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ABSTRACT 9 

The effect of fermentation on the antithrombotic properties of polar lipids in ovine milk has 10 

been assessed through the production of yoghurts. The total lipids (TL), total neutral lipids 11 

(TNL), and total polar lipids (TPL) were extracted. The fatty acid profiles of all yoghurt polar 12 

lipids were analysed by GC-MS. The levels of MUFA increased, but there was a reduction in 13 

PUFA as milk was fermented to yoghurt. The bioactivity of each lipid extract was assessed 14 

against platelet-activating factor (PAF) induced platelet aggregation. All yoghurt polar lipids 15 

exhibited potent antithrombotic activities with IC50 values ranging from 45–77 µg. Shotgun 16 

metagenomics determined the species-level microbial composition and functional potential of 17 

the yoghurts. Yoghurts containing L. acidophilus seem to correlate with greater bioactivity. 18 

Several phospholipid biosynthetic genes have been identified in the most antithrombotic 19 

yoghurts. This study has demonstrated that fermentation enhances the antithrombotic 20 

properties of yoghurt polar lipids against PAF. 21 
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Highlights:  30 

• Fermentation alters the polar lipid fatty acid profile of ovine milk 31 

• Specific starter cultures alter the antithrombotic properties of ovine milk in the 32 

production of yoghurts  33 

• S. thermophilus and L. acidophilus alter the anti-PAF and antithrombotic properties of 34 

yoghurts 35 

• Genes associated with phospholipid biosynthesis have been detected in the most 36 

bioactive yoghurts 37 

 38 

 39 

1. Introduction 40 

Maladaptive diet and lifestyle play a significant role in the development of chronic diseases 41 

such as cardiovascular disease (CVD), insulin resistance, obesity, and cancer (Mozaffarian, 42 

2016). Diet and lifestyle are key modifiable risk factors for the prevention of CVD (Lordan, 43 

Tsoupras, Mitra, & Zabetakis, 2018). In 2016, CVD was responsible for 17.7 million deaths, 44 

where 80% of CVD events were either a myocardial infarction or stroke (World Health 45 

Organization, 2017), of which dietary risk factors accounted for 49% of all CVD deaths (Meier 46 

et al., 2018). Dairy products were long perceived as negative dietary components by public, 47 

scientific, and media circles, as they are energy dense foods rich in saturated fatty acids (SFA), 48 

which can increase cholesterol levels (Lamarche et al., 2016; Lordan & Zabetakis, 2017a). 49 

Therefore, low-fat or non-fat dairy products were encouraged by many dietary 50 

recommendations in order to reduce to lower cholesterol levels (Lordan, Tsoupras, Mitra, et 51 

al., 2018). However, recent research indicates that dairy products may be neutral or even 52 

beneficial for cardiovascular health, and may not have significant effects on blood cholesterol 53 

levels (Labonté, Couture, Richard, Desroches, & Lamarche, 2013; Lordan, Tsoupras, Mitra, et 54 

al., 2018; Lordan & Zabetakis, 2017a; Thorning et al., 2016). Further evidence indicates that 55 

fermented dairy products may be more beneficial for health than non-fermented dairy products, 56 

especially against a number of cardiometabolic risk factors such as hypertension, cholesterol 57 

levels, and impaired glucose tolerance (Lordan, Tsoupras, Mitra, et al., 2018).   58 

Yoghurt consumption is associated with numerous health benefits including; 59 

preventing type II diabetes mellitus, obesity, metabolic syndrome, and CVD (Gijsbers et al., 60 
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2016; Lordan, Tsoupras, Mitra, et al., 2018; Sayon-Orea, Martínez-González, Ruiz-Canela, & 61 

Bes-Rastrollo, 2017; Wu & Sun, 2017). Bovine milk accounts for 85% of the total global milk 62 

production (Balthazar et al., 2017), however ovine milk and yoghurts provide a superior 63 

nutritional alternative. Ewe’s milk and dairy products are not commonly consumed outside of 64 

the Mediterranean basin, and are considered a delicacy in many countries (Lordan & Zabetakis, 65 

2017b). Ovine milk owes it nutritional superiority over bovine and caprine milk due to the 66 

higher levels of protein, lipid, minerals, and vitamins essential to human health (Balthazar et 67 

al., 2017; Lordan, Tsoupras, Mitra, et al., 2018). The most predominant fatty acid in ovine milk 68 

and yoghurts are oleic acid (18:1), palmitic acid (16:0), and myristic acid (14:0) (Balthazar et 69 

al., 2017). Diets high in oleic acid decrease low-density lipoprotein (LDL) cholesterol levels, 70 

whereas high-density lipoprotein (HDL) cholesterol levels are not significantly affected 71 

(Lordan & Zabetakis, 2017b; Molkentin, 2000). It has recently be shown that ovine yoghurt 72 

consumption does not affect the lipid profile of healthy individuals (Olmedilla-Alonso et al., 73 

2017). In addition, a recent crossover study has demonstrated a moderate attenuation of several 74 

inflammatory markers in participants with a high total cholesterol/HDL cholesterol ratio 75 

following ovine yoghurt consumption (Redondo et al., 2018). Evidently, these neutral effects 76 

on serum cholesterol levels, putative anti-inflammatory effects, and antithrombotic effects 77 

(Megalemou et al., 2017; Tsorotioti et al., 2014) indicate that ovine dairy products may be 78 

beneficial for human cardiovascular health upon consumption and thus warrant further 79 

investigation (Lordan, Tsoupras, Mitra, et al., 2018).   80 

Ovine dairy products also possess potent antithrombotic properties that are attributed 81 

to their polar lipid content (Lordan & Zabetakis, 2017a). The polar lipid content of ovine milk 82 

is approximately 9.4-35.5 mg/100g of raw milk. The polar lipid fraction contains 83 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), and sphingomyelin (SM), which 84 

are present in abundance with lower quantities of phosphatidylserine (PS) and 85 

phosphatidylinositol (PI), which is comparable to other ruminant species (Lordan, Tsoupras, 86 

& Zabetakis, 2017; Park, 2009). Although the phospholipid fraction of ovine milk is 87 

quantitatively a minor constituent of the overall lipid content, it possesses techno-functional 88 

and nutritional properties that are implicated in several physiological processes and are 89 

beneficial for health (Lordan et al., 2017).  90 

Systemic inflammation is the key biochemical process implicated in the initiation and 91 

progression of atherosclerosis (Moss, Williams, & Ramji, 2018). Circulating inflammatory 92 

mediators such as PAF actively contribute to vascular and atheromatous change (Da Silva & 93 
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Rudkowska, 2015; Lordan et al., 2017; Tsoupras, Lordan, & Zabetakis, 2018). PAF is a potent 94 

proinflammatory phospholipid mediator that is implicated in all stages of atherosclerosis that 95 

can lead to a major cardiovascular event. PAF and PAF-like molecules act solely through their 96 

binding to a unique G-protein coupled seven transmembrane receptor known as the PAF-97 

receptor (PAF-R), that subsequently triggers multiple intracellular pathways (Castro Faria 98 

Neto, Stafforini, Prescott, & Zimmerman, 2005; Lordan et al., 2017; Tsoupras, Lordan, & 99 

