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ABSTRACT
In this paper, we present a 5G trace dataset collected from a major
Irish mobile operator. The dataset is generated from two mobil-
ity patterns (static and car), and across two application patterns
(video streaming and file download). The dataset is composed of
client-side cellular key performance indicators (KPIs) comprised of
channel-related metrics, context-related metrics, cell-related met-
rics and throughput information. These metrics are generated from
a well-known non-rooted Android network monitoring applica-
tion, G-NetTrack Pro. To the best of our knowledge, this is the
first publicly available dataset that contains throughput, channel
and context information for 5G networks. To supplement our real-
time 5G production network dataset, we also provide a 5G large
scale multi-cell ns-3 simulation framework. The availability of the
5G/mmwave module for the ns-3 mmwave network simulator pro-
vides an opportunity to improve our understanding of the dynamic
reasoning for adaptive clients in 5G multi-cell wireless scenarios.
The purpose of our framework is to provide additional informa-
tion (such as competing metrics for users connected to the same
cell), thus providing otherwise unavailable information about the
eNodeB environment and scheduling principle, to end user. Our
framework, permits other researchers to investigate this interaction
through the generation of their own synthetic datasets.

CCS CONCEPTS
• Information systems→Multimedia streaming; •Networks
→ Public Internet; Wireless access networks; Network mea-
surement.
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1 INTRODUCTION
From the first-generation, voice-only, mobile cellular communica-
tion systems to the current fourth generation system (4G - Long
Term Evolution - LTE), development has progressed at a steady
pace. While this evolution is typically fuelled by services and ap-
plications utilising the network, the current bandwidth demands
on the 4G network was never anticipated [1]. Applications utilis-
ing social media, gaming, and recent advances in Augment/Virtual
Reality, has accelerated the demands for the next, fifth generation
(5G), of the cellular communication standard. 5G hold the promise
of ubiquitous connection with vastly improved connectivity: high
data rates (10x increase compared to “traditional” 4G network) and
low latency (10x lower compared to a 4G network). In addition to
the high rates (around 1Gbps) and low latency (1ms), 5G provides
connectivity for tens of thousands of devices in order to support
future IoT and Internet of Vehicle (IoV ) paradigms. These enhance-
ments require novel solutions in core network architecture and
radio interface design [6].

The two most significant factors driving the development of next
generation cellular standards is the rapid increase in the number of
connected devices and the unrivalled rise in multimedia traffic, and
as a direct result their increased throughput demands. Predictions
for the number of connected devices by 2025 vary. The largest pre-
diction being that the number of connected Internet of Things(IoT )
devices is expected to reach 75.44 billion [2]. At the heart of this
growth in throughput demand is video traffic, carried through differ-
ent applications, from Video on Demand (VoD), live streaming and
360-degree video. Current streaming platforms utilise the HTTP
adaptive streaming (HAS) technique [17] for video delivery. HAS
allows graceful adaptation of video quality during the playback
through the segmentation of video content. New video compression
standards (H.265/HEVC) and ultra-high definition resolutions (e.g.,
8K) have high bandwidth requirements [13]. These requirements
are further exacerbated in 360-degree videos. For example, 24K
360-degree video with 120 frame-per-second can consume several
Gbps. However, high bandwidth demand is not the only constraint.
User can change field-of-view at any time. For a user to not experi-
ence motion sickness, latency during the transition needs to be less
than 20ms [18]. While 5G can sustain these demands, it is yet to
be proven that high-rate low-latency can be constantly supported
in real networks. To support analysis of video performances, new
datasets containing bandwidth and latency information, collected
in production 5G networks, are needed.

In this paper, we present two datasets: the first collected from real
5G production network and the second synthetic dataset generated
from a large-scale multi-cell 5G/mmwave ns-3 [3] framework. Our

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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production dataset is similar to our previously collected dataset in
4G networks [15]. We collected traces from a major Irish operator
with two mobility patterns, driving and static. Furthermore, we
extend our download strategy beyond file download, running the
same scenarios while streaming video content using Amazon Prime
and Netflix streaming services. In addition to throughput values, the
dataset contains information about latency, channel conditions (e.g.,
signal strength), user location (i.e., GPS coordinates) and more (see
Section 4 for details). These metrics allow multi-purpose analysis
including a comparison of different HAS approaches, handover pre-
diction, coverage analysis, mobility prediction etc. To the best of our
knowledge, this is the first publicly available dataset that contains
throughput, channel and context information for 5G networks.

