Burgher and 

O'Callaghan, 2011). However, it is not always possible to provide the infant 

with mother’s milk. Efforts to develop humanised formulae for infant nutrition 

are focused on many aspects of formula composition and functionality 

including matching protein content and profile (i.e., whey-dominant protein 

profile and α-lactalbumin enrichment) (Chatterton, Rasmussen, Heegaard, 

Sørensen and Petersen, 2004; Crowley et al., 2015; Hambraeus, 1977; Ogra 

and Greene, 1982; O’Mahony et al., 2011), fatty acid profile (Berger, Fleith and 

Crozier, 2000), carbohydrate, vitamin and mineral levels to those present in 

human milk (Pehrsson, Patterson and Khan, 2014). 

Formulae manufactured using whey protein hydrolysate (WPH) ingredients 

can be categorised based on the degree of hydrolysis of the protein; the main 

categories are amino acid-based formulae (AAF), where proteins/peptides are 

hydrolysed to their constituent amino acids; extensively hydrolysed formulae 

(EHF) containing oligopeptides with molecular weight below 3,000 Da and 

partially hydrolysed formulae (PHF) containing oligopeptides ranging in 

molecular weight up to 20,000 Da (Exl, 2001; Lowe et al., 2011). While AAF 

and EHF products are mainly intended for therapeutic purposes in infants 

suffering from, or with a high risk of cow’s milk allergy (CMA), infant nutrition 

products from the PHF group cannot be used for therapeutic purposes but are 

recommended for infants at risk of CMA as they have been shown to provide a 

preventive effect thereon (Chandra, 1997; Exl, 2001; von Berg et al., 2008). 

Partially hydrolysed formulae are often also referred to as ‘pre-digested’ 

formulae based on their improved digestibility and absorption in the gut, 

helping to reduce gastrointestinal discomfort issues (Hernández-Ledesma, 

García-Nebot, Fernández-Tomé, Amigo and Recio, 2014). 
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Hydrolysis causes alteration to the functional properties of proteins and 

hydrolysate functionality is ultimately dependent on a number of factors 

including enzyme type and specificity, hydrolysis conditions and method of 

enzyme inactivation (Panyam and Kilara, 1996; Tavano, 2013). Generally, 

moderate hydrolysis improves surface activity of proteins/peptides as the 

hydrolysate fractions migrate rapidly to surfaces/interfaces which can give rise 

to improved functional properties such as foaming and emulsification 

(Agboola and Dalgleish, 1996a, 1996b; Banach, Lin and Lamsal, 2013; 

Foegeding and Davis, 2011; Kilara and Panyam, 2003). Moderate hydrolysis 

of globular proteins (i.e., whey proteins) improves their heat stability as a 

result of the diminished secondary structure; however, this improvement does 

not always translate directly to more complex systems such as emulsions made 

using hydrolysed whey protein, where heat stability has been shown to be 

negatively affected by hydrolysis of whey protein (Singh and Dalgleish, 1998; 

Ye and Singh, 2006). Responsibility for poor heat stability of hydrolysed whey 

protein-based emulsions is related to reduced steric hindrance (Ye, Hemar and 

Singh, 2004) and increased number of available (i.e., exposed) reactive sites 

on protein/peptide molecules at the oil globule surface and in the serum phase 

of the emulsion (Euston, Finnigan and Hirst, 2000; Hunt and Dalgleish, 

1995). 

Conjugation of proteins with carbohydrates using the Maillard reaction has 

been shown to be effective in modifying protein functionality (Liu, Ru and 

Ding, 2012; O’Regan and Mulvihill, 2010a, 2010b; Oliver, Melton and Stanley, 

2006). Extensive research documenting the beneficial effects of protein 

modification through conjugation is available in the scientific literature; 

improved functional properties of proteins including solubility, 

emulsification, encapsulation and emulsion stability (Akhtar and Dickinson, 

2003; Kasran, Cui and Goff, 2013a, 2013b; Lei, Wang, Liang, Yuan and Gao, 

2014), thermal stability (Jimenez-Castano, Lopez-Fandino, Olano and 

Villamiel, 2005; Kato, Aoki, Kato, Nakamura and Matsuda 1995; Liu et al., 

2012; O’Regan and Mulvihill, 2010a; Wang and Zhong, 2014) or foaming and 

gelation properties (Campbell, Raikos and Euston, 2003; Martínez and 

Pilosof, 2013) as a result of conjugation are well documented. However, 
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published scientific reports on the properties and functionality of hydrolysed 

whey protein ingredients modified by Maillard conjugation appear to be 

limited; the authors are not aware of any published studies reporting on the 

performance of such ingredients in oil-in-water emulsion systems, particularly 

in infant formula (IF) systems. The current study aims to investigate and 

report on the performance of ingredients produced by conjugation of 

hydrolysed whey protein with maltodextrin in comparison to that of intact 

whey protein in production and stabilisation of model IF emulsions. 

6.2. Materials and methods 

6.2.1. Materials 

Whey protein isolate (WPI) and whey protein hydrolysate (WPH; 8% degree 

of hydrolysis; DH) were obtained from Carbery Food Ingredients Ltd 

(Ballineen, Co. Cork, Ireland). Composition of WPI and WPH ingredients was 

determined using standard International Dairy Federation (IDF) methods and 

molecular weight profile of the protein ingredients was determined using size 

exclusion chromatography as detailed by Drapala, Auty, Mulvihill and 

O’Mahony (2015). The composition, DH and molecular weight profile of the 

WPI and WPH ingredients are shown in Table 6.1. Maltodextrin (MD) was 

obtained from Corcoran Chemicals Ltd. (Dublin, Ireland) and had moisture 

and ash contents of <5% and <0.2%, respectively. Soybean oil was obtained 

from Frylite Group Ltd (Strabane, Co. Tyrone, Northern Ireland). All other 

chemicals and reagents used in the study were of analytical grade and sourced 

from Sigma-Aldrich (Arklow, Co. Wicklow, Ireland). 

6.2.2. Conjugate and stock protein solutions 

Two unheated stock solutions (5%, w/v, protein) were prepared from WPI and 

WPH and allowed to hydrate for 18 h at 4°C and pH was adjusted to 6.8 before 

being used for emulsion formulation. The protein-carbohydrate conjugate 

solution was prepared by solubilising required quantities of WPH and MD in 

ultrapure water for 2 h at 20°C using a magnetic stirrer to give 5% (w/v) 

protein and 5% (w/v) carbohydrate. The solution was adjusted to pH 8.2 with 

0.5 N potassium hydroxide (KOH) and allowed to hydrate for 18 h at 4°C, 
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before being readjusted to pH 8.2 with 0.5 N KOH at 20°C. Aliquots (250 mL) 

of this solution were placed in 500 mL screw-capped, glass conical flasks and 

heated at 90°C for 8 h. After heating for 8 h, the solutions were cooled 

immediately to 4°C and stored at that temperature overnight. A control for the 

heat treatment was prepared in exactly the same way as outlined above with 

 

 Table 6.1. Composition, degree of hydrolysis and molecular weight profile of 

the whey protein isolate (WPI) and whey protein hydrolysate (WPH) 

ingredients used in the preparation of emulsions. 

Composition WPI        a WPH        a 

 % w/w  

Protein 87.2 ± 0.9 83.7 ± 0.5 

Fat 0.72 ± 0.1 0.67 ± 0.1 

Carbohydrate1 4.21 7.80 

Ash 2.76 ± 0.1 2.92 ± 0.1 

Moisture 5.11 ± 0.0 4.91 ± 0.1 

Degree of hydrolysis NA2 8.00 

   

Molecular weight profile % of total protein 

Insoluble  0.00 2.00 ± 0.6 

>20 kDa 28.0 ± 3.4 12.0 ± 1.6 

10-20 kDa 50.5 ± 3.7 24.2 ± 8.8 

5-10 kDa 3.90 ± 0.2 9.49 ± 1.9 

2-5 kDa 15.6 ± 0.3 11.9 ± 1.6 

1-2 kDa 0.92 ± 0.1 9.30 ± 2.0 

0.5-1 kDa 0.29 ± 0.0 11.0 ± 1.9 

<0.5 kDa 0.83 ± 0.7 20.2 ± 3.0 

 

1Carbohydrate content determined by difference. 

2NA = not applicable. 
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the exception that no MD was added to the WPH. In summary, four stock 

protein or protein-carbohydrate solutions were prepared and were 

subsequently used to formulate emulsions that are referred to as whey protein 

isolate emulsion (WPIE), whey protein hydrolysate emulsion (WPHE), heated 

whey protein hydrolysate emulsion (WPH-HE) and conjugated whey protein 

hydrolysate emulsion (WPH-CE), respectively. 

6.2.3. Measurement of free thiol groups 

The level of free thiol groups in the stock protein solutions was determined 

following an assay described by Hoffmann and van Mil (1997) with the 

exception that a Bis-Tris/HCl buffer (pH 6.8) was used in place of the Tris-HCl 

buffer (as performed by Alting, Hamer, De Kruif, Paques and Visschers, 2003). 

Aliquots (0.05 mL) of stock protein solutions (5% w/v) were added to 2.70 mL 

of 0.05 M Bis-Tris/HCl buffer (pH 6.8) before adding 0.25 mL of Ellman’s 

reagent (107.5 mg/100 g of the buffer) (Ellman, 1959). Solutions were vortexed 

and absorbance was measured using a dual beam UV-visible 

spectrophotometer (Varian Cary 300, Varian Ltd., Walton-on-Thames, UK) at 

a wavelength of 412 nm. Measurements were completed in triplicate and the 

level of thiol groups was calculated using a molar extinction coefficient for 2-

nitro-5-mercapto-benzoic acid (i.e., Ellman’s reagent) of 13,600 M-1 cm-1. 

6.2.4. Preparation of emulsions 

Model infant formula emulsions containing 1.55, 3.50 and 7.00 g/100 mL of 

protein, oil and carbohydrate, respectively, were prepared as follows: stock 

protein or protein-carbohydrate solutions (see Section 6.2.2) were diluted with 

ultrapure water to the appropriate concentration followed by addition of MD 

as required with continuous mixing using a magnetic stirrer at intermediate 

speed for 1 h at 22°C to prepare the aqueous phases of the emulsions. Innate 

levels of lactose present in the protein powders were taken into account when 

calculating the requirement for added carbohydrate (i.e., MD). Emulsions 

were prepared as described by Drapala et al. (2015) except that higher 1st and 

2nd stage homogeniser pressures of 15 and 3 MPa, respectively, were used. 
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6.2.5. Composition and colour analysis of emulsions 

Protein, fat, moisture, ash and carbohydrate content of emulsions were 

determined using standard IDF methods as detailed by Drapala et al. (2015). 

The colour of the emulsions was measured using a pre-calibrated colorimeter 

(Minolta Chroma Meter CR-400, Minolta Ltd., Milton Keynes, U.K.) The 

emulsions were loaded into a glass cell (CM-A98, optical path length: 10 mm) 

held in position by means of a transmittance specimen holder (CM-A96) and 

positioned with a white plate behind the glass cell. Colour was expressed using 

the Commission Internationale de l'Eclairage (CIE) colour chromaticity L* a* 

b* scale (L = dark/light, a = red/green, b = yellow/blue). 

6.2.6. Measurement of fat globule size distribution and zeta potential 

Fat globule size distribution (FGSD) of the emulsions was measured using a 

laser light-diffraction unit (Mastersizer S, Malvern Instruments Ltd., 

Worcestershire, UK) equipped with a 300 RF (reverse fourier) lens and He-Ne 

laser (λ of 633 nm). A polydisperse model with 3NAD presentation was used 

for unheated and heated emulsions as described by McCarthy et al. (2012). The 

3NHD presentation was also used for heated emulsions to estimate the size of 

protein particles/aggregates present as described by Ciron, Gee, Kelly and 

Auty (2010). The samples were introduced to the mixing chamber and 

dispersed in ultrapure water to reach an obscuration of 14% (± 0.5%). 

Measurements of FGSD were made on emulsions on the day of 

homogenisation and immediately after heat treatment. The zeta potential (ζ) 

of oil globules in emulsions was measured using a Zetasizer Nano-ZS (Malvern 

Instruments, Worcestershire, U.K.) as detailed by Joshi et al. (2012). Each 

emulsion was diluted 1:100 with ultrapure water, adjusted to pH 6.8 with KOH 

or HCl and allowed to equilibrate at 25°C for 120 s in the cuvette prior to 

analysis. The measurement was performed on the day of homogenisation 

using an automatic voltage selection and ζ was calculated using the 

Smoluchowski model (Kirby and Hasselbrink 2004). 
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6.2.7. Measurement of emulsion viscosity on heating 

Emulsions (28 g) were heated in an AR-G2 controlled stress rheometer (TA 

Instruments, Crawley, West Sussex, UK) equipped with a starch pasting cell 

(SPC) geometry. The heating program was chosen to allow sample 

equilibration for 2 min at 15°C with no shearing followed by holding for 5 min 

at 15°C, heating at 10°C/min to reach the required target temperature (75°C or 

95°C), peak temperature hold for 15 min, cooling at 10°C/min to reach 15°C 

and holding at 15°C for 5 min while constantly shearing at a rate of 15 s-1 

throughout analysis. Apparent viscosity (η) data was recorded at 1 s intervals 

during the heating program. An oil bath was used to heat treat more stable 

emulsions at 100°C; samples (2.5 mL) were placed in glass tubes, stoppered 

and immersed in an oil bath for 15 min at 100°C with constant mixing of tube 

contents by gently rocking at approx. 8 min-1, giving a constant, gentle, flow of 

the liquid in the tube. Emulsion samples were recovered after all heat 

treatments (i.e., from SPC and oil bath tubes) and used for further analysis 

(FGSD and microstructural analysis). 

6.2.8. Confocal laser scanning microscopy analysis 

Microstructural analysis of emulsions was performed using a Leica TCS SP 

Confocal Laser Scanning Microscope (Leica Microsystems, Heideberg GmbH, 

Mannheim, Germany) as detailed by Drapala et al. (2015). Protein and lipid 

were fluorescently labelled with Nile Blue dye (Sigma-Aldrich, Dublin, 

Ireland). Visualisation of oil and protein in emulsions (10 μL) was carried out 

using an Ar laser (excitation = 488 nm, emission = 500-530 nm) and a He-Ne 

laser (excitation = 633 nm, emission = 650-700 nm) for oil and protein, 

respectively (Auty, Twomey, Guinee and Mulvihill, 2001). The observations 

were performed using 20x and 63x oil immersion objectives. At least three 

specimens of each sample were observed to obtain representative micrographs 

of samples. 

6.2.9. Statistical data analysis 

Analysis of variance (ANOVA) was carried out using the Minitab® 16 (Minitab 

Ltd, Coventry, UK, 2010) statistical analysis package. The Tukey method was 
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used to obtain grouping information. The level of significance was determined 

at P < 0.05. 

6.3. Results 

6.3.1. Composition and colour of emulsions 

Compositional analysis of emulsions showed that measured levels (Table 6.2) 

were in line with target levels for all samples (i.e., 1.39 – 1.45% protein, 3.35 – 

3.42% fat and 6.47 – 6.52% carbohydrate) and no significant differences in 

composition were found between samples. Emulsions stabilised by 

heated/conjugated proteins (i.e., WPH-HE and WPH-CE) differed slightly but 

significantly in lightness (L* values; Table 6.2) from emulsions stabilised by 

unheated WPI or WPH; lowest L* value was observed for WPH-CE (82.6) 

followed by WPH-HE (83.2), WPHE (83.7) and WPIE (84.0). A similar trend 

was observed in the intensity of the yellow colour of the emulsions where all 

samples were statistically different from each other and the highest b* value 

was observed for WPH-CE (4.48) followed by WPH-HE (2.24), WPHE (0.78) 

and WPIE (0.30). Lower L* and higher b* values in emulsions WPH-CE and 

WPH-HE, as compared to emulsions WPHE and WPIE, can be directly related 

to production of coloured compounds such as melanoidins during the later 

stages of the Maillard reaction (Oliver et al., 2006). Although no MD was 

added prior to heating of the WPH solution, innate lactose (a reducing sugar) 

present in the WPH powder (Table 6.1) would have contributed to some 

Maillard-induced browning during heating. As shown by Liu and Zhong (2015) 

lactose is more reactive than maltodextrin and therefore has greater 

propensity for Maillard-induced colour development as it contains more 

reducing groups per unit weight as compared to MD. 

6.3.2. Fat globule size distribution and ζ-potential 

Narrow and monomodal size distributions of oil globules were observed in all 

four emulsions post-homogenisation (Fig. 6.1) with the samples having mean 

volume diameters (D4,3; Table 6.3) of 0.85, 0.83, 0.80 and 0.79 µm for WPIE, 

WPHE, WPH-HE and WPH-CE emulsions, respectively. The size distribution 

data showed that all of the protein ingredients had good emulsifying properties
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Table 6.2. Composition and colour of model infant formula emulsions stabilised by the different whey protein ingredients. 

 

(a-c) Values within a column not sharing a common superscript differed significantly (P<0.05). 

 

Emulsion Protein Fat Carbohydrate Ash Total Solids Tristimulus coordinates 

  (%) L* a* b* 

WPIE 1.45 ± 0.04a 3.35 ± 0.03a 6.52 ± 0.11a 0.06 ± 0.03a 11.4 ± 0.05a 84.0 ± 0.11a  -0.87 ± 0.01a 0.30 ± 0.03a 

WPHE 1.43 ± 0.04a 3.39 ± 0.01a 6.47 ± 0.04a 0.10 ± 0.01a 11.4 ± 0.06a 83.7 ± 0.12a  -1.08 ± 0.06b 0.78 ± 0.06b 

WPH-HE 1.39 ± 0.01a 3.39 ± 0.05a 6.50 ± 0.10a 0.21 ± 0.15a 11.5 ± 0.08a 83.2 ± 0.26b  -1.07 ± 0.05b 2.24 ± 0.04c 

WPH-CE 1.42 ± 0.02a 3.42 ± 0.01a 6.52 ± 0.18a 0.13 ± 0.05a 11.5 ± 0.11a 82.6 ± 0.16c  -1.01 ± 0.04b 4.48 ± 0.02d 
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as indicated by D4,3 values of all emulsions less than 1 µm which was consistent 

with results of McCarthy et al. (2012) and Drapala et al. (2015). There were no 

significant differences (P<0.05) in FGSD between emulsions formed with the 

different ingredients immediately post homogenisation.  

The net negative charge (i.e., ζ potential) of oil globules in emulsions was 

lowest in WPIE (-48.0 mV; Table 6.3) followed by WPHE (-49.6 mV), WPH-HE 

(-53.1 mV) and WPH-CE (-55.0 mV). Although ζ was slightly higher for 

emulsion globules stabilised by heated WPH than for those stabilised by WPI 

and WPH, and was slightly higher still for emulsion globules stabilised by 

conjugated WPH, no significant differences were observed in ζ between 

globules in the 3 emulsions prepared using hydrolysed whey protein. The 

positively charged amino acid lysine is predominantly involved in covalent 

attachment with reducing sugars during the Maillard reaction; thus, by its 

interaction during heating/conjugation the net negative charge on the protein, 

and as a result, on the surface of the oil globules in the emulsions increased, 

which was consistent with the results of Acedo-Carrillo et al. (2006), Liu et al. 

(2012) and Wang and Zhong (2014). Additionally, as a consequence of thermal 

denaturation of proteins, charged groups buried within the native structure of 

globular proteins are exposed, and this may also have contributed to the 

change in net protein charge (Tcholakova, Denkov, Ivanov and Campbell, 

2006). 

After heating at 75°C for 15 min in the starch pasting cell (SPC), the particle 

size distribution of WPIE emulsion showed a limited broadening of the profile 

(Fig. 6.1 a); however, only a minor difference was found in the D4,3 before (0.85 

µm) and after (0.87 µm) heat treatment of the emulsion under these 

conditions (Table 6.3). The WPHE emulsion destabilised during heat 

treatment at 75°C as evidenced by the presence of large particles (D4,3 of 120 

µm) in the sample after heat treatment (Fig. 6.1 b; Table 6.3). Results obtained 

using both the 3NAD (i.e., selective for oil) and 3NHD (i.e., selective for 

protein) presentations displayed essentially the same size distribution profiles 

(Fig. 6.1 b). Size distribution data and visual observation (i.e., phase separation 

with large particles buoyant in the semi-transparent serum phase and no free 

oil; Fig. 6.2 a) of WPHE emulsion heat treated at 75°C suggested that the 
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Figure 6.1. Fat globule size distribution in WPIE (a), WPHE (b), WPH-HE (c) 

and WPH-CE (d) emulsions post-homogenisation (●) and after 15 min of heat 

treatment at 75°C (■), 95°C (○) and 100°C (□). Dashed line (---) represents the 

3NHD presentation profiles for destabilised emulsions formed with 

hydrolysed protein (b, c).  

 

emulsion destabilised through aggregation of globules via protein/peptides on 

the surface of oil globules and possibly aggregation of globules via interaction 

with non-adsorbed protein/peptides present in the serum resulting in 

entrapment of oil in the aggregated protein network. Previous studies have 

indicated that heat-induced destabilisation of protein-based oil-in-water 

(O/W) emulsions is often mediated by non-adsorbed serum proteins/peptides 

that, upon heating, interact with each other and with adsorbed 

proteins/peptides, thus causing formation of protein/oil complexes (Euston et 

al., 2000; Hunt and Dalgleish, 1995). In contrast to the WPHE emulsion, no 
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changes in particle size distribution were observed for WPH-HE or WPH-CE 

emulsions on heating at 75°C for 15 min (Fig. 6.1 c, d; Table 6.3). 

Emulsions that displayed good thermal stability during heat treatment at 75°C 

for 15 min were subjected to a more severe treatment of 95°C for 15 min in the 

SPC. The WPIE emulsion destabilised during heat treatment at 95°C. Visual 

inspection of the sample after heat treatment indicated formation of a 

separated coarse protein network and serum phase (Fig. 6.2 b); hence, particle 

size distribution data for the WPIE emulsion after the heat treatment at 95°C 

could not be determined. The WPH-HE and WPH-CE emulsions displayed 

good thermal stability to heating at 95°C for 15 min as evidenced by no 

significant increase in D4,3 (<0.05 µm) on heating (Table 6.3; Fig. 6.1 c, d) and 

the visual appearance of these samples after heating (Fig. 6.2 c, d). Differences 

in thermal stability of WPH-HE and WPH-CE emulsions were observed when 

the emulsions were heated at 100°C for 15 min in an oil bath; visual assessment 

post heating indicated formation of large particles (i.e., aggregates) in the 

WPH-HE emulsion (Fig. 6.2 e). This was confirmed by particle size analysis  

 

 

Figure 6.2. Photographs of emulsions post-heat treatment at 75°C x 15 min 

(a: WPHE) and at 95°C x 15 min (b: WPIE; c: WPH-HE; d: WPH-CE). 

Emulsions WPH-HE and WPH-CE were also heated at 100°C x 15 min in an oil 

bath (e: left=WPH-HE; right=WPH-CE). 
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Table 6.3. Fat globule size distribution (FGSD) and zeta potential (ζ) of oil globules in model infant formula emulsions WPIE, 

WPHE, WPH-HE and WPH-CE post homogenisation and post heating at 75, 95 or 100°C for 15 min. 

    Fat Globule Size Parameter1 (µm) ζ Potential 
(mV) Emulsion Heat treatment D4, 3 D3, 2 Dv, 0.1 Dv, 0.5 Dv, 0.9 

WPIE unheated 0.85 ± 0.0
a
 0.56 ± 0.0

a
 0.30 ± 0.0

a
 0.70 ± 0.0

a
 1.52 ± 0.0

a
  -48.0 ± 2.6

a
 

 75°C x 15 min 0.87 ± 0.1
a
 0.48 ± 0.0

a
 0.24 ± 0.0

a
 0.64 ± 0.0

a
 1.69 ± 0.3

a
 n.d.

2
 

 95°C x 15 min n.d.
2
 n.d. n.d. n.d. n.d. n.d. 

 100°C x 15 min n.d. n.d. n.d. n.d. n.d. n.d. 

WPHE unheated 0.83 ± 0.1
a
 0.54 ± 0.0

a
 0.29 ± 0.0

a
 0.69 ± 0.1

a
 1.54 ± 0.1

a
  -49.6 ± 3.0

ab
 

 75°C x 15 min 120 ± 30
b
 50.9 ± 37

b
 38.3 ± 3.8

b
 112 ± 29

b
 212 ± 59

b
 n.d. 

 95°C x 15 min n.d. n.d. n.d. n.d. n.d. n.d. 

 100°C x 15 min n.d. n.d. n.d. n.d. n.d. n.d. 

WPH-HE unheated 0.80 ± 0.0
a
 0.55 ± 0.0

a
 0.30 ± 0.0

a
 0.68 ± 0.0

a
 1.46 ± 0.0

a
  -53.1 ± 1.2

ab
 

 75°C x 15 min 0.81 ± 0.0
a
 0.53 ± 0.0

a
 0.29 ± 0.0

a
 0.68 ± 0.0

a
 1.51 ± 0.1

a
 n.d. 

 95°C x 15 min 0.85 ± 0.0
a
 0.53 ± 0.0

a
 0.28 ± 0.0

a
 0.68 ± 0.0

a
 1.58 ± 0.1

a
 n.d. 

 100°C x 15 min 38.8 ± 29
b
 3.72 ± 2.3

b
 13.5 ± 19

a
 37.2 ± 39

a
 66.4 ± 61

b
 n.d. 

WPH-CE unheated 0.79 ± 0.0
a
 0.54 ± 0.0

a
 0.29 ± 0.0

a
 0.67 ± 0.0

a
 1.45 ± 0.0

a
  -55.0 ± 3.1

b
 

 75°C x 15 min 0.80 ± 0.0
a
 0.54 ± 0.0

a
 0.29 ± 0.0

a
 0.68 ± 0.0

a
 1.47 ± 0.1

a
 n.d. 

 95°C x 15 min 0.81 ± 0.0
a
 0.53 ± 0.0

a
 0.28 ± 0.0

a
 0.67 ± 0.0

a
 1.50 ± 0.1

a
 n.d. 

  100°C x 15 min 0.83 ± 0.0
a
 0.53 ± 0.0

a
 0.28 ± 0.0

a
 0.67 ± 0.0

a
 1.52 ± 0.1

a
 n.d. 

 

1 Fat globule size distribution parameters D4,3 and D3,2 represent volume mean diameter and Sauter mean diameter, respectively.  

Dv,0.1, Dv,0.5 and Dv,0.9 represent fat globule size in the 10, 50 and 90% quantiles of the distribution, respectively. 

2 n.d. = not determined. ζ potential measured in emulsions post homogenisation only. 
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whereby the FGSD profile of WPH-HE showed a shift from monomodal to 

bimodal (Fig. 6.1 c). The emulsion stabilised by WPH-C was stable to heat 

treatment at 100°C for 15 min; no significant differences in D4,3 (<0.05 µm) or 

in FGSD profiles were observed after heat treatment as compared to post-

homogenisation (Table 6.3, Fig. 6.1 d) and no visual evidence of destabilisation 

(Fig. 6.2 e) was observed in the emulsion after heating. 

6.3.3. Apparent viscosity of emulsions on heating 

Apparent viscosity of all emulsions before heating (i.e., at 15°C) was similar 

with no significant (P<0.05) differences were found between samples (Table 

6.4). On increasing temperature from 15˚C to 75˚C, apparent viscosity of all 

emulsion samples decreased (Fig. 6.3 a). Decreasing viscosity with increasing 

temperature is commonly observed in protein solutions; however, the 

decrease in viscosity normally continues until a protein-specific temperature 

is reached, at which point physical changes to the protein affect its structure 

(i.e., unfolding of polypeptide/peptide chain, disruption of hydrophobic 

interactions and aggregation by covalent and non-covalent bonding), generally 

causing an increase in viscosity (Considine, Patel, Anema, Singh and Creamer, 

2007; Goetz and Koehler, 2005). Hence, the onset of structural changes and 

interactions (eventually leading to destabilisation) in protein-based emulsions 

can be identified by tracking changes in their apparent viscosity during heat 

treatment. Although final viscosity of the WPIE emulsion (i.e., after cooling to 

15°C) was slightly higher compared to the initial viscosity (i.e., at 15°C before 

heating) of the sample, no significant differences were found between viscosity 

of the WPIE emulsion before and after heating at 75°C for 15 min (Table 6.4). 

An increase in viscosity from 9.6 to 12.7 mPa.s (Fig. 6.3 a) before reaching the 

peak hold temperature (75°C) was observed for WPHE. Final viscosity of the 

WPHE emulsion (i.e., after cooling to 15°C) was higher by 8.5 mPa.s compared 

to the initial viscosity of the sample at 15°C (Table 6.4) and visual assessment 

of the sample after heating indicated extensive destabilisation of the emulsion 

(Fig. 6.2 a). After heat treatment, apparent viscosity (at 15°C) of WPH-HE and 

WPH-CE emulsions was no different to that measured before heating of these 

emulsions but was significantly lower than the viscosity of the WPHE emulsion 

after the same heat treatment (Fig. 6.3 a; Table 6.4). 
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During more severe thermal treatment at 95°C for 15 min of the WPIE 

emulsion, a sharp increase in viscosity was observed during the heating phase 

on reaching 81°C (Fig. 6.3 b); formation of distinct separated coarse protein 

network and serum phases was observed on visual assessment of the heated 

WPIE emulsion (Fig. 6.2 b). No significant (P<0.05) differences in viscosity of 

WPH-HE and WPH-CE emulsions were observed after heating at 95°C for 15 

min compared to unheated emulsions (Fig. 6.3 b; Table 6.4); visual inspection 

of samples after heating indicated that the WPH-HE and WPH-CE emulsions 

were stable to the heat treatment (Fig. 6.2 c, d). No viscosity data was recorded 

during heat treatment at 100°C as this heat treatment was performed in an oil 

bath. 

6.3.4. Free thiol groups and thermal stability of emulsions 

The level of free thiol (-SH) groups was significantly different in the stock 

protein solutions used to prepare emulsions and increased in the order 

WPI<<<WPH-H<<WPH-C<WPH (i.e., 2.49, 7.89, 10.9 and 11.5 µmol -SH/g 

protein, respectively). WPI consists of intact whey protein where most of the 

reactive -SH groups are buried within its globular structure, while WPH has 

more -SH groups exposed due to enzymatic hydrolysis of the compact globular 

structure (Panyam and Kilara, 1996). Significantly (P<0.05) lower levels of 

free -SH groups measured in the WPH-H solution as compared to the WPH 

solution indicated their reduction on heating due to the involvement of -SH 

groups in formation of di-sulphide bridges (-S-S-) (Adjonu, Doran, Torley and 

Agboola, 2013; Singh, 2011). Significantly (P<0.05) higher levels of free -SH 

groups were measured in the WPH-C solution compared to the WPH-H 

solution, although the two solutions were subjected to the same heating 

conditions (i.e., 8 h at 90°C). The difference in the levels of free -SH groups 

observed between WPH-H and WPH-C may be associated with two factors: (1) 

a macromolecular crowding effect (Zhu, Damodaran, and Lucey, 2008, 2010) 

caused by the higher number of macromolecules (i.e., MD also present in the 

WPH-C sample) limiting mobility and interactions between proteins/peptides 

in the solution during heat treatment; and (2) the access to free -SH groups 

may be restricted by steric hindrance of already conjugated protein/peptides, 

thus limiting the formation of -S-S- bonds.
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Table 6.4. Apparent viscosity of WPIE, WPHE, WPH-HE or WPH-CE emulsions at different stages of heat treatment using a starch 

pasting cell at 75°C and 95°C for 15 min. 

Holding 
Temperature 

Measurement 
Stage 

Viscosity (mPa.s) 

WPIE WPHE WPH-HE WPH-CE 

75°C Pre-heating 14.3 ± 0.2
aA

 13.5 ± 0.8
aA

 14.0 ± 0.0
aA

 14.0 ± 0.1
aA

 

 Reaching peak temperature 10.6 ± 0.3
aB

 12.7 ± 1.0
bA

 9.69 ± 0.1
aB

 9.40 ± 0.2
aB

 

 Peak hold 10.4 ± 0.1
abB

 13.1 ± 1.7
aA

 9.69 ± 0.0
bB

 9.68 ± 0.0
bB

 

  Post-heating 15.2 ± 0.3
aA

 22.0 ± 3.2
bB

 14.1 ± 0.0
aA

 14.1 ± 0.1
aA

 

95°C Pre-heating 14.6 ± 0.6
aA

 n.d.
1
 14.1 ± 0.1

aB
 14.1 ± 0.1

aA
 

 Reaching peak temperature 176 ± 201
aA

 n.d. 8.71 ± 0.0
aA

 8.99 ± 0.2
aB

 

 Peak hold 457 ± 357
bA

 n.d. 9.09 ± 0.0
aA

 9.05 ± 0.0
aB

 

  Post-heating 98.6 ± 71
bA

 n.d. 15.0 ± 0.4
aC

 14.8 ± 0.6
aA

 

 

1 n.d. = not determined as sample destabilised during less severe heat treatment (i.e., 75°C for 15 min). 

 (a-b) Values within a row (horizontal) not sharing a common superscript differed significantly (P<0.05). 

(A-B) Values within a column (vertical) for each of the heat treatments (i.e., 75 or 95°C) not sharing a common superscript differed 

significantly (P<0.05). 
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Figure 6.3. Apparent viscosity profiles of WPIE (■), WPHE (□), WPH-HE (●) 

and WPH-CE (○) emulsions during starch pasting cell (SPC) heat treatments 

with peak hold at 75°C (a) and 95°C (b). Dashed line represents the 

temperature profile.  
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6.3.5. Confocal laser scanning microscopy 

Microstructural analysis of WPH-HE and WPH-CE emulsions showed small, 

uniform and homogenously distributed fat globules in both samples post 

homogenisation with no differences between the samples (Fig. 6.4 a1, b1). 

However, major differences were observed between the two emulsions after 

heat treatment at 100°C for 15 min, supporting the FGSD data (Table 6.3). No 

changes were observed in the WPH-CE emulsion after heating at 100°C for 15 

min. Conversely, the WPH-HE emulsion displayed a heterogeneous 

microstructure with a number of mechanisms involved in the emulsion 

destabilisation being identified. Bridging flocculation of oil globules was 

  

Figure 6.4. Confocal laser scanning micrographs of WPH-HE (a) and WPH-

CE (b) emulsions before (1) and after (2, 3) heat treatment in oil bath at 100°C 

for 15 min. Protein=RED; Oil=GREEN. Scale bar (bottom right) is 25 µm (1, 

2) and 5 µm (3). 

Note: Figure a3 is a combination of 2 micrographs (i.e., left and right) to give 

more comprehensive representation of the heterogeneous structure observed 

in the WPH-H emulsion after heat treatment.  

b1

25 µm

a1 a2 a3

b2 b3

25 µm

25 µm 25 µm

5 µm

5 µm
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observed for the heat treated WPH-HE emulsion, where a distinct, dense 

protein layer surrounded the individual oil globules (Fig. 6.4 a3-left). This 

mechanism of destabilisation is common for whey protein-based O/W 

emulsions where proteins adsorbed at the interface of different oil globules 

react with each other on heating through formation of disulphide bonds 

(Dickinson, 2001). Coalescence and formation of larger oil globules was also 

observed in the WPH-HE emulsion and this mechanism often occurs in 

conjunction with flocculation (Raikos, 2010; Tcholakova et al., 2006), where 

the interfacial film between oil globules ruptures and the globules merge to 

form larger oil globules (Tcholakova et al., 2006; Ye et al., 2004). Formation 

of a dense protein network with pools of oil trapped within it, visible in the 

heat treated WPH-HE emulsion, is a consecutive step in the thermal 

destabilisation process that follows bridging flocculation and coalescence 

(Lam and Nickerson, 2013). With prolonged exposure to high temperature, 

interactions between proteins/peptides at interfaces of different oil globules 

and between proteins/peptides at interfaces and serum proteins/peptides 

grow stronger forming a cohesive protein network (as seen in Fig. 6.4 a3-

right). No changes in the microstructure of the WPH-CE emulsion after heat 

treatment at 100°C for 15 min (Fig. 6.4 b2, b3) indicated that the emulsion was 

stable to the heating process. 

6.4. Discussion 

The stability of the emulsions to thermal processing under controlled 

conditions (i.e., temperature, heating/cooling rate and shear rate) was found 

to be markedly different for emulsions stabilised by the different protein 

ingredients; the observed order of the heat stability (least-to-most stable) was 

WPHE<WPIE<<WPH-HE<<<WPH-CE. Results presented in this work (1) 

identified differences in destabilisation mechanisms between emulsions 

formed with intact and hydrolysed whey proteins and (2) demonstrated that 

modification of hydrolysed whey protein/peptides by conjugation with MD 

gave an ingredient with superior thermal stability in infant formula-based 

O/W emulsion systems. It was also shown that pre-heating of the hydrolysed 

whey protein ingredient improved thermal stability of emulsions formed 

therefrom. 
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Clear differences in destabilisation behaviour were observed for emulsions 

prepared using intact (WPIE) and hydrolysed (WPHE) whey protein as 

evidenced by the magnitude of viscosity increase of emulsions upon 

destabilisation (Fig. 6.3), final viscosity (Table 6.4) and protein 

particle/aggregate size and physical appearance (Fig. 6.2) of destabilised WPIE 

and WPHE emulsions. These results demonstrate that formation of a coarse 

protein network or formation of a large number of relatively small (10 to 400 

µm) protein aggregates/oil particles are the final stages of thermal 

destabilisation of intact (WPIE) and hydrolysed (WPHE) whey protein-based 

emulsions, respectively. Denaturation and aggregation of intact whey protein 

involve a number of sequential stages such as unfolding, association (non-

covalent followed by covalent bonding), propagation (i.e., formation of 

polymers) and termination (Mulvihill and Donovan, 1987; Oldfield, Singh, 

Taylor and Pearce, 1998). The differences outlined above in the nature of 

thermally-induced destabilisation observed in WPIE and WPHE emulsions 

indicated that the propagation stage is limited and formation of a large number 

of small aggregate complexes is favoured, over extensive protein network 

formation (as observed in intact protein systems) in the WPH-stabilised 

emulsions. According to a study by Surroca, Haverkamp and Heck (2002), 

during the thermal denaturation and aggregation of intact whey protein, 

aggregates need to reach their maximum concentrations before the 

polymerisation stage can occur. However, in a system containing hydrolysed 

protein, the termination stage can take place before polymerisation due to 

blocking of thiol groups (-SH) by peptides in the surrounding serum phase and 

on the interfaces of nearby oil globules. Successful efforts to limit aggregation 

of whey proteins by blocking –SH groups have been documented (Sakai, 

Sakurai, Sakai, Hoshino and Goto, 2000; Wijayanti, Bansal, and Deeth, 2014).  

The results of this study have shown that the role of serum proteins in 

mediating aggregation and destabilisation of WPH-stabilised emulsions can 

be diminished by preheating of the protein ingredient prior to emulsion 

formation. This is clear from the current study where improved thermal 

stability of emulsions stabilised by hydrolysed whey protein was evident where 

the level of free thiol groups had been reduced through pre-heating. Similarly, 
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previous studies have shown that (1) serum (non-adsorbed) proteins play a 

major role in aggregation and destabilisation of whey protein-stabilised 

emulsions (Euston et al., 2000; Hunt and Dalgleish, 1995), (2) blocking 

potential reactive sites on proteins/peptides (i.e., hydrophobic or thiol groups) 

allows improvement of heat stability of protein-based systems (Baier and 

McClements, 2001; Rich and Foegeding, 2000; Smulders and Somers, 2012) 

and (3) pre-heating of protein reduces the number of reactive groups – mainly 

free thiol groups (Liang, Patel, Matia-Merino, Ye, and Golding, 2013; Livney, 

Corredig, and Dalgleish, 2003; Wijayanti et al., 2014). 

The results of this study have demonstrated that the emulsion stabilised with 

the WPH-C displayed superior stability to thermal processing, where oil 

globule-globule interactions, observed in WPIE, WPHE and WPH-HE 

emulsions, were prevented. It is proposed that primarily steric stabilisation 

and, to a lesser extent, increased ζ potential, provided by the protein-

carbohydrate conjugate, limited interactions (i.e., coming in contact and 

subsequent aggregation) between proteins/peptides adsorbed at the interfaces 

of different oil globules in the WPH-CE emulsion conferring superior stability 

compared with WPI or WPH ingredients. Limiting interactions between oil 

globules in emulsions is one of the main strategies to improve stability of these 

systems. An increase in steric stabilisation through adsorption/attachment of 

flexible, hydrophilic macromolecules to the emulsion globules effectively 

limits close contact and subsequent interactions between oil globules 

(Dalgleish 1997). Stabilisation of emulsions with conjugated 

protein/maltodextrin provides the O/W interfacial layer with increased 

thickness and effectively produces a better steric barrier to the oil globules. In 

keeping with this, Wong, Day and Augustin (2011) reported that increased 

steric stabilisation resulting from the thicker interfacial layer of conjugate 

(composed of wheat protein/dextran) gave better emulsion stability. 

Additionally, conjugation has been reported to improve stability of emulsions 

in cases where these systems were subjected to stressed or unfavourable 

conditions; improved heating and freeze-thaw stability of emulsions formed 

with casein/maltodextrin conjugates was reported by O’Regan and Mulvihill 

(2010a) and improvement in long term stability of emulsions stabilised with 
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WPI/dextran conjugates with low ζ potential (i.e., <30 mV) was reported by 

Akhtar and Dickinson (2003). In the current study, combining pre-heating 

with attachment of hydrophilic polysaccharide groups to hydrolysed whey 

protein by Maillard conjugation resulted in a protein-based emulsifier 

characterised by its ability to confer improved thermal stability to infant 

formula type emulsions. 

6.5. Conclusions 

This study showed that heat stability of model infant formula emulsions based 

on hydrolysed whey protein ingredients can be markedly improved by 

modification of the protein ingredient through conjugation with carbohydrate. 

Covalent bonding between proteins/peptides in hydrolysed whey protein and 

maltodextrin produced an ingredient with enhanced performance during 

thermal processing of the model infant formula emulsion where, due to 

increased steric and electrostatic repulsion, interactions between and 

subsequent destabilisation of oil globules during heat treatment were 

supressed. It was also shown that pre-heating of hydrolysed whey protein prior 

to its use in emulsion preparation resulted in enhanced heat stability of the 

emulsion, as a result of a reduction in the level of reactive sites (i.e., free thiol 

groups) through protein-protein interactions. Incorporation of protein-

carbohydrate conjugates in the formulation of nutritional products could 

potentially allow for the displacement (at least partial) of non-protein 

emulsifiers without compromising stability or quality of the product and offers 

potential for application in other nutritional products naturally containing 

hydrolysed whey protein and maltodextrin, such as clinical nutrition products. 
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Abstract 

Model infant formula emulsions containing 15.5, 35.0 and 70.0 g L-1 protein, 

soybean oil and maltodextrin (MD), respectively, were prepared. Emulsions 

were stabilised by whey protein hydrolysate (WPH) + CITREM (9 g L-1), WPH 

+ lecithin (9 g L-1) or WPH conjugated with MD (WPH-MD). All emulsions had 

mono-modal oil droplet size distributions post-homogenisation with mean oil 

droplet diameters (D4,3) of <1.0 μm. No changes in the D4,3 were observed after 

heat treatment (95°C, 15 min) of the emulsions. Accelerated storage (40°C, 10 

d) of unheated emulsions resulted in an increase in D4,3 for CITREM (2.86 μm) 

and lecithin (5.36 μm) containing emulsions. Heated emulsions displayed 

better stability to accelerated storage with no increase in D4,3 for CITREM and 

an increase in D4,3 for lecithin (2.71 μm) containing emulsions. No increase in 

D4,3 over storage was observed for unheated or heated WPH-MD emulsion, 

indicating its superior stability.  
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7.1. Introduction 

The incorporation of whey protein hydrolysates (WPH) with a moderate 

degree of hydrolysis into nutritional formulations tailored for athletes, the 

elderly or infants is increasing due to growing demand for products which 

contain amino acids in a rapidly digestible form. The enhanced gut absorption 

and efficient metabolisation of hydrolysates (Hernández-Ledesma, García-

Nebot, Fernández-Tomé, Amigo, and Recio, 2014) make these ingredients 

particularly useful for consumers seeking to increase the rate of muscle 

synthesis or limit ageing-related muscle loss (Jonker, Deutz, Erbland, 

Anderson, and Engelen, 2014; Pimenta, Abecia-Soria, Auler, and Amaya-

Farfan, 2006). Infant formulae containing moderately hydrolysed WPH are 

not intended for medical purposes in infants suffering from cows’ milk allergy; 

however, these formulae can improve comfort in infants that suffer from 

difficulty digesting intact proteins (Bourlieu et al., 2015; Nguyen, Bhandari, 

Cichero, and Prakash, 2015).  

A common challenge encountered during the preparation of emulsions 

containing hydrolysates is their diminished processing stability (i.e., short 

term storage of unheated emulsions and thermal stability) and shelf life 

stability (i.e., long term storage of heat treated emulsions) compared with 

emulsions containing intact whey protein (Drapala, Mulvihill and O’Mahony, 

2015, 2016; Singh and Dalgleish, 1998; Ye and Singh, 2006). Poor thermal 

stability of WPH-based emulsions is related to the reduced steric hindrance 

between oil globules provided by peptides compared to intact protein (Ye, 

Hemar and Singh, 2004). This reduced steric hindrance increases the 

interactions which occur between oil globules during heating and storage of 

emulsions. In addition, a high number of exposed reactive sites (such as free   

-SH groups) at both the oil/water interface and in the serum phase of WPH-

based emulsions promotes protein/peptide-protein/peptide interactions (i.e., 

mainly through formation of disulphide bridges, -S-S-) resulting in 

flocculation of oil globules (Adjonu, Doran, Torley and Agboola, 2013, 2014; 

Drapala et al., 2016; Singh, 2011; Panyam and Kilara, 1996). 
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Non-protein emulsifiers, such as CITREM (i.e., citric acid esters of 

monoglycerides) or lecithin, are often included in the formulation of 

emulsions to facilitate the formation of small oil globules on homogenisation, 

improve stability of emulsions to thermal processing and reduce creaming 

during storage. Lecithin or CITREM are routinely used in the manufacture of 

infant formulae (IF) which contain hydrolysed milk proteins, where they are 

used at up to 5 and 9 g L-1, respectively (Codex Alimentarius Commission, 

1981; McSweeney, 2008). These low molecular weight emulsifiers adsorb 

rapidly at the oil/water interface during homogenisation allowing the 

formation of small oil globules. They also interact with proteins adsorbed at 

the interface and in the serum phase reducing the availability of thiol groups 

at the oil/water interface and in the serum phase and limiting interactions 

between oil globules during heating (Euston, Finnigan, and Hirst, 2001; 

McCrae, 1999; McSweeney, Healy, and Mulvihill, 2008). CITREM and lecithin 

contain charged domains (anionic and zwitterionic, respectively) within their 

structures and they confer a charge to the surface of oil globules upon 

adsorption. Charged molecules promote electrostatic stabilisation of 

emulsions and the impact of globule charge on thermal stability of IF type 

emulsions have been well documented (Kasinos et al., 2013; McCarthy, Kelly, 

O’Mahony, and Fenelon, 2014).  

Modification of protein by conjugation with carbohydrate (i.e., maltodextrin, 

dextran or pectin) by exploiting the early/intermediate stages of the Maillard 

reaction has been shown to improve the functional properties of different 

proteins. Conjugation of casein with maltodextrin has been reported to 

improve solubility, foaming and emulsification properties (Jiang and Zhao, 

2011), freeze-thaw stability (O’Regan and Mulvihill, 2010a), encapsulation 

efficiency (O’Regan and Mulvihill, 2010b) and emulsion stability at acidic pH 

(Shepherd, Robertson, and Ofman, 2000). Conjugation of whey proteins with 

pectin improved emulsifying properties at neutral pH (Xu, Wang, Jiang, Yuan, 

and Gao, 2012) and acidic pH (Neirynck, Van der Meeren, Bayarri Gorbe, 

Dierckx, and Dewettinck, 2004); moreover, protection of sensitive, oil soluble 

compounds against oxidation was enhanced using whey protein-pectin 

conjugates (Xu et al., 2012). Modification of protein/peptides present in WPH 
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by conjugation can help alleviate issues encountered with stability in 

emulsions stabilised by hydrolysates; indeed, improved stability of model 

hydrolysed IF emulsions to thermal processing on conjugation has already 

been reported (Drapala et al., 2016). 

The objective of this study was to identify addition levels of CITREM and 

lecithin required to produce emulsions with thermal stability similar to that 

measured for a WPH-maltodextrin (WPH-MD) stabilised emulsion. The 

performance of WPH-MD conjugates as emulsifiers in IF type emulsions will 

be compared with the performance of WPH plus added non-protein 

emulsifiers (i.e., CITREM and lecithin; added at the predetermined levels) 

used commercially in such products to determine if such conjugates can 

replace (at least partially) non-protein emulsifiers traditionally used in these 

products. 

7.2. Materials and Methods 

7.2.1. Materials 

Whey protein hydrolysate (WPH; 8.0% degree of hydrolysis, DH) was 

obtained from Carbery Food Ingredients Ltd (Ballineen, Ireland) and had 

86.3% protein (IDF Standard  20-1, 2014), 5.0% moisture (IDF Standard 26, 

2004), 2.8% ash (IDF Standard 90, 1979), 0.7% fat (IDF Standard 9C, 1987) 

and 5.2% lactose (determined by difference). Maltodextrin (MD; Maldex 120 

with a dextrose equivalent value of 12) was obtained from Corcoran Chemicals 

Ltd. (Dublin, Ireland) and had moisture and ash contents of <5.0% and <0.2%, 

respectively. The majority of the MD population had an average molecular 

weight of 5.9 kDa as determined by multiangle laser light scattering with size 

exclusion chromatography (Lucey, Srinivasan, Singh, and Munro, 2000). 

Soybean oil was obtained from Frylite Group Ltd (Strabane, UK). CITREM 

(Grindsted® CITREM N12) was obtained from Dupont Nutrition Biosciences 

ApS (Braband, Denmark) and de-oiled powdered soybean lecithin (Ultralec® 

P) was obtained from ADM (Decatur, IL, USA). All other chemicals and 

reagents used in the study were of analytical grade and sourced from Sigma-

Aldrich (Dublin, Ireland). 
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7.2.2. Stock protein solutions and conjugation 

A stock protein solution (50.0 g L-1, protein; pH 6.8) was prepared with WPH 

as detailed by Drapala et al. (2016). In brief, the WPH-MD conjugate solution 

was prepared by heating a WPH-maltodextrin solution (50.0 g L-1 protein, 

50.0 g L-1 maltodextrin; pH 8.2) at 90°C for 8 h (Mulcahy, Mulvihill, and 

O’Mahony, 2015; Mulcahy, Park, Drake, Mulvihill, and O’Mahony, 2016). The 

stock protein solution (non-conjugated) was subsequently used to formulate 

emulsions containing different levels (0-9 g L-1) of either CITREM or lecithin 

and the stock conjugate solution was used to formulate WPH-MD conjugate-

based emulsions. 

7.2.3. Preparation of emulsions 

Model infant formula emulsions containing 15.5, 35.0 and 70.0 g L-1 protein, 

oil and total maltodextrin, respectively, were prepared from stock WPH or 

stock WPH-MD conjugate solutions essentially as detailed by Drapala et al. 

(2015, 2016). Non-protein emulsifiers (CITREM or lecithin) were added to 

emulsions prepared from the stock WPH solution. For emulsions containing 

CITREM, the CITREM (0-9 g L-1; dissolved in ultrapure water at 65°C) was 

added to the aqueous phase prior to mixing with the oil phase. For emulsions 

containing lecithin, the lecithin (0-9 g L-1; dissolved in soybean oil at 65°C) 

was added to the oil phase prior to mixing with the aqueous phase. For 

emulsions containing WPH-MD conjugate, all protein was provided by the 

stock conjugate solution and the MD was added to reach the target 

concentration (i.e., 70 g L-1). Aqueous and oil phases of emulsions were mixed 

together at 50°C and then pre-homogenised with an Ultra-Turrax (T25, IKA-

Werke GMBH and Co. KG, Staufen, Germany) at 10,000 rpm for 2 min 

followed by two stage homogenisation (double pass) at 15 and 3 MPa, using a 

valve homogeniser (APV GEA Niro-Soavi S.p.A., Parma, Italy) at 50°C. 