Zabetakis, 2018). PAF plays a key role in various physiological responses such as modulation 100 

of normal inflammatory responses and the regulation of blood pressure and coagulation 101 

(Lordan et al., 2017; Palur Ramakrishnan, Varghese, Vanapalli, Nair, & Mingate, 2017). 102 

Therapeutic approaches to the proinflammatory effects of PAF focus on disrupting PAF/PAF-103 

R interactions through competitive and non-competitive displacement of PAF from the receptor 104 

(Lordan, Tsoupras, & Zabetakis, 2018). Dietary PAF inhibitors have been identified in the 105 

polar lipids of marine (Lordan et al., 2017; Sioriki, Smith, Demopoulos, & Zabetakis, 2016), 106 

meat (Poutzalis, Lordan, Nasopoulou, & Zabetakis, 2018), and dairy sources (Megalemou et 107 

al., 2017; Poutzalis et al., 2016). In particular, ovine dairy products possess potent PAF 108 

inhibitors (Tsorotioti et al., 2014).  109 

It has been postulated that fermentation increases the bioactivity of phospholipids 110 

against PAF (Antonopoulou, Semidalas, Koussissis, & Demopoulos, 1996; Lordan & 111 

Zabetakis, 2017a). However, to date, this has not been definitively established. Thus, the aim 112 

of this study was to evaluate the effect of bacterial fermentation on the polar lipid composition 113 

and antithrombotic activity of ovine milk and yoghurts via PAF-induced platelet aggregation 114 

on human platelets in vitro. Furthermore, shotgun metagenomics was employed to characterise 115 

the species-level microbial composition of the yoghurts, and to determine if the detected 116 

species contained genes associated with fatty acid and/or lipid metabolism.  117 

 118 

2. Materials and methods 119 

2.1. Chemicals and reagents 120 

All organic solvents and glassware used in the lipid extraction and isolation process were 121 

purchased from Fisher Scientific Ireland Ltd. (Dublin, Ireland). All chemical reagents used for 122 

platelet aggregometry and lipid standards for GC-MS were purchased from Sigma-Aldrich 123 

(Wicklow, Ireland). All platelet aggregometry consumables were purchased from Labmedics 124 

LLP (Abingdon on Thames, U.K.). All GC-MS consumables were purchased from Apex 125 
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Scientific Ltd. (Kildare, Ireland). The PowerSoil DNA Isolation kit and PowerNad tubes were 126 

purchased from Cambio (Cambridge, United Kingdom). Lysozyme, mutanolysin and 127 

proteinase K were purchased from Sigma-Aldrich (Wicklow, Ireland). The Qubit High 128 

Sensitivity DNA assay was obtained from Life Technologies (ThermoFisher Scientific, Dublin, 129 

Ireland). 130 

 131 

2.2.  Milk processing & yogurt production 132 

A fresh, commercial, pasteurised, and homogenised ewe’s whole milk was obtained from 133 

Rockfield Dairy Ltd. (Claremorris, Co Mayo, Ireland). Milk was obtained from a bulk tank 134 

containing milk from the Friesland and Lacaune breed of dairy ewe, between March and July 135 

2016. The sheep were fed a forage based diet consisting of mainly grass silage or fresh grass, 136 

supplemented with cereal at the time of milking, which is typical of the small sheep dairy 137 

industry in Ireland; however, atypical in Europe where the diet mainly consists of cereal. The 138 

collected milk was pasteurised on site by heating to 91 °C for 15 seconds and then was cooled 139 

to 42 °C before being packaged and refrigerated (4 °C ± 1 °C) for transport to the laboratory. 140 

For yoghurt production, all milk samples were heated to 42 °C in pre-sterilised conical flasks 141 

in a water bath (Grant JB NV, Cambridgeshire, UK) and held at that temperature throughout 142 

the yogurt fermentation process. All yogurts (A-E) were inoculated with specific starter 143 

cultures as indicated in Table 1. When inoculated, the milk was mixed thoroughly and the 144 

temperature was held at 42 °C. The pH was monitored until the yogurt fermentation reached 145 

between 4.4 – 4.6 pH units, then the fermentation was stopped by cooling the yogurts to 4 °C. 146 

All yoghurts were made in triplicate. The yogurts were then transferred to glass media bottles 147 

and stored at -20 °C until required for analysis or a maximum of six weeks.    148 

 149 

2.3.Yogurt cultures 150 

The bacterial cultures used to manufacture the yogurts detailed in Table 1 were obtained in 151 

freeze dried form. Mother culture solutions were produced from the freeze dried cultures. The 152 

cultures used for the production of yogurts were kindly provided by Chr-Hansen (Cork, 153 

Ireland) and Orchard Valley Dairy Supplies (Worcestershire, UK).  154 

*Insert Table 1 Here* 155 
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2.4.Extraction & isolation 156 

The total lipids (TL) of all yogurt samples and milk were extracted from 100 g of sample 157 

according to the method of Bligh and Dyer (1959). One tenth of the TL was stored in sealed 158 

vials at −20 °C, while the TL was then further separated into total neutral lipids (TNL) and 159 

total polar lipids (TPL) by counter-current distribution (Galanos & Kapoulas, 1962). All lipid 160 

extracts were stored devoid of solvent in sealed vials under a nitrogen atmosphere at -20 °C. 161 

All extractions were carried out in triplicate.  162 

 163 

2.5. In vitro human biological assay 164 

Blood was obtained from healthy human volunteers (n = 12) as previously described 165 

(Tsoupras, Lordan, Demuru, et al., 2018; Tsoupras, Zabetakis, & Lordan, 2019). The Ethics 166 

Committee of the University of Limerick approved the protocol and it was performed in 167 

accordance with the Declaration of Helsinki. Healthy donors were fully aware that their blood 168 

samples were used in the study and written consent was provided to the specialised 169 

phlebotomist. All fasting blood samples provided were from participants not receiving anti-170 

platelet therapy. A total of 50 ml of blood was drawn from the median cubital vein via 171 

venepuncture using a 20 G safety needle into sodium citrate anticoagulant S-monovettes using 172 

the aspiration method (0.106 mol/L in a 1:10 ratio of citrate to blood; Sarstedt Ltd., Wexford, 173 

Ireland). For plasma isolation, blood was drawn into evacuated sodium citrate Monovettes 174 

(0.106 mol/L in a 1:10 ratio of citrate to blood; Sarstedt Ltd., Wexford Ireland) and rested at 175 

room temperature for 15 minutes followed by immediate centrifugation at 194 x g for 18 176 

minutes at 24 °C with no brake applied in order to obtain the supernatant platelet-rich plasma 177 

(PRP). A second centrifugation at 1500 x g for 20 minutes at 24 °C was carried out to obtain 178 

the platelet-poor plasma (PPP). All centrifugations were processed using an Eppendorf 5702 R 179 

centrifuge (Eppendorf Ltd., Stevenage, UK). The PRP was standardised to 500,000 platelets 180 

µl-1 using a Shimadzu UV-1800 spectrophotometer (Kyoto, Japan), before analysis on a 181 

Chronolog-490 two channel turbidimetric platelet aggregometer, coupled to the accompanying 182 