The remainder of this paper is organised as follows. Section 2
describes related work. The 5G production dataset collection and
captured metrics are explained in Section 3, while Section 4 explores
statistical traits of the production dataset for different mobility
patterns. In Section 5, we present our 5G/ns-3 simulation framework
and offer details on configuration, structure and illustrate sample
outputs of the synthetic dataset. In Section 6 we outline possible
use cases, while Section 7 concludes the paper.

2 RELATEDWORK
Prior dataset in this area, were collected using 3G and 4G network
technologies [4, 10, 15, 16, 19, 20]. These datasets typically contain
throughput information logged in a range of timescales (from one
to several seconds), and across a multitude of mobility patterns,
including static, pedestrian, bus, train, ferry and car. Throughput
information can be beneficial when evaluating the performance
at the application layer, such as required by HAS algorithms in
video streaming during the optimisation of video delivery in rate-
based [9], buffer-based [7], and hybrid [5] schemes. Some of these
datasets [4] were collected multiple times over the same route to
get statistically significant results (as the network throughput can
vary significantly over the same route). In addition to throughput
performance [10, 15, 20], some datasets contain information about
the channel (e.g., signal strength), context (e.g., GPS of the device,
device velocity, eNBs ID), which can be beneficial when evaluat-
ing mobility patterns during handover. There are also many video
streaming approaches that leverage information beyond through-
put to make more intelligent decisions for the next chunk quality
improving video QoE [14, 21, 22]. Recently, Narayanan et al. [12]
conducted the first 5G measurement study of commercial 5G net-
work in the U.S (Verizon). The authors only collected throughput
and latency information and compared their results with the Veri-
zon 4G network. Their log dataset which was not released, consists
of UE location and IP, and, eNB ID and signal strength.

3 PRODUCTION DATASET GENERATION
For the collection of the 5G production dataset we utilise version
18.7 of the G-NetTrack Pro mobile network monitoring tool1 for
Android devices. The application is installed on a Samsung S10 5G
Android device. G-NetTrack Pro permits the collection of multiple
channel-related metrics, context-related metrics, cell-related met-
rics and throughput information (uplink and downlink) using the
1http://www.gyokovsolutions.com/

standard Android library. G-NetTrack Pro works across a range of
Android devices and does not require rooted privileges. Some of
the limitations include minimum one-second granularity for the
channel metrics (this limitation comes from the Android API itself)
and a non-unified capability of measuring all the metrics across
the different mobile “system on a chip” (SoC) chipsets manufac-
turers. Implementation of callback methods for reporting channel
values depends on the SoC manufacturer. Luckily, Samsung S10
5G (with Exynos chipset) provides a means of capturing all the 5G
channel metrics (note: at the time of collection, we were limited by
the choice of 5G supported mobile devices supported by the Irish
mobile operator used for the dataset generation).

Our production dataset2, consists of 83 traces, with a total dura-
tion of 3142 minutes. The mobile plan offered by the Irish mobile
operator includes a fair use limit of 80GB data per month, before
the download rate is reduced. The strategy for collecting the 5G
data is as follows; for each combination of application (file down-
load, Netflix, Amazon Prime) and mobility pattern (static, driving),
we run experiments until all data is consumed per month. This
leads to a limited number of traces. For example, we only capture
four bandwidth traces in a static scenario with large file download.
However, the total number of minutes for the static scenario is
160 minutes. This is intuitive, as file download case produces the
highest throughput values and consumes data very quickly. These
large duration traces can be split into shorter duration’s, depending
on the needs of an experimentation setup (typically, most of the
video-related experiments considered in the literature utilise up to
five minutes of bandwidth traces).

For file download trial, we use a large file (> 200MB) to allow
the TCP sending window to ramp up to the maximum size. As
stated, every sample is logged with one-second granularity. For
Netflix and Amazon Prime we stream animated (circa 200m) and
live-action (circa 400m) video content, while running G-NetTrack
Pro application in the background collecting bandwidth and channel
samples.