Following homogenisation, the pH of emulsions was measured and, if needed, 

readjusted to pH 6.8 with 0.1 N HCl or 0.1 N KOH. Emulsion aliquots used for 

accelerated stability testing had sodium azide (0.50 g L-1) added to prevent 

microbial growth. 
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7.2.4. Fat globule size distribution and zeta potential 

Fat globule size distribution (FGSD) of the emulsions was measured using a 

laser light diffraction unit (Mastersizer 3000, Malvern Instruments Ltd, 

Malvern, UK) equipped with a 300 RF (reverse fourier) lens, an LED light 

source (λ of 470 nm) and a He-Ne laser   (λ of 633 nm). A polydisperse model 

with particle and dispersant refractive index of 1.46 and 1.33, respectively, 

were selected for data analysis (McCarthy et al., 2012). Samples were 

introduced to the mixing chamber and dispersed in ultrapure water until a 

laser obscuration of 5-8% was reached and three readings were taken for each 

sample. FGSD was measured within 1 h post homogenisation (d 0), 

immediately post heating and after 3, 6, 8 and 10 d of accelerated storage at 

40°C. The zeta potential (ζ) of oil globules in emulsions was measured using a 

Zetasizer Nano-ZS (Malvern Instruments), as detailed by Drapala et al. (2016). 

7.2.5. Screening of thermal stability of emulsions 

Model IF emulsions stabilised by WPH-MD conjugate, WPH + CITREM (0-9 

g L-1) or WPH + lecithin (0-9 g L-1) were heat treated at 95°C for 15 min. 

Thermal stability of these emulsions was assessed by changes in FGSD of 

emulsions after heat treatment as compared to the FGSD measured 

immediately post homogenisation.  The heat treatment (95°C for 15 min using 

an oil bath) was used to initially screen the thermal stability of emulsions 

containing lower levels of non-protein emulsifiers (0-5 g L-1; CITREM or 

lecithin) in order to identify very unstable samples. Emulsions stabilised by 

WPH + CITREM or WPH + lecithin (5-9 g L-1) were heated (fresh aliquots) 

under controlled conditions with an AR-G2 controlled stress rheometer (TA 

Instruments, Crawley, UK) equipped with a starch pasting cell (SPC). The 

thermal treatment applied to the samples was as detailed by Drapala et al. 

(2016) and involved heating to 95°C, holding for 15 min at peak temperature 

and cooling to 15°C with constant shear-rate (15 s-1). Apparent viscosity was 

recorded at 1 s intervals during heating, holding and cooling. Emulsion 

samples were recovered after all heat treatments   (i.e., from oil bath tubes and 

from the SPC) and their thermal stability was assessed by visual observation 

and analysis of FGSD, as described in Section 7.2.4. Addition levels of CITREM 
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and lecithin required to obtain thermal stability equivalent to that measured 

for the WPH-MD sample were identified. The three emulsion systems 

evaluated in the remainder of this study are referred to as conjugate-based 

emulsion (CONe), CITREM containing emulsion (CITe) and lecithin 

containing emulsion (LECe). 

7.2.6. Assessment of properties of emulsions 

7.2.6.1. Determination of composition of emulsions 

The chemical composition (i.e., total solids, protein, ash and carbohydrate 

content) of the CONe, CITe, and LECe emulsions was determined using the 

methods detailed for the WPH ingredients in Section 7.2.1. The fat content of 

emulsions was determined using the Gerber method (IDF Standard 105, 

2008). The carbohydrate content of emulsions was calculated by difference.  

7.2.6.2. Determination of apparent viscosity of emulsions 

Viscosity of CONe, CITe and LECe emulsions post homogenisation and post 

heating at 95°C for 15 min was measured using a rotational viscometer (Haake 

RotoVisco 1 Rotational Viscometer, Thermo Fisher Scientific, MA, USA) 

equipped with a cylindrical double gap cup and rotor (DG43, Thermo Fisher 

Scientific, MA, USA) as described by Mulcahy et al. (2015). The average 

apparent viscosity at 300 s-1 of each emulsion was determined at 20°C (± 

0.1°C). 

7.2.6.3. Accelerated storage stability testing of emulsions 

To determine stability of unheated CONe, CITe and LECe emulsions to 

accelerated storage, aliquots (50 mL) were transferred to plastic containers, 

sealed and incubated at 40°C. FGSD of the emulsions was measured after 3, 6, 

8 and 10 d storage. A parallel experiment was carried out to determine the 

stability of heated (95°C for 15 min) CONe, CITe and LECe emulsions to 

accelerated storage (10 d at 40°C). 
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7.2.6.4. Accelerated creaming stability testing of emulsions 

Creaming velocities of unheated and heated CONe, CITe and LECe emulsions 

were measured using an analytical centrifuge (LUMiSizer, L.U.M. GmbH, 

Berlin, Germany). The principle of analysis by LUMiSizer has been detailed by 

Lerche and Sobisch (2011). Stability of emulsions to creaming was determined 

at 23°C and 563 g for 8.5 h as detailed by Shimoni, Shani Levi, Levi Tal and 

Lesmes (2013). Creaming velocity was calculated from front tracking profiles 

as detailed by Lerche and Sobisch (2011).  

7.2.6.5. Microstructural analysis of emulsions 

The microstructural analysis of emulsions was performed using a Leica TCS 

SP Confocal Laser Scanning Microscope (Leica Microsystems, Heideberg 

GmbH, Mannheim, Germany) as detailed by Drapala et al. (2015). In brief, 

protein and lipid were fluorescently labelled with Nile Blue dye and 

visualisation in emulsions was carried out using He-Ne (633 nm) and Ar (488 

nm) lasers for protein and lipid, respectively. The observations were 

performed using a 63× oil immersion objective. At least three specimens of 

each emulsion were observed to obtain representative micrographs of 

samples. 

7.2.7. Statistical analysis 

All emulsions were prepared in three independent trials and all measurements 

were carried out in at least duplicate. Analysis of variance (ANOVA) was 

carried out using the Minitab® 16 (Minitab Ltd, Coventry, UK, 2010) statistical 

analysis package. The Tukey HSD test was used to obtain grouping 

information. The level of significance was determined at P < 0.05. 

7.3. Results 

7.3.1. Influence of emulsifier type and concentration on thermal 

stability of emulsions 

Thermal stability results for emulsions stabilised by WPH and different levels 

(0-9 g L-1) of CITREM or lecithin and by the WPH-MD conjugate are shown in 
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Table 7.1. Emulsions containing low to intermediate levels of lecithin (1-5 g L-

1) displayed poor stability to thermal processing at 95°C for 15 min. Extensive 

heat-induced coagulation was observed in the emulsion containing 1 g L-1 

lecithin, where protein/peptide aggregates and a distinct serum phase were 

observed in the sample after heat treatment. No coagulation was observed at 

lecithin addition levels > 1 g L-1; however, destabilisation of emulsions 

containing low to intermediate levels (2-5 g L-1) of lecithin was observed, as 

evidenced by the presence of relatively large aggregates in the emulsions after 

heating. Increasing the lecithin concentration in emulsions improved their 

thermal stability and, at ≥ 5 g L-1 lecithin, no extensive destabilisation was 

observed. Emulsions containing ≥ 5 g L-1 lecithin were heat treated at 95°C for 

15 min in the SPC. Similar to the emulsions heated in the oil bath, the 

destabilising effects of thermal processing decreased as the level of lecithin 

increased. The presence of aggregates in the heated emulsions was observed 

at up to 7 g L-1 lecithin addition. Emulsions containing ≥ 8 g L-1 lecithin had 

mean volume diameter of oil globules < 1 µm, which is generally an indicator 

of a physically stable emulsion (McCarthy et al., 2012; Drapala et al., 2015). 

Lecithin-containing emulsions that were heated in the SPC displayed a 

tendency to foul the cell (i.e., deposit a protein/oil layer on the metal surface 

they were in contact with during thermal processing). Fouling decreased with 

increasing lecithin level; however, it was still observed (although to a limited 

degree) even at the highest level (i.e., 9 g L-1) of lecithin addition (Table 7.1). A 

lecithin addition level of 9 g L-1 was identified as being able to provide best 

thermal stability to the WPH-based emulsion, essentially equivalent to that of 

an emulsion stabilised by the WPH-MD conjugate.  

Emulsions containing low (1-4 g L-1) levels of CITREM displayed poor stability 

to heating at 95°C for 15 min and coagulation was observed in emulsions 

containing 1 and 2 g L-1 CITREM. The presence of large aggregates without 

coagulation was observed in emulsions containing 3 and 4 g L-1 CITREM and 

the D4,3 of particles decreased by ~50% on increasing the level from 3 to 4            

g L-1 (Table 7.1). Similar to lecithin-containing emulsions, samples containing 

5-9 g L-1 CITREM were heated in the SPC. Formation of aggregates was 

observed in emulsions containing up to 7 g L-1 CITREM; however, unlike 
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Table 7.1. Influence of lecithin or CITREM addition level on stability of model whey protein hydrolysate (WPH)-based infant formula 

(IF) emulsions, pH 6.8 containing 1.55, 3.50 and 7.00% protein, fat and carbohydrate, respectively, on heat treatment at 95°C for 15 

min using an oil bath or a rheometer compared to the stability of a model IF emulsion stabilised by WPH-maltodextrin (WPH-MD) 

conjugate. 

 

a-b Heat treatment method: a) oil bath, b) rheometer equipped with a starch pasting cell (SPC) 

1 D4,3; mean volume diameter of particles as measured by laser diffraction 

2 Symbols: ‘+’ and ‘-‘ describe either presence or absence, respectively, of the corresponding mapping parameters in an emulsion 

sample after the heat treatment; higher number of ‘+’ refers to higher magnitude of the corresponding parameter 

3 NA = not applicable

Mapping 

parameter  
WPH + Lecithin (g L-1)   WPH + CITREM (g L-1)   

WPH-MD 

conjugate 

1a 2a 3a 4a 5ab 6b 7b 8b 9b   1a 2a 3a 4a 5ab 6b 7b 8b 9b     

Coagulation +2 - - - - - - - -  + + - - - - - - -  - 

Aggregation NA3 +++ ++ ++ ++ + + - -  NA NA +++ ++ + + + - -  - 

Fouling NA NA NA NA +++ +++ ++ ++ +  NA NA NA NA - - - - -  - 

D4,3
1 (µm) NA 117 96.7 73.7 17.5 3.42 1.22 0.96 0.90   NA NA 119 58.8 3.99 0.98 0.81 0.70 0.62   0.79 
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lecithin-containing emulsions, no fouling was observed in the SPC at any 

CITREM addition level. The emulsion containing 9 g L-1 CITREM displayed 

the highest thermal stability, the stability being similar to that observed for the 

emulsion stabilised by the WPH-MD, hence this level of the emulsifier was 

selected for subsequent analyses. 

Model infant formula emulsions stabilised by the WPH-MD conjugate, WPH 

+ CITREM    (9 g L-1) or WPH + lecithin (9 g L-1) displayed good thermal 

stability to heating at 95°C for 15 min in the SPC. The effects of the heat 

treatment on selected emulsion properties were assessed by determining 

FGSD, apparent viscosity, stability to creaming, ζ potential and 

microstructural properties. Emulsions stabilised by WPH-MD conjugate, 

WPH + CITREM (9 g L-1) and WPH + lecithin (9 g L-1) will subsequently be 

referred to as CONe, CITe and LECe emulsions, respectively, in this study. 

7.3.2. Properties of emulsions 

7.3.2.1. Composition of emulsions 

Compositional analysis of CONe, CITe and LECe emulsions showed that 

measured/calculated levels of protein (15.0, 15.1 and 15.4 g L-1, respectively), 

fat (36.8, 36.7 and 37.3 g L-1, respectively) and carbohydrate (64.5, 70.9 and 

71.1 g L-1, respectively) were sufficiently near target levels. The total solids 

content of the CONe emulsion (117.5 g L-1) was lower than in the CITe and LECe 

emulsions (123.8 and 125.2 g L-1, respectively), due to the presence of non-

protein emulsifiers in addition to the target protein content in the CITe and 

LECe emulsions. 

7.3.2.2. Size and charge of oil globules in emulsions 

CONe, CITe and LECe emulsions had narrow particle size distributions (Fig. 

7.1) and mean volume diameter (D4,3) of 0.79, 0.62 and 0.72 µm (Table 7.2), 

respectively, immediately post homogenisation. The CONe and CITe emulsions 

displayed good stability to heat treatment at 95°C for 15 min as indicated by 

no significant changes in the D4,3, D3,2 (Sauter mean diameter), Dv,0.5 and Dv,0.9 

(fat globule size in the 50% and 90% quantiles of the distribution, respectively)   
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Figure 7.1. Fat globule size distribution profiles of model whey protein hydrolysate (WPH)-based infant formula emulsions 

stabilised by (A) WPH-maltodextrin conjugate and (B) WPH + CITREM at 9 g L-1 or (C) WPH + lecithin at 9 g L-1 (horizontally, left 

to right) post homogenisation, after heat treatment (95°C x 15 min), after 10 d of storage at 40°C of unheated emulsions and after 10 

d of storage at 40°C of heated emulsions. Large error bars observed for the unheated CITe emulsion after 10 d of storage reflect a large 

variability in the extent of destabilisation of the emulsions, however, the same trend was observed for the sample for all 3 independent 

trials. 
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Table 7.2. Fat globule size distribution and zeta potential (ζ) of model whey protein hydrolysate (WPH)-based infant formula 

emulsions stabilised by WPH-maltodextrin conjugate (CONe), WPH + CITREM (9 g L-1; CITe) or WPH + lecithin (9 g L-1; LECe) post 

homogenisation, post heating at 95°C for 15 min and after an accelerated storage at 40°C for 10 d post homogenisation of unheated 

and heated emulsions. 

 

1-4 Fat globule size distribution parameters: 1) D4,3, volume mean diameter; 2)  D3,2, Sauter mean diameter; 3)  Dv,0.5, fat globule 
size in the 50% quantile of the distribution; 4)  Dv,0.9, fat globule size in the 90% quantile of the distribution. 

5 n.d. = not determined  

(a-b) FGSD values for a given emulsion within a column not sharing a common superscript differed significantly (P < 0.05) 

(A-B) ζ potential, apparent viscosity and creaming velocity values for a measurement stage for each emulsion within a column not 
sharing a common superscript differed significantly (P < 0.05) 

Emulsion Measurement stage Fat globule size parameter (µm) ζ Potential
(mV)

Apparent 
viscosity
(mPa.s)

Creaming 
velocity
(mm d-1)D4,3

1 D3,2
2 Dv,0.5

3 Dv,0.9
4

CONe Post homogenisation 0.79  0.02a 0.57  0.01a 0.67  0.02a 1.43  0.03a - 53.3  0.54A 1.86  0.19A 0.28  0.03A

Heated at 95 C, 15 min 0.79  0.01a 0.57  0.02a 0.66  0.01a 1.44  0.03a - 50.7  0.69A 1.90  0.12A 0.24  0.03AB

Accelerated storage: unheated 0.82  0.02a 0.60  0.02a 0.67  0.02a 1.50  0.04ab n.d.5 n.d. n.d.

Accelerated storage: heated 0.83  0.02a 0.62  0.02a 0.69  0.01a 1.55  0.02b n.d. n.d. n.d.

CITe Post homogenisation 0.62  0.04a 0.49  0.04a 0.54  0.03a 1.07  0.08a - 57.7  0.34B 2.15  0.26A 0.18  0.05B

Heated at 95 C, 15 min 0.62  0.04a 0.49  0.03a 0.54  0.03a 1.07  0.08a - 53.1  0.83A 2.45  0.05B 0.06  0.02C

Accelerated storage: unheated 2.86  1.22b 0.62  0.11a 0.67  0.15a 7.81  4.84a n.d. n.d. n.d.

Accelerated storage: heated 0.88   0.14a 0.55  0.04a 0.60  0.03a 1.31  0.06a n.d. n.d. n.d.

LECe Post homogenisation 0.72  0.00a 0.52  0.04a 0.58  0.04a 1.21  0.11a - 52.3  0.83A 2.01  0.21A 0.22  0.05AB

Heated at 95 C, 15 min 0.90  0.11a 0.62  0.10a 0.72  0.07b 1.65  0.26a - 49.7  2.13A 2.20  0.03AB 0.17  0.05B

Accelerated storage: unheated 5.36  1.98b 0.51  0.01a 0.53  0.01a 8.29  9.22a n.d. n.d. n.d.

Accelerated storage: heated 2.71  0.75ab 0.64  0.03a 0.72  0.03b 4.98  1.46a n.d. n.d. n.d.
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and no change in the FGSD profiles post heating compared to post 

homogenisation (Table 7.2; Fig. 7.1). A limited increase in the Dv,0.5 and 

broadening of the size distribution profile was observed for the LECe emulsion 

post heating at 95°C for 15 min (Table 7.2; Fig. 7.1, C2). However, no 

significant changes were measured for all the other FGSD parameters and the 

D4,3 of the LECe emulsion remained < 1 µm after heating, also indicating good 

heat stability. Zeta potential values showed that oil globules in freshly 

prepared CITe emulsion had significantly higher net negative charge                       

(-57.7 mV) compared to the CONe (-53.3 mV) and LECe (-52.3 mV) emulsions    

(Table 7.2). Heating at 95°C for 15 min reduced the ζ of oil globules in 

emulsions by 4.6, 2.6 and 2.6 mV for CITe, CONe and LECe emulsions, 

respectively. No significant differences in the ζ were found between heated 

CITe, CONe and LECe emulsions. 

7.3.2.3. Apparent viscosity of emulsions 

No significant differences in viscosity were observed for CONe, CITe and LECe 

emulsions immediately post homogenisation (Table 7.2). Viscosity of all 

emulsions increased on heat treatment at 95°C for 15 min. Viscosity of the 

heated CITe emulsion was found to be significantly higher than the viscosity of 

heated CONe emulsion; no significant differences were observed between 

heated CONe and LECe and between heated CITe and LECe emulsions. 

7.3.2.4. Accelerated storage stability of emulsions 

The unheated CONe emulsion displayed excellent stability over the 10 d 

accelerated storage at 40°C with no changes observed in the D4,3, D3,2 and Dv,0.5 

or in the FGSD profiles (Fig. 7.1, A1 and A3; Table 7.2); a marginal increase 

(i.e., 0.07 µm) in the Dv,0.9 was observed for the unheated CONe emulsion on 

accelerated storage. An increase in D4,3 to 2.86 µm and a shift in the size 

distribution profile from monomodal to bimodal (Fig. 7.1, B1 and B3;           

Table 7.2) was observed for the unheated CITe emulsion after 10 d of 

accelerated storage. Particle size parameters D3,2, Dv,0.5 and Dv,0.9 for the 

unheated CITe emulsion also increased after storage compared to post 

homogenisation; however, the increases were not found to be significant due 

to large standard errors observed for the stored emulsion (Table 7.2). The 
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unheated LECe emulsion displayed the least stability to accelerated storage; 

D4,3 increased to 5.36 µm and the presence of a small number of large             

(~30 µm) oil globules was observed on the FGSD profile (Fig. 7.1, C3). An 

increase in Dv,0.9 was observed for the unheated LECe emulsion after the 

storage compared to post homogenisation; however, the difference was not 

found to be significant due to large standard error observed for the stored 

emulsion (Table 7.2). Additionally, a complete phase separation, evidenced by 

the presence of free oil floating on top of the emulsion in the container, was 

observed as early as 6 d into the storage of the unheated LECe emulsion. No 

phase separation was observed for either the unheated CONe or CITe 

emulsions over the 10 d of storage at the accelerated conditions. 

The stability of heated (95°C for 15 min) emulsions to accelerated storage       

(10 d at 40°C) was also determined and the results were similar to the 

unheated systems. A marginal increase in the D4,3, D3,2 Dv,0.5 and Dv,0.9 were 

measured for the heated CONe and CITe emulsions after 10 d storage compared 

to FGSD values immediately after heat treatment (Table 7.2). No differences 

in the FGSD profiles were observed for the heated CONe emulsion after the 

storage compared to post heating (Fig. 7.1, A2 and A4). A marginal broadening 

of the FGSD profile was observed for the heated CITe emulsion after 10 d 

storage compared to post heating (Fig. 7.1, B2 and B4). Following the trend 

observed for the unheated emulsions, the biggest changes on accelerated 

storage were observed for the heated LECe emulsion. Large (~20 µm) oil 

globules were present in the heated LECe emulsion after 10 d storage (Fig. 7.1, 

C4). The D4,3 and Dv,0.5 for the heated LECe emulsion increased after the 10 d 

of storage compared to after heat treatment; however, this increase was not 

found to be significant due largely to variability in data observed for D4,3 and 

Dv,0.9 (Table 7.2). No differences were found in the D3,2 and Dv,0.5 after the 

accelerated storage compared to values measured immediately after the heat 

treatment. Interestingly no free oil was observed for the heated LECe emulsion 

after 10 d storage. 
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7.3.2.5. Accelerated creaming stability of emulsions 

Creaming velocity measured immediately post homogenisation was highest 

for the CONe emulsion followed by the LECe and CITe emulsions (Table 7.2). 

However, all emulsions displayed creaming velocity below 1 mm d-1, which is 

considered an indicator of good stability to creaming in oil in water (O/W) 

emulsions (Dickinson 1992; McClements 1999). A limited decrease in the 

creaming velocity was observed for the CONe and LECe emulsions as a result 

of the heat treatment (95°C for 15 min) (Table 7.2); a significant (P < 0.05) 

decrease was observed for the CITe emulsion after heating. 

7.3.2.6. Microstructural analysis of emulsions 

Microstructural analysis of the emulsions showed that all samples had fine and 

uniformly distributed oil globules immediately post homogenisation (Fig. 7.2). 

Similarly, a homogenous distribution of small (~ 1 µm) oil globules was 

observed in all emulsions after the heat treatment at 95°C for 15 min. 

Microstructural analysis showed that the heat treatment resulted in an 

increased number of protein aggregates/complexes in the serum phase of the 

emulsions; this observation was especially pronounced in the CITe emulsion 

(Fig. 7.2 B, panel 2).  

Pronounced differences in the microstructure were observed between 

unheated CONe, CITe and LECe emulsions after the 10 d storage at 40°C. No 

changes in the microstructure were observed for the unheated CONe emulsion 

after 10 d storage compared to post homogenisation. Relatively large (i.e., 5-

10 µm) oil globules were present in the unheated CITe emulsion and still larger 

globules (i.e., 10-20 µm) in the unheated LECe emulsion (Fig. 7.2 B, panel 3; 

and C, panel 3, respectively) after 10 d storage. Additionally, large (1-2 µm) 

protein complexes were observed in the unheated CITe emulsion after 10 d of 

storage at 40°C.  

Results for the accelerated storage of the heated CONe emulsion showed no 

evident increase in the size of oil globules and no obvious differences in the 

microstructure of the emulsion compared to post homogenisation (Fig. 7.2 A 

panel 4). The heated CITe emulsions also displayed a good stability to 
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accelerated storage and no evident changes resulting from the storage were 

observed in the heated CITe emulsion (Fig. 7.2 B, panel 4). Large (i.e., 5-15 µm) 

oil globules were observed for the heated LECe emulsion after 10 d storage at 

40°C (Fig. 7.2 C, panel 4).  

 

Figure 7.2. Confocal laser scanning microscopy images of model whey 

protein hydrolysate (WPH)-based infant formula emulsions stabilised by (A) 

WPH-maltodextrin conjugate and (B) WPH + CITREM at 9 g L-1 or (C) WPH 

+ lecithin at 9 g L-1 (horizontally, left to right) post homogenisation, after heat 

treatment (95°C x 15 min), after 10 d of storage at 40°C of unheated emulsions 

and after 10 d of storage at 40°C of heated emulsions. Emulsions were labelled 

with Nile Blue and the micrographs show distribution of oil globules (green) 

and protein particles (red). Scale bar = 10 µm. 

7.4. Discussion 

The results presented in the current study show that the WPH-MD conjugate 

conferred excellent stability to IF type emulsion products containing 

hydrolysed whey protein. Emulsions stabilised by the WPH-MD conjugate 

displayed the greatest stability to thermal processing (95°C for 15 min) and 
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accelerated storage (40°C for 10 d), in both unheated and heated emulsions. 

There were marginal or no changes in the size distribution of oil globules in 

the WPH-MD conjugate stabilised emulsion, compared to emulsions 

stabilised by WPH + lecithin or WPH + CITREM (Fig. 7.1 and 7.2, Table 7.2). 

The superior stability of the CONe emulsion can be attributed to the ability of 

the WPH-MD conjugate to enhance steric stabilisation of oil globules in an 

emulsion system. Upon adsorption of the surface active WPH-MD conjugate 

at the interface of oil globules during homogenisation, the carbohydrate, a 

hydrophilic component of the conjugate, protrudes into the serum phase of the 

emulsion, in effect, increasing thickness of the interfacial layer, conferring 

enhanced steric stabilisation and limiting interactions between oil globules 

(Kasran, Cui, and Goff, 2013; Wong, Day, and Augustin, 2011). Additionally, it 

is proposed that the covalent attachment of the MD to WPH reduces the 

potential of the interfacial protein/peptide-MD layer to interact with 

protein/peptides in the serum. This is due to a physical restriction of access to 

the interfacial protein/peptides that are in close proximity to the covalently 

attached carbohydrate (i.e., space interference). Such space interference can 

effectively improve thermal stability of WPH-based emulsions, where 

protein/peptide mediated bridging flocculation is a common processing 

challenge (Dickinson 2001; Drapala et al., 2016; McSweeney, Mulvihill, and 

O’Callaghan, 2004; Ye and Singh, 2006). 

WPH-MD conjugates can be used as an alternative ingredient for stabilizing 

WPH-based emulsions where the addition of non-protein emulsifiers (i.e., low 

molecular weight surfactants like CITREM and lecithin) can be, at least 

partially, replaced. Thus, competitive destabilisation, often observed in 

systems containing protein and low molecular weight surfactants, could be 

avoided (Kaltsa, Paximada, Mandala and Scholten, 2014; Wilde, Mackie, 

Husband, Gunning and Morris, 2004). This destabilisation, which takes place 

during storage of emulsions containing protein/peptides and low molecular 

weight surfactants, can result in a non-continuous interfacial layer with certain 

regions dominated by protein/peptides and others by the surfactant (Drapala 

et al., 2015). Such unordered structure of the interface can in effect promote 

coalescence (Tirok, Scherze and Muschiolik, 2001) and, under particularly 
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adverse conditions, result in phase separation. Hofman and Stein (1991) and 

Mezdour, Lepine, Erazo-Majewicz, Ducept and Michon (2008) have reported 

a detrimental effect of lecithin on emulsion stability, which was linked to 

reduced interfacial tension and, effectively, and decreased rigidity and 

strength of the interfacial layer. Coalescence, evidenced by the presence of 

large oil globules, was observed in the unheated CITe and unheated and heated 

LECe emulsions, while both the unheated and heated CONe emulsions 

displayed resistance to coalescence during accelerated storage. 

The different extents of emulsion instability observed for unheated emulsions 

containing the low molecular weight surfactants CITREM or lecithin can be 

explained by the ability of the ionic surfactant CITREM to interact and form 

ternary complexes with polysaccharides and protein (Antipova, Semenova, 

Belyakova, Il’in, 2001; McSweeney 2008; Semenova, Myasoedova and 

Antipova, 2001) (Fig. 7.2 B). Formation of such complexes may have curtailed 

the mobility of the CITREM in the serum phase during storage and limited its 

role in the competitive destabilisation at the emulsion interfaces, thus, 

enhancing the stability of the CITREM containing emulsion compared to the 

lecithin containing emulsion. A positive effect of the ternary complexes formed 

by CITREM and polysaccharides-protein on the emulsion stability was 

observed when the emulsions were heated. It is proposed that on heating, 

formation of the complexes and limited protein/peptide aggregation, provide 

a synergistic stabilising effect; the presence of these combined complexes and 

aggregates at the surfaces of oil globules may have contributed to steric 

stabilisation. Additionally, the number of CITREM molecules in the serum 

phase, that would potentially be available to displace protein/peptides at the 

interfaces, is decreased. 

Electrostatic repulsion also has a role to play in stabilisation of oil globules in 

O/W emulsions against undesirable globule-globule interactions. 

Modification of WPH by conjugation with MD affects the charge on 

proteins/peptides as positively charged ε-amino groups of the lysine residues 

are blocked by the covalently attached MD (Acedo-Carrillo et al., 2006; Liu, 

Ru, and Ding, 2012). It has been shown by Drapala et al. (2016) that oil 

globules in emulsions stabilised by a WPH-MD conjugate displayed greater 
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negative charge compared to those stabilised by WPH alone. The interactions 

between protein at the emulsion interfaces and protein in the emulsion serum 

phase have been widely reported and reviewed (Raikos, 2010); these 

interactions affect not only the structural arrangement at the interfaces but 

also impact on the charge of the oil globules. The results presented in the 

current study showed that the initial differences in the ζ between CONe, CITe 

and LECe emulsions measured post homogenisation were diminished after 

heat treatment (Table 7.2). Reported reduction in the ζ of oil globules in all 

emulsions as a result of heat treatment can be explained by interactions 

between proteins/peptides at the surface of oil globules and proteins/peptides 

in the serum phase and by a rearrangement of emulsifiers at the interface. The 

CITe emulsions displayed a bigger reduction in ζ after the heat treatment, 

compared to the other emulsions. This indicates increased interactions (i.e., 

through combined complex formation and aggregation) at the oil-water 

interfaces and supports the concept of CITREM-based complexes playing a 

role in steric stabilisation. In the current study, the differences in the ζ of oil 

globules in the heated CONe, CITe and LECe emulsions were insignificant, 

however, major differences in the storage behaviour were observed for these 

emulsions. The best shelf life stability displayed by the CONe emulsion 

compared to the other emulsions was linked directly to the properties of the 

interfacial layer of oil globules in the CONe emulsion with the most effective 

steric hindrance and absence of the competitive destabilisation observed for 

the CITe and LECe emulsions. 

7.5. Conclusions 

The results presented in the current study show that the performance of WPH-

MD conjugates in stabilising model WPH-based IF emulsions was superior to 

that observed for emulsions stabilised by WPH + CITREM (9 g L-1) or WPH + 

lecithin (9 g L-1). The greater thermal and storage stability of the emulsion 

stabilised by the WPH-MD conjugate is attributed to enhanced steric 

stabilisation of oil globules in the emulsion as a result of conjugation. 

Undesirable interactions between oil globules during heat treatment and 

accelerated storage were markedly reduced in the emulsion stabilised by the 

WPH-MD conjugate compared to emulsions stabilised by WPH with CITREM 
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or with lecithin. The novel WPH-MD conjugate emulsifiers can provide a 

valuable and highly functional alternative to the inclusion of non-protein 

emulsifiers in nutritional formulations. 
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Abstract 

The objective of this study was to compare the drying performance and 

physicochemical properties of model infant formula (IF) emulsions containing 

43, 96 and 192 g L-1 protein, oil and maltodextrin (MD), respectively, prepared 

using different emulsifier systems. Emulsions were stabilised using either 

whey protein isolate (WPI), whey protein hydrolysate (WPH; DH 8%), WPH 

+ CITREM (9 g L-1), WPH + lecithin (5 g L-1) or WPH conjugated with 

maltodextrin (DE 12) (WPH-MD). Homogenised emulsions had 32% solids 

content and oil globules with mean volume diameter <1 μm. Powders were 

produced by spray drying with inlet and outlet temperatures of 170 and 90°C, 

respectively, to an average final moisture content of 1.3%. The extent of 

powder build-up on the dryer wall increased in the order; WPH-

MD<<WPH≤WPI<WPH+LEC≤WPH+CIT. The same trend was observed for 

the extent of spontaneous primary powder agglomeration, as confirmed by 

particle size distribution profiles and scanning electron micrographs, where 

the WPH-MD and WPH+CIT powders displayed the least and greatest extent 

of agglomeration, respectively. Analysis of elemental surface composition of 

the powders showed that surface fat, protein and carbohydrate decreased in 

the order: WPH+CIT>WPH+LEC>WPH>WPH-MD>WPI, 

WPI>WPH>WPH-MD>WPH+LEC>WPH+CIT and WPH-MD>WPI>WPH 

>WPH+LEC>WPH+CIT, respectively. Additionally, differences in wettability, 

surface topography and oil globule distribution within the powder matrix and 

in reconstituted powders were linked to the emulsifier system used. Inclusion 

of the WPH-MD conjugate in the formulation of IF powder significantly 

improved drying behaviour and physicochemical properties of the resultant 

powder, as evidenced by lowest powder build-up during drying and greatest 

emulsion quality on reconstitution, compared to the other model formula 

systems.  
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8.1. Introduction 

Protein-based added-value nutritional formulations have been gaining a 

significant share of the global food market over the last decade, especially 

those tailored for athletes, the elderly and infants; the total global market for 

these product types is predicted to exceed 100 billion USD by 2020. 

Formulations for such products generally contain protein (e.g., whey protein), 

oils rich in unsaturated fatty acids (i.e., blends of vegetable oils) and 

carbohydrates (e.g., maltodextrin) as the main components. Whey protein 

hydrolysate (WPH) is often used as a protein source in such nutritional 

formulae due to its desirable amino acid composition, high digestibility and 

rapid absorption in the gut (Hernández-Ledesma, García-Nebot, Fernández-

Tomé, Amigo, and Recio, 2014).  

Modification of proteins via hydrolysis has been extensively studied, with 

reports on improvement in protein functionality in the areas of solubility, 

surface activity, foaming and emulsifying properties available in the scientific 

literature (Agboola and Dalgleish, 1996a, b; Banach, Lin, and Lamsal, 2013; 

Foegeding and Davis, 2011; Kilara and Panyam, 2003). However, 

incorporation of WPH into nutritional formulations such as powdered 

formulae or ready to drink products is often associated with processing and 

shelf life challenges such as protein/peptide-mediated bridging flocculation 

and coalescence, due to reduced steric stabilisation and increased number of 

exposed reactive sites, compared to formulations based on intact whey protein 

(Drapala, Auty, Mulvihill, and O’Mahony, 2016a, b; Euston, Finnigan, and 

Hirst, 2000; Hunt and Dalgleish, 1995). Irrespective of the format of the final 

product (i.e., liquid or powder), the formulations for both physical formats 

have to undergo a number of thermal treatments (e.g., pasteurisation, 

sterilisation, spray drying) as a liquid. Therefore, additional non-protein 

surface active components are often included in the formulation of WPH-

based emulsions in order to improve their processing and shelf life stability; 

these surfactants are usually lipid-based emulsifiers, including lecithin or 

citric acid esters of mono- and di-glycerides (CITREM). 
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Spray drying is one of the most common processes used in the manufacture of 

dairy ingredients and nutritional products; rapid water removal results in 

increased product shelf life, reduced shipping and storage costs and provides 

the consumer with a convenient and stable product. In this complex process, 

multiple factors such as feed characteristics (e.g., composition and rheological 

properties), process parameters (e.g., atomiser type and fines return) and 

external factors (e.g., air humidity, temperature) significantly impact the 

drying performance and the physicochemical properties of the final product. 

The composition (i.e., the type and content of protein, carbohydrate, fat and 

emulsifier, total solids content) and properties (i.e., flow behaviour and 

viscosity) of the emulsion destined for spray drying have a strong influence on 

its drying properties; extensive scientific reports and reviews focusing on the 

effects these factors have on the properties of the resulting powders have been 

published (Adhikari, Howes, Wood, and Bhandari, 2009; Jayasundera, 

Adhikari, Aldred, and Ghandi, 2009; Ji et al., 2016; Kim, Chen, and Pearce, 

2009; Millqvist-Fureby, Elofsson, and Bergenståhl, 2001; Taneja, Ye, Jones, 

Archer, and Singh, 2013; Vega and Roos, 2006; Vignolles, Jeantet, Lopez, and 

Schuck, 2007).  

It is well established that there is a strong relationship between the surface 

composition of powder particles and their drying performance in addition to 

the properties (e.g., cohesiveness, shelf life) of the final product (Kelly, 

O’Mahony, Kelly, and O’Callaghan, 2014; Nijdam and Langrish, 2006; Sadek 

et al., 2015). In the production of high-fat powders, high surface fat content 

can lead to powder stickiness, low powder recovery (i.e., yield) and production 

down-time (i.e., due to powder build-up on the dryer walls) as well as poor 

shelf life and undesirable properties of the final product (i.e., lipid oxidation, 

caking, low solubility and dispersibility) (Paterson, Zuo, Bronlund, and 

Chatterjee, 2007). Surface composition of an emulsion-based powder is 

governed considerably by the emulsifier system used; upon atomisation, a new 

air/liquid interface is created and surface active components (i.e., protein, 

peptides, low molecular weight surfactants) present in the emulsion, migrate 

rapidly towards, and adsorb at, the new interface, effectively reducing the 

surface free energy and enhancing the thermodynamic stability of the system 
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(Munoz-Ibanez et al., 2016). Effectively, surfactants are over-represented at 

the droplet/powder particle surface, affecting in-process and in-application 

behaviour of these products, as exhibited by interactions of particles with the 

dryer wall and with other droplets/powder particles. Thus, a better 

understanding of the emulsifier system and its modification to tailor it to a 

specific formulation has an important role in increasing drying efficiency in 

producing a powder with desired properties. 

Conjugation of milk proteins with carbohydrates through the Maillard 

reaction has been reported to produce emulsifiers with exceptional 

functionality, especially with respect to stability of emulsion to unfavourable 

thermal and/or storage conditions (Akhtar and Dickinson, 2003; Drapala et 

al., 2016a, b; Kasran, Cui, and Goff, 2013a, 2013b; O’Regan and Mulvihill, 

2010a 2010b; Wooster and Augustin, 2006). WPH-maltodextrin (WPH-MD) 

conjugates have been shown to confer strong steric stabilisation to oil droplets, 

effectively limiting globule-globule interactions and preventing emulsion 

destabilisation (i.e., flocculation and/or coalescence) (Corzo-Martínez et al., 

2011; Liu, Ma, McClements, and Gao, 2016). 

There is potential for these conjugates to affect surface properties of spray-

dried emulsions, effectively influencing their behaviour during drying and 

properties of the final product. Good interfacial barrier properties and 

inherent ability of WPH-MD conjugates to adsorb at the newly formed 

air/water interface (O’Mahony, Drapala, Mulcahy, and Mulvihill, 2017) can 

offer an ingredient capable of deterring interactions between atomised 

emulsion droplets/powder particles. However, currently there are no 

published studies reporting on the use of WPH-based conjugates in spray-

dried emulsions nor on the properties of the resultant powders. This study 

aims to directly compare the spray drying performance and powder physical 

properties of spray-dried emulsions stabilised with different emulsifier 

systems, namely, conjugated whey proteins/peptides (WPH-MD), not 

conjugated whey proteins/peptides (WPI, WPH) and not conjugated WPH 

with the addition of low molecular weight lipid-based surfactants (i.e., WPH + 

CITREM and WPH + lecithin). 



Chapter 8                                                                         Spray Drying IF Emulsions 

|264 

8.2. Materials and methods 

8.2.1. Materials 

Whey protein isolate (WPI) and whey protein hydrolysate (WPH; 8% degree 

of hydrolysis; DH) were obtained from Carbery Food Ingredients Ltd. 

(Ballineen, Co. Cork, Ireland). The WPI and WPH ingredients had protein 

contents of 87.2 and 83.7%, respectively, and ash contents of 2.76 and 2.92%, 

respectively, as reported by Drapala et al. (2016a). Maltodextrin (MD) was 

obtained from Corcoran Chemicals Ltd. (Dublin, Ireland) and had moisture 

and ash contents of <5.0% and <0.2%, respectively. Soybean oil was obtained 

from Frylite Group Ltd. (Strabane, Co. Tyrone, Northern Ireland). CITREM 

(Grindsted® CITREM N12) was obtained from Dupont Nutrition Biosciences 

ApS (Brabrand, Denmark) and de-oiled powdered soybean lecithin (Ultralec® 

P) was obtained from ADM (Decatur, IL, USA). All other chemicals and 

reagents used in the study were of analytical grade and sourced from Sigma-

Aldrich (Arklow, Co.Wicklow, Ireland). 

8.2.2. Preparation of emulsions 

Emulsions (e) for model infant formula (IF) powders (p) were prepared at pH 

6.8 using protein, soybean oil and maltodextrin in the ratios 1.0:2.3:4.5, 

respectively. The protein component was either WPI, WPH or WPH 

conjugated with MD in a wet heating process as detailed by Drapala et al. 

(2016a). Additionally, non-protein emulsifiers, citric acid esters of mono- and 

di-glycerides (CITREM; 9 g L-1) and soybean lecithin (5 g L-1) were 

incorporated into the formulation of selected IF emulsions destined for 

subsequent spray drying. Emulsions were prepared by dissolving oil-soluble 

components, where applicable, in soybean oil and water-soluble components 

in ultrapure water, followed by two-stage homogenisation (double pass) at 15 

and 3 MPa, using a valve homogeniser (APV GEA Niro-Soavi S.p.A., Parma, 

Italy) at 50°C. All emulsions were prepared to a total solids (TS) target of 32% 

as measured with a rapid moisture analyser (HB43-S, Mettler-Toledo LLC, 

Columbus, OH, USA). In total, five emulsions based on WPI, WPH, WPH + 
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CITREM (WPH+CIT), WPH + lecithin (WPH+LEC) and WPH conjugated 

with maltodextrin (WPH-MD) were produced in the current study. 

8.2.3. Spray drying of emulsions 

Powders were produced from emulsions using a bench-top spray dryer (B-191, 

BÜCHI Labortechnik AG, Flawil, Switzerland) with a maximum evaporation 

capacity of 1.5 L H2O h-1. Inlet temperature was set at 170°C and outlet 

temperature was maintained at 90-95°C by controlling the aspirator power 

(i.e., in the range of 40-60 m3 h-1) and the feed flow rate (i.e., in the range 1.2-

1.4 L h-1). Effectively, drying temperatures were kept within the industry 

relevant range typical for IF manufacture by using high feed flow rate (95-

100%) and relatively low aspirator power (80-90%); however, this was 

achieved at the expense of product yield (Fig. 8.1). The powders were collected 

in the collection chamber as detailed in Fig. 8.1, and transferred to zip-sealed 

low density polyethylene bags (VWR International, Leuven, Belgium), 

followed by vacuum packing in heat-sealed polyamide/polyethylene bags 

(Fispak Ltd., Dublin, Ireland) with a moisture permeability of 2.6 g m-2.d. The 

powders were stored in the dark at ambient conditions (i.e., ~20°C) until 

further analyses within 4 weeks of spray drying. Powder recovery was 

calculated on a TS basis (i.e., [final powder product TS/feed liquid TS] ×100) 

from the total amount of powder obtained in the collection chamber. Losses 

on drying were due to unrecoverable powder, which stuck to the wall of the 

dryer main chamber or fell and accumulated at the base of the main chamber 

during spray drying (Fig. 8.1). Powder stickiness was visually assessed based 

on the extent of wall coating by powder in the cyclone, in order to provide 

information on particle cohesion arising from surface characteristics (Fig. 8.1). 

8.2.4. Particle size distribution 

Particle size distribution (PSD) of the emulsions immediately after 

homogenisation and after powder reconstitution (i.e., 12%, w/v) was 

measured using a laser light diffraction unit (Mastersizer 3000, Malvern 

Instruments Ltd, Worcestershire, UK) equipped with a 300 RF (reverse 

fourier) lens, an LED light source (λ of 470 nm) and a He-Ne laser (λ of 633 

nm) as detailed by Drapala et al. (2016b). The size distribution of the model 
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Figure 8.1. Schematic diagram showing the set-up and the principle of 

operation for the laboratory-scale BÜCHI B-191 spray drier. The inlet 

temperature is regulated directly by the power of the heater (3) and the outlet 

temperature (measured at 8) is regulated indirectly by controlling the feed 

flow rate (2) and the air flow (1). Feed is introduced into the main drying 

chamber (4) by a 2-fluid nozzle atomiser, where it is rapidly dried by heated 

air; dried particles are pulled into the cyclone (9) by means of an aspirator (12). 

Large and heavy particles (i.e., wet lumps and scorched particles, falling off the 

build-up around the nozzle and around hot air inlets, respectively) are 

separated from the powder by means of the air pull and gravity (5 and 6, 

respectively). By design, air pull is insufficient to move larger and heavier 

particles into the cyclone, making them fall into the waste collection     

container (7) at the bottom of the dryer main chamber. Dried powder particles 

are further separated from air in the cyclone and the final powder is collected 

in the powder collection container (10) at the bottom of the cyclone. The 

clarified air is exhausted at the top of the bag filter (11). 
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infant formula powders was measured using a Mastersizer 3000 equipped 

with a dry powder disperser cell (Aero S). Approximately 3.0 g of powder was 

placed in the feed hopper, containing a ball bearing to facilitate powder flow, 

with the feed pressure set at 1 bar, powder flow rate at 40-70% and the hopper 

height at 2 mm. All measurements were taken at 1-2% obscuration. The 

background and sample measurement duration was set at 20 s with the 

material refractive and absorption indexes of 1.46 and 0.01, respectively. 

8.2.5. Rheological measurements 

The apparent viscosity of emulsions was measured at 20°C using a rotational 

viscometer (Haake RotoVisco 1, Thermo Fisher Scientific, MA, USA) equipped 

with a cylindrical double gap cup and rotor (DG43, Thermo Fisher Scientific, 

MA, USA) as described by Mulcahy, Mulvihill and O’Mahony (2016). The shear 

rate was increased from 0 to 300 s-1 over 5 min, held at 300 s-1 for 2 min and 

decreased to 0 s-1 over 5 min; the average apparent viscosity was determined 

at 300 s-1 (η300) for each emulsion. The power law applied to shear stress (τ) 

versus shear rate (γ) was used to obtain the flow behaviour parameters, 

consistency coefficient (K) and flow behaviour index (n) as detailed by Anema, 

Lowe, Lee, and Klostermeyer (2014). The flow behaviour index values are used 

to describe the flow behaviour of liquid samples where n < 1, n > 1 and n = 1 

indicate shear-thinning, shear-thickening and Newtonian flow behaviour, 

respectively. 

8.2.6. Composition and colour analyses of powders 

The chemical composition of the model infant formula powders was 

determined using standard International Dairy Federation (IDF) methods as 

detailed by Drapala, Auty, Mulvihill, and O’Mahony (2015). Colour of the 

powders was measured using a pre-calibrated colorimeter (Minolta Chroma 

Meter CR-400, Minolta Ltd., Milton Keynes, U.K.) equipped with a granular 

materials attachment CR-A50. Colour was expressed using the Commission 

Internationale de l'Eclairage (CIE) colour chromaticity L* a* b* scale (L = 

dark/light, a = red/green, b = yellow/blue). 
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8.2.7. Powder wettability 

The sessile drop goniometric method was used to determine the wettability of 

powders. All powders were compressed for 10 s at 78.4 MPa using a manual 

press (15 ton Manual Hydraulic Press, Specac Ltd., Orpington, UK) to form 

pellets (13 mm diameter); all pellets had a density of 1.08 (± 0.05) g cm-3. 

Subsequently, the mean contact angle (θ) was determined directly using an 

optical tensiometer (Attension Theta, Biolin Scientific, Stockholm, Sweden); a 

drop (10 µl) of ultrapure water was formed and deposited on top of a powder 

pellet and the reduction in contact angle during the first 30 s was recorded 

using a high-resolution digital camera (15 frames per second) and processed 

using image analysis software (OneAttension, Biolin Scientific). 

8.2.8. Surface composition of powders 

The surface free fat content of powders was determined using the GEA Niro 

analytical method (GEA Niro, 2005) as described by McCarthy et al. (2013) 

with modified quantities of powder (5.0 g), petroleum ether  (30 mL) and 

filtrate (15 mL) used. Elemental composition of powder surfaces was 

determined by X-ray photoelectron spectroscopy (XPS; Kratos Axis 165, 

Kratos Analytical, UK) as detailed by McCarthy et al. (2013). A matrix formula 

was used to calculate relative amounts of protein, fat and carbohydrate on the 

powder surface, as detailed by Fäldt, Bergenståhl, and Carlsson (1993). 

8.2.9. Microstructure of powders 

8.2.9.1.  Confocal laser scanning microscopy 

Confocal laser scanning microscopy (CLSM) analysis of powder particles was 

performed using a confocal laser scanning microscope (TCS SP, Leica 

Microsystems CMS GmbH, Wetzlar, Germany). Powders were deposited onto 

a glass slide and excess sample was removed with compressed air. The powder 

samples were stained with a mixture (3:1) of Nile Red (0.10 g L-1 in 

polyethylene glycol) and Fast Green (0.01 g L-1 in water) fluorescent dyes 

(Sigma Aldrich, Wicklow, Ireland) to label the fat and protein components of 

the powders, respectively. Visualisation of oil and protein in the powders was 
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carried out using an Ar laser (excitation = 488 nm, emission = 500-530 nm) 

and He-Ne laser (excitation = 633 nm, emission = 650-700 nm), respectively. 

At least 3 representative images of each sample were taken using a 63× oil 

immersion objective. 

8.2.9.2.  Scanning electron microscopy 

Scanning electron microscopy (SEM) analysis of powders was performed 

using a scanning electron microscope (JSM-5510, Jeol Ltd., Tokyo, Japan). 

Samples were mounted on double-sided carbon tape, attached to SEM stubs, 

and then sputter-coated with gold/palladium (10 nm; Emitech K550X, 

Ashford, UK). Representative micrographs were taken at 5 kV at 1000× (i.e., 

overview of powder population) and 3000× (i.e., shape and surface 

topography of powder particles) magnifications. At least three specimens of 

each sample were observed to obtain representative micrographs of samples. 

8.2.10. Statistical data analysis 

All powders were prepared in three independent trials and all measurements 

were carried out in at least duplicate. Analysis of variance (ANOVA) was 

carried out using the Minitab® 16 (Minitab Ltd., Coventry, UK, 2010) 

statistical analysis package. The Tukey method was used to obtain grouping 

information. The level of significance was determined at P < 0.05.  

8.3. Results 

8.3.1. Emulsion characteristics 

The emulsions had TS levels ranging from 32.2 to 32.7% prior to spray drying 

(Table 8.1). Particle size analysis showed that all emulsions had oil globules 

with mean volume diameter (D4,3) < 1 µm and no statistically-significant 

differences in D4,3 were found between the emulsions (Table 8.1). Similarly, no 

significant differences in the apparent viscosity (η300) were observed between 

WPIe, WPHe, WPH+CITe and WPH+LECe emulsions; however, the η300 for the 

WPH-MDe emulsion was significantly lower than that of the WPIe, and 

WPH+CITe emulsions (Table 8.1). Analysis of the flow behaviour showed no 
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Table 8.1. Characteristics of emulsions prepared using different emulsifiers; whey protein isolate (WPIe), whey protein hydrolysate 

(WPHe), WPH + CITREM (WPH+CITe), WPH + lecithin (WPH+LECe) and WPH-maltodextrin conjugate (WPH-MDe), used to 

produce model infant formula powders. 

      Emulsions 

Emulsion characteristics WPIe WPHe WPH+CITe WPH+LECe WPH-MDe 

Solids content (%, w/w) 32.6 ± 0.16a 32.2 ± 0.69 a 32.5 ± 0.10a 32.2 ± 0.04a 32.7 ± 0.18a 

PSD1 (µm) D4,3  0.76 ± 0.05a 0.78 ± 0.14a 0.81 ± 0.21a 0.58 ± 0.06a 0.67 ± 0.05a 

 Dv,0.1 0.25 ± 0.07a 0.21 ± 0.04a 0.11 ± 0.07a 0.15 ± 0.01a 0.24 ± 0.05a 

 Dv,0.5 0.55 ± 0.06a 0.55 ± 0.01a 0.38 ± 0.08a 0.46 ± 0.12a 0.55 ± 0.03a 

 Dv,0.9 1.26 ± 0.10a 1.40 ± 0.12a 1.07 ± 0.07a 1.52 ± 0.85a 1.23 ± 0.04a 

Flow behaviour2 η300 (mPa.s) 13.5 ± 0.55a 11.9 ± 1.27ab 13.0 ± 0.49a 11.9 ± 0.24ab 10.9 ± 0.31b 

  K (Pa.sn; ×102) 1.57 ± 0.19a 1.18 ± 0.22a 2.92 ± 0.87a 1.64 ± 1.25a 2.19 ± 0.50a 

  n 0.97 ± 0.02a 1.00 ± 0.02a 0.85 ± 0.06a 0.98 ± 0.16a 0.87 ± 0.05a 

 
1 Particle size distribution (PSD) parameters: D4,3, volume mean diameter of oil globules;  Dv,0.1, Dv,0.5, and Dv,0.9 representing 

particle size in the 10%, 50% and 90% quantiles of the distribution. 

 2 Flow behaviour parameters: (η300), apparent viscosity measured at 300 s-1; (K), consistency coefficient; (n), flow behaviour index. 