AGGRO/LINK software package (Chronolog, Havertown, PA, USA). All analyses were 183 

carried out within 2.5 hours of the initial blood draw and PRP was stored at 24 °C before use. 184 

PAF and lipids samples were dissolved in a solution of BSA-saline (2.5 mg BSA/ml saline). 185 

Prior to testing, 250 µl of PRP was added to an aggregometer cuvette at 37 °C with stirring at 186 

1000 rpm, and was calibrated prior to testing using the PPP as a blank. PAF was added to the 187 
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cuvettes in order induce maximum reversible aggregation (2.6 x 10-8 M, final concentration in 188 

the cuvette), and 50% PAF-induced aggregation was calculated. Lipid samples were tested and 189 

IC50 values were calculated as previously described (Tsoupras, Lordan, Demuru, et al., 2018). 190 

All experiments were performed in triplicate using a different donor’s blood for each replicate 191 

to ensure reproducibility following appropriate control tests of the solvents used on human 192 

platelets (saline and BSA-saline solution). The resulting IC50 values were expressed as a mean 193 

value of the mass of lipid (µg) in the cuvette ± standard deviation (SD). This procedure was 194 

informed by the guidelines for light transmission aggregometry by Cattaneo et al. (2013).  195 

 196 

2.6. GC-MS analysis 197 

Fatty acid methyl esters (FAME) were prepared using 35 mg of the TPL of the milk and 198 

yogurt samples in triplicate according to the method of Tsoupras, Lordan, Demuru, et al. (2018) 199 

with slight modifications. In brief, FAME were prepared using a solution of 0.5 M KOH in 90 200 

% CH3OH and extracted with n-hexane. The GC-MS fatty acid analysis was carried out 201 

according the internal standard method as previously described (Tsoupras, Lordan, Demuru, et 202 

al., 2018). The equation that described the curve was: y = 0.0041x + 0.12 with an R2 = 0.9969, 203 

where the ratio of the area of the analyte peak to that of the internal standard (21:0) represents 204 

the y value for the above equation, subsequently the x value represents the analyte 205 

concentration of a selected fatty acid in the lipid sample to be tested. Separation of the FAME 206 

was achieved on an Agilent J&W DB-23 fused silica capillary column (60 m, 0.251 mm, i.d., 207 

0.25 µm; Agilent Technologies, Santa Clara, CA, USA) using a Varian 410-GC coupled to a 208 

Varian 210-MS equipped with a split/splitless injector (Agilent Technologies). The injector 209 

was set at 230 °C with a split ratio of 1:5. The carrier gas was high purity helium with a liner 210 

flow rate of 1 ml/min.  The oven temperature was initially programmed to 100 °C for 5 min, 211 

raised to 240 °C at 3 °C/min, and finally held isothermal at 240 °C for 10 mins. FAME were 212 

identified using 37-component FAME standards mix (Sigma Aldrich, Wicklow, Ireland) by 213 

comparison of the retention times and mass spectra of relative peaks with the aid of the Varian 214 

Star Chromatography Workstation Version 6 software (Agilent Technologies) and a NIST 215 

library (Gaithersburg, MD, USA).  216 

 217 

 218 
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2.7.Total DNA extraction from yogurt 219 

DNA was extracted from 15 ml yoghurt as described by Walsh et al. (2016) with slight 220 

modifications. Yoghurt samples were centrifuged at 5,444 × g for 30 min at 4 °C to pellet the 221 

microbial cells in the liquid. The cell pellet was resuspended in 200 µl of PowerBead solution 222 

from the PowerSoil DNA Isolation kit (Cambio, Cambridge, United Kingdom). The 223 

resuspended cells were transferred to a pre-heated (at 60 °C) PowerBead tube (Cambio, 224 

Cambridge, United Kingdom). A 90 µl volume of 50 mg/ml lysozyme (Sigma-Aldrich, Dublin, 225 

Ireland) and 50 µl of 100 U/ml mutanolysin (Sigma-Aldrich, Dublin, Ireland) were added, and 226 

the sample was incubated at 60 °C for 15 min. A 28 µl volume of proteinase K (20 mg/ml; 227 

Sigma-Aldrich, Dublin, Ireland) was added, and the sample was incubated at 60 °C for a further 228 

15 min. DNA was then purified from the sample by the standard PowerSoil DNA Isolation kit 229 

protocol (Cambio, Cambridge, United Kingdom). 230 

 231 

2.8. Whole-metagenome shotgun sequencing 232 

Whole-metagenome shotgun libraries were fragmented and adaptors and indices added 233 

using the Illumina Nextera XT guide in accordance with manufacturer’s instructions, except 234 

that tagmentation time was increased from 5 min to 7 min. After indexing, the average fragment 235 

size was assessed using an Agilent Bioanalyser High Sensitivity Assay (Agilent) and quantified 236 

using a Qubit High Sensitivity assay (Life Technologies). Samples were then pooled 237 

equimolarly and the final pool was quantified by quantitative PCR using the Kapa Library 238 

Quantification Kit for Illumina (Roche).  The pool was then sequenced on the Illumina MiSeq 239 

sequencing platform in the Teagasc sequencing facility, with a 2 × 300 cycle V3 kit, in 240 

accordance with standard Illumina sequencing protocols. 241 

 242 

2.9. Bioinformatics 243 

Shotgun metagenomic fastq files were processed as described previously (Walsh et al., 244 

2018). Briefly, raw fastq files were converted to unaligned bam files using SAMtools (H. Li et 245 

al., 2009). Duplicate reads were subsequently removed using Picard Tools 246 

(https://github.com/broadinstitute/picard). Next, low quality reads were removed using the 247 

trimBWAstyle.usingBam.pl script from the Bioinformatics Core at UC Davis Genome Center 248 

(https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/HmpSraPro249 

https://github.com/broadinstitute/picard
https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/HmpSraProcess/trimBWAstyle.usingBam.pl
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cess/trimBWAstyle.usingBam.pl). Specifically, reads were trimmed to 200 bp, while all reads 250 

with a quality score less than Q30 were discarded. The resulting fastq files were then converted 251 

to fasta files using the fq2fa option from IDBA-UD (Peng, Leung, Yiu, & Chin, 2012). Species-252 

level analysis was performed using MetaPhlAn2 (Truong et al., 2015), which measures the 253 

abundance of species-specific marker genes in metagenomic reads. Microbial pathway analysis 254 

was performed using HUMAnN2 (Abubucker et al., 2012), which measures the abundances of 255 

UniRef clusters (Suzek et al., 2015) by aligning sequences against the ChocoPhlAn database. 256 

Bacteriocin genes were quantified by aligning reads against the BAGEL3 (van Heel, de Jong, 257 

Montalban-Lopez, Kok, & Kuipers, 2013) bacteriocin database using DIAMOND (Buchfink, 258 

Xie, & Huson, 2015). Hits against the BAGEL3 bacteriocin database were counted with 259 

SAMtools, after which the results were normalised as copies per million. 260 

 261 

2.8. Statistical analysis 262 

All biological experimental analyses were completed in triplicate, and the obtained results were 263 

expressed as a mean value ± standard deviation (SD). One-way analysis of variance (ANOVA) 264 

was employed in order to find the significant statistical differences (p < 0.05) and Fisher’s least 265 

significant difference (LSD) test was used to conduct multiple comparisons of the means (SPSS 266 