The following outlines the metrics within our production dataset:
• Timestamp: timestamp of sample
• Longitude and Latitude: GPS coordinates of mobile device
• Velocity: velocity in kph of mobile device
• Operatorname: cellular operator name (anonymised)
• CellId: Serving cell for mobile device
• NetworkMode:mobile communication standard (2G/3G/4G/5G)
• DL_bitrate: download rate measured at the device (applica-
tion layer) (kbps)

• UL_bitrate: uplink rate measured at the device (application
layer) (kbps)

• State: state of the download process. It has two values, either
I (idle, not downloading) or D (downloading)

• 𝑃𝑖𝑛𝑔𝑎𝑣𝑔 , 𝑃𝑖𝑛𝑔𝑚𝑖𝑛 , 𝑃𝑖𝑛𝑔𝑚𝑎𝑥 , 𝑃𝑖𝑛𝑔𝑠𝑡𝑑 , 𝑃𝑖𝑛𝑔𝑙𝑜𝑠𝑠 : ping statistics
(average, minimum, maximum, standard deviation and loss)

• RSRQ: value for RSRQ. RSRQ Represents a ratio between
RSRP and Received Signal Strength Indicator (RSSI). Sig-
nal strength (signal quality) is measured across all resource
elements (RE), including interference from all sources (dB).

• SNR: value for signal-to-noise ratio (dB).

2http://cs1dev.ucc.ie/misl/5Gframework/5G-production-dataset.zip
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• RSRP: value for RSRP. RSRP Represents an average power
over cell-specific reference symbols carried inside distinct
RE. RSRP is used for measuring cell signal strength/coverage
and therefore cell selection (dBm).

• RSSI: value for RSSI. RSSI represents a received power (wide-
band) including a serving cell and interference and noise
from other sources. RSRQ, RSRP and RSSI are used for mea-
suring cell strength/coverage and therefore cell selection
(handover) (dBm).

• CQI: value for CQI of a mobile device. CQI is a feedback
provided by UE to eNodeB. It indicates data rate that could
be transmitted over a channel (highest MCS with a BLER
probability less than 10%), as the function of SINR and UE’s
receiver characteristics. Based on UE’s prediction of the chan-
nel, eNodeB selects an appropriate modulation scheme and
coding rate.

• NRxRSRQ & NRxRSRP: RSRQ and RSRP values for the neigh-
bouring cell.

Table 1 summarises the mobility patterns used to generate the
dataset:

Table 1: Mobility Patterns

Type Summary
Static Static trials (indoor and in car scenarios)
Car Trials include urban and suburban scenarios

In conjunction with the different mobility patterns, different
download approaches were taken, and these are summarised in
Table 2:

Table 2: Application Patterns

Type Summary
File Download Continuous large file download
Netflix Netflix service provider streamed video content
Amazon Prime Amazon Prime service provider streaming video content

4 PRODUCTION DATASET OVERVIEW
Due to page limitations, this section gives a short overview of the
production dataset. The dataset is composed from two mobility
patterns, static and car. Static traces were collected indoors and in-
car, with the mobile device in a stationary position. Unlike the static
car scenario, the car mobile scenario included driving through city
and the suburban areas. The majority of the cases were collected
during the morning and evening hours and can be further classified
as commute traces.

4.1 4G vs. 5G
We start by comparing the throughput of traces collected over
the 4G and 5G technologies. For 4G, we use our previously col-
lected dataset [15]. To offer a fair comparison, we only compare
traces from the same mobile operator and with the same mobility
patterns. Furthermore, only the scenario with file download is com-
pared across two mobile technologies. We use average throughput
and variation range as performance metrics. Variation range is a
percentile-wise measure of variation. Let’s define 𝑅 as application
throughput during time interval the (𝑡, 𝑡 + 1). Then variation range

is defined as the interval [𝑅𝐿, 𝑅𝐻 ], where 𝑅𝐿 represents a 10𝑡ℎ per-
centile of 𝑅, and analogously 𝑅𝐻 a 90𝑡ℎ percentile of 𝑅 [8]. This
range defines boundaries where 80% of measured throughput lies.