 (a-b) Values for a given parameter (i.e., within each row) for all powders, not sharing a common superscript differed significantly 
(P < 0.05).
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significant differences between emulsions, where most emulsions displayed a 

shear-thinning behaviour (i.e., n < 1) (Table 8.1). A reduction in the viscosity 

during shearing (i.e., shear-thinning) of protein solutions is, generally, a result 

of spatial rearrangement of protein molecules in the liquid and of disruptions 

in their steady-state interactions (Walstra, Wouters, and Geurts, 2006); in 

emulsions, shear-thinning can be associated with flocculation of oil droplets 

(Xu, Wang, Jiang, Yuan, and Gao, 2012). Additionally, in a concentrated 

emulsion system (i.e., TS = 32%), packing of oil globules is denser than in a 

dilute emulsion (i.e., TS ≤ 12%) and interactions between its constituents, as 

monitored by flow behaviour analysis, can also be related to physical contact 

between molecules located at the interfaces of oil globules (O’Mahony, et al., 

2017). The formation of ternary complexes between unadsorbed 

protein/peptides, CITREM and maltodextrin (Drapala et al., 2016b; 

Semenova, Myasoedova, and Antipova, 2001) in the WPH+CITe emulsion, or 

the presence of intact whey protein in the serum phase and at the interfaces of 

oil globules in the WPIe emulsion, are likely to have contributed to higher 

viscosity of these emulsions, compared to the other samples.  

8.3.2. Drying performance 

Fig. 8.2 illustrates differences in drying behaviour between liquid 

concentrates/powders as evidenced by different levels of wall-coating (i.e., 

multilayer particle cohesion) by fine powder particles in the cyclone of the 

spray dryer. The extent of this coating is assumed to be directly related to 

powder stickiness; the observed stickiness can be divided into 3 groups based 

on the level of coating, i.e., non-sticky (negligible coating), moderately sticky 

(partial coating) and very sticky (complete coating) (Fig. 8.2; Table 8.3). Using 

this classification, the WPIp and WPHp powders were moderately sticky, 

WPH+CITp and WPH+LECp powders were very sticky and the WPH-MDp 

powder was non-sticky.  

Differences in the stickiness of powders had a direct impact on the powder 

recovery (i.e., product yield; Table 8.3); the recovery of product was lower for 

powders with higher levels of stickiness. Powders containing non-protein 

emulsifiers (WPH+LECp and WPH+CITp) displayed the lowest powder 
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recovery (18.1 and 21.3%, respectively) followed by WPIp (22.0%), WPHp 

(26.1%) and WPH-MDp (55.3%). It should be noted that, in order to facilitate 

the use of industry-relevant drying temperatures (i.e., 170°C and 90-95°C for 

inlet and outlet, respectively) high feed flow rate (95-100%) and relatively low 

aspirator power (80-90%) conditions were used. These conditions caused 

deposition of higher-moisture particles at the periphery of the atomised feed 

jet on the inner wall of the main drying chamber (Fig. 8.1) and contributed to 

the low powder yield. Sticking of powders to the inner wall of a spray dryer is 

a common challenge in industry and it directly affects the product yield and 

drying efficiency (i.e., cleaning and down-time). In high-fat powders (e.g., 

infant formulae) stickiness is strongly related to the powder surface 

composition, while, in low-fat protein-dominant powders, it is generally 

related to the efficiency of water removal and glass transition properties of the 

system (Kelly et al., 2014). Generally, the more fat at the powder surface the 

greater the challenges with powder stickiness (Sharma, Jana, and Chavan, 

2012; Paterson et al., 2007). 

The highest levels of stickiness in this study were observed for powders 

containing lipid-based emulsifiers (CITREM and lecithin) while the powder 

containing the protein-based conjugate displayed the lowest stickiness. The 

physicochemical characteristics of CITREM and lecithin have directly affected 

cohesiveness (i.e., stickiness) of powders; their high mobility and surface 

activity facilitates rapid migration to the surface of emulsion droplets formed 

on atomisation and their relatively low melting temperatures (55-65°C) make 

them plastic and adhesive under the environmental conditions of spray drying. 

Similarly, the surface active WPH-MD conjugate can also rapidly move to and 

adsorb at the surface of atomised droplets (O’Mahony et al., 2017). 

8.3.3. Powder analyses 

8.3.3.1.  Composition and colour of powders 

Compositional analysis of powders showed that the measured levels (Table 

8.2) were in line with the target levels for all samples (i.e., 12.1-12.7% protein, 

26.9-29.0% fat and 56.1-58.8% carbohydrate). No significant differences were 

found in the fat, carbohydrate or moisture content between the powders. No  
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Figure 8.2. Differences in the build-up of fine powder on the wall of the cyclone during spray drying of powders (p) containing 

different emulsifier systems: whey protein isolate (WPIp), whey protein hydrolysate (WPHp), WPH + CITREM (WPH+CITp), WPH + 

lecithin (WPH+LECp) and WPH-maltodextrin conjugate (WPH-MDp). The powders were produced using a laboratory-scale spray 

dryer (BÜCHI B-191). The photographs were taken ~30 min after starting the drying run for all powders. 

WPIp WPHp WPH+CITp WPH+LECp WPH-MDp



Chapter 8                                                                         Spray Drying IF Emulsions 

|274 

significant differences in colour were found between WPIp, WPHp and 

WPH+CITp powders; these powders had high L* and low b* values compared 

to the WPH-MDp and WPH+LECp powders (Table 8.2). These differences were 

most likely due to the presence of melanoidins (conjugation products) and 

carotenoids (naturally present in lecithin) in the WPH-MDp and WPH+LECp 

powders, respectively (Liu, Ru, and Ding, 2012; McSweeney, 2008; Scholfield, 

1981) as previously reported by Drapala et al. (2016b). 

8.3.3.2.  Particle size distribution of powders 

All powders had relatively small particles (i.e., D4,3 of 14.2−41.1 µm; Table 8.3). 

The biggest particles were observed for the WPH+LECp, followed by the 

WPH+CITp, WPIp, WPHp and WPH-MDp powders (Table 8.3, Fig. 8.3B). In 

addition, powders containing lipid-based surfactants, WPH+LECp and 

WPH+CITp, had a distinct shoulder on the higher end (i.e., at ~100 µm) of the 

size range, with a notable proportion of the particle population (i.e., 7.78 and 

4.05%, respectively) in these powders having diameter >100 µm (Fig. 8.3B; 

Table 8.3). A much smaller shoulder was also present in the WPIp and smaller 

still in the WPHp powders (i.e., 2.93 and 2.26% of particle population were 

>100 µm, respectively). The WPH-MDp powder had a monomodal profile with 

the narrowest size distribution, where the majority (i.e., ~99%) of particles had 

diameters <40 µm (Fig. 8.3B); this sample also had the largest proportion of 

fine particles (i.e., 19.9% of total population had diameter <5 µm; Table 8.3). 

The greater proportion of small particles in the WPH-MDp powder, compared 

to the other powders is likely related to this liquid concentrate feed having the 

lowest viscosity of all samples (Pisecky, 2012). A relationship between feed 

viscosity and the size of particles in the resultant powder was also reported by 

Crowley, Gazi, Kelly, Huppertz, and O’Mahony (2014), where particle size 

increased with increasing feed viscosity.  

8.3.3.3.  Powder wettability 

The results for contact angle (θ) analysis showed that the highest θ was 

observed for WPH+CITp, followed by WPIp > WPH+LECp > WPH-MDp > 

WPHp (Table 8.3). Generally, the more hydrophobic the surface (i.e., surface 

of powder pellet), the lower is its affinity for interactions with water and,   
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Table 8.2. Composition and colour of model infant formula powders (p) produced with different emulsifier systems: whey protein 

isolate (WPIp), whey protein hydrolysate (WPHp), WPH + CITREM (WPH+CITp), WPH + lecithin (WPH+LECp) and WPH-

maltodextrin conjugate (WPH-MDp). The powders were produced using a laboratory-scale spray dryer (BÜCHI B-191). 

 

(a-c) Values for a given parameter (i.e., within each column) for all powders, not sharing a common superscript differed 

significantly (P < 0.05). 

 

Powder Composition (%, w/w)   Colour coordinates    

  Protein Fat Carbohydrate Ash Moisture   L* a* b*  

WPIp 12.1 ± 0.21a 28.4 ± 1.33a 57.7 ± 0.99a 0.52 ± 0.17a 1.73 ± 0.35a  96.1 ± 0.26a -1.26 ± 0.09b 3.15 ± 0.24a  

WPHp 12.6 ± 0.10b 29.0 ± 1.58a 56.1 ± 1.50a 0.67 ± 0.10ab 1.08 ± 0.66a  96.3 ± 0.16a  -1.30 ± 0.11b 3.02 ± 0.15a  

WPH+CITp 12.3 ± 0.13ab 28.8 ± 0.34a 56.6 ± 0.43a 0.87 ± 0.19ab 1.36 ± 0.91a  95.8 ± 0.49ab -1.26 ± 0.06b 3.35 ± 0.26a  

WPH+LECp 12.7 ± 0.22b 26.9 ± 2.44a 58.2 ± 1.84a 0.71 ± 0.13ab 1.48 ± 0.34a  93.8 ± 1.28c -1.96 ± 0.08a 6.37 ± 0.25c  

WPH-MDp 12.5 ± 0.09b 26.9 ± 2.56a 58.8 ± 3.17a 0.97 ± 0.13b 0.89 ± 0.34a   94.1 ± 0.52bc  -0.85 ± 0.07c 4.77 ± 0.38b  
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effectively, the higher the θ with the droplet of water placed on that surface. 

Thus, the contact angle analysis is often used to study the affinity of powders 

for water, providing information on powder wettability (i.e., lower θ = better 

wettability). The differences in wettability between the WPIp and WPHp 

powders, evidenced by different θ, were most likely directly related to 

differences in the physical state of protein (i.e., native vs hydrolysed, 

respectively). Solubility is generally enhanced by protein hydrolysis due to 

partial disruption of protein secondary and tertiary structure resulting in 

increased water access and faster hydration in hydrolysed, compared with 

intact, protein-based powders (Banach et al., 2013; Chobert, Bertrand-Harb, 

and Nicolas, 1988; Kelly, O’Mahony, Kelly, and O’Callaghan, 2016; Panyam 

and Kilara, 1996). Longer wettability times for model infant formula powders 

based on intact whey protein compared to partially hydrolysed whey protein 

were reported previously by Murphy et al. (2015). Wettability of the WPH-

MDp was similar to that observed for the WPHp   (Table 8.3). The better 

powder wettability observed for the WPH+LECp, compared to the WPH+CITp, 

was likely due to the differences in the nature of the two surfactants; CITREM 

and lecithin are anionic and zwitterionic (i.e., amphoteric) surfactants, 

respectively (McSweeney 2008). Lecithin is often coated onto the surface of 

dairy powders in a fluidised bed to facilitate improved wetting properties (i.e., 

instantisation) (Hammes, Englert, Zapata Norena, and Medeiros Cardozo, 

2015). 

8.3.3.4.  Surface composition of powders 

No significant differences were found in the free fat content for all powders 

due to large standard deviations, especially observed for the WPH+LECp 

powder (Table 8.3). A trend was observed, where free fat content was generally 

higher, for the WPH+CITp, WPHp and WPH+LECp powders (i.e., 20.0, 22.9 

and 25.4%, w/w, free fat, respectively), compared to the WPH-MDp and WPIp 

powders (i.e., 13.3 and 14.1%, w/w, free fat, respectively). Table 8.3 shows 

differences in the surface composition (i.e., as measured using XPS) between 

the spray-dried model IF powders prepared in this study. The level of protein 

at the surface was highest for the WPIp powder followed by WPHp, WPH-MDp, 

WPH+LECp and WPH+CITp powders. The highest levels of surface fat were 
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Table 8.3. Properties of spray dried model infant formula powders (p) 

prepared with different emulsifier systems: whey protein isolate (WPIp), whey 

protein hydrolysate (WPHp), WPH + CITREM (WPH+CITp), WPH + lecithin 

(WPH+LECp) and WPH-maltodextrin conjugate (WPH-MDp). The powders 

were produced using a laboratory-scale spray dryer (BÜCHI B-191). 

 

1 Drying performance describing powder recovery (%, w/w total solids, TS; 

powder TS/feed TS) and powder stickiness; stickiness classification: -, non-

sticky; +, moderately sticky; ++, very sticky. 

2 Particle size distribution parameters (PSD): D4,3, volume mean diameter;  

Dv,0.1, Dv,0.5, and Dv,0.9 representing particle size in the 10%, 50% and 90% 

quantiles of the distribution. Particle size distribution analysis for 

reconstituted powders was carried out only on one trial. 

 (a-d) Values for a given parameter (i.e., within each row) for all powders, not 

sharing a common superscript differed significantly (P < 0.05).  

Powder characteristics WPIp WPHp WPH+CITp WPH+LECp WPH-MDp 

Drying  

performance
1
 

Powder recovery (%) 22.0 ± 6.59
a
 26.1 ± 3.27

a
 21.3 ± 6.67

a
 18.1 ± 2.56

a
 55.3 ± 10.8

b
 

 Stickiness (relative) + + ++ ++ - 

PSD Powders
2
 (µm) 

 
D4,3 26.5 ± 16.9

ab
 25.4 ± 4.79

ab 
 30.8 ± 2.94

ab
 41.1 ± 13.2

a
 14.2 ± 4.79

b
  

 Dv,0.1 5.75 ± 0.56
a
 5.85 ± 0.21

a
 7.87 ± 0.54

b
 9.52 ± 0.73

c
 4.76 ± 0.27

a
 

 Dv,0.5 15.5 ± 2.29
ab

 15.1 ± 0.33
ab

 18.4 ± 1.64
bc

 22.7 ± 2.41
c
 12.2 ± 0.94

a
 

 Dv,0.9 59.5 ± 48.3
a
 40.4 ± 3.22

a
 56.0 ± 15.4

a
 95.1 ± 43.6

a
 26.6 ± 2.33

a
 

 % <5 µm 10.5 ± 2.16
bc

 13.5 ± 0.71
b
 6.33 ± 1.64

cd
 2.84 ± 0.81

d
 19.9 ± 2.71

a
 

 % >100 µm 2.93 ± 6.92
a
 2.26 ± 1.13

a
 4.05 ± 0.93

a
 7.78 ± 5.29

a
 0.00 ± 0.00

a
 

Contact angle (θ)  42.1 ± 0.08
b
 36.9 ± 1.45

d
 46.7 ± 1.00

a
 40.5 ± 2.27

bc
 37.2 ± 0.91

cd
 

Surface free fat (%)  14.1 ± 2.68
a
 22.9 ± 4.85

a
 20.0 ± 5.05

a
 25.4 ± 17.9

a
 13.3 ± 1.18

a
 

Surface composition 
(%) 

Protein 50.7 ± 6.42
a
 37.1 ± 6.22

b
 27.0 ± 2.81

b
 29.1 ± 4.03

b
 32.3 ± 2.02

b
 

 Fat 34.1 ± 9.42
a
 50.9 ± 6.47

ab
 64.2 ± 6.22

b
 61.8 ± 6.82

b
 50.0 ± 3.23

ab
 

 Carbohydrate 15.2 ± 3.02
ab

 12.0 ± 0.91
ab

 8.85 ± 3.50
b
 9.12 ± 3.17

b
 17.7 ± 1.61

a
 

PSD Reconstituted2 
(µm) 
 

D4,3 2.42 5.72 5.00 1.47 0.84 

 Dv,0.1 0.15 0.35 0.31 0.35 0.17 

 Dv,0.5 0.57 4.68 1.10 1.18 0.51 

 Dv,0.9 8.02 13.3 14.4 3.07 1.82 
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Figure 8.3. Particle size distribution for (A) homogenised emulsions (dryer feeds), model infant formula powders (B) after spray 

drying and (C) after powder reconstitution. The formulations contained different emulsifier systems: (×) whey protein isolate, (□) 

whey protein hydrolysate, (▲) WPH + CITREM, (●) WPH + lecithin and (−) WPH-maltodextrin conjugate. The powders were 

produced using a laboratory-scale spray dryer (BÜCHI B-191). 
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found in the WPH+CITp and WPH+LECp powders. The amount of 

carbohydrate present at the surface was significantly higher for the WPH-MDp 

powder compared to the 2 powders containing lipid-based surfactants (i.e., 

WPH+LECp and WPH+CITp). 

The differences between the surface fat composition as measured by the 

solvent extraction and by the XPS methods can be explained by the different 

principles underpinning these methods. For the solvent extraction method, 

the results are presented as the weight of extractable fat as a % of the powder 

sample weight; conversely, in the XPS method, the results are presented as the 

% of surface area of the powder particle occupied by fat. For the XPS method, 

only a 10 nm depth of the surface of the powder particle is analysed (Kim, 

Chen, and Pearce, 2009). Conversely, the solvent extraction approach extracts 

fat present at the surface of the powder particle as well as fat present at other 

locations within its interior. According to a model proposed by Buma (1971), 

the solvent-extractable free fat for dairy powders consists of surface fat, outer 

layer fat from fat globules within the surface layer of the particle, capillary fat 

constituted by fat globules that can be reached by the solvent through capillary 

forces, and dissolution fat consisting of fat reached by solvent through holes 

left by already extracted fat. The review of solvent extraction-based methods 

for assessment of the amount of free or surface fat in spray-dried emulsions, 

reported in the scientific literature, was compiled by Roos and Vega (2006), 

where it was shown that these methods use different solvent types (petroleum 

ether, hexane, pentane and carbon tetrachloride), solvent-to-powder ratios 

(5:1 – 40:1), and powder-solvent contact times (30 s – 48 h). The solvent 

extraction method used in this study (GEA Niro, 2005) for quantification of 

the surface free fat in the milk powders, with an extraction time of 15 min, 

could have led to the extraction of lipid material in addition to surface fat alone 

(i.e., fat from the surface and from the interior of the powder particles). 
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8.3.3.5.  Microstructure of powders 

Scanning electron microscopy 

Fig. 8.4 A and B illustrate the detailed morphology (shape and structure) of 

the spray-dried model IF powders. Differences between samples were mainly 

manifested by the extent of particle agglomeration (i.e., spontaneous 

agglomeration of primary particles) and the topography of the particle 

surfaces in the powders. Powders containing lipid-based emulsifiers, 

WPH+CITp and WPH+LECp, displayed the greatest extent of particle 

agglomeration, followed by WPIp, WPHp and WPH-MDp (Fig. 8.4A). Such 

agglomeration is generally caused by extensive particle cohesion (i.e., sticking) 

and is evidenced by the presence of ‘bunch of grape’-type agglomerates 

(Pisecky, 2012), as observed in this study for the WPH+CITp, WPH+LECp and, 

to a lesser extent, WPIp powders (Fig. 8.4A). These observations closely match 

the particle size distribution data discussed in Section 8.3.3.2. and indicate 

cohesive interactions between particles during spray drying (i.e., spontaneous 

agglomeration). 

The surface topography was also different between the powders; smooth 

surfaces were observed for the WPIp and to a lesser extent for WPH-MDp while 

the powder particles in the WPHp, WPH+CITp and WPH+LECp had an uneven 

surface with numerous bumps (WPHp) or craters (WPH+CITp and 

WPH+LECp) present on the surface (Fig. 8.4B). The presence of crater-like 

structures on the surface of spray-dried emulsions/powders has been 

associated with broken oil globules resulting in high levels of surface fat 

(Drusch and Berg, 2008). Additionally, WPH-MDp powder particles appeared 

to be partially collapsed (i.e., shrivelled) unlike particles in the other powders. 

Such shrivelled/buckled structures in spray-dried powders has been linked 

with temperature-dependent changes in the volume of occluded air (i.e., 

inflation followed by deflation of intra-particle air as the particle moves from 

hot toward the cooler regions of the dryer) (Walton and Mumford, 1999) and 

with the mechanical properties of the skin layer of the drying particles (Sadek 

et al., 2015, 2016). 
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Figure 8.4. Scanning electron microscope (SEM; A and B) and confocal laser scanning microscope (CLSM; C) images of model infant 
formula powders (p) containing different emulsifier systems: whey protein isolate (WPIp), whey protein hydrolysate (WPHp), WPH + 
CITREM (WPH+CITp), WPH + lecithin (WPH+LECp) and WPH-maltodextrin conjugate (WPH-MDp). For the CLSM analysis 
powders were labelled with Nile Red:Fast Green (3:1) and the micrographs show distribution of oil droplets (green) and protein 
particles (red). Scale bar for the micrographs: A = 10 μm, B = 5 μm, and C = 5 μm. The powders were produced using a laboratory 
scale spray dryer (BÜCHI B-191). 
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Confocal laser scanning microscopy 

Powders produced in the current study had generally similar particle 

structures, where individual oil droplets were homogenously distributed 

within a protein-carbohydrate network (Fig. 8.4C). The only exception was the 

WPHp powder, where the oil phase appeared to be largely present as irregular 

and extensive oil pools. Differences in the size of oil droplets within the powder 

matrix were observed; powders containing lipid-based surfactants, 

WPH+CITp and WPH+LECp had markedly bigger (2-3 µm) oil droplets 

embedded in the powder structure, compared to apparently smaller (≤ 1 µm) 

oil droplets in the WPIp and WPH-MDp powders. Pools of oil or large oil 

droplets observed in CLSM micrographs can be related to poor stability of 

these emulsions to processing. Additionally, ‘empty’ regions were observed in 

the centre of the WPH-MDp powder (Fig. 8.4C); these regions most likely 

indicate the presence of internal air pockets (i.e., vacuoles) in particles of this 

powder as discussed in Section 8.3.3.5. Formation of vacuoles and shrivelling 

of powder particles have been shown to take place concomitantly (Sadek et al., 

2015) and is strongly linked to the surface composition of the droplet and, 

effectively, its drying kinetics (Nijdam and Langrish, 2006; Vignolles et al., 

2007). 

8.3.3.6.  Particle size distribution after reconstitution of powders 

Notable differences were observed in the PSD between the reconstituted IF 

powders (Table 8.3; Fig. 8.3C); the mean volume diameter (D4,3) and the value 

for the 90% quantile of the size distribution (Dv,0.9) were higher for all 

reconstituted powders compared to the emulsions prior to spray drying 

(Tables 8.1 and 8.3; Fig. 8.3A and C). The observed increases in D4,3 and Dv,0.9 

were most pronounced for the WPHp and WPH+CITp powders (i.e., increases 

in D4,3 and Dv,0.9 to ≥ 5 µm and >13 µm, respectively); only a limited increase 

was observed for the WPH-MDp powder (i.e., D4,3 < 1 µm and Dv,0.9 < 2 µm) 

(Table 8.3). The D4,3 and Dv,0.9 parameters are particularly sensitive to changes 

at the large particle periphery of the size distribution and their increase can be 

used as an indicator of associations between the larger components in a system 

(i.e., coalescence and/or flocculation of oil globules in this case).  
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These differences reflect different stabilities of the corresponding 

formulations to the spray drying conditions (i.e., stability of oil globules 

against coalescence in a concentrated emulsion system and stability to high 

heat and high shear stress within the atomiser and upon atomisation) and 

support the CLSM observations (see Section 8.3.3.5). 

8.4. Discussion 

The stability of emulsions to spray drying was different for the studied 

formulations, as illustrated by the size distribution of oil globules in the 

powder matrix and in the reconstituted emulsions. These differences can be 

explained by the properties of the emulsifier systems used in these 

formulations, and their effect on stabilising emulsions against globule 

coalescence or heat-induced aggregation of oil globules during processing. 

During spray drying, emulsion-based systems are subjected to considerable 

stresses which can cause protein aggregation, breaking and coalescence of oil 

globules; this can lead to high surface free fat content and, effectively, 

undesirable properties of the resultant powder. Emulsions stabilised by high 

molecular weight (Mw) surfactants (e.g., protein) usually have thick and elastic 

interfacial films and are more stable to stress, compared to those stabilised by 

low Mw surfactants (e.g., CITREM, lecithin), which are prone to coalescence 

when forced into close contact (Taneja et al., 2013). Formulations based on 

WPH often display poor thermal stability, due to exposure of reactive sites 

(e.g., free sulphydryl groups) at the surfaces of oil globules and in the bulk 

phase, often resulting in bridging flocculation of oil globules (Agboola, Singh, 

Munro, Dalgleish, and Singh, 1998; Drapala et al., 2016a). Such behaviour was 

also reported in the current study, where oil pools in the WPHp powder matrix 

and large oil globules were present after reconstitution of this powder.  

CITREM and lecithin are often added to improve thermal stability of WPH-

based emulsions; however, their presence can lead to competitive 

destabilisation, where protein/peptide-based surfactants are displaced from 

the interfaces by smaller surfactants, promoting coalescence of oil globules 

(Drapala et al., 2016a; Kaltsa, Paximada, Mandala, and Scholten, 2014; 

Mackie, Gunning, Wilde, and Morris, 1999; Van Aken, 2003; Wilde, Mackie, 
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Husband, Gunning, and Morris, 2004). This was observed in the current study 

for CITREM- and lecithin-containing powders, where large oil globules were 

observed in the powder matrix and in the reconstituted emulsions (Fig. 8.4C, 

Table 8.3). In addition, topographical features observed for samples 

containing lipid-based emulsifiers (i.e., craters; Fig. 8.4B) indicated that 

coalescence of oil globules resulted in the presence of damaged oil globules at 

the powder surface (Drusch and Berg, 2008). It is generally accepted that 

strong steric stabilisation of oil globules, provided by protein-carbohydrate 

conjugates, can greatly limit these forms of destabilisation (O’Mahony et al., 

2017; Oliver, Melton, and Stanley, 2006). The presence of WPH-MD conjugate 

in emulsions prevents interactions between individual oil globules and 

interactions with bulk protein/peptides, resulting in enhanced stability. 

Results presented in the current study show that superior stability of 

emulsions to spray drying was achieved when the WPH-MD conjugate was 

present in the formulation, compared to formulations containing CITREM or 

lecithin. 

In an emulsion, surface active molecules (e.g., protein, peptides, lecithin, 

CITREM, conjugates) are adsorbed at the oil/water interface, where they 

stabilise oil globules; these compounds are, generally, also abundant in the 

emulsion bulk phase as they are present in excess of the concentration 

required for oil stabilisation. Upon atomisation, a new interface (water/air) is 

formed at the surface of the atomised droplets and, during very short time 

scales, surface active components move from the bulk to this new surface, 

adsorb and rearrange (Munoz-Ibanez et al., 2016). Smaller surfactants move 

and adsorb faster due to their higher mobility compared to large surfactants 

(Landstrom, Alsins, and Bergenstahl, 2000). Similar to the stabilisation of oil 

globules, the composition and structure of the interfacial layer of atomised 

droplets dictate their potential for interactions (i.e., stickiness, agglomeration) 

(Nijdam and Langrish, 2006); in effect, surface composition and 

physicochemical properties of the resulting powder are largely dependent on 

the surfactant system of the emulsion. The high surface fat level observed for 

the WPH+CITp and WPH+LECp powders and the high surface maltodextrin 

level observed for the WPH-MDp powder, could indicate preferential 
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adsorption of lipid-based and conjugate-based emulsifiers, respectively, at the 

surfaces of atomised droplets in these powders. Owing to the different surface 

compositions, powders displayed different propensity for interactions 

between individual atomised droplets/particles (i.e., primary spontaneous 

agglomeration) and with the wall of the spray dryer (as measured by powder 

build-up in the cyclone). It is generally recognised that high levels of surface 

free fat cause challenges with cohesive interactions of powders (Jayasundera 

et al., 2009; Vega and Roos, 2006). Similarly, in the current study, the likely 

preferential presence of lipid-based emulsifiers on the surface of some of the 

powders may have contributed to greater cohesiveness and, effectively, could 

have promoted agglomeration and powder build-up, compared to the other 

powders. 

Properties of the feed and drying kinetics generally govern the shape of powder 

particles (Walton and Mumford, 1999). Distinctive shrivelled particles 

observed for the WPH-MDp powder were likely related to significantly lower 

viscosity of that emulsion, compared to the other emulsions (i.e., at the same 

TS content), effectively, impacting the rate of water removal. Additionally, the 

more hydrophilic nature of the surface of atomised droplets/powder particles 

for the WPH-MDp system, resulting from higher surface maltodextrin content, 

compared to the other samples could have promoted faster water removal as 

evidenced by the lower moisture content of the resultant powder. According to 

a study by Sheu and Rosenberg (1998), surface indentation for whey protein-

based powders was promoted by high drying rates, leading to wall 

solidification before the onset of particle inflation. With progressive water 

removal during drying of a dairy-based system, a skin layer is formed at the 

droplet surface and its properties further affect the kinetics of drying and the 

final shape of the dried particles. Sadek et al. (2015) presented a model for 

mechanical properties of skin layer of a droplet during drying, where, 

depending on protein type present at the surface (i.e., whey protein or micellar 

casein), the mechanical properties of the skin were different and affected the 

shape of the resultant dried particles. Those authors showed that in casein 

micelle-dominant skins, the elastic modulus increased faster and the protein 

skin reached the plasticity region earlier, producing shrivelled particles with 
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ductile and plastic skin, while it took longer for the whey protein-dominant 

skin to reach the plasticity region, giving round particles with brittle and 

plastic skins. Particle indentation for whey protein-based powders was 

reported to be linked to the ratio of protein to maltodextrin at the surface of 

powder particles (Rosenberg and Young, 1993; Sheu and Rosenberg, 1998), 

where surface indentation was inversely related to the proportion of whey 

protein in the particle skin. In the study by Sheu and Rosenberg (1998), the 

authors showed that increasing the maltodextrin proportion in the skin 

decreased its elasticity and, effectively led to the formation of shrivelled 

powder particles.  Such shrivelled morphology was observed in this study for 

the WPH-MDp powder particles. In addition, the presence of vacuoles 

observed in the WPH-MDp powder sample supports its fit to the model 

proposed by Sadek et al. (2015), where vacuole formation and particle 

shrivelling were concomitant. With rapid water removal from the atomised 

droplets during spray drying, less latent heat energy is required due to lower 

moisture content, and the energy (i.e., temperature) acting on the non-water 

powder components is increased. This, effectively, can result in increased 

inflation of the droplet due to the expanding volume of air occluded within, 

followed by particle collapse (i.e., deflation) as the particles move away from 

the heat source, resulting in a shrivelled hollow powder particle (Hecht and 

King, 2000; Walton and Mumford, 1999). The use of different emulsifier 

systems resulted in different surface composition of the resultant powders as 

well as different quality of reconstituted emulsions. It was demonstrated that 

the differences in powder surface composition influenced the kinetics of 

drying for these formulations and governed the cohesive interactions between 

atomised droplets/powder particles. Effectively, the presence of lipid-based 

emulsifiers (i.e., CITREM or lecithin) in formulations greatly increased the 

cohesive interactions resulting in extensive spontaneous primary 

agglomeration and, effectively, reduced product yield. On the other hand, 

when the conjugate-based emulsifier was present in the formulation, these 

cohesive interactions were markedly reduced. 
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8.5. Conclusions 

The current study demonstrated that using the WPH-MD conjugate in the 

formulation of emulsion-based model IF powder improved its processing 

stability and affected the surface composition of resultant powder. The use of 

the conjugate in the formulation gave powder with decreased surface fat and 

increased surface carbohydrate levels, compared to systems containing lipid-

based emulsifiers (i.e., CITREM or lecithin). In effect, the conjugate-based 

powder displayed reduced cohesive behaviour, resulting in decreased 

agglomeration and markedly higher product yield; the opposite was observed 

for the powders containing lipid-based emulsifiers. This study showed that the 

surface composition of an emulsion-based powder and, effectively, its drying 

performance and final product characteristics were greatly improved by 

utilisation of interactions (i.e., conjugation) between the two components of 

the formulation (i.e., protein and carbohydrate). 
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9.1. General Discussion 

9.1.1.  Background and outlook 

Many nutritional products are emulsion-based systems, where the innate (e.g., 

protein) or added (e.g., lecithin) surface-active components (i.e., emulsifiers) 

facilitate formation of homogenous aqueous-oil dispersions and govern the 

shelf life of what are inherently thermodynamically unstable systems. 

Emulsifiers adsorb at the oil-water (O/W) interface, decrease the surface free 

energy and form a protective barrier around oil globules, conferring globule 

stabilisation by means of electrostatic and/or physical (i.e., steric) repulsion 

mechanisms. Therefore, the composition, structure and physicochemical 

properties of emulsifiers and the resultant composition, structure and 

physicochemical properties of the interfacial layer of an O/W emulsion 

strongly influence the stability of the emulsion. Infant formula (IF) products 

are emulsion-based systems, commercially available in both liquid and powder 

formats. Such emulsions are typically stabilised mainly by bovine or plant 

(e.g., soy, rice) protein, often with the addition of low molecular weight (LMw) 

surfactants to improve their stability (McSweeney, 2008). Formulae based on 

partially hydrolysed whey protein constitute a significant share of the infant 

nutrition market owing to their ‘easy-to-digest’ profile (i.e., limited curd 

formation during acidification in the gastric conditions of an infant – pH 4.5), 

as evidenced by the current product portfolio of the major manufacturers of IF 

ingredients and products (e.g., SMA Comfort, Nestle; Aptamil Gold+ HA, 

Danone Nutricia; Enfamil Gentlease, Mead Johnson Nutrition; Hyvital, 

Friesland Campina). The aim of this thesis was to investigate the effects of 

different emulsifiers, including intact and hydrolysed whey protein, 

conjugated hydrolysed whey protein and LMw surfactants (lecithin and citric 

acid esters of mono- and di-glycerides, CITREM) on the mechanisms driving 

emulsion formation, processing performance and stability of emulsions in the 

context of model infant formula systems. 

9.1.2. Overview of findings 

The composition of the interfacial layer plays an important role in the stability 

of oil globules in an emulsion; this is particularly the case in emulsions 
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involving mixtures of emulsifiers, due to the competitiveness of the emulsifiers 

for the interfacial space and the rheological properties of the interfaces. The 

rates of adsorption at the O/W interface are significantly higher for LMw 

emulsifiers, compared to proteins/peptides from whey protein hydrolysate 

(WPH) due to the higher surface activity and higher mobility of the former 

(Chapter 4). Hence, the use of LMw emulsifiers generally allows formation of 

smaller oil globules during homogenisation, compared to emulsions prepared 

using whey protein isolate (WPI)/WPH alone (Chapters 4, 5, 7, and 8). 

Conversely, when WPH was conjugated with maltodextrin (MD), the 

conjugate retained its good interfacial properties as evidenced by no 

differences in the fat globule size distribution (FGSD) of oil globules post 

homogenisation, regardless of the higher molecular weight of the WPH-MD, 

compared to WPH (Chapters 6 and 8). All emulsifier systems studied in this 

thesis were able to form good emulsions under the homogenisation conditions 

used (i.e., 12-18 MPa, 2-stage, double pass at 50-55°C), where the mean 

volume diameter (D4,3) of oil globules ranged from 0.58 to 0.97 µm  

(Chapters 4-8). 

Despite the smaller FGSD achieved in the emulsions containing a mixture of 

WPH and LMw emulsifiers (i.e., lecithin and CITREM), these emulsions 

displayed poor stability on storage (i.e., at 4 and 40°C), compared to emulsions 

stabilised solely by the intact, hydrolysed or conjugated whey protein 

ingredients (Chapters 4 and 6-8); this inferior stability was linked to the 

irregular composition of the interfacial layer of oil globules (Chapter 4; Fig. 

9.1). From the micrographs obtained using confocal scanning microscopy and 

FGSD analysis (Chapter 4), it was evident that the presence of lecithin and 

CITREM in emulsions resulted in irregular interfaces of oil globules, 

effectively leading to coalescence of the globules (i.e., competitive 

destabilisation mechanism; Chapters 7 and 8). 

In a similar manner, the surface composition of spray-dried model infant 

formula products was shown to be largely dependent on the emulsifiers used 

to form the emulsion, owing to their rapid adsorption at newly created 

air/water interfaces of atomised emulsion droplets (Chapter 8). Differences 

in surface composition affected the drying performance (e.g., cohesive  
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Figure 9.1. Interfacial location of phospholipids (bright yellow regions) on 

the surface of an oil globule in a model infant formula emulsion (15.5, 35.0 and 

70.0 g L-1 of protein, lipid and carbohydrate, respectively; prepared as detailed 

in Chapter 4). The emulsion was stabilised by moderately hydrolysed whey 

protein (degree of hydrolysis = 10.7%) and soybean lecithin (3% of the total 

lipid weight). The lecithin (i.e., phospholipids) were stained with fluorescent 

dye Rhod-DOPE (Avanti Polar Lipids) according to the protocol of Lopez, 

Madec and Jimenez-Flores (2010); scale bar = 5 µm; distance between the 

cross-sections of the globule (i.e., z-distance) = 0.5 µm. Drapala, Auty, 

Mulvihill, and O’Mahony (2015; Unpublished results). 

 

interactions) of emulsions and influenced the rheological properties of the wall 

of the drying droplets and affected the drying kinetics of these systems. 

Extensive cohesiveness of powder observed for systems containing LMw 

emulsifiers (i.e., CITREM and lecithin) was associated with the high levels of 

surface lipid in these powders, as measured by X-ray photoelectron 

spectroscopy (XPS); while significantly lower cohesiveness of the WPH-MD 

conjugate-based powder was associated with the low surface lipid content, and 

faster drying rates, owing to the lower viscosity of that formulation. The 

topographical features of powder particles were used to predict the rheological 

properties of the drying wall, in accordance with models available in the 

a.     Globule cross-section (z-series) b.     Overlay (3-D)

z = 0.0 µm z = 0.5 µm

z = 1.0 µm z = 1.5 µm
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scientific literature (Rosenberg and Young, 1993; Sadek et al., 2015, 2016; 

Sheu and Rosenberg, 1998); systems stabilised by the conjugated protein were 

associated with lower flexibility and faster solidification of the drying wall, 

compared to the powders based on protein/peptides with and without the 

inclusion of LMw emulsifiers. 

The interfacial layer of oil globules in an emulsion generally provides 

stabilisation via mechanisms of repulsive colloidal interactions, which are 

based either on electrostatic repulsion forces (i.e., through the charge of the 

emulsifiers) or on steric hindrance (i.e., physical restriction of contact between 

individual globules by components of their interfaces). The novel scientific 

studies presented in this thesis demonstrated that steric stabilisation of oil 

globules in model IF emulsions provided by the WPH-MD conjugate was 

superior to the electrostatic stabilisation provided by the proteins/peptides 

alone or proteins/peptides in combination with LMw emulsifiers.  

Regardless of the emulsifier system used to stabilise the emulsions (i.e., intact 

whey protein, WPI; WPH, WPH + LMw emulsifiers and WPH conjugated with 

MD), only limited differences were observed in the zeta potential (ζ) of oil 

globules in these emulsions (i.e., ζ ranged from -48.0 to -57.7 mV at pH 6.8; 

Chapters 6 and 7). Moderate hydrolysis of whey protein (i.e., 8% degree of 

hydrolysis, DH) had only a limited effect on ζ, with emulsions stabilised by 

intact and hydrolysed whey protein having ζ of -48.0 and -49.6 mV, 

respectively (Chapter 6). The higher ζ of the oil globules stabilised by the 

WPH conjugated with maltodextrin (i.e., -55.0 mV), compared to those 

stabilised by the unconjugated WPH (Chapter 6), was attributed to blocking 

of the positively-charged amino acid lysine on conjugation. Inclusion of the 

LMw emulsifiers, lecithin or CITREM, in the formulation of WPH-based 

emulsions also increased the ζ of oil globules, compared to emulsions 

stabilised by WPH alone (Chapter 6 and 7). Predominantly zwitterionic (i.e., 

possessing both positive and negative charge on the polar head) phospholipid 

components of lecithin contributed to a limited increase in ζ of oil globules       

(-52.3 mV), while the presence of negatively-charged organic acid groups of 

CITREM contributed to higher ζ (i.e., -57.7 mV), compared to the emulsions 

containing WPH alone as emulsifier. Heating of emulsions stabilised by WPH-
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MD conjugate and WPH+LMw reduced the ζ of oil globules (by 2.6 to 4.6 mV), 

which was attributed to heat-induced structural changes to the 

proteins/peptides at the interfaces and limited interactions between serum 

and interfacial proteins/peptides (Chapter 7). 

Electrostatic stabilisation has its limitations, such as the requirement for a 

specific pH range to allow the emulsifiers to exert a strong electrostatic charge 

(i.e., far from the isoelectric point, pI, of the emulsifier), and the electrostatic 

stabilisation is most effective under quiescent and ambient conditions, where 

the combination of Brownian motion and ζ keeps the small oil globules             

(<1 µm) homogenously dispersed throughout the emulsion. The studies 

presented in this thesis demonstrated that emulsions, in which electrostatic 

stabilisation was the dominant stabilisation mechanism showed inferior 

stability to long time storage (Chapters 4 and 7), thermal processing 

(Chapters 6 and 7) and spray drying (Chapter 8), compared to emulsions 

where the oil globules were stabilised by steric hindrance provided by the 

conjugated WPH. Steric hindrance allows physical stabilisation of oil globules 

in O/W emulsions by extending the hydrophilic moiety of an emulsifier into 

the serum phase of the emulsion, resulting in a physical restriction of access 

to oil globules, greatly limiting globule-globule interactions. Steric 

stabilisation of oil globules, provided by the WPH-MD conjugate yielded 

emulsions with superior stability, compared to emulsions stabilised 

predominately by means of electrostatic repulsion (i.e., WPI-, WPH-, 

WPH+LMw-based; Chapters 6-8), as evidenced by stability against 

coalescence of oil globules during extended storage (10 d × 40°C) and against 

globule aggregation during thermal processing (100°C × 15 min; shear rate 15 

s-1). 

The results presented in Chapters 4-8 showed that stability of model IF 

emulsions was largely affected by the nature of the emulsifier system used for 

their stabilisation; emulsions stabilised by moderately hydrolysed whey 

protein did not display any increase in FGSD during storage at 4°C for 14 d 

(Chapter 4); however, when LMw emulsifiers, CITREM or lecithin, were 

present in these emulsions, they promoted competitive destabilisation, as 

evidenced by extensive coalescence of oil globules (Chapters 4 and 7). 
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Similar to WPH-based emulsions, good storage stability was observed for the 

WPH-MD-based emulsions, which did not display any changes in FGSD 

during storage at 40°C (Chapter 7). However, stability of emulsions to 

thermal processing (75-100°C × 15 min) did not follow the same trend as 

observed for the storage stability. Poor heat stability of WPH-based emulsions 

was linked to the high number of free thiol groups (–SH), exposed by protein 

hydrolysis, which promoted protein-mediated aggregation of oil globules (i.e., 

bridging flocculation) during heating of the emulsions (Chapter 6). 

Destabilisation of the WPH-based emulsions through bridging flocculation 

was evidenced by formation of small (~100 µm) buoyant particles; these 

clusters of aggregated oil globules surrounded by a protein/peptide network 

closely match the description of white flecks, a common (yet poorly 

understood) product quality challenge in infant formula products (Regost, 

2016). Reducing the number of free –SH groups, by preheating of the WPH 

prior to emulsion formation, was shown to be a successful strategy for 

improving thermal stability of the emulsions, due to limiting of interactions 

between serum and interfacial proteins and this approach increased the onset 

temperature for emulsion destabilisation (i.e., from ~72 to ~100°C;     

Chapter 6).  

Another recent approach used to increase thermal stability of whey protein-

rich emulsions was reported by Chevalier et al. (2016), where the protein-

mediated aggregation of oil globules was limited by a combination of exclusive 

stabilisation of oil globules with caseins and subsequent (i.e., post-

homogenisation) inclusion of whey protein-microgels, pre-associated to limit 

their interactions with emulsion interfaces on heating. In this thesis, providing 

a strong steric barrier to oil globules in whey protein/peptide-based 

emulsions, by their stabilisation with WPH-MD conjugates, was shown to 

successfully prevent globule-globule interactions over a range of heating 

temperatures (75-100°C), as evidenced by the absence of any heat-induced 

increases in FGSD (Chapters 6 and 7). Heat stability equivalent to that of 

non-conjugated WPH-based emulsions was achieved at high CITREM and 

lecithin inclusion levels (9 g L-1); however, defects such as fouling of heat 

exchange surfaces during thermal treatment of the lecithin-containing 
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emulsions and inferior stability to storage of LMw-containing emulsions 

demonstrated the advantage of the conjugated WPH for overall emulsion 

stabilisation    (Chapter 7). Stability of emulsions based on conjugated WPH-

MD extended to unit operations other than thermal processing, as evidenced 

by distinctive powder microstructure (i.e., surface topography and distribution 

of oil globules within the powder matrix) and good emulsion quality upon 

reconstitution of model IF powders, compared to powders based on WPI, 

WPH and WPH+LMw emulsifiers (Chapter 8). Efficient steric stabilisation of 

emulsions, where the hydrophobic components of the interfacial layer 

physically restricts interactions between oil globules during unit operations, 

prolonged storage and/or under adverse environmental conditions (e.g., pH = 

~pI of the emulsifier), offers significant potential for addressing stability 

challenges of existing formulations and for development of novel food 

products (i.e., acidic milk-type beverages, milk fat globule membrane-based 

systems).
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9.2.  Recommendations for future research 

Imitating milk fat globule membranes 

Harnessing the strong steric stabilisation potential of WPH-MD conjugates 

can provide significant potential for production of novel IF products, 

engineered to closer resemble interfacial structures present in human milk, 

where oil globules are predominately populated by polar lipids and sterically-

stabilised by glycoproteins (i.e., milk fat globule membranes; Fig. 1.3., 

Chapter 1, page 25). It would be worth investigating the assembly of IF fat 

globule membranes (FGM) with WPH-MD conjugates incorporated in them to 

determine the optimum inclusion levels required to provide desired stability 

(i.e., against process- and storage-induced changes). It would also have to be 

considered that the levels of included conjugated protein should only 

constitute a small fraction of the total protein in the formulation to keep the 

nutrient profile, total protein and the amino acid levels within the regulatory 

guidelines. Relevant information on the structural engineering of model FGM 

interfaces could be obtained by investigating the effects of modification of the 

protein moiety (e.g., by hydrolysis) and resulting changes in the Mw, 

hydrophilic/hydrophobic balance and localisation of the hydrophilic and 

hydrophobic groups within the polypeptide chain on adsorption and 

preferential localisation of these emulsifiers at the interfaces of oil globules 

dominated by polar lipids. Such an investigation could be aided by the 

combination of size exclusion, spectrofluorimetry, surface/interfacial tension 

techniques and confocal microscopy (i.e., aimed at localisation of the polar 

lipids and protein/peptide-based components). Similarly, it would be worth 

investigating how different physicochemical properties of the hydrophilic 

moiety (e.g., molecular weight, linear vs branched structure and electrostatic 

charge) influence formation and stability of such advanced emulsion systems. 

Designing and investigating these novel interfaces for IF products could 

provide effective science-based solutions for the next generation of IF and 

nutritional beverages designed to allow improved nutrient delivery, where the 

oil globules can pass through the stomach and subsequently be disassembled 

by the bile salts in the small intestine (Singh and Gallier, 2016; van Aken, 

2010). Broadening the scientific knowledge in the area of structural 
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engineering of FGM interfaces would complement the current efforts of the IF 

industry, focused on the development of next-generation IF products tailored 

to more closely resemble the structures and metabolic fate of human milk. The 

drive by the IF industry to develop such products can be evidenced by recent 

publications reporting on prototype children nutrition products containing 

MFGM components from companies like Danone (Gallier et al., 2015) and 

Lactalis (Veereman-Wauters et al., 2012), patents on formulae incorporating 

bovine MFGM (WO 2011/069987 A1, US 2012/0321600 A1) and new IF 

products containing MFGM components (Enfamil Enspire, Mead Johnson).  

  

Surface composition of emulsion globules 

The emulsions studied in Chapters 4-8, were stabilised by mixed emulsifier 

systems (i.e., proteins/peptides- and lipid-based emulsifiers) and by different 

ratios of these emulsifiers (i.e., CITREM and lecithin inclusion levels of 0-9 g 

L-1, proteins/peptides at an inclusion level of 15.5 g L-1), which significantly 

affected the stability of the emulsions. A significant reduction in the creaming 

velocity, without accompanying changes in the particle size distribution and 

only a limited increase in the viscosity of emulsions stabilised by WPH and 

CITREM (Chapter 7) was linked to the formation of complexes between 

CITREM, proteins/peptides and carbohydrates in the serum and at the 

interfaces of oil globules as previously reported by Semenova, Myasoedova and 

Antipova (2001). It would be worth investigating the interfacial composition 

of oil globules in such emulsions; however, current methodology used for 

providing that information (e.g., the washed cream method; Oortwijn and 

Walstra, 1979) has limitations due to the invasive nature of the method 

(centrifugation of the emulsion and washing steps), which can lead to 

coalescence of the oil globules, changes in the interfacial area, displacement 

and rearrangement of the surfactants at the O/W interface (Holzmüller, 

Müller, Himbert, and Kulozik, 2016). The next generation of confocal and 

spectroscopy-based raman microscopy (Leica TCS SP8 CLSM, Nikon C2 

CLSM, WITec ALPHA300) are promising techniques, which may allow 

investigation of the interfacial components of emulsions in their native state 
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and environment, where non-invasive localisation of multicomponent 

structures could be achieved for emulsion globules at the nano-scale (Lim, 

Burdikova, Sheehan, and Roos, 2016). 

 

Rheological properties of conjugate-stabilised emulsions 

Rheological properties of emulsions are affected by the size and shape of their 

components (e.g., oil globules, proteins, carbohydrates and other 

hydrocolloids) and interactions between these components (e.g., aggregation, 

orientation and/or physical contact). The hairy layer of the oil globules, 

provided by the hydrophilic MD moiety extending into the aqueous phase in 

emulsions stabilised by the WPH-MD conjugate is likely to participate in non-

attractive steady-state interactions with other components of the serum phase 

(i.e., protein, carbohydrates) and interfaces of other oil globules, especially in 

the concentrated system investigated in Chapter 8 (i.e., 32% total solids 

content). In Chapter 8, emulsions stabilised by the WPH-MD conjugate 

displayed higher shear-thinning behaviour, compared to emulsions stabilised 

by the WPI or WPH (i.e., flow behaviour index = 0.97, 1.00 and 0.87 for      

WPI-, WPH- and WPH-MD-based emulsions, respectively). Shear-thinning 

behaviour in O/W emulsions is typically associated with flocculation of oil 

globules, disrupted on application of shear forces. However, owing to the low 

propensity to flocculation documented (Chapters 6 and 7) for the WPH-MD-

based emulsions and to different interfacial structures of oil globules in these 

emulsions, compared to emulsions stabilised by non-conjugated 

proteins/peptides, the shear thinning behaviour was attributed to the steric 

interactions promoted by the emulsion interfacial layer. Further investigation 

of the effect of the hairy interfaces in emulsions stabilised by conjugated 

protein, on their flow properties would provide novel relevant rheological 

information on these systems and may allow formation of food matrices with 

unique texture and mouthfeel experiences. 
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Drying kinetics and interfacial rheology 

Differences in the spray drying behaviour of model IF emulsion systems, 

evidenced by different topographies of powder particles and different extent 

of particle cohesion, were associated with the physicochemical properties of 

emulsifier systems used to stabilise these emulsions (Chapter 8). The 

composition of the interfacial films of oil globules in the emulsions were shown 

to impact on the rheological properties of these films (e.g., rigidity-flexibility 

balance) and, effectively influence the stability of emulsions against globule-

globule interactions (Chapters 4 and 8). Topographical features of model IF 

powders reported in Chapter 8 (i.e., round vs shrivelled surfaces, 

presence/absence of vacuoles) revealed a relationship between emulsifier 

systems used in the formulations and mechanical properties of skin/wall layer 

of an atomised droplet/powder particle during drying (i.e., ductile vs brittle 

wall, rate of wall solidification). Further investigation of the influence of 

emulsifiers on the drying kinetics, powder surface composition and 

physicochemical properties of powders may provide important insights into 

optimisation of the industrial conditions (e.g., inlet and outlet temperatures, 

atomiser selection) for drying dairy-based powders, depending on the 

emulsifiers present in the formulation. Scientific outcomes from such study 

may lead to greater control of the drying behaviour and physicochemical 

properties of resultant powders, (e.g., controlling particle size by 

promoting/limiting ‘spontaneous’ agglomeration; controlling powder 

flowability by influencing surface topography; controlling powder stickiness 

by manipulation of surface composition) by modification of the composition 

and functional properties of emulsifiers used (e.g., surface adsorption rates, 

hydrophobic-hydrophilic balance and Mw).  
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RESEARCH Influence of lecithin on the processing stability of

model whey protein hydrolysate-based infant formula
emulsions
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1School of Food and Nutritional Sciences, University College Cork, Cork, Ireland, and 2Food Chemistry and
Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland

Whey protein hydrolysate (WPH)-based oil-in-water (O/W) emulsions containing lecithin (0–5%,
w/w, oil) were produced and stored at 4 °C for 14 days. Surface tension and interfacial tension of
these systems were measured for formulation development. Fat globule size distribution (FGSD)
analysis and confocal laser scanning microscopy (CLSM) were used to assess the physical stability
of emulsions during storage and identify mechanisms of instability. Lecithin decreased interfacial
tension between oil and aqueous phases of model emulsions and allowed formation of smaller oil
droplets on homogenisation. However, low-intermediate levels (1–3%) of lecithin caused coales-
cence and shift to bimodal FGSD during storage of emulsions.