Inc., Chicago, 215 IL, USA). For the bioinformatics, statistical analysis was performed in R-267 

3.2.2 (Team R Core, 2013). The vegan package (version 2.3.0) (Oksanen et al., 2007) was used 268 

for Bray-Curtis based multidimensional scaling (MDS) analysis. The ggplot2 package (version 269 

2.2.1) (Wickham, 2016) was used for data visualisation. 270 

 271 

3.  Results  272 

3.1. Lipid extraction 273 

The resulting TL, TNL, and TPL of all yoghurt samples are presented in Table 2. It is clear 274 

from the extraction data that the milk TL is statistically significantly different from all but 275 

yoghurt C. The percentage of TNL in all yoghurts were not statistically significantly different 276 

from each other. The percentage of TPL of the milk was statistically significantly different 277 

from yoghurts A, B, and E, but similar to the other yoghurts. The percentage of TPL of all 278 

yoghurts were not statistically significantly different from each other. This agrees with 279 

previously published data relating to ovine milk and yoghurts (Balthazar et al., 2017; 280 

https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/HmpSraProcess/trimBWAstyle.usingBam.pl
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Megalemou et al., 2017), where generally the polar lipid content is reported as relatively low 281 

(Lordan et al., 2017).  282 

*Insert Table 2 Here* 283 

 284 

3.2. GC-MS analysis 285 

The fatty acid content of the TPL is shown in Table 3. As a result of fermentation, there seems 286 

to be a trend towards the reduction of PUFA levels and an increase of MUFA levels in the fatty 287 

acids of the polar lipids, whereas the levels of SFA vary depending on the yoghurt produced. 288 

Specifically, there is a statistically significant (p < 0.05) increase in the levels of 16:1, 17:0, 289 

17:1, 18:2 (cis-10, trans-12), 20:4, and 22:5 when milk was fermented to yoghurt. Remarkably, 290 

across all yoghurts there was a statistically significant reduction in the levels of ω3 PUFA in 291 

the TPL as the milk was fermented to yoghurts. This data indicates that fermentation directly 292 

affects the fatty acid composition of milk polar lipids.  293 

*Insert Table 3 Here* 294 

 295 

3.3. Biological assay  296 

The lipid extracts from the milk and yoghurt samples exhibited potent inhibition against PAF-297 

induced platelet aggregation on human PRP in vitro (Table 4). The TNL of various yoghurts 298 

exhibited a poor inhibitory effect against platelet aggregation. However, some had moderate 299 

inhibitory effects. Similarly the TL exhibited moderate inhibitory effects against PAF-induced 300 

platelet aggregation. Notably, the TL of the yoghurts were considerably more bioactive than 301 

the TNL extracts but not as bioactive as the TPL extracts. This indicates that there is a 302 

synergistic effect between the TNL and TPL. It is clear from Table 4 that the TPL extract were 303 

the most inhibitory against PAF. Ovine milk TPL exhibited the highest IC50 values, indicating 304 

that this sample possessed the lowest antithrombotic activity. Yoghurts B and D possessed the 305 

lowest IC50 values, where the IC50 of yoghurt D was statistically significantly lower than all 306 

other samples tested. 307 

*Insert Table 4 Here* 308 

  309 
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3.4. Yoghurt microbial composition 310 

MetaPhlAn2, which measures the abundance of species-specific marker genes in shotgun 311 

metagenomic reads, was used to determine and confirm the composition of the yoghurts made 312 

with commercial starter cultures. The genera and species detected in the yoghurts and their 313 

relative abundances are depicted in Fig. 1. In all of the yoghurts produced, S. thermophilus was 314 

the most dominant species, L. delbrueckii subsp. bulgaricus was the second most abundant 315 

species in yoghurts A and B. L. acidophilus was the third most abundant species present in 316 

yoghurts B (4.8%) and C (6.2%) and was the second most abundant in yoghurt D (4.9%). B. 317 

animalis was the second most abundant species (6.9%) present in yoghurt C. In yoghurt E, S. 318 

thermophilus was the predominant species with L. paracasei present in low proportions (<1%) 319 

along with E. durans (1.9%).  320 

*Insert Fig. 1. Here* 321 

 322 

3.5. Gene composition of the yoghurts 323 

Functional analysis of the shotgun metagenomic data was performed using HUMAnN2 324 

(https://bitbucket.org/biobakery/humann2). The abundances of Gene Ontology (GO) and the 325 

abundance of level-4 EC categories of interest are presented in Fig. 2 and 3 respectively. The 326 

abundances of genes associated with phospholipid biosynthesis and metabolism were detected 327 

in all of the yoghurts. According the data in Fig. 2., the abundance of GO terms associated with 328 

polar lipid biosynthesis and metabolism are associated with the presence of S. thermophilus 329 

and L acidophilus indicating that these microbes have the capacity to alter the polar lipid 330 

composition of the milk and yoghurts. Similarly, the data in Fig. 3. indicates that both S. 331 

thermophilus and L acidophilus have the greatest capacity to biosynthesise fatty acids and 332 

phospholipids according to the abundance of level-4 EC categories of interest.   333 

*Insert Fig. 2. Here* 334 

*Insert Fig. 3. Here* 335 

3.6. Bacteriocins 336 

Bacteriocins are ribosomally synthesised antimicrobial peptides produced by several bacterial 337 

species that generally inhibit strains closely related to the producer in order to compete within 338 

their specific ecological niche (O'Shea, Cotter, Stanton, Ross, & Hill, 2012). However, their 339 

https://bitbucket.org/biobakery/humann2
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mechanisms of action vary considerably due to their structural diversity. As depicted in Fig. 340 

4., it is clear that the microbes present in the yoghurts possess the genetic capacity to produce 341 

a variety of type II and type III bacteriocins. Notably, yoghurt D, C, and E had a greater number 342 

of hits per class of bacteriocin, which may correlate with greater bioactivity against platelet 343 

aggregation in these yoghurts.  344 

*Insert Fig. 4. Here*  345 

 346 

4. Discussion 347 

 The microbial composition of the yoghurts were assessed following fermentation (Fig. 348 

1A). S. thermophilus was the most dominant species in all of the yoghurts produced, followed 349 

by L. delbrueckii subsp. bulgaricus, which was the second most abundant species in yoghurts 350 

A and B. L. acidophilus was the third most abundant species present in yoghurt B (4.8%) and 351 

C (6.2%) and was the second most abundant in yoghurt D (4.9%). The second most abundant 352 

species present in yoghurt C was B. animalis (6.9%). Although L. paracasei was added to 353 

yoghurt E, this species was present in low proportions (< 1%) in the final yoghurt. Furthermore, 354 

E. durans was also detected in yoghurt E (1.9%). This is a non-pathogenic bacterial species of 355 

human, animal or environmental origin that is often identified in various dairy products and 356 

may be probiotic (Andrighetto et al., 2001). Its presence may be explained by the fact that 357 

enterococci are generally present in higher amounts in caprine and ovine milk (Del Pozo, Gaya, 358 