Table 3 shows performance metrics for the 4G and 5G. As ex-
pected, 5G allows higher rates, with a 50% increase for the average
throughput for the static scenario. This observation is further sup-
ported by variation range, where the upper limit for throughput
is 202Mbps for the 5G, almost 3x higher than that of 4G. However,
this difference is less evident in the case of the car scenario. The
average throughput increased by 27% for 5G compared to 4G. The
main reason for “minor” improvement is lack of 5G base stations
across all driving routes, forcing the device to use 4G. However,
even with this limit, upper limit for variation range is still almost
2x higher for 5G than 4G. While the mentioned metrics gave the ex-
pected performance, the interesting values are peak rates that were
observed during the collection. In the case of the static scenario, the
maximum observed 5G throughput is 333Mbps. This is an increase
of 3x times compared to the same 4G scenario (peak rate 97Mbps).
The difference is even more evident for the driving scenario, where
the 5G-supported device achieved a rate of 532Mbps, 5x times larger
than 4G (peak rate 108Mbps).

4.2 File download vs. streaming
Table 4 shows a comparison between performance metrics for differ-
ent application types. Intuitively, continuous file download has the
highest average throughput and variation range. Netflix and Ama-
zon Prime consume significantly less bandwidth, as seen in Figure 1,
and is a consequence of application behaviour. Figure 1 depicts a
boxplot illustrates the relationship between CQI and application
throughput and shows the range of throughput values for each CQI
separately. Overall, we observe an increasing trend in throughput
proportional to CQI. However, the range of throughput values oscil-
lates significantly for each CQI. For Amazon Prime, lower bitrates
result in similar throughput rates across all CQI values. Streaming
services download segments only during the ON phase (buffer fill-
ing). Also, bandwidth demand is limited by the maximum quality
of encoded video content. Overall, Netflix consumes significantly
more bandwidth than Amazon Prime for both mobility patterns,
as a result of the higher encoding quality and thus larger segment
sizes. Next, we analyse the collected traces latency performance. For
the static and driving scenarios, the average latency is 75 and 90ms,
respectively. This performance is much higher than the targeted
1ms, which is expected to be achieved as the technology matures.

5 5G/MMWAVE SIMULATION FRAMEWORK
In [15], we presented our previous work which contained both a
production and synthetic 4G trace dataset composed of client-side
cellular key performance indicators (KPIs). The synthetic dataset
was generated from a large-scale 4G ns-3 simulation that includes
one hundred users randomly scattered across a seven-cell cluster.
This synthetic dataset was beneficial in that it provides additional
information (such as competing metrics for users connected to the
same cell), thus providing otherwise unavailable information about
the eNodeB environment and scheduling principle, to end user.
While prior work utilised the open-source NS-3 LENA project [3],
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Table 3: Average/Variation Range of Application Throughput (Mbps) across different mobility patterns and network technolo-
gies (file download scenario only)

Mobility Patterns
Network Technology Static Car

5G
4G

Avg.
66.9
42.6

Var. Range
(22.0, 202.5)
(21.3, 77.2)

# Traces
5
5

Trace Dur. (m)
260
39

Avg.
28.5
22.3

Var. Range
(3.0, 88.5)
(3.2, 49.1)

# Traces
16
12

Trace Dur. (m)
459
290

Table 4: Average/Variation Range of Application Throughput (Mbps) across different mobility patterns and application types

Mobility Patterns
Application Static Car

File download
Netflix
Amazon Prime

Avg.
66.9
13.7
6.9

Var. Range
(22.0, 202.5)
(0.5, 31.1)
(0.3, 11.2)

# Traces
5
10
8

Trace Dur. (m)
260
576
582

Avg.
28.5
7.5
1.3

Var. Range
(3.0, 88.5)
(0.4, 19.9)
(0.3, 2.7)

# Traces
16
23
21

Trace Dur. (m)
459
637
628
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Figure 1: Boxplot of CQI vs application throughput for across different application types (driving)

recent advancements offers a full-stack simulation infrastructure
of the ns-3 mmwave module [11].

The focus of the simulation 5G framework in this submission is
to build upon said 4G simulation model and create a flexible and
highly customisable 5G/mmwave [11] ns-3 simulation framework,
which generates a trace dataset of 5G key performance indicators
(KPIs) across numerous 5G clients (UEs) and base stations (eNBs).
Example output includes time-series channel quality indicators:
CQI/SNR/RSRP/RSRQ as well as throughput rates for the different
evaluation scenarios. The framework produces data for a defined
number of 5G base stations and clients, typically in a Line Of Sight
(LOS) level environment. The dataset provides a unique mechanism
to view the relationship of the channel quality indicators between
the network(s) and the client(s) in a large-scale 5G simulation. All
code, build and usage instructions for our 5G/mmwave ns-3 simu-
lation framework are available online3.