Keywords Whey protein hydrolysate, Emulsion, Lecithin, Confocal laser scanning microscopy,
Infant formula, Interfacial tension.

INTRODUCTION

Bovine milk is widely used as a base material for
the manufacture of infant nutritional products;
however, its composition differs considerably
from that of human milk. Differences in the pro-
tein content (i.e. 33 g/L and 9–11 g/L in bovine
and human milk, respectively), ratio of casein:
whey protein (i.e. 80:20 and 40:60 in bovine and
human milk, respectively) and amino acid compo-
sition need to be considered during ingredient
selection and formulation development in the
manufacture of infant formula (IF) products.
Other ingredients used in the formulation of IF
products are lactose, maltodextrins and corn syrup
solids as sources of carbohydrates, blends of veg-
etable and fish oils (to mimic the fatty acid com-
position of human milk), minerals, vitamins and
emulsifiers such as lecithins or mono- and digly-
cerides (Alles et al. 2004; MacLean et al. 2010).
Cow’s milk allergy (CMA) is a condition

observed in early childhood, and on average
2.2% of children below the age of 2 years are
affected (Natale et al. 2004; Tammineedi et al.
2013). Partial or limited enzymatic hydrolysis of

protein can help in reducing CMA-related issues
by offering ‘predigested’ formula for infants.
Manufacturers of infant nutritional ingredients/
products employ enzymatic hydrolysis to pro-
duce formulas which are easier to digest; these
products are generally modified cow’s milk for-
mula, often based exclusively on whey protein,
and are suggested as being suitable for infants
experiencing feeding discomfort and digestion-
related issues (O’Mahony et al. 2011).
Considerable challenges encountered in the

manufacture of partially hydrolysed whey pro-
tein-based IF emulsions are related to poor heat
stability during processing, coalescence and
creaming and lipid oxidation on storage. Several
studies have focused on improving the stability
of these types of IF systems (Tirok et al. 2001;
Christiansen et al. 2004; Ye et al. 2004; Ye and
Singh 2006). Emulsion stability and fat globule
size distribution (FGSD) of model IF are known
to be influenced by protein content (McCarthy
et al. 2012). Improvement of heat stability
(McSweeney et al. 2004, 2008) and oxidative
stability (Zou and Akoh 2013) of IF systems
with increasing lecithin content has also been
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reported. However, intact dairy protein was used as the pro-
tein source in the aforementioned studies, and there is cur-
rently a lack of detailed information on the processing
stability of hydrolysed whey protein-based IF emulsions.
Studies involving hydrolysed whey protein and their proper-
ties have shown that the degree of hydrolysis (DH) is gener-
ally a good indicator of protein functionality (Foegeding
et al. 2002) and low levels of hydrolysis (i.e. DH ≤10–
20%) are beneficial (Singh and Dalgleish 1998; Caessens
et al. 1999; Van der Ven et al., 2001; Luck et al. 2002;
Ruiter and Voragen 2002) while more extensively hydroly-
sed (i.e. DH >20%) proteins increasingly lose their structure
and display decreased techno-functionality (Agboola and
Dalgleish 1996a,b; Scherze and Muschiolik 2001).
The incorporation of low molecular weight emulsifiers, such

as phospholipids (commonly from lecithin) or mono- and di-
glycerides, generally increases the physical stability of hydro-
lysed protein-based emulsions due to their ability to adsorb at
the oil/water interface and effectively decrease the interfacial
tension (Dickinson 1998, 2001; Tirok et al. 2001; Ruiter and
Voragen 2002). Arising from decreased interfacial tension,
smaller fat globules can be formed during homogenisation
(Van Aken et al. 2003; Diftis and Kiosseoglou 2004; O’Brien
2009) and the rapid action of low molecular weight surfac-
tants adsorbing at the interface prevents rapid coalescence
(Dickinson et al. 1989). Production of emulsions with narrow
FGSD, where volume–surface average diameter is <1.0 lm
(i.e. typically ~0.5 lm) (Buchheim and Dejmek 1997), is
desirable in the manufacture of infant formula emulsions and,
when achieved, usually indicates good emulsifying properties
of the ingredients (McCarthy et al. 2012).
Lecithin is used in the manufacture of IF products to

enhance emulsifying properties or storage stability by form-
ing a physical barrier in the form of a cohesive film around
oil droplets (McClements 2004; Ghosh and Rousseau 2010).
Lecithin is also known to enhance stability of emulsions
while heating (Agboola et al. 1998a; Van der Meeren et al.
2005; Le et al. 2007; McSweeney et al. 2008), which is
especially important in the manufacturing processes of IF
emulsions based on hydrolysed protein. Additionally, the
amphiphilic nature of lecithin gives it good functionality as
a wetting agent; therefore, it can also be used to aid instant
properties of milk/infant formula powders (O’Mahony et al.
2011; Sharma et al. 2012; Hammes et al. 2015).
The use of hydrolysed whey proteins in the formulation

of IF products is of growing interest; however, limited for-
mulation research has been carried out in this area. In this
study, the effects of lecithin on the processing and physical
stability of model IF emulsions prepared with hydrolysed
whey protein were studied. The effect of different levels of
addition of lecithin on the interfacial tension in O/W sys-
tems and the consequences thereof for the manufacture and
stability of model hydrolysed whey protein-based IF emul-
sions during storage were investigated.

MATERIALS AND METHODS

Materials
Whey protein hydrolysate (WPH), Hyprol�, was obtained
from Kerry Group, plc. (Listowel, Co. Kerry, Ireland). Mal-
todextrin (Maldex 170 with dextrose equivalent value of 17)
and de-oiled powdered soya bean lecithin (Ultralec� P)
were obtained from Syral Belgium NV (Aalst, Belgium)
and ADM (Decatur, IL, USA), respectively. Soya bean oil
(Organic Soya Oil, Clearspring Ltd., London, UK) was pur-
chased from a local commercial outlet. All other chemicals,
reagents and minerals used in the study were purchased
from Sigma-Aldrich (St. Louis, MO, USA).

Characterisation of whey protein hydrolysate
Protein, ash, moisture and fat contents of WPH were deter-
mined by Kjeldahl (IDF Standard 20-1, 2014), ashing at
500 °C for 5 h (IDF Standard 90, 1979), oven-drying at
103 °C for 5 h (IDF Standard 26, 2004) and Rose-Gottlieb
method (IDF Standard 9C, 1987), respectively; lactose con-
tent was determined by difference. Degree of hydrolysis of
the WPH ingredient was determined by the trinitrobenzene-
sulphonic acid method as described by Adler-Nissen (1979).
Size distribution of peptides in the WPH was determined

by size exclusion chromatography (SEC) using a TSK
G2000SW, 600 9 7.5 mm column (10 lm, Sigma-Aldrich,
Dublin, Ireland); elution was with an isocratic gradient of
30% acetonitrile containing 0.1% TFA (v/v) at 1.0 mL/min.
The samples were diluted in water or running buffer, 20 lL
of 1 g/L protein/peptide solutions was injected onto the
column and the elution was monitored with UV absorbance
at 214 nm. Commercial b-lactoglobulin A, bovine serum
albumin and caseinomacropeptide (CMP) (Sigma-Aldrich,
Dublin, Ireland) were used as standards with ribonuclease
A, cytochrome C, aprotinin, bacitracin, His-Pro-Arg-Tyr,
Leu-Tyr-Met-Arg, bradykinin, Leu-Phe and Tyr-Glu
(Bachem AG, Bubendorf, Switzerland) used as molecular
weight standards. Standards were prefiltered through 0.22-
lm low-protein-binding membrane filters (Sartorius Stedim,
Surrey, UK) or centrifuged at 10 000 9 g for 20 min prior
to application to the column. All solvents were filtered
under vacuum through a 0.45-lm high-velocity filter (Milli-
pore Ltd., Durham, UK).

Preparation of emulsions
Model infant formula emulsions containing 1.55, 3.50 and
7.00 g/100 mL of protein, oil and carbohydrate, respec-
tively, were prepared as follows: WPH and maltodextrin
(MD) were solubilised in de-ionised water (d.H2O) and pre-
heated to 75 °C with continuous mixing using an overhead
stirrer at 500 rpm for 1 h. Solutions (1 mL) containing
individually iron sulphate heptahydrate, zinc sulphate hepta-
hydrate, manganese sulphate monohydrate or copper sul-
phate (to give final added iron, zinc, manganese and
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copper concentrations of 800, 600, 33 and 5 lg/100 mL,
respectively) were then added to the protein/carbohydrate
solution.
Stock lecithin-containing soya bean oil was prepared by

adding lecithin to preheated (55 °C) oil during continuous
mixing with magnetic stirring on a hotplate (55 °C) for
60 min. The stock solution was then added to soya bean oil
(55 °C) to give five different lecithin concentrations (1–5%,
w/w, oil). Aqueous and oil phases were subsequently mixed
and maintained at 55 °C until homogenisation. A control
was prepared with soya bean oil alone (i.e. no added leci-
thin). Emulsions were formed by prehomogenisation with
an Ultra-Turrax at 710 g for 2 min followed by two-stage
homogenisation (double pass) at 10 and 2 MPa, using a
valve homogeniser (APV GEA Niro-Soavi S.p.A., Italy) at
50 °C. Following homogenisation, the pH of each emulsion
was adjusted to 6.8 with 0.1 N HCl and/or 0.1 N NaOH

and sodium azide (0.05%, w/v) was added to prevent micro-
bial growth during storage.

Compositional analysis of emulsions
Kjeldahl (IDF Standard 20-1, 2014) and Gerber (IDF Stan-
dard 105, 2008) methods were used for the determination of
protein and fat levels of emulsions, respectively. Moisture
content was measured by oven-drying at 103 °C for 5 h
(IDF Standard 21,2010). Ash was measured using muffle
furnace heating at 500 °C for 5 h (AOAC, 2002). Carbohy-
drate content was calculated by difference.

Surface and interfacial tension analysis

Dynamic surface tension
Surface tension (cS) measurements were performed at 55 °C
(to best replicate emulsion preparation) under atmospheric
pressure with a Kr€uss K12 tensiometer (Kr€uss GmbH, Ham-
burg, Germany) equipped with a Wilhelmy plate. cS was mea-
sured over 60 min after formation of the surface in filtered
d.H2O (Milli-Q system), WPH solution (1.55%, w/v) and soya
bean oil containing different levels of soya bean lecithin (0–
5%, w/w). Samples containing lecithin were prepared by add-
ing the lecithin to preheated (55 °C) oil and allowing it to
mix fully at 55 °C with continuous intermediate-speed stirring
for 60 min. The protein solution was prepared as described
earlier with only protein added; filtered d.H2O was used as
a control. Aliquots (25 mL) were placed in the sample ves-
sel, and air bubbles (if present) were removed with a Pasteur
pipette. Before each measurement, the plate attachment and
the sample vessel were washed with acetone and d.H2O fol-
lowed by annealing over a flame to ensure removal of all
organic matter. Glassware used in the analysis was subjected
to an acid wash; that is, after thorough washing with deter-
gent and water, glassware was filled to overflow with 1 N
nitric acid, left overnight and rinsed 3 times with d.H2O
before drying.

Dynamic interfacial tension
Measurements of interfacial tension (cI) at the soya bean
oil/lecithin (0–5%, w/w) interface with d.H2O or protein

Table 1 Composition, degree of hydrolysis (DH) and peptide size
distribution of the whey protein hydrolysate (WPH) used in the
preparation of emulsions

Characteristics % (w/w)

Protein 77.7
Lactose 11.6
Ash 4.92
Moisture 4.83
Fat 0.99
Degree of hydrolysis (%) 10.7

Peptide distribution (based on molecular weight) % of total protein
>20 kDa 4.68
10–20 kDa 3.85
5–10 kDa 5.65
2–5 kDa 21.2
1–2 kDa 24.5
0.5–1 kDa 22.5
<0.5 kDa 17.6

Table 2 Composition of model infant formula emulsions containing different levels of lecithin (0–5%, w/w, oil)

Lecithin content (%, w/w) Protein (%, w/w) Fat (%, w/v) Carbohydrate (%, w/w) Moisture (%, w/w) Ash (%, w/w)

0.00 1.67 � 0.02a 3.48 � 0.09a 7.78 � 0.48a 87.0 � 0.55a 0.10 � 0.00a

1.00 1.68 � 0.03a 3.44 � 0.04a 8.02 � 0.80a 86.7 � 0.77a 0.10 � 0.01a

2.00 1.69 � 0.01a 3.43 � 0.02a 8.10 � 0.56a 86.7 � 0.54a 0.11 � 0.00b

3.00 1.69 � 0.06a 3.44 � 0.01a 8.23 � 1.03a 86.5 � 1.03a 0.11 � 0.01b

4.00 1.70 � 0.02a 3.47 � 0.01a 8.12 � 0.63a 86.6 � 0.63a 0.12 � 0.00c

5.00 1.70 � 0.03a 3.51 � 0.01a 8.29 � 0.67a 86.4 � 0.69a 0.12 � 0.01c

(a–c)Values within a column not sharing a common superscript differed significantly (P < 0.05).
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solution (1.55%, w/v; WPH) were also carried out with a
Kr€uss K12 tensiometer using the Wilhelmy plate method.
Samples were prepared as detailed earlier for dynamic
surface tension and measured at 55 °C over 60 min; 25 mL
of heavy phase (water or protein solution) and 25 mL of
light phase (oil or oil containing lecithin) were used. cI was
recorded continuously from 0 to 5 min and at 10, 15, 30
and 60 min after forming the interface. The measurement
program was set to record a maximum of 80 readings per
given time point at 1sec intervals, unless the standard devia-
tion was ≤0.01 in ten consecutive readings, in which case
the measurement would stop for the given time point. The
sample vessel and the Wilhelmy plate were cleaned and
annealed before each measurement, and all glassware was
acid-washed as described earlier.

Measurement of fat globule size distribution
Fat globule size distribution (FGSD) of the emulsions was
measured using a laser light diffraction unit (Mastersizer S,
Malvern Instruments Ltd., Worcestershire, UK) equipped
with a 300 RF (reverse fourier) lens and He-Ne laser (k of
633 nm). A polydisperse model with 3NAD presentation and
a particle and dispersant refractive index of 1.46 and 1.33
were selected for data analysis as described by McCarthy
et al. (2012). Sample was introduced to the mixing chamber
and dispersed in d.H2O until a laser obscuration of 14% (�
0.5%) was reached. Measurements were taken on emulsions
immediately after homogenisation (day 0) and after 4, 7, 11
and 14 days of storage at 4 °C.

Confocal laser scanning microscopy analysis
The microstructural analysis of emulsions was performed
using a Leica TCS SP5 confocal laser scanning microscope
(Leica Microsystems, Heidelberg GmbH, Mannheim, Ger-
many). Protein and lipid were fluorescently labelled with
Nile blue dye (Sigma-Aldrich, Wicklow, Ireland); 50 lL of
the dye solution was added to 1 mL of emulsion followed
by vortex mixing for 5 s. Visualisation of oil and protein in
emulsions (10 lL) was carried out using an Ar laser operat-
ing at an excitation wavelength of 488 nm with emission
detected between 500 and 530 nm and a He-Ne laser oper-
ating at an excitation wavelength of 633 nm with emission
detected between 565 and 615 nm for oil and protein,
respectively (Auty et al. 2001). The observations were per-
formed using 209 and 639 oil immersion objectives. At
least three specimens of each sample were observed to
obtain representative micrographs of samples.

Statistical data analysis
Analysis of variance (ANOVA) was carried out using
Minitab� 16 (Minitab Ltd, Coventry, UK, 2010) statistical
analysis package. The Tukey method was used to obtain
grouping information on the treatment means. The level of
significance was determined at P < 0.05.

RESULTS AND DISCUSSION

Characterisation of whey protein hydrolysate
The composition, degree of hydrolysis and peptide
size distribution data of the WPH used in the preparation
of emulsions are shown in Table 1. Lactose levels
(i.e. innate carbohydrate component of formulation) were
taken into consideration when preparing the emulsions.

Composition of emulsions
Compositional analysis of emulsions showed that measured
levels (Table 2) were satisfactorily near target levels. Ash
levels were found to be statistically different (P < 0.05),
and an increase in its level was found to follow the increase
in the levels of lecithin addition to the emulsions, suggest-
ing that the contribution of ash present in the lecithin

Table 3 Surface and interfacial tension of soya bean oil systems
containing different levels of lecithin (w/w, oil) measured at 55 °C

Sample

Surface tension Interfacial tension

cS DcS
5 Interface2 cI DcI

5

mN/m
Initial cS/cI

3

SBO1 30.8 � 0.1 O/W 9.4 � 0.3 –

O/P 4.3 � 0.1 –

Equilibrium cSEq/cIEq
4

SBO 30.3 � 0.2a 0.5 O/W 3.2 � 0.1a 6.2
O/P 1.1 � 0.2b 8.3

SBO & 1%
lecithin

29.4 � 0.3ab 1.4 O/P <1.06 >8.4

SBO & 2%
lecithin

28.4 � 0.1b 2.4 O/P <1.0 >8.4

SBO & 3%
lecithin

28.7 � 0.4b 2.1 O/P <1.0 >8.4

SBO & 4%
lecithin

28.4 � 0.4b 2.4 O/P <1.0 >8.4

SBO & 5%
lecithin

28.2 � 0.2b 2.5 O/P <1.0 >8.4

1SBO represents soya bean oil.
2Interface: O/W represents an interface between the oil and filtered

de-ionised water; O/P represents an interface between oil and the

protein solution (1.55%, w/v).
3Initial surface or interfacial tension recorded immediately upon for-

mation of the surface/interface.
4Equilibrium surface and interfacial tension (cSEq and cIEq, respec-

tively) recorded at 1 h of surface/interface age.
5The total decrease in c from the formation of cleansurface/interface until

reaching the equilibrium is presented as Dc.
6The sensitivity limit of the instrument is 1 mN/m; thus, samples

showing c values lower than this limit are presented as <1.0.
(a–b)Values within a column not sharing a common superscript dif-

fered significantly (P < 0.05).
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(9.6%) led to the differences in ash levels between formed
emulsions.

Surface and interfacial tension data

Dynamic surface tension
Upon formation of a new surface in the soya bean oil sam-
ple with no lecithin added, the initial surface tension (cS)
was 30.8 mN/m (Table 3, Figure 1); this decreased to 30.3
once equilibrium surface tension (cSEq) was reached after
1 h (Table 3, Figure 1). This initial cS value (30.8 mN/m)
of the control oil (i.e. no lecithin added) was assumed to be
representative of a clean surface (i.e. at point of surface for-
mation) and was used as the initial value in all measured

systems (Figure 1). A rapid decrease in the cS was observed
in all oil samples containing lecithin as the surface aged
(i.e. time after formation of a new surface). The majority of
the decrease was observed to take place within the first
5 min of surface ageing, and the rate and extent of decrease
in cS increased with increasing lecithin content (Figure 1).
Values presented in Table 3 show that addition of 1% leci-
thin resulted in cSEq of 29.4 mN/m, a reduction of 1.4 mN/
m compared to the control. When the lecithin content was
increased to 2%, the cSEq was further reduced by 1.0 mN/m
(i.e. cSEq of 28.4 mN/m). Higher levels of addition of leci-
thin (i.e. 3–5%) did not contribute to any further decrease in
cS (no significant differences in cSEq between these sam-
ples), and cSEq values for samples containing 2–5% lecithin
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Figure 1 Dynamic surface tension of soya bean oil samples containing different levels of lecithin (%, w/w): no lecithin (■), 1% (□), 2% (●), 3%
(○), 4% (▲) and 5% (M) lecithin (w/w).
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Figure 2 Dynamic interfacial tension in samples composed of soya bean oil/water (■) and soya bean oil/protein (1.55%, w/v, protein) (●). Vertical
line(s) (▲) represent the cI of lecithin-containing systems. Horizontal dashed line represents the sensitivity limit (1 mN/m) of the K12 processor tensi-
ometer. Any readings below this limit are not shown in the diagram.
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were found to be within a narrow range (i.e. 28.2–28.7 mN/
m). A similar trend was reported by McSweeney et al.
(2008) where addition of lecithin up to a level of 2 g/L
facilitated formation of small oil droplets in model IF emul-
sions where average droplet diameter decreased with
increasing lecithin level; however, lecithin levels above 2 g/
L did not contribute to further reduction in oil droplet sizes.

Dynamic interfacial tension
Interfacial tension (cI) between oil and aqueous phases dis-
played a similar pattern as observed for surface tension,
where initial cI decreased rapidly following formation of the
interface. Initial cI recorded at the interface between soya
bean oil (SBO) and filtered d.H2O (i.e. control system) of
9.4 mN/m was used as an initial cI for all measured systems
(Figure 2) as it represented a clean interface (i.e. an inter-
face with no surfactants present). Equilibrium interfacial ten-
sion (cIEq) of the control system, recorded after 1 h, was
3.2 mN/m (Table 3). The majority of the decrease in cI was
achieved within 15 min of the interface formation.
Measured cIEq between soya bean oil and protein solution

was 1.1 mN/m. The further reduction in cIEq of 2.1 mN/m

(i.e. from 3.2 to 1.1 mN/m) observed in the soya bean oil
and aqueous phase system when hydrolysed protein was
introduced indicated the effectiveness of hydrolysed whey
protein (DH 10.7%) in decreasing the cI. The rate at which
cI decreased upon interface formation was markedly higher
in the protein-containing system (i.e. majority of the
decrease was observed within 5 min of formation of the
interface; Figure 2). This shows the high mobility and effec-
tiveness of peptides in rapidly reducing cI (Chobert et al.
1988; Turgeon et al. 1992; Singh and Dalgleish 1998; Kong
et al. 2007 Seta et al. 2014). The effectiveness of partially
hydrolysed protein in reducing the interfacial tension is due
to the presence of low–intermediate molecular weight pep-
tides (Table 1) and their flexible structure with both hydro-
phobic and hydrophilic sites localised along the peptide
chain, unfolding (i.e. bigger peptides) and aligning upon
adsorption at the interface, thereby forming a viscoelastic
film (Lam and Nickerson 2013) and lowering the interfacial
tension between the two phases.
Samples where lecithin was added (1–5%, w/w) to the oil

phase displayed rapid reduction in the cI reaching values
lower than 1.0 mN/m (sensitivity limit) immediately after

Table 4 Fat globule size distribution of model infant formula emulsions prepared with different levels (0–5%, w/w, oil) of lecithin during storage
at 4 °C at 0, 4 and 14 days post homogenisation

Lecithin addition (%, w/w, oil) Storage time (days)

Fat Globule Size Parameter (lm)

D[4,3]
1 D[3,2]

2 D(v,0.1)
3 D(v,0.5)

4 D(v,0.9)
5

0.00 (Control) 0 0.97 � 0.03a 0.63 � 0.02a 0.32 � 0.01a 0.82 � 0.02a 1.80 � 0.08a

4 0.96 � 0.02a 0.61 � 0.02a 0.32 � 0.02a 0.81 � 0.03a 1.81 � 0.09a

14 0.97 � 0.03c 0.63 � 0.02ab 0.32 � 0.01a 0.82 � 0.02a 1.79 � 0.05a

1.00 0 0.93 � 0.01ab 0.62 � 0.02a 0.32 � 0.01a 0.79 � 0.01ab 1.69 � 0.01a

4 1.49 � 0.24a 0.61 � 0.03a 0.32 � 0.02a 0.77 � 0.03ab 1.90 � 0.20ab

14 2.26 � 0.26ab 0.66 � 0.01a 0.33 � 0.01a 0.77 � 0.01b 7.20 � 1.04b

2.00 0 0.89 � 0.00bc 0.60 � 0.01a 0.31 � 0.00a 0.77 � 0.01bc 1.68 � 0.04ab

4 1.31 � 0.31a 0.60 � 0.04a 0.31 � 0.01a 0.75 � 0.03ab 1.78 � 0.09a

14 2.29 � 0.37ab 0.64 � 0.03ab 0.31 � 0.01a 0.74 � 0.02b 7.68 � 1.81b

3.00 0 0.91 � 0.02bc 0.60 � 0.02a 0.31 � 0.01a 0.76 � 0.02bc 1.67 � 0.03b

4 1.60 � 0.27a 0.60 � 0.03a 0.31 � 0.02a 0.75 � 0.03ab 1.99 � 0.43a

14 2.33 � 0.33a 0.63 � 0.01ab 0.31 � 0.01a 0.74 � 0.01b 7.73 � 1.44b

4.00 0 0.87 � 0.01bc 0.59 � 0.02a 0.31 � 0.01a 0.75 � 0.02bc 1.60 � 0.03b

4 1.17 � 0.22a 0.59 � 0.03a 0.31 � 0.01a 0.73 � 0.03ab 1.69 � 0.11a

14 1.63 � 0.01bc 0.61 � 0.01ab 0.31 � 0.01a 0.73 � 0.02b 2.06 � 0.16a

5.00 0 0.86 � 0.03c 0.58 � 0.03a 0.31 � 0.02a 0.74 � 0.02c 1.59 � 0.01b

4 1.13 � 0.27a 0.58 � 0.02a 0.31 � 0.01a 0.72 � 0.02b 1.66 � 0.13a

14 1.30 � 0.21c 0.60 � 0.02b 0.31 � 0.01a 0.72 � 0.02b 1.70 � 0.18a

1D[4,3] represents volume mean diameter.
2D[3,2] represents Sauter mean diameter.
3D(v,0.1) represents fat droplet size in the 10% quantile of the distribution.
4D(v,0.5) represents fat droplet size in the 50% quantile of the distribution.
5D(v,0.9) represents fat droplet size in the 90% quantile of the distribution.
(a–c)Values within a column not sharing a common superscript differed significantly (P < 0.05).
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formation of the interface (Figure 2). This can be explained
by the behaviour of small surface active agents such as
those present in lecithin (i.e. phospholipids) which migrate
rapidly through the dispersant and adsorb at the interface
allowing the cIEq to be reached in a very short time (Mez-
dour et al. 2008). Such a rapid decrease in cI by phospho-
lipids was also reported by Kabalnov et al. (1995) where
the cIEq was reached in <1 s. Low molecular weight phos-
pholipids display higher mobility and manoeuvrability com-
pared to proteins (and large peptides); thus, they can
displace larger surfactants (i.e. such as protein and peptides)

from the surface/interface (Van Aken et al. 2003; Diftis and
Kiosseoglou 2004; Lam and Nickerson 2013) resulting in
rapid reduction of cI.

Fat globule size distribution in emulsions
Fat globule size distribution (FGSD) of oil droplets in emul-
sions after homogenisation (0 day) showed that all samples,
irrespective of level of addition of lecithin, were able to
form good quality emulsions with narrow size distribution
(Table 4). The mean volume diameter (D[4,3]) of a control
emulsion (i.e. emulsion prepared without lecithin) was

0.01 0.1 1 10 100
0
1
2
3
4
5
6
7
8
9
10

0.01 0.1 1 10 100

0.01 0.1 1 10 100
0
1
2
3
4
5
6
7
8
9
10

0.01 0.1 1 10 100

0.01 0.1 1 10 100

0.01 0.1 1 10 100
0
1
2
3
4
5
6
7
8
9
10

0.01 0.1 1 10 100

(a) (b)

(d)

(e) (f)

%
 o

f T
ot

al
 fa

t v
ol

um
e

Particle size (μm)

(g) (h)

0
1
2
3
4
5
6
7
8
9
10

0.01 0.1 1 10 100

(c)

Figure 3 Fat globule size distribution profiles of emulsions prepared with lecithin at levels of 0% (a), 1% (b), 2% (c), 3% (d), 4% (e) or 5% (f) (w/
w, oil) post-homogenisation (■) and after 14 days storage at 4 °C (○). Size distribution of oil droplets in emulsions containing 0% (g) and 1% (h)
lecithin (w/w, oil) after 10 days of storage at 4 °C with water (●) or 0.2%, w/v, SDS (M) used as the dispersant.
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0.97 lm, and increasing lecithin level generally resulted in
lower values of D[4,3] with smallest D[4,3] value of
0.86 lm found in the 5% (w/w, oil) lecithin-containing
emulsion. Size distributions of oil droplets of all formed
emulsions were very similar with a general trend of smaller
droplets formed in emulsions with higher level of addition
of lecithin, which was also reported by McSweeney et al.
(2008) in intact milk protein-based model IF emulsions.
Changes in FGSD of lecithin-containing emulsions were

observed during storage at 4 °C, while no changes were
observed in the control emulsion (Figure 3). D[4,3] increased
in all emulsions formed with lecithin on storage at 4 °C, and
this effect was most pronounced for samples containing
1–3% (w/w, oil) lecithin (Figure 4). Emulsions prepared with
3% (w/w, oil) lecithin showed greatest increase in particle
size (Table 4); D[4,3] increased from 0.91 lm (0 day) to
2.33 lm (14 days). Development of large oil droplets on
storage decreased at higher (4–5%, w/w, oil) lecithin addition
levels giving D[4,3] of 1.63 and 1.30 lm for 4 and 5% (w/w,
oil) lecithin-containing emulsions at 14 days, respectively. In
the emulsions that displayed increases in particle size during
storage, this was represented by a shift of FGSD distribution
from monomodal to bimodal (Figure 3) with a second peak

evident at ~10 lm within 4 days of storage at 4 °C. FGSD
profiles showed a decrease in the number of larger oil drop-
lets (i.e. flattening of the second peak) as the lecithin level in
emulsions was increased, particularly to 4% and 5% lecithin.
The total percentage of large oil droplets (i.e. the area under
second peak) was approximately 2- and 3-fold lower in emul-
sions with lecithin content of 4% and 5%, respectively, as
compared to that of the 3% lecithin-containing emulsion.
FGSD results (Table 4) also showed that changes in particle
size were only detected in the 90% quantile of the size distri-
bution (i.e. D(v, 0.9)). After 14 days of storage at 4 °C,
emulsions with 1, 2 and 3% (w/w, oil) lecithin showed an
increase in D(v, 0.9) of 5.51 (i.e. from 1.69 to 7.20 lm), 6.00
(i.e. from 1.68 to 7.68 lm) and 6.06 lm (i.e. from 1.67 to
7.73 lm), respectively, while it increased by 0.46 (i.e. from
1.60 to 2.06 lm) and 0.11 lm (i.e. from 1.59 to 1.70 lm) in
4 and 5% lecithin-containing emulsions, respectively. No
increase in D(v, 0.9) was observed in the control emulsion
during storage. The destabilising effect of lecithin on oil
droplets in emulsions was also observed by Zou and Akoh
(2013) who showed that the presence of lecithin (0.4 g/L)
resulted in larger particle sizes after storage (28 days at room
temperature) in intact milk protein model IF emulsions.
Results from the current study indicated that the presence

of soya bean lecithin in WPH-based emulsion systems can
promote interactions between oil droplets and result in their
coalescence. Studies by Cruijisen (1996) and Agboola et al.
(1998a) showed similar trends where the presence of unmod-
ified soya bean lecithin (1.5 and 1.0–2.5 g/L, respectively)
promoted coalescence of oil globules in caseinate- and WPH-
based (DH 27%) O/W emulsions, respectively. A study by
Van der Meeren et al. (1995) showed that low values of
interfacial tension due to the presence of lecithin at the O/W
interface had a negative effect on the stability of emulsions
against flocculation. Decreased physical stability of emul-
sions containing WPH and lecithin was also observed by
Tirok et al. (2001) using more extensively hydrolysed pro-
tein (DH 23–29%) and lecithin (4.8 g/L). In the current
study, a shift in FGSD from monomodal to bimodal was
observed in lecithin-containing emulsions on storage at
4 °C. However, only a small proportion of the total popu-
lation of oil droplets was affected by the size increase and
distribution shift as changes in oil droplet size in all leci-
thin-containing emulsions were only found for the 90%
size distribution quantile (i.e. D(v, 0.9)) while D(v, 0.1) or
D(v, 0.5) did not display any concurrent increase in size.
Interestingly, the stability to coalescence in emulsions con-
taining lecithin improved with its higher levels of addition;
formation of large oil droplets was found to be signifi-
cantly lower in 4% and lower still in 5% lecithin-contain-
ing emulsions. It is worthwhile to note that, even with the
development of a second peak, FGSD remained narrow in
the majority of the population (i.e. first peak) of all leci-
thin-containing emulsions.
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Figure 4 Fat globule size distribution parameters: (a) mean volume
diameter (D4,3) and (b) 90% quantile size distribution (D(v,0.9)) for oil
droplets in emulsions prepared with lecithin at levels of 0% (■), 1%
(□), 2% (●), 3% (○), 4% (▲) and 5% (M) (w/w, oil) stored at 4 °C
over 14 days.
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A preliminary experiment (Figure 3g–h) was carried out
where stored (10 days at 4 °C) emulsions were treated with
the dissociating agent, sodium dodecyl sulphate (SDS), and
FGSD was subsequently measured using an approach simi-
lar to that used by Tomas et al. (1994), Agboola et al.
(1998b) and Tirok et al. (2001). A bimodal distribution and
large particle size (as represented by the 90% quantile) con-

tinued to be detected following addition of dissociating
agent which suggests that coalescence (as opposed to floc-
culation) of oil droplets was the main mechanism of emul-
sion instability in the samples. This is in agreement with the
work carried out by Agboola et al. (1998b) and Ye and
Singh (2006) who reported a similar destabilisation mecha-
nisms in WPH-based emulsions.
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Figure 5 Confocal laser scanning microscopy images of model infant formula emulsions containing 0%, 1% and 5% lecithin (w/w, oil) after 1 (A), 7
(B) and 14 (C) days of storage at 4 °C. Micrographs present overall size distribution of oil droplets (green) in different emulsions over time. Scale
bar (bottom right) = 50 lm.
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Confocal laser scanning imaging of emulsions
Confocal laser scanning microscopy (CLSM) showed that
freshly prepared (i.e. 1 day after homogenisation) emulsions
had fine and uniformly distributed oil droplets (Figure 5).
There were no visible differences between the control (i.e.
0% lecithin), 1 and 5% lecithin (w/w, oil) emulsions, sup-
porting the FGSD results. Development of a small number
of larger oil droplets (10–15 lm) was observed in emulsions
containing 1% lecithin (w/w, oil) after 7 days of storage at
4 °C. No changes in the size of oil droplets were observed
for control and 5% lecithin (w/w, oil) emulsions at that time
point. CLSM micrographs showed increased numbers of
large (10–30 lm) oil droplets in emulsions containing lower
lecithin levels (i.e. 1–3%) after 14 days of storage at 4 °C.
In emulsions containing 4–5% lecithin, some bigger oil
globules (5–10 lm) were formed after 14 days of storage at
4 °C. These droplets, however, were smaller, considerably
less numerous and formed at a slower rate (i.e. changes
were not observed until 14 days of storage) as compared to
emulsions with lower lecithin levels (1–3%). No visual dif-
ferences in size distribution of oil droplets after 14 days of
storage at 4 °C were observed in the control sample. Large
oil droplets were also evident in emulsions containing >1%
lecithin (w/w, oil) (data not shown). WPH-based emulsions
formed with these lecithin levels formed large oil droplets
during short-term refrigerated storage with significant
changes observed after 7 days. CLSM micrographs con-
firmed that lecithin (when added at levels of 1–3%, w/w,
oil) in model WPH-based IF emulsions promoted coales-
cence of oil droplets during storage (14 days) at 4 °C.
Micrographs showed large and uniform oil droplets in the
emulsion containing 1% lecithin (w/w, oil) after 14 days
storage. This supported earlier findings suggesting that coa-
lescence was the main mechanism responsible for emulsion
instability in lecithin-containing WPH-based emulsions.

Differences in the larger (>3 lm) fat globule interface
were seen at higher magnification, and an example of this is
given in Figure 6, which shows an uneven thickness of
protein at the oil–droplet interface (Figure 6b, arrows). This
uneven protein thickness was observed for many of the lar-
ger oil droplets in all samples containing lecithin, but was
not observed in droplets of the WPH control (0% lecithin)
sample (Figure 6a). This suggests a possible partial dis-
placement and aggregation of interfacial whey protein by
the lecithin over time, which may also help explain the coa-
lescence of oil droplets containing lecithin. More study is
needed to characterise the precise nature of the interfacial
material, for example using fluorescently labelled phospho-
lipids.

CONCLUSIONS

This study shows that an effective decrease in the interfacial
tension between the oil and aqueous phase in the manufac-
ture of model infant formula emulsions produced with hy-
drolysed whey protein can be achieved by the incorporation
of low levels of lecithin (i.e. 1%, w/w, oil). Emulsions
formed with hydrolysed whey protein displayed narrow size
distribution of oil droplets which was further reduced by the
incorporation of lecithin. It was, however, shown that low-
to-intermediate levels (1–3%) of lecithin decreased the sta-
bility of emulsions during storage at 4 °C by promoting
coalescence of oil droplets. Confocal microscopy proved to
be a helpful tool for studying coalescence in emulsions, and
it complemented light scattering work in the current study.
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Whey protein hydrolysate (WPH) ingredients are commonly used in the manufacture of partially-hydrolysed
infant formulae. The heat stability of these emulsion-based formulae is often poor, compared with those made
using intact whey protein. The objective of this study was to improve the heat stability ofWPH-based emulsions
by conjugation of WPH with maltodextrin (MD) through wet heating. Emulsions stabilised by different protein
ingredients, whey protein isolate (WPIE), whey protein hydrolysate (WPHE), heated WPH (WPH-HE), and
WPH conjugatedwithMD (WPH-CE)were prepared and heat treated at 75 °C, 95 °C or 100 °C for 15min. Changes
in viscosity, fat globule size distribution (FGSD) and microstructure, evaluated using confocal laser scanning
microscopy (CLSM), were used tomonitor the effects of hydrolysis, pre-heating and conjugation on the heat sta-
bility of the emulsions. Heat stability increased in the order WPHE b WPIE bb WPH-HE bbb WPH-CE; emulsions
WPHE, WPIE andWPH-HE destabilised on heating at 75 °C, 95 °C or 100 °C, respectively. Flocculation and coales-
cence of oil droplets were mediated by protein aggregation (as evidenced by CLSM) on heat treatment of WPH-
HE emulsion at 100 °C, while no changes in FGSD or microstructure were observed inWPH-CE emulsion on heat
treatment at 100 °C, demonstrating the excellent thermal stability of emulsions prepared with the conjugated
WPH ingredient, due principally to increased steric stabilisation as a result of conjugation.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Human milk is widely accepted as the best source of nutrients
required for proper short- and long-term development of infants. The
composition of mother's milk is compatible with the infant's digestive
system and is known to minimise the risk of gastrointestinal and
respiratory infections (Alles, Scholtens, & Bindels, 2004; Exl, 2001;
O'Mahony, Ramanujam, Burgher, & O'Callaghan, 2011). However, it is
not always possible to provide the infant with mother's milk. Efforts to
develop humanised formulae for infant nutrition are focused on many
aspects of formula composition and functionality including matching
protein content and profile (i.e., whey-dominant protein profile
and α-lactalbumin enrichment) (Chatterton, Rasmussen, Heegaard,
Sørensen, & Petersen, 2004; Crowley, Dowling, Caldeo, Kelly, &
O'Mahony, 2016; Hambraeus, 1977; Ogra & Greene, 1982; O'Mahony
et al., 2011), fatty acid profile (Berger, Fleith, & Crozier, 2000), carbohy-
drate, vitamin and mineral levels to those present in human milk
(Pehrsson, Patterson, & Khan, 2014).

Formulae manufactured using whey protein hydrolysate (WPH) in-
gredients can be categorised based on the degree of hydrolysis of the
protein; the main categories are amino acid-based formulae (AAF),
where proteins/peptides are hydrolysed to their constituent amino
acids; extensively hydrolysed formulae (EHF) containing oligopeptides
with molecular weight below 3000 Da and partially hydrolysed formu-
lae (PHF) containing oligopeptides ranging in molecular weight up to
20,000 Da (Exl, 2001; Lowe et al., 2011). While AAF and EHF products
are mainly intended for therapeutic purposes in infants suffering from,
orwith a high risk of cow'smilk allergy (CMA), infant nutrition products
from the PHFgroup cannot be used for therapeutic purposes but are rec-
ommended for infants at risk of CMA as they have been shown to pro-
vide a preventive effect thereon (Chandra, 1997; Exl, 2001; von Berg
et al., 2008). Partially hydrolysed formulae are often also referred to as
‘pre-digested’ formulae based on their improved digestibility and ab-
sorption in the gut, helping to reduce gastrointestinal discomfort issues
(Hernández-Ledesma, García-Nebot, Fernández-Tomé, Amigo, & Recio,
2014).

Hydrolysis causes alteration to the functional properties of proteins
and hydrolysate functionality is ultimately dependent on a number of
factors including enzyme type and specificity, hydrolysis conditions
and method of enzyme inactivation (Panyam & Kilara, 1996; Tavano,
2013). Generally, moderate hydrolysis improves the surface activity
of proteins/peptides as the hydrolysate fractions migrate rapidly to
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surfaces/interfaces which can give rise to improved functional proper-
ties such as foaming and emulsification (Agboola & Dalgleish, 1996a,b;
Banach, Lin, & Lamsal, 2013; Foegeding & Davis, 2011; Kilara &
Panyam, 2003). Moderate hydrolysis of globular proteins (i.e., whey
proteins) improves their heat stability as a result of the diminished
secondary structure; however, this improvement does not always
translate directly to more complex systems such as emulsions made
using hydrolysed whey protein, where heat stability has been shown
to be negatively affected by hydrolysis of whey protein (Singh &
Dalgleish, 1998; Ye & Singh, 2006). Responsibility for the poor heat sta-
bility of hydrolysedwhey protein-based emulsions is related to reduced
steric hindrance (Ye, Hemar, & Singh, 2004) and increased number of
available (i.e., exposed) reactive sites on protein/peptide molecules at
the oil globule surface and in the serum phase of the emulsion
(Euston, Finnigan, & Hirst, 2000; Hunt & Dalgleish, 1995).

Conjugation of proteins with carbohydrates using theMaillard reac-
tion has been shown to be effective in modifying protein functionality
(Liu, Ru, & Ding, 2012; Oliver, Melton, & Stanley, 2006; O'Regan &
Mulvihill, 2010a,b). Extensive research documenting the beneficial
effects of protein modification through conjugation is available in
the scientific literature; improved functional properties of proteins
including solubility, emulsification, encapsulation and emulsion stabili-
ty (Akhtar & Dickinson, 2003; Kasran, Cui, & Goff, 2013a,b; Lei, Wang,
Liang, Yuan, & Gao, 2014), thermal stability (Jimenez-Castano,
Lopez-Fandino, Olano, & Villamiel, 2005; Kato, Aoki, Kato, Nakamura,
& Matsuda, 1995; Liu et al., 2012; O'Regan & Mulvihill, 2010a; Wang &
Zhong, 2014) or foaming and gelation properties (Campbell, Raikos, &
Euston, 2003; Martínez & Pilosof, 2013) as a result of conjugation are
well documented. However, published scientific reports on the proper-
ties and functionality of hydrolysed whey protein ingredients modified
byMaillard conjugation appear to be limited; the authors are not aware
of any published studies reporting on the performance of such ingredi-
ents in oil-in-water emulsion systems, particularly in infant formula (IF)
systems. The current study aims to investigate and report on the perfor-
mance of ingredients produced by conjugation of hydrolysed whey
protein with maltodextrin in comparison with that of intact whey
protein in production and stabilisation of model IF emulsions.

2. Materials and methods

2.1. Materials

Whey protein isolate (WPI) andwhey protein hydrolysate (WPH;
8% degree of hydrolysis; DH) were obtained from Carbery Food
Ingredients Ltd. (Ballineen, Co. Cork, Ireland). Composition of WPI and
WPH ingredients was determined using standard International Dairy
Federation (IDF) methods and molecular weight profile of the protein
ingredients was determined using size exclusion chromatography as
detailed by Drapala, Auty, Mulvihill, and O'Mahony (2015). The compo-
sition, DH and molecular weight profile of the WPI and WPH ingredi-
ents are shown in Table 1. Maltodextrin (MD) was obtained from
Corcoran Chemicals Ltd. (Dublin, Ireland) and had moisture and ash
contents of b5.0% and b0.2%, respectively. Soybean oil was obtained
from Frylite Group Ltd. (Strabane, Co. Tyrone, Northern Ireland). All
other chemicals and reagents used in the study were of analytical
grade and sourced from Sigma-Aldrich (Arklow, Co. Wicklow, Ireland).

2.2. Conjugate and stock protein solutions

Two unheated stock solutions (5.00 g/100 mL protein) were pre-
pared from WPI and WPH and allowed to hydrate for 18 h at 4 °C and
pH was adjusted to 6.8 before being used for emulsion formulation.
The protein–carbohydrate conjugate solution was prepared by
solubilising required quantities of WPH and MD in ultrapure water for
2 h at 20 °C using a magnetic stirrer to give 5.00 g/100 mL protein and
5.00 g/100 mL carbohydrate. The solution was adjusted to pH 8.2 with

0.5 N potassium hydroxide (KOH) and allowed to hydrate for 18 h at
4 °C, before being readjusted to pH 8.2 with 0.5 N KOH at 20 °C. Aliquots
(250 mL) of this solution were placed in 500 mL screw-capped, glass
conical flasks and heated at 90 °C for 8 h. After heating for 8 h, the so-
lutions were cooled immediately to 4 °C and stored at that tempera-
ture overnight. A control for the heat treatment was prepared in
exactly the same way as outlined above with the exception that no
MD was added to the WPH. In summary, four stock protein or pro-
tein–carbohydrate solutions were prepared and were subsequently
used to formulate emulsions that are referred to as whey protein iso-
late emulsion (WPIE), whey protein hydrolysate emulsion (WPHE),
heated whey protein hydrolysate emulsion (WPH-HE) and conjugat-
ed whey protein hydrolysate emulsion (WPH-CE), respectively.

2.3. Measurement of free thiol groups

The level of free thiol groups in the stock protein solutions was de-
termined following an assay described by Hoffmann and van Mil
(1997) with the exception that a Bis-Tris/HCl buffer (pH 6.8) was used
in place of the Tris–HCl buffer (as performed by Alting, Hamer, De
Kruif, Paques, & Visschers, 2003). Aliquots (0.05 mL) of stock protein
solutions (5.00 g/100 mL) were added to 2.70 mL of 0.05 M Bis-Tris/
HCl buffer (pH 6.8) before adding 0.25 mL of Ellman's reagent
(107.5 mg/100 g of the buffer) (Ellman, 1959). Solutions were vortexed
and absorbancewasmeasured using a dual beamUV–visible spectropho-
tometer (VarianCary 300, Varian Ltd.,Walton-on-Thames,UK) at awave-
length of 412 nm. Measurements were completed in triplicate and the
level of thiol groups was calculated using a molar extinction coefficient
for 2-nitro-5-mercapto-benzoic acid (i.e., Ellman's reagent) of
13,600 M−1 cm−1.

2.4. Preparation of emulsions

Model infant formula emulsions containing 1.55, 3.50 and
7.00 g/100 mL of protein, oil and carbohydrate, respectively, were
prepared as follows: stock protein or protein–carbohydrate solutions
(see Section 2.2) were diluted with ultrapure water to the appropriate
concentration followed by addition of MD as required with continuous
mixing using a magnetic stirrer at intermediate speed for 1 h at 22 °C to
prepare the aqueous phases of the emulsions. Innate levels of lactose
present in the protein powders were taken into account when calculat-
ing the requirement for added carbohydrate (i.e., MD). Emulsions were
prepared as describedbyDrapala et al. (2015) except that higher 1st and

Table 1
Composition, degree of hydrolysis and molecular weight profile of the whey protein iso-
late (WPI) and whey protein hydrolysate (WPH) ingredients used in the preparation of
emulsions.

Composition WPI WPH

% w/w

Protein 87.2 ± 0.9 83.7 ± 0.5
Fat 0.72 ± 0.1 0.67 ± 0.1
Carbohydratea 4.21 7.80
Ash 2.76 ± 0.1 2.92 ± 0.1
Moisture 5.11 ± 0.0 4.91 ± 0.1
Degree of hydrolysis NAb 8.00

Molecular weight profile % of total protein
Insoluble 0.00 2.00 ± 0.6
N20 kDa 28.0 ± 3.4 12.0 ± 1.6
10–20 kDa 50.5 ± 3.7 24.2 ± 8.8
5–10 kDa 3.90 ± 0.2 9.49 ± 1.9
2–5 kDa 15.6 ± 0.3 11.9 ± 1.6
1–2 kDa 0.92 ± 0.1 9.30 ± 2.0
0.5–1 kDa 0.29 ± 0.0 11.0 ± 1.9
b0.5 kDa 0.83 ± 0.7 20.2 ± 3.0

a Carbohydrate content determined by difference.
b NA = not applicable.
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2nd stage homogeniser pressures of 15 and 3 MPa, respectively, were
used.

2.5. Composition and colour analysis of emulsions

Protein, fat, moisture, ash and carbohydrate content of emulsions
were determined using standard IDF methods as detailed by Drapala
et al. (2015). The colour of the emulsions was measured using a pre-
calibrated colorimeter (Minolta Chroma Meter CR-400, Minolta Ltd.,
Milton Keynes, U.K.) The emulsions were loaded into a glass cell (CM-
A98, optical path length: 10 mm) held in position by means of a trans-
mittance specimen holder (CM-A96) and positioned with a white
plate behind the glass cell. Colour was expressed using the Commission
Internationale de l'Eclairage (CIE) colour chromaticity L* a* b* scale
(L = dark/light, a = red/green, b = yellow/blue).

2.6. Measurement of fat globule size distribution and zeta potential

Fat globule size distribution (FGSD) of the emulsions was measured
using a laser light-diffraction unit (Mastersizer S, Malvern Instruments
Ltd., Worcestershire, UK) equipped with a 300 RF (reverse Fourier)
lens and He–Ne laser (λ of 633 nm). A polydisperse model with 3NAD
presentation was used for unheated and heated emulsions as described
by McCarthy et al. (2012). The 3NHD presentation was also used for
heated emulsions to estimate the size of protein particles/aggregates
present as described by Ciron, Gee, Kelly, and Auty (2010). The samples
were introduced to the mixing chamber and dispersed in ultrapure
water to reach an obscuration of 14% (±0.5%). Measurements of FGSD
weremade on emulsions on the day of homogenisation and immediate-
ly after heat treatment. The zeta potential (ζ) of oil droplets in emul-
sions was measured using a Zetasizer Nano-ZS (Malvern Instruments,
Worcestershire, U.K.) as detailed by Joshi et al. (2012). Each emulsion
was diluted 1:100 with ultrapure water, adjusted to pH 6.8 with KOH
or HCl and allowed to equilibrate at 25 °C for 120 s in the cuvette
prior to analysis. The measurement was performed on the day of ho-
mogenisation using an automatic voltage selection and ζwas calculated
using the Smoluchowski model (Kirby & Hasselbrink, 2004).

2.7. Measurement of emulsion viscosity on heating

Emulsions (28 g) were heated in an AR-G2 controlled stress rheom-
eter (TA Instruments, Crawley,West Sussex, UK) equippedwith a starch
pasting cell (SPC) geometry. The heating programme was chosen to
allow sample equilibration for 2 min at 15 °Cwith no shearing followed
by holding for 5min at 15 °C, heating at 10 °C/min to reach the required
target temperature (75 °C or 95 °C), peak temperature hold for 15 min,
cooling at 10 °C/min to reach 15 °C and holding at 15 °C for 5 min while
constantly shearing at a rate of 15 s−1 throughout analysis. Apparent
viscosity (η) data was recorded at 1 s intervals during the heating pro-
gramme. An oil bath was used to heat treat more stable emulsions at
100 °C; samples (2.5 mL) were placed in glass tubes, stoppered and im-
mersed in an oil bath for 15 min at 100 °C with constant mixing of tube
contents by gently rocking at approx. 8min−1, giving a constant, gentle,
flow of the liquid in the tube. Emulsion sampleswere recovered after all
heat treatments (i.e., from SPC and oil bath tubes) and used for further
analysis (FGSD and microstructural analysis).