Medina, Rodríguez-Marín, & Nuñez, 1988) and E. durans in particular is resistant to damage 359 

by heat treatment (McAuley, Gobius, Britz, & Craven, 2012). It is unclear what prevented the 360 

growth of L. paracasei, as generally this species is grown in the presence of the other lactic 361 

acid bacteria present. However, temperature may play a role for its lower abundance as 362 

previous research indicates that this species tends to favour growth below 40 °C at an optimum 363 

of 37 °C (Collins, Phillips, & Zanoni, 1989), in contrast to the other organisms present, which 364 

require 42 °C according to the manufacturers guidelines. Irrespective of these possibilities, 365 

yoghurt E possessed a different microbial composition in comparison to the other yoghurts, 366 

which is characterised by a high proportion of S. thermophilus. The fact that yoghurt E had an 367 

IC50 lower than that of milk, indicates that fermentation of milk with S. thermophilus plays a 368 

significant role in the bioactivity of polar lipids present in these yoghurts.  369 

 Functional analysis of the shotgun metagenomics data was performed using 370 

HUMAnN2, which indicated that the microbial species present in all yoghurts had the 371 
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metabolic capacity to synthesise polar lipids and various fatty acids (Fig. 2.). It is already well 372 

documented that certain lactic acid bacterial strains have a distinctive phospholipid 373 

composition, that may be distinguishable between different genera (Exterkate, Otten, 374 

Wassenberg, & Veerkamp, 1971). In particular, based on the abundances of GO terms detected 375 

by HUMAnN2, S. thermophilus in yoghurt D seems to have the greatest capacity to synthesise 376 

fatty acids and phospholipids and possess the genes for other functions in relation to the 377 

metabolic processes of fatty acids and polar lipids including: phosphatidylserine decarboxylase 378 

activity (GO:0004609); phosphatidylethanolamine biosynthetic process (GO:0006631); 379 

glycerophospholipid metabolic process (GO:0006650); phospholipid biosynthetic process; 380 

(GO:0008654) cardiolipin synthase activity (GO:0008808); cardiolipin biosynthetic process 381 

(GO:0032049); acetyl-CoA carboxylase complex (GO:0009317); glycerol-3-phosphate 382 

cytidyltransferase activity (GO:0047348); biotin carboxylase activity (GO:0004075); lipid 383 

biosynthetic process (GO:0008610) (Fig. 2.). Several of the genes associated with anabolic 384 

processes that are crucial for the biosynthesis of various polar lipids and are present in varying 385 

amounts in each of the yoghurts.  386 

 In particular, it seems that L. delbrueckii subsp. bulgaricus has the genetic capacity to 387 

express CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase activity 388 

(GO:0008444), which is involved in the biosynthesis of phospholipids by catalysing the 389 

conversion of CDP-diacylglycerol and glycerol-3-phosphate to CMP and 3-(3-phosphatidyl)-390 

glycerol 1-phosphate in the committed step to the synthesis of acidic phospholipids (Gaynor et 391 

al., 1991; Vance & Vance, 2008). Furthermore, the detection of GO terms associated with the 392 

phosphatidylethanolamine (PE) (GO:0006646) and cardiolipin (CL) (GO:0008808) 393 

biosynthesis is not unexpected due to their respective roles in the bacterial and mitochondrial 394 

membranes (Vance & Vance, 2008).  395 

 Interestingly, yoghurt D exhibited the greatest capacity for glycerol ether metabolic 396 

processes. As these lipids exhibit similar structures to PAF, yoghurts that contain these lipids 397 

may induce either agonistic or antagonistic effects, but both cardioprotective (Tsoupras, 398 

Lordan, & Zabetakis, 2018); structural elucidation of these polar lipid extracts will provide 399 

more information about the structure function relationship between these polar lipids and the 400 

PAF-R. Moreover, the detection of genes associated with the synthesis various phospholipid 401 

including PE and CL in the HUMAnN2 output may explain the levels of bioactivity detected 402 

in these yoghurt as these phospholipids have previously been associated with potent 403 
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antithrombotic properties in polar lipids of dairy products (Megalemou et al., 2017; Poutzalis 404 

et al., 2016). 405 

 The abundance of level-4 EC categories of interest was also assessed (Fig. 3.). It is clear 406 

that the microbes present in each of the yoghurts play a key role in the alteration of the overall 407 

fatty acid composition of the yoghurts. Several of the EC categories of interest detected are 408 

responsible for the biosynthesis of fatty acids (EC 6.4.1.2: Acetyl-CoA carboxylase), which 409 

although expected, are present in abundance. There are also numerous EC categories detected 410 

in abundance that are specific to phospholipid biosynthesis. For example glycerol-3-phosphate 411 

acyltransferase (EC 2.3.1.n3) and phosphate acyltransferase (EC 2.3.1.n2) are the rate limiting 412 

enzymes for phosphatidic acid synthesis, which is critical for the synthesis of phospholipids 413 

(Wendel, Lewin, & Coleman, 2009). Both of these EC terms were detected in abundance in 414 

yoghurt D, which corresponds with the yoghurt that exhibited significant changes in the TPL 415 

lipid composition and the most potent bioactivity. Similarly, the detection of 416 

phosphatidylserine decarboxylase (EC 4.1.1.65), glycerol-3-phosphate cytidyltransferase (EC 417 

2.7.7.39), inositol-3-phosphate synthase (EC 5.5.1.4), and CDP-diacylglycerol-glycerol-3-418 

phosphate 3-phosphatidyltransferase (EC 2.7.8.5) indicates that the starter cultures in these 419 

yoghurts have the ability to synthesise phospholipids. However, further research is required to 420 

establish to what extent these starter cultures influence the phospholipid content of these 421 

yoghurts and whether they are incorporated into the dairy matrix or remain bound 422 

intracellularly.  423 

 Systemic inflammation is mediated by proinflammatory molecules such as PAF, which 424 

leads to the development of chronic conditions such as atherosclerosis and subsequently CVD 425 

(Moss et al., 2018; Tsoupras, Lordan, & Zabetakis, 2018). Therefore, considering diet and 426 

lifestyle are key modifiable risk factors for the prevention of CVD, the formulation of novel 427 

nutraceutical and functional foods to combat these inflammatory processes is imperative. 428 

Ovine milk is an underutilised nutritious milk with the potential to be used for functional food 429 

development (Balthazar et al., 2017). Previous research indicates that polar lipids in ovine 430 

yoghurts possess anti-PAF activity (Megalemou et al., 2017) and that the fermentation of milk 431 

may affect the antithrombotic properties of these bioactive lipids (Lordan & Zabetakis, 2017a).  432 

 As demonstrated in table 2, following milk fermentation and depending on the starter 433 

culture used, the IC50 decreased when milk was fermented to yoghurt, indicating an 434 

enhancement of the antithrombotic activity of the polar lipids. All of the yoghurt TPL had an 435 
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IC50 value lower than 85 µg, indicating that they all possessed potent antithrombotic properties, 436 

which is within range of previous polar lipids of animal origin tested on human PRP in vitro 437 