5.1 Framework Configuration
Table 5 illustrates the simulation input configuration fields, cat-
egorised by where in the code these fields are configured, and a
default value and description for each. To provide ease of use, a
python2 script, start_mmwave.py, is provided to initiate execution.

3http://cs1dev.ucc.ie/misl/5Gframework/5G-framework.zip

This script handles user input and redirects ns-3 commandline out-
put to a dedicated logging file system for subsequent parsing once
the simulation completes.

start_mmwave.py uses several configurable flags, as shown in
Listing 1, to take user input directly from the command line. These
inputs can be displayed when executing the script with the -h flag.
The user input, as defined in Table 5, is configurable through this
script. This script also configures the simulation environment by
removing old log files, that may interfere with the simulation, and
outputs the user-provided variables to the CLI before calling the
execution. While the simulation is executing, this script will repeat-
edly scan to determine when the simulator process begins logging
and reads current simTime from a special log file, timelog.txt, and
outputs the current simTime. Additionally, the script calls auxiliary
scripts appropriate to handle said logging.

Listing 1: Python Test Template
1 # python start_mmwave.py −ue %s −enb %s −t %s −src %s
2 −log %s −x %s −y %s −z %s
3 −xVel %s −yVel %s −zVel %s −i %s

In order to generate throughput and end-to-end latency infor-
mation, a remote host is introduced to the simulation. This remote
node acts as the destination for packets generated by the UE and
the source of packets that each UE receives. The intention for using
this remote node is to behave as a pseudo-internet location.

http://cs1dev.ucc.ie/misl/5Gframework/5G-framework.zip
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Table 5: ns-3 5G/mmWave Configurable Attributes and Simulation Default Values

Field Script Config Via. Description
simTime -t Terminal Default 1.0 seconds. Length of time to run the simulation.
numUe -ue Terminal Default 1. The number of UE to simulate.
numEnb -enb Terminal Default 1. The number of eNodeB to simulate.
maxX -x Terminal Default 100. The size of the simulation space along the X-axis.
maxY -y Terminal Default 100. The size of the simulation space along the Y-axis.
maxZ -z Terminal Default 100. The size of the simulation space along the Z-axis.
maxXVel -xVel Terminal Default 100. The maximum velocity of UE along the X-axis.
maxYVel -yVel Terminal Default 100. The maximum velocity of UE along the Y-axis.
maxZVel -zVel Terminal Default 0. The maximum velocity of UE along the Z-axis.
interval -i Terminal The time interval in the completed datasets.

-src Terminal The directory location of the NS3 waf executable.
-log Terminal The directory to store logs.

minX not defined Source Default 0. Assumed to be irrelevant due to the ability to configure maxX easily.
minY not defined Source Default 0. Assumed to be irrelevant due to configure maxY easily.
minZ not defined Source Default 0. MmWave module does not support underground simulation (yet).
Data Rate not defined Source Default value conforms to the expected/promissory value of 5G/mmWave. Adjustment rarely required.
Link Delay not defined Source Default value conforms to the expected/promissory value of 5G/mmWave. Adjustment rarely required.

eNodeB

eNodeB

eNodeB

eNodeB

eNodeB

eNodeB

eNodeB

eNodeB

eNodeB

𝑛 ∈ {5, 7, 8, 9}, ⌈
√
𝑛⌉ = 1, 1 ∗ 1

UE

»»» »

Figure 2: 20 Scattered UEs and Mobility, eNodeB layout for
𝑛 ∈ {5, 7, 8, 9}, Arrows Denoting Mobility

5.2 Simulating Mobility and Handover
The simulation area hosts many UE nodes scattered randomly
throughout. The number of UEs is configurable by the user, as
is maximum velocity. The simulation randomly selects values be-
tween the minimum (no movement) and maximum velocity to
assign to each UE. The travel path of the UEs follow the Gaussian
Mobility model and will change direction when encountering the
bounds of the simulation area. At random intervals, UE velocity
will change to another randomly generated velocity. UEs initially
connect to the closest eNodeB. From here, as they move throughout
the simulation area, they will connect via handover to whichever
eNodeB provides them with the best connection at any given time.
This environment is visualised in Figure 2.