2.8. Confocal laser scanning microscopy analysis

Microstructural analysis of emulsions was performed using a Leica
TCS SP Confocal Laser Scanning Microscope (Leica Microsystems,
Heidelberg GmbH, Mannheim, Germany) as detailed by Drapala et al.
(2015). Protein and lipid were fluorescently labelled with Nile Blue
dye (Sigma-Aldrich, Dublin, Ireland). Visualisation of oil and protein in
emulsions (10 μL) was carried out using an Ar laser (excitation =
488 nm, emission = 500–530 nm) and a He–Ne laser (excitation =

633 nm, emission = 565–615 nm) for oil and protein, respectively
(Auty, Twomey, Guinee, & Mulvihill, 2001). The observations were per-
formed using 20× and 63× oil immersion objectives. At least three
specimens of each sample were observed to obtain representative mi-
crographs of samples.

2.9. Statistical data analysis

Analysis of variance (ANOVA)was carried out using theMinitab® 16
(Minitab Ltd., Coventry, UK, 2010) statistical analysis package. The
Tukey method was used to obtain grouping information. The level of
significance was determined at P b 0.05.

3. Results

3.1. Composition and colour of emulsions

Compositional analysis of emulsions showed that measured levels
(Table 2) were in line with target levels for all samples (i.e., 1.39–
1.45% protein, 3.35–3.42% fat and 6.47–6.52% carbohydrate) and no
significant differences in composition were found between samples.
Emulsions stabilised by heated/conjugated proteins (i.e., WPH-HE and
WPH-CE) differed slightly but significantly in lightness (L* values;
Table 2) fromemulsions stabilised by unheatedWPI orWPH; the lowest
L* value was observed for WPH-CE (82.6) followed by WPH-HE (83.2),
WPHE (83.7) and WPIE (84.0). A similar trend was observed in the in-
tensity of the yellow colour of the emulsions where all samples were
statistically different from each other and the highest b* value was ob-
served for WPH-CE (4.48) followed by WPH-HE (2.24), WPHE (0.78)
and WPIE (0.30). Lower L* and higher b* values in emulsions WPH-CE
andWPH-HE, as compared to emulsionsWPHE andWPIE, can be directly
related to production of coloured compounds such as melanoidins
during the later stages of the Maillard reaction (Oliver et al., 2006).
Although noMDwas added prior to heating of theWPH solution, innate
lactose (a reducing sugar) present in the WPH powder (Table 1) would
have contributed to some Maillard-induced browning during heating.
As shown by Liu and Zhong (2015) lactose is more reactive thanmalto-
dextrin and therefore has greater propensity for Maillard-induced
colour development as it contains more reducing groups per unit
weight as compared to MD.

3.2. Fat globule size distribution and ζ-potential

Narrow and monomodal size distributions of oil droplets were
observed in all four emulsions post-homogenisation (Fig. 1) with the
samples having mean volume diameters (D4,3; Table 3) of 0.85, 0.83,
0.80 and 0.79 μm for WPIE, WPHE, WPH-HE andWPH-CE emulsions, re-
spectively. The size distribution data showed that all of the protein in-
gredients had good emulsifying properties as indicated by D4,3 values
of all emulsions less than 1 μm which was consistent with the results
of McCarthy et al. (2012) and Drapala et al. (2015). There were no sig-
nificant differences (P b 0.05) in FGSD between emulsions formed
with the different ingredients immediately post homogenisation. The
net negative charge (i.e., ζ potential) of oil droplets in emulsions was
lowest in WPIE (−48.0 mV; Table 3) followed by WPHE (−49.6 mV),
WPH-HE (−53.1mV) andWPH-CE (−55.0mV). Although ζwas slight-
ly higher for emulsion droplets stabilised by heatedWPH than for those
stabilised by WPI and WPH and was slightly higher still for emulsion
droplets stabilised by conjugated WPH, no significant differences were
observed in ζ between droplets in the 3 emulsions prepared using
hydrolysed whey protein. The positively charged amino acid lysine is
predominantly involved in covalent attachment with reducing sugars
during the Maillard reaction, thus by its interaction during heating/
conjugation the net negative charge on the protein, and as a result, on
the surface of the oil droplets in the emulsions increased, which was
consistent with the results of Acedo-Carrillo et al. (2006); Liu et al.

44 K.P. Drapala et al. / Food Research International 88 (2016) 42–51



(2012) and Wang and Zhong (2014). Additionally, as a consequence of
thermal denaturation of proteins, charged groups buried within the na-
tive structure of globular proteins, are exposed and this may also have
contributed to the change in net protein charge (Tcholakova, Denkov,
Ivanov, & Campbell, 2006).

After heating at 75 °C for 15 min in the starch pasting cell (SPC), the
particle size distribution ofWPIE emulsion showed a limited broadening
of the profile (Fig. 1a); however, only a minor difference was found in
the D4,3 before (0.85 μm) and after (0.87 μm) heat treatment of the
emulsion under these conditions (Table 3). The WPHE emulsion
destabilised during heat treatment at 75 °C as evidenced by the
presence of large particles (D4,3 of 120 μm) in the sample after heat
treatment (Fig. 1b; Table 3). Results obtained using both the 3NAD
(i.e., selective for oil) and 3NHD(i.e., selective for protein) presentations
displayed essentially the same size distribution profiles (Fig. 1b). Size
distribution data and visual observation (i.e., phase separation with
large particles buoyant in the semi-transparent serum phase and no

free oil; Fig. 2a) of WPHE emulsion heat treated at 75 °C suggested
that the emulsion destabilised through aggregation of droplets via
protein/peptides on the surface of oil droplets and possibly aggregation
of droplets via interaction with non-adsorbed protein/peptides
present in the serum resulting in entrapment of oil in the aggregated
protein network. Previous studies have indicated that heat-induced
destabilisation of protein-based oil-in-water (O/W) emulsions is often
mediated by non-adsorbed serumproteins/peptides that, upon heating,
interact with each other and with adsorbed proteins/peptides, thus
causing formation of protein/oil complexes (Euston et al., 2000; Hunt
&Dalgleish, 1995). In contrast to theWPHE emulsion, no changes in par-
ticle size distribution were observed for WPH-HE or WPH-CE emulsions
on heating at 75 °C for 15 min (Fig. 1c, d; Table 3).

Emulsions that displayed good thermal stability during heat treat-
ment at 75 °C for 15 min were subjected to a more severe treatment
of 95 °C for 15 min in the SPC. The WPIE emulsion destabilised during
heat treatment at 95 °C. Visual inspection of the sample after heat

Table 2
Composition and colour of model infant formula emulsions stabilised by the different whey protein ingredients.

Emulsion Protein Fat Carbohydrate (%) Ash Total solids Tristimulus coordinates

L* a* b*

WPIE 1.45 ± 0.04a 3.35 ± 0.03a 6.52 ± 0.11a 0.06 ± 0.03a 11.4 ± 0.05a 84.0 ± 0.11a −0.87 ± 0.01a 0.30 ± 0.03a

WPHE 1.43 ± 0.04a 3.39 ± 0.01a 6.47 ± 0.04a 0.10 ± 0.01a 11.4 ± 0.06a 83.7 ± 0.12a −1.08 ± 0.06b 0.78 ± 0.06b

WPH-HE 1.39 ± 0.01a 3.39 ± 0.05a 6.50 ± 0.10a 0.21 ± 0.15a 11.5 ± 0.08a 83.2 ± 0.26b −1.07 ± 0.05b 2.24 ± 0.04c

WPH-CE 1.42 ± 0.02a 3.42 ± 0.01a 6.52 ± 0.18a 0.13 ± 0.05a 11.5 ± 0.11a 82.6 ± 0.16c −1.01 ± 0.04b 4.48 ± 0.02d

(a–c)Values within a column not sharing a common superscript differed significantly (P b 0.05).

Fig. 1. Fat globule size distribution inWPIE (a),WPHE (b),WPH-HE (c) andWPH-CE (d) emulsions post-homogenisation (●) and after 15min of heat treatment at 75 °C (■), 95 °C (○) and
100 °C (□). Dashed line (—) represents the 3NHD presentation profiles for destabilised emulsions formed with hydrolysed protein (b, c).
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treatment indicated formation of a separated coarse protein network
and serum phase (Fig. 2b); hence, particle size distribution data for
theWPIE emulsion after the heat treatment at 95 °C could not be deter-
mined. The WPH-HE and WPH-CE emulsions displayed good thermal
stability to heating at 95 °C for 15 min as evidenced by no significant
increase in D4,3 (b0.05 μm)on heating (Table 3; Fig. 1c, d) and the visual
appearance of these samples after heating (Fig. 2c, d).

Differences in the thermal stability of WPH-HE and WPH-CE

emulsions were observed when the emulsions were heated at 100 °C
for 15 min in an oil bath; visual assessment post heating indicated for-
mation of large particles (i.e., aggregates) in the WPH-HE emulsion
(Fig. 2e). This was confirmed by particle size analysis whereby the

FGSD profile of WPH-HE showed a shift from monomodal to bimodal
(Fig. 1c). The emulsion stabilised byWPH-Cwas stable to heat treatment
at 100 °C for 15 min; no significant differences in D4,3 (b0.05 μm) or in
FGSD profiles were observed after heat treatment as compared to
post-homogenisation (Table 3, Fig. 1d) and no visual evidence of
destabilisation (Fig. 2e) was observed in the emulsion after heating.

3.3. Apparent viscosity of emulsions on heating

Apparent viscosity of all emulsions before heating (i.e., at 15 °C) was
similarwith no significant (P b 0.05) differences found between samples
(Table 4). On increasing temperature from 15 °C to 75 °C apparent

Table 3
Fat globule size distribution (FGSD) and zeta potential (ζ) of oil droplets inmodel infant formula emulsionsWPIE,WPHE,WPH-HE andWPH-CE post homogenisation and post heating at 75,
95 or 100 °C for 15 min.

Emulsion Heat treatment Fat globule size parameter (μm) ζ potential (mV)

D4, 3
1 D3, 2

2 Dv, 0.1
3 Dv, 0.5

4 Dv, 0.9
5

WPIE Unheated 0.85 ± 0.0a 0.56 ± 0.0a 0.30 ± 0.0a 0.70 ± 0.0a 1.52 ± 0.0a −48.0 ± 2.6a

75 °C × 15 min 0.87 ± 0.1a 0.48 ± 0.0a 0.24 ± 0.0a 0.64 ± 0.0a 1.69 ± 0.3a n.d.6

95 °C × 15 min n.d.7 n.d. n.d. n.d. n.d. n.d.
100 °C × 15 min n.d. n.d. n.d. n.d. n.d. n.d.

WPHE Unheated 0.83 ± 0.1a 0.54 ± 0.0a 0.29 ± 0.0a 0.69 ± 0.1a 1.54 ± 0.1a −49.6 ± 3.0ab

75 °C × 15 min 120 ± 30b 50.9 ± 37b 38.3 ± 3.8b 112 ± 29b 212 ± 59b n.d.
95 °C × 15 min n.d. n.d. n.d. n.d. n.d. n.d.
100 °C × 15 min n.d. n.d. n.d. n.d. n.d. n.d.

WPH-HE Unheated 0.80 ± 0.0a 0.55 ± 0.0a 0.30 ± 0.0a 0.68 ± 0.0a 1.46 ± 0.0a −53.1 ± 1.2ab

75 °C × 15 min 0.81 ± 0.0a 0.53 ± 0.0a 0.29 ± 0.0a 0.68 ± 0.0a 1.51 ± 0.1a n.d.
95 °C × 15 min 0.85 ± 0.0a 0.53 ± 0.0a 0.28 ± 0.0a 0.68 ± 0.0a 1.58 ± 0.1a n.d.
100 °C × 15 min 38.8 ± 29b 3.72 ± 2.3b 13.5 ± 19a 37.2 ± 39a 66.4 ± 61b n.d.

WPH-CE Unheated 0.79 ± 0.0a 0.54 ± 0.0a 0.29 ± 0.0a 0.67 ± 0.0a 1.45 ± 0.0a −55.0 ± 3.1b

75 °C × 15 min 0.80 ± 0.0a 0.54 ± 0.0a 0.29 ± 0.0a 0.68 ± 0.0a 1.47 ± 0.1a n.d.
95 °C × 15 min 0.81 ± 0.0a 0.53 ± 0.0a 0.28 ± 0.0a 0.67 ± 0.0a 1.50 ± 0.1a n.d.
100 °C × 15 min 0.83 ± 0.0a 0.53 ± 0.0a 0.28 ± 0.0a 0.67 ± 0.0a 1.52 ± 0.1a n.d.

(a–b)Values within a column, for individual heat treatments not sharing a common superscript differed significantly (P b 0.05).
1 D4,3 represents volume mean diameter.
2 D3,2 represents Sauter mean diameter.
3 Dv,0.1 represents fat globule size in the 10% quantile of the distribution.
4 Dv,0.5 represents fat globule size in the 50% quantile of the distribution.
5 Dv,0.9 represents fat globule size in the 90% quantile of the distribution.
6 n.d. = not determined. ζ potential measured in emulsions post homogenisation only.
7 n.d.=not determined due to emulsion destabilisation and presence of large flocs of protein. In addition, samples that destabilised during a heat treatmentwere not subjected tomore

severe treatment.

Fig. 2. Photographs of emulsions post heat treatment at 75 °C for 15 min (a:WPHE) and at 95 °C for 15min (b:WPIE; c:WPH-HE; d:WPH-CE). EmulsionsWPH-HE andWPH-CE were also
heated at 100 °C for 15 min in an oil bath (e: left = WPH-HE; right = WPH-CE).
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viscosity of all emulsion samples decreased (Fig. 3a). Decreasing viscos-
ity with increasing temperature is commonly observed in protein solu-
tions; however, the decrease in viscosity normally continues until a
protein-specific temperature is reached atwhich point physical changes
to the protein affect its structure (i.e., unfolding of polypeptide/peptide
chain, disruption of hydrophobic interactions and aggregation by
covalent and non-covalent bonding), generally causing an increase in
viscosity (Considine, Patel, Anema, Singh, & Creamer, 2007; Goetz &

Koehler, 2005). Hence, the onset of structural changes and interactions
(eventually leading to destabilisation) in protein-based emulsions
can be identified by tracking changes in their apparent viscosity
during heat treatment. Although final viscosity of the WPIE emulsion
(i.e., after cooling to 15 °C) was slightly higher compared to the initial
viscosity (i.e., at 15 °C before heating) of the sample, no significant dif-
ferences were found between viscosity of the WPIE emulsion before
and after heating at 75 °C for 15 min (Table 4). An increase in viscosity

Table 4
Apparent viscosity of WPIE, WPHE, WPH-HE or WPH-CE emulsions at different stages of heat treatment using a starch pasting cell at 75 °C and 95 °C for 15 min.

Holding temperature (°C) Measurement stage Viscosity (mPa·s)

WPIE WPHE WPH-HE WPH-CE

75 Pre-heating 14.3 ± 0.2aA 13.5 ± 0.8aA 14.0 ± 0.0aA 14.0 ± 0.1aA

Reaching peak temperature 10.6 ± 0.3aB 12.7 ± 1.0bA 9.69 ± 0.1aB 9.40 ± 0.2aB

Peak hold 10.4 ± 0.1abB 13.1 ± 1.7aA 9.69 ± 0.0bB 9.68 ± 0.0bB

Post-heating 15.2 ± 0.3aA 22.0 ± 3.2bB 14.1 ± 0.0aA 14.1 ± 0.1aA

95 Pre-heating 14.6 ± 0.6aA n.d.1 14.1 ± 0.1aB 14.1 ± 0.1aA

Reaching peak temperature 176 ± 201aA n.d. 8.71 ± 0.0aA 8.99 ± 0.2aB

Peak hold 457 ± 357bA n.d. 9.09 ± 0.0aA 9.05 ± 0.0aB

Post-heating 98.6 ± 71bA n.d. 15.0 ± 0.4aC 14.8 ± 0.6aA

(a–b)Values within a row (horizontal) not sharing a common superscript differed significantly (P b 0.05).
(A–B)Values within a column (vertical) for each of the heat treatments (i.e., 75 or 95 °C) not sharing a common superscript differed significantly (P b 0.05).

1 n.d. = not determined as sample destabilised during less severe heat treatment (i.e., 75 °C for 15 min).

Fig. 3. Apparent viscosity profiles of WPIE (■), WPHE (□), WPH-HE (●) andWPH-CE (○) emulsions during heat treatments in a starch pasting cell (SPC) with peak temperature hold of
75 °C (a) and 95 °C (b). Dashed line represents the temperature profile.
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from 9.6 to 12.7 mPa·s (Fig. 3a) before reaching the peak hold temper-
ature (75 °C) was observed for WPHE. Final viscosity of the WPHE

emulsion (i.e., after cooling to 15 °C)was higher by 8.5mPa·s compared
to the initial viscosity of the sample at 15 °C (Table 4) and visual assess-
ment of the sample after heating indicated extensive destabilisation
of the emulsion (Fig. 2a). After heat treatment, apparent viscosity
(at 15 °C) of WPH-HE and WPH-CE emulsions was no different to that
measured before heating of these emulsions but was significantly
lower than the viscosity of the WPHE emulsion after the same heat
treatment (Fig. 3a; Table 4).

During more severe thermal treatment at 95 °C for 15 min of the
WPIE emulsion, a sharp increase in viscosity was observed during the
heating phase on reaching 81 °C (Fig. 3b); formation of distinct separat-
ed coarse protein network and serum phases was observed on visual
assessment of the heated WPIE emulsion (Fig. 2b).

No significant (P b 0.05) differences in viscosity of WPH-HE and
WPH-CE emulsions were observed after heating at 95 °C for 15 min
compared to unheated emulsions (Fig. 3b; Table 4); visual inspection
of samples after heating indicated that theWPH-HE andWPH-CE emul-
sionswere stable to theheat treatment (Fig. 2c, d). No viscosity datawas
recorded during heat treatment at 100 °C as this heat treatment was
performed in an oil bath.

3.4. Free thiol groups and thermal stability of emulsions

The level of free thiol (\\SH) groupswas significantly different in the
stock protein solutions used to prepare emulsions and increased in the
order WPI bbb WPH-H bb WPH-C b WPH (i.e., 2.49, 7.89, 10.9 and
11.5 μmol\\SH/g protein, respectively). WPI consists of intact whey
protein where most of the reactive\\SH groups are buried within its
globular structure, while WPH has more\\SH groups exposed due to
enzymatic hydrolysis of the compact globular structure (Panyam &
Kilara, 1996). Significantly (P b 0.05) lower levels of free\\SH groups
measured in the WPH-H solution as compared to the WPH solution in-
dicated their reduction on heating due to the involvement of\\SH
groups in formation of di-sulphide bridges (\\S\\S\\) (Adjonu, Doran,
Torley, & Agboola, 2013; Singh, 2011). Significantly (P b 0.05) higher
levels of free \\SH groups were measured in the WPH-C solution
compared to the WPH-H solution, although the two solutions were
subjected to the same heating conditions (i.e., 8 h at 90 °C). The differ-
ence in the levels of free\\SH groups observed between WPH-H and
WPH-C may be associated with two factors: (1) a macromolecular
crowding effect (Zhu, Damodaran, & Lucey, 2008, 2010) caused by the
higher number of macromolecules (i.e., MD also present in the WPH-C
sample) limiting mobility and interactions between proteins/peptides
in the solution during heat treatment and (2) the access to free\\SH
groups may be restricted by steric hindrance of already conjugated
protein/peptides, thus limiting the formation of\\S\\S\\bonds.

3.5. Confocal laser scanning microscopy

Microstructural analysis ofWPH-HE andWPH-CE emulsions showed
small, uniform and homogenously distributed fat globules in both sam-
ples post homogenisation with no differences between the samples
(Fig. 4a1, b1). However, major differences were observed between the
two emulsions after heat treatment at 100 °C for 15 min, supporting
the FGSD data (Table 3). No changes were observed in the WPH-CE

emulsion after heating at 100 °C for 15 min. Conversely, the WPH-HE

emulsion displayed a heterogeneous microstructure with a number of
mechanisms involved in the emulsion destabilisation being identified.
Bridging flocculation of oil droplets was observed for the heat treated
WPH-HE emulsion, where a distinct, dense protein layer surrounded
the individual oil droplets (Fig. 4a3—left). This mechanism of
destabilisation is common for whey protein-based O/W emulsions
where proteins adsorbed at the interface of different oil droplets react
with each other on heating through formation of disulphide bonds

(Dickinson, 2001). Coalescence and formation of larger oil droplets
was also observed in the WPH-HE emulsion and this mechanism often
occurs in conjunction with flocculation (Raikos, 2010; Tcholakova
et al., 2006), where the interfacial film between oil droplets ruptures
and the droplets merge to form larger oil droplets (Tcholakova et al.,
2006; Ye et al., 2004). Formation of a dense protein network with
pools of oil trapped within it, visible in the heat treated WPH-HE

emulsion, is a consecutive step in the thermal destabilisation process
that follows bridging flocculation and coalescence (Lam & Nickerson,
2013). With prolonged exposure to high temperature, interactions
between proteins/peptides at interfaces of different oil droplets and
between proteins/peptides at interfaces and serum proteins/peptides
grow stronger forming a cohesive protein network (as seen
in Fig. 4a3—right). No changes in the microstructure of the
WPH-CE emulsion after heat treatment at 100 °C for 15 min (Fig. 4b2,
b3) indicated that the emulsion was stable to the heating process.

4. Discussion

The stability of the emulsions to thermal processing under
controlled conditions (i.e., temperature, heating/cooling rate and shear
rate) was found to be markedly different for emulsions stabilised by
thedifferent protein ingredients; the observed order of theheat stability
(least-to-most stable) was WPHE b WPIE bb WPH-HE bbb WPH-CE. Re-
sults presented in this work identified (1) differences in destabilisation
mechanisms between emulsions formed with intact and hydrolysed
whey proteins and (2) demonstrated that modification of hydrolysed
whey protein/peptides by conjugation with MD gave an ingredient
with superior thermal stability in infant formula-based O/W emulsion
systems. It was also shown that pre-heating of the hydrolysed whey
protein ingredient improved the thermal stability of emulsions formed
therefrom.

Clear differences in destabilisation behaviour were observed for
emulsions prepared using intact (WPIE) and hydrolysed (WPHE) whey
protein as evidenced by the magnitude of viscosity increase of emul-
sions upon destabilisation (Fig. 3), final viscosity (Table 4) and protein
particle/aggregate size and physical appearance (Fig. 2) of destabilised
WPIE and WPHE emulsions. These results demonstrate that formation
of a coarse protein network or formation of a large number of relatively
small (10 to 400 μm) protein aggregates/oil particles are the final stages
of thermal destabilisation of intact (WPIE) and hydrolysed (WPHE)
whey protein-based emulsions, respectively. Denaturation and aggre-
gation of intact whey protein involve a number of sequential stages
such as unfolding, association (non-covalent followed by covalent
bonding), propagation (i.e., formation of polymers) and termination
(Mulvihill & Donovan, 1987; Oldfield, Singh, Taylor, & Pearce, 1998).
The differences outlined above in the nature of thermally-induced
destabilisation observed in WPIE and WPHE emulsions, indicated that
the propagation stage is limited and formation of a large number of
small aggregate complexes is favoured, over extensive protein network
formation (as observed in intact protein systems) in theWPH-stabilised
emulsions. According to a study by Surroca, Haverkamp, and Heck
(2002), during the thermal denaturation and aggregation of intact
whey protein, aggregates need to reach their maximum concentrations
before the polymerisation stage can occur. However, in a system
containing hydrolysed protein, the termination stage can take place
before polymerisation due to the blocking of thiol groups (\\SH) by
peptides in the surrounding serum phase and on the interfaces of
nearby oil droplets. Successful efforts to limit aggregation of whey
proteins by blocking \\SH groups have been documented (Sakai,
Sakurai, Sakai, Hoshino, &Goto, 2000;Wijayanti, Bansal, &Deeth, 2014).

The results of this study have shown that the role of serum proteins
in mediating aggregation and destabilisation of WPH-stabilised emul-
sions can be diminished by preheating of the protein ingredient prior
to emulsion formation. This is clear from the current study where the
improved thermal stability of emulsions stabilised by hydrolysed
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whey protein was evident where the level of free thiol groups had
been reduced through pre-heating. Similarly, previous studies have
shown that (1) serum (non-adsorbed) proteins play a major role in
aggregation and destabilisation of whey protein-stabilised emul-
sions (Euston et al., 2000; Hunt & Dalgleish, 1995), (2) blocking
potential reactive sites on proteins/peptides (i.e., hydrophobic or thiol
groups) allows improvement of the heat stability of protein-based sys-
tems (Baier & McClements, 2001; Rich & Foegeding, 2000; Smulders &
Somers, 2012) and (3) pre-heating of protein reduces the number of
reactive groups — mainly free thiol groups (Liang, Patel, Matia-Merino,
Ye, & Golding, 2013; Livney, Corredig, & Dalgleish, 2003; Wijayanti
et al., 2014).

The results of this study have demonstrated that the emulsion
stabilised with the WPH-C displayed superior stability to thermal
processing, where oil droplet–droplet interactions, observed in WPIE,
WPHE and WPH-HE emulsions, were prevented. It is proposed that,
primarily steric stabilisation and, to a lesser extent, increased ζ poten-
tial, provided by the protein–carbohydrate conjugate, limited interac-
tions (i.e., coming in contact and subsequent aggregation) between
proteins/peptides adsorbed at the interfaces of different oil droplets in
the WPH-CE emulsion conferring superior stability compared with
WPI or WPH ingredients. Limiting interactions between oil droplets in
emulsions is one of the main strategies to improve the stability of
these systems. An increase in steric stabilisation through adsorption/
attachment of flexible, hydrophilic macromolecules to the emulsion
droplets effectively limits close contact and subsequent interactions be-
tween oil droplets (Dalgleish, 1997). Stabilisation of emulsions with
conjugated protein/maltodextrin provides the O/W interfacial layer
with increased thickness and effectively produces a better steric barrier
to the oil droplets. In keeping with this, Wong, Day, and Augustin
(2011) reported that increased steric stabilisation resulting from the
thicker interfacial layer of conjugate (composed of wheat protein/
dextran) gave better emulsion stability. Additionally, conjugation has

been reported to improve the stability of emulsions in cases where
these systems were subjected to stressed or unfavourable conditions;
the improved heating and freeze–thaw stability of emulsions formed
with casein/maltodextrin conjugates was reported by O'Regan and
Mulvihill (2010a) and an improvement in the long term stability of
emulsions stabilised with WPI/dextran conjugates with low ζ potential
(i.e., b30mV)was reported by Akhtar and Dickinson (2003). In the cur-
rent study combining pre-heating with the attachment of hydrophilic
polysaccharide groups to hydrolysedwhey protein byMaillard conjuga-
tion resulted in a protein-based emulsifier characterised by its ability to
confer improved thermal stability to infant formula type emulsions.

5. Conclusions

This study shows that the heat stability of model infant formula
emulsions based on hydrolysed whey protein ingredients can bemark-
edly improved bymodification of the protein ingredient through conju-
gationwith carbohydrate. Covalent bonding between proteins/peptides
in hydrolysed whey protein and maltodextrin produced an ingredient
with enhanced performance during the thermal processing of the
model infant formula emulsion where, due to increased steric and elec-
trostatic repulsion, interactions between and subsequent destabilisation
of oil droplets during heat treatment were suppressed. It was also
shown that pre-heating of hydrolysed whey protein prior to its use in
emulsion preparation resulted in the enhanced heat stability of the
emulsion, as a result of a reduction in the level of reactive sites (i.e., free
thiol groups) through protein–protein interactions. Incorporation of
protein–carbohydrate conjugates in the formulation of nutritional
products could potentially allow for the displacement (at least partial)
of non-protein emulsifiers without compromising the stability or quality
of the product and offers potential for application in other nutritional
products naturally containing hydrolysed whey protein and maltodex-
trin, such as clinical nutrition products.

Fig. 4. Confocal laser scanningmicrographs ofWPH-HE (a) andWPH-CE (b) emulsions before (1) and after (2, 3) heat treatment in an oil bath at 100 °C for 15min. Protein= red; oil= green.
Scale bar (bottom right) is 25 μm (1, 2) and 5 μm (3). Note: Figure a3 is a combination of 2 micrographs (i.e., left and right) to give more comprehensive representation of the heterogeneous
structure observed in the WPH-H emulsion after heat treatment.
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Model infant formula emulsions containing 15.5, 35.0 and 70.0 g L�1 protein, soybean oil and malto-
dextrin (MD), respectively, were prepared. Emulsions were stabilised by whey protein hydrolysate
(WPH) þ CITREM (9 g L�1), WPH þ lecithin (9 g L�1) or WPH conjugated with MD (WPHeMD). All
emulsions had mono-modal oil droplet size distributions post-homogenisation with mean oil droplet
diameters (D4,3) of <1.0 mm. No changes in the D4,3 were observed after heat treatment (95 �C, 15 min) of
the emulsions. Accelerated storage (40 �C, 10 d) of unheated emulsions resulted in an increase in D4,3 for
CITREM (2.86 mm) and lecithin (5.36 mm) containing emulsions. Heated emulsions displayed better
stability to accelerated storage with no increase in D4,3 for CITREM and an increase in D4,3 for lecithin
(2.71 mm) containing emulsions. No increase in D4,3 over storage was observed for unheated or heated
WPHeMD emulsion, indicating its superior stability.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The incorporation of whey protein hydrolysates (WPHs) with a
moderate degree of hydrolysis into nutritional formulations
tailored for athletes, the elderly or infants is increasing due to
growing demand for products that contain amino acids in a rapidly
digestible form. The enhanced gut absorption and efficient meta-
bolism of hydrolysates (Hern�andez-Ledesma, García-Nebot,
Fern�andez-Tom�e, Amigo, & Recio, 2014) make these ingredients
particularly useful for consumers seeking to increase the rate of
muscle synthesis or limit ageing related muscle loss (Jonker, Deutz,
Erbland, Anderson, & Engelen, 2014; Pimenta, Abecia-Soria, Auler,
& Amaya-Farfan, 2006). Infant formulae containing moderately
hydrolysed WPH are not intended for medical purposes in infants
suffering from cows' milk allergy, however, these formulae can
improve comfort in infants that suffer from difficulty digesting
intact proteins (Bourlieu et al., 2015; Nguyen, Bhandari, Cichero, &
Prakash, 2015).

A common challenge encountered during the preparation of
emulsions containing hydrolysates is their diminished processing
stability (i.e., short term storage of unheated emulsions and

thermal stability) and shelf life stability (i.e., long term storage of
heat treated emulsions) compared with emulsions containing
intact whey protein (Drapala, Auty, Mulvihill, & O'Mahony, 2015, in
press; Singh & Dalgleish, 1998; Ye & Singh, 2006). Poor thermal
stability of WPH based emulsions is related to the reduced steric
hindrance between oil droplets provided by peptides compared
with intact protein (Ye, Hemar, & Singh, 2004). This reduced steric
hindrance increases the interactions that occur between oil drop-
lets during heating and storage of emulsions. In addition, a high
number of exposed reactive sites (such as free eSH groups) at both
the oil/water interface and in the serum phase of WPH based
emulsions promotes protein/peptideeprotein/peptide interactions
(i.e., mainly through formation of disulphide bridges, eSeSe)
resulting in flocculation of oil droplets (Adjonu, Doran, Torley, &
Agboola, 2013, 2014; Drapala et al., in press; Panyam & Kilara,
1996; Singh, 2011).

Non-protein emulsifiers, such as CITREM (i.e., citric acid esters of
monoglycerides) or lecithin, are often included in the formulation
of emulsions to facilitate the formation of small oil droplets on
homogenisation, improve stability of emulsions to thermal pro-
cessing and reduce creaming during storage. Lecithin and CITREM
are routinely used in the manufacture of infant formulae (IF) that
contain hydrolysed milk proteins, where they are used at up to 5
and 9 g L�1, respectively (Codex Alimentarius Commission, 1981;
McSweeney, 2008). These low molecular weight emulsifiers* Corresponding author. Tel.: þ353 21 4903625.
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adsorb rapidly at the oil/water interface during homogenisation
allowing the formation of small oil globules. They also interact with
proteins adsorbed at the interface and in the serum phase reducing
the availability of thiol groups at the oil/water interface and in the
serum phase and limiting interactions between oil droplets during
heating (Euston, Finnigan, & Hirst, 2001; McCrae, 1999;
McSweeney, Healy, & Mulvihill, 2008). CITREM and lecithin
contain charged domains (anionic and zwitterionic, respectively)
within their structures and they confer a charge to the surface of oil
droplets upon adsorption. Chargedmolecules promote electrostatic
stabilisation of emulsions and the impact of droplet charge on
thermal stability of IF type emulsions have been well documented
(Kasinos et al., 2013; McCarthy, Kelly, O'Mahony, & Fenelon, 2014).

Modification of protein by conjugation with carbohydrate (i.e.,
maltodextrin, dextran or pectin) by exploiting the early/interme-
diate stages of theMaillard reaction has been shown to improve the
functional properties of different proteins. Conjugation of casein
withmaltodextrin has been reported to improve solubility, foaming
and emulsification properties (Jiang & Zhao, 2011), improve
freezeethaw stability (O'Regan & Mulvihill, 2010a), encapsulation
efficiency (O'Regan & Mulvihill, 2010b) and emulsion stability at
acidic pH (Shepherd, Robertson, & Ofman, 2000). Conjugation of
whey proteins with pectin improved emulsifying properties at
neutral pH (Xu, Wang, Jiang, Yuan, & Gao, 2012) and acidic pH
(Neirynck, Van der Meeren, Bayarri Gorbe, Dierckx, & Dewettinck,
2004); moreover, protection of sensitive, oil soluble compounds
against oxidation was enhanced using whey proteinepectin con-
jugates (Xu et al., 2012). Modification of protein/peptides present in
WPH by conjugation can help alleviate issues encountered with
stability in emulsions stabilised by hydrolysates; indeed, improved
stability of model hydrolysed IF emulsions to thermal processing on
conjugation has already been reported (Drapala et al., in press).

The objective of this study was to identify addition levels of
CITREM and lecithin required to produce emulsions with thermal
stability similar to that measured for a WPHemaltodextrin
(WPHeMD) stabilised emulsion. The performance of WPHeMD
conjugates as emulsifiers in IF type emulsions was compared with
the performance of WPH plus added non-protein emulsifiers (i.e.,
CITREM and lecithin; added at the predetermined levels) used
commercially in such products to determine if such conjugates can
replace (at least partially) non-protein emulsifiers traditionally
used in these products.

2. Materials and methods

2.1. Materials

Whey protein hydrolysate (WPH; 8.0% degree of hydrolysis, DH)
was obtained from Carbery Food Ingredients Ltd (Ballineen,
Ireland) and had 86.3% protein (Standard 20-1; IDF, 2014), 5.0%
moisture (Standard 26; IDF, 2004), 2.8% ash (Standard 90; IDF,
1979), 0.7% fat (Standard 9C; IDF, 1987) and 5.2% lactose (deter-
mined by difference). Maltodextrin (MD; Maldex 120 with a
dextrose equivalent value of 12) was obtained from Corcoran
Chemicals Ltd. (Dublin, Ireland) and had moisture and ash contents
of <5.0% and<0.2%, respectively. Themajority of theMD population
had an average molecular mass of 5.9 kDa as determined by mul-
tiangle laser light scattering with size exclusion chromatography
(Lucey, Srinivasan, Singh, & Munro, 2000). Soybean oil was ob-
tained from Frylite Group Ltd (Strabane, UK). CITREM (Grindsted®

CITREM N12) was obtained from Dupont Nutrition Biosciences ApS
(Brabrand, Denmark) and de-oiled powdered soybean lecithin
(Ultralec® P) was obtained from ADM (Decatur, IL, USA). All other
chemicals and reagents used in the study were of analytical grade
and sourced from SigmaeAldrich (Dublin, Ireland).

2.2. Stock protein solutions and conjugation

A stock protein solution (50.0 g L�1, protein; pH 6.8) was pre-
pared withWPH as detailed by Drapala et al. (in press). In brief, the
WPHeMD conjugate solution was prepared by heating a
WPHemaltodextrin solution (50.0 g L�1 protein, 50.0 g L�1

maltodextrin; pH 8.2) at 90 �C for 8 h (Mulcahy, Mulvihill, &
O'Mahony, 2016; Mulcahy, Park, Drake, Mulvihill, & O'Mahony,
2016). The stock protein solution (non-conjugated) was subse-
quently used to formulate emulsions containing different levels
(0e9 g L�1) of either CITREM or lecithin and the stock conjugate
solution was used to formulate WPHeMD conjugate based
emulsions.

2.3. Preparation of emulsions

Model infant formula emulsions containing 15.5, 35.0 and
70.0 g L�1 protein, oil and total maltodextrin, respectively, were
prepared from stock WPH or stock WPHeMD conjugate solutions
essentially as detailed by Drapala et al. (2015, in press). Non-protein
emulsifiers (CITREM or lecithin) were added to emulsions prepared
from the stock WPH solution. For emulsions containing CITREM,
the CITREM (0e9 g L�1; dissolved in ultrapure water at 65 �C) was
added to the aqueous phase prior to mixing with the oil phase. For
emulsions containing lecithin, the lecithin (0e9 g L�1; dissolved in
soybean oil at 65 �C) was added to the oil phase prior to mixing
with the aqueous phase. For emulsions containing WPHeMD
conjugate all protein was provided by the stock conjugate solution
and the MDwas added to reach the target concentration (i.e., 7.0%).
Aqueous and oil phases of emulsions were mixed together at 50 �C
and then pre-homogenised with an Ultra-Turrax (T25, IKA-Werke
GMBH & Co. KG, Staufen, Germany) at 10,000 rpm for 2 min fol-
lowed by two stage homogenisation (double pass) at 15 and 3 MPa,
using a valve homogeniser (APV GEA Niro-Soavi S.p.A., Parma, Italy)
at 50 �C. Following homogenisation, the pH of emulsions was
measured and, if needed, readjusted to pH 6.8 with 0.1 N HCl or 0.1 N

KOH. Emulsion aliquots used for accelerated stability testing had
sodium azide (0.50 g L�1) added to prevent microbial growth.

2.4. Fat globule size distribution and zeta potential

Fat globule size distribution (FGSD) of the emulsions was
measured using a laser light diffraction unit (Mastersizer 3000,
Malvern Instruments Ltd, Malvern, UK) equipped with a 300 RF
(reverse Fourier) lens, an LED light source (l of 470 nm) and a
HeeNe laser (l of 633 nm). A polydisperse model with particle and
dispersant refractive index of 1.46 and 1.33, respectively, were
selected for data analysis (McCarthy et al., 2012). Samples were
introduced to themixing chamber and dispersed in ultrapurewater
until a laser obscuration of 5e8% was reached and three readings
were taken for each sample. FGSD was measured within 1 h post
homogenisation (d 0), immediately post heating and after 3, 6, 8
and 10 d of accelerated storage at 40 �C. The zeta potential (z) of oil
droplets in emulsions was measured using a Zetasizer Nano-ZS
(Malvern Instruments), as detailed by Drapala et al. (in press).

2.5. Screening of thermal stability of emulsions

Model IF emulsions stabilised by WPHeMD conjugate, or
WPH þ CITREM (0e9 g L�1) or WPH þ lecithin (0e9 g L�1) were
heat treated at 95 �C for 15 min. Thermal stability of these emul-
sions was assessed by changes in FGSD of emulsions after heat
treatment as compared to the FGSD measured immediately post
homogenisation. The heat treatment (95 �C for 15 min using an oil
bath) was used to initially screen the thermal stability of emulsions
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containing lower levels of non-protein emulsifiers (0e5 g L�1;
CITREM or lecithin) to identify very unstable samples. Emulsions
stabilised by WPH þ CITREM or WPH þ lecithin (5e9 g L�1) were
heated (fresh aliquots) under controlled conditions with an AR-G2
controlled stress rheometer (TA Instruments, Crawley, UK) equip-
ped with a starch pasting cell (SPC). The thermal treatment applied
to the samples was as detailed by Drapala et al. (in press) and
involved heating to 95 �C, holding for 15 min at peak temperature
and cooling to 15 �C with constant shear-rate (15 s�1). Apparent
viscosity was recorded at 1 s intervals during heating, holding and
cooling. Emulsion samples were recovered after all heat treatments
(i.e., from oil bath tubes and the SPC) and their thermal stability
was assessed by visual observation and analysis of FGSD, as
described in Section 2.4. Addition levels of CITREM and lecithin
required to obtain thermal stability equivalent to that measured for
the WPHeMD sample were identified. The three emulsion systems
evaluated in the remainder of this study are referred to as conjugate
based emulsion (CONe), CITREM containing emulsion (CITe) and
lecithin containing emulsion (LECe).

2.6. Assessment of properties of emulsions

2.6.1. Determination of composition of emulsions
The chemical composition (i.e., total solids, protein, ash and

carbohydrate content) of the CONe, CITe, and LECe emulsions was
determined using the methods detailed for the WPH ingredients in
Section 2.1. The fat content of emulsions was determined using the
Gerber method (Standard 105; IDF, 2008). The carbohydrate con-
tent of emulsions was calculated by difference.

2.6.2. Determination of apparent viscosity of emulsions
Viscosity of CONe, CITe and LECe emulsions post homogenisation

and post heating at 95 �C for 15 min was measured using a rota-
tional viscometer (Haake RotoVisco 1 Rotational Viscometer,
Thermo Fisher Scientific, MA, USA) equipped with a cylindrical
double gap cup and rotor (DG43, Thermo Fisher Scientific, MA, USA)
as described by Mulcahy et al. (2015). The average apparent vis-
cosity at 300 s�1 of each emulsion was determined at 20 �C
(±0.1 �C).

2.6.3. Accelerated storage stability testing of emulsions
To determine stability of unheated CONe, CITe and LECe emul-

sions to accelerated storage, aliquots (50 mL) were transferred to
plastic containers, sealed and incubated at 40 �C. FGSD of the
emulsions was measured after 3, 6, 8 and 10 d storage. A parallel
experiment was carried out to determine the stability of heated
(95 �C for 15 min) CONe, CITe and LECe emulsions to accelerated
storage (10 d at 40 �C).

2.6.4. Accelerated creaming stability testing of emulsions
Creaming velocities of unheated and heated CONe, CITe and LECe

emulsions were measured using an analytical centrifuge (LUMi-
Sizer, L.U.M. GmbH, Berlin, Germany). The principle of analysis by
LUMiSizer has been detailed by Lerche and Sobisch (2011). Stability
of emulsions to creaming was determined at 23 �C and 563 g for
8.5 h as detailed by Shimoni, Shani Levi, Levi Tal, and Lesmes (2013).
Creaming velocity was calculated from front tracking profiles as
detailed by Lerche and Sobisch (2011).

2.6.5. Microstructural analysis of emulsions
The microstructural analysis of emulsions was performed using

a Leica TCS SP Confocal Laser Scanning Microscope (Leica Micro-
systems, Heidelberg GmbH, Mannheim, Germany) as detailed by
Drapala et al. (2015). In brief, protein and lipid were fluorescently
labelled with Nile Blue dye and visualisation in emulsions was

carried out using HeeNe (633 nm) and Ar (488 nm) lasers for
protein and lipid, respectively. The observations were performed
using a 63� oil immersion objective. At least three specimens of
each emulsionwere observed to obtain representativemicrographs
of samples.

2.7. Statistical analysis

All emulsions were prepared in three independent trials and all
measurements were carried out in at least duplicate. Analysis of
variance (ANOVA) was carried out using the Minitab® 16 (Minitab
Ltd, Coventry, UK) statistical analysis package. The Tukey HSD test
was used to obtain grouping information. The level of significance
was determined at P < 0.05.

3. Results

3.1. Influence of emulsifier type and concentration on thermal
stability of emulsions

Thermal stability results for emulsions stabilised by WPH and
different levels (0e9 g L�1) of CITREM or lecithin and by the
WPHeMD conjugate are shown in Table 1. Emulsions containing
low to intermediate levels of lecithin (1e5 g L�1) displayed poor
stability to thermal processing at 95 �C for 15 min. Extensive heat
induced coagulation was observed in the emulsion containing
1 g L�1 lecithin, where protein/peptide aggregates and a distinct
serum phase were observed in the sample after heat treatment. No
coagulation was observed at lecithin addition levels >1 g L�1,
however, destabilisation of emulsions containing low to interme-
diate levels (2e5 g L�1) of lecithin was observed, as evidenced by
the presence of relatively large aggregates in the emulsions after
heating. Increasing the lecithin concentration in emulsions
improved their thermal stability and at �5 g L�1 lecithin no
extensive destabilisation was observed. Emulsions containing
�5 g L�1 lecithin were heat treated at 95 �C for 15 min in the SPC.
Similar to the emulsions heated in the oil bath, the destabilising
effects of thermal processing decreased as the level of lecithin
increased. The presence of aggregates in the heated emulsions was
observed at up to 7 g L�1 lecithin addition. Emulsions containing
�8 g L�1 lecithin had mean volume diameter of oil droplets <1 mm,
which is generally an indicator of a physically stable emulsion
(Drapala et al., 2015; McCarthy et al., 2012). Lecithin containing
emulsions that were heated in the SPC displayed a tendency to foul
the cell (i.e., deposit a protein/oil layer on the metal surface they
were in contact with during thermal processing). Fouling decreased
with increasing lecithin level; however, it was still observed
(although to a limited degree) even at the highest level (i.e., 9 g L�1)
of lecithin addition (Table 1). A lecithin addition level of 9 g L�1 was
identified as being able to provide best thermal stability to theWPH
based emulsion, essentially equivalent to that of an emulsion sta-
bilised by the WPHeMD conjugate.

Emulsions containing low (1e4 g L�1) levels of CITREM dis-
played poor stability to heating at 95 �C for 15 min and coagulation
was observed in emulsions containing 1 and 2 g L�1 CITREM. The
presence of large aggregates without coagulation was observed in
emulsions containing 3 and 4 g L�1 CITREM and the D4,3 of particles
decreased by ~50% on increasing the level from 3 to 4 g L�1

(Table 1). Similar to lecithin containing emulsions, samples con-
taining 5e9 g L�1 CITREM were heated in the SPC. Formation of
aggregates was observed in emulsions containing up to 7 g L�1

CITREM; however, unlike lecithin containing emulsions, no fouling
was observed in the SPC at any CITREM addition level. The emul-
sion containing 9 g L�1 CITREM displayed the highest thermal
stability, the stability being similar to that observed for the
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emulsion stabilised by the WPHeMD, hence this level of the
emulsifier was selected for subsequent analyses.

Model infant formula emulsions stabilised by the WPHeMD
conjugate, WPH þ CITREM (9 g L�1) or WPH þ lecithin (9 g L�1)
displayed good thermal stability to heating at 95 �C for 15 min in
the SPC. The effects of the heat treatment on selected emulsion
properties were assessed by determining FGSD, apparent viscosity,
stability to creaming, z potential and microstructural properties.
Emulsions stabilised by WPHeMD conjugate, WPH þ CITREM
(9 g L�1) andWPHþ lecithin (9 g L�1) will subsequently be referred
to as CONe, CITe and LECe emulsions, respectively, in this study.

3.2. Properties of emulsions

3.2.1. Composition of emulsions
Compositional analysis of CONe, CITe and LECe emulsions

showed that measured/calculated levels of protein (15.0, 15.1 and
15.4 g L�1, respectively), fat (36.8, 36.7 and 37.3 g L�1, respectively)
and carbohydrate (64.5, 70.9 and 71.1 g L�1, respectively) were
sufficiently near target levels. The total solids content of the CONe
emulsion (117.5 g L�1) was lower than in the CITe and LECe emul-
sions (123.8 and 125.2 g L�1, respectively), due to the presence of
non-protein emulsifiers in addition to the target protein content in
the CITe and LECe emulsions.

3.2.2. Size and charge of oil droplets in emulsions
CONe, CITe and LECe emulsions had narrow particle size dis-

tributions (Fig. 1) and mean volume diameter (D4,3) of 0.79, 0.62
and 0.72 mm (Table 2), respectively, immediately post homogeni-
sation. The CONe and CITe emulsions displayed good stability to
heat treatment at 95 �C for 15 min as indicated by no significant
changes in the D4,3, D3,2 (Sauter mean diameter), Dv,0.5 and Dv,0.9
(fat droplet size in the 50% and 90% quantiles of the distribution,
respectively) and no change in the FGSD profiles post heating
compared with post homogenisation (Table 2; Fig. 1). A limited
increase in the Dv,0.5 and broadening of the size distribution profile
was observed for the LECe emulsion post heating at 95 �C for
15 min (Table 2; Fig. 1, C2). However, no significant changes were
measured for all the other FGSD parameters and the D4,3 of the
LECe emulsion remained <1 mm after heating also indicating good
heat stability.

Zeta potential values showed that oil droplets in freshly pre-
pared CITe emulsion had significantly higher net negative charge
(�57.7 mV) compared with the CONe (�53.3 mV) and LECe
(�52.3 mV) emulsions (Table 2). Heating at 95 �C for 15 min
reduced the z potential of oil droplets in emulsions by 4.6, 2.6 and
2.6 mV for CITe, CONe and LECe emulsions, respectively. No signif-
icant differences in the z potential were found between heated CITe,
CONe and LECe emulsions.

3.2.3. Apparent viscosity of emulsions
No significant differences in viscosity were observed for CONe,

CITe and LECe emulsions immediately post homogenisation
(Table 2). Viscosity of all emulsions increased on heat treatment at
95 �C for 15 min. Viscosity of the heated CITe emulsionwas found to
be significantly higher than the viscosity of heated CONe emulsion;
no significant differences were observed between heated CONe and
LECe and between heated CITe and LECe emulsions.

3.2.4. Accelerated storage stability of emulsions
The unheated CONe emulsion displayed excellent stability over

the 10 d accelerated storage at 40 �C with no changes observed in
the D4,3, D3,2 and Dv,0.5 or in the FGSD profiles (Fig. 1, A1 and A3;
Table 2); a marginal increase (i.e., 0.07 mm) in the Dv,0.9 was
observed for the unheated CONe emulsion on accelerated storage.
An increase in D4,3 to 2.86 mm and a shift in the size distribution
profile frommonomodal to bimodal (Fig. 1, B1 and B3; Table 2) was
observed for the unheated CITe emulsion after 10 d of accelerated
storage. Particle size parameters D3,2, Dv,0.5 and Dv,0.9 for the un-
heated CITe emulsion also increased after storage compared to post
homogenisation; however, the increases were not found to be
significant due to large standard errors observed for the stored
emulsion (Table 2). The unheated LECe emulsion displayed the least
stability to accelerated storage; D4,3 increased to 5.36 mm and the
presence of a small number of large (~30 mm) oil droplets was
observed on the FGSD profile (Fig. 1, C3). An increase in Dv,0.9 was
observed for the unheated LECe emulsion after the storage
compared with post homogenisation; however, the difference was
not found to be significant due to large standard error observed for
the stored emulsion (Table 2). Additionally, a complete phase sep-
aration, evidenced by the presence of free oil floating on top of the
emulsion in the container, was observed as early as 6 d into the
storage of the unheated LECe emulsion. No phase separation was
observed for either the unheated CONe or CITe emulsions over the
10 d of storage at the accelerated conditions.

The stability of heated (95 �C for 15 min) emulsions to acceler-
ated storage (10 d at 40 �C) was also determined and the results
were similar to the unheated systems. A marginal increase in the
D4,3, D3,2, Dv,0.5 and Dv,0.9 were measured for the heated CONe and
CITe emulsions after 10 d storage compared with FGSD values
immediately after heat treatment (Table 2). No differences in the
FGSD profiles were observed for the heated CONe emulsion after
the storage compared to post heating (Fig. 1, A2 and A4). Amarginal
broadening of the FGSD profile was observed for the heated CITe
emulsion after 10 d storage compared to post heating (Fig. 1, B2 and
B4). Following the trend observed for the unheated emulsions, the
biggest changes on accelerated storage were observed for the
heated LECe emulsion. Large (~20 mm) oil droplets were present in
the heated LECe emulsion after 10 d storage (Fig. 1, C4). The D4,3 and
Dv,0.5 for the heated LECe emulsion increased after the 10 d of

Table 1
Influence of lecithin or CITREM addition level on stability of model whey protein hydrolysate (WPH) based infant formula (IF) emulsions on heat treatment compared with the
stability of a model IF emulsion stabilised by WPHemaltodextrin (WPHeMD) conjugate.a

Mapping
parameter

WPH þ lecithin (g L�1) WPH þ CITREM (g L�1) WPHeMD
conjugate

1ob 2ob 3ob 4ob 5ob,r 6r 7r 8r 9r 1ob 2ob 3ob 4ob 5ob,r 6r 7r 8r 9r

Coagulation þ � � � � � � � � þ þ � � � � � � � �
Aggregation NA þþþ þþ þþ þþ þ þ � � NA NA þþþ þþ þ þ þ � � �
Fouling NA NA NA NA þþþ þþþ þþ þþ þ NA NA NA NA � � � � � �
D4,3 (mm) NA 117 96.7 73.7 17.5 3.42 1.22 0.96 0.90 NA NA 119 58.8 3.99 0.98 0.81 0.70 0.62 0.79

a WPH based IF emulsions, pH 6.8, contained 1.55, 3.5 and 7.0% protein, fat and carbohydrate, respectively, were heat treated at 95 �C for 15 min using an oil bath or a
rheometer equipped with a starch pasting cell (SPC); heat treatment method indicated by superscript letters: ob, oil bath; r, rheometer. D4,3 is the mean volume diameter of
particles as measured by laser diffraction. The symbols þ and � describe either presence or absence, respectively, of the corresponding mapping parameters in an emulsion
sample after the heat treatment; higher number of þ refers to higher magnitude of the corresponding parameter; NA, not applicable.
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storage compared with after heat treatment; however, this increase
was not found to be significant due largely to variability in data
observed for D4,3 and Dv,0.9 (Table 2). No differences were found in
the D3,2 and Dv,0.5 after the accelerated storage compared with
values measured immediately after the heat treatment. Interest-
ingly no free oil was observed for the heated LECe emulsion after
10 d storage.