(Poutzalis et al., 2018; Tsoupras, Lordan, Demuru, et al., 2018) and dairy derived polar lipids 438 

tested on washed rabbit platelets in vitro (Megalemou et al., 2017; Poutzalis et al., 2016; 439 

Tsorotioti et al., 2014). In particular, yoghurts B and D possessed the lowest IC50 values, where 440 

the IC50 of yoghurt D was statistically significantly (p <  0.05) lower than all other samples 441 

tested. These yoghurts in particular contained a higher abundance of L. acidophilus, which 442 

seems to correlate with greater biological activity against PAF-induced platelet aggregation. 443 

Notably, L. acidophilus has previously been associated with anti-inflammatory activities 444 

against PAF; soluble factors released by L. acidophilus have been shown to alleviate PAF-445 

induced inflammation in human colonic NCM460 and Caco-2 cells by reducing nuclear factor 446 

kappa B (NF-κB) activation and IL-8 production (Borthakur et al., 2013). L. acidophilus has 447 

also demonstrated anti-inflammatory effects in vivo via impairing both the NF-κB and  448 

mitogen-activated protein kinase (MAPK) signalling pathways (Haihua Li et al., 2016).  449 

 Research shows that the fatty acid composition of polar lipids affects their 450 

antithrombotic capacity against PAF (Lordan et al., 2017). Following GC-MS analysis (Table 451 

3), it is evident that the microbial starter cultures play a key role in augmenting the polar lipid 452 

composition of ovine milk following bacterial fermentation, which in turn altered the 453 

antithrombotic capacity of the ovine milk polar lipids. Previous research has shown that as 454 

bovine or ovine milk is fermented to yoghurt, cheese, or kefir, the fatty acid composition 455 

changes due to lipolysis of existing milk lipids and synthesis of lipids by lactic acid bacteria 456 

(Florence et al., 2012; Guzel, Yibar, Belenli, Cetin, & Tanriverdi, 2017; Reguła, 2007; Vieira 457 

et al., 2015; Yadav, Jain, & Sinha, 2007). In comparison to the milk TPL, there were significant 458 

changes in the fatty acid composition of the TPL of all 5 yoghurts following fermentation with 459 

various starter cultures. Fermentation reduced the PUFA and increased the MUFA levels of the 460 

fatty acids of the polar lipids, whereas the levels of SFA varied depending on the yoghurt 461 

produced. Florence et al. (2012) demonstrated that increases in unsaturated fatty acids during 462 

milk fermentation was related to an improvement of L. delbrueckii subsp. bulgaricus growth 463 

and that the metabolism of various bacterial cultures modified the fatty acid profile of the milk.  464 

 There was a significant increase in the levels of 18:2 fatty acids in the TPL. Many of 465 

these 18:2 fatty acids are classed as conjugated linoleic acids (CLA) that are associated with 466 

various health benefits including anti-inflammatory (Lordan & Zabetakis, 2017a) and 467 

antithrombotic effects (Truitt, McNeill, & Vanderhoek, 1999). There was also a significant 468 
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increase in the levels of 20:4 and 22:5 in the polar lipid fatty acid composition of all the 469 

yoghurts, which may be associated with the enhanced antithrombotic activities of the yoghurts 470 

in contrast to the ovine milk. It is noteworthy that in marine products, it has been demonstrated 471 

that these ω3 PUFA are more bioactive when incorporated in a phospholipid structure rather 472 

than their free fatty acid forms (Lordan et al., 2017). Remarkably, the fatty acid composition 473 

of the polar lipids in yoghurt D contained several similarities to the classical PAF structure. 474 

PAF is generally composed of 16:0 (68 %), 18:0 (27 %), or 18:1 (4 %) at the sn-1 position 475 

(Demopoulos, Pinckard, & Hanahan, 1979), with acetic acid esterified to the sn-2 position, and 476 

phosphocholine group at the sn-3 position, whereas the three major fatty acids present in the 477 

polar lipids of yoghurt D were 16:0 (21.6 %), 18:0 (15.1 %), and 18:1 (23.0 %) (Demopoulos 478 

et al., 1979). However, further research is required to confirm if there is structural homology 479 

between these polar lipids and PAF.   480 

 Finally, as presented in Fig. 4. it seems that the capacity to produce bacteriocins, which 481 

are antimicrobial peptides produced by bacterial cultures, may correlate with greater 482 

antithrombotic activities. Some bacteriocins such as colicins, which is present in yoghurts D 483 

and E are often encoded with a lysis protein, which increases the permeability of the outer 484 

membrane of the producer organism and is lethal to the producing cells (Snijder & Dijkstra, 485 

2000). Consequently, it is possible that bacteriocins may play a role in releasing phospholipids 486 

into the yoghurt matrix. Several bacteriocins, for example cinnamycin (Machaidze & Seelig, 487 

2003), seem to demonstrate specificity for PE (Moll, Konings, & Driessen, 1999), which is the 488 

second most abundant phospholipid in most biological membranes (Lordan et al., 2017). 489 

Several bacteriocins have demonstrated selective binding towards negatively charged 490 

phospholipids on the membranes of cancer cells (Kaur & Kaur, 2015). Some bacteriocins do 491 

not seem to bind to neutral choline-containing zwitterionic PC molecules (Chatterjee, Paul, 492 

Xie, & van der Donk, 2005), and changes to the overall charge of phospholipids due to a change 493 

in the lipid composition is associated with bacteriocin resistance in some bacteria (Kuipers, 494 

Rink, & Moll, 2011), indicating that the phospholipid charge is a defining feature for 495 

bacteriocin specificity. 496 

 Because bacteriocins can permeabilise the phospholipid bilayer of microbial cells 497 

(Cotter, Hill, & Ross, 2005; O'Shea et al., 2012), it is possible that phospholipids from damaged 498 

or lysed bacterial cells may be released to the surrounding matrix, thus increasing their 499 

bioavailability. However, bacteriocins may also have the capacity to interact with the milk fat 500 

globule membrane (MFGM). Research has shown that when nisin was added to milk to reduce 501 



17 
 

the levels of microbial cells it became unavailable to destroy these cells but was bioavailable 502 

and active again when a detergent was added to permeabilise the MFGM (Jung, Bodyfelt, & 503 

Daeschel, 1992). Considering there is a wealth of evidence to suggest that bacteriocins can 504 

bind to various types of membranes, there is speculative evidence to suggest that the 505 

bacteriocins produced by the starter cultures in this study may interact with the MFGM 506 

increasing the levels of bioavailable phospholipids, however further research is required. 507 