5.3 Simulation Evaluation and Dataset
Structure

In order to test the functionality and configurations of our proposed
framework, several test case simulations as detailed in Fig 3, are used
to validate our design and implementation. These tests are executed

Figure 3: Sample Test Cases

multiple times over a single simulated second. Running over a single
second with an interval of 0.1 gives 100 entries for the uplink and
downlink of each UE and eNodeB. This setting produces adequate
data for the sake of comparison while remaining within reasonable
runtimes. The generated output logs are gathered and saved as
numerous UE and eNB datasets in a folder called “mmwave_log”.
When compared these logs produce the same structure for all UEs
and eNodeBs. Figure 4 illustrates an example of the sample output.

To provide ease of use, we also offer an Ubuntu 19.10 VirtualBox
VM containing all required dependencies and our 5G framework4.
Username and password for the provided VM is “godashbed”.

6 USE CASE
The production dataset and the output of the simulation framework
are both exceptionally adaptive by design, allowing users to capture
a variety of scenarios. Thus, there are a wide assortment of potential
uses for the generated data. These potential uses extend to indus-
tries and fields such as machine learning, networking, research and
development. Detailed examples are presented in Table 6.

7 CONCLUSION
In this paper, we present both a 5G trace dataset collected from a
major Irish mobile operator, and a large-scale multi-cell 5G/wwave
simulation framework. The 5G dataset is composed of client-side
key performance indicators, and illustrates the variance in through-
put demand in both client streaming and download scenarios. The
4http://cs1dev.ucc.ie/misl/5Gframework/5G-ns3-ubuntu19.10.zip

http://cs1dev.ucc.ie/misl/5Gframework/5G-ns3-ubuntu19.10.zip
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Table 6: Proposed Use Cases

Industry/Field Use Explanation
Machine Learning Predictive Models Analysing datasets to reveal predicted network performance.

Distribution Analysis Revealing distributions and correlations between underlying low-level statistics.
Generative Models Analysis of dataset could be used to train a generative model to produce new data.

Networking Prototyping Prototyping the performance of proposed 5G/mmWave network topologies.
Training Educating would-be 5G/mmWave network engineers on the underlying concepts of 5G/mmWave.

Research Experimentation Providing a simulated environment in which to conduct experiments.
Result Confirmation Confirming published results of other researchers 5G/mmWave projects.

Development Software/Hardware Testing By introducing custom behaviour representative of new software/hardware into the simulation.

Figure 4: Sample 5G/mmwave output

5G framework offers a mechanism to investigate large scale deploy-
ments of mobile devices in a multi-cell 5G environment. To the best
of our knowledge, this is the first publicly available dataset that
contains throughput, channel and context information for real-time
analysis of a production 5G network. As the ns-3 cellular model
evolves to include sub-6Ghz variations, in future work we would
plan to extend our simulation framework to combine both mmwave
and sub-6Ghz, as this combination is suggested in real-world next
generation 5G networks.

ACKNOWLEDGMENTS
This publication has emanated from research conducted with the
financial support of Science Foundation Ireland (SFI) under Grant
13/IA/1892, and is co-funded under the European Regional Devel-
opment Fund under SFI Grant 13/RC/2077. We also thank Andrew
Nash and Kieran Horgan for their invaluable assistance in evaluat-
ing the 5G/mmwave module.

REFERENCES
[1] M. Agiwal et al. 2016. Next Generation 5GWireless Networks: A Comprehensive

Survey. IEEE Communications Surveys Tutorials 18, 3 (2016), 1617–1655.
[2] Tanweer Alam. 2018. A Reliable Communication Framework and Its Use in

Internet of Things (IoT).
[3] Nicola Baldo et al. 2011. An Open Source Product-oriented LTE Network Simula-

tor Based on Ns-3. In Proceedings of the 14th ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’11).

[4] Ayub Bokani et al. 2016. ComprehensiveMobile Bandwidth Traces fromVehicular
Networks. In Proceedings of the 7th International Conference onMultimedia Systems
(MMSys ’16). ACM, Article 44, 6 pages.

[5] L. De Cicco et al. 2013. ELASTIC: A Client-Side Controller for Dynamic Adaptive
Streaming over HTTP (DASH). In IEEE International Packet Video Workshop.

[6] M. Cosovic et al. 2017. 5G Mobile Cellular Networks: Enabling Distributed State
Estimation for Smart Grids. IEEE Communications Magazine 55, 10 (Oct 2017),
62–69. https://doi.org/10.1109/MCOM.2017.1700155

[7] T.-Y. Huang et al. 2014. A Buffer-based Approach to Rate Adaptation: Evidence
from a Large Video Streaming Service. In SIGCOMM. ACM.