3.2.5. Accelerated creaming stability of emulsions
Creaming velocity measured immediately post homogenisation

was highest for the CONe emulsion followed by the LECe and CITe
emulsions (Table 2). However, all emulsions displayed creaming

velocity below 1 mm d�1, which is considered an indicator of good
stability to creaming in oil in water (O/W) emulsions (Dickinson,
1992; McClements, 1999). A limited decrease in the creaming ve-
locity was observed for the CONe and LECe emulsions as a result of
the heat treatment (95 �C for 15 min) (Table 2); a significant
(P < 0.05) decrease was observed for the CITe emulsion after
heating.

3.2.6. Microstructural analysis of emulsions
Microstructural analysis of the emulsions showed that all sam-

ples had fine and uniformly distributed oil droplets immediately
post homogenisation (Fig. 2). Similarly, a homogenous distribution

Fig. 1. Fat globule size distribution profiles of model whey protein hydrolysate (WPH) based infant formula emulsions stabilised by (A) WPHemaltodextrin conjugate and
(B) WPH þ CITREM at 9 g L�1 or (C) WPH þ lecithin at 9 g L�1 (horizontally, left to right) post homogenisation, after heat treatment (95 �C � 15 min), after 10 d of storage at 40 �C of
unheated emulsions and after 10 d of storage at 40 �C of heated emulsions. Large error bars observed for the unheated CITe emulsion after 10 d of storage reflect a large variability in
the extent of destabilisation of the emulsions; however, the same trend was observed for the sample for all 3 independent trials.

Table 2
Fat globule size distribution and zeta potential (z) of model whey protein hydrolysate (WPH) based infant formula emulsions stabilised by WPHemaltodextrin conjugate
(CONe), WPH þ CITREM (CITe) or WPH þ lecithin (LECe) post homogenisation, post heating at 95 �C for 15 min and after an accelerated storage at 40 �C for 10 d post ho-
mogenisation of unheated and heated emulsions.a

Emulsion Measurement stage Fat globule size parameter (mm) z potential
(mV)

Apparent
viscosity
(mPa s)

Creaming
velocity
(mm d�1)

D4,3 D3,2 Dv,0.5 Dv,0.9

CONe Post homogenisation 0.79 ± 0.02a 0.57 ± 0.01a 0.67 ± 0.02a 1.43 ± 0.03a �53.3 ± 0.54A 1.86 ± 0.19A 0.28 ± 0.03A

Heated 95 �C, 15 min 0.79 ± 0.01a 0.57 ± 0.02a 0.66 ± 0.01a 1.44 ± 0.03a �50.7 ± 0.69A 1.90 ± 0.12A 0.24 ± 0.03AB

Accelerated storage: unheated 0.82 ± 0.02a 0.60 ± 0.02a 0.67 ± 0.02a 1.50 ± 0.04ab n.d. n.d. n.d.
Accelerated storage: heated 0.83 ± 0.02a 0.62 ± 0.02a 0.69 ± 0.01a 1.55 ± 0.02b n.d. n.d. n.d.

CITe Post homogenisation 0.62 ± 0.04a 0.49 ± 0.04a 0.54 ± 0.03a 1.07 ± 0.08a �57.7 ± 0.34B 2.15 ± 0.26A 0.18 ± 0.05B

Heated 95 �C, 15 min 0.62 ± 0.04a 0.49 ± 0.03a 0.54 ± 0.03a 1.07 ± 0.08a �53.1 ± 0.83A 2.45 ± 0.05B 0.06 ± 0.02C

Accelerated storage: unheated 2.86 ± 1.22b 0.62 ± 0.11a 0.67 ± 0.15a 7.81 ± 4.84a n.d. n.d. n.d.
Accelerated storage: heated 0.88 ± 0.14a 0.55 ± 0.04a 0.60 ± 0.03a 1.31 ± 0.06a n.d. n.d. n.d.

LECe Post homogenisation 0.72 ± 0.00a 0.52 ± 0.04a 0.58 ± 0.04a 1.21 ± 0.11a �52.3 ± 0.83A 2.01 ± 0.21A 0.22 ± 0.05AB

Heated 95 �C, 15 min 0.90 ± 0.11a 0.62 ± 0.10a 0.72 ± 0.07b 1.65 ± 0.26a �49.7 ± 2.13A 2.20 ± 0.03AB 0.17 ± 0.05B

Accelerated storage: unheated 5.36 ± 1.98b 0.51 ± 0.01a 0.53 ± 0.01a 8.29 ± 9.22a n.d. n.d. n.d.
Accelerated storage: heated 2.71 ± 0.75ab 0.64 ± 0.03a 0.72 ± 0.03b 4.98 ± 1.46a n.d. n.d. n.d.

a CITREM and lecithin were used at 9 g L�1. Fat globule size distribution parameters are: D4,3, volume mean diameter; D3,2, Sauter mean diameter; Dv,0.5, fat droplet size in
the 50% quantile of the distribution;Dv,0.9, fat droplet size in the 90% quantile of the distribution; values for a given emulsionwithin a column not sharing a common lower case
letter differed significantly (p < 0.05). z potential, apparent viscosity and creaming velocity values for a measurement stage for each emulsion within a column not sharing a
common superscript uppercase letter differed significantly (p < 0.05); n.d., not determined.
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of small (~1 mm) oil droplets was observed in all emulsions after the
heat treatment at 95 �C for 15min. Microstructural analysis showed
that the heat treatment resulted in an increased number of protein
aggregates/complexes in the serum phase of the emulsions; this
observationwas especially pronounced in the CITe emulsion (Fig. 2,
B2).

Pronounced differences in the microstructure were observed
between unheated CONe, CITe and LECe emulsions after the 10 d
storage at 40 �C. No changes in the microstructure were observed
for the unheated CONe emulsion after 10 d storage compared with
post homogenisation. Relatively large (i.e., 5e10 mm) oil droplets
were present in the unheated CITe emulsion and still larger droplets
(i.e., 10e20 mm) in the unheated LECe emulsion (Fig. 2, B3 and C3,
respectively) after 10 d storage. Additionally, large (1e2 mm) pro-
tein complexes were observed in the unheated CITe emulsion after
10 d of storage at 40 �C.

Results for the accelerated storage of the heated CONe emulsion
showed no evident increase in the size of oil droplets and no
obvious differences in the microstructure of the emulsion
compared with post homogenisation (Fig. 2, A4). The heated CITe
emulsions also displayed a good stability to accelerated storage and
no evident changes resulting from the storage were observed in the
heated CITe emulsion (Fig. 2, B4). Large (i.e., 5e15 mm) oil droplets
were observed for the heated LECe emulsion after 10 d storage at
40 �C (Fig. 2, C4).

4. Discussion

The results presented in the current study show that the
WPHeMD conjugate conferred excellent stability to IF type

emulsion products containing hydrolysed whey protein. Emulsions
stabilised by the WPHeMD conjugate displayed the greatest sta-
bility to thermal processing (95 �C for 15 min) and accelerated
storage (40 �C for 10 d), in both unheated and heated emulsions.
There were marginal or no changes in the size distribution of oil
droplets in the WPHeMD conjugate stabilised emulsion, compared
with emulsions stabilised by WPH þ lecithin or WPH þ CITREM
(Figs. 1 and 2, Table 2). The superior stability of the CONe emulsion
can be attributed to the ability of the WPHeMD conjugate to
enhance steric stabilisation of oil droplets in an emulsion system.
Upon adsorption of the surface active WPHeMD conjugate at the
interface of oil droplets during homogenisation, the carbohydrate, a
hydrophilic component of the conjugate, protrudes into the serum
phase of the emulsion, in effect, increasing thickness of the inter-
facial layer, conferring enhanced steric stabilisation and limiting
interactions between oil droplets (Kasran, Cui, & Goff, 2013; Wong,
Day,& Augustin, 2011). Additionally, it is proposed that the covalent
attachment of the MD to WPH reduces the potential of the inter-
facial protein/peptide-MD layer to interact with protein/peptides in
the serum. This is due to a physical restriction of access to the
interfacial protein/peptides that are in close proximity to the
covalently attached carbohydrate (i.e., space interference). Such
space interference can effectively improve thermal stability ofWPH
based emulsions, where protein/peptide mediated bridging floc-
culation is a common processing challenge (Dickinson, 2001;
Drapala et al., in press; McSweeney, Mulvihill, & O'Callaghan,
2004; Ye & Singh, 2006).

WPHeMD conjugates can be used as an alternative ingredient
for stabilizing WPH based emulsions where the addition of non-
protein emulsifiers (i.e., low molecular weight surfactants like

Fig. 2. Confocal laser scanning microscopy images of model whey protein hydrolysate (WPH) based infant formula emulsions stabilised by (A) WPHemaltodextrin conjugate and
(B) WPH þ CITREM at 9 g L�1 or (C) WPH þ lecithin at 9 g L�1 (horizontally, left to right) post homogenisation, after heat treatment (95 �C � 15 min), after 10 d of storage at 40 �C of
unheated emulsions and after 10 d of storage at 40 �C of heated emulsions. Emulsions were labelled with Nile Blue and the micrographs show distribution of oil droplets (green) and
protein particles (red). Scale bar ¼ 10 mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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CITREM and lecithin) can be, at least partially, replaced. Thus,
competitive destabilisation, often observed in systems containing
protein and low molecular weight surfactants, could be avoided
(Kaltsa, Paximada, Mandala, & Scholten, 2014; Wilde, Mackie,
Husband, Gunning, & Morris, 2004). This destabilisation, which
takes place during storage of emulsions containing protein/pep-
tides and low molecular weight surfactants, can result in a non-
continuous interfacial layer with certain regions dominated by
protein/peptides and others by the surfactant (Drapala et al., 2015).
Such unordered structure of the interface can in effect promote
coalescence (Tirok, Scherze, & Muschiolik, 2001) and, under
particularly adverse conditions, result in phase separation. Hofman
and Stein (1991) and Mezdour, Lepine, Erazo-Majewicz, Ducept,
andMichon (2008) have reported a detrimental effect of lecithin on
emulsion stability, which was linked to reduced interfacial tension
and, effectively, decreased rigidity and strength of the interfacial
layer. Coalescence, evidenced by the presence of large oil droplets,
was observed in the unheated CITe and unheated and heated LECe
emulsions, while both the unheated and heated CONe emulsions
displayed resistance to coalescence during accelerated storage.

The different extents of emulsion instability observed for un-
heated emulsions containing the low molecular weight surfactants
CITREM or lecithin can be explained by the ability of the ionic
surfactant CITREM to interact and form ternary complexes with
polysaccharides and protein (Antipova, Semenova, Belyakova, &
Il'in, 2001; McSweeney, 2008; Semenova, Myasoedova, &
Antipova, 2001) (Fig. 2B). Formation of such complexes may have
curtailed the mobility of the CITREM in the serum phase during
storage and limited its role in the competitive destabilisation at the
emulsion interfaces, thus, enhancing the stability of the CITREM
containing emulsion compared with the lecithin containing emul-
sion. A positive effect of the ternary complexes formed by CITREM
and polysaccharideseprotein on the emulsion stability was
observed when the emulsions were heated. It is proposed that on
heating, formation of the complexes and limited protein/peptide
aggregation, provide a synergistic stabilising effect; the presence of
these combined complexes and aggregates at the surfaces of oil
droplets may contribute to steric stabilisation. Additionally, the
number of CITREM molecules in the serum phase, that would
potentially be available to displace protein/peptides at the in-
terfaces, is decreased.

Electrostatic repulsion also has a role to play in stabilisation of
oil droplets in O/W emulsions against undesirable dropletedroplet
interactions. Modification of WPH by conjugation with MD affects
the charge on proteins/peptides as positively charged 3-amino
groups of the lysine residues are blocked by the covalently attached
MD (Acedo-Carrillo et al., 2006; Liu, Ru, & Ding, 2012). It has been
shown by Drapala et al. (in press) that oil droplets in emulsions
stabilised by a WPHeMD conjugate displayed greater negative
charge compared with those stabilised by WPH alone. The in-
teractions between protein at the emulsion interfaces and protein
in the emulsion serum phase have been widely reported and
reviewed (Raikos, 2010); these interactions affect not only the
structural arrangement at the interfaces but also impact on the
charge of the oil droplets. The results presented in the current study
showed that the initial differences in the z potential between CONe,
CITe and LECe emulsions measured post homogenisation were
diminished after heat treatment (Table 2). Reported reduction in
the z potential of oil droplets in all emulsions as a result of heat
treatment can be explained by interactions between proteins/
peptides at the surface of oil droplets and proteins/peptides in the
serum phase and by a rearrangement of emulsifiers at the interface.
The CITe emulsions displayed a bigger reduction in z potential after
the heat treatment, compared with the other emulsions. This in-
dicates increased interactions (i.e., through combined complex

formation and aggregation) at the oilewater interfaces and sup-
ports the concept of CITREM based complexes playing a role in
steric stabilisation. In the current study the differences in the z

potential of oil droplets in the heated CONe, CITe and LECe emul-
sions were insignificant, however, major differences in the storage
behaviour were observed for these emulsions. The best shelf life
stability displayed by the CONe emulsion compared with the other
emulsions was linked directly to the properties of the interfacial
layer of oil droplets in the CONe emulsion with the most effective
steric hindrance and absence of the competitive destabilisation
observed for the CITe and LECe emulsions.

5. Conclusions

The results presented in the current study show that the per-
formance of WPHeMD conjugates in stabilising model WPH based
IF emulsions was superior to that observed for emulsions stabilised
byWPHþ CITREM (9 g L�1) orWPHþ lecithin (9 g L�1). The greater
thermal and storage stability of the emulsion stabilised by the
WPHeMD conjugate is attributed to enhanced steric stabilisation of
oil droplets in the emulsion as a result of conjugation. Undesirable
interactions between oil droplets during heat treatment and
accelerated storage were markedly reduced in the emulsion stabi-
lised by the WPHeMD conjugate compared to emulsions stabilised
by WPH with CITREM or lecithin. The novel WPHeMD conjugate
emulsifiers can provide a valuable and highly functional alternative
to the inclusion of non-protein emulsifiers in nutritional
formulations.
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a b s t r a c t

The objective of this studywas to compare the drying performance and physicochemical properties ofmodel
infant formula (IF) emulsions containing43, 96 and 192 g L�1 protein, oil andmaltodextrin (MD), respectively,
prepared using different emulsifier systems. Emulsions were stabilised using either whey protein isolate
(WPI), whey protein hydrolysate (WPH; DH 8%), WPHþ CITREM (9 g L�1), WPHþ lecithin (5 g L�1) or WPH
conjugated with maltodextrin (DE 12) (WPH-MD). Homogenised emulsions had 32% solids content and oil
globules with mean volume diameter <1 mm. Powders were produced by spray-drying with inlet and outlet
temperatures of 170 and90 �C, respectively, to an averagefinalmoisture content of 1.3%. The extent of powder
build-up on the dryerwall increased in the order;WPH-MD<<WPH�WPI<WPHþ LEC�WPHþ CIT. The
same trend was observed for the extent of spontaneous primary powder agglomeration, as confirmed by
particle size distribution profiles and scanning electron micrographs, where the WPH-MD and WPH þ CIT
powders displayed the least and greatest extent of agglomeration, respectively. Analysis of elemental surface
composition of the powders showed that surface fat, protein and carbohydrate decreased in the order;
WPHþ CIT>WPHþ LEC>WPH>WPH-MD>WPI,WPI>WPH>WPH-MD>WPHþ LEC>WPHþ CITand
WPH- MD > WPI > WPH > WPH þ LEC > WPH þ CIT, respectively. Additionally, differences in wettability,
surface topography and oil globule distributionwithin the powdermatrix and in reconstituted powderswere
linked to the emulsifier system used. Inclusion of the WPH-MD conjugate in the formulation of IF powder
significantly improved drying behaviour and physicochemical properties of the resultant powder, as evi-
denced by lowest powder build-up during drying and greatest emulsion quality on reconstitution, compared
to the other model formula systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Protein-based added-value nutritional formulations have been
gaining a significant share of the global food market over the last
decade, especially those tailored for athletes, the elderly and in-
fants; the total global market for these product types is predicted to
exceed 100 billion USD by 2020. Formulations for such products
generally contain protein (e.g., whey protein), oils rich in unsatu-
rated fatty acids (i.e., blends of vegetable oils) and carbohydrates
(e.g., maltodextrin) as the main components. Whey protein hy-
drolysate (WPH) is often used as a protein source in such nutri-
tional formulae due to its desirable amino acid composition, high

digestibility and rapid absorption in the gut (Hern�andez-Ledesma,
García-Nebot, Fern�andez-Tom�e, Amigo, & Recio, 2014). Modifica-
tion of protein via hydrolysis has been extensively studied, with
reports on improvement in protein functionality in the areas of
solubility, surface activity, foaming and emulsifying properties
available in the scientific literature (Agboola & Dalgleish, 1996a,b;
Banach, Lin, & Lamsal, 2013; Foegeding & Davis, 2011; Kilara &
Panyam, 2003). However, incorporation of WPH into nutritional
formulations such as powdered formulae or ready to drink prod-
ucts is often associated with processing and shelf life challenges
such as protein/peptide-mediated bridging flocculation and coa-
lescence, due to reduced steric stabilisation and increased number
of exposed reactive sites, compared to formulations based on intact
whey protein (Drapala, Auty, Mulvihill, & O’Mahony, 2016a,b;
Euston, Finnigan, & Hirst, 2000; Hunt & Dalgleish, 1995). Irre-
spective of the format of the final product (i.e., liquid or powder),
the formulations for both physical formats have to undergo a
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number of thermal treatments (e.g., pasteurisation, sterilisation,
spray-drying) as a liquid. Therefore, additional non-protein surface
active components are often included in the formulation of WPH-
based emulsions in order to improve their processing and shelf-
life stability; these surfactants are usually lipid-based emulsifiers,
including lecithin or citric acid esters of mono- and di-glycerides
(CITREM).

Spray-drying is one of the most common processes used in the
manufacture of dairy ingredients and nutritional products; rapid
water removal results in increased product shelf-life, reduced
shipping and storage costs and provides the consumer with a
convenient and stable product. In this complex process, multiple
factors such as feed characteristics (e.g., composition and rheo-
logical properties), process parameters (e.g., atomiser type and
fines return) and external factors (e.g., air humidity, temperature)
significantly impact the drying performance and the physico-
chemical properties of the final product. The composition (i.e., the
type and content of protein, carbohydrate, fat and emulsifier, total
solids content) and properties (i.e., flow behaviour and viscosity) of
the emulsion destined for spray-drying have a strong influence on
its drying properties; extensive scientific reports and reviews
focusing on the effects these factors have on the properties of the
resulting powders have been published (Adhikari, Howes, Wood, &
Bhandari, 2009; Jayasundera, Adhikari, Aldred, & Ghandi, 2009; Ji
et al., 2016; Kim, Chen, & Pearce, 2009; Millqvist-Fureby, Elofs-
son, & Bergenståhl, 2001; Taneja, Ye, Jones, Archer, & Singh, 2013;
Vega & Roos, 2006; Vignolles, Jeantet, Lopez, & Schuck, 2007).

It is well established that there is a strong relationship between
the surface composition of powder particles and their drying per-
formance in addition to the properties (e.g., cohesiveness, shelf-
life) of the final product (Kelly, O’Mahony, Kelly, & O’Callaghan,
2014; Nijdam & Langrish, 2006; Sadek et al., 2015). In the pro-
duction of fat-rich powders, high surface fat content can lead to
powder stickiness, low powder recovery (i.e., yield) and production
down-time (i.e., due to powder build-up on the dryer walls) as well
as poor shelf-life and undesirable properties of the final product
(i.e., lipid oxidation, caking, low solubility and dispersibility)
(Paterson, Zuo, Bronlund, & Chatterjee, 2007). Surface composition
of an emulsion-based powder is governed mainly by the emulsifier
system used; upon atomisation, a new air/liquid interface is created
and surface active components (i.e., proteins, peptides, low mo-
lecular weight surfactants) present in the emulsion, migrate rapidly
towards, and adsorb at, the new interface, effectively reducing the
surface free energy and enhancing the thermodynamic stability of
the system (Munoz-Ibanez et al., 2016). Effectively, surfactants are
over-represented at the droplet/powder particle surface, affecting
in-process and in-application behaviour of these products, as
exhibited by interactions of particles with the dryer wall and with
other droplets/powder particles. Thus, a better understanding of
the emulsifier system and its modification to tailor it to a specific
formulation has an important role in increasing drying efficiency in
producing a powder with desired properties.

Conjugation of milk proteins with carbohydrates through the
Maillard reaction has been reported to produce emulsifiers with
exceptional functionality, especially with respect to stability of
emulsion to unfavourable thermal and/or storage conditions
(Akhtar & Dickinson, 2003; Drapala et al., 2016a,b; Kasran, Cui, &
Goff, 2013a,b; O’Regan & Mulvihill, 2010a,b; Wooster & Augustin,
2006). WPH-maltodextrin (WPH-MD) conjugates have been
shown to confer strong steric stabilisation to oil droplets, effectively
limiting globule-globule interactions and preventing emulsion
destabilisation (i.e., flocculation and/or coalescence) (Corzo-
Martínez et al., 2011; Liu, Ma, McClements, & Gao, 2016).

There is potential for these conjugates to affect surface proper-
ties of spray dried emulsions, effectively influencing their

behaviour during drying and properties of the final product. Good
interfacial barrier properties and inherent ability of WPH-MD
conjugates to adsorb at the newly formed air/water interface
(O’Mahony, Drapala, Mulcahy, & Mulvihill, 2017) can offer an
ingredient capable of deterring interactions between atomised
emulsion droplets/powder particles. However, currently there are
no published studies reporting on the use of WPH-based conju-
gates in spray dried emulsions nor on the properties of the resul-
tant powders. This study aims to directly compare the spray drying
performance and powder physical properties of spray dried
emulsions stabilised with different emulsifier systems; namely,
conjugated whey proteins/peptides (WPH-MD), not conjugated
whey proteins/peptides (WPI, WPH) and not conjugatedWPHwith
the addition of low molecular weight lipid-based surfactants (i.e.,
WPH þ CITREM and WPH þ lecithin).

2. Materials and methods

2.1. Materials

Whey protein isolate (WPI) and whey protein hydrolysate
(WPH; 8% degree of hydrolysis; DH) were obtained from Carbery
Food Ingredients Ltd. (Ballineen, Co. Cork, Ireland). The WPI and
WPH ingredients had protein contents of 87.2 and 83.7%, respec-
tively, and ash contents of 2.76 and 2.92%, respectively, as reported
by Drapala et al. (2016a). Maltodextrin (MD) was obtained from
Corcoran Chemicals Ltd. (Dublin, Ireland) and hadmoisture and ash
contents of <5.0% and<0.2%, respectively. Soybean oil was obtained
from Frylite Group Ltd. (Strabane, Co. Tyrone, Northern Ireland).
CITREM (Grindsted® CITREM N12) was obtained from Dupont
Nutrition Biosciences ApS (Brabrand, Denmark) and de-oiled
powdered soybean lecithin (Ultralec® P) was obtained from ADM
(Decatur, IL, USA). All other chemicals and reagents used in the
study were of analytical grade and sourced from Sigma-Aldrich
(Arklow, Co.Wicklow, Ireland).

2.2. Preparation of emulsions

Emulsions (e) for model infant formula (IF) powders (p) were
prepared at pH 6.8 using protein, soybean oil and maltodextrin in
the ratios 1.0:2.3:4.5, respectively. The protein component was
either whey protein isolate (WPI), whey protein hydrolysate (WPH)
or WPH conjugated with maltodextrin (MD) in a wet heating pro-
cess as detailed by Drapala et al. (2016a). Additionally, non-protein
emulsifiers, citric acid esters of mono- and di-glycerides (CITREM;
9 g L�1) and soybean lecithin (5 g L�1) were incorporated into the
formulation of selected IF emulsions destined for subsequent
spray-drying. Emulsions were prepared by dissolving oil soluble
components, where applicable, in soybean oil and water soluble
components in ultrapure water, followed by two stage homogeni-
sation (double pass) at 15 and 3 MPa, using a valve homogeniser
(APV GEA Niro-Soavi S.p.A., Parma, Italy) at 50 �C. All emulsions
were prepared to a total solids (TS) target of 32% asmeasuredwith a
rapid moisture analyser (HB43- S, Mettler- Toledo LLC, Columbus,
OH, USA). In total, five emulsions based on WPI, WPH,
WPH þ CITREM (WPH þ CIT), WPH þ lecithin (WPH þ LEC) and
WPH conjugated with maltodextrin (WPH-MD) were produced in
the current study.

2.3. Spray-drying of emulsions

Powders were produced from emulsions using a bench-top
spray dryer (B-191, BÜCHI Labortechnik AG, Flawil, Switzerland)
with a maximum evaporation capacity of 1.5 L H2O h�1. Inlet
temperature was set at 170 �C and outlet temperature was
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maintained at 90e95 �C by controlling the aspirator power (i.e., in
the range of 40e60 m3 h�1) and the feed flow rate (i.e., in the range
1.2e1.4 L h�1). Effectively, drying temperatures were kept within
the industry relevant range typical for IF manufacture by using high
feed flow rate (95e100%) and relatively low aspirator power
(80e90%); however, this was achieved at the expense of product
yield (Fig. 1). The powders were collected in the collection chamber
as detailed in Fig. 1, transferred to zip-sealed low density poly-
ethylene bags (VWR International, Leuven, Belgium), followed by
vacuum packing in heat-sealed polyamide/polyethylene bags (Fis-
pak Ltd., Dublin, Ireland) with a moisture permeability of
2.6 g m�2.d. The powders were stored in the dark at ambient
conditions (i.e., ~20 �C) until further analyses within 4 weeks of
spray drying. Powder recovery was calculated on a TS basis (i.e.,
[Final powder product TS/feed liquid TS] � 100) from the total
amount of powder obtained in the collection chamber. Losses on
drying were due to unrecoverable powder, which stuck to the wall
of the dryer main chamber or fell and accumulated at the base of
the main chamber during spray-drying (Fig. 1). Powder stickiness
was visually assessed based on the extent of wall coating by powder
in the cyclone, in order to provide information on particle cohesion
arising from surface characteristics (Fig. 1).

2.4. Particle size distribution

Particle size distribution (PSD) of the emulsions immediately
after homogenisation and after powder reconstitution (i.e., 12%, w/
v) was measured using a laser light diffraction unit (Mastersizer
3000, Malvern Instruments Ltd,Worcestershire, UK) equippedwith
a 300 RF (reverse fourier) lens, an LED light source (l of 470 nm)
and a He-Ne laser (l of 633 nm) as detailed by Drapala et al.
(2016b). The particle size distribution of the model infant formula
powders was measured using a Mastersizer 3000 equipped with a
dry powder disperser cell (Aero S). Approximately 3.0 g of powder
was placed in the feed hopper, containing a ball bearing to facilitate
powder flow, with the feed pressure set at 1 bar, powder flow rate
at 40e70% and the hopper height at 2 mm. All measurements were
taken at 1e2% obscuration. The background and sample measure-
ment duration was set at 20 s with the material refractive and
absorption indexes of 1.46 and 0.01, respectively.

2.5. Rheological measurements

The apparent viscosity of emulsions was measured at 20 �C
using a rotational viscometer (Haake RotoVisco 1, Thermo Fisher
Scientific, MA, USA) equippedwith a cylindrical double gap cup and
rotor (DG43, Thermo Fisher Scientific, MA, USA) as described by
Mulcahy, Mulvihill, and O’Mahony (2016). The shear rate was
increased from 0 to 300 s�1 over 5 min, held at 300 s�1 for 2 min
and decreased to 0 s�1 over 5 min; the average apparent viscosity
was determined at 300 s�1 (h300) for each emulsion. The power law
applied to shear stress (t) vs shear rate (g) was used to obtain the
flow behaviour parameters, consistency coefficient (K) and flow
behaviour index (n) as detailed by Anema, Lowe, Lee, and
Klostermeyer (2014). The flow behaviour index values were used
to describe the flow behaviour of liquid samples where n < 1, n > 1
and n¼ 1 indicate shear-thinning, shear-thickening and Newtonian
flow behaviour, respectively.

2.6. Composition and colour analyses of powders

The chemical composition of the model infant formula powders
was determined using standard International Dairy Federation
(IDF) methods as detailed by Drapala, Auty, Mulvihill, and
O’Mahony (2015). Colour of the powders was measured using a
pre-calibrated colorimeter (Minolta ChromaMeter CR-400, Minolta
Ltd., Milton Keynes, U.K.) equipped with a granular materials
attachment CR-A50. Colour was expressed using the Commission
Internationale de l’Eclairage (CIE) colour chromaticity L* a* b* scale
(L ¼ dark/light, a ¼ red/green, b ¼ yellow/blue).

2.7. Powder wettability

The sessile drop goniometric method was used to determine the
wettability of powders. All powders were compressed for 10 s at
78.4 MPa using a manual press (15 ton Manual Hydraulic Press,
Specac Ltd., Orpington, UK) to form pellets (13 mm diameter); all
pellets had a density of 1.08 (±0.05) g cm�3. Subsequently, the
mean contact angle (q) was determined directly using an optical
tensiometer (Attension Theta, Biolin Scientific, Stockholm, Swe-
den); a drop (10 ml) of ultrapure water was formed and deposited
on top of a powder pellet and the reduction in contact angle during
the first 30 s was recorded using a high-resolution digital camera
(15 frames per second) and processed using image analysis soft-
ware (OneAttension, Biolin Scientific).

Fig. 1. Schematic diagram showing the set-up and the principle of operation for the
laboratory-scale BÜCHI B-191 spray drier. The inlet temperature is regulated directly
by the power of the heater (3) and the outlet temperature (measured at 8) is regulated
indirectly by controlling the feed flow rate (2) and the air flow (1). Feed is introduced
into the main drying chamber (4) by a 2-fluid nozzle atomiser, where it is rapidly dried
by heated air; dried particles are pulled into the cyclone (9) by means of an aspirator
(12). Large and heavy particles (i.e., wet lumps and scorched particles, falling off the
build-up around the nozzle and around hot air inlets, respectively) are separated from
the powder by means of the air pull and gravity (5 and 6, respectively). By design, air
pull is insufficient to move larger and heavier particles into the cyclone, making them
fall into the waste collection container (7) at the bottom of the dryer main chamber.
Dried powder particles are further separated from air in the cyclone and the final
powder is collected in the powder collection container (10) at the bottom of the
cyclone. The clarified air is exhausted at the top of bag filter (11).
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2.8. Surface composition of powders

The surface free fat content of powders was determined using
the GEA Niro analytical method (GEA Niro, 2005) as described by
McCarthy et al. (2013) with modified quantities of powder (5.0 g),
petroleum ether (30 mL) and filtrate (15 mL) used. Elemental
composition of powder surfaces was determined by X-ray photo-
electron spectroscopy (XPS; Kratos Axis 165, Kratos Analytical, UK)
as detailed by McCarthy et al. (2013). A matrix formula was used to
calculate relative amounts of protein, fat and carbohydrate on the
powder surface, as detailed by Faldt, Bergenstahl, and Carlsson
(1993).

2.9. Microstructure of powders

2.9.1. Confocal laser scanning microscopy
Confocal laser scanning microscopy (CLSM) analysis of powder

particles was performed using a confocal laser scanning micro-
scope (TCS SP, Leica Microsystems CMS GmbH, Wetzlar, Germany).
Powders were deposited onto a glass slide and excess sample was
removed with compressed air. The powder samples were stained
with a mixture (3:1) of Nile Red (0.10 g L�1 in polyethylene glycol)
and Fast Green (0.01 g L�1 in water) fluorescent dyes (Sigma
Aldrich, Wicklow, Ireland) to label the fat and protein components
of the powders, respectively. Visualisation of oil and protein in the
powders was carried out using an Ar laser (excitation ¼ 488 nm,
emission ¼ 500e530 nm) and He- Ne laser (excitation ¼ 633 nm,
emission ¼ 650e700 nm), respectively. At least 3 representative
images of each sample were taken using a 63� oil immersion
objective.

2.9.2. Scanning electron microscopy
Scanning electron microscopy (SEM) analysis of powders was

performed using a scanning electron microscope (JSM- 5510, Jeol
Ltd., Tokyo, Japan). Samples were mounted on double-sided carbon
tape, attached to SEM stubs, and then sputter-coated with gold/
palladium (10 nm; Emitech K550X, Ashford, UK). Representative
micrographs were taken at 5 kV at 1000� (i.e., overview of powder
population) and 3000� (i.e., shape and surface topography of
powder particles) magnifications. At least three specimens of each
sample were observed to obtain representative micrographs of
samples.

2.10. Statistical data analysis

All powders were prepared in three independent trials and all
measurements were carried out in at least duplicate. Analysis of
variance (ANOVA) was carried out using the Minitab® 16 (Minitab
Ltd., Coventry, UK, 2010) statistical analysis package. The Tukey
method was used to obtain grouping information. The level of
significance was determined at P < 0.05.

3. Results

3.1. Emulsion characteristics

The emulsions had TS levels ranging from 32.2 to 32.7% prior to
spray-drying (Table 1). Particle size analysis showed that all
emulsions had oil globules with mean volume diameter (D4,3) less
than 1 mm and no statistically-significant differences in D4,3 were
found between the emulsions (Table 1). Similarly, no significant
differences in the apparent viscosity (h300) were observed between
WPIe, WPHe, WPHþ CITe andWPHþ LECe emulsions; however, the
h300 for the WPH- MDe emulsion was significantly lower than that
of the WPIe, and WPH þ CITe emulsions (Table 1). Analysis of the

flow behaviour showed no significant differences between emul-
sions, where most emulsions displayed a shear-thinning behaviour
(i.e., n < 1) (Table 1). A reduction in the viscosity during shearing
(i.e., shear-thinning) of protein solutions is, generally, a result of
spatial rearrangement of protein molecules in the liquid and of
disruptions in their steady-state interactions (Walstra, Wouters, &
Geurts, 2006); in emulsions, shear-thinning can be associated
with flocculation of oil droplets (Xu, Wang, Jiang, Yuan, & Gao,
2012). Additionally, in a concentrated emulsion system (i.e.,
TS ¼ 32%), packing of oil globules is denser than in a dilute emul-
sion (i.e., TS � 12%) and interactions between its constituents, as
monitored by flow behaviour analysis, can also be related to
physical contact between molecules located at the interfaces of oil
globules (O’Mahony et al., 2017). The formation of ternary com-
plexes between unadsorbed protein/peptides, CITREM and malto-
dextrin (Drapala et al., 2016b; Semenova, Myasoedova, & Antipova,
2001) in the WPH þ CITe emulsion, or the presence of intact whey
protein in the serum phase and at the interfaces of oil globules in
the WPIe emulsion, are likely to have contributed to higher vis-
cosity of these emulsions, compared to the other samples.

3.2. Drying performance

Fig. 2 illustrates differences in drying behaviour between liquid
concentrates/powders as evidenced by different levels of wall-
coating (i.e., multilayer particle cohesion) by fine powder parti-
cles in the cyclone of the spray dryer. The extent of this coating is
assumed to be directly related to powder stickiness; the observed
stickiness can be divided into 3 groups based on the level of coating,
i.e., non-sticky (negligible coating), moderately sticky (partial
coating) and very sticky (complete coating) (Fig. 2; Table 3). Using
this classification, the WPIp and WPHp powders were moderately
sticky, WPH þ CITp and WPH þ LECp powders were very sticky and
the WPH-MDp powder was non-sticky.

Differences in the stickiness of powders had a direct impact on
the powder recovery (i.e., product yield; Table 3); the recovery of
product was lower for powders with higher levels of stickiness.
Powders containing non-protein emulsifiers (WPH þ LECp and
WPHþ CITp) displayed the lowest powder recovery (18.1 and 21.3%,
respectively) followed by WPIp (22.0%), WPHp (26.1%) and WPH-
MDp (55.3%). It should be noted that in order to facilitate the use of
industry-relevant drying temperatures (i.e., 170 �C and 90e95 �C
for inlet and outlet, respectively) high feed flow rate (95e100%) and
relatively low aspirator power (80e90%) conditions were used.
These conditions caused deposition of higher-moisture particles at
the periphery of the atomised feed jet on the inner wall of the main
drying chamber (Fig. 1) and contributed to the low powder yield.
Sticking of powders to the inner wall of a spray dryer is a common
challenge in industry and it directly affects the product yield and
drying efficiency (i.e., cleaning and down-time). In high-fat pow-
ders (e.g., infant formulae) stickiness is strongly related to the
powder surface composition, while in low-fat, protein-dominant
powders, it is generally related to the efficiency of water removal
and glass transition properties of the system (Kelly et al., 2014).
Generally, the more fat at the powder surface the greater the
challenges with powder stickiness (Paterson et al., 2007; Sharma,
Jana, & Chavan, 2012).

The highest levels of stickiness in this study were observed for
powders containing lipid-based emulsifiers (CITREM and lecithin)
while the powder containing the protein-based conjugate dis-
played the lowest stickiness. The physicochemical characteristics of
CITREM and lecithin have directly affected cohesiveness (i.e.,
stickiness) of powders; their high mobility and surface activity fa-
cilitates rapid migration to the surface of emulsion droplets formed
on atomisation and their relatively low melting temperatures
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(55e65 �C) make them plastic and adhesive under the environ-
mental conditions of spray-drying. Similarly, the surface active
WPH-MD conjugate can also rapidly move to and adsorb at the
surface of atomised droplets (O’Mahony et al., 2017).

3.3. Powder analyses

3.3.1. Composition and colour of powders
Compositional analysis of powders showed that the measured

levels (Table 2) were in line with the target levels for all samples
(i.e., 12.1-12.7% protein, 26.9-29.0% fat and 56.1-58.8% carbohy-
drate). No significant differences were found in the fat,

carbohydrate or moisture content between the powders. No sig-
nificant differences in colour were found betweenWPIp, WPHp and
WPHþ CITp powders; these powders had high L* and low b* values
compared to the WPH-MDp and WPH þ LECp powders (Table 2).
These differences were most likely due to the presence of mela-
noidins (conjugation products) and carotenoids (naturally present
in lecithin) in the WPH-MDp and WPH þ LECp powders, respec-
tively (Liu, Ru,& Ding, 2012; McSweeney, 2008; Scholfield, 1981) as
previously reported by Drapala et al. (2016b).

3.3.2. Particle size distribution of powders
All powders had relatively small particles (i.e., D4,3 of 14.2-

Table 1
Characteristics of emulsions prepared using different emulsifiers; whey protein isolate (WPIe), whey protein hydrolysate (WPHe), WPH þ CITREM (WPH þ CITe),
WPH þ lecithin (WPH þ LECe) and WPH-maltodextrin conjugate (WPH-MDe), used to produce model infant formula powders.

Emulsion characteristics Emulsions

WPIe WPHe WPH þ CITe WPH þ LECe WPH- MDe

Total solids content (%, w/w) 32.6 ± 0.16a 32.2 ± 0.69 a 32.5 ± 0.10a 32.2 ± 0.04a 32.7 ± 0.18a

PSD1 (mm) D4,3 0.76 ± 0.05a 0.78 ± 0.14a 0.81 ± 0.21a 0.58 ± 0.06a 0.67 ± 0.05a

Dv,0.1 0.25 ± 0.07a 0.21 ± 0.04a 0.11 ± 0.07a 0.15 ± 0.01a 0.24 ± 0.05a

Dv,0.5 0.55 ± 0.06a 0.55 ± 0.01a 0.38 ± 0.08a 0.46 ± 0.12a 0.55 ± 0.03a

Dv,0.9 1.26 ± 0.10a 1.40 ± 0.12a 1.07 ± 0.07a 1.52 ± 0.85a 1.23 ± 0.04a

Flow behaviour2 h300 (mPa.s) 13.5 ± 0.55a 11.9 ± 1.27ab 13.0 ± 0.49a 11.9 ± 0.24ab 10.9 ± 0.31b

K (Pa.sn; x102) 1.57 ± 0.19a 1.18 ± 0.22a 2.92 ± 0.87a 1.64 ± 1.25a 2.19 ± 0.50a

n 0.97 ± 0.02a 1.00 ± 0.02a 0.85 ± 0.06a 0.98 ± 0.16a 0.87 ± 0.05a

1 Particle size distribution parameters: D4,3, volume mean diameter of oil globules; Dv,0.1, Dv,0.5, and Dv,0.9 represent particle size in the 10%, 50% and 90% quantiles of the
distribution.
2 Flow behaviour parameters; (h300) apparent viscosity measured at 300 s�1; (K) consistency coefficient; (n) flow behaviour index.
(a-b) Values for a given parameter (i.e., within each row) for all powders, not sharing a common superscript differed significantly (P < 0.05).

Fig. 2. Differences in the build-up of fine powder on the wall of the cyclone during spray-drying of powders (p) containing different emulsifier systems: whey protein isolate (WPIp),
whey protein hydrolysate (WPHp), WPH þ CITREM (WPH þ CITp), WPH þ lecithin (WPH þ LECp) and WPH-maltodextrin conjugate (WPH-MDp). The powders were produced using
a laboratory-scale spray dryer (BÜCHI B-191). The photographs were taken ~30 min after starting the drying run for all powders.

Table 2
Composition and colour of model infant formula powders (p) produced with different emulsifier systems: whey protein isolate (WPIp), whey protein hydrolysate (WPHp),
WPHþ CITREM (WPHþ CITp), WPHþ lecithin (WPHþ LECp) andWPH-maltodextrin conjugate (WPH-MDp). The powders were produced using a laboratory-scale spray dryer
(BÜCHI B-191).

Powder Composition (%, w/w) Colour coordinates

Protein Fat Carbohydrate Ash Moisture L* a* b*

WPIp 12.1 ± 0.21a 28.4 ± 1.33a 57.7 ± 0.99a 0.52 ± 0.17a 1.73 ± 0.35a 96.1 ± 0.26a �1.26 ± 0.09b 3.15 ± 0.24a

WPHp 12.6 ± 0.10b 29.0 ± 1.58a 56.1 ± 1.50a 0.67 ± 0.10ab 1.08 ± 0.66a 96.3 ± 0.16a �1.30 ± 0.11b 3.02 ± 0.15a

WPH þ CITp 12.3 ± 0.13ab 28.8 ± 0.34a 56.6 ± 0.43a 0.87 ± 0.19ab 1.36 ± 0.91a 95.8 ± 0.49ab �1.26 ± 0.06b 3.35 ± 0.26a

WPH þ LECp 12.7 ± 0.22b 26.9 ± 2.44a 58.2 ± 1.84a 0.71 ± 0.13ab 1.48 ± 0.34a 93.8 ± 1.28c �1.96 ± 0.08a 6.37 ± 0.25c

WPH-MDp 12.5 ± 0.09b 26.9 ± 2.56a 58.8 ± 3.17a 0.97 ± 0.13b 0.89 ± 0.34a 94.1 ± 0.52bc �0.85 ± 0.07c 4.77 ± 0.38b

(a-c) Values for a given parameter (i.e., within each column) for all powders, not sharing a common superscript differed significantly (P < 0.05).
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41.1 mm; Table 3). The biggest particles were observed for the
WPH þ LECp, followed by the WPH þ CITp, WPIp, WPHp and WPH-
MDp powders (Table 3, Fig. 3B). In addition, powders containing
lipid-based surfactants, WPH þ LECp and WPH þ CITp, had a
distinct shoulder on the higher end (i.e., at ~100 mm) of the size
range, with a notable proportion of the particle population (i.e., 7.78
and 4.05%, respectively) in these powders having diameter
>100 mm (Fig. 3B; Table 3). A much smaller shoulder was also
present in theWPIp and smaller still in theWPHp powders (i.e., 2.93
and 2.26% of particle population were >100 mm, respectively). The
WPH-MDp powder had a monomodal profile with the narrowest
size distribution, where the majority (i.e., ~99%) of particles had
diameters <40 mm (Fig. 3B); this sample also had the largest pro-
portion of fine particles (i.e., 19.9% of total population had diameter
<5 mm; Table 3). The greater proportion of small particles in the
WPH-MDp powder, compared to the other powders is likely related
to this liquid concentrate feed having the lowest viscosity of all
samples (Pisecky, 2012). A relationship between feed viscosity and
the size of particles in the resultant powder was also reported by
Crowley, Gazi, Kelly, Huppertz, and O’Mahony (2014), when particle
size increased with increasing feed viscosity.

3.3.3. Powder wettability
The results for contact angle (q) analysis showed that the highest

q was observed for WPH þ CITp, followed by
WPIp > WPH þ LECp > WPH-MDp > WPHp (Table 3). Generally, the
more hydrophobic the surface (i.e., surface of powder pellet), the
lower is its affinity for interactions with water and, effectively, the
higher the q with the droplet of water placed on that surface. Thus,
the contact angle analysis is often used to study the affinity of
powders for water, providing information on powder wettability
(i.e., lower q ¼ better wettability). The differences in wettability
between the WPIp and WPHp powders, evidenced by different q,
were most likely directly related to differences in the physical state
of protein (i.e., native vs hydrolysed, respectively). Solubility is
generally enhanced by protein hydrolysis due to partial disruption
of protein secondary and tertiary structure resulting in increased
water access and faster hydration in hydrolysed, compared with
intact, protein-based powders (Banach et al., 2013; Chobert,
Bertrand-Harb, & Nicolas, 1988; Kelly, O’Mahony, Kelly, &

O’Callaghan, 2016; Panyam & Kilara, 1996). Longer wettability
times for model infant formula powders based on intact whey
protein compared to partially hydrolysed whey protein were re-
ported previously by Murphy et al. (2015). Wettability of the WPH-
MDpwas similar to that observed for theWPHp (Table 3). The better
powder wettability observed for the WPH þ LECp, compared to the
WPH þ CITp, was likely due to the differences in the nature of the
two surfactants; CITREM and lecithin are anionic and zwitterionic
(i.e., amphoteric) surfactants, respectively (McSweeney, 2008).
Lecithin is often coated onto the surface of dairy powders in a
fluidised bed to facilitate improved wetting properties (i.e.,
instantisation) (Hammes, Englert, Zapata Norena, & Medeiros
Cardozo, 2015).

3.3.4. Surface composition of powders
No significant differences were found in the free fat content for

all powders due to large standard deviations, especially observed
for theWPHþ LECp powder (Table 3). A trend was observed, where
free fat content was generally higher, for the WPH þ CITp, WPHp
and WPH þ LECp powders (i.e., 20.0, 22.9 and 25.4%, w/w, free fat,
respectively), compared to the WPH-MDp and WPIp powders (i.e.,
13.3 and 14.1%, w/w, free fat, respectively).

Table 3 shows differences in the surface composition (i.e., as
measured using XPS) between the spray-dried model IF powders
prepared in this study. The level of protein at the surface was
highest for the WPIp powder followed by WPHp, WPH-MDp,
WPHþ LECp andWPHþ CITp powders. The highest levels of surface
fat were found in the WPH þ CITp and WPH þ LECp powders. The
amount of carbohydrate present at the surface was significantly
higher for the WPH-MDp powder compared to the 2 powders
containing lipid-based surfactants (i.e., WPH þ LECp and
WPH þ CITp).

The differences between the surface fat composition as
measured by the solvent extraction and by the XPS methods can be
explained by the different principles underpinning these methods.
For the solvent extraction method the results are presented as the
weight of extractable fat as a % of the powder sample weight;
conversely in the XPS method, the results are presented as the % of
surface area of the powder particle occupied by fat. For the XPS
method only a 10 nm depth of the surface of the powder particle is

Table 3
Properties of spray dried model infant formula powders (p) prepared with different emulsifier systems: whey protein isolate (WPIp), whey protein hydrolysate (WPHp),
WPHþ CITREM (WPHþ CITp), WPHþ lecithin (WPHþ LECp) andWPH-maltodextrin conjugate (WPH-MDp). The powders were produced using a laboratory-scale spray dryer
(BÜCHI B-191).

Powder characteristics WPIp WPHp WPH þ CITp WPH þ LECp WPH-MDp

Drying performance1 Powder recovery (%) 22.0 ± 6.59a 26.1 ± 3.27a 21.3 ± 6.67a 18.1 ± 2.56a 55.3 ± 10.8b

Stickiness (relative) þ þ þþ þþ e

PSD (mm) Powders2 D4,3 26.5 ± 16.9ab 25.4 ± 4.79ab 30.8 ± 2.94ab 41.1 ± 13.2a 14.2 ± 4.79b

Dv,0.1 5.75 ± 0.56a 5.85 ± 0.21a 7.87 ± 0.54b 9.52 ± 0.73c 4.76 ± 0.27a

Dv,0.5 15.5 ± 2.29ab 15.1 ± 0.33ab 18.4 ± 1.64bc 22.7 ± 2.41c 12.2 ± 0.94a

Dv,0.9 59.5 ± 48.3a 40.4 ± 3.22a 56.0 ± 15.4a 95.1 ± 43.6a 26.6 ± 2.33a

% <5 mm 10.5 ± 2.16bc 13.5 ± 0.71b 6.33 ± 1.64cd 2.84 ± 0.81d 19.9 ± 2.71a

% >100 mm 2.93 ± 6.92a 2.26 ± 1.13a 4.05 ± 0.93a 7.78 ± 5.29a 0.00 ± 0.00a

Contact angle (q) 42.1 ± 0.08b 36.9 ± 1.45d 46.7 ± 1.00a 40.5 ± 2.27bc 37.2 ± 0.91cd

Surface free fat (%) 14.1 ± 2.68a 22.9 ± 4.85a 20.0 ± 5.05a 25.4 ± 17.9a 13.3 ± 1.18a

Surface composition (%) Protein 50.7 ± 6.42a 37.1 ± 6.22b 27.0 ± 2.81b 29.1 ± 4.03b 32.3 ± 2.02b

Fat 34.1 ± 9.42a 50.9 ± 6.47ab 64.2 ± 6.22b 61.8 ± 6.82b 50.0 ± 3.23ab

Carbohydrate 15.2 ± 3.02ab 12.0 ± 0.91ab 8.85 ± 3.50b 9.12 ± 3.17b 17.7 ± 1.61a

PSD (mm) Reconstituted2 D4,3 2.42 5.72 5.00 1.47 0.84
Dv,0.1 0.15 0.35 0.31 0.35 0.17
Dv,0.5 0.57 4.68 1.10 1.18 0.51
Dv,0.9 8.02 13.3 14.4 3.07 1.82

1 Drying performance describing powder recovery (%, w/w total solids, TS; powder TS/feed TS); stickiness classification: -, non-sticky; þ, moderately sticky; þþ, very sticky.
2 Particle size distribution (PSD) parameters: D4,3, volume mean diameter; Dv,0.1, Dv,0.5, and Dv,0.9 representing particle size in the 10%, 50% and 90% quantiles of the distri-
bution. Particle size distribution analysis for reconstituted powders was carried out only on one trial.
(a-d) Values for a given parameter (i.e., within each row) for all powders, not sharing a common superscript differed significantly (P < 0.05).
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analysed (Kim et al., 2009). Conversely, the solvent extraction
approach extracts fat present at the surface of the powder particle
as well as fat present at other locations within its interior. Ac-
cording to a model proposed by Buma (1971) the solvent-
extractable free fat for dairy powders consists of surface fat, outer
layer fat from fat globules within the surface layer of the particle,
capillary fat constituted by fat globules that can be reached by the
solvent through capillary forces, and dissolution fat consisting of fat
reached by solvent through holes left by already extracted fat. A
review of solvent extraction-based methods for assessment of the
amount of free or surface fat in spray-dried emulsions, reported in
the scientific literature, was compiled by Vega and Roos (2006) and
it was shown that these methods use different solvent types (pe-
troleum ether, hexane, pentane and carbon tetrachloride), solvent-
to-powder ratios (5:1e40:1), and powder-solvent contact times
(30 se48 h). The solvent extraction method used in this study (GEA
Niro, 2005) for quantification of the surface free fat in the milk
powders, with an extraction time of 15 min, could have led to the
extraction of lipid material in addition to surface fat alone (i.e., fat
from the surface and from the interior of the powder particles).