 Overall, the present study has some limitations, and further research is required to 508 

reveal the molecular mechanisms by which polar lipids bind to the PAF-R and inhibit the 509 

proinflammatory actions of PAF. While the data relating to the bacteriocins is promising, 510 

further research is required to confirm these observations. In addition, clinical studies are 511 

required to assess the bioavailability of the antithrombotic polar lipids following consumption 512 

of the antithrombotic ovine yoghurts.  513 

 514 

5. Conclusions 515 

This study confirms that specific starter cultures can alter the fatty acid composition of dairy 516 

polar lipids during fermentation through the lipolysis and biosynthesis of fatty acids. By 517 

altering the polar lipid composition, the antithrombotic properties of these yoghurts have been 518 

enhanced. Further research is required to discern the exact polar lipid structures responsible for 519 

these bioactivities and how fermentation influences the phospholipid structure of milk polar 520 

lipids. Shotgun metagenomic characterisation of the yoghurts indicates that the use of L. 521 

acidophilus and S. thermophilus plays a key role in improving the antithrombotic properties of 522 

these yoghurts. Moreover, functional analysis indicates that the starter cultures present in these 523 

yoghurts have the metabolic capacity to synthesise and alter various polar lipids, therefore 524 

further research is required to discern whether these polar lipids are bioavailable in human 525 

studies. The presence of bacteriocin related genes in some of the most bioactive yoghurts also 526 

warrants further investigation to reveal if there are potential interactions between bacteriocins 527 

and the MFGM. In addition, structural elucidation of these antithrombotic polar lipids and the 528 

optimisation of the fermentation process may allow for the enhancement of the antithrombotic 529 

and anti-inflammatory health benefits of these ovine yoghurts. Similarly, further studies are 530 

required to assess the use of various milk sources and animal diets that may alter the milk polar 531 

lipid composition and antithrombotic properties. This study highlights that ovine milk and 532 
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yoghurts may have beneficial effects for human cardiovascular health and may lead to the 533 

future development of functional foods and nutraceuticals.  534 
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 853 

 854 

Fig. 1. (A) a stacked bar chart presenting the species-level microbial profile of yoghurts A-E 855 
as determined by 16s rRNA gene sequencing. (B) A Bray-Curtis MDS plot based on the 856 

MetaPhlAn2 output on the right that demonstrates that the microbial composition of yoghurts 857 
D and E are similar, yoghurts B and C are more similar to each other, whereas the microbial 858 
composition of yoghurt A is dissimilar to all the other yoghurts.      859 
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Fig. 2. The depicts the abundance of GO terms of interest in each yoghurt according to the 860 

corresponding bacterium associated with the GO term using HUMAnN2 output. 861 
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 862 

Fig. 3. The abundance of level-4 EC categories of interest in each yoghurt according to the 863 

corresponding bacterium associated with the GO term using HUMAnN2 analysis. 864 
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Fig. 4. (A) The total number of hits per class of bacteriocin for yoghurts A-E. Type II 870 
bacteriocins are in a greater abundance in all yoghurt samples. (B) A breakdown of the most 871 
abundant bacteriocin genes detected in each yoghurt.  872 
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Table 1  878 

The composition of the starter cultures used in the inoculation of ovine milk to produce 879 

yogurts A-E.  880 

Yogurt Cultures 

A 0.020 % w/v Streptococcus thermophilus and Lactobacillus delbrueckii subsp. 

bulgaricus (YC-380, Chr. Hansen, Denmark). 

B 0.015 % w/v Streptococcus thermophilus, Lactobacillus delbrueckii, subsp. 

bulgaricus, Lactobacillus acidophilus, and Bifidobacterium animalis subsp. lactis 

(YOMIXTM-205 LYO 250 DCU, Danisco, Denmark). 

 

C 0.015 % w/v Streptococcus thermophilus, Lactobacillus delbrueckii subsp. 

bulgaricus, Lactobacillus acidophilus, and Bifidobacterium animalis subsp. lactis 

(YOMIXTM-205 LYO 250 DCU, Danisco, Denmark) with an additional 0.020 % 

w/v Bifidobacterium animalis subsp. lactis (BB-12, Chr. Hansen, Denmark). 

 

D 0.015 % w/v Streptococcus thermophilus, Lactobacillus delbrueckii subsp. 

bulgaricus, Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis 

(YOMIXTM-205 LYO 250 DCU, Danisco, Denmark) with an additional 0.020 % 

w/v Lactobacillus acidophilus (LA-5, Chr. Hansen, Denmark). 

 

E 0.015 % w/v Streptococcus thermophilus, Lactobacillus delbrueckii subsp. 

bulgaricus, Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis 

(YOMIXTM-205 LYO 250 DCU, Danisco, Denmark),with an additional 0.020 % 

w/v Lactobacillus paracasei subsp. paracasei (L-431, Chr. Hansen, Denmark). 
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 894 

Table 2  895 

Content of total lipids (TL), expressed in grams per 100g of sheep milk and yoghurts (mean ± 896 

SD, n = 3), total polar lipids (TPL), and total neutral lipids (TNL), expressed as percentages of 897 

TL in the sheep milk and yoghurt samples (mean ± SD, n = 3). 898 

abDifferent superscripts indicate significant differences among different yoghurt samples within the same lipid 899 
classes when means are compared using a Fisher’s LSD multiple comparison test (p < 0.05).  900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

Sample TL (g/100g) TNL (%TL) TPL (%TL) 

Sheep Milk 5.28 ± 0.37a 95.15 ± 2.30a 3.20 ± 0.56b 

Yoghurt A 8.10 ± 0.43b 96.46 ± 1.07a 2.45 ± 0.20ab 

Yoghurt B  8.23 ± 1.59bc 97.62 ± 0.22a 2.29 ± 0.17a 

Yoghurt C 7.23 ± 0.60b 97.47 ± 0.53a   2.10 ± 0.37a 

Yoghurt D 7.47 ± 0.36b 97.34 ± 0.47a   2.25 ± 0.10a 

Yoghurt E  9.20 ± 0.55bc 97.60 ± 0.38a        2.55 ± 0.45ab 
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Table 3  921 

Fatty acid profile of total polar lipids (TPL) of milk and each yoghurt expressed in percentage 922 

(%) of total fatty acids of each sample (mean ± SD, n = 3). Total saturated fatty acids (SFA), 923 

monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) are shown as a 924 

percentage of total lipid. 925 

abcdef Mean values (n = 3), ± standard deviation with different letters in the same row indicating statistical 926 
significant differences when means are compared using Fisher’s LSD multiple comparison test (p < 0.05). ND: 927 
non-detectable 928 

 929 

  930 

Fatty Acids A B C D E Milk 

 

8:0 ND 0.22 ± 0.14a 0.35 ± 0.08a ND 0.25 ± 0.07a 0.76 ± 0.66a 

9:0 ND 0.12 ± 0.05a ND ND ND 0.14 ± 0.07a 

10:0 3.14  ± 0.32b 4.90 ± 0.89c 4.66 ± 0.56c 1.60 ± 0.12a  3.35 ± 0.65bc 5.58 ± 1.78c 

10:1 0.17  ± 0.03b  0.22 ± 0.06bc 0.34 ± 0.13c 0.07 ± 0.01a  0.20 ± 0.04bc  0.28 ± 0.11bc 

11:0 0.13  ± 0.02a  0.29 ± 0.06bc   0.14 ± 0.12abc 0.20 ± 0.01b  0.17 ± 0.03ab 0.30 ± 0.08c 

12:0 3.90  ± 0.50a 5.06 ± 0.82ab 5.51 ± 0.85b 5.20 ± 0.32b  4.54 ± 0.54ab  4.93 ± 0.73ab 

12:1  0.15  ± 0.05bc 0.12 ± 0.05ab   0.12 ± 0.07abc 0.20 ± 0.01c 0.20 ± 0.01c 0.06 ± 0.01a 