[8] Manish Jain et al. [n.d.]. End-to-end Estimation of the Available Bandwidth Varia-
tion Range. In Proceedings of the 2005 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS ’05). 12.

[9] J. Jiang et al. 2014. Improving Fairness, Efficiency, and Stability in HTTP-Based
Adaptive Video Streaming With Festive. IEEE/ACM Transactions on Networking
22, 1 (Feb 2014).

[10] L. Li et al. 2015. A measurement study on TCP behaviors in HSPA+ networks on
high-speed rails. In 2015 IEEE Conference on Computer Communications (INFO-
COM). 2731–2739. https://doi.org/10.1109/INFOCOM.2015.7218665

[11] Marco Mezzavilla et al. 2018. End-to-End Simulation of 5G mmWave Networks.
https://ieeexplore.ieee.org/document/8344116

[12] Arvind Narayanan et al. 2019. A First Measurement Study of Commercial
mmWave 5G Performance on Smartphones. arXiv:cs.NI/1909.07532

[13] J. Nightingale et al. 2018. 5G-QoE: QoE Modelling for Ultra-HD Video Streaming
in 5G Networks. IEEE Transactions on Broadcasting 64, 2 (June 2018), 621–634.
https://doi.org/10.1109/TBC.2018.2816786

[14] Darijo Raca et al. 2019. Empowering Video Players in Cellular: Throughput
Prediction from Radio Network Measurements. In Proceedings of the 10th ACM
Multimedia Systems Conference (MMSys ’19). Association for Computing Machin-
ery, New York, NY, USA, 201–212. https://doi.org/10.1145/3304109.3306233

[15] Darijo Raca, Jason J. Quinlan, Ahmed H. Zahran, and Cormac J. Sreenan. 2018.
Beyond Throughput: A 4G LTE Dataset with Channel and Context Metrics. In
9th ACM Multimedia Systems Conference (MMSys ’18). 460–465.

[16] Haakon Riiser et al. 2013. Commute Path Bandwidth Traces from 3G Networks:
Analysis and Applications. In Proceedings of the 4th ACM Multimedia Systems
Conference (MMSys ’13). ACM, 114–118.

[17] T. Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP – Standards and
Design Principles. In MMSys ’11 Proceedings of the second annual ACM conference
on Multimedia systems. New York, 133.

[18] Liyang Sun et al. 2018. Multi-Path Multi-Tier 360-Degree Video Streaming in 5G
Networks. In Proceedings of the 9th ACM Multimedia Systems Conference (MMSys
’18). Association for Computing Machinery, New York, NY, USA, 162–173.

[19] J. van der Hooft et al. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video
Over 4G/LTE Networks. IEEE Communications Letters 20, 11 (2016), 2177–2180.

[20] Q. Xiao et al. 2014. TCP Performance over Mobile Networks in High-Speed Mo-
bility Scenarios. In 2014 IEEE 22nd International Conference on Network Protocols.
281–286. https://doi.org/10.1109/ICNP.2014.49

[21] Xiufeng Xie et al. 2015. piStream: Physical Layer Informed Adaptive Video
Streaming over LTE. In Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking (MobiCom ’15). ACM, 413–425.

[22] C. Yue et al. 2017. LinkForecast: Cellular Link Bandwidth Prediction in LTE
Networks. IEEE Transactions on Mobile Computing (2017).

https://doi.org/10.1109/MCOM.2017.1700155
https://doi.org/10.1109/INFOCOM.2015.7218665
https://ieeexplore.ieee.org/document/8344116
http://arxiv.org/abs/cs.NI/1909.07532
https://doi.org/10.1109/TBC.2018.2816786
https://doi.org/10.1145/3304109.3306233
https://doi.org/10.1109/ICNP.2014.49

	Abstract
	1 Introduction
	2 Related Work
	3 Production Dataset Generation
	4 Production Dataset Overview
	4.1 4G vs. 5G
	4.2 File download vs. streaming

	5 5G/mmWave Simulation Framework
	5.1 Framework Configuration
	5.2 Simulating Mobility and Handover
	5.3 Simulation Evaluation and Dataset Structure

	6 Use Case
	7 Conclusion
	Acknowledgments
	References