3.3.5. Microstructure of powders

3.3.5.1. Scanning electron microscopy. Fig. 4 A and B illustrate the
detailed morphology (shape and structure) of the spray-dried
model IF powders. Differences between samples were mainly
manifested by the extent of particle agglomeration (i.e., sponta-
neous agglomeration of primary particles) and the topography of
the particle surfaces in the powders. Powders containing lipid-
based emulsifiers, WPH þ CITp and WPH þ LECp, displayed the
greatest extent of particle agglomeration, followed by WPIp, WPHp
andWPH-MDp (Fig. 4A). Such agglomeration is generally caused by
extensive particle cohesion (i.e., sticking) and is evidenced by the
presence of ‘bunch of grape’-type agglomerates (Pisecky, 2012), as
observed in this study for the WPH þ CITp, WPH þ LECp and, to a
lesser extent, WPIp powders (Fig. 4A). These observations closely
match the particle size distribution data discussed in Section 3.3.2
and indicate cohesive interactions between particles during spray-
drying.

The surface topography was also different between the pow-
ders; smooth surfaces were observed for the WPIp and to a lesser
extent for WPH-MDp while the powder particles in the WPHp,
WPH þ CITp and WPH þ LECp had an uneven surface with
numerous bumps (WPHp) or craters (WPHþ CITp andWPHþ LECp)
present on the surface (Fig. 4B). The presence of crater-like struc-
tures on the surface of spray-dried emulsions/powders has been

associated with broken oil globules resulting in high levels of sur-
face fat (Drusch & Berg, 2008). Additionally, WPH- MDp powder
particles appeared to be partially collapsed (i.e., shrivelled) unlike
particles in the other powders. Such shrivelled/buckled structures
in spray-dried powders has been linked with temperature-
dependent changes in the volume of occluded air (i.e., inflation
followed by deflation of intra-particle air as the particlemoves from
hot toward the cooler regions of the dryer) (Walton & Mumford,
1999) and with the mechanical properties of the skin layer of the
drying particles (Sadek et al., 2015, 2016).

3.3.5.2. Confocal laser scanning microscopy. Powders produced in
the current study had generally similar particle structures, where
individual oil droplets were homogenously distributed within a
protein-carbohydrate network (Fig. 4C). The only exceptionwas the
WPHp powder, where the oil phase appeared to be largely present
as irregular and extensive oil pools. Differences in the size of oil
droplets within the powder matrix were observed; powders con-
taining lipid-based surfactants, WPH þ CITp and WPH þ LECp had
markedly bigger (2e3 mm) oil droplets embedded in the powder
structure, compared to apparently smaller (�1 mm) oil droplets in
the WPIp and WPH-MDp powders. Pools of oil or large oil droplets
observed in CLSM micrographs can be related to poor stability of
these emulsions to processing. Additionally, ‘empty’ regions were
observed in the centre of the WPH-MDp powder (Fig. 4C); these
regions most likely indicate the presence of internal air pockets
(i.e., vacuoles) in particles of this powder as discussed in Section
3.3.5.1. Formation of vacuoles and shrivelling of powder particles
have been shown to take place concomitantly (Sadek et al., 2015)
and is strongly linked to the surface composition of the droplet and,
effectively, its drying kinetics (Nijdam & Langrish, 2006; Vignolles
et al., 2007).

3.3.6. Particle size distribution after reconstitution of powders
Notable differences were observed in the PSD between the

reconstituted IF powders (Table 3; Fig. 3C); the mean volume
diameter (D4,3) and the value for the 90% quantile of the size dis-
tribution (Dv,0.9) were higher for all reconstituted powders
compared to the emulsions prior to spray drying (Tables 1 and 3;
Fig. 3A and C). The observed increases in D4,3 and Dv,0.9 were most
pronounced for the WPHp and WPH þ CITp powders (i.e., increases
in D4,3 and Dv,0.9 to� 5 mmand >13 mm, respectively); only a limited
increase was observed for the WPH-MDp powder (i.e., D4,3 < 1 mm
and Dv,0.9 < 2 mm) (Table 3). The D4,3 and Dv,0.9 parameters are
particularly sensitive to changes at the large particle periphery of

Fig. 3. Particle size distribution for (A) homogenised emulsions (dryer feeds), model infant formula powders (B) after spray-drying and (C) after powder reconstitution. The
formulations contained different emulsifier systems: (�) whey protein isolate, (,) whey protein hydrolysate, (:) WPH þ CITREM, (C) WPH þ lecithin and (�) WPH-maltodextrin
conjugate. The powders were produced using a laboratory-scale spray dryer (BÜCHI B-191).
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the size distribution and their increase can be used as an indicator
of associations between the larger components in a system (i.e.,
coalescence and/or flocculation of oil globules in this case).

These differences reflect different stabilities of the correspond-
ing formulations to the spray-drying conditions (i.e., stability of oil
globules against coalescence in a concentrated emulsion system
and stability to high heat and high shear stress within the atomiser
and upon atomisation) and support the CLSM observations (see
Section 3.3.5.2).

4. Discussion

The stability of emulsions to spray-drying was different for the
studied formulations, as illustrated by the size distribution of oil
globules in the powder matrix and in the reconstituted emulsions.
These differences can be explained by the properties of the emul-
sifier systems used in these formulations, and their effect on sta-
bilising emulsions against globule coalescence or heat-induced
flocculation during processing. During spray-drying, emulsion-
based systems are subjected to considerable stresses which can
cause protein aggregation, breaking and coalescence of oil globules;
this can lead to high surface free fat content and, effectively, un-
desirable properties of the resultant powder. Emulsions stabilised
by high molecular weight (Mw) surfactants (e.g., protein) usually
have thick and elastic interfacial films and are more stable to stress,
compared to those stabilised by low Mw surfactants (e.g., CITREM,
lecithin), which are prone to coalescence when forced in close
contact (Taneja et al., 2013). Formulations based on WPH often
display poor thermal stability, due to exposure of reactive sites (e.g.,
free sulphydryl groups) at the surfaces of oil globules and in the

bulk phase, often resulting in bridging flocculation of oil globules
(Agboola, Singh, Munro, Dalgleish, & Singh, 1998; Drapala et al.,
2016a). Such behaviour was also reported in the current study,
where oil pools in the WPHp powder matrix and large oil globules
were present after reconstitution of this powder.

CITREM and lecithin are often added to improve thermal sta-
bility ofWPH-based emulsions; however, their presence can lead to
competitive destabilisation, where protein/peptide-based surfac-
tants are displaced from the interfaces by smaller surfactants,
promoting coalescence of oil globules (Drapala et al., 2016b; Kaltsa,
Paximada, Mandala, & Scholten, 2014; Mackie, Gunning, Wilde, &
Morris, 1999; Van Aken, 2003; Wilde, Mackie, Husband, Gunning,
& Morris, 2004). This was observed in the current study for CIT-
REM- and lecithin-containing powders, where large oil globules
were observed in the powder matrix and in the reconstituted
emulsions (Fig. 4C, Table 3). In addition, topographical features
observed for samples containing lipid-based emulsifiers (i.e., cra-
ters; Fig. 4B) indicated that coalescence of oil globules resulted in
the presence of damaged oil globules at the powder surface (Drusch
& Berg, 2008). It is generally accepted that strong steric stabilisa-
tion of oil globules, provided by protein-carbohydrate conjugates,
can greatly limit these forms of destabilisation (Oliver, Melton, &
Stanley, 2006; O’Mahony et al., 2017). The presence of WPH-MD
conjugate in emulsions prevents interactions between individual
oil globules and interactions with bulk protein/peptides, resulting
in enhanced stability. Results presented in the current study show
that superior stability of emulsions to spray-drying was achieved
when the WPH-MD conjugate was present in the formulation,
compared to formulations containing CITREM or lecithin.

In an emulsion, surface active molecules (e.g., protein, peptides,

Fig. 4. Scanning electron microscope (SEM; A and B) and confocal laser scanning microscope (CLSM; C) images of model infant formula powders (p) containing different emulsifier
systems: whey protein isolate (WPIp), whey protein hydrolysate (WPHp), WPH þ CITREM (WPH þ CITp), WPH þ lecithin (WPH þ LECp) and WPH-maltodextrin conjugate (WPH-
MDp). For the CLSM analysis powders were labelled with Nile Red:Fast Green (3:1) and the micrographs show distribution of oil droplets (green) and protein particles (red). Scale
bar for the CLSM micrographs ¼ 5 mm. The powders were produced using a laboratory scale spray dryer (BÜCHI B-191). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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lecithin, CITREM, conjugates) are adsorbed at the oil/water inter-
face, where they stabilise oil globules; these compounds are,
generally, also abundant in the emulsion bulk phase as they are
present in excess of the concentration required for emulsion for-
mation. Upon atomisation, a new interface (water/air) is formed at
the surface of the atomised droplets and, during very short time
scales, surface active components move from the bulk to this new
surface, adsorb and rearrange (Munoz-Ibanez et al., 2016). Smaller
surfactants move and adsorb faster due to their higher mobility
compared to large surfactants (Landstrom, Alsins, & Bergenstahl,
2000). Similar to the stabilisation of oil globules, the composition
and structure of the interfacial layer of atomised droplets dictate
their potential for interactions (i.e., stickiness, agglomeration)
(Nijdam & Langrish, 2006); in effect, surface composition and
physicochemical properties of the resulting powder are largely
dependent on the surfactant system of the emulsion. The high
surface fat level observed for the WPH þ CITp and WPH þ LECp
powders and the high surface maltodextrin level observed for the
WPH-MDp powder, could indicate preferential adsorption of lipid-
based and conjugate-based emulsifiers, respectively, at the surfaces
of atomised droplets in these powders. Owing to the different
surface compositions, powders displayed different propensity for
interactions between individual atomised droplets/particles (i.e.,
primary spontaneous agglomeration) andwith thewall of the spray
dryer (as measured by powder build-up in the cyclone). It is
generally recognised that high levels of surface free fat cause
challenges with cohesive interactions of powders (Jayasundera
et al., 2009; Vega & Roos, 2006). Similarly, in the current study,
the likely preferential presence of lipid-based emulsifiers on the
surface of some of the powders may have contributed to greater
cohesiveness and, effectively, could have promoted agglomeration
and powder build-up, compared to the other powders.

Properties of the feed and drying kinetics generally govern the
shape of powder particles (Walton & Mumford, 1999). Distinctive
shrivelled particles observed for the WPH-MDp powder were likely
related to significantly lower viscosity of that emulsion, compared
to the other emulsions (i.e., at the same TS content), effectively,
impacting the rate of water removal. Additionally, the more hy-
drophilic nature of the surface of atomised droplets/powder par-
ticles for the WPH-MDp system, resulting from higher surface
maltodextrin content, compared to the other samples could have
promoted faster water removal as evidenced by the lower moisture
content of the resultant powder. According to a study by Sheu and
Rosenberg (1998), surface indentation for whey protein-based
powders was promoted by high drying rates, leading to wall so-
lidification before the onset of particle inflation. With progressive
water removal during drying of a dairy-based system, a skin layer is
formed at the droplet surface and its properties further affect the
kinetics of drying and the final shape of the dried particles. Sadek
et al. (2015) presented a model for mechanical properties of skin
layer of a droplet during drying, where, depending on protein type
present at the surface (i.e., whey protein or micellar casein), the
mechanical properties of the skin were different and affected the
shape of the resultant dried particles. Those authors showed that in
casein micelle-dominant skins, the elastic modulus increased faster
and the protein skin reached the plasticity region earlier, producing
shrivelled particles with ductile and plastic skin, while it took
longer for the whey protein-dominant skin to reach the plasticity
region, giving round particles with brittle and plastic skins. Particle
indentation for whey protein-based powders was reported to be
linked to the ratio of protein to maltodextrin at the surface of
powder particles (Rosenberg & Young, 1993; Sheu & Rosenberg,
1998), where surface indentation was inversely related to the
proportion of whey protein in the particle skin. In the study by Sheu
and Rosenberg (1998), the authors showed that increasing the

maltodextrin proportion in the skin decreased its elasticity and,
effectively led to the formation of shrivelled powder particles. Such
shrivelled morphology was observed in this study for the WPH-
MDp powder particles. In addition, the presence of vacuoles
observed in the WPH-MDp powder sample supports its fit to the
model proposed by Sadek et al. (2015), where vacuole formation
and particle shrivelling were concomitant. With rapid water
removal from the atomised droplets during spray-drying, less
latent heat energy is required due to lower moisture content, and
the energy (i.e., temperature) acting on the non-water powder
components is increased. This, effectively, can result in increased
inflation of the droplet due to the expanding volume of air occluded
within, followed by particle collapse (i.e., deflation) as the particles
move away from the heat source, resulting in a shrivelled hollow
powder particle (Hecht & King, 2000; Walton & Mumford, 1999).
The use of different emulsifier systems resulted in different surface
composition of the resultant powders as well as different quality of
reconstituted emulsions. It was demonstrated that the differences
in powder surface composition influenced the kinetics of drying for
these formulations and governed the cohesive interactions be-
tween atomised droplets/powder particles. Effectively, the pres-
ence of lipid-based emulsifiers (i.e., CITREM or lecithin) in
formulations greatly increased the cohesive interactions resulting
in extensive spontaneous primary agglomeration and, effectively,
reduced product yield. On the other hand, when the conjugate-
based emulsifier was present in the formulation, these cohesive
interactions were markedly reduced.

5. Conclusions

The current study demonstrated that using the WPH-MD con-
jugate in the formulation of emulsion-based model IF powder
improved its processing stability and affected the surface compo-
sition of resultant powder. The use of the conjugate in the formu-
lation gave powder with decreased surface fat and increased
surface carbohydrate levels, compared to systems containing lipid-
based emulsifiers (i.e., CITREM or lecithin). In effect, the conjugate-
based powder displayed reduced cohesive behaviour, resulting in
decreased agglomeration and markedly higher product yield; the
opposite was observed for the powders containing lipid-based
emulsifiers. This study showed that the surface composition of an
emulsion-based powder and, effectively, its drying performance
and final product characteristics were greatly improved by uti-
lisation of interactions (i.e., conjugation) between the two com-
ponents of the formulation (i.e., protein and carbohydrate).
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a b s t r a c t

Glycation of milk proteins and peptides can be achieved by Maillard-induced conjugation of reducing
carbohydrates with the available amino groups of proteins/peptides during the early stages of the
Maillard reaction. This conjugation can be achieved under wet or dry heating conditions, with the choice
of heating mode influencing the rate and extent of conjugation, in addition to the functionality of the
conjugated protein/peptides. Conjugation has been shown to modify the technological and nutritional
properties of a range of milk protein/peptide-based ingredients. This review focuses mainly on modifi-
cations to physicochemical properties and technological functionality (i.e., solubility, heat stability,
emulsification, foaming and gelation properties) of milk proteins and peptides by conjugation. Particular
emphasis is placed on understanding of the relationships between changes in protein/peptide molecular
structure/conformation, physicochemical properties and technological functionality, as influenced by
glycation.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

A conjugated protein is defined as a protein to which another
chemical group (e.g., carbohydrate) is attached by either covalent
bonding or other interactions (Wong, 1991). Milk proteins and
peptides, in the presence of reducing carbohydrates, can undergo a
series of complex chemical changes during heating, known as the
Maillard reaction. Conjugation occurs naturally during the early
stages of the Maillard reaction when a covalent bond forms be-
tween the protein and carbohydrate components, resulting in the
release of water (i.e., condensation reaction). The resulting
covalently-linked Schiff base product can undergo irreversible
Amadori rearrangement, leading to the formation of Amadori
products (Ames, 1992; Liu, Ru, & Ding, 2012; Zhu, Damodaran, &
Lucey, 2008). Conjugation of food proteins with carbohydrates via
the Maillard reaction (i.e., glycation) is a growing area of interest,
with many studies completed, particularly over the last 10e15
years, on the use of conjugation to modify physicochemical and
functional properties of proteins and peptides. Sections 2 and 3
provide an overview of the Maillard reaction and the various fac-
tors affecting the reaction, respectively.

Milk protein ingredients are utilised in the formulation of awide
range of food, clinical and pharmaceutical products, due to their
unique functional and nutritional attributes. In the food industry,
the principal technological hurdles limiting the use of milk (espe-
cially whey) protein ingredients in the formulation of value-added
beverages and powders are: (i) poor solubility of intact proteins in
high-acid ready-to-drink beverages, resulting in the development
of turbidity and phase separation (Akhtar & Dickinson, 2007), (ii)
poor emulsification properties of hydrolysed proteins (Agboola,
Singh, Munro, Dalgleish, & Singh, 1998a, 1998b; Singh &
Dalgleish, 1998), causing challenges with emulsion formation,
stabilisation and spray drying (e.g., powder stickiness and high free
fat) during the manufacture of powdered nutritional products, and
(iii) physical instability such as aggregation, sedimentation and
creaming during processing and shelf-life in high ionic strength
environments and during thermal processing (Yadav, Parris,
Johnston, Onwulata, & Hicks, 2010).

Conjugation has been shown to be successful in modifying the
functional properties of a range of milk protein/peptide-based in-
gredients. Sections 4 and 5 provide an overview of how the key
compositional, structural and physicochemical properties of pro-
tein/peptide and carbohydrate substrates, respectively, influence
the progression of conjugation and the functionality of the result-
ing conjugated proteins/peptides. A detailed comparison of the
differences between the two main modes of achieving conjugation
(i.e., dry and wet heating) is provided in Section 6, while Sections
7e11 of this review provide detailed information on the effects of
conjugation on solubility, heat stability, emulsification, foaming
and gelation properties of the principal milk protein/peptide in-
gredients used in the food industry. Section 12 provides an over-
view of approaches developed for enriching and purifying
conjugates.

2. The Maillard reaction

The Maillard reaction (Maillard, 1912) encompasses a complex
series of reaction pathways, many of which proceed concurrently
during heating and/or storage of protein/carbohydrate mixtures.
Understanding of the complexity of the Maillard reaction has been
advancing steadily through the years, and a brief overview is pro-
vided here in the context of the Maillard reaction being the main
mechanism by which milk proteins and peptides are glycated (i.e.,
conjugated with carbohydrate molecules). Hodge (1953) was the
first to develop a simplified, integrated scheme for the Maillard

reaction, which has been advanced further and refined by re-
searchers from different fields over the years (Henle, Walter, &
Klostermeyer, 1991; Van Boekel, 1998; Zhang & Zhang, 2007). In
essence, Hodge (1953) divided the chemistry of the Maillard reac-
tion into three stages - the early, intermediate and advanced stages
(Fig. 1). The early stage of the Maillard reaction involves a series of
individual reactions that are initiated when the ε-amino groups of
lysine, or to a lesser extent, the imidazole and indole groups from
histidine and tryptophan, respectively, and the a-amino groups of
terminal amino acids in proteins/peptides condense with the
carbonyl groups of reducing carbohydrates, to form a Schiff base,
with the release of a molecule of water (Ames, 1992). The Schiff
base is thermodynamically unstable and undergoes spontaneous
rearrangement to form either an Amadori (in the case of aldoses) or
Heyn's (in the case of ketoses) product (Wrodnigg & Eder, 2001).

The intermediate stage of the Maillard reaction involves the
degradation of the Amadori and/or Heyn's rearrangement products
by a number of different reactions, including cyclisations, de-
hydrations, retro-aldolisations, isomerisations and further con-
densations, which causes degradation of amino acids and
carbohydrates (Ames, 1998). The advanced stages are complex and
variable, depend on the reaction conditions, and involve dehydra-
tion and decomposition of the early reaction products, resulting in
the production of many advancedMaillard reaction products (AMP)
and coloured nitrogenous polymers and co-polymers, known
collectively as melanoidins (Ames, 1998; Hodge, 1953). While, from
a functionality perspective, it is desirable to achieve conjugation in
the early stages of the Maillard reaction, it is normally desirable to
limit the progression of the Maillard reaction to advanced stages, as
AMPs are largely responsible for some of the less desirable conse-
quences of the Maillard reaction, e.g., generation of off-flavours,
loss of nutritional value, protein crosslinking and generation of
potentially toxic compounds (Uribarri et al., 2005). There have been
many analytical approaches researched and reported for moni-
toring the formation of Maillard reaction products and for deter-
mining the progression of the Maillard reaction through the early-,
intermediate- and late-stages. An overview of the analytical ap-
proaches most commonly used in protein/peptide-carbohydrate
conjugation studies is provided in Table 1.

3. Factors affecting Maillard-induced conjugation of proteins/
peptides

In the production of protein/peptide-carbohydrate conjugates,
the rate, extent and course of the Maillard reaction are influenced
by several intrinsic and extrinsic factors, including, but not limited
to, nature of the reactants, temperature, time, pH andwater activity
(aw) (Ames, 1990; de Oliveira, Coimbra, de Oliveira, Zu~niga,& Rojas,
2016; Liu et al., 2012; Oliver, Melton, & Stanley, 2006a; Van Boekel,
2001). Understanding and manipulation of these factors allow
control of the yield, quality and functionality of conjugated pro-
teins/peptides.

3.1. Nature of the reactants

The physicochemical properties (i.e., molecular weight, Mw;
structure/conformation and surface charge) of the amino and
carbonyl compounds, and their molar ratios, all govern the rate and
extent of the Maillard reaction, and consequently, the physico-
chemical properties of the conjugated proteins/peptides. Reactivity
of compounds tend to decrease with increasing Mw, due to the
greater contribution of steric hindrance with increasing Mw; as an
example, monosaccharides aremore reactivewith proteins than di-
or oligosaccharides under conditions that favour conjugation. For
protein hydrolysates, the degree of hydrolysis, Mw profile and
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charge of the peptides are important in determining their reactivity
during Maillard-induced conjugation (Drapala, Auty, Mulvihill, &
O’Mahony, 2016a, 2016b; Mulcahy, Park, Drake, Mulvihill, &
O'Mahony, 2016b; Van Lancker, Adams, & De Kimpe, 2011).

3.2. Temperature and time

Louis-Camille Maillard (Maillard, 1912) was the first to report
that the rate of the Maillard reaction increased with increasing
temperature and duration of heating. In addition, more recent
research has shown that temperature also affects the nature (e.g.,

conformation and accessibility to reactive protein/peptide func-
tional groups) of the reactants. The reactivity of sugars increases
with increasing temperature as the proportion of reducing sugar
molecules present in the open-chain form (i.e., the more reactive
form) increases (Van Boekel, 2001), due in part to the faster rate of
mutarotation of the sugar molecules. Heat-induced structural/
conformational changes (e.g., denaturation and aggregation) of
milk proteins/peptides may result in amino groups becoming less
available for participation in the Maillard reaction (Chevalier,
Chobert, Popineau, Nicolas, & Haertl�e, 2001; Jiang & Brodkorb,
2012; Mehta & Deeth, 2016).

Fig. 1. Schematic overview of the Maillard reaction in milk and milk products (based on Hodge, 1953; Ames, 1998).
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3.3. pH

pH influences the reactivity of both the carbohydrate and pro-
tein components of mixtures during the Maillard reaction; a basic
environment can catalyse the initial stages of the Maillard reaction
by deprotonating the amino groups, which in turn increases reac-
tivity with carbonyl groups of reducing carbohydrates. The open
chain form of the carbohydrate and the un-protonated form of the
amino group, which are considered to be the most reactive forms,
are usually favoured at higher pH, up to a maximum of pH ~9e10
(Martins, Jongen, & Van Boekel, 2000). The use of buffers, such as
phosphate, phthalate and acetate, to help minimise changes in pH
on heating, have been reported to catalyse the Maillard reaction, as
measured by loss of available amino groups and development of
brown colour (Bell, 1997; Van Boekel, 2001). For example, at a
constant pH between 5 and 7, the presence of phosphate buffer has
been shown to increase the rate of the Maillard reaction by ~15 fold
compared with a non-buffered system, as the phosphate acts as an
acid-base catalyst during the Amadori rearrangement (Potman &
Van Wijk, 1989). The pH of protein/peptide-carbohydrate mix-
tures can decrease (depending on the buffering capacity) as the
Maillard reaction progresses due to the formation of acids (e.g.,
formic and acetic acids), the consumption of acidic amino groups
(e.g., lysine) or the loss of carboxyl groups during Strecker degra-
dation, resulting in the production of carbon dioxide (Nursten,
2005).

Furthermore, products derived from the intermediate and
advanced stages of the Maillard reaction are degraded by different
reaction pathways depending on the pH of the system. For example,
degradation of the Amadori products at pH <7 takes place via the 1,
2-enolisation pathway that favours the formation of furfural or
hydroxymethylfurfural (HMF), whereas, at pH �7, the degradation
of Amadori products proceeds through the 2, 3-enolisation
pathway, favouring the production of reductones and fragmenta-
tion products such as hydroxyacetone and 2, 3-butanedione, min-
imising the formation of HMF (Ames, 1998; Liu et al., 2012).

3.4. Water activity/relative humidity

Increasing water activity of protein/peptide-carbohydrate mix-
tures generally increases the rate and extent of conjugation, due to
the increased diffusion and mobility of reactants; however, high
water concentrations/aw can negatively influence progression of

the Maillard reaction. Morgan, L�eonil, Moll�e, and Bouhallab (1999a)
reported that, when heated at the same temperature, the rate and
extent of protein-carbohydrate conjugation in an aqueous solution
was lower than when a dry heating approach was used, as the
presence of water inhibits the initial Amadori condensation reac-
tion between the available amino and carbonyl groups. The phys-
icochemical state of the reactants in mixtures of proteins, peptides
and carbohydrates can also influence the progression of Maillard-
induced conjugation; when reactants (e.g., sugars) in the amor-
phous state are exposed to high humidity (aw) they generally
absorb water until the reactant molecules acquire sufficient
mobility (generally at aw ~0.6e0.7) and space to form a crystalline
lattice. On crystallisation of sugars, water is released and may
become trapped in a localised manner within protein/peptide-
carbohydrate mixtures, and facilitate further interactions/conju-
gation between proteins/peptides and amorphous sugars
(Lievonen, Laaksonen, & Roos, 1998, 2002; Roos, Jouppila, &
Zielasko, 1996).

3.5. Other factors

Factors, other than those outlined above, can impact the Mail-
lard reaction, including the presence of sulphur dioxide in food
systems that has been shown to delay the development of brown
colour (Ames, 1990) and the presence of metal ions, which can
accelerate or inhibit the Maillard reaction, depending on their
concentration (Ramonaityt _e, Ker�sien _e, Adams, Tehrani, & De
Kimpe, 2009). In model systems, the presence of tertiary amine
salts, acetic acid and free radicals have been shown to promote the
Maillard reaction; however, these factors may often in practice be
of minor significance relative to the nature of the reactants, tem-
perature, time and moisture content (O'Brien, 1997). Non-thermal
energy sources (e.g., ionising radiation, UV irradiation and ultra-
sound treatment) have also been shown to produce Maillard re-
action products, including brown pigments and volatile flavour
compounds (O'Brien, 1997).

4. Protein/peptide substrates used in conjugation

The conjugation of milk proteins/peptides has been studied
using many categories of milk protein-based ingredients as sub-
strates, including, but not limited to, whey protein concentrates
(WPC) and isolates (WPI), individual whey protein fractions (in

Table 1
An overview of the analytical approaches most commonly used in protein/peptide-carbohydrate conjugation studies (modified from O'Brien, 1997).

Measurement Reference

Early stage
Reduction in chemically reactive amino groups including 1-fluoro-2,4-dinitrobenzene (FDNB),
trinitrobenzenesulfonic acid (TNBS), guanidination, sodium borohydride,
o-phthaldialdehyde (OPA) and dye-binding methods

Mehta and Deeth (2016)

Formation of lactulosyllysine Henle et al. (1991)
Absorbance of Schiff base Zhu et al. (2008)
HPLC analysis of derived Amadori products (e.g., furosine, carboxymethyllysine) Erbersdobler and Somoza (2007)
Amino acid analysis Rutherfurd, Bains, and Moughan (2012)
Identification of conjugation site by electrospray ionisation or matrix assisted laser
desorption/ionisation mass spectrometry

Oliver (2011)

Intermediate stage
HPLC analysis of intermediate reaction products
or their derivatives (e.g., hydroxymethylfurfural)

Morales, Romero, and Jim�enez-P�erez (1995)

pH decrease O'Brien (1997)
Advanced stage
Colour development (absorbance or colorimeter) Ames (1998)
Fluorescence of advanced Maillard products Birlouez-Aragon et al. (1998)
Strecker degradation volatiles by gas chromatography mass spectrometry/flame ionisation Jansson et al. (2014)
Enzyme-linked immunosorbent assay Horiuchi, Araki, and Morino (1991)
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particular b-lactoglobulin, b-lg; a-lactalbumin, a-lac; and bovine
serum albumin, BSA), sodium caseinate, casein fractions (b-casein)
and hydrolysates of whey proteins (WPH) and caseins (e.g.,
hydrolysed sodium caseinate). For the reasons outlined in Section 3,
it is desirable that the proteins/peptides used are soluble under the
conditions of conjugation; hence only soluble forms of casein (e.g.,
sodium caseinate) have been studied. It is also desirable that the
proteins used for conjugation are present in a conformation which
ensures a high degree of accessibility of carbonyl groups to amino
groups, which is one of the main reasons why, in the study of
casein-based conjugates, sodium caseinate, with an open/flexible
structure, and extremely low levels of non-protein components,
has been extensively used as the casein protein substrate; the au-
thors are not aware of any studies performed using micellar casein
for production of casein-based conjugates.

In addition, whey proteins are more susceptible than caseins to
heat-induced aggregation under the conditions used for conjuga-
tion (particularly under wet heating conditions), which would be
expected to restrict accessibility of carbonyl groups to amino
groups on the protein/peptide molecules. b-Lactoglobulin typically
represents ~50e60% of total protein in WPC, WPI and WPH in-
gredients and has two disulphide bonds and one free thiol group,
which are deemed responsible for the irreversible thermal aggre-
gation and gelling properties of this protein (Brodkorb, Croguennec,
Bouhallab, & Kehoe, 2016). In contrast, a-lac has a single poly-
peptide chain, containing four disulphide bonds, and no free sul-
phydryl group (Permyakov & Berliner, 2000), making it less
sensitive to heat-induced denaturation/aggregation under the
conditions used in conjugation of whey protein (Enomoto et al.,
2009). Furthermore, Nieuwenhuizen et al. (2003) reported that
the availability of the lysine groups in a-lac are modified by the
binding of calcium; five lysine residues were available for reaction
in apo-a-lac compared with four available lysine residues in the
halo-a-lac.

It is desirable to have low levels of non-protein components
(e.g., lactose, minerals and lipid) in the protein-containing in-
gredients used as substrates for conjugation, as lactose contributes
strongly to brown colour and flavour compound formation (Lillard,
Clare, & Daubert, 2009), minerals promote aggregation of whey
proteins (Brodkorb et al., 2016), lipid material can contribute to off-
flavour formation (Liu & Zhong, 2014; Lloyd, Hess, & Drake, 2009)
and lactose can compete with other carbohydrates for conjugation
to the protein substrate during heating under conditions required
to achieve conjugation. Therefore, high protein content WPC and
WPI, or pure protein fraction ingredients are most commonly used
for conjugation purposes.

The whey proteins generally have slightly higher normalised
levels of lysine residues than the caseins. Hydrolysis of casein and
whey proteinmolecules increases the number of free amino groups
available to react with carbonyl groups during conjugation and can
also lead to increased exposure and accessibility to previously-
buried lysine residues. Protein hydrolysates are generally charac-
terised by their degree of hydrolysis (DH), which expresses the
number of peptide bonds cleaved as a percentage of the total
number of peptide bonds available (Foegeding, Davis, Doucet, &
McGuffey, 2002). Hydrolysis of whey proteins, due to reduction of
average Mw and levels of secondary structure, enhances their sta-
bility to heat-induced aggregation, which can facilitate enhanced
retention of amino groups in a form accessible for conjugation
during heating. For example, Ju, Otte, Madsen, and Qvist (1995)
reported that limited hydrolysis of WPI (DH 2e7%), using trypsin,
prevented heat-induced gelation of a WPI solution (12%, w/v, pro-
tein) on heating at 80 �C for 30 min at pH 3 and 7. Mulcahy et al.
(2016b) reported that WPH with a low degree of hydrolysis (DH
9.3%) had 55.4% higher levels of available amino groups compared

with an intact WPI counterpart, which contributed to more rapid
and extensive conjugation of maltodextrin (MD) with the WPH
than with the WPI.

5. Carbohydrate substrates used in conjugation

The conjugation of milk proteins/peptides has been studied
using many different types of carbohydrate ingredients, including,
but not limited to, lactose, MD, corn syrup solids (CSS), dextrans,
glucose, maltose, ribose, guar gum, pectin, fenugreek gum, oligo-
saccharides and glucosamine. From the point of view of their ability
to participate in Maillard-induced conjugation of milk proteins/
peptides, and the functionality of the resultant conjugates, the key
differences between these carbohydrates are chain length, struc-
ture (i.e., linear versus branched and ketoses versus aldoses) and
charge (neutral versus charged). In general, the shorter the chain
length of the carbohydrate component, the faster the rate, and the
greater the extent of conjugation. On conjugation of whey protein
with MD or CSS, having dextrose equivalent (DE) values in the
range 6e38, at an initial pH 8.2, at 90 �C for up to 24 h, the extent of
conjugation increased with increasing DE value of the MD and CSS
ingredients (Mulcahy, Mulvihill, & O'Mahony, 2016a). Delahaije,
Gruppen, van Nieuwenhuijzen, Giuseppin, and Wierenga (2013)
studied the stability of emulsions of patatin conjugated to the
same extent with different mono- and oligosaccharides (xylose,
glucose, maltotriose and maltopentaose) and reported that
attachment of monosaccharides did not affect the flocculation
behaviour of the emulsion; however, the attachment of maltotriose
and maltopentaose (molecular mass > 0.5 kDa) provided stability
against flocculation of the emulsions at pH 5, due to increased steric
stabilisation contributed by the higher molecular mass carbohy-
drates. Brands and van Boekel (2001) reported that ketoses
degraded during heating, whereas aldoses were involved in for-
mation of the covalent bond between proteins and carbohydrates
during the Amadori stage of the Maillard reaction.

6. Mode of conjugation

The main variables that can be controlled during conjugation of
milk proteins/peptides are temperature, time, pH, moisture con-
tent, relative humidity (RH) and/or aw. These variables can be
grouped to give 2 distinct approaches for achieving conjugation e

(1) wet heating and (2) dry heating. The wet heating approach
normally involves incubation of an aqueous solution of protein/
peptide and carbohydrate reactants, commonly pre-adjusted to a
target pH (normally pH 6.0e11.0), for a pre-determined time (min-
d) at a set temperature (typically in the range 60e95 �C). The
conjugation reaction is normally stopped (or slowed considerably)
by cooling and further processing (e.g., freeze or spray drying) of
the conjugated protein/peptide solution. The dry heating approach
normally involves incubation of a co-dried mixture (commonly
pre-adjusted to a target pH) of the protein/peptide and carbohy-
drate ingredients for a pre-determined time (min-d) at a set tem-
perature (typically in the range 60e130 �C) at a set RH (typically
60e80%).

Both approaches have been used extensively for conjugation of
milk proteins/peptides and both have their advantages and limi-
tations. The mobility of reactants is higher with the wet heating
than the dry heating approach and higher temperatures (for
shorter times) are generally used with the former than with the
latter; however, some recent studies have used considerably higher
temperature (130 �C) and shorter times (<30 min) than previous
studies to achieve conjugation of WPI with lactose or MD under dry
heating conditions at 79% RH (Liu & Zhong, 2014). Similarly, Guo
and Xiong (2013) reported that WPI was successfully conjugated
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with lactose or MD (DE18) at 130 �C for 20 min and 79% RH, with
both systems having less colour development that WPI-lactose/MD
conjugated at 80 �C for 2 h.

To achieve maximum reactivity between the protein/peptide
and carbohydrate components using dry heating, it is necessary
to prepare a solution of the two components, which is dried
before being conjugated by dry heating, and the conjugated
power typically requires down-stream drying due to release of
water during the early stages of the Maillard reaction. This latter
issue can also lead to localised browning of the powdered reac-
tion mixture during conjugation due to sugar crystallisation
(Lievonen et al., 1998) using the dry heating approach, which is
not an issue with the wet heating approach. While most of the
research published to date using the wet heating approach has
been conducted at temperature ranging from 60 to 95 �C for time
periods of min-d (Chevalier et al., 2001; Darewicz & Dziuba,
2001; Drapala et al., 2016a, 2016b; Morgan et al., 1998;
Mulcahy et al., 2016a, 2016b; Zhang et al., 2012; Zhu et al.,
2008), some studies have reported the use of higher tempera-
tures (i.e., 100e130 �C) for shorter times (�6 h) to induce
conjugation using wet heating; for example, Chen et al. (2013b)
reported that phosvitin and dextran were conjugated by heat-
ing in an aqueous solution at 100 �C for 6 h.

In addition to the differences in energy costs and efficiency
between wet and dry heating approaches, the use of dry heating at
lower temperatures (<70 �C) has been shown to result in greater
preservation of the native 3-dimensional structure of whey pro-
teins, comparedwithwet heating approaches, which has important
implications for selected functional properties, such as solubility
and interfacial properties (Gauthier, Bouhallab, & Renault, 2001;
Morgan et al., 1998, 1999a, 1999b). The use of macromolecular
crowding to effectively restrict denaturation and, in particular,
aggregation of whey proteins has also shown promise on conju-
gation of WPI with dextran (Ellis, 2001; Perusko, Al-Hanish,
Velickovic, & Stanic-Vucinic, 2015; Zhu et al., 2008).

7. Solubility

Milk proteins used in food products are generally required to
have high levels of solubility to facilitate expression of the desired
functional properties such as gelation, aeration, water-binding,
foaming and emulsification (De Wit, 1989; O'Regan, Ennis, &
Mulvihill, 2009). Solubility of milk proteins is influenced by many
physicochemical properties of the protein molecules themselves,
i.e., Mw, conformation (e.g., as affected by denaturation/aggrega-
tion), amino acid composition, physical state, exposure of selected
functional groups, surface hydrophobicity, and environmental fac-
tors, such as pH, temperature, ionic strength and nature of the
solvent (De Wit & Klarenbeek, 1984; Hayakawa & Nakai, 1985;
Vojdani, 1996).

Protein-carbohydrate conjugation via the Maillard reaction
has been shown to be an effective means of increasing the sol-
ubility of milk proteins. Native whey protein molecules are
globular in structure and are susceptible to heat-induced changes
(>70 �C) such as denaturation and aggregation (Wijayanti,
Bansal, & Deeth, 2014a), while caseins are non-globular pro-
teins, with more open, flexible structures and can be heated at
140 �C, at pH 6.7, for at least 40 min before coagulation occurs
(Fox & Hoynes, 1975). Sodium caseinate has very different
functionality to whey proteins (i.e., high viscosity at low con-
centrations and poor solubility at pH ~4.6) and is used as an
emulsifier, texturiser and stabiliser in food products such as
cured meats, processed cheese, coffee whiteners, high fat pow-
ders, bakery and confectionary products (Carr & Golding, 2016;
O'Regan & Mulvihill, 2011; Swaisgood, 1993).

Improvements in the solubility of sodium caseinate at its iso-
electric point would be expected to help broaden its application in
food products; O'Regan and Mulvihill (2009) reported that sodium
caseinate conjugated with MD, with DE values of 4 or 10, had
improved protein solubility (~5e90%) in the pH range 4.0e5.5,
compared with sodium caseinate, particularly around the isoelec-
tric point (~pH 4.6) of the protein. This increase in protein solubility
on conjugationwas attributed to an increase in the hydration of the
protein due to the covalent attachment to the protein molecules of
hydrophilic MD glucose polymer side chains, and modification of
the net charge of the protein, contributing to greater repulsion
between the protein molecules. The increase in the net negative
charge of the protein on conjugation with carbohydrate may be
attributed to the consumption of charged amino acids, such as the
basic amino acid lysine during the Maillard reaction (Ames, 1998;
Brands & van Boekel, 2002; Lertittikul, Benjakul, & Tanaka, 2007;
Wang & Zhong, 2014). Interestingly, it was noted that, at similar
extents of conjugation, the conjugated sodium caseinate-MD10 had
higher protein solubility (~50e80% increase) across the pH range
4.0e4.5 than the conjugated sodium caseinate-MD4. Similar results
were reported by Shepherd, Robertson, and Ofman (2000) and
Oliver, Melton, and Stanley (2006b), with conjugation of sodium
caseinate with MD under dry heating conditions, leading to in-
creases in protein solubility, particularly at pH 4.0e4.6, which was
again attributed to increased steric repulsion between conjugated
protein molecules. Grigorovich et al. (2012) reported that sodium
caseinate conjugated with MD with DE values of 2 or 10, under dry
heating conditions at an initial pH of 7, at 60 �C and 79% RH for 72 h,
had improved solubility (~10e80% increase) across the pH range
3.5e5.0, compared with sodium caseinate alone. The authors re-
ported that the improvement in protein solubility of the sodium
caseinate-MD conjugate solutions was determined mainly by the
molar ratio of protein:carbohydrate and the DE value of the MD
used for conjugation. Similar to findings in the study of O'Regan and
Mulvihill (2009), the most pronounced increase in solubility was
achieved using MD with the higher DE value (i.e., DE 10).

The majority of studies on conjugation of casein-based in-
gredients have been completed using dry heating approaches
(Corzo-Martínez, Carrera-S�anchez, Villamiel, Rodríguez-Patino, &
Moreno, 2012b; Corzo-Martínez, Moreno, Villamiel, & Harte,
2010a; Corzo-Martínez, Soria, Belloque, Villamiel, & Moreno,
2010b; Markman & Livney, 2012; Morris, Sims, Robertson, &
Furneaux, 2004) while a limited number of studies have been
completed using wet heating approaches (e.g., Cardoso et al., 2011).
Darewicz, Dziuba, and Mioduszewska (1998) showed that a b-
casein-glucose solution, heated at an initial pH of 7.4, at 37 �C for
24 h under wet heating conditions to achieve conjugation, had a
~5e30% improvement in solubility across the pH range 2.0e8.0,
compared with the unheated b-casein control, with the greatest
improvement in solubility occurring around the isoelectric point of
the protein (~pH 4.6). This improvement in solubility of b-casein
was attributed to the covalent attachment of glucosyl residues to b-
casein, resulting in an increased hydrophilicity and steric hindrance
of the b-casein-glucose conjugates, compared with the unheated
mixture. Similar results were also described by Groubet, Chobert,
Haertl�e, and Nicolas (1999) who prepared conjugated b-casein
with either arabinose, lactose or ribose (molar ratio 1:100, pro-
tein:carbohydrate) by heating at 60 �C for 3 d in an anaerobic,
aqueous environment and reported that all b-casein-sugar conju-
gates had increased solubility at pH 4.5e6.0.

However, it should be noted that conjugation of milk proteins
with carbohydrates does not always result in increased protein
solubility as the type and extent of modification of the functional
properties are very dependent on the nature of the reactants, re-
action conditions and the pathways followed by the Maillard
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reaction (Hiller & Lorenzen, 2010). Corzo-Martínez et al. (2012b)
reported that dry heating of sodium caseinate and galactose, at
an initial pH of 7.0, at 50e60 �C, 67% RH, for 4 and 72 h, resulted in a
20% reduction in the solubility of the protein at pH 7.0, compared
with the unheated sodium caseinate control. The authors attrib-
uted the decreased protein solubility on conjugation to an increase
in the surface hydrophobicity of the protein on heating. However, at
pH 5.0, Corzo-Martínez et al. (2012b) reported that conjugated
sodium caseinate-galactose displayed an increase of ~10% in solu-
bility, compared with the unheated and dry heated sodium
caseinate controls due to the shift in the isoelectric point of the
conjugated protein to a lower pH as a result of a moderate increase
in its net negative charge following conjugation.

Heat treatment of proteins can lead to the formation of reactive
intermediates (e.g., methylglyoxal or dehydroalanine), which can
then react with the ε-amino group of lysine, resulting in the for-
mation of protein crosslinks, leading to modification of functional
properties and loss of nutritional value (Calabrese, Mamone, Caira,
Ferranti, & Addeo, 2009; Le, Holland, Bhandari, Alewood, & Deeth,
2013; Pellegrino, Van Boekel, Gruppen, Resmini, & Pagani, 1999). In
particular, the development of lysinoalanine (LAL) in protein solu-
tions during heat treatment has been reported to be responsible for
protein crosslinking (Gerrard, 2002). Mulcahy et al. (2016b) re-
ported that a WPI solution heated for 8 h at 90 �C had a higher level
of LAL (179mg 100 g�1 protein) than the level of LAL in a solution of
WPI conjugated with MD6 (58.8 mg 100 g�1 protein) under the
same heating conditions; as the ε-amino groups of lysine are also
consumed by the covalent attachment of carbohydrate to protein
during the Maillard reaction, competition for the ε-amino reaction
sites is likely to be responsible for the lower levels of LAL found in
the conjugated protein-carbohydrate solution, compared with
protein solution heated alone (Mulcahy et al., 2016a).

The dry heating approach has also been used extensively to
conjugate whey proteins with carbohydrates as it is claimed to
result in less heat-induced conformational changes to the whey
protein molecules (Oliver et al., 2006b; Zhu et al., 2008) as lower
temperatures are typically used (Li, Enomoto, Ohki, Ohtomo, &
Aoki, 2005) than with wet heating. Wang and Ismail (2012)
demonstrated that WPI conjugated with dextran by dry heating
at 60 �C and 49% RH, for 96 h, had enhanced protein solubility (85.7
and 89.0% increase) at pH 4.5 and 5.5, respectively, when they were
subsequently heated to 80 �C for 30 min, compared with the
respective WPI control. The authors reported that the enhanced
solubility of WPI on conjugation with dextran was attributed to
suppressed intermolecular proteineprotein interactions, along
with structural/physicochemical changes to the protein, including a
shift in the isoelectric point of the protein to a more acidic pH,
reduction in the surface hydrophobicity of the whey protein mol-
ecules and increased resistance to thermal denaturation, resulting
in a reduced exposure of free sulfhydryl groups after conjugation of
the protein with dextran.

A further study by Wang, He, Labuza, and Ismail (2013) char-
acterised the structural changes in whey protein molecules conju-
gated with dextran (at 60 �C and 49% RH for 96 h) using surface-
enhanced Raman spectroscopy. The authors reported that the
Raman spectra of the conjugated WPI-dextran samples had an
additional peak at 983 cm�1, which they attributed to the formation
of a Schiff base, which was accompanied by deprotonation of
carboxyl groups, contributing to higher net negative charge along
with re-organisation of the sulphide linkages. These conforma-
tional changes in the whey protein molecules imparted structural
rigidity to the conjugated WPI-dextran system, which in turn
increased protein solubility on thermal treatment (75 �C for
30 min) over a wide pH range (3.4e7.0), compared with previously
unheated WPI. Wang et al. (2013) also reported that the b-sheet

configuration of the whey protein molecules in the conjugated
WPI-dextran had increased band intensity in the Raman spectra,
comparedwith that of the unheatedWPI control. Wang et al. (2013)
and Damodaran (2008) reported that the b-sheet configuration is
more thermally stable than the a-helix and other disordered
structure configurations in whey protein molecules, thus an in-
crease in the b-sheet configuration may explain the improvements
in the thermal stability at pH 4.5 and 5.5 of the conjugated WPI-
dextran.

Martinez-Alvarenga et al. (2014) studied the effect of tempera-
ture, time, water activity and molar ratio of reactants on the func-
tional properties of WPI conjugated with MD (molecular mass of
1.7 kDa); the WPI-MD with the lowest extent of conjugation (dry
heated at 50 �C, 50% RH, for 24 h in the molar ratio of 1:1 pro-
tein:carbohydrate) had an increase in protein solubility of just 3% at
pH 5.0, compared with the unheated control, due to the covalent
attachment of the hydrophilic MD to the protein molecules. The
authors reported that WPI-MD with the greatest extent of conju-
gation (achieved by heating at 50e60 �C, 80% RH, for 48 h in the
molar ratio of 1:1 or 1:2 protein:carbohydrate) had a shift in the
isoelectric point, from pH 5.0 for the unheated control, to pH
4.0e4.5, due to the consumption of positively charged lysine resi-
dues during conjugation.

Jimenez-Castano, Villamiel, and Lopez-Fandino (2007) conju-
gated individual whey protein fractions (b-lg; a-lac; BSA) with
dextran (10 or 20 kDa) by dry heating at an initial pH of 7.0, at 60 �C
and 44% RH for 24e72 h. The authors reported that the extent of
conjugation, decreased in the following order; BSA>b-lg>a-lac and
demonstrated that conjugation of b-lg with dextran (20 kDa), for
either 36 or 60 h, improved its solubility by ~40% at pH 5.0. How-
ever, the solubility of the b-lg-dextran conjugate was ~20e30%
lower at pH 4.0, compared with the unheated or heated b-lg control
samples, which may be attributed to the consumption of positively
charged amino groups (i.e., lysine) causing a shift in the isoelectric
point to a more acidic pH. In contrast, Chevalier et al. (2001) re-
ported that b-lg conjugated with galactose, glucose, lactose or
rhamnose, by wet heating at an initial pH of 6.5, at 60 �C for 72 h,
had increased solubility of ~25% at pH 4.5, compared with the
respective heated b-lg control due to changes in the conformation
and hydrophobicity of the protein molecules. Jimenez-Castano
et al. (2007) also reported that a-lac-dextran conjugates exhibited
a higher solubility (~5e50% increase), compared with the unheated
control, in the pH range 3.0e5.0, with the greatest increase in
solubility occurring at pH 4.0; similar trends were reported for
BSAedextran conjugates that had higher solubility around the
isoelectric point (pH 4.7e4.9) than the unheated control.

A limited number of studies have reported modification of
functional properties of whey proteins conjugated with carbohy-
drates using wet heating conditions. The likely reason for this is
that heating of whey protein in an aqueous environment at �70 �C
can result in denaturation and aggregation, which have been re-
ported to reduce whey protein solubility (Liu et al., 2012; Pelegrine
& Gasparetto, 2005; Zhu, Damodaran, & Lucey, 2010). However,
Jiang and Brodkorb (2012), Lillard et al. (2009) and Liu and Zhong
(2015) have investigated the use of high temperatures
(95e130 �C) to induce conjugation of whey proteins or isolated
whey protein fractions with carbohydrates, and have reported
improvements in the antioxidant activity, emulsification properties
and heat stability, respectively, of whey protein-carbohydrate
conjugates.

Mulcahy et al. (2016b) reported that at pH 3.5, a conjugated
WPI-MD solution, prepared by heating at an initial pH of 8.2, at
90 �C for 8 h, had higher protein solubility (50.7%) than the WPI
solution heated without MD (26.7% solubility). The authors also
reported that the protein solubility of a conjugated WPH-MD
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solution, prepared by heating at 90 �C for 8 h, increased 80.9% at pH
4.0e4.5, compared with that of the heated WPH solution (75.3%).
The increase in protein solubility of the conjugated WPI-MD and
WPH-MD solutions, compared with solutions of heated whey
protein (90 �C for 8 h) without MD, was attributed to enhanced
hydration of the protein and increased steric hindrance between
the protein molecules provided by the attachment of the bulky
dextran molecules.

Some alternative approaches to achieving conjugation have also
shown promise in increasing protein solubility; for example, Sun,
Yu, Zeng, Yang, and Jia (2011b) reported that WPI-dextran conju-
gates, prepared by application of a pulsed electric field (15 and
30 kV cm�1, flow rate ~30 mL min�1) at an initial pH of 10 and at
30 �C for 7.35 ms, had higher solubility (10e30% increase) at pH
4.0e6.0 than the control WPI solution treated with pulsed electric
field.

8. Heat stability

Glansdorff, Prigogine, and Hill (1973) defined thermal or heat
stability as the ability of a substance to resist irreversible change in
its chemical or physical structure, often by resisting polymerisa-
tion, under defined conditions (i.e., temperature, pH and ionic
strength). Globular whey proteins are very susceptible to heat-
induced (>70 �C) changes such as denaturation and aggregation
(Wijayanti et al., 2014a), therefore, this section will focus mainly
on the heat stability of whey proteins and improvement thereof by
conjugation. The thermal stability of whey proteins has been the
subject of extensive research and there are many reports in the
literature on the denaturation and aggregation of whey proteins
under different solution and processing conditions (Brodkorb
et al., 2016; Donovan & Mulvihill, 1987; Marangoni, Barbut,
McGauley, Marcone, & Narine, 2000; Oldfield, Singh, & Taylor,
2005; Ryan, Zhong, & Foegeding, 2013; Sa�glam, Venema, de
Vries, & van der Linden, 2014).