13:0 0.21  ± 0.02a 0.32 ± 0.08bc 0.31 ± 0.02b 0.36 ± 0.02c 0.18 ± 0.03a  0.32 ± 0.05bc 

14:0 8.20  ± 0.59a 11.38 ± 0.28c 13.89 ± 1.17d 11.49 ± 0.78c 9.83 ± 0.96ab 8.87 ± 1.00ab 

14:1ω7 c9  0.28  ± 0.08abc 0.34 ± 0.01c 0.32 ± 0.05bc 0.42 ± 0.15bc  0.31 ± 0.01b 0.19 ± 0.01a 

15:0 1.33  ± 0.08b 1.93 ± 0.22a   1.31 ± 0.39abc 1.70 ± 0.20c 1.39 ± 0.07b 1.56 ± 0.10c 

16:0 17.53 ± 0.32a 19.87 ± 0.48b 20.43 ± 0.65bc 21.62 ± 0.60c 19.53 ± 1.56bc 17.20 ± 0.76a 

16:1ω7 c9 2.00  ± 0.14c 2.53 ± 0.35d 1.40 ± 0.18b 2.09 ± 0.31cd  1.71 ± 0.66bcd 0.88 ± 0.06a 

17:0 0.90  ± 0.01c 1.07 ± 0.15d 0.75 ± 0.09b 0.96 ± 0.05bd   0.96 ± 0.27bcd 0.45 ± 0.01a 

17:1 0.61  ± 0.01c 0.67 ± 0.13c 0.27 ± 0.17b 0.65 ± 0.12c  0.72 ± 0.30bc 0.02 ± 0.01a 

18:0 10.93± 0.68b 11.25 ± 1.25b 15.76 ± 2.64c 15.13 ± 1.17c 8.25 ± 0.27a 11.32 ± 0.72b 

18:1ω9 c9 35.56 ± 1.40c 27.62 ± 1.36b 23.61 ± 0.31ab 22.97 ± 1.63a  30.53 ± 3.74bc 23.59 ± 3.56ab 

18:2ω6 c9, t12 6.31  ± 0.02c  5.67 ± 0.67abc 4.89 ± 0.33a 5.95 ± 0.06b   5.50 ± 1.70abc 9.23 ± 0.64d 

18:2ω7 c9, t11 3.51  ± 0.16d 1.94 ± 0.12ab 1.47 ± 0.35a 2.00 ± 0.06b 3.29 ± 0.60d 2.56 ± 0.02c 

18:2ω6 t10, c12 0.46  ± 0.35b ND 0.05 ± 0.01a ND 0.93 ± 0.18b ND 

18:3ω3 c9, c12, c15 2.15  ± 0.01d 1.44 ± 0.16b 0.98 ± 0.16a 1.83 ± 0.05c 2.66 ± 0.13f 2.30 ± 0.16e 

20:0 ND 0.31 ± 0.01a 0.24 ± 0.15a 0.29 ± 0.11a ND ND 

20:1ω9 c9 0.65 ± 0.04a 0.79 ± 0.06b  0.74 ± 0.14ab 0.87 ± 0.04b   0.79 ± 0.44abc 1.01 ± 0.03c 

20:3ω9 c5, c8, c11 ND 0.24 ± 0.01a 0.37 ± 0.12a 0.20 ± 0.13a 0.32 ± 0.18a ND 

20:4ω6 c5, c8, c11, c14  0.95 ± 0.15c 0.49 ± 0.04a 0.61 ± 0.10b 0.57 ± 0.01b 1.20 ± 0.36c ND 

20:5ω3 c5, c8, c11, c14, c17 0.35 ± 0.03c 0.25 ± 0.01a 0.22 ± 0.08ab 0.29 ± 0.01b 0.42 ± 0.05d 3.15 ± 0.30e 

22:1 c11 0.53 ± 0.05a 0.82 ± 0.15bc 0.56 ± 0.22ab 1.00 ± 0.04c 0.72 ± 0.21ab 0.89 ± 0.11b 

22:4ω6 c7, c10, c13, c16 ND 0.14 ± 0.02a  0.25 ± 0.17ab ND 0.44 ± 0.04b ND 

22:5ω6 c4, c7, c10, c13, c16 1.62 ± 0.30b 0.97 ± 0.11a 0.96 ± 0.20a 1.54 ± 0.07b 1.67 ± 0.14b ND 

22:6ω3 c4, c7, c10, c13, c16, 

c19 

0.91 ± 0.37c 0.28 ± 0.03a  0.61 ± 0.36abc 0.44 ± 0.04b 0.58 ± 0.10b 0.97 ± 0.04c 

 

Total SFA 46.27 ± 1.54a 56.72 ± 1.33c 63.31 ± 2.62d 58.56 ± 0.89c 48.44 ± 3.88ab  54.01 ± 4.28bc 

Total MUFA 39.96 ± 1.37c 32.90 ± 1.06b 27.50 ± 0.48a 27.90 ± 0.62a 35.18 ± 3.84bc 27.35 ± 3.35a 

Total  ω7 5.782 ± 0.22c  4.805 ± 0.49b 3.196 ± 0.48a 4.519 ± 0.47b  5.309 ± 0.65bc 3.638 ± 0.07a 

Total  ω9 36.22 ± 1.39c 28.65 ± 1.42b 24.72 ± 0.27a 24.05 ± 1.73a  31.64 ± 4.03bc  24.60 ± 3.56ab 

Total PUFA 16.37 ± 0.60c  11.46 ± 0.97a 10.42 ± 0.29a 12.83 ± 0.18b 17.01 ± 1.56cd 18.22 ± 1.17d 

Total  ω3 3.431 ± 0.38c 1.970 ± 0.16a 1.819 ± 0.36a 2.562 ± 0.07b 3.662 ± 0.17c 6.420 ± 0.45d 

Total  ω6 9.345 ± 0.38c 7.270 ± 0.68a   6.763 ± 0.26a 8.057 ± 0.01b 9.738 ± 1.17c 9.228 ± 0.64c 
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Table 4  931 

Inhibition of PAF-induced platelet aggregation in human PRP by sheep milk and yogurts  total 932 

lipids (TL), total polar lipids (TPL), and total neutral lipids (TNL) produced by various starter 933 

cultures. This activity is represented by their IC50 (µg) (mean ± SD, n = 3). 934 

abcd Mean values (n = 3), ± standard deviation with different letters in the same column indicating statistical 935 
significant differences when means are compared using Fisher’s LSD multiple comparison test (p < 0.05). ND: 936 
not-detectable 937 

  938 

 939 

Yogurt TL  TNL TPL 

A  306.5    ±    64.1ab 2938   ±   123a 77.00    ±    9.20c 

B 331.7    ±    27.3b 738.6   ±   37.7b 57.41    ±    5.93b 

C  253.9    ±    73.1ab  ND 70.72    ±    3.95c 

D 224.5    ±    21.4a 640.9   ±   34.0c 44.84   ±    4.96a  

E  263.8    ±    55.5ab  ND  68.10    ±    7.55bc 

Milk 378.0    ±    12.8c  ND    154.4    ±    12.8d 