Several approaches have been investigated to control aggrega-
tion of whey proteins, including the addition of hydrophobic/
amphiphilic compounds prior to heating, such as molecular chap-
erones, alcohols, hydrolysed/hydroxylated lecithin, and saturated/
unsaturated fatty acids, removal of intermediate aggregates and
modification of the ionic environment of the protein solution
(Wijayanti, Bansal, Sharma, & Deeth, 2014b; Yong & Foegeding,
2008). Protein-carbohydrate conjugation via the Maillard reaction
has been shown to be an effectivemethod in improving the thermal
stability of milk proteins.

Zhu et al. (2010) conjugated WPI with dextran (440 kDa) by
heating a solution of 10% WPI and 30% dextran, at an initial pH of
6.5 at 60 �C for 48 h. The authors measured the thermal stability of
the conjugatedWPI-dextran solution (0.1%, w/v, protein) by heating
at 80 �C for 30 min and subsequently measuring the development
of turbidity in the solutions (i.e., with increasing development of
turbidity there was a higher absorbance at 500 nm; Abs500), across
the pH range 3.0e7.5. The absorbance of the conjugated WPI-
dextran solution did not change on heating; however, there was a
~10 fold increase in Abs500 of the WPI solution that was heated at
80 �C for 30 min in the pH range 4.5e5.5, which was attributed to
the formation of large protein aggregates that scattered light. The
authors reported that the unheated WPI had a typical differential
scanning calorimetry (DSC) denaturation profile, with an endo-
thermic peak at ~74 �C attributed to the denaturation of b-lg, and a
shoulder at ~66 �C, attributed to the denaturation of a-lac; how-
ever, the conjugated WPI-dextran solution had a flat line profile
suggesting that whey protein in the WPI had less secondary
structure, due to the covalent attachment of the dextran which
contributed to a higher denaturation temperature and

improvements in thermal stability. Similar DSC profiles were re-
ported by Hattori, Nagasawa, Ametani, Kaminogawa, and Takahashi
(1994), Liu and Zhong (2013) and Wang and Ismail (2012) who
showed that the denaturation temperature of whey protein-
carbohydrate conjugates was higher than that of the correspond-
ing unconjugated whey proteins.

Chevalier et al. (2001) reported that b-lg conjugated with either
ribose, arabinose, glucose, galactose, lactose or rhamnose, at pH 6.5
and 60 �C for 72 h in an aqueous environment (0.4% protein, 0.4%
carbohydrate), exhibited greater thermal stability at pH 5.0, when
heated at 70e90 �C for up to 1 h, than unheated and heated b-lg
controls (i.e., without added carbohydrate). The improvement in
thermal stability of the solution (0.2%, w/v, protein), as measured by
the concentration of protein in the supernatant of the heated so-
lutions after centrifugation (15 min at 15,000 � g), was dependent
on the carbohydrate type as follows; ribose > arabinose >
rhamnose > glucose ¼ galactose > lactose. However, the choice of
carbohydrate used in conjugation is known to alter the extent of
protein-carbohydrate conjugation, making it difficult to distin-
guish if the changes in the functional properties were due,
directly, to compositional/structural differences between the
carbohydrates or, indirectly, to their differing effects on the extent
of conjugation (Chen, Liu, Labuza, & Zhou, 2013a; Li et al., 2009;
Mulcahy et al., 2016a; ter Haar, Schols, & Gruppen, 2011).

Liu and Zhong (2013) conjugated WPI with either glucose,
lactose or MD (Mw 1 kDa) by dry heating at an initial pH of 7.0 at
80 �C and 80% RH for 2 h, in a mass ratio of 1:1, and evaluated heat
stability by reconstituting samples to 7%, w/v, protein, adding
0e150 mM NaCl or CaCl2, adjusting the solutions to pH between 3.0
and 7.0, and heating for 2 min at 88 �C, simulating a hot-fill
beverage process (Etzel, 2004). The authors assessed the thermal
stability by visual observation of turbidity development after
heating; the solutions prepared from the conjugated WPI-MD and
WPI-lactose remained transparent under all conditions tested,
while the unheated and dry heated WPI controls with added salt
became turbid on heating at pH 6.0. Liu and Zhong (2013) reported
that the conjugated WPI-MD had a higher denaturation tempera-
ture and a more negative net charge across the pH range 2.0e7.0
than the unheated WPI control, which may have contributed to the
increased thermal stability of the former.

Several authors reported that improvements in heat stability of
whey protein-carbohydrate conjugates can be related to the num-
ber and chain length of the carbohydrates attached to the whey
protein molecules, along with the location at which they are
attached on the protein molecules; the attachment of higher Mw
carbohydrates has been shown to have a greater impact on
improving the thermostability of whey proteins, due to increased
steric repulsion, comparedwith conjugationwithmonosaccharides
(Aoki et al., 1999; Corzo-Martínez, S�anchez, Moreno, Patino, &
Villamiel, 2012c; Corzo-Martínez et al., 2012b; Morris et al., 2004;
Mulcahy et al., 2016a; Tuinier, Rolin, & De Kruif, 2002; Wong,
Day, & Augustin, 2011; Wooster & Augustin, 2006).

WPHs have been reported to have impaired functional proper-
ties compared with their intact counterparts and have been shown
to be more susceptible to destabilisation when heated, due to the
exposure of buried hydrophobic residues and/or release of specific
peptides that promote peptideepeptide and peptideeprotein ag-
gregation (Adjonu, Doran, Torley, & Agboola, 2013; Creusot &
Gruppen, 2007). Mulcahy et al. (2016b) reported that WPH (DH
9.3%) conjugated with MD (DE 17) under wet heating conditions at
an initial pH of 8.2 and 90 �C for 8 h, had superior thermal stability
to further heating at 85 �C for 10 min with 40 mM NaCl added,
compared with those of the unheated or heated WPH control so-
lutions. The unheated or heatedWPH control solutions precipitated
and phase separated on heating at 85 �C for 10 min due to the
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formation of large protein aggregates (~10e50 mm), whereas, the
conjugated WPH-MD solution (i.e., previously heated for 8 h at
90 �C at an initial of pH 8.2) that was further heated with 40 mM

added NaCl remained stable and the protein aggregates present
remained small (<~1 mm).

The conditions used during the Maillard reaction impact the
thermal stability of the resulting conjugates; Wang and Zhong
(2014) dry heated WPI-MD in the mass ratio 1:1, at 80 �C and
65% RH for 4 h, at different pHs (i.e., pH 4.0, 5.0, 6.0 and 7.0). The
solutions prepared from the conjugated WPI-MD at pH 6.0 (5%
protein, and 0e150 mM added NaCl) that was subsequently heated
at 138 �C for 1 min (to simulate UHT treatment), had improved
thermal stability (i.e., remained transparent as evaluated by the
visual assessment of turbidity) compared with the solution pre-
pared from the WPI-MD conjugated at pH 4.0. The improvement in
thermal stability was attributed to the greater extent of covalent
attachment of MD molecules to the whey protein molecules at pH
6.0, resulting in reduced proteineprotein interactions, lower sur-
face hydrophobicity of the protein, a shift in the isoelectric point
(from 4.63 to 4.07) of the protein to lower pH and a higher protein
denaturation temperature compared with the WPI-MD conjugate
prepared at pH 4.0.

Protein-carbohydrate conjugates produced by alternative
methods, such as sonication, have also been shown to have
improved functionality; Perusko et al. (2015) conjugated a WPI-
arabinose-polyethylene glycol (PEG) solution at an initial pH of
8.0, at ~5e10 �C by sonication (20 kHz frequency) for 60 min. The
authors reported that the conjugated WPI-arabinose-PEG solution
had a greater extent of conjugation (10% increase), due to the
presence of PEG facilitating macromolecular crowding, compared
with the sonicated solution of WPI-arabinose without PEG. The
conjugated WPI-arabinose-PEG solution had higher protein solu-
bility (~10e40% increase) when the solution was heated at
80e100 �C for 15 min compared with the sonicated WPI control
solution and the conjugated WPI-arabinose solution without PEG.
The authors attributed this increase in thermal stability of the
conjugated WPI-arabinose-PEG solution to attachment of the
arabinose units, which interfere with protein aggregation due to
steric hindrance limiting proteineprotein interactions.

The use of protein-carbohydrate conjugation has also been
shown to enhance the functional properties of WPC; Liu and Zhong
(2014) prepared a defatted WPC (34% protein) by adjusting a WPC
solution to pH 4.0, centrifuging, and spray drying the resulting
supernatant. The resulting defatted WPC was conjugated by heat-
ing under dry conditions, at 130 �C for either 20 or 30 min, or 60 �C
for either 24 or 48 h, at 79% RH, which resulted in thewhey proteins
conjugating with the innate lactose (68.8%) present in the ingre-
dient. The authors assessed the thermal stability of solutions (4%,
w/v, protein) prepared from the conjugated WPC by adjusting the
pH of the solution to 3.0e7.0 and heating the solutions at 88 �C for
2 min or at 138 �C for 1 min. The WPC conjugated at 130 �C for
30 min remained transparent once further heated at 138 �C for
1 min with 150 mM added NaCl; however, the authors did not
suggest a mechanism for the apparent improvement in thermal
stability.

Conjugation has also been shown to be beneficial in producing
heat stable whey protein nanofibrils; Liu and Zhong (2013) pro-
duced protein nanofibrils (pH 2.0, heated at 85 �C for 24 h) from
solutions of WPI and lactose which had previously been conjugated
under dry heating conditions (80 �C and 70% RH for 2 h). The
nanofibrils prepared from the conjugated WPI-lactose were highly
dispersible and remained transparent after heating (88 �C for 2 min
or 138 �C for 1 min) in the pH range 4.0e7.0, even with up to
150 mM NaCl added, compared with the nanofibrils formed from a
WPI solution, which became turbid under all heating conditions

tested. The greater thermal stability of the nanofibrils produced
from the conjugated protein was attributed to the lactose on the
nanofibril surface providing additional steric hindrance.

9. Emulsification

Emulsifiers act by reducing the surface free energy at the
interface between oil and aqueous phases, and thereby provide an
effective interfacial barrier to help resist the thermodynamic ten-
dency of emulsions to destabilise (McClements, 2015). Proteins are
the most commonly used class of food emulsifiers, due to their
excellent surface activity, diverse and desirable nutritional profile,
wide availability and positive consumer perception (Bos & van
Vliet, 2001; Hern�andez-Ledesma, García-Nebot, Fern�andez-Tom�e,
Amigo, & Recio, 2014; Lam & Nickerson, 2013). In addition, sur-
face and interfacial properties of proteins can be modified through
controlled hydrolysis (i.e., increasingmolecular mobility; Panyam&
Kilara, 1996; Tamm, Sauer, Scampicchio, & Drusch, 2012; Turgeon,
Gauthier, Molle, & Leonii, 1992), controlled denaturation (i.e.,
opening up of the protein structure; Raikos, 2010; Rullier, Novales,
& Axelos, 2008), change in the charge (Hamada & Swanson, 1994)
or by complexation with another component (i.e., polyphenols,
carbohydrates; Dickinson, 2010) to enable best matching of their
functionality to specific product and process applications.

There has been considerable growth in interest in the area of
modification of emulsification properties of proteins by their
conjugation with various carbohydrates through the Maillard re-
action (Drapala et al., 2016a, 2016b; Foegeding & Davis, 2011; Lam
& Nickerson, 2013; Liu et al., 2012; Oliver et al., 2006a; de Oliveira
et al., 2016). Protein-carbohydrate conjugates consist of two com-
posite blocks, where, in an emulsion system, the more surface-
active component (i.e., protein) adsorbs at the oil/water (O/W)
interface, while the more hydrophilic component (i.e., carbohy-
drate) extends into the bulk aqueous phase of the emulsion; the
two components display two distinct, complimentary and syner-
gistic roles in bringing about the action of conjugate-based
emulsifiers.

Conjugation of proteins with carbohydrates can improve their
emulsion formation properties indirectly by enhancing protein
solubility (see Section 7), increasing their effective concentration
and mobility in aqueous solution. Changes in conformation of
proteins arising from conjugation (i.e., unfolding of the protein
structure and exposure of hydrophobic and hydrophilic groups)
result in amore flexible protein structure, enabling it tomove faster
towards and adsorb at the O/W interface, compared with uncon-
jugated protein (B�aez, Busti, Verdini, & Delorenzi, 2013; Corzo-
Martínez et al., 2011; Gauthier et al., 2001). Improvements in
emulsification properties of WPI on conjugation with dextran (Zhu
et al., 2010) or of sodium caseinate conjugated with glucosamine
(Jiang & Zhao, 2011), both under wet heating conditions, have been
reported. Protein type influences the effect of conjugation on its
emulsion formation abilities, where the emulsification properties
of native globular proteins (e.g., whey proteins) can benefit more
from conjugation than those of less-structured proteins, due to the
unfolding of the compact globular structure, increasing molecular
flexibility and surface hydrophobicity (Einhorn-Stoll, Ulbrich, Sever,
& Kunzek, 2005; Evans, Ratcliffe, & Williams, 2013). In an analo-
gous manner, it is reasonable to assume that the effect of conju-
gation on emulsification properties of hydrolysed proteins/peptides
would largely depend on the degree of protein hydrolysis/confor-
mation change and theMw of the protein/peptide and carbohydrate
components of the conjugates, while there appears to be no in-
formation available on this subject in the scientific literature.

Carbohydrate moieties covalently attached to protein on
conjugation act like a tail, and are effectively towed by the protein
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as it migrates through the bulk aqueous phase towards the O/W
interface, as the carbohydrate generally does not provide a driving
force for this migration of the conjugated protein molecules.
Despite its passive role in the formation of emulsions, the carbo-
hydrate component of protein-carbohydrate conjugates generally
does not impede the movement of the conjugated protein through
the bulk phase, except when the size ratio between the protein and
carbohydrate is disproportional. Matemu, Kayahara, Murasawa,
and Nakamura (2009) and Akhtar and Dickinson (2007) reported
that increasing the Mw of the carbohydrate component reduced
emulsifying activity index (EAI) of food protein-carbohydrate con-
jugates made therefrom, using tofu whey and bovine milk-derived
WPI, respectively. The larger hydrodynamic radius of protein-
carbohydrate conjugates, compared with the protein alone, can
potentially result in a decreased rate of diffusion in the bulk phase
and reduce the rate of adsorption of conjugates at the interface
(Ganzevles, van Vliet, Stuart, & de Jongh, 2007). As an example,
lower emulsion formation ability was reported for WPI conjugated
with high molecular mass MD (DE 2; 280 kDa), an effect that was
not observed for medium molecular mass MD (DE 19; 8.7 kDa),
compared with non-conjugated WPI (Akhtar & Dickinson, 2007).

The improved emulsion formation properties of milk protein-
carbohydrate conjugates, compared with unconjugated protein,
can be also attributed to their strong steric stabilisation properties;
as the emulsifier adsorbs at the surface of newly-formed oil glob-
ules on homogenisation, it prevents their coalescence by means of
steric repulsion (Liu, Ma, McClements, & Gao, 2016). The carbohy-
drate moiety anchored at the surface of an oil globule by the pro-
tein, protrudes into the aqueous phase of the emulsion and
prevents coalescence on high impact collisions between individual
oil globules during the dynamic homogenisation process (Corzo-
Martínez et al., 2011). The emulsion formation properties of pro-
tein are highly dependent on the environmental conditions under
which emulsification takes place; high salt concentration and acidic
environment usually reduce protein solubility, due to their influ-
ence on electrostatic repulsion. A high salt content screens charges
of protein molecules, while low pH reduces their charge due to
proximity to the isoelectric point of the proteins (i.e., pH 4.6e5.3 for
bovine milk protein) - effectively proteineprotein interactions are
promoted, resulting in decreased solubility and protein precipita-
tion, negatively impacting their surface/interfacial activity (Bos &
van Vliet, 2001; Damodaran, 2005; Zhai, Day, Aguilar, & Wooster,
2013).

Conjugation of milk proteins with carbohydrates generally en-
hances their emulsion formation and stabilisation properties at
high salt concentrations and under acidic conditions, due to
improved protein solubility under such environmental conditions.
Covalent attachment of MD or corn fibre gum to globular whey
proteins (i.e., b-lg and proteins in WPI) by conjugation has been
shown to enhance the emulsifying properties of the proteins across
a broad pH range (3.2e5.5), by significantly increasing protein
solubility (Akhtar & Dickinson, 2007; Yadav et al., 2010). Similarly,
enhanced emulsion formation properties, attributed to increased
protein solubility, over a broad pH range (2e11) have been reported
for a range of milk protein ingredients (b-lg, a-la, BSA and sodium
caseinate) conjugated under dry and/or wet heating conditions
with a number of different carbohydrates (glucosamine, galactose
and dextran) (Corzo-Martínez et al., 2011; Jiang & Zhao, 2011;
Jimenez-Castano, Villamiel, & Lopez-Fandino, 2007). Conjugation
of protein can greatly improve its solubility at acidic pH and high
ionic strength conditions due to the additional steric barrier pro-
vided by the conjugated carbohydrate component preventing
protein aggregation and precipitation (see Section 7). Additionally,
conjugation can shift the isoelectric point of protein to lower pH as
reported for individual whey proteins (b-lg, a-lac and BSA)

conjugated with MD (Jimenez-Castano et al., 2007). Such enhanced
protein functionality under challenging environmental conditions
offers significant potential for the development of novel emulsion-
based food formulations.

Stability of an emulsion refers to its ability to withstand dete-
riorative changes (i.e., physical or chemical) during processing and/
or storage. The main mechanism responsible for physical stability
of protein-based emulsions is long-range electrostatic repulsion;
proteins adsorbed at the O/W interface confer an electrostatic
charge (i.e., a negative charge in the case of most milk protein-
based emulsions at near neutral pH) to the oil globules, effec-
tively preventing their flocculation and coalescence. In addition to
electrostatic repulsion, emulsions formulated with conjugated
proteins are also stabilised by the additional steric hindrance pro-
vided to the adsorbed conjugated protein molecules by the carbo-
hydrate component. The carbohydrate component of the conjugate
is anchored at the O/W interface by surface active protein and, due
to its hydrophilicity, it extends into the aqueous phase and acts to
physically hinder interactions between oil globules. Sterically-
stabilised emulsions are, generally, more robust and resilient to
changes to the system (i.e., temperature, concentration, pH and
ionic strength), compared with emulsions stabilised solely by
electrostatic repulsion, making them attractive for providing
emulsion stability during formulation and processing as well as
during product storage (Fig. 2) (Evans et al., 2013; Liu et al., 2012).

Stability of an emulsion to processing can be described as the
stability to high stress processes to which these systems can be
subjected during manufacture, including thermal treatments,
changes in ionic strength, high shear forces and freeze-thaw cycles
(Guzey & McClements, 2006; McClements, 2015). Heat treatment
of protein-stabilised emulsions can often result in interactions (i.e.,
mediated by free sulphydryl groups and hydrophobic interactions)
between proteins located at the interfacial layers of different
globules, as well as with un-adsorbed protein in the serum phase,
leading to protein-mediated bridging flocculation of oil globules
(Fig. 2) (Dickinson, 2001; Piorkowski & McClements, 2014;
Tcholakova, Denkov, Ivanov, & Campbell, 2006). Such bridging
flocculation can result in fouling of heat exchange surfaces, the
generation of buoyant protein-lipid flecks, impaired emulsion
shelf-life or, in extreme cases, complete emulsion destabilisation
(Drapala et al., 2016a, 2016b; Petit, Six, Moreau, Ronse,& Delaplace,
2013; Prakash, Kravchuk, & Deeth, 2015). Drapala et al. (2016a,
2016b) showed that model infant formula emulsions stabilised by
WPH-MD conjugates, produced by a wet heating approach, were
resistant to heat-induced bridging flocculation, compared with
those stabilised by non-conjugatedWPH. The authors reported that
the conjugate-stabilised systems showed no changes in viscosity or
particle size distribution after a high temperature-short time
(HTST) treatment of between 75 and 100 �C for 15 min, in contrast
to emulsions stabilised by intact, hydrolysed or pre-heated hydro-
lysed whey protein. In addition, significant improvements in heat
stability of O/W emulsions stabilised by WPI conjugated with low
methoxyl-pectin under dry heating conditions (60 �C at 74% RH for
16 d) have been reported by Setiowati, LienVermeir, Martins, De
Meulenaer, and Van der Meeren (2016). The good thermal stabil-
ity of emulsions stabilised by conjugated protein is predominantly
due to the physical restriction of access (by serum phase constit-
uents such as un-adsorbed proteins) to the potentially reactive
inner interfacial layer (i.e., protein) by the unreactive outer inter-
facial layer (i.e., carbohydrate).

Strong steric hindrance and increased thickness of the interfa-
cial layer in conjugate-stabilised, compared with protein-stabilised
O/W emulsions, can efficiently prevent flocculation of oil globules
when electrostatic stabilisation is disabled (i.e., by charge screening
or by proximity to the protein isoelectric point) (Fig. 2). The greater
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thickness of the interfacial layer in conjugate-stabilised emulsions
can provide additional stability of oil globules to mechanical stress
and high shear forces, commonly experienced during unit opera-
tions such as mixing, pumping, flow or atomisation (Sagis &
Scholten, 2014). Wooster and Augustin (2006) reported that the
thickness of the interfacial layer in O/W emulsions stabilised by b-
lg-dextran conjugates can be modified by using carbohydrates with
different Mw. Fundamentally, increasing the Mw of the carbohy-
drate moiety yields increased thickness of the interfacial layer and
confers greater steric stabilisation as a result (Akhtar & Dickinson,
2007). However, factors such as the kinetics of conjugation (see
Section 3) and the rate of diffusion/adsorption of the conjugate (i.e.,
as discussed earlier in this section) can both be negatively impacted
by increasing Mw of the carbohydrate and need to be considered
when using higher Mw carbohydrates. Emulsion stability can be
enhanced by conjugation of protein with charged carbohydrates;
Neirynck, Van der Meeren, Bayarri Gorbe, Dierckx, and Dewettinck
(2004) reported improved stability of O/W emulsions due to strong
electro-steric stabilisation functionality of WPI-pectin conjugates.

Stability of emulsions during storage can present challenges, in
regards to deteriorative changes of either a physical nature, due to
thermodynamic instability (i.e., coalescence, flocculation, gelation,
creaming and oiling off) or a chemical nature (i.e., lipid oxidation)
(Chaiyasit, Silvestre, McClements, & Decker, 2000; Dalgleish, 1997;
McClements, 2015; Piorkowski & McClements, 2014; Tcholakova
et al., 2006). Physical instability of emulsions can be separated into
that governed directly by Stokes law (i.e., gravitational separation of
components of different density) and that resulting from in-
teractionsbetweenoil globules (i.e., coalescence,flocculation). Steric
stabilisation of emulsions containing protein-carbohydrate conju-
gates can effectively prevent interactions between oil globules over
prolonged storage, owing to the strong physical barrier provided by

the interfacial layer (Fig. 2). O/Wemulsions stabilised by conjugated
milk proteins have shown no changes in the size of fat globules
during storage (24 he21 d at 22e40 �C under quiescent conditions),
compared with the corresponding systems stabilised by non-
conjugated proteins (Drapala, Auty, Mulvihill, & O’Mahony, 2016b;
Lesmes & McClements, 2012; Liu et al., 2016; Medrano, Abirached,
Moyna, Panizzolo, & A~n�on, 2012; O'Regan &Mulvihill, 2013).

Emulsions stabilised by conjugatedmilk proteins display greater
oxidative stability than these stabilised by protein alone, possibly
due to the increased thickness of the interfacial layer and the
physical barrier that restricts the access of pro-oxidant species to
oxidation-sensitive components such as lipids and lipid-soluble
compounds. A significant improvement in the oxidative stability
of emulsions containing b-carotene, stabilised by lactoferrin con-
jugated with dextran, compared with emulsions stabilised by the
protein alone, was reported recently by Liu et al. (2016), where the
anti-oxidative effect was attributed to restriction of physical con-
tact between pro-oxidants and lipids by the thick interfacial layer of
the conjugate-stabilised emulsion. Furthermore, it has been shown
that certain (especially late-stage) Maillard reaction products have
anti-oxidant properties when incorporated into O/W emulsions
(Markman& Livney, 2012; O'Regan&Mulvihill, 2010); for example,
conjugation of WPI, sodium caseinate and lactose-hydrolysed skim
milk powder (SMP) with glucose, lactose, pectin or dextran under
dry heating conditions at 70 �C and 65% RH for up to 240 h was
reported to increase the anti-oxidant capacity of the systems due to
production of late-stage Maillard reaction products with antioxi-
dant activity (Hiller & Lorenzen, 2010).

Low z potential of oil globules near the isoelectric point of milk
proteins, and screening of the electrostatic charge by excess ions,
can promote flocculation of protein-coated oil globules, leading to
breakage of the emulsion and phase separation (McClements, 2015;

Fig. 2. Schematic representation of the differences in emulsions stabilised by either electrostatic repulsion (2nd row) or a combination of electrostatic and steric repulsion
mechanisms (3rd row); oil droplets (yellow) coated by protein (blue) or conjugate (blue þ green) and surrounded by a cloud of ions. Confocal laser scanning microscope (CLSM)
images (1st row; scale bar equals 10 mm, but scales for the confocal images vary to best show the features being described. Green, oil; red, protein) show examples of corresponding
destabilisation mechanisms taking place in such systems, as presented for model nutritional beverage emulsion systems, adapted from Drapala, Auty, Mulvihill, and O'Mahony
(2015) and Drapala et al. (2016a). Fresh emulsions were essentially the same for the two different stabilisation mechanisms (i.e., electrostatic and steric) e homogenous, where
small globules (D4,3 < 1 mm) followed a monomodal distribution; no differences in viscosity and particle size were observed between the conjugated and unconjugated systems.
Bridging flocculation occurs when globules show attractive/cohesive interactions upon collisions/contact and attach; these can also be mediated by serum phase proteins displaying
similar cohesive behaviour. Extensive aggregation occurs when protein-stabilised globules are exposed to prolonged adverse conditions (i.e., high temperature, pH near isoelectric
point), oil pools entrapped within the protein matrix giving the aggregates a buoyant nature, resembling the behaviour of flecks as reported by Drapala et al. (2016a). Coalescence/
Ostwald ripening occurs when, upon contact, repulsion forces and strength of the interfacial layer are not sufficient to prevent lipidelipid contact resulting in mass transfer (Drapala
et al., 2016b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Piorkowski & McClements, 2014; Sarkar & Singh, 2016), whereas
the presence of a strong steric barrier provided by protein-
carbohydrate conjugates can oppose emulsion destabilisation un-
der these environmental conditions. Lesmes and McClements
(2012) demonstrated that conjugation of b-lg with dextran, under
dry heating conditions (60 �C and 76% RH for 24 h), enhanced the
formation and stability of O/W emulsions prepared at pH 7 using
the conjugated protein on subsequent acidification to pH 5. The
authors reported that the thick O/W interfacial layer formed with
the highmolecular mass dextran (i.e.,�40 kDa) was responsible for
the greater stability of the conjugate-based emulsions, compared
with emulsions made using unconjugated protein.

Good stability to storage at high salt concentration (0.2 M citrate
buffer) and under acidic conditions (pH 3.2) were reported for
emulsions stabilisedbyconjugatesofb-lgorWPIwithcornfibre gum
prepared using dry heating conditions at 75 �C and 79% RH for time
periods ranging from 2 h to 7 d (Yadav et al., 2010); in these systems,
the branched nature of the corn fibre gum resulted in good emulsion
stability, even at low levels of conjugation. Considerably improved
resistance toflocculation for emulsions stabilised by conjugates of b-
lg and dextran (27e200 kDa) at high salt (i.e., CaCl2) addition levels
was also reported byWooster andAugustin (2006). In that study, the
authors reported that a significant increase (~12-fold) inparticle size
for emulsions stabilised by unconjugated protein was observed at
�10mM calcium (Ca) content, while no changeswere observed at all
added Ca levels (0e20 mM) for the conjugate-based systems. The
superior stabilityof conjugate-stabilisedemulsionswasattributed to
the thickness and steric stabilisation effects of the outer interfacial
layer (i.e., dextran), which effectively offset the electrostatic
screening effect of Ca addition. Similar findings were reported for
lactoferrin-dextran conjugates, where, strong steric stabilisation of
oil globules resulted in emulsion stability at high ionic strength (Liu
et al., 2016). Likewise, Akhtar and Dickinson (2007) reported that
emulsions stabilised by WPI-MD conjugates (DE 19) and containing
high levels of sodium lactate (5% w/w) did not show any changes in
particle size distribution after 21 d of storage at 22 �C, in contrast to
~2-fold increase in mean volume diameter for emulsions stabilised
by unconjugated protein or by gum arabic (a naturally-occurring
protein-carbohydrate conjugate).

The unique functionality of milk protein-carbohydrate conju-
gate-based emulsifiers is particularly interesting for emulsion-
based food products exposed to challenging environmental and
processing conditions such as low pH, high ionic strength and se-
vere thermal processes (e.g., fruit beverages, infant formula, clinical
nutrition products and acidifiedmilk drinks). Such products usually
pose challengeswith processing and shelf-life stability and, in some
cases, hydrocolloids are added to retard phase separation. Milk
protein/peptide-carbohydrate conjugate-based emulsifiers also
offer significant potential for applications in emulsion-based de-
livery systems, where their interfacial functionality can facilitate
controlled release of sensitive bio-actives (e.g., vitamins) in the
small intestine, avoiding acid-mediated emulsion destabilisation
and loss of the encapsulated material in the stomach. Gumus,
Davidov-Pardo, and McClements (2016) reported that, as well as
stability to acidic conditions, emulsions stabilised by casein-
dextran conjugates, prepared under dry heating conditions (60 �C
and 76% RH for 48 h), were additionally resistant to enzymatic
digestion by pepsin, which prevented issues with premature
release of encapsulated lutein in the stomach. Proteolysis of the
interfacial layer was retarded by the thick outer carbohydrate layer,
which restricted the pepsin from accessing the inner protein
interfacial layer. In addition, the authors showed that the use of
conjugate-based emulsifiers did not interfere with release of
encapsulated material in the intestine, where bile salts displaced
the emulsifier from the surface of oil globules. Similarly, in the

study of Lesmes and McClements (2012), b-lg-dextran conjugate-
stabilised emulsions displayed good stability to stomach-like
environmental conditions, due to strong steric stabilisation and
subsequent release of encapsulated fatty acids occurred in the in-
testinal stage, due to emulsifier displacement by bile salts.

10. Foaming

The formation and stabilisation of foams by milk proteins/pep-
tides have been extensively detailed and reviewed in the scientific
literature; for more information on the foaming functionality of
milk proteins/peptides the reader is referred to publications by
Damodaran (2005), Dickinson (2010), Foegeding, Luck, and Davis
(2006), Huppertz (2010), and Lam and Nickerson (2013). The cur-
rent review sets out to discuss foaming functionality of milk pro-
teins/peptides as affected by conjugation with carbohydrates.

Changes to structure/conformation of proteins, resulting from
their conjugation with carbohydrates, generally contribute to
increased protein solubility, higher protein mobility and, effec-
tively, faster adsorption at air/water (A/W) interfaces (see Section
7). Improvement in foam capacity for BSA conjugated with glucose
in a wet heating process (45 �C for 2 h with continuous stirring),
compared with BSA conjugated with mannose or unconjugated
BSA, was reported by Jian, He, Sun, and Pang (2016). In this study,
conjugation resulted in changes in protein conformation, yielding a
more flexible and loosened structure that, effectively, increased the
rate of protein adsorption at the A/W interface; however, a decrease
in surface hydrophobicity and decreased foam stability was re-
ported for conjugated BSA. Similar findings were reported for
foams stabilised by b-lg-glucose conjugates (dry heating; 50 �C at
65% RH for 96 h) (B�aez et al., 2013), where improved foam capacity,
compared with using unconjugated b-lg, was explained by heat-
induced conformational changes in the structure of the whey
protein molecules, conferring more open and flexible structures,
thus allowing more rapid formation of the interfacial layer. A
combination of increased hydrophobicity and changes in the
conformation of protein can offer increased foam overrun as re-
ported for supramolecular a-lac-glycomacropeptide complexes
(i.e., stabilised by non-covalent interactions) by Diniz et al. (2014).

Conjugation of protein with carbohydrates allows the avoidance
of extensive protein aggregation when the electrostatic repulsion
forces are disabled (i.e., at acidic pH or high ionic strength). In effect,
denser protein packing without extensive aggregation can be ach-
ievedusing conjugatedprotein (Rade-Kukic, Schmitt,&Rawel, 2011).
Jimenez-Castano et al. (2007) reported that conjugation of milk
proteins (b-lg, a-lac and BSA) with dextran in a dry-heating process
(55 �C at 0.44 aw for up to 96 h) resulted in a reduction in isoelectric
point of each protein and improved their solubility and heat stability
around the isoelectric point of the protein. Such modified function-
ality (i.e., goodheat stability at lowpH) can offer potential inprotein-
based foam applications, allowing considerable protein unfolding
when heated at low pH, without extensive protein aggregation or
precipitation. Controlled aggregation under these conditions, com-
binedwithflexibleunfoldedprotein structures, and lowelectrostatic
repulsion,offer significantpotential for stabilisationof foamsystems.
Other approaches directed at improving foam stability involve
increasing the thickness and elasticity of the interfacial film by
increasing the size of its building blocks (i.e., controlled protein ag-
gregation) (B�aez et al., 2013; Dombrowski, Johler, Warncke, &
Kulozik, 2016; Foegeding et al., 2002; Rullier et al., 2008; Tamm
et al., 2012) or by conformational changes to the protein structure
(i.e., partial unfolding of globular protein; Dissanayake & Vasiljevic,
2009; Dombrowski et al., 2016; Morales, Martínez, Pizones Ruiz-
Henestrosa, & Pilosof, 2015). These approaches closely match the
changes to protein structure/conformation and functionality offered
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by protein conjugation; increased size of interfacial building blocks,
controlled protein aggregationon conjugation andopening upof the
protein structure have been shown to improve stability of foams
formedwith conjugatedmilk proteins (Corzo-Martínez et al., 2012b;
Hiller & Lorenzen, 2010).

In using protein/peptide-carbohydrate conjugates to stabilise
foams, the thickness of the interfacial layer and therefore, effec-
tiveness of steric stabilisation, can be controlled using carbohy-
drates with different Mw (Wooster & Augustin, 2006). Hiller and
Lorenzen (2010) reported increased stability of foams prepared
with a range of protein (WPI, sodium caseinate and lactose-
hydrolysed skim milk) and carbohydrate (glucose, lactose, pectin
and dextran) conjugates (produced by dry heating at 70 �C and 65%
RH for up to 240 h) due to formation of thick and viscoelastic
interfacial films that prevented disproportionation of gas bubbles.
Increasing the thickness of the interfacial film can effectively
improve its rheological properties in addition to providing an
effective steric barrier with good dilatational properties
(Dombrowski et al., 2016). Similarly, Kim, Cornec, and Narsimhan
(2005) reported that denaturation and unfolding of b-lg resulted
in increased shear elasticity and viscosity of the interfacial layer due
to increased flexibility of the partially-denatured globular protein.

The viscoelastic properties of protein-stabilised foams are
strongly dependent on the structure/conformation of the protein;
globular proteins (e.g., whey proteins) tend to give interfacial films
with greater viscoelasticity, due to higher packing density,
compared with less ordered proteins (e.g., caseins; Bos & van Vliet,
2001). Conjugation of less-ordered proteins offers good potential
for improvement of their foam stabilising properties due to in-
creases in the thickness of the interfacial layer and, effectively, better
dilatational properties of the A/W interface (Dombrowski et al.,
2016). Jiang and Zhao (2011) reported that modification of casein
(sodium caseinate) by its cross-linking using transglutaminase and/
or conjugation with glucosamine (using a wet heating approach at
37 �C for up to 5 hwith continuous agitation) significantly increased
apparent viscosity of the caseinate solutions. The authors showed
that a combination of cross-linking and conjugation increased both
storage and loss moduli of casein suspensions and that the elastic
properties of the cross-linked and conjugated casein solutions were
more dominant, indicating solid-like response to dynamic defor-
mation, in contrast to unmodified and cross-linked casein suspen-
sions. Modification of the viscoelastic properties of the interfacial
layer of foams by conjugation of caseinwith glucosamine conferred
enhanced stability against bubble coalescence (increased by 20.8%
compared with unconjugated casein; Jiang & Zhao, 2011). Facili-
tating dense packing and interactions between protein-based
building blocks are effective means of improving viscoelastic prop-
erties of the interfacial layer of a foam (Mackie &Wilde, 2005).

In a similar way, facilitating interactions between carbohydrate
components of protein-carbohydrate conjugates adsorbed at A/W
interfaces of foams can provide, not only a strong steric barrier, but
also improved viscoelastic properties of the interface. Cai and Ikeda
(2016) reported increased resistance against surfactant-induced
displacement of protein from the A/W interface in foams stabilised
withWPI-gellan conjugatespreparedbydryheatingat 80 �Cand79%
RH for 2 h, compared with systems containing unconjugated WPI
and the surfactant Tween 20. The authors attributed the greater
resistance to displacement of protein in the conjugate-based foam
system to the ability of the gellan moiety, covalently attached to the
whey protein molecules, to form a carbohydrate network at the
interface, effectively immobilising the conjugate-covered interface.

Conjugation of protein with carbohydrates alters the
hydrophobic-hydrophilic balance of protein and conformational
changes to the protein structure caused by conjugation increase its
surface hydrophobicity, generally resulting in improved emulsion

formation properties of conjugated proteins (see Section 9). On the
other hand, hydrophilicity of the resulting ingredient is increased
by the attachment of the hydrophilic carbohydrate moieties (see
Section 9). Conversely, greater hydrophilicity can yield better foam
stability due to improved water holding capacity by the conjugate
located at the interfacial layer, and effectively restrict liquid
drainage in the foam (B�aez et al., 2013). The hydrophilic nature of
the carbohydrate anchored at the A/W interface by the protein,
viscoelastic properties of the interface and higher viscosity for
conjugated protein-carbohydrate systems (WPI, SMP, sodium
caseinate, glucose, lactose, pectin, dextran), compared with native
protein, have been shown by Hiller and Lorenzen (2010) to be the
main factors responsible for increased foam stability. In contrast,
other authors have claimed that the increased hydrophilicity of BSA
resulting from its conjugation with glucose or mannose decreased
foam stability (Jian et al., 2016). Jiang and Zhao (2011) elucidated
that a shift in the amphiphilic nature of casein towards more hy-
drophilic behaviour, upon conjugation with glucosamine, reduced
ability of foam to retain the incorporated air. It is important to
consider that both of these, apparently contradictory, findings can
hold true, with the precise impact of conjugation being very much
dependent on differences in protein structure (globular, ordered,
unordered, etc.), nature of the carbohydrate (chain length, charge,
etc.) and conditions employed for conjugation and foam formation.

11. Gelation and textural properties

Whey protein gels are three-dimensional, self-supporting, net-
works, within which the aqueous solution and any dispersed ele-
ments (e.g., fat) are entrapped. Gelation of whey proteins involves a
controlled increase in proteineprotein interactions, while carefully
maintaining a balance with protein-solvent interactions (Brodkorb
et al., 2016). During gelation, the number and combined strength of
proteineprotein interactions (e.g., disulphide, hydrophobic and
electrostatic interactions) determine the mechanical and rheolog-
ical properties of the resultant gel network. High whey protein
content ingredients (i.e., WPC andWPI) are commonly used in food
applications which require gelation of the protein for the expres-
sion of functionality (e.g., recombined meat products, desserts,
puddings, mousses). Many compositional and environmental fac-
tors affect the formation and rheological properties of whey protein
gels, including protein concentration, pre-denaturation and ag-
gregation of protein, salts, temperature and pH (Foegeding,
Bowland, & Hardin, 1995; Langton & Hermansson, 1992; Mulvihill
& Kinsella, 1987).

It has been known for over 20 years that heating solutions of
globular milk proteins (e.g., lysozyme and BSA) and reducing sugars
(e.g., lactose, ribose and xylose), at temperatures of 90e121 �C,
results in the formation of gels with higher firmness and elasticity
than gels made using the proteins alone in solution (Armstrong,
Hill, Schrooyen, & Mitchell, 1994; Easa, Hill, Mitchell, & Taylor,
1996). The increased strength of these protein-carbohydrate gels
is due to Maillard reaction-mediated reduction in pH and by cross-
linking of the protein molecules (e.g., via lysinoalanine). The gel
strength (but also, undesirably, colour development) increases with
decreasing Mw of the sugars (Hill, Mitchell, & Armstrong, 1992),
while the pH required to achieve gelation decreases with increasing
sugar concentration and reactivity. In combination, these effects of
sugar incorporation on gelation properties of globular protein on
heating, means that it is possible to reduce the amount of protein
required for gel formation (Azhar, 1996; Oliver et al., 2006b).

More recent work has focused on studying the gelation prop-
erties of milk proteins (especially whey proteins) conjugated with
higher Mw carbohydrates under dry heating conditions, due to the
challenges associated with denaturation and aggregation of whey
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proteins under wet heating conditions (Gauthier et al., 2001;
Morgan et al., 1999a). Conjugation of whey proteins in WPI with
dextran has been shown to influence the rheological properties of
heat-induced gels made therefrom (Spotti et al., 2013a, 2013b,
2014a, 2014b; Sun et al., 2011a). Conjugation of WPI with dextran
of 6, 40 and 70 kDa, under dry heating conditions at 60 �C for
2e9 d at 63% RH was shown to result in whey protein-conjugate
gels with lower fracture stress and Young's Modulus as measured
by uniaxial compression testing (Spotti et al., 2013a, 2013b) and
lower gel firmness (i.e., storage modulus) as measured by dynamic
low amplitude oscillatory shear rheology (Spotti et al., 2014a,
2014b), compared with WPI alone or unconjugated WPI-dextran
mixtures. Similar results were reported by Sun et al. (2011a) for
WPI conjugated with dextran (average molecular mass 150 kDa) at
60 �C for 7 d at 79% RH.

The lower strength of heat-set WPI-based gels made fromwhey
protein conjugated with dextran, compared with unconjugated
whey protein or mixtures of whey protein and carbohydrates is
attributed to several factors, with the relative contribution of the
individual factors dependent on the system composition and con-
ditions of conjugation. Under the heating conditions typically
required to achieve conjugation (see Section 6), denaturation and
aggregation of whey proteins can occur, serving to alter exposure
and reactivity of functional groups (e.g., free sulphydryl and hy-
drophobic groups) and the surface charge of protein molecules, all
of which influence proteineprotein and protein-water interactions
(Brodkorb et al., 2016). Covalent attachment of the carbohydrate
molecules also increases the hydrophilicity and steric barrier
properties of the conjugated proteins, both of which result in
decreased proteineprotein interactions and increased protein-
water interactions.

12. Enrichment and purification of conjugates

It is desirable to enrich the protein-carbohydrate conjugates
from the reaction mixtures in which they are produced to remove
unreacted carbohydrate, unreacted protein and possibly soluble
Maillard reaction products, while increasing conjugated protein
concentration. Such processes need to be food-grade, efficient,
economical and have acceptable yield e enrichment, as opposed to
purification, of the protein-carbohydrate conjugate is normally
sufficient.

There has been limited work published to date on the enrich-
ment/purification of milk protein-carbohydrate conjugates, and the
studies that have been reported (Bund, Allelein, Arunkumar, Lucey,
& Etzel, 2012; Etzel & Bund, 2011) are very much informed by
approaches used in the pharmaceutical industry for purification of
various therapeutic proteins conjugated with polyethylene glycol
(i.e., PEGylated proteins), with separation being achieved largely
based on differences in hydrophobicity (i.e., using hydrophobic
interaction chromatography; Mayolo-Deloisa, Gonz�alez-Valdez, &
Rito-Palomares, 2016) and charge density (Abe, Akbarzaderaleh,
Hamachi, Yoshimoto, & Yamamoto, 2010) between conjugated
and unconjugated proteins.

An initial study by Etzel and Bund (2011) involved laboratory-
scale, analytical separation and enrichment of whey protein-
dextran conjugates from mixtures of unreacted dextran and whey
protein using cation exchange column chromatography with
traditional chromatographic beads or porous polymethacrylate
monolithic media and sodium lactate/sodium chloride-containing
elution buffers. Using such an approach, unreacted dextran eluted
first, followed by the conjugated protein and finally the unreacted
protein; a portion of the unreacted whey proteinwas isoelectrically
precipitated from the feed stream at pH 5.0, before chromato-
graphic separation. The monolith media resulted in a similar

dynamic binding capacity as the traditional beaded support
(4e6 g L�1) but with 42-fold higher mass productivity and 48-fold
higher flow rate, while yielding a conjugate-enriched stream with
lower purity. The use of cation exchange chromatography, as
originally proposed by Etzel and Bund (2011) has been successfully
scaled up to a preparative scale (i.e., 160 fold up-scaling from 5 mL
to 800 mL columns) by Bund et al. (2012). On scale up, the upfront
partial removal of unreacted whey protein by isoelectric precipi-
tation was shown to be effective in reducing the buffer volumes
required, purification time and the number of chromatography
cycles required for purification of the conjugates. The yield of
conjugated protein was ~18% on a protein basis, with the losses
mainly associated with incomplete conversion of unconjugated to
conjugated whey protein during the conjugate production process.
Opportunities for increasing this conversion rate should be evalu-
ated in future studies, with integration of conjugation and frac-
tionation steps to reintroduce unreacted dextran and protein or the
use of on-column conjugation having being suggested by Bund
et al. (2012) and Fee and Van Alstine (2006). In addition, progres-
sively increasing the salt concentration during elution for the
enrichment/purification of milk protein-carbohydrate conjugates
would be expected to facilitate separation of conjugates based on
differences in their degree of glycosylation, as is the case with
PEGylated lysozyme and BSA (Abe et al., 2010).

The vast majority of the studies to date on functional properties
of conjugated milk proteins/peptides have been completed on
mixtures of conjugated and unconjugated proteins/peptides (i.e.,
without removal of unconjugated protein/peptide and carbohy-
dratematerial). Further development of approaches for enrichment
and purification of conjugated proteins/peptides from unconju-
gated proteins/peptides and carbohydrates will allow more sys-
tematic and deeper understanding of the role of residual
unconjugated protein/peptide and carbohydrate material in
determining the overall functionality of conjugated mixtures.

13. Conclusions and future perspectives

The proteins of milk are considered its most valued constituents
fromboth techno-functional and nutritional perspectives (Augustin
& Udabage, 2007) and many milk protein-based ingredients have
been developed over the years which harness the unique functional
properties of milk proteins (Smithers, 2008). As exemplified in this
review, milk protein functionality continues to be an active area of
research with Maillard-induced glycation of milk proteins/peptides
offering considerable potential in the development of milk protein-
based ingredients with enhanced heat stability, solubility, emulsi-
fication and foaming properties. However, some challenges with
the use of conjugation to modify milk protein/peptide functionality
exist and need to be addressed if the opportunities presented
herein are to be fully realised and commercialised. One of the
challenges experienced in interpreting data from studies
completed to date on the influence of conjugation on functional
properties of milk proteins/peptides is the ability to decouple the
effects of protein denaturation/aggregation and conjugation on the
functional property of interest. To facilitate this decoupling it is
critically important to include appropriate control samples (i.e.,
unheated versus heated versus conjugated protein/peptide) in the
design of such studies.

While it is desirable to achieve conjugation during the early
stages of the Maillard reaction, it is also beneficial to limit the
progression of the Maillard reaction to advanced stages, as the
latter are largely responsible for some of the less desirable aspects
of the Maillard reaction. In addition to bringing about glycation, the
Maillard reaction (through the Strecker degradation pathway)
contributes to both colour and flavour development under
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conditions required to achieve conjugation (Van Boekel, 2006).
Little information exists in the peer-reviewed literature on the
sensorial properties of milk protein-carbohydrate conjugate in-
gredients and further research is required to develop a better un-
derstanding of sensory properties of milk protein-based
conjugates. Bitterness in protein hydrolysates is associated with
greater exposure of hydrophobic amino acid residues in peptides
than in the intact proteins (FitzGerald & O'Cuinn, 2006; Newman,
O'Riordan, Jacquier, & O'Sullivan, 2015); the covalent attachment
of hydrophilic carbohydrate moieties to peptides during conjuga-
tion may present opportunities for reducing bitterness with con-
jugated milk protein hydrolysates. Maillard reaction products in
conjugated milk protein-carbohydrate systems have been associ-
ated with high levels of antioxidant activity and milk protein/
peptide-carbohydrate conjugates may be of interest as antioxi-
dants in formulated food systems (Gu et al., 2009; Jiang& Brodkorb,
2012).

A number of authors have reported that conjugation of milk
proteins with carbohydrates may alter the digestibility and
immunogenicity of the proteins, to an extent dependent on the
heat treatment applied, exact conformational changes to the pro-
teins and the Mw of the carbohydrate moiety covalently attached
(B€ottger, Etzel, & Lucey, 2013; Corzo-Martínez et al., 2010b; Corzo-
Martínez, �Avila, Moreno, Requena, & Villamiel, 2012a; Ikeda et al.,
1996; Kobayashi et al., 2001). Further research on the nutritional
and toxicological aspects of milk protein/peptide-carbohydrate
conjugates and how conjugation impacts protein digestion and
allergenicity would help in the development of these ingredients
for hypoallergenic food applications.

Some information on the kinetics of adsorption and viscoelastic
properties of interfacial (i.e., O/Wand A/W) layers stabilised bymilk
protein-carbohydrate conjugates has been included in this review
(see Sections 9 and 10); however, there are important questions
remaining to be answered. For example, better understanding and
control of the hydrophilic-hydrophobic balance of conjugated
proteins, as affected by carbohydrate type and protein conforma-
tional changes, could assist in developing conjugates that confer
greater foam capacity and stability. Similarly, studying the influ-
ence of Mw ratios and conformation of carbohydrate and protein
moieties (i.e., as controlled by hydrolysis) would expand current
knowledge in the area of interfacial packing and thickness of con-
jugates and assist in developing tailored solutions for improving
protein functionality in areas such as emulsion stability, foam sta-
bility and encapsulation. Applying techniques used for studying the
viscoelastic properties of interfaces, such as pendant drop tensi-
ometry (Tamm et al., 2012), dilatational and shear rheology
(Karbaschi et al., 2014), non-linear rheology (Sagis & Fischer, 2014)
and surfactant diffusion kinetics (Dombrowski et al., 2016) would
facilitate greater understanding of the interfacial properties of milk
protein/peptide-carbohydrate conjugates.

In contrast to O/W emulsions stabilised by protein or low Mw
surfactants, where the majority of the emulsifier is located at the
interface, conjugate-based emulsifiers (i.e., mainly the hydrophilic
carbohydrate moiety) can extend considerably into the serum
phase. As a result of these differences, it is likely that the rheological
properties of conjugate-stabilised O/W emulsions would be influ-
enced by the interactions between the ‘hairy’ interfacial layers of
individual oil globules and between these globules and other serum
phase components (e.g., protein aggregates and hydrocolloids, if
present) and is an area that warrants further investigation.

In using milk protein/peptide-carbohydrate conjugates as
emulsifiers in powdered emulsion-based products, information is
required in understanding how these ingredients may affect spray
drying properties and stability of the resultant powders. It has been
reported recently that on spray drying emulsions, the

concentration of emulsifiers used is disproportionately higher on
the surface, compared with the bulk phase of spray dried powder
particles (Munoz-Ibanez et al., 2016) and it is also generally
accepted that the surface composition of a powder strongly in-
fluences its functionality (e.g., solubility) and stability during stor-
age (e.g., caking; Kelly et al., 2015; Vega & Roos, 2006; Vignolles,
Jeantet, Lopez, & Schuck, 2007). It is also likely that conjugation
of milk proteins/peptides with carbohydrates influences their spray
drying properties, as during drying, the mechanical properties of
the droplet skin layer are affected by the properties and structure of
the protein/surfactant present at the A/W interface, which affects
the kinetics of moisture removal and the overall kinetics of particle
drying as shown with a single droplet drying model (Sadek et al.,
2015).

In addition to the conventional dry and wet heating approaches,
some alternative/non-thermal technologies and combinations
thereof, such as sonication (Perusko et al., 2015; Stanic-Vucinic,
Prodic, Apostolovic, Nikolic, & Velickovic, 2013; Yu, Seow, Ong, &
Zhou, 2017), microfluidisation (Huang et al., 2013; Zhong et al.,
2014), high hydrostatic pressure (Moreno, Molina, Olano, &
L�opez-Fandi~no, 2003) and microwave treatment (Wang et al.,
2013) are increasingly being studied for application in the pre-
treatment of substrates prior to conjugation or directly in the
production of conjugates and may offer promise for the production
of milk protein/peptide conjugates with modified functionality.
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